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ARCHETYPAL ANALYSIS FOR MACHINE LEARNING

Morten Mørup and Lars Kai Hansen

Cognitive Systems Group, Technical University of Denmark
Richard Petersens Plads, bld 321, 2800 Lyngby, Denmark, e-mail:{mm,lkh}@imm.dtu.dk

ABSTRACT
Archetypal analysis (AA) proposed by Cutler and Breiman
in [1] estimates the principal convex hull of a data set. As
such AA favors features that constitute representative ’cor-
ners’ of the data, i.e. distinct aspects or archetypes. We will
show that AA enjoys the interpretability of clustering - with-
out being limited to hard assignment and the uniqueness of
SVD - without being limited to orthogonal representations.
In order to do large scale AA, we derive an efficient algo-
rithm based on projected gradient as well as an initializa-
tion procedure inspired by the FURTHESTFIRST approach
widely used for K-means [2]. We demonstrate that the AA
model is relevant for feature extraction and dimensional re-
duction for a large variety of machine learning problems
taken from computer vision, neuroimaging, text mining and
collaborative filtering.

1. INTRODUCTION

Decomposition approaches have become a key tool for a
wide variety of massive data analysis from modeling of In-
ternet data such as term-document matrices of word oc-
currences, bio-informatics data such as micro-array data of
gene expressions, neuroimaging data such as neural activ-
ity measured over space and time to collaborative filtering
problems such as the celebrated Netflix problem to men-
tion but a few. The conventional approaches range from low
rank approximations such as singular value decomposition
(SVD), principal component analysis (PCA) [3], independent
component analysis (ICA) [4], sparse coding (SC) [5] and
non-negative matrix factorization (NMF) [6] to hard assign-
ment clustering methods such as K-means and K-medoids.
Common to these is that they can be understood as a linear
mixture or factor analysis type representation of data with
various constraints. Thus data xm,n, where m = 1, ...,M
is the feature index and n = 1, .., N is the sample index,
is written in terms of hidden variables sk,n and projections
am,k with k = 1, ...,K,

xm,n =
∑
k

am,ksk,n + em,n, em,n ∼ N (0, σ2), (1.1)
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typically with a Gaussian noise model. SVD/PCA requires
A and S be orthogonal, in ICA statistical independence is
assumed for S and in SC a penalty term is introduced that
measures deviation from sparsity on S, while in NMF all
variables are constrained non-negative. In hard clustering
by K-means S is constrained to be a binary assignment ma-
trix such that A = XS>(SS>)−1 represents the Euclidean
centers of each cluster while for K-medoids ak = xn for
some n, i.e. the cluster centers have to constitute actual
data points.

Despite the similarities of the above approaches their
internal representations of the data differ greatly and thus
the nature of the interpretations they offer. In SVD/PCA the
features constitute the directions of maximal variation, i.e.
so-called eigenmaps, for NMF the features are constituent
parts, for SC the features are also atoms or dictionary ele-
ments while K-means and K-medoids find the most repre-
sentative prototype objects.

A benefit of clustering approaches is that features are
similar to measured data making the results easier to in-
terpret, however, the binary assignments reduce flexibility.
Also, clustering typically involves complex combinatorial
optimization leading to a plethora of heuristics. On the other
hand low rank approximations based on SVD/PCA/NMF have
a great degree of flexibility but the features can be harder
to interpret both as invariance to rotation of the extracted
features can lead to lack of uniqueness, i.e., X ≈ AS =
AQQ−1S = ÃS̃. In addition SVD/PCA/ICA/SC are prone
to cancellation effects in which two components both lose
meaning because they locally become highly correlated tak-
ing positive and negative near-cancelling values (while still
being globally orthogonal).

In conclusion, clustering approaches give easy interpretable
features but pay a price in terms of modelling flexibility due
to the binary assignment of data objects. Approaches such
as SVD/PCA/ICA/NMF/SC have added model flexibility and
as such can be more efficient in capturing e.g., variance,
however, this efficiency can lead to complex representations
from which we learn relatively little.

Archetypal analysis (AA) proposed by [1] directly com-
bines the virtues of clustering and the flexibility of matrix
factorization. In the original paper on AA [1] the method



was demonstrated useful in the analysis of air pollution and
head shape and later also for tracking spatio-temporal dy-
namics [7]. Recently, Archetypal Analysis has found use in
benchmarking and market research identifying typically ex-
treme practices, rather than just good practices [8] as well as
in the analysis of astronomy spectra [9] as an approach for
the end-member extraction problem [10]. In this paper we
demonstrate the following important theoretical properties
of AA

• The Archetypal Analysis (AA) model is unique.

• Archetypal Analysis can efficiently be initialized through
the proposed FURTHESTSUM method.

• AA can be efficiently computed using a simple pro-
jected gradient method.

We further demonstrate that AA is useful for a wide variety
of important machine learning problem domains resulting in
easy interpretable features that well account for the inherent
dynamics in data.

2. ARCHETYPAL ANALYSIS AND THE
PRINCIPAL CONVEX HULL

The convex hull also denoted the convex envelope of a data
matrix X is the minimal convex set containing X . Infor-
mally it can be described as a rubber band wrapped around
the data points, see also figure 1. While the problem of find-
ing the convex hull is solvable in linear time (i.e., O(N))
[11] the size of the convex set increases dramatically with
the dimensionality of the data. The expected size of the con-
vex set for N points in general position in K dimensional
space grows exponentially with dimension asO(logK−1(N))
[12]. As a result, in high dimensional spaces the ’minimal’
convex set forming the convex hull does not provide a com-
pact data representation, see also figure 1. Archetypal anal-
ysis [1] considers the principal convex hull, i.e., the (K-1)-
dimensional convex hull that the best account for the data
according to some measure of distortion D(·|·). This can
formally be stated as the optimal C and S to the problem

argminC,S D(X|XCS)
s.t. |ck|1 = 1, |sn|1 = 1,

C ≥ 0, S ≥ 0.

The constraint |ck|1 = 1 together with C ≥ 0 enforces the
feature matrix A = XC as given in equation (1.1) to be
a weighted average (i.e., convex combination) of the data
observations while the constraint |sn|1 = 1, S ≥ 0 re-
quires the nth data point to be approximated by a weighted
average (i.e., convex combination) of the feature vectors
XC ∈ RM×K . We will presently for brevity consider
D(X|XCS) = ‖X − XCS‖2F . As such in line with

principal component analysis, the optimal C,S will gen-
erate the principal (i.e. dominant) convex hull for the data
X , see figure 1. Archetypal analysis favors features that
constitute representative ’corners’ of the data, i.e., distinct
aspects or archetypes. Furthermore, the AA model can nat-
urally be considered a model between low-rank factor type
approximation and clustering approaches, see table 1. As
for K-means and K-medoids Archetypal Analysis is invari-
ant to scale and translation of the data and as noted in [1]
the AA problem is non-convex.

Fig. 1. Illustration of the AA representation of data in 2D
(left panel) and 3D (middle and right panel). Blue dots and
lines indicate the convex sets and hulls respectively whereas
green lines and dark shaded regions indicate the extracted
principal convex hulls. Notice how the four component
principal convex hull (left and middle panel) and 5 com-
ponent convex hull (right panel) account for most of the dy-
namics in the data while the complete convex hull even in
2D is given by a rather large convex set. The end points
of the principal convex hull are convex combinations of the
data points. These end points constitute the distinct regions
of the clusters rather than the central regions as would be ex-
tracted by K-means. As such, the 5th cluster given in cyan
color (right panel) is modeled as a combination of existing
aspects rather than given a feature of its own.

2.1. Uniqueness of AA

Lack of uniqueness in matrix decomposition is a main mo-
tivation behind rotational criteria such as varimax in factor
analysis as well as imposing statistical independence in ICA
[4] and sparsity [5]. We presently prove that AA is in general
unique up to permutation of the components.

Theorem 1. Assume ∀k∃n : cn,k > 0 ∧ cn,k′ = 0, k′ 6= k
then the AA model does not suffer from rotational ambiguity,
i.e. if X ≈ XCS = XCQ−1QS = XC̃S̃ such that
both C,S and C̃, S̃ are equivalent solutions to AA then Q
is a permutation matrix.

Proof. Since S̃ = QS and S ≥ 0 and S̃ ≥ 0 both are
solutions to AA we have |sn|1 = 1 and |Qsn|1 = 1 ∀n. For
this to be true Q has to be a Markov matrix, i.e.

∑
k′ qk,k′ =

1, Q ≥ 0. Since C ≥ 0 and CQ−1 ≥ 0 and given ∀k∃n :
cn,k > 0 ∧ cn,k′ = 0, k′ 6= k then Q−1 has to be non-
negative. Since both Q and Q−1 are non-negative it follows
that Q can only be a scale and permutation matrix, and as
the row sum of Q has to be one it follows that Q can only
be a permutation matrix.



SVD/PCA NMF AA/PCH K-means K-medoids
C ∈ R XC ≥ 0 |cd|1 = 1, C ≥ 0 |cd|1 = 1, C ≥ 0 |cd|1 = 1,C ∈ B
S ∈ R S ≥ 0 |sn|1 = 1, S ≥ 0 |sn|1 = 1, S ∈ B |sn|1 = 1,S ∈ B

Table 1. Relation between the AA/PCH model and unsupervised methods such as SVD/PCA, NMF, K-means and K-medoids.

The requirement ∀k∃n : cn,k > 0 ∧ cn,k′ = 0, k′ 6= k
states that for each column of C there has to exist a row
where that column element is the only non-zero element.
This holds for the AA model as two distinct aspects in gen-
eral position will not be a convex combination of the same
data points. We note that although AA is unique in general
there is no guarantee the optimal solution will be identified
due to the occurrence of local minima.

2.2. Efficient initialization of AA by FURTHESTSUM

Cutler and Breiman point out in [1] that careful initializa-
tion improves the speed of convergence and lowers the risk
of finding insignificant archetypes. For K-means a popu-
lar initialization procedure is based on the FURTHESTFIRST
method described in [2]. The method proceeds by randomly
selecting a data point as centroid for a cluster and selecting
subsequent data points the furthest away from already se-
lected points. As such, a new data point jnew is selected
according to

jnew = argmax
i
{min

j
‖xi − xj‖, j ∈ C}, (2.1)

where ‖ · ‖ is a given norm and C index current selected
data points. For initializing AA we propose the following
modification forming our FURTHESTSUM procedure

jnew = argmax
i
{
∑
j

‖xi − xj‖, j ∈ C}. (2.2)

To improve the identified set, C, the first point selected by
random is removed and an additional point selected in its
place. For the proposed FURTHESTSUM method we have
the following important property

Theorem 2. The points generated by the FURTHESTSUM
algorithm is guaranteed to lie in the minimal convex set of
the unselected data points.

Proof. We will proof the theorem by contradiction. Assume
that there is a point t not in the minimal convex set, i.e.
xt = Xc such that |c|1 = 1, cd ≥ 0, ct = 0 while
t = argmaxi

∑
j ‖xi − xj‖, j ∈ C. We then have∑

j∈C
‖xt − xj‖ = ‖Xc− xj‖ <

∑
d

cd
∑
j∈C
‖xd − xj‖

≤ max
d

∑
j∈C
‖xd − xj‖

Fig. 2. Illustration of the extracted prototypes by FUR-
THESTFIRST [2] (green circles) and the proposed FUR-
THESTSUM initialization procedure (red circles) for 4 (left),
25 (middle) and 100 (right) propotypes. Clearly, the FUR-
THESTSUM extract points belonging to the convex set of the
unselected data (useful for AA) whereas FURTHESTFIRST
distribute the prototypes evenly over the data region (useful
for K-means).

Where the first inequality follows from the triangular in-
equality. Hence a better solution is given by a point different
from t contradicting that t was the optimal point.

A comparison between the FURTHESTFIRST and FUR-
THESTSUM initialization procedures can be found in fig-
ure 2 based on the 2-norm, i.e. ‖xi − xj‖2. The primary
computational cost of the FURTHESTSUM procedure for the
identification of T candidate points is the evaluation of the
distance between all data points and the selected candidate
points which has an overall computational complexity of
O(MNT ).

2.3. Projected Gradient for AA

We currently propose a simple projected gradient procedure
that can be adapted to any proximity measure. In the present
analysis we will however without loss of generality con-
sider proximity measured by least squares. In the paper of
[1] the model was estimated by non-negative least squares
such that the linear constraints were enforced by introduc-
ing quadratic penalty terms in the alternating updates of S
and C, i.e minimizing
‖X−XCS‖2F +M

∑
d(|cd|1 − 1)2+M

∑
j(|sj |1 − 1)2,

where M is some large number. Alternatively, standard
non-negative quadratic programming solvers with linear con-
straints can be invoked [13] for each alternating subprob-
lem solving S for fixed C and vice versa. We found how-
ever, that the following projected gradient method worked
efficiently in practice. We recast the AA-problem in the



Fig. 4. Analysis of an Altanserin tracer Positron Emission Tomography data set. Top panel: The extracted temporal profiles
for a three component SVD/PCA, NMF, AA and K-means models. Of the four models only the AA model has correctly
extracted the region specific temporal profiles that from the spatial maps in the bottom panel correspond well to non-binding,
high-binding and vascular regions respectively. As there is no scaling ambiguity the estimated arterial tissue curves are in the
correct units.

Fig. 3. Properties of features extracted based on SVD/PCA,
NMF, AA and K-means. Whereas SVD/PCA extract low to
high spatial frequency components and NMF decompose the
data into an atomic mixture of constituting parts the AA
model extracts notably more distinct aspects than K-means.

l1-normalization invariant variables s̃k,n =
sk,n∑
k sk,n

and
c̃n,k =

cn,k∑
n cn,k

such that the equality constraints are explic-

itly satisfied. Noticing that ∂s̃k′,n
∂sk,n

=
δk′,k∑
k sk,n

− sk′,n
(
∑

k sk,n)2

and differentiating by parts, we find the following updates
for the AA parameters recast in the above normalization in-
variant variables

sk,n ← max{s̃k,n + µS̃(g
S̃
k,n −

∑
k′

gS̃k′,ns̃k′,n), 0},

s̃k,n =
sk,n∑
k sk,n

, GS̃ = C̃
>
X>X − C̃

>
X>XC̃S̃

cn,k ← max{c̃n,k + µC̃(gC̃n,k −
∑
n′

gC̃n′,k c̃n′,k), 0},

c̃n,k =
cn,k∑
n cn,k

, GC̃ = X>XS̃
>
−X>XC̃S̃S̃

>

Each alternating update is performed on all elements simul-
taneously and µ is a step-size parameter that we tuned by

line-search. In the update of S, C̃
>
X>X and C̃

>
X>XC̃

can be pre-computed having a cost of O(KMN) while the
computation of the gradient as well as the evaluation of least
squares objective given by

const.− 2〈C̃
>
X>X, S̃〉+ 〈C̃

>
X>XC̃, S̃S̃

>
〉

has computational costO(K2N). In the update of C, X>XS̃
>

and S̃S̃
>

can be precomputed having a computational cost
of O(KMN) and O(K2N) respectively while calculating
the gradient as well as the evaluation of the least squares



objective given by

const.− 2〈X>XS̃
>
, C̃〉+ 〈C̃

>
X>XC̃, S̃S̃

>
〉

also has a computational complexity of O(KMN). When
only considering T candidate points used to define the archetypes
as proposed in [13] this latter complexity can be further re-
duced to O(KMT ). In [13] it was suggested to identify
these candidates point by outlying data points found through
projections of the eigenvectors of the covariance matrix of
X . We found that the proposed FURTHESTSUM algorithm
form an efficient alternative approach to the identification
of these T candidate points. In our implementation of the
projected gradient method we carried out 10 line-search up-
dates for each alternating update of S and C.

2.4. kernel-AA

From the above updates it can be seen that the estimation
of the parameters only depend on the pairwise relations, i.e.
the inner products Kernel K = X>X . As such, the AA
model trivially generalize to kernel representations based on
pairwise relations between the data points (kernel-AA) and
can here be interpreted as extracting the principal convex
hull in a potentially infinite Hilbert space (i.e., similar to the
corresponding interpretation of kernel-K-means and kernel-
PCA). These types of analysis are however out of the scope
of the current paper.

3. RESULTS

We demonstrate the utility of the AA model on four data sets
taken from a variety of important machine learning problem
domains.
Computer Vision: To illustrate the properties of the AA
model we compared the extracted model representation to
the representations obtained by SVD/PCA, NMF and K-means
on the CBCL face data base of 361 pixels × 2429 images
used in [6]. The results of the analysis is given in figure
3. SVD/PCA extracts features that have low to high spatial
frequency while NMF gives a part based representation as
reported in [6]. K-means extracts cluster centers of anony-
mous ’typical’ faces while features extracted by AA repre-
sents more distinct (archetypal) face prototypes exposing
variability and face diversity. Thus AA accounts for more
variation than K-means but less than SVD/PCA and NMF as
indicated in Table 1, while the distinct facial aspects are ef-
ficiently extracted.
NeuroImaging: We analyzed a Positron Emission Tomog-
raphy data set containing 40 time points × 157244 voxels
based on [18F ]-Altanserin as radioligand in order to mea-
sure serotonin-2A neuroreceptors. Each recorded voxel is a
mixture of vascular regions, non-binding regions and high-
binding regions. The AA model should ideally extract these

profiles as well as how each voxel is a convex mixture of
these regions. This holds provided a convex combination
of the observations are able to generate the pure tissue pro-
files, i.e. can extract the distinct profiles. From figure 4
the AA model have indeed extracted three components that
well correspond to non-binding, high-binding and vascular
regions respectively. No such profiles are clearly extracted
by SVD/PCA, NMF or K-means that all extract components
that are mixtures of the three different region types.
Text mining: Latent Semantic Analysis has become an im-
portant tool for extracting word and document associations
in text corpora. In figure 5 we demonstrate the utility of the
AA-model for this task by analyzing the NIPS bag of words
corpus consisting of 1,500 documents and 12,419 words
with approximately 6,400,000 word occurrences (see also
http://archive.ics.uci.edu/ml/datasets/Bag+
of+Words). Each word was normalized by the inverse
document frequency (IDF). Clearly, the 10 component model
has well extracted distinct categories of the NIPS papers.
For the AA model C indicate which documents constitute
the extracted distinct aspects XC given in the figure while
S (not shown) gives the fraction by which each document
resemble these aspects. Indeed the extracted archetypes cor-
respond well to distinct types of papers in the NIPS corpora.

Fig. 5. Analysis of the NIPS bag of words corpus. The 10
most prominent words for each feature component of NMF,
AA and K-means respectively of the extracted 10 compo-
nent models. The average cosine angle (averaged over all
the 10(10 − 1)/2 feature comparisons) are 84.16◦, 80.31◦

and 73.33◦ respectively, thus, the AA model has extracted
more distinct aspects than K-means. Clearly each of the
components correspond well to aspects of the documents in
the NIPS corpus. The components are ordered according to
importance and in gray scale are given the relative strength
of each of the 10 top words for each of the extracted term
groups.

Collaborative filtering: Collaborative filtering has be-
come an important machine learning problem of which the
celebrated Netflix prize is widely known. Given the prefer-
ences of users the aim is to infer preferences of products the



user has not yet rated based on the ratings given by other
users. We analyzed the medium size and large size Movie
lens data given by 1,000,209 ratings of 3,952 movies by
6,040 users and 10,000,054 ratings of 10,677 movies given
by 71,567 users with ratings from {1, 2, 3, 4, 5} (http:
//www.grouplens.org/). The AA model extracts ide-
alized users (extreme user behaviors) while at the same time
relating the users to these archetypal preference types. Movies
that are left unrated by the users we treated as missing val-
ues based on the following extension of the AA objective to
accommodate missing information, i.e.

min
S,C

∑
n,m:qn,m=1

(xn,m −
∑
k

∑
m′ xn,m′cm′,k∑
m′ qn,m′cm′,k

sk,m)2,

where Q is an indicator matrix such that qn,m = 1 if the nth

movies was rated by themth user and zero otherwise. Since
the SVD and NMF model turned out to be more prone to local
minima than the AA model these methods were initialized
by the AA solution obtained. From figure 6 it can be seen
that despite that the AA model is more restricted than NMF
and SVD it has a very similar test error performance and
extracts features that are much more useful for predicting
the ratings than K-means.

Fig. 6. Left and middle panel: Root mean square error
(rmse) for the various models as a function of the number
of components when analyzing the medium size Movielens
(left) and large sized (middle) Movielens data. Training er-
ror is given by solid lines and test error performance by dot-
ted lines based on removing 10% of the data for testing.
Clearly, the AA model has added flexibility over K-means in
accounting for the data. Right panel: Illustration of the ex-
tracted archetypal users-types, XC, and their distinct pref-
erences for the 25 component AA models with lowest vali-
dation error based on the large sized problem.

4. DISCUSSION

We demonstrated how the Archetypal Analysis model of
[1] is useful for a large variety of machine learning prob-
lems. A simple algorithm for fitting the AA model was de-
rived as well as the FURTHESTSUM initialization procedure
to extract end-members for initial archetypes. The utility
of AA over clustering methods is that it focuses more on

distinct or discriminative aspects yet has additional mod-
eling flexibility by using soft assignment. We saw exam-
ples of improved interpretability in the AA representations
over existing matrix factorization and clustering methods.
An open problem is to determine the number of compo-
nents used. This problem is no different from the problem
of choosing the number of components in approaches such
as SVD/PCA/NMF/SC/K-means, thus, methods based on ap-
proximating the model evidence or generalization error can
be invoked. AA is a promising unsupervised learning tool
for many machine learning problems and as the representa-
tion is unique in general we believe the method holds par-
ticularly great promise for data mining applications.
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