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Advantages in using amino acid salts instead of alkanolamines:

* Might be less prone to degradation in oxygen rich environments

1 Make-up absarbent 1

* Less volatile than alkanolamines due to their ionic nature 0l e
e Same affinity towards CO, as alkanolamines .
e Form carbamates Shipper

ENtering VDo — _

pping vapo
A —

Amino acids participate in the transportation of CO, in the blood

|
by the formation of carbamate -

absorent

Problems and drawbacks:

* More expensive

e Limited solubility of amino acids in water

* Limited amount of experimental data available in literature




Experimental data for amino acid salt
solutions

CO, Equilibrium data
— Potassium taurate — Kumar et al. (2003) 38 data points, T=25 and 40°C
— Potassium glycinate (Portugal et al. 2009) 103 data points, T= 20-50°C
— Potassium methionate (Kumelan et al. 2010) 65 data points, T= 80-120°C
— Potassium sarcosinate (Aronu et al. 2010) graph with 55 points, T=40-120°C
— Potassium prolinate (unpublished, DTU, UTwente)
Absorption kinetics
— Kumar et al. (2003) (potassium salt of taurine and glycine)
— Van Holst et al. 2009 (potassium salts of 7 different amino acids)
— Prakash et al. 2010 (potassium salts of taurine and glycine)
Equilibrium constants
— Sharma et al. 2003
— Hamborg et al. 2007
Heat capacity and other thermal properties - none
Freezing point depression data

— Sengelgv (2010) (loaded and unloaded potassium salt of methionine) 20 data
points -14 to 0°C



Molar mass 149.21 g/mol
Decomposition temperature 281°C
Solubility in water at 25°C: 0.38 molal
pKa 2.28 and 9.21

Found in cereal grains and in nuts
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Bolubility in g. /100 ml,

Hill and Robson, Biochemical
Journal, 28(1934)1008-1013

Py of solution



Potassium salt of methionine —
Equilibrium constants

Sharma VK; Zinger A; Millero FJ; De Stefano C; Dissociation
constants of protonated methionine species in NaCl media,
Biophysical Chemistry, 105(2003)79-87

— Determined in temperature range 5 —45°C

Hamborg ES; Niederer JPM; Versteeg GF; Dissociation
constants and thermodynamic properties of amino acids used
in CO, absorption from (293 to 353) K, J. Chem. Eng. Data,
52(2007)2491-2502

— Determined in temperature range 20 — 80°C

Equilibrium constant for the carbamate formation of
methionine not available

Equilibrium constant for the protonated form of methionine
not relevant at pH above 6



Potassium salt of methionine —
experimental data

e Kumelan J, Pérez-Salado Kamps A, Maurer G, Solubility of
CO, in Aqueous Solutions of Methionine and in Aqueous
Solutions of (K,CO5; + Methionine), Ind. & Eng. Chem. Res.
49(2010)3910-3918

— VLE-data for the system CO,-H,0-K,CO,;-Methionine at 80-120°C

— It corresponds to loaded solutions of potassium salt of
methionine

— Some precipitation in experiments at 80°C with 2.5 molal K,CO,

and 0D R maolal methionine
CAUIITNA VoUW TTHIVIULD THIGCGUTTIVILTT IO

e Sengelgv L., Bachelor Thesis, Technical University of
Denmark, 2010

— Freezing point depression data for potassium salt of methionine
and for loaded solutions of this salt



Results for
the CO,-H,O-
K,CO;-
Methionine
system

(Eq. constant

from Sharma et
al.)
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Total pressure in MPa

Results for the CO,-H,0-K,CO,;-Methionine system
(Equilibrium constant from Sharma et al.)
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Measurements of freezing point depressions for mixtures of 1:1
(mole ratio) aqueous Met-KOH and 1:3 (mole ratio) aqueous
Met-K,CO,

12



Freezing point depressions: Results and model correlation
(Equilibrium constant from Sharma et al.)

mol ratio methionine:K,CO; 1:3

Freezing point in °C
~

O Experimental

- Extended UNIQUAC

-11 S

-13 -
-15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
m (Potassium salt of methionine) in mol/(kg H,0)
0
4 mol ratio methionine:KOH 1:1

N
1

w
1

O Experimental

Freezing point in °C
S

w
1

=—FExtended UNIQUAC

|
(o)}
1

1
~

o

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
m(potassium salt of methionine) in mol/(kg H,0)



The potassium salt of methionine as an absorbent in post-
combustion contra MEA, MDEA and K,CO,

Absorber
conditions

Equilibrium
constant from
Sharma et al.
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The potassium salt of methionine as an absorbent in post-
combustion contra MEA, MDEA and K,CO,

Desorber
conditions

Equilibrium
constant from
Sharma et al.
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The potassium salt of methionine as an absorbent in post-
combustion contra MEA, MDEA and K,CO;

Desorber
conditions

Equilibrium
constant from

Hamborg et al.
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Conclusion |

The extreme difference between the properties of the potassium salt of
methionine at absorber conditions and at desorber conditions indicates:

— A strong temperature dependence of the equilibrium constant of
methionine

— Acidic properties of methionine strongest at desorber temperature

Portugal et al. found that the carbon dioxide solubility in potassium

glycinate did not change much in the temperature range investigated (20-
50°C)



Conclusion Il

Due to the limited amount of experimental data available, it is possible to
model CO, solubility in amino acid salt solutions without taking carbamate
formation into account

The potassium salt of methionine seems to have very interesting
properties for post-combustion usage. However VLE-data at absorber
column conditions are needed to validate the results

The limited solubility and risk of precipitation provide challenges in the
use of the potassium salt of methionine and must be investigated further

— The 2 molal solutions for which calculations were shown here might
be precipitating!
More research is required to clarify the role of methionine in the
absorption process: Especially regarding carbamate formation and kinetics

Much more research is required on amino acid salt solutions. They have
very interesting properties and could be real alternatives to
alkanolamines.



