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For modern MegaWatt (MW) wind turbines, composite

materials are used for the blades. The composite blade

introduce additional geometric couplings due to

different layup angles of the composite materials. The

tailoring capability of the composite blade could be

used to passively control the wind turbine response and

results in a decrease of fatigue loads and the risk of

flutter. However the classical beam theories such as

Timoshenko and engineering beam models used for

the aeroelastic codes, HAWC2, FLEX, Bladed, FAST,

cannot be used to investigate the additional geometric

coupling effects of anisotropic materials.

The main aim of this study is to develop beam element

model for analyzing the anisotropic composite blades of

wind turbines. Developed new beam element is

validated with existing data. It has shown that

anisotropic properties introduce not only additional

deflections but also larger deflections due to coupling

effects. Natural frequencies are also changed when the

anisotropic characteristics are considered.

 Steady deflections for isotropic and anisotropic cases

 Anisotropic beam deflects more than isotropic beam.

 Natural frequencies and mode shapes

 Natural frequencies with isotropic material are higher

than the frequencies for anisotropic material.

 More coupling effects are illustrated when anisotropic

materials are considered.

 For the case 1, torsion mode is coupled with flap 

mode.

 For the case 2, edge mode is coupled with flap 

mode. 
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Typical layup conditions

 Using 0° or symmetric layups (±θ°)

 No couplings are produced.  

0° layup case Symmetric  layup case

Possible layup conditions

 Using asymmetric layups

 Couplings are produced.  

Asymmetric  layup case

 2 nodes element with higher order of the polymonial

shape function is developed. 

 Steady deflections of cantilevered beam are

compared.

 Natural frequencies (Hz) and mode shapes for box

beams are compared.

 Cross-section stiffness and mass matrix are given 

from the references.

 Case I: Wenbin Yu (2007)

 Length of the beam: 7.5in

 Graphite-Epoxy [30°]T , rectangular box beam

 Deflections and rotations

 Natural frequencies (Hz) comparisons

 Mode shapes comparisons

Case II: Hodges et al. (1991)

 Length of the beam: 100in

 Graphite-Epoxy [20°/-70°/20°/-70°/-70°/20°]T, 
rectangular box beam

Mode Isotropic [Hz] Anisotropic [Hz]

1(Flap) 70.6 52.6

2(Edge) 210.3 209.9

3(Flap) 436.5 327.3

4(Flap) 1197.9 906.7

5(Edge) 1304.8 1292.5

6(Flap) 2282.9 1752.9

 Deflections and rotations

 Natural frequencies comparisons

 Mode shapes comparisons

Mode Isotropic [Hz] Anisotropic [Hz]

1(Flap) 3.69 2.95

2(Edge) 6.43 5.09

3(Flap) 23.12 18.44

4(Flap) 40.23 31.84

5(Edge) 64.53 51.59

6(Flap) 112.22 87.95

Methods

General FEM approach is considered to develop new a 

Timoshenko beam model.

2 nodes element is fixed for structural elements in the 

new beam element.

 2 nodes element is used for aerodynamic elements.

 Linear shape function is available.

 Linear shape function needs to have more elements.

 Time cost is increased. 
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