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Summary

This work is concerned with the statistical inference of phase-type distributions
and the analysis of distributions with rational Laplace transform, known as
matrix-exponential distributions.

The thesis is focused on the estimation of the maximum likelihood parameters
of phase-type distributions for both univariate and multivariate cases. Me-
thods like the EM algorithm and Markov chain Monte Carlo are applied for this
purpose.

Furthermore, this thesis provides explicit formulae for computing the Fisher
information matrix for discrete and continuous phase-type distributions, which
is needed to find confidence regions for their estimated parameters.

Finally, a new general class of distributions, called bilateral matrix-exponential
distributions, is defined. These distributions have the entire real line as domain
and can be used, for instance, for modelling. In addition, this class of distribu-
tions represents a generalization of the class of matrix-exponential distributions.



ii



Resumé

Denne afhandling omhandler primært statistisk analsye af fase-type fordelinger.

Der fokuseres p̊a estimation af parametre ved brug af maximum likelihood prin-
cippet. B̊ade det univariate og det multivariate tilfælde behandles. Der er
anvendt metoder som EM algoritmen og Markov chain Monte Carlo simulering.

Ydermere gives der formler for at beregne Fisher informationsmatrix for diskrete
og kontinuerte fase-type fordelinger; denne er nødvendig for at beregne konfi-
densintervaller for de estimerede parametre.

Til slut introduceres en general klasse af fordelinger, der kan anvendes som
modelleringsværktøj, i de tilfælde hvor den multivariate Gaussiske fordeling
ikke er tilstrækkelig. Denne klasse benævnes bilaterale matrixeksponentielle
fordelinger, og den har som definitionsmængde hele den reelle talakse, og repræsen-
ters̊aledes en generalisering af matrixeksponentielle fordelinger.
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This thesis was submitted at the Technical University of Denmark, Depart-
ment of Informatics and Mathematical Modelling, in partial fulfillment of the
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Chapter 1

Introduction

Although phase-type distributions can be traced back to the pioneering work
of Erlang [29] and Jensen [36], it was not until the late seventies that Marcel
F. Neuts and his co-workers established much of the modern theory ([45], [46],
[47]). Most of the original applications of phase-type distributions were in the
area of queueing theory (see also [4], [5], [38], [40]), still phase-type distributions
have proved useful also in risk theory as we can see in the work of Asmussen [9].

Statistical inference for phase-type distributions is of more recent date, where
the likelihood estimation was first proposed by Asmussen et.al [11] (see also
[8]) using an expectation-maximization (EM) algorithm. In a companion paper
Olsson [54] extended the algorithm using censored data. Moreover, a Markov
chain Monte Carlo (MCMC) based approach was suggested by Bladt et.al [15]
and later it was used by Fearnhead and Sherlock [30]. Bobbio and Telek [22]
presented a maximum likelihood estimation procedure for the canonical repre-
sentation of acyclic phase-type distributions (see also [19]). While Hovarth and
Telek [35] presented a tool (PhFit) that allows the approximation of distribu-
tions or set of samples by phase-type distributions. Since most of the previously
phase-type fitting methods were designed for fitting over the continuous phase-
type class, Bobbio et.al [21] provided a discrete phase-type fitting method for
the first time, which is restricted to the acyclic class, while the PHit algorithm
(using the EM algorithm) developed by Callut and Dupont [24] can deal with
general discrete phase-type distributions.



2 Introduction

Recent applications of phase-type distributions in areas like telecommunica-
tions, civil engineering, reliability, queueing theory, finance, computer science
([49]), among others, suggested us the importance of doing a thorough statis-
tical analysis of this class of distributions. In particular, in this work we focus
on the estimation of the maximum likelihood parameters of phase-type distri-
butions considering different optimization methods (Chapter 3). In Chapter 4
we provide a way of getting the Fisher information of these distributions.

A natural generalization of phase-type distributions is the class of multivariate
phase-type distributions, which has been considered by Assaf et.al in [12] and
by Kulkarni in [39]. Kulkarni defined this class of distributions in a restricted
setting and studied some of their properties; however, neither applications nor
statistical methods were proposed. In Chapter 5 we analyze in more detail this
class giving an estimation of the bivariate case via the EM algorithm and via a
quasi Newton-Raphson method.

Moreover, extending the domain of phase-type distributions from the positive
real line to the entire line leads to the definition of bilateral phase-type distribu-
tions (see [59]). Some properties and applications of this class of distributions
were studied by Ahn and Ramaswami in [2]. In Chapter 6, we study the class of
multivariate bilateral phase-type distributions giving a characterization of them
in terms of univariate bilateral phase-type distributions. This class of distribu-
tions turns out to be useful in areas like finance as it is showed in the work of
Asmussen [7].

Many results using phase-type methodology have been generalized into the
broader class of matrix-exponential distributions (distributions with rational
Laplace transform), either by analytic methods (see Asmussen and Bladt [10],
Bean and Nielsen [13]) or, more recently, using a flow interpretation (see Bladt
and Neuts [16]). Nevertheless, the analysis of distributions with a multidimen-
sional rational Laplace transform (also known as MVME- multivariate matrix-
exponential distributions, [17]) has never been considered in its full generality.
In order to generalize matrix-exponential distributions into the n-dimensional
(n ≥ 1) real space Rn, and to unify a number of distributions, we define in
Chapter 6 a new class of distributions called bilateral matrix-exponential dis-
tributions (distributions with rational moment generating function) for both
univariate and multivariate cases.

The structure of the thesis is the following. First of all, we begin with some
relevant background information on phase-type distributions in Chapter 2. In
Chapter 3 we study their maximum likelihood estimation by different methods:
EM algorithm, Markov chain Monte Carlo, Newton-Raphson method, among
others. We have compared all of them taking into account the value of the
log-likelihood and the execution time performed. Explicit formulae to find the
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Fisher information matrix for both continuous and discrete phase-type distribu-
tions are given in Chapter 4. The multivariate case for phase-type distributions
is considered in Chapter 5, and in Chapter 6 we analyze matrix-exponential dis-
tributions, giving a generalization of these. Some final remarks and perspectives
are included in Chapter 7.



4 Introduction



Chapter 2

Phase-type distributions

The embedding into a Markov process is generally referred to as the method of
supplementary variables. A particular instance of the method of supplementary
variables is known as the method of phases and involves ideas of remarkable
simplicity which were first proposed by A. K. Erlang [29] in 1909. He observed
that gamma distributions whose shape parameter is a positive integer, may
be considered as the probability distributions of sums of independent, negative
exponential random variables.

In the recent decades, a lot of research is carried out to handle stochastic models
in which durations are phase-type distributed. Phase-type distributions were
considered first by Neuts ([44],[45]). O’Cinneide [53] studied some theoretical
properties of these distributions, such as their characterization.

Phase-type distributions are defined as distributions of absorption times in a
Markov process with p < ∞ transient states (the phases) and one absorbing
state. Some examples are mixtures and convolution of exponential distributions,
in particular Erlang distributions, defined as gamma distributions with integer
parameter. More generally, the class comprises all series-parallel arrangements
of exponential distributions, possibly with feedback.

There are several motivations for using phase-type distributions in statistical
models. The most established ones come from their role as the computational
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vehicle of much of applied probability because they constitute a very versatile
class of distributions defined on the non-negative real numbers that lead to
models which are algorithmically tractable. Their formulation also allows the
Markov structure of stochastic models to be retained when they replace the
familiar exponential distribution.

This Chapter is organized as follows. In Section 2.1 we provide necessary back-
ground on the theory of Markov jump processes in order to introduce the concept
of phase-type distribution in Section 2.2. In Section 2.3 we introduce discrete
phase-type distributions. Finally, in Section 2.4 we review the canonical form
and reversed-time representation for phase-type distributions.

2.1 Markov jump process

There are several Markov processes in continuous time. In the following we shall
focus on the ones which have a finite state-space. By nature, such processes are
piecewise constant and transitions occur via jumps. They are often referred to
as Markov jump processes (MJP) or continuous time Markov chains (CTMC).

Definition 2.1 A Markov jump process {X(t)}t≥0, with values in the discrete
state-space E, is a stochastic process with the following property

P(X(tn) = in|X(tn−1) = in−1, . . . , X(t0) = i0) = P(X(tn) = in|X(tn−1) = in−1).

The process is called time-homogeneous if P(X(t+ h) = j|X(t) = i) only de-
pends on h, in which case we denote it by phij . We call phij for the transitions prob-

abilities and define the corresponding transition matrix by P (h) = {phij}i,j∈E .

Let T1, T2, . . . denote the times where {X(t)}t≥0 jumps from one state to an-
other, where T0 = 0. Then the discrete time process {Yn}n∈N, where Yn =
X(Tn) is a Markov chain that keeps track of which states have been visited. Let
Q = {qij}i,j∈E denote its transition matrix.

If Yn = i, then Tn+1 − Tn is exponentially distributed with a certain parame-
ter λi. The conditional probability that there will be a jump in the process
{X(t)}t≥0 during the infinitesimal time interval [t, t+ dt) is λidt. Given a jump
at time t out of state i, the probability that the jump leads to state j is by
definition qij . Hence for j 6= i, λidtqij is the probability of a jump from i to j
during [t, t+ dt). Thus for j 6= i,

λij = λiqij ,
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is interpreted as the intensity of jumping from state i to j. Define λii =
−∑j 6=i λij , and Λ = {λij}i,j∈E be the intensity matrix or infinitesimal ge-
nerator of the process. Then, we have the following important relation between
P (t) and Λ,

P (t) = exp(Λt),

where exp(A) denotes the exponential of a matrix A defined in usual way by
series expansion

exp(A) =

∞∑

n=0

An

n!
.

2.2 Continuous phase-type distributions

Let {X(t)}t≥0 be a MJP on the finite state-space E = {1, 2, . . . , p, p + 1}
where the states 1, 2, . . . , p are transient (i.e. given that we start in state
i ∈ {1, 2, . . . , p}, there is a non-zero probability that we will never return to
i), and the state p+ 1 is absorbing (i.e. it is impossible to leave this state).

Then {X(t)}t≥0 has an intensity matrix on the form

Λ =

(
T t
0 0

)
, (2.1)

where T is (p× p)-dimensional matrix (satisfying tii < 0 and tij ≥ 0, for i 6= j),
t is a p-dimensional column vector (or (p× 1)-dimensional matrix) and 0 is the
p-dimensional row vector of zeros. Since the intensities of rows must sum to
zero, we notice that t = −Te, where e is a p-dimensional column vector of 1’s.
We suppose that absorption into the state p+1 from any initial state, is certain.
A useful equivalent condition is given by the following lemma.

Lemma 2.1 The states 1, . . . , p are transient if and only if the matrix T is
non-singular.

Proof. See Neuts [45]. �

The intensities ti are the intensities by which the process jumps to the absorbing
state and are known as exit rates. Let πi = P(X(0) = i) denote the initial proba-
bilities. Hence the initial probability vector of {X(t)}t≥0 is given by (π, πp+1),
where π = (π1, . . . , πp) and such that πe + πp+1 = 1.
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Definition 2.2 The time until absorption

τ = inf{t ≥ 0|X(t) = p+ 1}

is said to have a continuous phase-type (or simply phase-type (PH)) distribution,
and we write

τ ∼ PHp(π,T).

The set of parameters (π,T) is said to be a representation of the phase-type
distribution. The dimension of T is said to be the order of the representa-
tion. Typically representations are non-unique and there must exist at least one
representation of minimal order. Such a representation is known as minimal
representation, and the order of the PH distribution itself is defined to be the
order of any of its minimal representations.

Other requirement on the PH representation (π,T) is that there are no super-
fluous phases. That is, each phase in the Markov chain defined by π and T has
a positive probability of being visited before absorption. If this is the case, then
we say that the PH representation is irreducible (see [45]).

Definition 2.3 A representation (π,T) for phase-type distributions is called
irreducible if and only if the matrix T + (1− πp+1)−1tπ is irreducible.

For the definition of an irreducible matrix see [58]. If the representation is
reducible, we can form an irreducible representation by simply deleting those
states that are superfluous.

Note 2.4 Throughout the thesis if we omit the subindex p in the representation,
it is because we know in advance the order of the phase–type distribution.

Now, since exp(Λs) is the transition matrix P (s) of the Markov jump process
{X(t)}t≥0, we have that

exp(Λs) = I +

∞∑

n=1

Λnsn

n!
= I +

∞∑

n=1

sn

n!

(
Tn −Tne
0 0

)

= I +

(∑∞
n=1

Tnsn

n! −∑∞n=1
Tnesn

n!
0 0

)

=

(
I +

∑∞
n=1

Tnsn

n! −∑∞n=1
Tnesn

n!
0 1

)

=

(
exp(Ts) −(exp(Ts)e− Ie)

0 1

)

=

(
exp(Ts) e− exp(Ts)e

0 1

)
.
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The restriction of P (s) to the transient states is given by exp(Ts). Hence we
are able to compute transitions probabilities psij = P(X(s) = j|X(0) = i) =
exp(Ts)ij , for i, j = 1, . . . , p.

Let f be the density of τ ∼ PH(π,T). The quantity f(s)ds may be interpreted
as the probability P(τ ∈ [s, s+ds)). If τ ∈ [s, s+ds), then the underlying Markov
jump process {X(t)}t≥0 must be in some transient state j at time s. If the
process initiates in a state i, the probability that X(s) = j is psij = exp(Ts)ij .
The probability that the process {X(t)}t≥0 starts in state i is by definition πi. If
X(s) = j, the probability of a jump to the absorbing state p+1 during [s, s+ds)
is tjds.

Conditioning on the initial state of the process, we get that

f(s)ds = P(τ ∈ [s, s+ ds))

=

p∑

j=1

P(τ ∈ [s, s+ ds)|X(s) = j)P(X(s) = j)

=

p∑

j=1

P(τ ∈ [s, s+ ds)|X(s) = j)

p∑

i=1

P(X(s) = j|X(0) = i)P(X(0) = i)

=

p∑

j=1

tjds

p∑

i=1

exp(Ts)ijπi

=

p∑

i=1

p∑

j=1

πi exp(Ts)ijtjds

= π exp(Ts)tds.

We have thus proved the following theorem:

Theorem 2.5 If τ ∼ PH(π,T) its density is given by

f(s) = π exp(Ts)t,

where t = −Te.

We could now obtain an expression for the distribution function by integrating
the density, however, we shall retrieve this formula by an even simpler argument.
If F denotes the distribution function of τ , then 1−F (s) is the probability that
{X(t)}t≥0 has not yet been absorbed by time s, i.e. τ > s. But the event
{τ > s} is identical to {X(s) ∈ {1, 2, . . . , p}}. Hence, by a similar conditioning
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argument as above, we get that

1− F (s) = P(τ > s)

= P(X(s) ∈ {1, . . . , p})

= P




p⋃

j=1

(X(s) = j)




=

p∑

j=1

P(X(s) = j)

=

p∑

i,j=1

P(X(s) = j|X(0) = i)P(X(0) = i)

=

p∑

i,j=1

psijπi

=

p∑

i,j=1

πi exp(Ts)ij

= π exp(Ts)e.

Thus we have proved:

Theorem 2.6 If τ ∼ PH(π,T), the distribution function of τ is given by

F (s) = 1− π exp(Ts)e.

Example 2.1 Exponential distribution

Let X ∼ exp(λ), for some λ > 0, since its density is f(x) = λe−λx, its minimal
PH representation is given by

π = [1], T = [−λ], t = [λ].

�

Theorem 2.7 Let τ ∼ PH(π,T).

1. The n-th moment of τ is given by E(τn) = (−1)nn!πT−ne.

2. The moment generating function of τ is given by E(esτ ) = π(−sI−T)−1t,
where I denotes the identity matrix of the appropriate dimension.
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Proof. We will prove the first part by induction. For n = 1, we have

E(τ) =

∫ ∞

0

sf(s)ds

=

∫ ∞

0

sπeTstds

= −
∫ ∞

0

πeTsT−1tds

= πT−2t

= πT−2(−Te)

= −πT−1e.

By inductive hypothesis assume that E(τk) = (−1)kk!πT−ke is valid for some
k. Then for k + 1,

E(τk+1) =

∫ ∞

0

sk+1f(s)ds

=

∫ ∞

0

sk+1πeTstds

= −
∫ ∞

0

(k + 1)skπeTsT−1tds

= −(k + 1)T−1

∫ ∞

0

skπeTstds

= −(k + 1)T−1(−1)kk!πT−ke

= (−1)k+1(k + 1)!πT−(k+1)e.

The moment generating function is given by

E(esτ ) =

∫ ∞

0

esxf(x)dx

=

∫ ∞

0

esxπeTxtdx

=

∫ ∞

0

πesxIeTxtdx

=

∫ ∞

0

πesIxeTxtdx

=

∫ ∞

0

πe(sI+T)xtdx

= π(−sI−T)−1t.
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�

From this theorem we can see that if τ ∼ PH(π,T), then its Laplace transform
 Lτ (s) = E(e−sτ ) is given by

π(sI−T)−1t, (2.2)

or  Lτ (s) = π(s(−T)−1 + I)−1e. Indeed, there is a neat probabilistic interpreta-
tion of (−T)−1. Let k ≥ 0, then

∫ k

0

exp (Ts)ds =

∫ k

0

∞∑

i=0

(Ts)i

i!
ds

=

∞∑

i=0

Ti

∫ k

0

si

i!
ds

=

∞∑

i=0

Ti ki+1

(i+ 1)!

= T−1(eTk − I) −−−−→
k→∞

(−T)−1.

Thus the element (i, j)-th of the matrix (−T)−1 is the expected time spent in
the phase j before absorption conditioned on the fact that the chain was started
in the phase i. From this probabilistic interpretation we have that (−T)−1 ≥ 0.
Now, we get the mean time before absorption conditioning on start in i by taking
row sums of (−T)−1. Thus the i-th element of (−T)−1e is the mean time spent
in the transient states conditioning on start in i. To obtain the mean for a PH
distribution with initial probability vector π, we have to make a weighted sum
of (−T)−1e with π as weighting factors, i.e., µτ = π(−T)−1e.

2.2.1 Properties of phase-type distributions

One of the appealing features of phase-type distributions is that the class is
closed under a number of operations. The closure properties are a main con-
tributing factor to the popularity of these distributions in probabilistic mode-
lling of technical systems. In particular, we will see that the class is closed under
addition, finite mixtures, and finite order statistics.

Let us start with some general matrix results.

Definition 2.8 For two matrices A and B of dimensions (l × k) and (n ×m)
respectively, we define the Kronecker product ⊗ as the matrix of dimension
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(ln× km) written as

A⊗B =




a11B a12B . . . a1kB
a21B a22B . . . a2kB

...
...

...
...

al1B al2B . . . alkB


 .

The following rule is very convenient. If the usual matrix products LU and MV
exist, then

(L⊗M)(U⊗V) = LU⊗MV.

A natural operation for continuous time phase-type distributions is A⊗I+I⊗B,
as which we define as the Kronecker sum of A and B, and shall be denoted by
A⊕B.

Theorem 2.9 If F (·) and G(·) are both PH distributions with representations
(α,T) and (β,S) of orders m and n respectively, their convolution F ∗G(·) is a
PH distribution with representation (γ,L), given by

γ = (α, αm+1β), L =

(
T t · β
0 S

)
, (2.3)

where t = −Te.

Proof. See Neuts [45]. �

Since the distribution of the sum of random variables is the convolution of their
distributions, this shows that the family of PH distributions is closed under
finite number of convolutions.

Theorem 2.10 For X ∼ PH(α,T) and Y ∼ PH(β,S) both being indepen-
dent, then Z = X + Y ∼ PH(γ,L), where γ and L are given in (2.3).

Example 2.2 Addition of exponential distributions.

Considering the sum Z =
∑k
i=1Xi with Xi ∼ exp(λi), a PH representation is

given by

γ = (1, 0, . . . , 0), L=




−λ1 λ1 0 . . . 0 0
0 −λ2 λ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −λk−1 λk−1

0 0 0 . . . 0 −λk



.
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This distribution is called k generalized Erlang distribution, and it can be des-
cribed using a state transition diagram that has k phases in series, see Fig. 2.1.
It is easy to see, without loss of generality, that the states can be ordered so
that the rates 0 < λ1 ≤ λ2 ≤ · · · ≤ λk.

1start 2 . . . k

λ1 λ2 λk−1 λk

Figure 2.1: State transition diagram for an order k generalized Erlang distribution

With λi = λ we get a sum of identically distributed exponential random varia-
bles, called an Erlang distribution (see Table 2.1). �

Table 2.1: Probability density function (PDF), cumulative distribution function (CDF), genera-
ting function (GF), and moments of the Erlang distribution

PDF f(x; k, λ) λ
(λx)k−1

(k − 1)!
e−λx

CDF F (x; k, λ)

∞∑

i=k

(λx)i

i!
e−λx

GF H(x; k, λ)

(
λ

x+ λ

)k

Moments µi(k, λ)
(i+ k − 1)!

(k − 1)!λi

Concerning finite mixtures of phase-type random variables we have the following
result.

Theorem 2.11 Any finite convex mixture of phase-type distribution is a phase-
type distribution. Let Xi ∼ PH(αi,Ti), i = 1, . . . , k, such that Z = Xi with
probability pi. Then Z ∈ PH(γ,L) where γ = (p1α1, p2α2, . . . , pkαk) and

L =




T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . Tk


 .

Example 2.3 Mixture of exponential distributions.

Consider k random variables Xi ∼ exp(λi) and assume that Z takes the value
of Xi with probability pi. The distribution of Z, called hyper-exponential dis-
tribution (see Table 2.2), can be expressed as a proper mixture of the Xi’s. A
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PH representation is given by

γ = (p1, . . . , pk), L =




−λ1 0 . . . 0
0 −λ2 . . . 0
...

...
. . .

...
0 0 . . . −λk


 .

This distribution can be described using a state transition diagram with k states
in parallel, see Fig. 2.2. Clearly, without loss of generality, the states can be
ordered so that the rates 0 < λ1 < λ2 < · · · < λk.

1 2 . . . k

p1 p2 . . . pk

λ1 λ2 λk

Figure 2.2: State transition diagram for an order k Hyper-exponential distribution

�

Table 2.2: Probability density function (PDF), cumulative distribution function (CDF), genera-
ting function (GF), and moments of the hyper-exponential distribution

PDF f(x)

k∑

i=1

piλie
−λix

CDF F (x) 1−
k∑

i=1

piλie
−λix

GF H(x)

k∑

i=1

piλi
s+ λi

Moments µi i!

k∑

i=1

pi
λii

Theorem 2.12 For X ∼ PHk(α,T) and Y ∼ PHm(β,S), the min(X,Y ) is
phase-type distributed with representation (γ,L), where

L = T⊗ Im + Ik ⊗ S,
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and γ = α ⊗ β, Ip represents the (p × p)-dimensional identity matrix. The
max(X,Y ) is also phase-type distributed with representation (γ,L), where

L =



T⊗ Im + Ik ⊗ S Ik ⊗ s t⊗ Im

0 T 0
0 0 S


 ,

and γ = (α⊗ β,αβm+1, αk+1β). The exit vector l is given by

l =



0
t
s


 ,

where t = −Te and s = −Se.

Proof. See Neuts [45]. �

For more closure properties we refer to [40] and [42].

2.3 Discrete phase-type distributions

A discrete phase-type (DPH) distribution is the time until absorption of a dis-
crete time Markov chain (see [26, 50, 57]). DPH distributions are defined by
considering a p+ 1-state Markov chain P of the form

P =

(
T t
0 1

)
,

where T is a sub-stochastic matrix, such that I−T is non-singular. More pre-
cisely, let {X(n)}n≥0 denote a Markov chain with state-space E = {1, . . . , p, p+
1}, where the states 1, . . . , p are transient and the state p+ 1 is absorbing. Let
πi = P(X(0) = i) denote the initial probabilities and tij the transition probabi-
lities P(X(n+ 1) = j|X(n) = i), for i, j = 1, . . . , p. Let π = (π1, . . . , πp) be the
initial vector, T = {tij}i,j=1,...,p the transition matrix between transient states,
and t = e−Te the vector of probabilities of jumping to the absorbing state.

Definition 2.13 We say that τ = inf{n ≥ 1|X(n) = p + 1} has a discrete
phase-type distribution with representation (π,T) and write τ ∼ DPHp(π,T).

Sometimes it is convenient to allow for an atom at zero as well in which case we
let πp+1 > 0 denote the initial probability of initiating in the absorbing state.
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The probability density f of τ is given by

f(x) = πTx−1t, for x ≥ 1,

if πp+1 > 0 then f(0) = πp+1. Let us prove this. The probability that the
Markov chain is in one of the transient states i ∈ {1, . . . , p} after n steps is
given by

p
(n)
i = P(X(n) = i) =

p∑

k=1

πk(Tn)(k,i).

The probability of absorption of the Markov chain at time n is given by the sum
over the probabilities of the Markov chain being in one of the states {1, . . . , p}
at time n − 1 multiplied by the probability that absorption takes place from
that state. The state in the Markov chain at time n− 1 depends on the initial
state and on the (n− 1)-step transition probability matrix Tn−1. Hence we get

f(n) = P(τ = n) =

p∑

i=1

p
(n−1)
i ti = πTn−1t, n ∈ N.

The distribution function can be deduced by the following probabilistic argu-
ment.

Lemma 2.2 The distribution function of a discrete phase-type random variable
is given by

F (n) = 1− πTne.

Proof. We look at the probability that absorption has not yet taken place and
hence the Markov chain is in one of the transient states. We get

1− F (n) = P(τ > n)

=

p∑

i=1

p
(n)
i

= πTne.

�
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The probability generating function of τ , Gτ (z) = E(zτ ), is given by

E(zτ ) =

∞∑

k=0

zkf(k)

=

∞∑

k=1

zkπTk−1t

= πT−1

( ∞∑

k=1

(zT)k

)
t

= πT−1

(
zT

I− zT

)
t

= zπ(I− zT)−1t.

If πp+1 > 0 then E(zτ ) = πp+1 +zπ(I−zT)−1t. Its factorial moments are given
by

G(k)
τ (1) =

dk

dzk

∣∣∣∣∣
z=1

Gτ (z)

= k!πTk−1(I−T)−ke.

A representation (π,T) for discrete phase-type distribution is called irreducible
if every state of the Markov chain can be reached with positive probability. We
can always find an irreducible representation by simply leaving out the states
that cannot be reached.

Neuts [44] has given a number of elementary properties of discrete phase-type
distributions, with some comments on their utility in areas like renewal theory,
branching processes, and queues. He has also discussed convolution products
and mixtures of these distributions.

Some properties are the following:

� Any probability density on a finite number of positive integers is discrete
phase-type.

� The convolution of a finite number of densities of discrete phase-type is
itself of discrete phase-type.

� Any finite mixture of probabilities densities of discrete phase-type is itself
of discrete phase-type.

Example 2.4 Geometric distribution
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X ∼ geo(p), with p ∈ (0, 1), i.e. P(X = x) = (1− p)1−xp has a DPH represen-
tation given by

π = [1], T = [1− p], t = [p].

�

Example 2.5 Negative binomial distribution

X ∼ NB(k, p), with p ∈ (0, 1) and k > 0, i.e., X is the sum of k random
variables geo(p)-distributed, so P(X = x) =

(
x+k−1
k−1

)
(1−p)kpx, for x = 0, 1, . . . .

X has a DPH representation given by

π = (1, 0, . . . , 0), T =




1− p p
1− p p

. . .

1− p p
1− p



, t =




0
0
...
0
p



.

�

2.4 On the representations of phase-type distri-
butions

The optimization problem for general discrete phase-type (DPH) distributions
is too complex to yield satisfactory results if we have a large number of phases.
Bobbio and Cumani [19] have showed that the estimation problem becomes
much easier if acyclic instead of general DPH distributions are used, because for
this type of distributions, a canonical representation exists, which reduces the
number of free parameters.

2.4.1 Canonical form

A discrete phase-type representation of a given distribution is, in general, non-
unique and non-minimal. Bobbio et.al [21] explored a subclass of the DPH class
for which the representation is an acyclic graph (ADPH). The ADPH class ad-
mits a unique minimal representation, called canonical form (CF). Cumani [27]
has shown that a canonical representation for the subclass of PH distributions
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with generating acyclic Markov chain (denoted by APH), is unique, minimal,
and has the form of a Coxian model with real transition rates.

The use of the canonical representation for APH offers many advantages (see
[20]). Some of these are shared by the whole PH class, some hold only for the
APH class and, finally, some are peculiar to the CF representation.

� CF is a natural and straightforward restriction of the Coxian model ob-
tained by forcing the transition rates to be real, but at the same time, the
eigenvalue ordering ensures that the CF provides a unique representation
of the whole class of APH.

� CF forms a dense set for distributions with support on [0,∞).

� APH is closed under mixture, convolution, and formation of coherent sys-
tems.

According to Bobbio et.al [21], one way of finding a canonical form of discrete
phase-type distributions is the following.

1. Re-order the eigenvalues (diagonal elements) of the transition matrix into
a decreasing sequence q1 ≥ q2 ≥ · · · ≥ qp, where p is the dimension of the
transition matrix. Define di = 1− qi, which represents the exit rate from
state i.

2. Find the different paths, denoted by rk, to reach the absorbing state.

Any path rk can be described as a binary vector uk = [ui] of length p
defined over the ordered sequence of the qi’s. Each entry of the vector
is equal to 1 if the corresponding eigenvalue qi is present in the path,
otherwise the entry is equal to 0. Hence any path rk of length l has l ones
in the vector uk.

3. Identify the basic paths.

A path rk of length l of an ADPH is called basic path if it contains the l
fastest phases qp−l+1, . . . , qp. The binary vector associated to a basic path
is called a basic vector and it contains (p− l) initial 0’s and l terminal 1’s.

4. Any path is assigned its characteristic binary vector. If the binary vector
is not in basic form, each path is transformed into a mixture of basic paths.

Cumani [27] has provided an algorithm which performs the transformation
of any path into a mixture of basic paths in a finite number of steps.
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5. Find the coefficients ai, i = 1, . . . , p, associated with F (z,bi), where bi is
the i-th basic vector and F (z,bi) is the product of the generating functions
of the sojourn times spent in the consecutive states of the path (see [21]
for more details).

6. Calculate the following

si =

i∑

j=1

aj , 1 ≤ i ≤ p,

e∗i =
ai
si
di, 1 ≤ i ≤ p,

ei =
si−1

si
di, 2 ≤ i ≤ p.

Definition 2.14 Canonical form CF*([21]). An ADPH is in canonical form
CF* if from any phase i, 1 ≤ i ≤ p, transitions are possible to phase i itself,
i+ 1, and p+ 1. The initial probability is 1 for phase i = 1 and 0 for any phase
i 6= 1.

Then the matrix representation (π,T) for the CF* is given by

π = (1, 0, . . . , 0),

T =




qp ep
qp−1 ep−1

. . .

q2 e2

q1



,

t = (e∗p, e
∗
p−1, . . . , e

∗
1)′.

2.4.2 Reversed-time representation

Consider a PH-representation (π,T) and denote the absorption time by τ . If
we are in state i of the original process at time τ − t, then the process in which
we are in state i at time t is called the dual or reverse-time representation. It
can be proved that this is again a PH-representation (π∗,T∗) (see [56]). This
reversed-time representation is also valid in the discrete case, and is given by

π∗ = t′M, t∗ = M−1π′, T∗ = M−1T′M.

Here the matrix M is a scaling diagonal matrix

M = diag(m1, . . . ,mp),
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where the row vector m = (m1, . . . ,mp) is obtained as

m = π(I−T)−1.

We have the following interesting properties of the reversed-time representation:

1. The representation and its reversed-time representation rise to the same
PH distribution.

2. The two representations have the same number of states and there is a
one-to-one correspondence between these states.

3. The term mi is the average time which is spent in state i before absorption.
This number is finite and non-zero if the representation is irreducible ([6]).

Reversed Markov chain

If we are interested in simulating a Markov chain related to a random variable
τ ∼ DPH(π,T), we have to satisfy the condition that at time τ the Markov
chain is in the absorbing state. For this reason, it might be more efficient to
consider a reversed Markov chain, since we can avoid rejecting Markov chains
that do not satisfy these conditions.

The transition probabilities of the reversed Markov chain {Xi}i≥0, are given by

P(Xm = j | Xm+1 = i) =
P(Xm = j)P(Xm+1 = i | Xm = j)

P(Xm+1 = i)
, m ≥ 0,

where in general, if ` ∈ {1, . . . , p}, P(X1 = `) =
∑p
k=1 tk,`π`, and for i ≥ 2

P(Xi = `) =

p∑

k=1

tk,`P(Xi−1 = k),

or simply P(Xi = `) = πTie`.

� If τ = 1

P(X0 = ` | X1 = p+ 1) =
π`t`
πt

, ` ∈ {1, 2, . . . , p}.

� If τ ≥ 2:
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1. For `τ−1 ∈ {1, 2, . . . , p}

P(Xτ−1 = `τ−1 | Xτ = p+ 1) =
P(Xτ−1 = `τ−1)

πTτ−1t
t`τ−1

.

2. If τ ≥ 3, from i = τ − 2 to i = 1, `i, `i+1, · · · ∈ {1, 2, . . . , p},

P(Xi = `i | Xi+1 = `i+1, . . . , Xτ = p+ 1) = P(Xi = `i | Xi+1 = `i+1)

=
P(Xi = `i)

P(Xi+1 = `i+1)
t`i,`i+1

.

3. i = 0, `i, `i+1, · · · ∈ {1, 2, . . . , p},

P(X0 = `0 | X1 = `1, . . . , Xτ = p+ 1) = P(X0 = `0 | X1 = `1)

=
π`0

P(X1 = `1)
t`0,`1 .
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Chapter 3

Fitting phase-type
distributions

As it is well known, the main advantage of working with phase-type distributions
is the versatility that they offer in modelling.

The literature on estimation of (an approximation by) general phase-type (PH)
distributions is meager and not always satisfying from a statistical point of view.
The class of PH distributions has favorable computational properties, however,
a PH representation is redundant and not unique ([51]), and does not appear as
a good starting point for the fitting problem. One needs algorithms to determine
the parameters of the applied PH distribution.

Numerical maximum likelihood methods for Coxian distributions, using non-
linear constrained optimization, have been implemented in [19] and [22]; this
approach appears in many ways to be one of the most satisfying developed
so far, the main restriction being that only Coxian distributions are allowed.
The two main classes of fitting methods differ in the kind of information they
utilize: incomplete or complete information. Asmussen et.al [11] have given a
more general estimation of phase-type distributions based on the EM algorithm
for the complete class. More recently, Hovarth and Telek [35] presented a tool
that allows for approximating distributions for both continuous and discrete
phase-type distributions.
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Bobbio et.al [21] have provided a discrete phase-type (DPH) fitting method that
turns out to be simple and stable, but it is restricted to acyclic DPH, while the
algorithm developed by Callut and Dupont [24], can deal with general DPH.

In this Chapter we present statistical approaches to estimation theory for phase-
type distributions, considering both continuous and discrete cases. In Section
3.1 we introduce some methods used for finding maximum likelihood estimators.
In Section 3.2 we consider the continuous case while in Section 3.3 we consider
the discrete case.

3.1 Methods of finding estimators

In this Section, we will review some theory about maximum likelihood estima-
tors. We will analyze methods such as: the Expectation-Maximization algo-
rithm, the Gibbs sampler algorithm, and the Newton-Raphson method.

3.1.1 Maximum likelihood estimators

The method of maximum likelihood is, by far, the most popular technique for
deriving estimators. Recall that if X1, . . . , Xn are an i.i.d sample from a popu-
lation with probability density function f(x; θ1, . . . , θk), the likelihood function
is defined by

L(θ; x) = L(θ1, . . . , θk;x1, . . . , xn) =

n∏

i=1

f(xi; θ1, . . . , θk).

Definition 3.1 For each sample point x, let θ̂(x) be a parameter value at which
L(θ; x) attains its maximum as a function of θ, with x held fixed. A maximum

likelihood estimator (MLE) of the parameter θ based on a sample X is θ̂(X).

Notice that, by this construction, the range of the MLE coincides with the range
of the parameter. We also use the abbreviation MLE to stand for maximum
likelihood estimate when we are talking of the realized value of the estimator.
Intuitively, the MLE is a reasonable choice for an estimator. The MLE is the
parameter point for which the observed sample is most likely. In general, the
MLE is a good point estimator, possessing some of the optimality properties:
consistency, efficiency, and asymptotic normality.
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If the likelihood function is differentiable (in θi), possible candidates for the
MLE are the values of (θ1, . . . , θk) that solve

∂

∂θi
L(θ; x) = 0, i = 1, . . . , k. (3.1)

Note that the solutions of (3.1) are only possible candidates for the MLE since
the first derivative being 0 is only a necessary condition for a maximum, not a
sufficient condition. Furthermore, the zeros of the first derivative locate only
extreme points in the interior of the domain of a function. If the extrema occur
on the boundary the first derivative may not be 0. Thus the boundary must be
checked separately for extrema.

In many cases, estimation is performed using a set of independent identically
distributed measurements. These may correspond to distinct elements from
a random sample, repeated observations, etc. In such cases, it is of interest
to determine the behavior of a given estimator as the number of measurements
increases to infinity, referred to as asymptotic behavior. Under certain regularity
conditions, which are listed below, the maximum likelihood estimator exhibits
several characteristics which can be interpreted to mean that it is asymptotically
optimal. These characteristics include:

� The MLE is asymptotically unbiased, i.e., its bias tends to zero as the
number of samples increases to infinity.

� The MLE is asymptotically efficient, i.e., it achieves the Cramer-Rao lower
bound when the number of samples tends to infinity. This means that,
asymptotically, no unbiased estimator has lower mean squared error than
the MLE.

� The MLE is asymptotically normal. As a number of samples increases,
the distribution of the MLE tends to the Gaussian distribution with co-
variance matrix equal to the inverse of the Fisher information matrix. In
addition, this property makes possible to calculate, assuming some kind
of Gaussianity, confidence ranges where the true value of the parameter is
confined with a given probability.

The regularity conditions required to ensure this behavior are:

1. The first and second derivatives of the log-likelihood function must be
defined.

2. The Fisher information matrix must not be zero.
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We let

I(θ; y) = −∂
2 logL(θ)

∂θ∂θ′
(3.2)

be the matrix of negative of the second-order partial derivatives of the log-
likelihood function with respect to the elements of θ, ((′) represents the trans-
pose). Under regularity conditions, the expected Fisher information matrix I(θ)
is given by

I(θ) = Eθ{S(Y;θ)S′(Y;θ)}
= −Eθ{I(θ; Y)}

where

S(y;θ) =
∂ logL(θ)

∂θ
(3.3)

is the gradient vector of the log-likelihood function; that is, the score statistic.
The operator Eθ denotes expectation using the parameter vector θ.

The asymptotic covariance matrix of the MLE θ̂ is equal to the inverse of the
expected information matrix I(θ), which can be approximated by I(θ̂); the

standard error of θ̂i = (θ̂)i is given by

SE(θ̂i) ≈ (I−1(θ̂))
1/2
ii .

It is common in practice to estimate the inverse of the covariance matrix of the
maximum likelihood solution by the observed information matrix I(θ̂; y), rather

than the expected information matrix I(θ) evaluated at θ = θ̂. This approach
gives the approximation

SE(θ̂i) ≈ (I−1(θ̂; y))
1/2
ii ,

also, the observed information matrix is usually more convenient to use than
the expected information matrix, as it does not require an expectation to be
taken.

3.1.2 Expectation-Maximization algorithm

The Expectation-Maximization (EM) (Dempster [28]) algorithm is a broadly
applicable approach to the iterative computation of maximum likelihood esti-
mates, useful in a variety of incomplete-data problems, where algorithms such
as the Newton-Raphson method may turn out to be more complicated. On each
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iteration of the EM algorithm, there are two steps, called the expectation step
or E-step and the maximization step or the M-step.

The situations where the EM algorithm can be applied include not only evidently
incomplete-data situations, where there are missing data, truncated distribu-
tions, censored or grouped observations, but also a whole variety of situations
where the incompleteness of the data is not all natural or evident.

The basic idea of the EM algorithm is to associate with the given incomplete-
data problem, a complete-data problem for which maximum likelihood estima-
tions are computationally more tractable; for instance, the complete-data prob-
lem chosen may yield a closed-form solution to the maximum likelihood estimate.
The methodology of the EM algorithm then consists in reformulating the prob-
lem in terms of this more easily solved complete-data problem, establishing a
relationship between the likelihoods of these two problems. The E-step consists
in manufacturing data for the complete-data problem, using the observed data
set of the incomplete-data problem and the current value of the parameters, so
that the simpler M-step computation can be applied to this completed data set.
Starting from suitable initial parameter values, the E- and M-steps are repeated
until convergence.

3.1.3 Gibbs sampler algorithm

The Gibbs sampler (GS) is a technique for generating random variables from a
(marginal) distribution indirectly, without having to calculate the density (see
[25]). The GS is a Markov chain Monte Carlo method that was introduced by
German and German [32], and is a special case of the Metropolis-Hastings (MH)
algorithm, developed by Metropolis et.al [43] and generalized by Hastings [33].

The premise of Bayesian statistics is to incorporate prior knowledge along with
a given set of current observations, in order to make statistical inferences. By
incorporating prior information about the parameter(s), a posterior distribution
for the parameter(s) can be obtained and inferences on the model parameters
and their functions can be made. The prior knowledge about the parameter(s)
is expressed in terms of a pdf, called the prior distribution. The posterior
distribution given the sample data, provides the updated information about the
parameter(s). We can obtain the posterior distribution multiplying the prior by
the likelihood function and then normalizing.

In the following, we will explain in a general way how the Gibbs sampling works.
Let θ be a vector of parameters with posterior distribution p∗(θ|x), where x
denotes the data. Suppose that θ can be partitioned as θ = (θ1, . . . ,θq), where
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some θi’s are either uni- or multidimensional and that we can simulate from
the conditional posterior densities p∗(θi|x,θj , j 6= i). The Gibbs sampler gene-
rates a Markov chain by cycling through p∗(θi|x,θj , j 6= i). Starting from some
θ(0), after t cycles we have a realization θ(t) that under regularity conditions,
approximates a drawing from p∗(θ|x).

Thus, Gibbs sampling is applicable when the joint distribution of two or more
random variables, is not known explicitly, but the conditional distribution of
each variable is known. The algorithm starts by drawing the initial sample from
an arbitrary (possibly degenerate) prior distribution, and then, generate an ins-
tance from the distribution of each variable in turn, conditional on the current
values of the other variables ([31]).

3.1.4 Newton-type method

The Newton-Raphson (NR) method was discovered by Isaac Newton and pub-
lished in his book Method of Fluxions in 1736. Joseph Raphson described this
method in Analysis Aequationum in 1690. The NR approximates the gradient
vector S(y;θ) of the log-likelihood function logL(θ) by a linear Taylor series
expansion about the current fit θ(k) for θ. This gives

S(y,θ) ≈ S(y;θ(k))− I(θ(k); y)(θ − θ(k)), (3.4)

where I is given in (3.2).

A new fit θ(k+1) is obtained by solving the system of equations of (3.4) knowing
θ(k). Hence

θ(k+1) = θ(k) + I−1(θ(k); y)S(y;θ(k)). (3.5)

If the log-likelihood function is concave and unimodal, then the sequence of
iterates {θ(k)} converges to the MLE of θ, but if the log-likelihood function is
not concave, the NR method is not guaranteed to converge from an arbitrary
starting value. Under reasonable assumptions on L(θ) and a sufficiently accurate
starting value, the sequence of θ(k) produced by the NR method converges to
a solution θ∗ of S(y;θ) = 0. That is, given a norm there is a constant h such
that if θ(0) is sufficiently close to θ∗, then

‖ θ(k+1) − θ∗ ‖≤ h ‖ θ(k) − θ∗ ‖2

holds for k = 0, 1, 2, . . . . Quadratic convergence is ultimately very fast.
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A broad class of methods are the so-called quasi-Newton methods, for which
the solution of (3.5) takes the form

θ(k+1) = θ(k) −A−1S(y;θ(k)), (3.6)

where A is an approximation to the Hessian matrix. This approximation can
be maintained by doing a secant update of A at each iteration. Methods of
this class have the advantage over the NR method of not requiring the explicit
evaluation of the Hessian matrix at each iteration.

3.2 Fitting continuous phase-type distributions

Asmussen et.al in [11] have presented a fitting procedure for continuous phase-
type (CPH) distributions via the EM algorithm. In this Section, we develop
an alternative way of computing the E-step in the EM algorithm using the
uniformization method (see [40]), which we call the EM unif algorithm.

A crucial part of the estimation of phase-type distributions via Markov chain
Monte Carlo methods, in particular via the Gibbs sampler method (see [15])
is the simulation of the underlying Markov jump process. More precisely, for
an observation from a phase-type distribution, we establish an algorithm for
simulating from the conditional distribution of the underlying Markov jump
process given the absorption time using the uniformization method (we denote
this method by GS unif, see also [14]).

As a third method of estimation, we consider the Newton-Raphson method. In
this work we refer it as the direct method (DM) (see also [48]).

3.2.1 Preliminaries

Consider y1, . . . , yM a realization of i.i.d random variables from PHp(π,T). We
are in a situation of incomplete information since we only have the absorption
times and not the entire underlying structure is available.

Let y = (y1, . . . , yM ) and θ = (π,T, t), where t = −Te. The incomplete data
likelihood is given by

L(θ; y) =

M∏

k=1

πeTykt, (3.7)
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and the log-likelihood function is

l(θ; y) =

M∑

k=1

log f(yk),

where f(yk) = πeTykt. Substituting π =
∑p−1
j=1 πje

′
j +

(
1−∑p−1

j=1 πj

)
e′p then

f(yk) =

p−1∑

j=1

πje
′
je

Tykt +


1−

p−1∑

j=1

πj


 e′pe

Tykt.

As a starting point we assume that we have got one complete observation of
a Markov jump process {X(t)}t≥0 with p states. Suppose the time until ab-
sorption is y ∈ {y1, . . . , yM}, with n jumps to place before absorption, the
sequence of states visited is i0, i1, . . . , in (here repetitions are obviously permit-
ted), and the time spent between each of the jumps were s0, s1, . . . , sn, i.e.,
s0 + s1 + · · · + sn = y. In order to find the maximum likelihood estimate of
θ from the observed data, let x = {xi}i=1,...,M denote the full data for the
M absorption times, thus the xi’s are trajectories of the underlying MJP. The
likelihood function for the complete data is given by

Lf (θ; x) =

p∏

i=1

πBii

p∏

i=1

p∏

j 6=i
t
Nij
ij e−tijZi

p∏

i=1

tNii e−tiZi , (3.8)

where Bi is the number of processes starting in state i, Ni the number of pro-
cesses exiting from state i to the absorbing state, Nij the number of jumps from
state i to j among all processes, and Zi the total time spent in state i prior to
absorption for all processes.

3.2.2 The EM algorithm: CPH

Since the data y = (y1, . . . , yM ) are incomplete, in the following we shall descri-
be a method for calculating the maximum likelihood estimators using the EM
algorithm. We follow Asmussen et.al [11] which may be consulted for further
details.

The log-likelihood function for the complete data is given by

lf (θ; x) =

p∑

i=1

Bi log(πi) +

p∑

i=1

p∑

j 6=i
Nij log(tij)

−
p∑

i=1

p∑

j 6=i
tijZi +

p∑

i=1

Ni log(ti)−
p∑

i=1

tiZi. (3.9)
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It is immediately clear that the maximum likelihood estimators for tij and ti
are given by

t̂ij =
Nij
Zi

, t̂i =
Ni
Zi
.

Slightly more care has to be taken with the πi’s since they must sum to one.
Applying Lagrange multipliers we get that a maximum likelihood estimator for
πi is

π̂i =
Bi
M
.

Let θ0 = (π0,T0, t0) denote any initial value of the parameters. The EM works
as follows.

1. (E-step) Calculate the function

h : θ → Eθ0(lf (θ; x)|Y = y).

2. (M-step)

θ0 = argmaxθh(θ).

3. Goto (1).

The E-step and M-step are repeated until convergence.

Since (3.9) is a linear function of the sufficient statistics Bi, Zi, Ni, and Nij ,
it is enough to calculate the corresponding conditional expectations of these
statistics. Let Bki , Z

k
i , N

k
i , and Nk

ij be the corresponding statistics for the k-th
observation, then

Bi =

M∑

k=1

Bki , Zi =

M∑

k=1

Zki , Ni =

M∑

k=1

Nk
i , Nij =

M∑

k=1

Nk
ij ,

for i, j = 1, . . . , p, i 6= j, and hence Eθ(S|Y = y) =
∑M
k=1 Eθ(Sk|Yk = yk),

where S ∈ {Bi, Zi, Ni, Nij}. The main task lies in calculating Eθ(Sk|Yk = yk),
if these expectations are known then we can easily calculate for more than one
data point simply by summing.

The proof of the following theorem can be found in [11].
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Theorem 3.2 For i, j = 1, . . . , p, i 6= j, we have

Eθ(Bki |Yk = yk) =
πie
′
i exp(Tyk)t

π exp(Tyk)t

Eθ(Zki |Yk = yk) =

∫ yk
0
π exp(Tu)eie

′
i exp(T(yk − u))tdu

π exp(Tyk)t

Eθ(Nk
i |Yk = yk) =

tiπ exp(Tyk)ei
π exp(Tyk)t

Eθ(Nk
ij |Yk = yk) =

tij
∫ yk

0
π exp(Tu)eie

′
j exp(T(yk − u))tdu

π exp(Tyk)t
.

EM using Runge-Kutta (EM-RK)

Asmussen et.at [11] considered the following. Let a(y|θ) = π exp(Ty), b(y|θ) =
exp(Ty)t, and c(y, i|θ) =

∫ y
0
π exp(Tu)ei exp(T(y−u))tdu, i = 1, . . . , p, where

ei is the i-th unit vector. Then

Eθ(Bki |Yk = yk) =
πibi(yk|θ)

πb(yk|θ)

Eθ(Zki |Yk = yk) =
ci(yk, i|θ)

πb(yk|θ)

Eθ(Nk
i |Yk = yk) =

tiai(yk|θ)

πb(yk|θ)

Eθ(Nk
ij |Yk = yk) =

tijcj(yk, i|θ)

πb(yk|θ)
.

For θ fixed, these functions satisfy a p(p + 2)-dimensional linear system of ho-
mogeneous differential equations. Let ai(y|θ) be the i-th element of the vector
function a(y|θ), bi(y|θ) the i-th element of the vector function b(y|θ) and so
on, then the system can be written as

a′(y|θ) = a(y|θ)T

b′(y|T) = Tb(y|θ)

c′(y, i|θ) = Tc(y, i|θ) + ai(y|θ)t, i = 1, . . . , p.

By combining these equations with the initial conditions a(0|θ) = π, b(0|θ) = t,
and c(0, i|θ) = 0 for i = 1, . . . , p, we can solve the system numerically, using
some standard method. In the EMPHT-program, given by the authors, the
Runge-Kutta method of fourth order is implemented for this purpose.
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EM using uniformization

First of all, we will explain how the method of uniformization works (see [40]).
Consider a Markov process {X(t)}t≥0 with generator Λ, where its diagonal
elements are given by λii, such that |λii| ≤ c < ∞ (all i) for some constant
c, that automatically holds when there are only finitely many states. Then,
the matrix K = 1

cΛ + I, where I denotes the identity matrix, is a stochastic
matrix. Now, define the stochastic process {Y (t)}t≥0 as follows. Take a Poisson
process with rate c and denote by 0 = T0, T1, T2, . . . the epochs of events in the
process. Take a discrete time Markov chain {Wn}n≥0 with transition matrix
K independent of the Poisson process. Define the process {Y (t)}t≥0 such as
Y (t) = Wn for Tn ≤ t < Tn+1, n ≥ 0. Not surprisingly, {Y (t)}t≥0 happens to be
a Markov process, and furthermore, its generator is equal to Λ. Algebraically, if
we define the transition matrix P (t) = {ptij} where ptij = P(Y (t) = j|Y (0) = i),
we obtain by a simple conditioning argument on the number of Poisson events
in (0, t] that

P (t) =

∞∑

n=0

e−ct
(ct)n

n!
Kn.

On the other hand,

exp(Λt) =

∞∑

i=0

(Λt)i

i!

=

∞∑

i=0

(ct)i
((

1
cΛ + I

)
− I
)i

i!

=

∞∑

i=0

(ct)i

i!
e−ctKi

= P (t),

which is the transition matrix of the process {Y (t)}t≥0.

It allows us to interpret a continuous time Markov process as a discrete time
Markov chain, for which we merely replace the constant unit of time between
any two transitions by independent exponential random variables with the same
parameter, hence the term uniformization.

Now, consider y ∈ {y1, . . . , yM} with generator Λ given in (2.1). Choosing
c = max{−tii : 1 ≤ i ≤ p}, the matrix K = 1

cΛ + I has the form

K =

(
P p
0 1

)
,
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where P = 1
cT + I and p = 1

c t. Now we readily obtain that

exp(Tx) =

∞∑

i=0

e−cx
(cx)i

i!
Pi.

Based on this, we calculate the integral

∫ y

0

πeTueie
′
je

T(y−u)tdu =

∫ y

0

e′je
T(y−u)tπeTueidu,

seen as a matrix,

J(y) =

∫ y

0

eT(y−u)tπeTudu

=

∫ y

0

(
e−c(y−u)

∞∑

k=0

(cK(y − u))k

k!

)
tπ


e−cu

∞∑

j=0

(cKu)j

j!


 du

= e−cy
∞∑

j=0

∞∑

k=0

(∫ y

0

(cu)j

j!

(c(y − u))k

k!
du

)
KjtπKk

= e−cy
∞∑

j=0

∞∑

k=0

cj+k

j!k!

(∫ y

0

uj(y − u)kdu

)
KjtπKk

= e−cy
∞∑

j=0

∞∑

k=0

cj+k

j!k!

(∫ 1

0

(yu)j(y − yu)kydu

)
KjtπKk

= e−cy
∞∑

j=0

∞∑

k=0

cj+kyj+k+1

j!k!

(∫ 1

0

uj(1− u)kdu

)
KjtπKk.

Moreover, the beta function, also called the Euler integral of the first kind, is a
special function defined by

β(a, b) =

∫ 1

0

ua−1(1− u)b−1du =
Γ(a)Γ(b)

Γ(a+ b)
,

where Γ is the gamma function. Then

β(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!
.
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Thus, J(y) can be written as

J(y) = e−cy
∞∑

j=0

∞∑

k=0

(cy)j+k+1

j!k!
β(j + 1, k + 1)Kj t

c
πKk

= e−cy
∞∑

j=0

∞∑

k=0

(cy)j+k+1

j!k!

j!k!

(j + k + 1)!
Kj t

c
πKk

= e−cy
∞∑

j=0

∞∑

k=0

(cy)j+k+1

(j + k + 1)!
KjkπKk

= e−cy
∞∑

m=0

(cy)m+1

(m+ 1)!

m∑

j=0

KjkπKm−j ,

where k = 1
c t.

The integral has the following probabilistic interpretation. The (i, j)-th entry of
the matrix is the probability that a phase-type renewal process (see [10]) with
interarrival distribution PH(π,T) starting from state i has exactly one arrival
in [0, y] and is in state j by time y. From this interpretation we derive the
following recursive formula

J(x+ y) = eTxJ(y) + J(x)eTy.

3.2.3 The Gibbs sampler algorithm: CPH

In this Section we present an alternative method for fitting phase-type distribu-
tions based on Bladt et.al [15].

We are interested in estimating the phase-type generator parameters given the
data y. Let X = ({X(t)}0≤t≤yi)1≤i≤M denote its underlying process. We shall
be interested in the conditional distribution of (θ,X) given Y = y. We may
simulate this distribution by constructing a Markov chain with a stationary
distribution which coincide with this target distribution. A standard method is
using a Gibbs sampler which amounts to the following scheme:

(1) Draw θ given X and y.

(2) Draw X given θ and y. Goto (1).

After a certain initial burn-in, the Markov chain will settle into stationary mode.
Step (1) amounts to drawing parameters from the posterior distribution. The
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second step requires the simulation of Markov jump processes which get ab-
sorbed exactly at times yi, i = 1, . . . ,M .

If we choose a prior distribution with density proportional to

φ(θ) =

p∏

i=1

πβi−1
i

p∏

i=1

tηi−1
i e−tiψi

p∏

i=1

p∏

j 6=i
t
νij−1
ij e−tijψi , (3.10)

it is easy to sample from this distribution since π is Dirichlet distributed with
parameter (β1, . . . , βp), ti is Gamma distributed with shape parameter ηi and
scale parameter 1/ψi, i.e. ti ∼ Gamma(ηi, 1/ψi), and tij ∼ Gamma(νij , 1/ψi).
For the choice of the prior distribution we refer to [14] and [15].

Thus, the posterior simply has the form

p∗(θ|x) =

p∏

i=1

πBi+βi−1
i

p∏

i=1

tNi+ηi−1
i e−ti(Zi+ψi)

p∏

i=1

p∏

j 6=i
t
Nij+νij−1
ij e−tij(Zi+ψi),

(3.11)

with π ∼ Dirichlet(B1 + β1, . . . , Bp + βp), ti ∼ Gamma
(
Ni + ηi,

1
Zi+ψi

)
, and

tij ∼ Gamma
(
Nij + νij ,

1
Zi+ψi

)
.

Drawing X given (θ,y) is much involved. Given parameters θ and absorption
times y we must produced realizations of Markov jump processes with specified
parameters which get absorbed exactly at times y. Bladt et.al [15] applied a
Metropolis-Hastings (MH) algorithm to simulate such Markov jump processes.

The Metropolis-Hastings algorithm provides a general approach for producing
a correlated sequence of draws from a target density d that may be difficult to
sample. The MH algorithm is defined by two steps: the first step in which a
proposal value x′ is drawn from the candidate generating density q(x, x′) and
the second step in which the proposal value is accepted as the next iterate in
the Markov process according to the probability

min

[
1,
d(x′)q(x′, x)

d(x)q(x, x′)

]
.

If the proposal value is rejected, then the next sampled value is taken to be the
current value.

The MH algorithm amounts to the following simple procedure for simulating a
Markov jump process j which gets absorbed exactly at time y.
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ALGORITHM. Metropolis-Hastings

1. Draw a MJP j which is not absorbed by time y. This is done by simple
rejection sampling: if a MJP is absorbed before time y it is thrown away
and a new MJP is tried. We continue this way until we obtain the desired
MJP.

2. Draw a new MJP j′ as in step 1.

3. Draw U ∼ Unif(0, 1).

4. If U ≤ min(1, tjy− /tj′y−
) then j = j′, otherwise keep j.

5. Goto 2.

Here y− denotes the limit from the left so jy− is the state just prior to exit.
We iterate this procedure a number of times (burn-in) in order to get it into
stationary mode. After this point and onwards, any j produced by the procedure
may be considered as a draw from the desired conditional distribution and hence
as a realization of a MJP which gets absorbed exactly at time y.

The full procedure Gibbs sampler is then as follows.

ALGORITHM. Gibbs sampler with Metropolis-Hastings

1. Draw initial parameters θ = (π,T, t) from the prior distribution (3.10).

2. Draw the underlying Markov trajectories given θ using the Metropolis-
Hastings algorithm.

3. Draw the new parameters θ = (π,T, t) from the posterior distribution
(3.11).

4. Goto 2.

Gibbs sampler using uniformization

Our alternative algorithm for fitting phase-type distributions mainly differs on
the simulation of the MJP, where we suggest to use uniformization instead of
the Metropolis-Hastings algorithm (see also [30]).
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The following algorithm shows how to simulate the underlying Markov jump
process using uniformization.

ALGORITHM (*). Simulation of a MJP using uniformization

Input: y ∼ PHp(π,T).

1. Take c = max{−tii : 1 ≤ i ≤ p}. Compute P = 1
cT + I.

2. Generate N ∼ Poisson(cy).

3. Simulate a Markov chain using the parameters π and P, and the value of
N as a time of absorption.

4. Find the time spent in each state si, i = 0, 1, . . . , N , such as
∑N
i=0 si = y.

Note 3.3 In the step 3, we can use reversed Markov chain in order to speed up
the algorithm (see Section 2.4.2).

In the following we will explain step 4 of this algorithm in more detail.

For i = 0, 1, . . . , N , if Si ∼ exp(c), i.e. Si ∼ Gamma(1, c), then y =
∑N
i=0 Si ∼

Gamma(N + 1, c).

� If N = 0, then obviously s0 = y.

� If N ≥ 1, then we have that

fS0,S1,...,SN−1|
∑N
i=0 Si

(s0, s1, . . . , sN−1|y) =
fS0,S1,...,SN−1,

∑N
i=0 Si

(s0, s1, . . . , sN−1, y)

f∑N
i=0 Si

(y)
.

If R0 = S0, R1 = S1, . . . , RN−1 = SN−1, and RN = S0 + S1 + · · ·+ SN then

fR0,R1,...,RN (r0, r1, . . . , rN ) = fS0,S1,...,SN (s0, s1, . . . , sN )

= fS0
(r0)fS1

(r1)fS2
(r2) · · · fSN


rN −

N−1∑

j=0

rj




= cN+1e−crN ,

since rN = y, we get

f(s0, . . . , sN−1, y) = fS0,S1,...,SN−1,
∑N
i=0 Si

(s0, . . . , sN−1, y) = cN+1e−cy,
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and

f(s0, . . . , sN−1|y) = fS0,S1,...,SN−1|
∑N
i=0 Si

(s0, s1, . . . , sN−1|y)

=
cN+1e−cy
c
N ! (cy)Ne−cy

=
N !

yN
.

For i = 0, 1, . . . , N−1, the general form of the conditional marginal distributions
is given by

f(si|y) =

∫
· · ·
∫

N !

yN
ds0 · · · dsi−1dsi+1 · · · dsN−1

=
N !

yN
(y − si)N−1

(N − 1)!

=
N

yN
(y − si)N−1. (3.12)

Another way of getting this distribution is using the following argument which
turns out to be simpler.

Consider U1, . . . , UN ∼ Unif(0, y), and let U(1), . . . , U(N) be their order statis-
tics. The joint pdf of U(k) and U(j), 1 ≤ k ≤ j ≤ N , is given by

fU(k),U(j)
(u, v) =

N !

(k − 1)!(j − 1− k)!(N − j)!fU (u)fU (v)(FU (u))k−1

×(FU (v)− FU (u))j−1−k(1− FU (v))N−j , (3.13)

where fU (u) = 1
y , FU (u) = u

y for u ∈ (0, y), and U(0) = 0, U(N+1) = y.

In general, for i = 0, 1, . . . , N − 1, we have

fU(i),U(i+1)
(ui, ui+1|y) =

N !

(i− 1)!(N − i− 1)!yi+1
ui−1
i

(
1− ui+1

y

)N−i−1

.

For j = 0, 1, . . . , N , let Sj = U(j+1) − U(j), then

fU(i),Si(u, s|y) =
N !

(i− 1)!(N − i− 1)!yi+1
ui−1

(
1− s+ u

y

)N−i−1

,

where 0 < u < y − s. Thus, the marginal of Si is given by

fSi(s|y) =

∫ y−s

0

N !

(i− 1)!(N − i− 1)!yi+1
ui−1

(
1− s+ u

y

)N−i−1

du

=
N

yN
(y − s)N−1.
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Finally, for N = 0 we take s0 = y, and if N ≥ 1, f(si|y) = N
yN

(y − si)N−1, for

i = 0, 1, . . . , N −1. Note that this density is the same as we presented in (3.12).

The following algorithm shows how to find the time spent in each state of the
Markov chain (step 4 in ALGORITHM (*)).

ALGORITHM. Time spent in each state of a Markov chain

Input: N, y.

1. Generate N random numbers U1, . . . , UN from the uniform distribution,
Unif(0, y).

2. Find the order statistics U(1), . . . , U(N).

3. For i = 0, 1, . . . , N , calculate si = U(i+1) − U(i), where U(0) = 0 and
U(N+1) = y.

Hence, our algorithm to estimate PH distributions via the GS works as follows.

ALGORITHM. Gibbs sampler using uniformization

Input: yi ∼ PHp(π,T); i = 1, . . . ,M .

1. Draw initial parameters θ = (π,T, t) from the prior distribution (3.10).

2. Generate X = (X1, . . . ,XM ) where each Xi is a Markov jump process
which gets absorbed at time yi, obtained using uniformization (ALGO-
RITHM (*), with yi ∼ PHp(π,T)).

Calculate the statistics Bi, Ni, Nij , Zi; i, j = 1, . . . , p, i 6= j.

3. Draw the new parameters θ = (π,T, t) from the posterior distribution
(3.11).

4. Goto 2.
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3.2.4 Direct method: CPH

The maximum likelihood estimation of PH distributions can be interpreted as
the solution of a system of non-linear equations. The most celebrated of all
methods for solving a non-linear equation is the Newton-Raphson method. This
is based on the idea of approximating the gradient vector, g, with its linear
Taylor series expansion about a working value xk. Let G(x) be the matrix
of partial derivatives of g(x) with respect to x. Using the root of the linear
expansion as the new approximation gives

xk+1 = xk −G(xk)−1g(xk).

The same algorithm arises for minimizing h(x) by approximating h with its
quadratic Taylor series expansion about xk. In the minimization case, g(x) is
the derivate vector (gradient) of h(x) with respect to x and the second derivate
matrix G(x) is symmetric. If h is a log-likelihood function, then g is the score
vector and −G is the observed information matrix. This method is not designed
to work with boundary conditions. For this, we consider the unconstrained
optimization given by Madsen et.al [41], where we have to give the explicit
expression of the gradient vector with required transformations. We refer to
this method as the Direct Method (DM) since it does not use the underlying
probabilistic structure.

Here, we will use the log transformation, which it is the only member of the
Box-Cox [23] family of transformations for which the transform of a positive-
valued variable can be truly Normal, because the transformed variable is defined
over the whole of the range from −∞ to ∞.

For i = 1, . . . , p − 1, generate −∞ < %i < ∞, and take the following transfor-
mation

πi =
e%i

1 +
∑p−1
s=1 e

%s
and πp =

1

1 +
∑p−1
i=1 e

%i
,

and for i, j = 1, . . . , p, generate −∞ < γij <∞ such that

tij = eγij , i 6= j, and ti = eγii .

The gradient vector is given by
((

∂l(θ; y)

∂%i

)

i=1,...,p−1

,

(
∂l(θ; y)

∂γij

)

i,j=1,...,p

)
,

where

∂l(θ; y)

∂τ∗
=

M∑

k=1

1

f(yk)

∂f(yk)

∂τ∗
, τ∗ ∈ {%i, γij}. (3.14)
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If Rm(yk) = e′me
Tykt, then

∂f(yk)

∂%m
=

p−1∑

s=1

∂πs
∂%m

Rs(yk)−
(
p−1∑

s=1

∂πs
∂%m

)
Rp(yk), (3.15)

where

∂πi
∂%j

= πj1{j=i} − πiπj , (3.16)

where 1{·} is the indicator function.

Moreover,

∂f(yk)

∂γij
=

p−1∑

s=1

πs
∂Rs(yk)

∂γij
+

(
1−

p−1∑

s=1

πs

)
∂Rp(yk)

∂γij
, (3.17)

and

∂Rs(yk)

∂γij
= e′s

∂eTyk

∂γij
t + e′se

Tyk
∂t

∂γij
,

where

∂t

∂γij
= 0, i 6= j, and

∂t

∂γii
= eγiiei.

In order to calculate ∂eTyk
∂τ∗ , for all τ∗, we are going to use uniformization. Let

K = I + 1
cT, where c = max{−tii, 1 ≤ i ≤ p}, then

eTy =

∞∑

r=0

brK
r,

where y ∈ {y1, . . . , yM} and br = e−cy (cy)r

r! . Taking the derivative we get that

∂eTy

∂τ∗
=

∞∑

r=0

(
br
∂Kr

∂τ∗
+
∂br
∂τ∗

Kr

)
,

where

∂br
∂τ∗

=
∂c

∂τ∗
y(br−11{r>0} − br),
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then

∂eTy

∂τ∗
=

∞∑

r=0

(
br
∂Kr

∂τ∗
+

∂c

∂τ∗
y(br−11{r>0} − br)Kr

)

=

∞∑

r=0

br
∂Kr

∂τ∗
+

∂c

∂τ∗
y

∞∑

r=0

br−11{r>0}K
r − ∂c

∂τ∗
y

∞∑

r=0

brK
r

=
∞∑

r=0

br
∂Kr

∂τ∗
+

∂c

∂τ∗
y

( ∞∑

r=0

brK
r

)
K− ∂c

∂τ∗
y
∞∑

r=0

brK
r

=

∞∑

r=0

br
∂Kr

∂τ∗
+

∂c

∂τ∗
y

( ∞∑

r=0

brK
r

)
(K− I)

=

∞∑

r=0

br
∂Kr

∂τ∗
+

∂c

∂τ∗
yeTy(K− I). (3.18)

For r ≥ 1 we have that

∂Kr

∂τ∗
=

r−1∑

k=0

Kk ∂K

∂τ∗
Kr−1−k,

and
∂K

∂τ∗
=

1

c

∂T

∂τ∗
− 1

c2
∂c

∂τ∗
T.

Assuming that the maximum of the diagonal of −T is given in the row k, then

∂c

∂γij
=

{
0 if i 6= k, ∀j 6= i
eγij if i = k, ∀j 6= i,

∂c

∂γii
=

{
0 if i 6= k
eγii if i = k.

Finally, ∂T
∂γij

, i 6= j, is a matrix whose (r, s)-th element is given by

[
∂T

∂γij

]

rs

=





0 if i 6= r, ∀s, j
−eγij if i = r, j 6= s
eγrs if i = r, j = s,

and ∂T
∂γii

is a matrix whose (i, i)-th element is −eγii and 0 otherwise.

3.2.5 Simulation results

In this Section we compare all the algorithms presented before. We ran the

programs until |LLi+1−LLi|
|LLi| < 10−15, where LLi is the log-likelihood in the

iteration i. For this purpose we consider the distributions given in Table 3.1.



46 Fitting phase-type distributions

The parameters for the Hyper-exponential distribution (see Table 2.2) are the
following: p1 = 0.3, p2 = 0.15, p3 = 0.05, p4 = 0.2, p5 = 0.15, p6 = 0.15, and
λ1 = 0.2, λ2 = 0.8, λ3 = 0.5, λ4 = 0.7, λ5 = 0.4, λ6 = 0.3.

Table 3.1: Distributions, number of phases, and size of data considered by the algorithms

Distribution Phases Observations

Exp(0.5) 3, 6, 9 200
Erlang(6,0.5) 3, 6, 9 200

Hyper-exponential 6 500
0.3*Erlang(4,0.075)+0.7*Erlang(2,0.35) 6 500

Table 3.2: Log-likelihood (LL) and execution time (time) for a Exp(0.5) distribution with 200
observations and considering dimensions 3, 6, and 9

Algorithm 3 6 9

LL time LL time LL time

EM Unif -337.324879 0.89 -337.264516 2.78 -337.211929 16.62

EM Unif Can -337.205426 0.68 -337.149333 2.37 -337.147724 12.47

EM-RK -337.855937 2.72 -337.701185 40.42 -337.698649 163.9

EM-RK Can -337.201689 1.25 -337.158150 12.83 -337.144544 61.3

DM -339.517482 235.75 -339.433725 528.64 -338.236541 612.35

DM Can -339.461828 103.56 -338.414573 192.84 -337.126443 231.26

GS Unif -339.653592 483.80 -339.448465 495.82 -338.826203 527.21

GS Unif Can -339.135553 409.83 -339.025563 418.76 -337.398230 443.43

GS-MH -339.852102 633.49 -339.614336 715.68 -338.212715 720.06

GS-MH Can -339.482492 322.64 -339.023750 369.82 -337.065612 497.97

Figure 3.1: EM-RK, Exp(0.5) Figure 3.2: EM-RK, Erlang(6,0.5)
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Table 3.3: Log-likelihood (LL) and execution time (time) for a Erlang(6,0.5) distribution with
200 observations and considering dimensions 3, 6, and 9

Algorithm 3 6 9

LL time LL time LL time

EM Unif -612.448668 0.49 -596.672830 4.56 -596.701870 12.68

EM Unif Can -612.448668 0.26 -596.640231 4.33 -596.610579 12.41

EM-RK -612.448517 0.81 -596.637344 5.79 -596.737192 45.46

EM-RK Can -612.448517 0.69 -596.631987 4.62 -596.580838 16.60

Figure 3.3: EM-RK, Hyper-exponential Figure 3.4: EM-RK, Mix-Erlang

Table 3.4: Log-likelihood (LL) and execution time (time) for a hyper-exponential and a mixture
of Erlang distributions

Algorithm Hyper-exponential 0.3*Erlang(4,0.075)+0.7*Erlang(2,0.35)

LL time LL time

EM Unif -1024.661717 9.96 -2321.917670 10.77

EM Unif Can -1024.171364 9.55 -2286.619814 10.07

EM-RK -1024.614153 41.17 -2316.991945 19.53

EM-RK Can -1024.418559 17.57 -2286.542547 9.49
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Figure 3.5: EM Unif, Exp(0.5) Figure 3.6: EM Unif, Erlang(6,0.5)

Figure 3.7: EM Unif, Hyper-exponential Figure 3.8: EM Unif, Mix-Erlang

3.3 Fitting discrete phase-type distributions

In this Section we apply three different methods for maximum likelihood esti-
mation of discrete phase-type (DPH) distributions: an EM algorithm, a Gibbs
sampler algorithm, and a Quasi-Newton method, where the last two methods
are developed for the first time to fit DPH. We compare all of them considering



3.3 Fitting discrete phase-type distributions 49

as a point of comparison their execution times. We propose some alternatives of
these algorithms to accelerate them, using canonical form and reversed Markov
chains.

We use an EM algorithm because of its simplicity in many applications and its
desirable convergence properties. Its methodology is almost identical to the well
known EM algorithm for continuous time ([11], [60]).

Nielsen and Beyer [48] presented a maximum likelihood method (Quasi-Newton
method) based on counts with explicit calculation of the Fisher information
matrix for an Interrupted Poisson process. Knowing this, we propose a new
Quasi-Newton method, which we call direct method (DM), to estimate general
and acyclic DPH.

3.3.1 Preliminaries

Consider M observations y1, . . . , yM ∈ N from a DPHp(π,T), where π and T
are given as in Section 2.3. We assume that the data are independent. Initially
we shall assume that πp+1 = 0, hence the data cannot contain zeros. Thus, yk is
the time of absorption of a Markov chain and we assume that only the absorption
times are observable and not the underlying development of the Markov chains.

For each time of absorption yk, we denote by x(k) = (x
(k)
0 , x

(k)
1 , . . . , x

(k)
yk ) the

sample path of the underlying Markov chain. Let x = {x(k)}k=1,...,M be the set
of complete data, and let y = (y1, . . . , yM ) denote the set of incomplete observed
data.

For θ = (π,T, t), the likelihood function is given by

L(θ; y) =

M∏

k=1

πTyk−1t, (3.19)

and the log-likelihood is

l(θ; y) =

M∑

k=1

log f(yk),

where f(yk) = πTyk−1t. Substituting π =
∑p−1
s=1 πse

′
s +

(
1−∑p−1

s=1 πs

)
e′p we

get

f(yk) =

p−1∑

s=1

πse
′
sT

yk−1t +

(
1−

p−1∑

s=1

πs

)
e′pT

yk−1t.
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If Rm(yk) = e′mTyk−1t, then

f(yk) =

p−1∑

j=1

πjRj(yk) +


1−

p−1∑

j=1

πj


Rp(yk). (3.20)

Now consider the data from one single chain x∗ ∈ {x(k)}k=1,...,M and suppose
that y is the time of absorption. The complete likelihood function can be written
in the following form

Lf (θ; x∗) =

p∏

i=1

πBii

p∏

i=1

p∏

j=1

t
Nij
ij

p∏

i=1

tNii , (3.21)

where Bi is equal to 1 if the Markov chain {X(n)}n≥0 starts in the state i, and
0 otherwise, i.e., Bi = 1{X(0)=i}; Nij is the number of transitions from state i
to state j, i, j = 1, . . . , p; and Ni = 1{X(y−1)=i}.

The log-likelihood function lf is hence given by

lf (θ; x∗) =

p∑

i=1

Bi log(πi) +

p∑

i=1

p∏

j=1

Nij log(tij) +

p∑

i=1

Ni log(ti). (3.22)

Since we have M independent series of observations of the above type, then

Bi =

M∑

k=1

Bki , Ni =

M∑

k=1

Nk
i , Nij =

M∑

k=1

Nk
ij ,

where Bki , N
k
i , and Nk

ij are the corresponding statistics for the k-th observation.

3.3.2 The EM algorithm: DPH

Like in CPH, we are hence dealing with a case of incomplete information and
our goal is to develop an EM algorithm for maximizing the likelihood of the
data (see also [24]).

A key step in the development of the EM algorithm is to consider the full
data likelihood Lf . The full log-likelihood is easily maximized by applying the
method of Lagrange multipliers:

LA(πi, tij , ti, λ1, λ2) = lf (θ; x) + λ1


1−

p∑

j=1

tij − ti


+ λ2

(
1−

p∑

i=1

πi

)
,
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then

∂LA
∂λ1

= 1−∑p
j=1 tij − ti = 0 =⇒ ∑p

j=1 tij + ti = 1,
∂LA
∂λ2

= 1−∑p
i=1 πi = 0 =⇒ ∑p

j=1 πi = 1,

add,

∂LA
∂πi

= Bi
πi
− λ2 = 0 =⇒ λ2 = Bi

πi
, =⇒ λ2 =

∑p
i=1Bi = M,

and,
∂LA
∂tij

=
Nij
tij
− λ1 = 0 =⇒ λ1 =

Nij
tij
,

∂LA
∂ti

= Ni
ti
− λ1 = 0 =⇒ λ1 = Ni

ti
,

then,

Nij
tij

= Ni
ti

=⇒ ∑p
j=1Nijti =

∑p
j=1Nitij =⇒ ti

∑p
j=1Nij = Ni(1− ti),

we obtain,

t̂i =
Ni∑p

j=1Nij +Ni
, (3.23)

then

λ1 =

p∑

j=1

Nij +Ni,

and

t̂ij =
Nij∑p

s=1Nis +Ni
. (3.24)

Finally,

π̂i =
Bi
λ2

=
Bi
M
. (3.25)

Since the log-likelihood function is linear in the sufficient statistics Bi, Nij , and
Ni, it is straightforward to calculate its conditional expectation if the corres-
ponding conditional expectations of the sufficient statistic were known. In the
following, we calculate these conditional expectations. We derive formulae for
one data point y only, the general case then follows by summing the conditional
expectations over all data points y1, . . . , yM .

First we notice that Bi = 1{X(0)=i}, then

Eθ(Bi|Y = y) = P(X(0) = i|Y = y)

=
P(Y = y|X(0) = i)P(X(0) = i)

P(Y = y)

=
e′iT

y−1tπi

πTy−1t
.
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Concerning Nij , if Y = y we have that

Nij = 1{y≥2}

y−2∑

k=0

1{X(k)=i,X(k+1)=j}.

Thus,

Eθ(Nij |Y = y) = 1{y≥2}

y−2∑

k=0

P(X(k) = i,X(k + 1) = j|Y = y)

= 1{y≥2}

y−2∑

k=0

P(Y = y|X(k + 1) = j)P(X(k + 1) = j|X(k) = i)P(X(k) = i)

P(Y = y)

= 1{y≥2}

y−2∑

k=0

e′jT
(y−(k+1)−1)tπTkei

πTy−1t
tij .

Add, Ni = 1{X(y−1)=i,X(y)=Y } then

Eθ(Ni|Y = y) = P(X(y − 1) = i,X(y) = Y |Y = y)

=
P(Y = y|X(y) = Y )P(X(y) = Y |X(y − 1) = i)P(X(y − 1) = i)

P(Y = y)

=
P(X(y) = Y |X(y − 1) = i)P(X(y − 1) = i)

P(Y = y)

=
πTy−1ei

πTy−1t
ti.

Then, we have proved the following theorem.

Theorem 3.4 For k = 1, . . . ,M we have the following:

� For i = 1, . . . , p,

Eθ(Bki |Yk = yk) =
e′iT

yk−1t

πTyk−1t
πi. (3.26)

� For i, j = 1, . . . , p,

Eθ(Nk
ij |Yk = yk) = 1{yk≥2}

yk−2∑

l=0

e′jT
(yk−(l+1)−1)tπTlei

πTyk−1t
tij . (3.27)
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� For i = 1, . . . , p,

Eθ(Nk
i |Yk = yk) =

πTyk−1ei

πTyk−1t
ti. (3.28)

Finally, the EM algorithm can be performed as follows.

ALGORITHM: EM algorithm for DPH distributions

1. Initialize the parameters θ0 = (π0,T0, t0).

2. Find
∑M
k=1 Eθ0(Bki |Yk = yk),

∑M
k=1 Eθ0(Nk

ij |Yk = yk), and
∑M
k=1 Eθ0(Nk

i |Yk =
yk), (see (3.26), (3.27), (3.28)).

3. Calculate θ̂ = (π̂, T̂, t̂), (see (3.23), (3.24), (3.25)).

4. Set θ0 = θ̂, and goto 2.

If zero is contained in the data we also need to include an atom of a certain
size at zero in the specification of the phase-type distribution. Allowing for
πp+1 > 0 we may recalculate conditional expectations and maxima as above.
However, it is immediately seen that estimation procedure can be split into the
following components. (1) Let π̂p+1 denote the proportion of zeros in the data
set. (2) Eliminate the zeros from the data. (3) Fit a discrete phase-type model

DPH(π̂, T̂) to the remaining data. This procedure, indeed, produces a maxi-
mum likelihood estimator for the complete model (which contains an atom at
zero).

Example 3.1 Considering the distributions and phases given in Table 3.5 and
using the EM algorithm we got the Figures 3.9, 3.10, 3.11, and 3.12.

Table 3.5: Distributions, number of phases, and size of data considered by the algorithms

Distribution Phases Observations

Geo(0.5) 3, 6, 9 200
Bin(20,0.5) 3, 6, 9 200

0.6*Geo(0.5)+0.4*Geo(0.1) 10 100
0.5*NBin(5,0.5)+0.5*NBin(20,0.5) 10 500
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Figure 3.9: EM, Geo(0.5) Figure 3.10: EM, Bin(20,0.5)

Figure 3.11: EM, 0.6*Geo(0.5)+
0.4*Geo(0.1)

Figure 3.12: EM, 0.5*NBin(5,0.5)+
0.5*NBin(20,0.5)

3.3.3 The Gibbs sampler algorithm: DPH

We now consider the discrete version of the Gibbs sampler presented in Section
3.2.3. We have to simulate M Markov chains with absorption times y1, . . . , yM ,
using the value of the initial parameter set, and thus obtain Bi = 1{X(0)=i},
Nij , the number of transitions from state i to state j, i, j = 1, . . . , p, and
Ni = 1{X(y−1)=i}, for y ∈ {y1, . . . , yM}.

Let φ be the prior distribution proportional to

φ(θ) =

p∏

i=1

πβi−1
i

p∏

i=1

p∏

j=1

t
νij−1
ij

p∏

i=1

tηi−1
i , (3.29)
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where βi, νij , and ηi are fixed parameters. Note that

π = (π1, . . . , πp) ∼ Dirichlet(β1, . . . , βp),

t∗i = (ti1, . . . , tip) ∼ Dirichlet(νi1, . . . , νip),
t = (t1, . . . , tp) ∼ Dirichlet(η1, . . . , ηp).

The posterior distribution is then given by

p∗(θ | x) =

p∏

i=1

πβi+Bi−1
i

p∏

i=1

p∏

j=1

t
νij+Nij−1
ij

p∏

i=1

tηi+Ni−1
i , (3.30)

with π ∼ Dirichlet(β1 + B1, . . . , βp + Bp), t∗i ∼ Dirichlet(νi1 + Ni1, . . . , νip +
Nip), and t ∼ Dirichlet(η1 +N1, . . . , ηp +Np).

In general, we have the following algorithm.

ALGORITHM: Gibbs sampler algorithm for DPH distributions

1. Draw θ0 = (π0,T0, t0) from the prior distribution (3.29).

2. Simulate M Markov chains with time of absorptions y1, . . . , yM , given θ0.
Obtain Bi, Nij , Ni, i, j = 1, . . . , p.

3. Draw θ1 = (π1,T1, t1) from the posterior distribution (3.30).

4. Set θ0 = θ1 and goto 2.

After a number of initial iterations (burn-in), the procedure will stabilize into a
stationary mode.

Example 3.2 Considering the distributions given in Table 3.5 and using GS
with the canonical form (GSC), we obtained the Figures 3.13, 3.14, 3.15, and
3.16.
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Figure 3.13: GSC, Geo(0.5) Figure 3.14: GSC, Bin(20,0.5)

Figure 3.15: GSC, 0.6*Geo(0.5)+
0.4*Geo(0.1)

Figure 3.16: GSC, 0.5*NBin(5,0.5)+
0.5*NBin(20,0.5)

3.3.4 Direct method: DPH

As in the CPH case, we will consider a transformation of the parameters in
order to get an unconstrained optimization problem.

For i = 1, . . . , p − 1, generate −∞ < %i < ∞, and take the following transfor-
mation

πi =
e%i

1 +
∑p−1
s=1 e

%s
, πp =

1

1 +
∑p−1
i=1 e

%i
,

for i, j = 1, . . . , p, generate −∞ < γij <∞ such that

tij =
eγij

1 +
∑p
s=1 e

γis
, i 6= j,
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and

ti =
eγii

1 +
∑p
s=1 e

γis
.

The gradient vector is given by
((

∂l(θ; y)

∂%i

)

i=1,...,p−1

,

(
∂l(θ; y)

∂γij

)

i,j=1,...,p

)
,

where the expressions for the derivatives of ∂l(θ;y)
∂τ∗ , for τ∗ ∈ {%m, γij}, ∂f(yk)

∂%m
,

and ∂f(yk)
∂γij

, are the same as (3.14), (3.15), and (3.17), respectively, considering

in this case Rm(y) = e′mTy−1t.

Moreover,

∂Rs(yk)

∂γij
= e′s

∂Tyk−1

∂γij
t + e′sT

yk−1 ∂t

∂γij
, s ∈ {1, . . . , p},

where for r ≥ 1

∂Tr

∂τ∗
=

r−1∑

k=0

Tk ∂T

∂τ∗
Tr−1−k, for all τ∗, (3.31)

and particularly, ∂T
∂γij

is a matrix whose (m,n)-th, m 6= n, element is given by

∂tmn
∂γij

= tmn1{i=m,j=n} − tmntmj1{i=m},

and ∂t
∂γij

is a column vector whose m-th element is

∂tm
∂γij

= tm1{i=j=m} − tmtmj1{i=m}.

Note that ∂tmm
∂γij

= 1−∑s6=m
∂tms
∂γij
− ∂tm

∂γij
.

The results for the log-likelihood (LL) and the execution times of the Geo(0.5)
and the Bin(20,0.5) are in Tables 3.6 and 3.7. Note that we consider the EM
algorithm using also canonical form (EMC), the Gibbs sampler with the variants
using canonical form (GSC) and reversed Markov chains (GS REV/GSC REV),
and finally the direct method using canonical form (DMC).

We can see in Tables 3.6 and 3.7 that the EMC, the GSC REV, and the DMC
methods have the lowest execution time. In Table 3.8 we present the results
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Table 3.6: Log-likelihood (LL) and execution time (time) for a Geo(0.5) distribution with 200
observations and considering dimensions 3, 6, and 9

Algorithm 3 6 9

LL time LL time LL time

EM -261.50112 0.35256 -259.18334 3.249535 -259.16876 7.60085

EMC -260.61263 0.16091 -259.06970 2.35824 -257.76120 4.55080

GSC -263.79733 0.96749 -262.62966 2.048963 -262.98623 3.13080

GSC REV -263.54800 0.10886 -262.35961 0.572875 -261.77490 1.27125

GS -264.52615 1.00085 -263.21963 1.931397 -262.41165 3.77487

GS REV -264.53692 0.12040 -263.96603 0.698154 -262.82513 1.35422

DM -261.56296 0.23187 -261.41675 3.479794 -260.75706 10.25334

DMC -261.04200 0.14317 -259.14148 1.418172 -258.73445 4.34394

Table 3.7: Log-likelihood (LL) and execution time (time) for a Bin(20,0.5) distribution with 200
observations and considering dimensions 3, 6, and 9

Algorithm 3 6 9

LL time LL time LL time

EM -517.20199 0.40572 -443.86606 8.083756 -437.66486 12.374817

EMC -517.20199 0.14409 -443.86595 5.633254 -437.51209 8.045881

GSC -525.90580 1.39880 -467.13223 3.136527 -441.48312 8.289563

GSC REV -525.79930 0.10847 -466.73260 0.788024 -441.09375 2.233701

GS -532.04583 1.58482 -507.31243 3.477106 -443.83995 8.387822

GS REV -532.06085 0.18639 -507.96166 1.028186 -443.19820 2.607144

DM -517.20199 0.25929 -444.63254 5.396215 -437.77745 10.059585

DMC -517.12650 0.19505 -443.56324 3.216522 -437.15772 6.345557

using these methods for a mixture of geometrics 0.6 ∗Geo(0.5) + 0.4 ∗Geo(0.1)
dimension 10, and 100 observations; and also for a mixture of negative binomials
0.5 ∗NBin(5, 0.5) + 0.5 ∗NBin(20, 0.5) dimension 10 and 500 observations.

Note that the worst LL was found in GSC REV, even though the time was lower
than the others.
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Table 3.8: Log-likelihood (LL) and execution time (time) for a mixture of geometric distributions
and a mixture of negative binomials

Algorithm 0.6*Geo(0.5)+0.4*Geo(0.1) 0.5*NBin(5,0.5)+0.5*NBin(20,0.5)

LL time LL time

EMC -235.44286 89.37870 -1649.35240 117.53216

GSC REV -241.68890 17.95527 -1669.59530 20.52369

DMC -236.85436 66.22941 -1650.36523 95.23651
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Chapter 4

Fisher information matrix for
phase-type distributions

Fisher information (FI) is a key concept in the theory of statistical inference
and essentially describes the amount of information that the data provide about
unknown parameters. It has applications in finding the variance of an estimator,
as well as in the asymptotic behavior of maximum likelihood estimates.

Little has been done with respect to precision and inference of phase-type dis-
tributions. Nielsen and Beyer [48] have given an explicit calculation of the FI
matrix for an interrupted Poisson process. In this Chapter, we present meth-
ods for calculating the FI matrix for phase-type distributions (continuous (CPH)
and discrete (DPH) cases) when the EM algorithm is applied as an optimization
tool as well as for the direct Newton-Raphson method.

Consider M independent observations y1, . . . , yM from a PHp(π,T) distribu-
tion, here PH denotes a phase-type distribution in general, i.e. for both DPH
and CPH. We will also consider the exit vector instead of the diagonal of the
matrix T in both distributions, i.e. the elements in the diagonal of T are defined
as tii = 1−∑p

j=1,j 6=i tij − ti in DPH, and tii = −∑p
j=1,j 6=i tij − ti in CPH.

Let θ = (θi)1≤i≤p2+(p−1) be the vector such that

θ = (π1, . . . , πp−1, t1, t12, . . . , t1p, t21, t2, . . . , t2p, . . . , tp1, . . . , tp,p−1, tp).
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The incomplete data likelihood (see (3.7) and (3.19)) function is given by

L(θ;y) =

M∏

k=1

πΨ(yk)t, (4.1)

where y = (y1, . . . , yM ) and

Ψ(y) =

{
eT y for CPH
T y−1 for DPH.

The log–likelihood function is defined as `(θ;y) = logL(θ;y).

By substituting π =
∑p−1
j=1 πje

′
j +

(
1−∑p−1

j=1 πj

)
e′p (because π is a probabil-

ity vector, i.e
∑p
i=1 πi = 1, and in order to avoid the over-parameterization

problem), the density of the phase–type distribution evaluated in y is given by

f(y) =

p−1∑

j=1

πje
′
jΨ(y)t +


1−

p−1∑

j=1

πj


 e′pΨ(y)t,

with partial derivatives given by

∂f(y)

∂πm
= e′mΨ(y)t− e′pΨ(y)t

∂f(y)

∂tmn
= π

∂Ψ(y)

∂tmn
t, m 6= n

∂f(y)

∂tm
= πΨ(y)em + π

∂Ψ(y)

∂tm
t.

In order to compute the partial derivatives of Ψ with respect to θm, for m ∈
{1, . . . , p2 +(p−1)}, we shall need the derivative of Tr for r ≥ 1, that it is given

in (3.31), with
[
∂T
∂tij

]
ij

= 1,
[
∂T
∂tij

]
ii

= −1, and
[
∂T
∂ti

]
ii

= −1.

The derivative of eTy is given in (3.18). Since eT(x+y) = eTxeTy, we can get a
recursive version of (3.18) given by

∂eT(x+y)

∂θm
= eTx

∂eTy

∂θm
+
∂eTx

∂θm
eTy.

In the following sections we will give a way of getting the Fisher information
matrix for PH distributions via the EM algorithm and via a direct Newton-
Raphson approach.
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4.1 Via the EM algorithm

The EM algorithm also allows for extracting information concerning the Fisher
information matrix as noted Oakes in [52]. Considering L, the incomplete data
likelihood which is maximized by the EM algorithm, the Fisher information
matrix is given by

∂2L(θ;y)

∂θ2
=

{
∂2Q(θ̂|θ)

∂θ̂2
+
∂2Q(θ̂|θ)

∂θ∂θ̂

}

θ̂=θ

, (4.2)

where
Q(θ̂|θ) = Eθ(`f (θ̂;x) |y) , (4.3)

and x = (x1, . . . , xM ) denote the full data for the M absorption times.

In order to avoid notation, we define the following

Ui =

M∑

l=1

e′iΨ(yl)t

f(yl)
, (4.4)

Wi =

M∑

l=1

πΨ(yl)ei
f(yl)

, (4.5)

Vij =





M∑

l=1

1{yl≥2}

yl−2∑

k=0

e′jT
yl−k−2tπTkei

f(yl)
, for DPH

M∑

l=1

1

f(yl)

∫ yl

0

e′je
T(yl−u)tπeTueidu, for CPH.

(4.6)

Then (4.3) becomes

Q(θ̂|θ) =

p−1∑

i=1

log π̂iUiπi + log

(
1−

p−1∑

s=1

π̂s

)
Up

(
1−

p−1∑

s=1

πs

)

+

p∑

i=1

p∑

j=1,j 6=i
log t̂ijVijtij +

p∑

i=1

SiVii

+

p∑

i=1

log(t̂i)Witi,

where

Si =

{ (
1−∑p

j=1,j 6=i tij − ti
)

log
(

1−∑p
j=1,j 6=i t̂ij − t̂i

)
for DPH

−∑p
j=1,j 6=i t̂ij − t̂i for CPH.
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The Fisher information matrix is given by

∂2L(θ; y)

∂θ2
=

(
MI MIII

MII MIV

)

where MI , MII , MIII , and MIV are themselves matrices of appropriate di-
mension.

For i = 1, . . . , p− 1,

∂2Q

∂π̂2
i

∣∣∣∣
θ̂=θ

= −Ui
πi
− Up
πp
,

∂2Q

∂πi∂π̂i

∣∣∣∣
θ̂=θ

=
Ui
πi

+
∂Ui
∂πi

+
Up
πp
− ∂Up
∂πp

,

thus, the (i, i)-th element of the matrix MI is given by
(
∂2Q

∂π̂2
i

+
∂2Q

∂πi∂π̂i

)∣∣∣∣
θ̂=θ

=
∂Ui
∂πi
− ∂Up
∂πi

.

For i, j = 1, . . . , p− 1, i 6= j we have

∂2Q

∂π̂j∂π̂i

∣∣∣∣
θ̂=θ

= −Up
πp
,

∂2Q

∂πj∂π̂i

∣∣∣∣
θ̂=θ

=
∂Ui
∂πj

+
Up
πp
− ∂Uj
∂πj

,

thus, for i 6= j, the (i, j)-th element of the matrix MI is given by
(

∂2Q

∂π̂j∂π̂i
+

∂2Q

∂πj∂π̂i

)∣∣∣∣
θ̂=θ

=
∂Ui
∂πj
− ∂Up
∂πj

.

In general, for i, j = 1, . . . , p− 1 the (i, j)-th element of the matrix MI is given
by

∂Ui
∂πj
− ∂Up
∂πj

. (4.7)

For m = 1, . . . , p− 1 and i, j = 1, . . . , p, i 6= j,

∂2Q

∂t̂ij∂π̂m

∣∣∣∣
θ̂=θ

= 0,
∂2Q

∂tij∂π̂m

∣∣∣∣
θ̂=θ

=
∂Um
∂tij

− ∂Up
∂tij

,

thus, the ((i− 1) ∗ p+ j,m)-th element of the matrix MII is given by
(

∂2Q

∂t̂ij∂π̂m
+

∂2Q

∂tij∂π̂m

)∣∣∣∣
θ̂=θ

=
∂Um
∂tij

− ∂Up
∂tij

. (4.8)

The formula remains the same considering ti, i.e. the ((i − 1) ∗ p + i,m)-th
element of the matrix MII is given by

(
∂2Q

∂t̂i∂π̂m
+

∂2Q

∂ti∂π̂m

)∣∣∣∣
θ̂=θ

=
∂Um
∂ti
− ∂Up

∂ti
. (4.9)
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Now, for m = 1, . . . , p− 1, i, j = 1, . . . , p, i 6= j

∂2Q

∂π̂m∂t̂ij

∣∣∣∣
θ̂=θ

= 0,
∂2Q

∂πm∂t̂ij

∣∣∣∣
θ̂=θ

=
∂Vij
∂πm

− ∂Vii
∂πm

,

thus, the (m, (i− 1) ∗ p+ j)-th element of the matrix MIII is given by

(
∂2Q

∂π̂m∂t̂ij
+

∂2Q

∂πm∂t̂ij

)∣∣∣∣
θ̂=θ

=
∂Vij
∂πm

− ∂Vii
∂πm

. (4.10)

Moreover,

∂2Q

∂π̂m∂t̂i

∣∣∣∣
θ̂=θ

= 0,
∂2Q

∂πm∂t̂i

∣∣∣∣
θ̂=θ

=
∂Wi

∂πm
− ∂Vii
∂πm

,

thus, the (m, (i− 1) ∗ p+ i)-th element of the matrix MIII is given by

(
∂2Q

∂π̂m∂t̂i
+

∂2Q

∂πm∂t̂i

)∣∣∣∣
θ̂=θ

=
∂Wi

∂πm
− ∂Vii
∂πm

. (4.11)

Finally, for i, j,m, n = 1, . . . , p, the (ip − 1 + j,mp − 1 + n)-th element of the
matrix MIV is given by

∂Vij
∂tmn

− ∂Vii
∂tmn

if i 6= j,m 6= n

∂Vij
∂tm

− ∂Vii
∂tm

if i 6= j,m = n

∂Wi

∂tmn
− ∂Vii
∂tmn

if i = j,m 6= n

∂Wi

∂tm
− ∂Vii
∂tm

if i = j,m = n.

Let Ri(u) = πΨ(u)ei and Qi(u) = e′iΨ(u)t. Then, their derivatives are given
by

∂Ri(u)

∂πm
= e′mΨ(u)ei − e′pΨ(u)ei,

∂Qi(u)

∂πm
= 0,

∂Ri(u)

∂tmn
= π

∂Ψ(u)

∂tmn
ei, m 6= n,

∂Qi(u)

∂tmn
= e′i

∂Ψ(u)

∂tmn
t, m 6= n,

∂Ri(u)

∂tm
= π

∂Ψ(u)

∂tm
ei,

∂Qi(u)

∂tm
= e′iΨ(u)em + e′i

∂Ψ(u)

∂tm
t.
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Thus, Ui, Wi, and Vij (see (4.4), (4.5), and (4.6)) become

Ui =

M∑

l=1

Qi(yl)

f(yl)
,

Wi =

M∑

l=1

Ri(yl)

f(yl)
,

Vij =





M∑

l=1

1{yl≥2}

yl−2∑

k=0

Qj(yl − k − 1)Ri(k + 1)

f(yl)
, for DPH

M∑

l=1

1

f(yl)

∫ yl

0

Qj(yl − u)Ri(u)du, for CPH.

Hence, for n ∈ {1, . . . , p2 + (p− 1)}, the derivatives w.r.t. θn are given by

∂Ui
∂θn

=

M∑

l=1

1

f(yl)2

(
f(yl)

∂Qi(yl)

∂θn
−Qi(yl)

∂f(yl)

∂θn

)
,

∂Wi

∂θn
=

M∑

l=1

1

f(yl)2

(
f(yl)

∂Ri(yl)

∂θn
−Ri(yl)

∂f(yl)

∂θn

)
,

the derivative of Vij for DPH is given by

∂Vij
∂θn

=

M∑

l=1

1{yl≥2}

yl−2∑

k=0

1

f(yl)2

[
f(yl)

(
Qj(yl − k − 1)

∂Ri(k + 1)

∂θn

+
∂Qj(yl − k − 1)

∂θn
Ri(k + 1)

)
−
(
∂f(yl)

∂θn

)
Qj(yl − k − 1)Ri(k + 1)

]
.

Concerning the computation of
∂Vij
∂θn

for CPH we have that

∂Vij
∂θn

=

M∑

l=1

1

f(yl)2

[
f(yl)

∫ yl

0

Qj(yl − u)

(
∂Ri(u)

∂θn

)
+

(
∂Qj(yl − u)

∂θn

)
Ri(u)du

−
(
∂f(yl)

∂θn

)∫ yl

0

Qj(yl − u)Ri(u)du

]
.
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Define the following integrals

J1(y; M) =

∫ y

0

eT(y−u)MeTudu = e−cy
∞∑

s=0

(cy)s+1

(s+ 1)!
DJ1(s),

J2(y; θn,M) =

∫ y

0

eT(y−u)M
∂eTu

∂θn
du

= e−cy
∞∑

s=0

(cy)s+2

(s+ 2)!
(DJ2,1(s, θn) + DJ2,2(s, θn)),

J3(y; θn,M) =

∫ y

0

∂eT(y−u)

∂θn
MeTudu

= e−cy
∞∑

s=0

(cy)s+2

(s+ 2)!
(DJ3,1(s, θn) + DJ3,2(s, θn)),

where M is a (p× p)-dimensional matrix and

DJ1(s) =

s∑

j=0

Kj 1

c
MKs−j ,

DJ2,1(s, θn) =

s∑

j=0

Kj 1

c
M
∂Ks−j+1

∂θn
,

DJ2,2(s, θn) =

s∑

j=0

Kj(s+ 1− j) 1

c2
∂c

∂θn
M(K− I)Ks−j ,

DJ3,1(s, θn) =

s∑

j=0

∂Ks−j+1

∂θn

1

c
MKj ,

DJ3,2(s, θn) =

s∑

j=0

Kj(j + 1)
1

c2
∂c

∂θn
(K− I)MKs−j .
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Then

∂Vij
∂πm

=

M∑

k=1

1

f(yk)2

[
f(yk)

(
e′j J1(yk; te′m)ei − e′jJ1(yk; te′p)ei

)

− ∂f(yk)

∂πm
e′jJ1(yk; tπ)ei

]
,

∂Vij
∂tmn

=
M∑

k=1

1

f(yk)2

[
f(yk)

(
e′jJ2(yk; tmn, tπ)ei + e′jJ3 (yk; tmn, tπ) ei

)

− ∂f(yk)

∂tmn
e′jJ1(yk; tπ)ei

]
,

∂Vij
∂tm

=

M∑

k=1

1

f(yk)2

[
f(yk)

(
e′jJ2(yk; tm, tπ)ei + e′jJ1 (xk; emπ) ei

+ e′jJ3(yk; tm, tπ)ei
)
− ∂f(yk)

∂tm
e′jJ1(yk; tπ)ei

]
.

A proper truncation of the infinite sums involved in Ji, i = 1, 2, 3, can be
obtained. Since we are working with stochastic (sub-stochastic) matrices, then
we can see that DJ1

(s) is bounded by s+ 1, thus

∞∑

s=0

e−cy
(cy)s+1

(s+ 1)!
· (s+ 1) =

∞∑

s=1

e−cy
(cy)s

s!
· s

= cy

[∑∞
s=1 e

−cy (cy)s

s! · s
(cy)

]

= cy

[ ∞∑

s=1

f(i, cy) · s
(cy)

]

= cy

[ ∞∑

s=1

f1(i, cy)

]
,

where f(x, λ) is the Poisson density with parameter λ and f1(x, λ) is the first
order moment distribution of f . Hence, the truncation is the standard uni-
formization level plus 1.

In the same manner, we have that DJ2,1(s, ·), DJ2,2(s, ·), DJ3,1(s, ·), and DJ3,2(s, ·),
are bounded by 1

2 (s+ 1)(s+ 2), thus

∞∑

s=0

e−cy
(cy)s+2

(s+ 2)!
· 1

2
(s+ 1)(s+ 2) =

∞∑

s=2

e−cy
(cy)s

s!
· 1

2
s(s− 1)
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=
1

2

∞∑

s=2

e−cy
(cy)s

s!
· s2 − 1

2

∞∑

s=2

e−cy
(cy)s

s!
· s.

The right hand side we have already analyzed, and

∞∑

s=2

e−cy
(cy)s

s!
· s2 = µ2



∑∞
s=2 e

−cy (cy)s

(s)! · s2

µ2




= µ2

[ ∞∑

s=2

f(i, cy) · s2

µ2

]

= µ2

[ ∞∑

s=2

f2(i, cy)

]
,

where µ2 =
∫∞

0
x2f(x, cy)dx and f2(x, λ) is the second order moment distribu-

tion of f . The truncation level is the standard uniformization plus 2.

Finally, in Table 4.1, we can see the general way to compute the Fisher infor-
mation matrix of a PH distribution.

Table 4.1: Fisher Information matrix for a phase-type distribution with set of parameters θ

πm tij ti

θ ∂Um
∂θ −

∂Up
∂θ

∂Vij
∂θ − ∂Vii

∂θ
∂Wi

∂θ − ∂Vii
∂θ

4.2 Newton–Raphson estimation

The Newton–Raphson method is based on the idea of approximating a function
with its first or second order Taylor expansion. Thus, we need to calculate the
gradient vector of the log–likelihood function. This is computationally demand-
ing, particularly if the dimension is large. However, the cost of calculating the
gradient could be compensated for by fewer iterations. The method is not de-
signed to work with boundary conditions. While the calculation of the gradient
is rather straightforward, the task of making an efficient numerical implemen-
tation of the formulae is by no means trivial.

Using the idea given by B. F. Nielsen, et.al [48], we want to work with an
unconstrained system, and use a package for unconstrained optimization written
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by K. Madsen, et.al [41]. Their program, as well as many other standard routines
available for unconstrained optimization, find the maximum of a given function
using the gradient vector. Since we want to find the maximum of the log-
likelihood function, we calculate the gradient vector based on the parameter
transformation which provides the unconstrained optimization problem. We
shall again refer to this method as the Direct Method (DM).

The direct method we employ assumes that the parameters are unbounded.
This is obviously not the case for the phase–type intensities so we consider a
re–parametrisation τ of the parameters. We also need to provide the gradient
at a given point of the transformed parameters.

Considering the transformations of the parameters given in sections 3.2.4 and
3.3.4, we need to provide the gradient at a given point of the transformed pa-
rameters, denoted by τ , in order to find the maximum,

g =
∂`(θ;y)

∂τ
=

(
∂`(θ;y)

∂τm

)

m=1,...,p2+(p−1)

.

By the chain rule this vector can be obtained as

∂`(θ;y)

∂τ
=
∂`(θ;y)

∂θ

∂θ

∂τ
, (4.12)

where ∂`(θ;y)
∂θ is a p2 + (p − 1)-dimensional row vector and ∂θ

∂τ is the Jacobian
matrix. Taking the derivative of the log-likelihood function w.r.t θ we get that

∂`(θ;y)

∂θ
=

M∑

k=1

1

f(yk)

∂f(yk)

∂θ
,

where f is the density of the phase–type distribution parameterized by θ.

To obtain the Fisher information matrix using the direct method, we take the
second derivative of (4.12), which at the optimum gives

∂2`(θ;y)

∂τ̄∂τ
=
∂θ

∂τ

∂2`(θ;y)

∂θ̄∂θ

∂θ̄

∂τ̄
(4.13)

where ∂2`(θ;y)

∂θ̄∂θ
is a square matrix of second-order partial derivatives given by

∂2`(θ;y)

∂θ̄∂θ
=

M∑

k=1

1

f(yk)2

[
f(yk)

∂2f(yk)

∂θ̄∂θ
− ∂f(yk)

∂θ̄

∂f(yk)

∂θ

]
.

The second derivatives of the density with respect to the initial probabilities are
0, i.e.

∂2f(y)

∂πn∂πm
= 0,
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while with respect to the elements of the matrix T, the second derivatives are
given by

∂2f(y)

∂tmn∂tij
= π

∂2Ψ(y)

∂tmn∂tij
t, m 6= n, i 6= j,

and w.r.t the exit probabilities

∂2f(y)

∂tm∂ti
= π

∂Ψ(y)

∂tm
ei + π

∂Ψ(y)

∂ti
em + π

∂2Ψ(y)

∂tm∂ti
t.

Finally,

∂2f(y)

∂πm∂tij
=

∂2f(y)

∂tij∂πm
= e′m

∂Ψ(y)

∂tij
t− e′p

∂Ψ(y)

∂tij
t, i 6= j

∂2f(y)

∂πm∂ti
=

∂2f(y)

∂ti∂πm
= e′mΨ(y)ei − e′pΨ(y)ei + e′m

∂Ψ(y)

∂ti
t− e′p

∂Ψ(y)

∂ti
t

∂2f(y)

∂tmn∂ti
= π

∂Ψ(y)

∂tmn
ei + π

∂2Ψ(y)

∂tmn∂ti
t, m 6= n

∂2f(y)

∂ti∂tmn
= π

∂Ψ(y)

∂tmn
ei + π

∂2Ψ(y)

∂ti∂timn
t, m 6= n.

For m,n ∈ {1, . . . , p2 + (p − 1)}, and taking the second derivative of (3.31) we
get

∂2Tr

∂θn∂θm
=

r−1∑

k=0

Tk ∂T

∂θm

∂Tr−1−k

∂θn
+
∂Tk

∂θn

∂T

∂θm
Tr−1−k. (4.14)

In the same way from (3.18), we have that

∂2eTy

∂θn∂θm
= e−cy

∞∑

k=0

(cy)k+1

(k + 1)!

∂2Kk+1

∂θn∂θm
+

∂c

∂θm
y

(
eTy

∂K

∂θn
+
∂eTy

∂θn
(K− I)

)
,

(4.15)

where ∂2Kr

∂θn∂θm
is calculated like (4.14).

The quasi-Newton method presented in [48] gives an approximate value of the
Hessian matrix for the transformed parameters τ used in the optimization. This
can be transformed into an approximation for the inverse Fisher information
matrix using

∂2`(θ;y)

∂θ̄∂θ
=
∂τ

∂θ

∂2`(θ; x)

∂τ̄∂τ

∂τ̄

∂θ̄
.
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4.3 Experimental results

In order to make the Fisher information meaningful, we consider the canonical
form representation given by

π = (1, 0, . . . , 0), T =




t11 t12

t22 t23

. . .
. . .

tp−1,p−1 tp−1,p

tpp



, t =




t1
t2
...

tp−1

tp



.

(4.16)

In this Section we present the results of an estimation study considering simu-
lated data from discrete and continuous phase-type distributions. First of all,
we consider a shifted Negative binomial distribution NB(r = 3, p1 = 0.2), which
canonical form is given by

π = (1, 0, 0), T =




1− p1 (1− p2
1)p1 0

0 1− p1 p1 − 2p21
1+p1

0 0 1− p1


 , t =




p3
1

2p21
1+p1

p1


 .

For the continuous case, we considered a mixture of three exponential distri-
butions: exp(λ1 = 1.0), exp(λ2 = 0.1), and exp(λ3 = 0.01). This distribution
is also called Hyper-exponential (HE), and has a canonical representation (see
Cumani [27]) given by

π = (1, 0, 0), T =



−λ1 λ1 − t1 0

0 −λ2 λ2 − t2
0 0 −λ3


 , t =




π1λ1 + π2λ2 + π3λ3
π2λ2(λ1−λ2)+π3λ3(λ1−λ3)
π2(λ1−λ2)+π3(λ1−λ3)

λ3


 ,

where π1 = 0.9, π2 = 0.09, and π3 = 0.01.

We generated samples of different sizes. Then, we ran the algorithms for different
dimensions of the PH generator. We found the maximum likelihood estimators
(MLE) not only via EM-algorithm but also for the DM. The maxima were
generally the same.

In order to check the order of the distribution for the simulated data, we calcu-
lated the Akaike Information Criterion (AIC) [3], which is calculated by

AIC = 2k − 2 log(L̂)

where k is the number of parameters in the statistical model, and L̂ is the
maximized value of the likelihood function for the estimated model.
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In Tables 4.2 and 4.3 we can see the corresponding AIC. As we expected, con-
sidering a sufficient amount of data, we found the correct order in both distri-
butions.

Table 4.2: AIC of the shifted Negative binomial(3,0.2)

dim Size of data

500 1000 5000 10000

1 3528.581819 7020.810118 35213.462481 70413.184709

2 3388.114359 6656.243035 33451.875728 66951.502089

3 3387.396123 6635.565645 33325.139564 66690.026858

4 3390.728760 6635.645945 33328.647163 66693.147736

5 3393.884284 6639.629079 33331.568906 66694.314071

Table 4.3: AIC of the Hyper-exponential distribution

dim Size of data

500 1000 5000 20000

1 1503.015560 3657.734462 19550.565214 83008.788613

2 1386.046313 2893.167184 14281.181393 59627.389521

3 1390.042883 2894.846373 14077.871083 59006.193568

4 1393.997920 2898.832350 14080.991236 59010.065036

5 1397.408475 2902.826303 14084.990615 59014.071250

After finding the MLE, the FI matrix was obtained considering only the non-
zero parameters. Since the inverse of the FI matrix is the empirical variance-
covariance matrix, we could obtain the standard deviation (SD) of the parame-
ters (see Tables 4.4 and 4.5).

Table 4.4: Maximum likelihood estimators (MLE) and standard deviations (SD) of the shifted
Negative binomial(3,0.2), considering 10000 observations

Parameter true value EM DM

MLE SD MLE SD

t̂1 8.0E-3 9.375498E-3 9.3409303E-4 9.390321E-3 9.354187E-4

t̂12 0.192000 0.193870 0.042604 0.193925 0.045525

t̂2 0.066667 0.059214 0.011803 0.059187 0.012520

t̂23 0.133333 0.144035 0.038740 0.144065 0.040769

t̂3 0.200000 0.203261 0.042618 0.203243 0.044996

The corresponding correlations are given in Tables 4.6 and 4.7.
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Table 4.5: Maximum likelihood estimators (MLE) and standard deviations (SD) of the Hyper-
exponential, considering 20000 observations

Parameter true value EM DM

MLE SD MLE SD

t̂1 0.909100 0.915968 7.966296E-3 0.924815 8.026784E-3

t̂12 0.090900 0.093476 3.7044226E-3 0.092316 3.685568E-3

t̂2 0.090198 0.092183 4.012385E-3 0.092144 4.028796E-3

t̂23 0.009802 0.013576 1.5451314E-3 0.015261 1.6862311E-3

t̂3 0.010000 0.011547 9.307426E-4 0.012154 9.596845E-4

Table 4.6: Correlations of the shifted Negative binomial(3,0.2)

t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.000000 -0.011774 -0.185519 0.067717 0.010276

t̂12 -0.011774 1.000000 -0.933626 -0.262275 -0.497264

t̂2 -0.185519 -0.933626 1.000000 0.191576 0.451236

t̂23 0.067717 -0.262275 0.191576 1.000000 -0.684175

t̂3 0.010276 -0.497264 0.451236 -0.684175 1.000000

Table 4.7: Correlations of the Hyper-exponential

t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.000000 0.345050 0.241808 0.059097 0.042929

t̂12 0.345050 1.000000 0.577651 0.187375 0.114814

t̂2 0.241808 0.577651 1.000000 0.417144 0.229993

t̂23 0.059097 0.187375 0.417144 1.000000 0.488739

t̂3 0.042929 0.114814 0.229993 0.488739 1.000000



Chapter 5

Multivariate phase-type
distributions

There exist a vast amount of definitions concerning multivariate distributions
of either exponential or gamma type in the literature (see e.g. Kotz et.al [37]).
Such distributions either have exponentially or gamma distributed marginals.
This has resulted in a rather extensive amount of distributions, many of which
are related or only differ from each other vaguely. Also, the class of phase-
type distributions, which generalize certain gamma type distributions, has been
extended to a multivariate setting, first by Assaf et.al [12] and later by Kulkarni
[39] (Section 5.1). The latter class, which contains the former as a special
case, provides an elegant construction of multivariate phase-type distributions
in terms of a single underlying Markov jump process.

In Section 5.2 we will consider the estimation of bivariate phase-type distribu-
tions by different methods.
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5.1 Two classes of multivariate phase-type dis-
tributions

Let {X(t)}t≥0 be a MJP on the finite state-space {1, 2, . . . , p, p+1} with intensity
matrix on the form (

T −Te
0 0

)
,

where T is a (p × p)-dimensional invertible matrix. Suppose the initial distri-
bution is (π, πp+1) and define

τ = inf{t ≥ 0|X(t) = p+ 1}. (5.1)

Assaf et.al [12] introduced a class of multivariate phase-type distributions (de-
noted by MPH) by considering the hitting times to different (possibly over-
lapping) subsets of the state-space. More specifically, let Γi, i = 1, . . . , k, de-
note absorbing subsets of the state-space and let Yi be the first hitting time of
{X(t)}t≥0 to Γi. Then, the k-dimensional vector Y = (Y1, . . . , Yk) is said to
have a phase-type distribution in the class MPH. A rephrasing of the definition
of this class says that the reward for Yi is accumulated with rate 1 in the states
belonging to Γci , where Γci is the complement of Γi. Based on this interpretation
Kulkarni [39] introduced the class MPH*, which is a generalization of the MPH
class, where rates can be any non-negative real constants.

Let r = (r(1), r(2), . . . , r(p))′ be a non-negative p-dimensional vector, where r(i)
is the rate at which a reward is obtained when the system is in the state i. Now,
define

Y =

∫ τ

0

r(X(t))dt,

where Y is the total reward obtained until absorption in the state p + 1. Note
that if r(i) = 1 for all 1 ≤ i ≤ p, then Y = τ . Kulkarni proved in [39] that
Y has a phase-type distribution, i.e. when the reward rates are non-negative,
the accumulated reward until absorption has a phase-type distribution. This
provides a natural way of defining a class of multivariate phase-type distributions
that is explained in the following analysis.

For i = 1, . . . , k, let ri = (ri(1), ri(2), . . . , ri(p))
′ be k non-negative reward

vectors. Define R = (r1, r2, . . . , rk) as the (p × k)-dimensional reward matrix.
Let Yi =

∫ τ
0
ri(X(t))dt, the random vector Y = (Y1, Y2, . . . , Yk) is said to have

a multivariate phase-type (MPH*) distribution, with representation (π,T,R),
where π is the vector of initial probabilities, and T is the intensity matrix.
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Example 5.1 Let Y = (Y1, Y2) ∼ MPH∗(π,T,R) with π = [1], T = [−λ],
r1 = [c1] and r2 = [c2], where λ > 0, c1 ≥ 0, c2 ≥ 0. Thus, the continuous time
Markov chain (CTMC) starts in state 1, spends an exp(λ) amount of time there
and then gets absorbed in state 2. Let H be the time spent in state 1. Then,
Yi = ciH for i = 1, 2. We have

F̄ (y1, y2) = P(Y1 > y1, Y2 > y2)

= exp(−λmax(y1/c1, y2/c2)).

The mass of Y is concentrated along the line L = {(c1y, c2y) : y ≥ 0} with the
following density

fY1,Y2(c1y, c2y) = λe−λy.

�

Let Y = (Y1, Y2, . . . , Yk) ∼MPH∗(π,T,R). Kulkarni [39] has presented three
computational techniques for finding the joint distribution of Y.

1) Partial differential equations.

For 1 ≤ i ≤ p, define

F̄i(y1, . . . , yk) = P(Y1 > y1, . . . , Yk > yk|X(0) = i).

Then,

F̄ (y1, . . . , yk) = P(Y1 > y1, . . . , Yk > yk)

=

p∑

i=1

πiF̄i(y1, . . . , yk).

Theorem 5.1 For 1 ≤ i ≤ p, the functions F̄i(y1, . . . , yk) satisfy the
following system of simultaneous linear partial differential equations

k∑

j=1

rj(i)
∂F̄i
∂yj

=

p∑

j=1

tijF̄j . (5.2)

2) Laplace transforms.

The Laplace Stieltjes transform of Y is given by

φ(s1, . . . , sk) = E(exp(−s1Y1 − s2Y2 − · · · − skYk))

=

p∑

i=1

πiφi(s1, . . . , sk) + πp+1.

where φi(s1, . . . , sk) = E(exp(−s1Y1 − s2Y2 − · · · − skYk|X(0) = i) and si
are complex with Re(si) > 0.
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Theorem 5.2 The conditional Laplace Stieltjes transforms are given by
the unique solution

(D−T)φ′(s) = −Te, (5.3)

where s = (s1, . . . , sk), φ(s) = (φ1(s), . . . , φk(s)), and D is a diagonal

matrix with Dii =
∑k
j=1 sjrj(i).

Since T is invertible, D − T is invertible in a non-empty neighborhood
of s = 0. Hence (5.3) has a unique solution. Thus the Laplace Stieltjes
transforms are given by

φ′ = −(D−T)−1Te.

We could use (5.3) to compute joint moments by taking appropriate deriva-
tives. Even more, Bladt and Nielsen [17] presented a result of how to
compute the variance-covariance matrix of Y.

3) Occupation times.

Let Zi be the total time spent by the MJP {X(t)}t≥0 in state i.

Theorem 5.3 The conditional distribution of Z = (Z1, . . . , Zp) is given
by

P(Z1 ≤ z1, Z2 ≤ z2, . . . , Zp ≤ zp|X(0) = i) =

∑

(a1,...,ap)

ψi(a1, . . . , ap)

p∏

l=1


1−

al∑

j=1

e−tlzl
(tlzl)

j

j!


 ,

where ψi satisfies the following recursive equations

ψi(0, . . . , 0) = 0,

ψi(a1, . . . , ap) = pi,p+1, if aj = δij ,

ψi(a1, . . . , ap) =

p∑

j=1

pijψj(a1, . . . , aj−1, aj − 1, aj+1, . . . , ap),

where δij = 1 if i = j and 0 otherwise, and pij are the transitions proba-
bilities of the embedded discrete time Markov chain, i.e.,

pij =

{
tij/(−tii) if i 6= j,

0 if i = j.

Now, it is clear that

Yj =

p∑

i=1

rj(i)Zi, 1 ≤ j ≤ k.

We can thus compute the joint distribution of Y from that of Z by using
standard methods.
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The first two methods both face numerical difficulties, since solving a system
of simultaneous partial differential equations and inverting multidimensional
Laplace transforms is difficult. The third method which is based upon occupa-
tions times in CTMCs, turns out to be simpler.

Finally, some properties of the MPH* class are the following:

� Let Y1, Y2, . . . , Yk be independent random variables in PH. Then (Y1, Y2, . . . , Yk)
is in MPH*.

� Let (Y1, Y2, . . . , Yk) be in MPH*, then Yi is in PH for 1 ≤ i ≤ k.

� Let Y = (Y1, Y2, . . . , Yk) be in MPH* and let A be a j × k matrix of
non-negative real numbers, for some j ∈ N. Let Z′ = AY′, then Z is in
MPH*.

� The class MPH* is closed under finite convolutions. In particular if (Y1, Y2)
is in MPH* then Y1 + Y2 is in PH.

� Let Y = (Y1, Y2, . . . , Yk) and Z = (Z1, Z2, . . . , Zj) be two independent ran-
dom vectors in MPH*. Then so is (Y,Z) = (Y1, Y2, . . . , Yk, Z1, Z2, . . . , Zj).

� The class MPH* is closed under finite mixtures.

� Let MPH∗n be the set of all n-dimensional distributions in MPH*. The
set MPH∗n is dense in the set of all distributions Rn+.

Finally, let Y = (Y1, . . . , Yk) such that Y ∼ MPH∗(π,T,R). Then (see Bladt
and Nielsen [17])

〈a,Y〉 ∼ PH(π,∆(Ra)−1T),

for all non-zero a ∈ Rk+, where ∆(v) is the diagonal matrix with vector v as
diagonal and 〈·, ·〉 denotes the usual inner product in Rk. Thus the Laplace
transform of 〈a,Y〉 is given by

L〈a,Y〉(s) = π(sI−∆(Ra)−1T)−1(−∆(Ra)−1T)e

= π(sI−∆(Ra)−1T)−1∆(Ra)−1(−Te)

= π(∆(Ra)(sI−∆(Ra)−1T))−1t, (where t = −Te)

= π(s∆(Ra)−T)−1t,

or,

L〈a,Y〉(s) = π(sI−∆(Ra)−1T)−1(−∆(Ra)−1T)e

= π
(
(−T)−1∆(Ra)(sI−∆(Ra)−1T)

)−1
e

= π
(
s(−T)−1∆(Ra) + I

)−1
e,
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where I denotes the identity matrix of appropriate dimension. For s = 1,
L〈a,Y〉(s) is the joint Laplace transform of Y at a.

5.2 Estimation of bivariate phase-type distribu-
tions

Consider two phase-type random variables Y1 ∼ PHp1(π1,T11) and Y2 ∼
PHp2(π2,T22), and let {X(t)}t≥0 be the Markov jump process with the set
of transient states {1, . . . , p} split into two sets: E1 = {1, . . . , p1} and E2 =
{p1 + 1, . . . , p}. Let p2 denotes the number of states in E2, i.e. p2 = p−p1. The
state space is thus E = E1 ∪ E2 ∪ {p + 1}, where the state p + 1 is absorbing.
Suppose the Markov process is only allowed to start in a state belonging to E1,
which imposes the following structure on its initial distribution

π = (π1, . . . , πp1 , 0, . . . , 0) = (π1,0).

That is, only the first p1 elements of π, which are collected in the vector π1,
are allowed to be larger than zero.

The generator of the Markov process is partitioned with a (p × p)-dimensional
matrix T as its largest part. Now, due to the partition of the p non-absorbing
states into two groups, E1 and E2, and for simplicity (see [1]), the subintensity
matrix T can partitioned into four blocks

T =

(
T11 T12

0 T22

)
,

where T11 is a (p1×p1)-dimensional matrix containing the transitions intensities
for jumps within E1, T12 is of dimension (p1×p2) and contains the intensities for
transitions from E1 to E2, and T22 is a (p2×p2)-dimensional matrix containing
the intensities for transitions within E2. The elements in the fourth sub-matrix
are all set to zero, which implies that the process cannot return to a state in E1

once it has entered E2.

In order to make absorption possible only from the states in the second group
E2, we fix the first p1 states in the exit vector t to zero, i.e.

t = (0, . . . , 0, tp1+1, . . . , tp)
′ = (0, t2)′.

Consider the reward matrix given by

R =

(
e 0
0 e

)
. (5.4)
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The joint density of (Y1, Y2) is given by

f(Y1,Y2)(y1, y2) =
∑

j

P(Y1 ∈ dy1, Y2 ∈ dy2|X(0) = j)P(X(0) = j)

=
∑

j

P(Y2 = y2|Y1 = y1)P(Y1 = y1|X(0) = j)P(X(0) = j)

= π1e
T11y1T12e

T22y2t2, (5.5)

the corresponding joint Laplace transform is thus given by

L(Y1,Y2)(s1, s2) = π1(s1I−T11)−1)T12(s2I−T22)−1t2.

The marginal distribution of Y2 is given by

fY2
(y2) =

∫ ∞

0

π1e
T11y1T12e

T22y2t2dy1

= π1(−T11)−1T12e
T22y2t2.

A sufficient condition for Y2 ∼ PH(π2,T22) is hence π2 = π1(−T11)−1T12.
Now, we can obtain the other marginal

fY1
(y1) =

∫ ∞

0

π1e
T11y1T12e

T22y2t2dy2

= π1e
T11y1T12(−T22)−1t2

= π1e
T11y1T12(−T22)−1(−T22e)

= π1e
T11y1T12e.

Since Y1 ∼ PH(π1,T11), then t1 = T12e. Thus, the matrix T12 has to satisfy
the following system of equations

{
π2 = π1(−T11)−1T12

t1 = T12e.
(5.6)

Suppose this system can be written in the matrix form Ax = b, where the
entries of the vector x are the elements of the matrix T12, i.e. if

T12 =




d11 d12 . . . d1p2

d21 d22 . . . d2p2
...

... . . .
...

dp11 dp12 . . . dp1p2


 ,

then x = (d11, d12, . . . , d1p2 , d21, d22, . . . , d2p2 , . . . , dp11, dp12, . . . , dp1p2)′. The
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matrix A is the coefficient matrix, and has the following general form




u1 0 . . . 0 . . . up−1 0 . . . 0 up1 0 . . . 0
0 u1 . . . 0 . . . 0 up−1 . . . 0 0 up1 . . . 0
...

... . . .
... . . .

...
... . . .

...
...

... . . .
...

0 0 . . . u1 . . . 0 0 . . . up−1 . . . 0 0 up1
1 1 . . . 1 . . . 0 0 . . . 0 0 0 . . . 0
...

... . . .
... . . .

...
... . . .

...
...

... . . .
...

0 0 . . . 0 . . . 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 . . . 0 0 . . . 0 1 1 . . . 1




,

where ui represents the i-th element of π1(−T11)−1. Note that the matrix A
is of dimension (p2 + p1) × (p1p2), which turns out to be singular, with rank
equals to p1 + p2 − 1, this means that we are in the case with infinite solutions.
In order to avoid it, we choose T12 with degree of freedom equals to p1p2 −
(p1 + p2 − 1), i.e. fixing the values of d11, d12, . . . , d1,p2−1, d21, d22, . . . , d2,p2−1,
. . . , dp1−1,1, dp1−1,2, . . . , dp1−1,p2−1, we can re-write the matrix A in the follow-
ing form

A =




0 0 . . . 0 up1 0 . . . 0
0 0 . . . 0 0 up1 . . . 0
...

... . . .
...

...
... . . .

...
u1 u2 . . . up1−1 0 0 . . . up1
1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 1 0 0 . . . 0




,

and the vector x as (d1p2 , d2p2 , . . . , dp1−1,p2 , dp11, dp12, . . . , dp1,p2)′. Finally, the
vector b is given by

b =




v1 −
∑p1−1
i=1 uidi1

v2 −
∑p1−1
i=1 uidi1
...

vp2−1 −
∑p1−1
i=1 uidi1

vp2
w1 − (p2 − 1)
w2 − (p2 − 1)

...
wp1−1 − (p2 − 1)




,

where vi is the i-th element of π2 and wi is the i-th element of t1.
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In order to get the joint moments and the variance-covariance matrix of (Y1, Y2)
we present the following result (see also [18]).

Theorem 5.4 The joint moments of Y1 and Y2 are given by

E(Y n1
1 Y n2

2 ) = n1!n2!π1(−T11)−n1−1T12(−T22)−n2−1t2, n1, n2 ∈ N.

In particular, the covariance between Y1 and Y2 is given by

Cov(Y1,Y2) = π1(−T11)−1((−T11)−1T12 − eπ2)(−T22)−1e.

Proof. Follows immediately differentiating the Laplace transform. In de-
riving the formula for the covariance we assume that π2 = π1(−T11)−1T12.
We know that E(Y1) = π1(−T11)−1e, E(Y2) = π2(−T22)−1e, E(Y1Y2) =
π1(−T11)−2T12(−T22)−2t2 then

Cov(Y1,Y2) = E(Y1, Y2)− E(Y1)E(Y2)

= π1(−T11)−2T12(−T22)−2t2 − π1(−T11)−1eπ2(−T22)−1e

= π1(−T11)−1((−T11)−1T12(−T22)−2t2 − eπ2(−T22)−1e)

= π1(−T11)−1((−T11)−1T12(−T22)−1e− eπ2(−T22)−1e)

= π1(−T11)−1((−T11)−1T12 − eπ2)(−T22)−1e.

�

Example 5.2 Let π1 = π2 = (1, 0, 0, 0) and

T11 = T22 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1


 .

And let T and R defined as before. Then the conditions π2 = π1(−T11)−1T12

and T12e = t1 implies that the only possible form of T12 is the matrix

T12 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 .

�
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5.2.1 Via the EM algorithm

Let (x(1),x(2)) denote the full data. The likelihood function for the complete
data is given by

Lf (θ; x(1),x(2)) =

p1∏

i=1

πBii

p1∏

i=1

p1∏

j=1,j 6=i
t
Nij
ij e−tijZi

p1∏

i=1

p∏

j=p1+1

t
Nij
ij e−tijZi

p∏

i=p1+1

p∏

j=p1+1,j 6=i
t
Nij
ij e−tijZi

p∏

i=p1+1

tNii e−tiZi ,

where Bi is the number of processes starting in state i, Ni the number of pro-
cesses exiting from state i to the absorbing state, Nij the number of jumps from
state i to j among all processes, and Zi the total time spent in state i.

Like the analysis given in Section 3.2.2 for the univariate case, we will find the
conditional expectations of the sufficient statistics: Bi’s, Ni’s, Zi’s, and Nij ’s
(see Asmussen’s notation in [11]).

In the following analysis we present the formulas of the conditional expectations
considering the reward matrix R given in (5.4).

Formula for Bi’s

For i = 1, . . . , p1,

E(Bi|Y1 = y1, Y2 = y2) = P(X(0) = i|Y1 = y1, Y2 = y2)

=
P(X(0) = i, Y1 = y1, Y2 = y2)

P(Y1 = y1, Y2 = y2)

=
P(X(0) = i)P(Y1 ∈ dy1, Y2 ∈ dy2|X(0) = i)

P(Y1 = y1, Y2 = y2)

=
P(X(0) = i)P(Y1 ∈ dy1|X(0) = i)P(Y2 ∈ dy2|Y1 ∈ dy1)

P(Y1 = y1, Y2 = y2)

=
πie
′
ie

T11y1T12e
T22y2t2

π1eT11y1T12eT22y2t2
,

where πi is the i-th element of the vector π1.
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Formula for Ni’s

For i = p1 + 1, . . . , p, let i∗ = i− p1 then,

E(X(Y2 − ε) = i∗|Y1 = y1, Y2 = y2)

=
P(X(Y − ε) = i∗, Y1 = y1, Y2 = y2)

P(Y1 = y1, Y2 = y2)

=
P(Y1 ∈ dy1)P(X(Y − ε) = i∗|Y1 ∈ dy1)P(Y2 ∈ dy2|X(Y2 − ε) = i∗)

P(Y1 = y1, Y2 = y2)

=
π1e

T11y1T12e
T22(y2−ε)ei∗ti∗

π1eT11y1T12eT22y2t2
,

taking ε→ 0, we get

E(Ni|Y1 = y1, Y2 = y2) =
π1e

T11y1T12e
T22y2ei∗ti∗

π1eT11y1T12eT22y2t2
,

where ti∗ is the i∗-th element of the vector t2.

Formula for Zi’s

For i = 1, . . . , p,

E(Zi|Y1 = y1, Y2 = y2) =

∫
P(X(u) = i|Y1 ∈ dy1, Y2 ∈ dy2)du

=

∫
P(X(u) = i, Y1 ∈ dy1, Y2 ∈ dy2)du

P(Y1 ∈ dy1, Y2 ∈ dy2)
.

(a) 1 ≤ i ≤ p1

Analyzing the numerator, we have
∫ y1

0

P(X(u) = i, Y1 ∈ dy1, Y2 ∈ dy2)du

=

∫ y1

0

P(X(u) = i)P(Y1 ∈ dy1|X(u) = i)P(Y2 ∈ dy2|Y1 ∈ dy1)du

=

∫ y1

0

π1e
T11ueie

′
ie

T11(y1−u)T12e
T22y2t2du,

thus,

E(Zi|Y1 = y1, Y2 = y2) =

∫ y1
0
π1e

T11ueie
′
ie

T11(y1−u)T12e
T22y2t2du

π1eT11y1T12eT22y2t2
.
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(b) p1 + 1 ≤ i ≤ p

Let i∗ = i− p1,
∫ y2

0

P(X(u) = i∗, Y1 ∈ dy1, Y2 ∈ dy2)du

=

∫ y2

0

P(Y1 ∈ dy1)P(X(u) = i∗|Y1 ∈ dy1)P(Y2 ∈ dy2|X(u) = i∗)du

=

∫ y2

0

π1e
T11y1T12e

T22uei∗e
′
i∗e

T22(y2−u)t2du,

thus,

E(Zi|Y1 = y1, Y2 = y2) =

∫ y2
0
π1e

T11y1T12e
T22uei∗e

′
i∗e

T22(y2−u)t2du

π1eT11y1T12eT22y2t2
.

Formula for Nij’s

We have that N ε
ij =

∑
u 1{X(uε)=i,X((u+1)ε)=j} for ε > 0 and i 6= j. Then,

E(N ε
ij |Y1 = y1, Y2 = y2) =

∑
P(X(uε) = i,X((u+ 1)ε) = j, Y1 ∈ dy1, Y2 ∈ dy2)

P(Y1 ∈ dy1, Y2 ∈ dy2)
.

We will analyze only the numerator.

(a) 1 ≤ i ≤ p1 and 1 ≤ j ≤ p
(a.1) 1 ≤ j ≤ p1

∑
P(X(uε) = i,X((u+ 1)ε) = j, Y1 ∈ dy1, Y2 ∈ dy2)

=
∑

P(X(uε) = i)P(X((u+ 1)ε) = j|X(uε) = i)

×P(Y1 ∈ dy1|X((u+ 1)ε) = j)P(Y2 ∈ dy2|Y1 ∈ dy1)

=
∑

π1e
T11uεeitije

′
je

T11(y1−(u+1)ε)T12e
T22y2t2,

if ε→ 0 then

E(Nij |Y1 = y1, Y2 = y2) = tij

∫ y1
0
π1e

T11ueie
′
je

T11(y1−u)T12e
T22y2t2du

π1eT11y1T12eT22y2t2
,

where tij is the (i, j)-th element of T11.
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(a.2) p1 + 1 ≤ j ≤ p

Let j∗ = j − p1,

P(X(u) = i,X(u+ 1) = j∗, Y1 = y1, Y2 = y2)

= P(Y1 ∈ dy1)P(X(u) = i|Y1 ∈ dy1)

×P(X(u+ 1) = j∗|X(u) = i)P(Y2 ∈ dy2|X(u+ 1) = j∗)

= π1e
T11y1eitij∗e

′
j∗e

T22y2t2,

then,

E(Nij |Y1 = y1, Y2 = y2) = tij∗
π1e

T11y1eie
′
j∗e

T22y2t2

π1eT11y1T12eT22y2t2
,

where tij∗ is the (i, j∗)-th element of T12.

(b) p1 + 1 ≤ i ≤ p and p1 + 1 ≤ j ≤ p

Let i∗ = i− p1 and j∗ = j − p1,

P(X(u) = i∗, X(u+ 1) = j∗, Y1 = y1, Y2 = y2)

= P(Y1 ∈ dy1)P(X(u) = i∗|Y1 ∈ dy1)

×P(X(u+ 1) = j∗|X(u) = i∗)P(Y2 ∈ dy2|X(u+ 1) = j∗)

= π1e
T11y1T12e

T22uei∗ti∗j∗e
′
j∗e

T22(y2−u)t2,

then

E(Nij |Y1 = y1, Y2 = y2) = ti∗j∗

∫ y2
0
π1e

T11y1T12e
T22uei∗e

′
j∗e

T22(y2−u)t2du

π1eT11y1T12eT22y2t2
,

where ti∗j∗ is the (i∗, j∗)-th element of T22.

Thus, we have proved the following theorem.

Theorem 5.5 The conditional expectations of the sufficient statistics for bi-
variate phase-type distributions are given by:

� For i = 1, . . . , p1,

E(Bi|Y1 = y1, Y2 = y2) =
πie
′
ie

T11y1T12e
T22y2t2

π1eT11y1T12eT22y2t2
, (5.7)

where πi is the i-th element of the vector π1.



88 Multivariate phase-type distributions

� For i = p1 + 1, . . . , p,

E(Ni|Y1 = y1, Y2 = y2) =
π1e

T11y1T12e
T22y2ei−p1ti−p1

π1eT11y1T12eT22y2t2
, (5.8)

where ti−p1 is the i− p1-th element of the vector t2.

� E(Zi|Y1 = y1, Y2 = y2) =





∫ y1
0
π1e

T11ueie
′
ie

T11(y1−u)T12e
T22y2t2du

π1eT11y1T12eT22y2t2
, i = 1 . . . , p1,

∫ y2
0
π1e

T11y1T12e
T22uei−p1e

′
i−p1e

T22(y2−u)t2du

π1eT11y1T12eT22y2t2
, i = p1 + 1 . . . , p.

(5.9)

� E(Nij |Y1 = y1, Y2 = y2) =





tij

∫ y1
0
π1e

T11ueie
′
je

T11(y1−u)T12e
T22y2t2du

π1eT11y1T12eT22y2t2
, i, j = 1, . . . , p1,

where tij is the (i, j)-th element of T11.

ti,j−p1
π1e

T11y1eie
′
j−p1e

T22y2t2

π1eT11y1T12eT22y2t2
, i = 1, . . . , p1, j = p1 + 1, . . . , p

where ti,j−p1 is the (i, j − p1)-th element of T12.

ti−p1,j−p1

∫ y2
0
π1e

T11y1T12e
T22uei−p1e

′
j−p1e

T22(y2−u)t2du

π1eT11y1T12eT22y2t2
,

i, j = p1 + 1, . . . , p, where ti−p1,j−p1 is the (i− p1, j − p1)-th
element of T22.

(5.10)

In general, if the matrix R has the following form

R =

(
R1 0
0 R2

)
,

where R1 is a column vector of dimension p1, R2 is a p2-dimensional column
vector, and 0 is zero vector of the required dimension, the new joint density of
(Y1, Y2) is given by

f(Y1,Y2)(y1, y2) = π1e
∆(R1)−1T11y1∆(R1)−1T12e

∆(R2)−1T22y2∆(R2)−1t2,
(5.11)

where ∆(a) is the diagonal matrix of the vector a.
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Taking

T•11 = ∆(R1)−1T11

T•12 = ∆(R1)−1T12

T•22 = ∆(R2)−1T22

t•2 = ∆(R2)−1t2,

the density given in (5.11) becomes

f(Y1,Y2)(y1, y2) = π1e
T•11y1T•12e

T•22y2t•2. (5.12)

We can see that the densities given in (5.5) and (5.12) have the same form.
Actually, the conditions given in (5.6) remain the same, since

1.

π2 = π1(−T•11)−1T•12

= π1(−∆(R1)−1T11)−1∆(R1)−1T12

= π1(−T11)−1∆(R1)∆(R1)−1T12

= π1(−T11)−1T12.

2.

t•1 = T•12e

−∆(R1)−1T11e = ∆(R1)−1T12e

−T11e = T12e

t1 = T12e.

Hence, given the vectors π1, π2, the matrices T11, T22, T12 (found it above),
and the general form of R, we can obtain T•11, T•12, T•22, and, t•2. The new
transition matrix, denoted by T•, will be given by

T• =

(
T•11 T•12

0 T•22

)
,

and the formulae for the estimation via the EM algorithm given in (5.7)-(5.10)
remain the same.

L. Ahlstrom et.al in [1] presented the estimation of bivariate phase-type dis-
tributions via the EM algorithm considering the matrix of rewards R in the
following form

R =

(
e 0
e e

)
. (5.13)
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Example 5.1 We generate a sample of 100 observations from a bivariate dis-
tribution with gamma marginals: Y1 ∼ Gamma(shape = 2, scale = 1), Y2 ∼
Gamma(shape = 3, scale = 2) and a normal copula.

Table 5.1: Log-likelihood (LL) of bivariate copula of Gamma(2, 1) and Gamma(3, 2)

LL time

-404.9689 1944.0126

Figure 5.1: Estimation of bivariate gamma
using the EM-algorithm

Figure 5.2: Scatterplot of bivariate gamma

5.2.2 Via direct method

Based on the idea of the estimation of univariate PH distributions by the DM
(see Section 3.2.4), we will consider the estimation of bivariate PH distributions
via the DM.

Let (y(1),y(2)) = {(y(1)
1 , y

(2)
1 ), (y

(1)
2 , y

(2)
2 ), . . . , (y

(1)
M , y

(2)
M )} be a bivariate sample

from the density (5.5) of size M .

The likelihood function is given by

L(θ; y(1),y(2)) =

M∏

k=1

π1e
T11y

(1)
k T12e

T22y
(2)
k t2,

where θ = (π,T, t). Hence the log-likelihood function is

l(θ; y(1),y(2)) =

M∑

k=1

log f(y
(1)
k , y

(2)
k ),
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where f(y
(1)
k , y

(2)
k ) = π1e

T11y
(1)
k T12e

T22y
(2)
k t2. Let πj1 be the j-th element of the

vector π1, then substituting π1 =
∑p1−1
j=1 πj1e′j +

(
1−∑p1−1

j=1 πj1

)
e′p1 we get

f(y
(1)
k , y

(2)
k ) =



p1−1∑

j=1

πj1e′j


 eT11y

(1)
k T12e

T22y
(2)
k t2

+


1−

p1−1∑

j=1

πj1


 e′p1e

T11y
(1)
k T12e

T22y
(2)
k t2.

If Rm(y
(1)
k , y

(2)
k ) = e′me

T11y
(1)
k T12e

T22y
(2)
k t2, then

f(y
(1)
k , y

(2)
k ) =

p1−1∑

j=1

πj1Rj(y
(1)
k , y

(2)
k ) +


1−

p1−1∑

j=1

πj1


Rp1(y

(1)
k , y

(2)
k ).

Like in the univariate case we have to consider a transformation of the para-
meters. For r = 1, 2, (representing both variables), and for i = 1, . . . , pr − 1,
generate −∞ < %i, ξi <∞. Let us take the following transformations

πir =
eτi

1 +
∑pr−1
s=1 eτs

, and πprr =
1

1 +
∑pr−1
s=1 eτs

,

where

τi =

{
%i if r = 1
ξi if r = 2.

For i, j = 1, . . . , pr, generate −∞ < γij , ηij <∞, such as

tij = eτij , i 6= j, ti = eτii ,

where

τij =

{
γij if r = 1
ηij if r = 2.

The gradient vector is given by
((

∂l(θ; y(1),y(2))

∂%i

)

i=1,...,p1−1

,

(
∂l(θ; y(1),y(2))

∂γij

)

i,j=1,...,p1

,

(
∂l(θ; y(1),y(2))

∂ξi

)

i=1,...,p2−1

,

(
∂l(θ; y(1),y(2))

∂ηij

)

i,j=1,...,p2

)
.
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Suppose τ∗ ∈ {%i, ξi, γij , ηij}, then

∂l(θ; y(1),y(2))

∂τ∗
=

M∑

k=1

1

f(y
(1)
k , y

(2)
k )

∂f(y
(1)
k , y

(2)
k )

∂τ∗
,

where

∂f(y
(1)
k , y

(2)
k )

∂%m
=

p1−1∑

s=1

πs1

(
∂Rs(y

(1)
k , y

(2)
k )

∂%m
− ∂Rp1(y

(1)
k , y

(2)
k )

∂%m

)

+
∂πs1
∂%m

(Rs(y
(1)
k , y

(2)
k )−Rp1(y

(1)
k , y

(2)
k )) +

∂Rp1(y
(1)
k , y

(2)
k )

∂%m
.

For s ∈ {1, . . . , p1− 1}, the derivative
∂πs1
∂%m

is the same as in the univariate case,

(see (3.16)), and

∂Rs(y
(1)
k , y

(2)
k )

∂%m
= e′se

T11y
(1)
k
∂T12

∂%m
eT22y

(2)
k t2.

For τ∗ ∈ {ξi, γij , ηij} we have

∂f(y
(1)
k , y

(2)
k )

∂τ∗
=

p1−1∑

s=1

πs1
∂Rs(y

(1)
k , y

(2)
k )

∂τ∗
+

(
1−

p1−1∑

s=1

πs1

)
∂Rp(y

(1)
k , y

(2)
k )

∂τ∗
,

and

∂Rm(y
(1)
k ,y

(2)
k )

∂γij
= e′m

∂eT11y
(1)
k

∂γij
T12e

T22y
(2)
k t2 + e′me

T11y
(1)
k

∂T12

∂γij
eT22y

(2)
k t2,

∂Rm(y
(1)
k ,y

(2)
k )

∂ξi
= e′me

T11y
(1)
k

∂T12

∂ξi
eT22y

(2)
k t2,

∂Rm(y
(1)
k ,y

(2)
k )

∂ηij
= e′me

T11y
(1)
k T12

∂eT22y
(2)
k

∂ηij
t2, i 6= j,

∂Rm(y
(1)
k ,y

(2)
k )

∂ηii
= e′me

T11y
(1)
k T12e

T22y
(2)
k

∂t2
∂ηii

+ e′me
T11y

(1)
k T12

∂eT22y
(2)
k

∂ηii
t2.

Since the matrix T12 has to solve the system of equations given in (5.6), i.e. it
is in terms of %i, γij , and ξi, then ∂T12

∂ηij
= 0. And, for the other parameters, the

analytic form of this derivative is not straightforward.

Let c = max{−tii : 1 ≤ i ≤ p} and suppose the maximum of the diagonal of
−T is given in the row k. If 1 ≤ k ≤ p1, then

∂c

∂γij
=

{
0 if i 6= k, ∀j 6= i,
eγij if i = k, ∀j 6= i,

∂c

∂γii
=

{
0 if i 6= k,
eγii if i = k,
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and ∂T11

∂γij
, i 6= j, is a matrix whose (i, i)-th element is −eγij , the (i, j)-th element

is eγij , and 0 otherwise. Moreover, ∂T11

∂γii
is a matrix whose (i, i)-th element is

−eγii and 0 otherwise.

If p1 + 1 ≤ k ≤ p the formulae remain the same, replacing ηij instead of γij .

Finally,
∂t2

∂ηii
= eηiiei.
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Chapter 6

Matrix-exponential
distributions

We will study the distributions of non-negative random vectors with a joint ra-
tional Laplace transform, i.e., a fraction between two multi-dimensional polyno-
mials. These distributions are in the univariate case known as matrix-exponential
(ME) distributions, since their densities can be written as linear combinations
of the elements in the exponential of a matrix.

Matrix-exponential distributions were studied in [10] and [16], and these are a
generalization of phase-type (PH) distributions, in which the probabilistic inter-
pretation is a priori less clear. For every ME distribution there exist many ma-
trix representations called ME representations. ME distributions and ME rep-
resentations deserve attention from researchers for a number of reasons. First,
ME distributions are useful in the analysis of stochastic models and, as was
demonstrated in [10] and [13] can be used in the analysis of renewal processes
and queueing systems. Second, the class of ME distributions includes all PH
distributions and all Coxian distributions.

The literature on ME distributions is limited. Asmussen and Bladt [10] identified
some necessary and sufficient conditions for an ME representation to be minimal
and developed a method for computing a minimal ME representation. Bladt and
Neuts [16] studied the class of ME distributions and they related ME renewal
processes through a randomly stopped deterministic flow model.
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More recently, Bladt and Nielsen [17] have given a characterization of the mul-
tivariate class, stating that a vector follows a multivariate matrix-exponential
(MVME) distribution if and only if all non-negative, non-null linear combina-
tions of its coordinates have a univariate matrix-exponential distribution.

This Chapter is organized as follows. The first two sections will provide the
necessary background on matrix-exponential distributions for the univariate case
(Section 6.1) and the multivariate case (Section 6.2). In order to generalize
these distributions, in Section 6.3 we defined a new class of distributions called
bilateral matrix-exponential distributions including both the univariate and the
multivariate cases.

6.1 Univariate matrix-exponential distributions

We already know from (2.2) that the Laplace transform from Y ∼ PH(π,T) is
given by π(sI − T)−1t, which is essentially a linear combination of the terms
in the inverse of sI − T. The matrix sI − T may be inverted by the method
of elementary operations which amounts to scaling and subtracting rows. The
resulting inverse matrix consists of elements which are rationals functions in
s and hence the conclusion that the Laplace transform of Y is also a rational
function in s.

Consider a non-negative random variable Y with rational Laplace transform,
i.e.,

LY (s) = E(e−sY ) =
p(s)

q(s)
,

where p(s) and q(s) are polynomials. First, we notice that since Y ≥ 0, then
either LY (s)→ 0 as s→∞ if the distribution of Y is absolutely continuous or
LY (s) → c as s → 0 for some constant c if Y has an atom at zero. Thus we
conclude that the degree(p(s)) ≤ degree(q(s)). If Y has no atom at zero, then
degree(p(s)) < degree(q(s)).

Thus the general form of a rational Laplace transform of an absolutely contin-
uous non-negative random variable Y is given by

LY (s) = E(exp(−sY )) =
f1s

m−1 + f2s
m−2 + · · ·+ fm

sm + g1sm−1 + · · ·+ gm
. (6.1)

Since LY (0) = 1 we notice that fm = gm.
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Definition 6.1 A non-negative random variable Y is said to have a matrix-
exponential distribution if the Laplace transform L(s) = E(exp(−sY )) is a ra-
tional function in s.

Another characterization of the class of matrix-exponential distributions is given
by Asmussen and Bladt [10].

Definition 6.2 A random variable is matrix-exponential distributed if and only
if there exists a triple (β,D,d) such that the density f(y) of Y can be expressed
as

f(y) = βeDyd,

and we write Y ∼ME(β,D,d). Here, β is a row vector of dimension some m,
d is a column vector of the same dimension, and D is an m×m matrix, possibly
with complex elements.

Indeed, the distribution function of Y is given by F (y) = 1 + βeDyD−1d, since

F (y) =

∫ y

0

f(u)du =

∫ y

0

βeDuddu

=
(
βeDuD−1d

∣∣y
0

)
= βeDyD−1d− βD−1d,

but −βD−1d =
∫∞

0
βeDuddu = 1.

The triple (β,D,d) is called a representation of the matrix-exponential distribu-
tion. Any matrix-exponential distribution has infinitely many representations.
The dimension of D is called the order of the representation. A representation
is called minimal if it is not possible to find another representation of lower
dimension.

The Laplace transform of Y can be determined from a representation (β,D,d)
as

L(s) = β(sI−D)−1d, (6.2)

where I is the identity matrix of appropriate dimension.

Theorem 6.3 Let Y ∼ ME(β,D,d). Then its non-centralized moments are
given by

Mi = E(Y i) = i!β(−D)−(i+1)d, i = 0, 1, 2, . . . .
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Proof.

E(Y i) =

∫ ∞

0

yiβeDyddy

= −
∫ ∞

0

iyi−1βD−1eDyddy

= . . .

= (−1)ii!

∫ ∞

0

βD−ieDyddy

= (−1)i+1i!βD−(i+1)d.

�
Let Y ∼ME(β,D,d) with rational Laplace transform given in (6.1). Then, its
reduced moments

µi =
Mi

i!
, i = 0, 1, 2 . . . , (6.3)

satisfy (see [17])

µm+j =

m−1∑

i=0

gi
gm

(−1)m+i+1µi+j , for j ≥ 0.

6.1.1 Order of matrix-exponential distributions

By a continued fraction we understand an expression on the form

d0 +
c1|
|d1

+
c2|
|d2

+
c3|
|d3

+ · · · = d0 +
c1

d1 +
c2

d2 +
c3

d3 + · · ·

.

A continued fraction is said to be finite if the sum above contains a finite number
of terms. Of particular interest for our analysis are the C-continued fractions,
which are expressions on the form

1 +
c1s

r1 |
|1 +

c2s
r2 |
|1 +

c3s
r3 |
|1 + · · · .

The moment generating function M(s) of a matrix-exponential distributed ran-
dom variable has a power series expansion

M(s) = 1 + µ1s+ µ2s
2 + · · · ,

where the µi’s are defined in (6.3). Note that µi > 0 for all i.
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According to Perron [55], any power series (Taylor series) with constant term
1 corresponds uniquely to a C-continued fraction. If furthermore the series is a
power series expansion of a rational function, then the corresponding continued
fraction is finite. Particularly tractable are the regular C-continued fraction,
where ri = 1 for all i.

Hence, the power series expansion of the moment generating function M(s) of
a matrix-exponentially distributed random variable, corresponds uniquely to a
regular C-continued fraction (see [17]).

Theorem 6.4 Consider a matrix-exponential distributed random variable Y
with reduced moments µi = E(Y i)/i!. Then, the rational moment generating
function of Y can be written as a finite and regular C-continued fraction

1 +
c1s|
|1 +

c2s

|1 +
c3s|
|1 + · · ·+ c2ns|

|1 .

The coefficients ci can be calculated in terms of the Hankel determinants

φn =

∣∣∣∣∣∣∣∣

µ1 µ2 . . . µn
µ2 µ3 . . . µn+1

. . . . . . . . . . . .
µn µn+1 . . . µ2n−1

∣∣∣∣∣∣∣∣
and ψn =

∣∣∣∣∣∣∣∣

µ2 µ3 . . . µn
µ3 µ4 . . . µn+1

. . . . . . . . . . . .
µn µn+1 . . . µ2n−2

∣∣∣∣∣∣∣∣

(for all n = 1, 2, . . . for φn and for n = 2, 3 . . . for ψn) as follows:

c1 = φ1, c2n = −ψn+1φn−1

ψnφn
, c2n+1 = −ψn+1φn

ψn+1φn
,

where φ0 = 1. The Hankel determinants φm = 0 for m > n and ψm = 0 for
m > n+ 1.

Proof. See [17]. �

Van de Liefvoort [61], He and Zhang [34], and Bladt and Nielsen [17] have
showed how to find the minimal order of matrix-exponential distributions. Let
l be the order of the rational moment-generating function, then the following
Hankel determinant

Hl =

∣∣∣∣∣∣∣∣

µ0 µ1 µ2 . . . µl
µ1 µ2 µ3 . . . µl+1

. . . . . . . . . . . . . . .
µl µl+1 µl+2 . . . µ2l

∣∣∣∣∣∣∣∣

is 0. Indeed, Hl−1 6= 0 and Hi = 0, for i ≥ l.
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6.1.2 Properties of matrix-exponential distributions

Let Y1 ∼ME(β,S, s) and Y2 ∼ME(π,T, t), with densities fY1
and fY2

, respec-
tively. The convolution of two independent matrix-exponential distributions is
obviously again matrix-exponential since the product of two rational functions
(their Laplace transform) is again a rational function.

Theorem 6.5 Y1+Y2 has a matrix-exponential distribution with representation

(
(β,0),

(
S sπ
0 T

)
,

(
0
t

))
.

Proof. The Laplace transform corresponding to the proposal is given by

L(s) = (β,0)

(
sI−

(
S sπ
0 T

))−1(
0
t

)
= (β,0)

(
sI− S −sπ

0 sI−T

)−1(
0
t

)

= (β,0)

(
(sI− S)−1 (sI− S)−1sπ(sI−T)−1

0 (sI−T)−1

)(
0
t

)

= β(sI− S)−1sπ(sI−T)−1t,

which is a rational function. �

Theorem 6.6 Let p ∈ (0, 1). Then the mixture of f = pfY1
+ (1 − p)fY2

is
again a matrix-exponential distribution with representation

(
(pβ, (1− p)π),

(
S 0
0 T

)
,

(
s
t

))
.

Proof. The Laplace transform L(s) of f is given by

L(s) = pLY1
(s) + (1− p)LY2

(s)

= pβ(sI− S)−1s + (1− p)π(sI−T)−1t

= (pβ, (1− p)π)

(
sI− S 0

0 sI−T

)−1(
s
t

)

= (pβ, (1− p)π)

(
sI−

(
S 0
0 T

))−1(
s
t

)
.

�
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Theorem 6.7 The minimum min(Y1, Y2) is matrix-exponential with represen-
tation

(β ⊗ π,S⊕T, s⊗ (−T)−1t + (−S)−1s⊗ t).

If s = −Se and t = −Te, then

min(Y1, Y2) ∼ME(β ⊗ π,S⊕T).

Proof. Let F̄Yi , i = 1, 2, denote their survival functions. Since F̄ (u) = P(Y1 >
u, Y2 > u) = F̄Y1

(u)F̄Y2
(u), the density of the minimum, f is given by

f(x) = −fY1
(x)F̄Y2

(x)− F̄Y1
(X)fY2

(x)

= −βeSxsπeTxT−1t− βeSxS−1sπeTxt

= (β ⊗ π)e(S⊕T)x
[
s⊗ (−T)−1t + (−S)−1s⊗ t

]
.

If s = −Se and t = −Te, then

s⊗ (−T)−1t + (−S)−1s⊗ t = s⊗ e + e⊗ t

= (−Se)⊗ Ie + Ie⊗ (−Te)

= (−S⊗ I)(e⊗ e) + (I⊗ (−T))(e⊗ e)

= −(S⊕T)e.

�

Corollary 6.8 Let Y1 and Y2 be two independent matrix-exponentially dis-
tributed random variables with representation (π,T, t) such that t = −Te and
such that there exist dual representations. Then min(Y1, Y2) is matrix-exponentially
distributed with representation

(π ⊗ π,T⊕T, (t⊕ t)e),

and max(Y1, Y2) is matrix-exponentially distributed with representation
(

(π ⊗ π,0),

(
T⊕T t⊕ t

0 T

)
,

(
0
t

))
.

Lemma 6.9 Let (π,T,−Te) be a representation for a matrix-exponential dis-
tribution. Further let α = 1

µπ(−T)−1 be non-zero solution to the equation

system α(T+ tπ) = 0 with µ = π(−T)−1e. Assume that all elements of α are
different from zero. Then the distribution has an alternatively representation
(π̃, T̃,−T̃e). Here

π̃ =
α • t
αt

, T̃ = ∆(α)−1T′∆(α),

where α • t = (α1t1, . . . , αptp), with p the order of the distribution.
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Proof. The matrix T is non-singular while T + tπ = T −Teπ = T(I − eπ)
obviously has a single zero eigenvalue with corresponding left eigenvector α.
Define ∆(α) as the diagonal matrix which has the elements of α as entries.
Then

πeTyt = π∆(α)−1e∆(α)T∆(α)−1y∆(α)t

= t′∆(α)e∆(α)−1T′∆(α)y∆(α)−1π′

=
t′∆(α)

αt
e∆(α)−1T′∆(α)y∆(α)−1αtπ′.

And we obtained π̃ = t′∆(α)
αt = α•t

αt and T̃ = ∆(α)−1T′∆(α).

On other hand,

α(T + tπ) = 0

αT +αtπ = 0

αtπ = −αT

αtπ′ = −T′α′, (αt is a constant)

αtπ′ = −T′∆(α)e, (since α′ = ∆(α)e)

∆(α)−1αtπ′ = −∆(α)−1T′∆(α)e

= −T̃e,

if we take t̃ = −T̃e we have proven the lemma. �

The alternative representation of Lemma 6.9 is known as the reversed-time
representation in the phase-type case.

Definition 6.10 For a conservative representation of a matrix-exponential dis-
tribution the representation of Lemma 6.9 is called the dual of the representa-
tion.

We can always find a dual pair representation for a matrix-exponential distri-
bution.

Lemma 6.11 Let Y1 and Y2 be two independent matrix-exponentially distributed
random variables with conservative representation (π,T, t) such that t = −Te.
The dual of the conservative representations of min(Y1, Y2) and max(Y1, Y2)
given in Corollary 6.8 are (π̃m, T̃m, t̃m) and (π̃M , T̃M , t̃M ) with

π̃m = µmαm • (t⊕ t)e, T̃m = ∆(αm)−1(T⊕T)′∆(αm),

π̃M = (µm + µr)αr • t, T̃M =

(
∆(αr)

−1T′∆(αr) ∆(αr)
−1(t⊕ t)′∆(α∗m)

0 T̃m

)
.
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Here
µm = (π ⊗ π)(−T⊕T)−1e
αm = µ−1

m (π ⊗ π)(−T⊕T)−1

µr = (π ⊗ π)(T⊕T)−1(t⊕ t)T−1e
αr = (µm + µr)

−1(π ⊗ π)(T⊕T)−1(t⊕ t)(T)−1

α∗m = µm
µm+µr

αm.

Proof. Taking µ = π(−T)−1e, we have

α(T + tπ) = 0

αtπ = −αT

αtπ(−T)−1 = α

αtπ(−T)−1e = αe

αtµ = 1

µ =
1

αt
,

then

µm =
1

αm(t⊕ t)e
.

Note that αM =
(

µm
µm+µr

αm,αr

)
and µM = µm + µr.

T̃M =

(
∆(α∗m)−1(T⊕T)′∆(α∗m) 0
∆(αr)

−1(t⊕ t)′∆(α∗m) ∆(αr)
−1T′∆(αr)

)
.

The initial vector is similarly found to be (0, (µm+µr)αr • t). By swapping the
blocks we obtain the expressions for π̃M and T̃M . �

6.2 Multivariate matrix-exponential distributions

The definition of multivariate matrix-exponential distributions is a natural ex-
tension of the univariate case (see [17]).

Definition 6.12 A non-negative random vector Y = (Y1, . . . , Yn) of dimension
n is said to have multivariate matrix-exponential distribution if the joint Laplace
transform L(s) = E(exp(−〈Y, s〉)) is a multi-dimensional rational function, that
is, a fraction between two multi-dimensional polynomials. Here 〈·, ·〉 denotes the
inner product in Rn and s = (s1, . . . , sn). This class of distributions is denoted
by MVME.
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We will consider distributions with no point mass at zero, i.e. if Y = (Y1, . . . , Yn)
has a multivariate matrix-exponential distribution, then the Laplace transform
of Y is of the form

LY(s) = E(e〈Y,s〉) =
p(s)

q(s)
, for s = (s1, . . . , sn),

where p and q are polynomials in n variables, and the degree of p is always lower
than the degree of q. Here the degree of the multi-dimensional polynomial can
be obtained as the largest sum of exponents of its monomials.

Bladt and Nielsen [17] have given a characterization of this class of distributions.
In order to get it, they proved the following three lemmas.

Lemma 6.1 Assume that 〈Y,a〉 has a matrix-exponential distribution for all
a ≥ 0. Then the (minimal) order of the univariate matrix-exponential distribu-
tion for 〈Y,a〉 is a bounded function of a.

Lemma 6.2 Assume that 〈Y,a〉 has a univariate matrix-exponential distribu-
tion for all a ≥ 0. Then exists a set N of n-dimensional Lebesgue measure zeros
such that the Laplace transform L〈Y,a〉(s) of 〈Y,a〉 is a rational function in s
for all a ∈ [0,∞)n \N .

Lemma 6.3 If 〈Y,a〉 satisfies the conditions of Lemma 6.2 then we may write
its Laplace transform as

f̂1(a)sm−1 + f̂2(a)sm−2 + · · ·+ f̂m−1(a)s+ 1

ĝ0(a)sm + ĝ1(a)sm−1 + · · ·+ ĝm−1(a)s+ 1

where the terms f̂i(a) and ĝi(a) are sums of monomials in a of order m− i and
m is the common order except a set of measure zero.

Now, their main theorem which characterizes the class of MVME is the following.

Theorem 6.13 A vector Y = (Y1, . . . , Yn) follows a multivariate matrix-exponential
distribution if and only if 〈Y,a〉 =

∑n
i=1 aiYi has a univariate matrix-exponential

distribution for all non-negative vectors a 6= 0.

Moreover, if Y = (Y1, . . . , Yn) has a MVME distribution and A is a non-negative
m × n matrix, then Z′ = AY′ has a MVME distribution. In particular, all
marginals distributions are again matrix-exponentially distributed.

Inspired by this analysis, Bladt and Nielsen [17] proposed the following definition
of a multivariate phase-type distributions.
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Definition 6.14 A vector Y = (Y1, . . . , Yn) has a multivariate phase-type
(MVPH) distribution if 〈Y,a〉 has a (univariate) phase-type distribution for
all non-negative a 6= 0.

Certainly if Yi are n independent PH distributed random variables then 〈Y,a〉
will be phase-type distributed. Indeed, the MPH* class (see Section 5.1) belongs
to the MVPH class.

The following definition is a natural extension of the MPH* structure to matrix-
exponential distributions.

Definition 6.15 Let MME* be the subclass of MVME, such as 〈Y,a〉 has
representation (γ,∆(Ra)−1T, t), where t = −∆(Ra)−1Te. We say that the
triple (γ,T,R) is a MME* representation of the multivariate distribution.

There exists MVME distributions where the MVME order is strictly less than
the MME* order (see [17]).

Theorem 6.16 The cross–moments E (
∏n
i=1 Y

ai
i ), where Y = (Y1, . . . , Yn) ∼

MME∗(γ,T,R) and ai ∈ N, are given by

γ

a!∑

l=1

(
a∏

i=1

(−T)−1∆(Rσl(i))

)
e,

where a =
∑n
i=1 ai, Ri is the i-th column of R, and σ1, . . . , σa! are the or-

dered permutations of a-tuples of derivatives, within σl(i) being the value among
1, . . . , n at the i-th position of the permutation σl.

Proof. The joint Laplace transform of Y (see (2.2)) is given by

H(s) = γ((−T)−1∆(Rs) + I)−1e.

Thus, we can obtain the cross–moments by

E

(
n∏

i=1

Y aii

)
=

daH(s)

dsa11 dsa22 . . . dsank

∣∣∣∣
s=0

.

For more details of the demonstration we refer the reader to [49]. �
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6.3 Bilateral matrix-exponential distributions

The class of phase-type (PH) distributions has become quite popular in the
last decades. Previous work on PH distributions ([44], [45]) has been extended
into the real line as bilateral phase-type distributions in [2] and [59]. Ahn and
Ramaswami [2] defined the class of bilateral phase-type distributions, denoted
by BPH*, in terms of rewards r(i), which can be negative (see also Section
5.1). Being m the order of the representation, let ∆(r) be the diagonal matrix
composed of the reward rates of the transient states r = (r(1), . . . , r(m))′.

Definition 6.17 [2] Let X denote the total accumulated reward until absorp-
tion. X is said to be bilaterally phase–type distributed random variable with
initial probability vector α, transient generator T and reward matrix ∆(r). We
denote this by X ∼ BPH∗(α,T,∆(r)).

It is clear from the construction of the BPH* class that it has an atom at 0 if
and only if αm+1 = 1−αe > 0.

Indeed, the MG function of X is given by

MX(s) = αm+1 +α(sT−1∆(r) + I)−1e. (6.4)

We will define the class of multivariate bilateral phase-type (MBPH*) distri-
butions as a generalization for both the multivariate case of PH distributions
proposed by Kulkarni [39] (denoted by MPH*), and the BPH* class.

Definition 6.18 Let Xj ∼ BPH∗(α,T,∆(rj)), for j = 1, . . . , n, where the
column vectors rj are the rewards associated with the variable Xj . Note that
now the rewards can be negative. Then, for R = (r1, . . . , rn), we say that
X = (X1, . . . , Xn) is multivariate bilateral phase–type (denoted by MBPH*)
distributed with representation (α,T,R).

Inspired by Definition 6.14 we propose the following lemma.

Lemma 6.4 X = (X1, . . . , Xn) ∼ MBPH∗(α,T,R) if and only if 〈X,a〉 ∼
BPH∗(α,T,∆(Ra)), for all n-dimensional real vector a.

Proof. See Appendix B. �

Another generalization of PH distributions is considering the class of matrix-
exponential (ME) distributions, that have been studied in [10] and [16], and in
the multivariate case (MVME) in [17].
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In order to generalize matrix-exponential (univariate and multivariate) distribu-
tions into the real line, we define the class of bilateral ME distributions for both
the univariate and multivariate cases, as an extension of the ME and MVME
distributions, respectively.

Definition 6.19 We say that X is univariate bilateral matrix-exponential or
simply bilateral matrix-exponential (BME) distributed, if it has rational mo-
ment generating (MG) function, i.e. if E(esX) is rational in s. We denote by
X ∼ BME(α+,T+, t+,α−,T−, t−) if X has the following density

fX(x) = α+e
T+xt+1{x>0} +α−e

T−|x|t−1{x<0}, (6.5)

where α+ is a row vector of some dimension m+, T+ is a matrix of dimension
m+ × m+, and t+ is an m+-dimensional column vector. Similarly, both the
vectors α−,t−, and the matrix T−, are defined by some dimension m−.

The study of BME distributions and their representations is also important
to consider. Having a BME-representation (α+,T+, t+,α−,T−, t−), we know
the dimension of the matrix T+ plus the dimension of the matrix T− is called
the order of the representation, the smallest order from among the equivalent
representations is called the degree (see [61]).

A representation whose order is equal to the degree is said to be of minimal
order, this is called the order of the distribution ([34]).

Asmussen and Bladt [10] identified some necessary and sufficient conditions for
an ME representation to be minimal and developed a method for computing a
minimal ME representation from an ME distribution. The ME order can play
an important role in finding minimal representations. Qi-Ming and Hanqin [34]
introduced certain Hankel matrices that can be used to compute the ME order
of ME distributions.

Here we establish a relationship between the MG function and the minimal BME
representation using Hankel matrices. Having X with density given in (6.5) and
being m the minimal order of the distribution, the Hankel determinant given by

Hl =

∣∣∣∣∣∣∣∣

µ0 µ1 µ2 . . . µl
µ1 µ2 µ3 . . . µl+1

. . . . . . . . . . . . . . .
µl µl+1 µl+2 . . . µ2l

∣∣∣∣∣∣∣∣

is 0 if l ≥ m and Hm−1 6= 0, where µj are the reduced moments given by

µj = α+(−T+)−(j+1)t+ + (−1)jα−(−T−)−(j+1)t−.
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We define multivariate bilateral matrix-exponential (MVBME) distributions as
a natural extension of the univariate case.

Definition 6.20 A random vector X ∈ Rn of dimension n is multivariate
bilateral matrix-exponential (MVBME) distributed if the joint MG function
E(e〈X,s〉), s ∈ Rn, is a multi-dimensional rational function.

The marginal distributions are hence univariate bilateral matrix-exponential
distributions.

In order to give a characterization of these distributions we present the following
lemmas (their proofs are given in Appendix B).

Lemma 6.5 Assume that 〈X,a〉 has a BME distribution for all a ∈ Rn \ 0.
Then the (minimal) order m(a) of the univariate BME distribution for 〈X,a〉
is a bounded function of a.

Lemma 6.6 Assume that 〈X,a〉 has a univariate bilateral matrix-exponential
distribution for all a ∈ Rn\0, and suppose the order of the distribution of 〈X,a〉
is bounded by some m. Then, we may write the MG function of 〈X,a〉 as

b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1

ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1
,

where the terms b̃j(a) and ãj(a) are sums of n-dimensional monomials in a of
degree j.

Our theorem which characterizes the class of MVBME is the following.

Theorem 6.21 A vector X follows a multivariate bilateral matrix-exponential
distribution, i.e. X ∼ MVBME, if and only if 〈X,a〉 ∼ BME for all a ∈
Rn \ 0.

Proof. Let X ∼ MVBME, then E(e〈X,sa〉) is rational in sa for s ∈ R and
a ∈ Rn \ 0. Since

E(e〈X,sa〉) = E(es〈X,a〉),

then E(es〈X,a〉) is rational in s, i.e. 〈X,a〉 ∼ BME.

On the other hand, suppose that 〈X,a〉 has rational MG function, for all a ∈ Rn\
0. Then we know that the MG function can be expressed in the form of Lemma
6.6. By setting s = 1 this rational function coincides with the multidimensional
MG function of X at a. �



Chapter 7

Conclusion and Outlook

This work is focused on statistical analysis and estimation of phase–type (PH)
distributions. The initial idea of this work was the estimation and analysis of
multivariate matrix–exponential distributions. However, we considered it pru-
dent to analyze firstly the sub-class of PH distributions due to their importance
in the recent decades in different areas of applied probability. Many results
for PH distributions can be generalized to matrix–exponential (ME) distribu-
tions, by providing proofs that do not depend on underlying Markov chains or,
possibly, by using a continuation argument.

Asmussen et.al [11] provided the statistical framework for obtaining maximum
likelihood estimates of continuous PH distributions using the EM algorithm,
while Bladt et.al [15] used Markov chain Monte Carlo for doing so. In this
work we proposed some alternatives of these algorithms using uniformization,
canonical form, and reversed-time Markov chains. Furthermore, we proposed
an up-to-date (quasi) Newton-Raphson method (called Direct method (DM))
for obtaining maximum likelihood estimates of continuous as well as for discrete
PH distributions.

We noticed that there is no significant difference between the maximum likeli-
hoods using the EM and the DM algorithms, however, the maximum likelihoods
using the Gibbs sampler algorithm depended on the prior distributions.
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With respect to the execution times performed by the algorithms, there were
quite some differences. Definitely, using canonical form and reversed-time Markov
chains for discrete PH, and using uniformization for continuous PH, contributed
to accelerate the algorithms. Since many matrix-matrix and matrix-vector pro-
ducts are used, it might thus be possible to optimize our implementations further
with different strategies for calculating and storing intermediate results.

As a natural extension, we also considered the estimation of bivariate PH dis-
tributions, via the EM algorithm and the DM method.

Moreover, we realized that little has been done on statistical inference of PH
(discrete and continuous) distributions. For this reason, we decided to dig deeper
into the subject, considering the Fisher information matrix of PH distributions,
since the inverse of this matrix provides the variance and covariance of the es-
timated parameters. We discussed two different ways of analytically obtaining
the Fisher information matrix, one of these methods is based on a direct cal-
culation of second derivatives of the log–likelihood function while the other is
based on a paper by Oakes [52] where the partial derivatives are made using
a split of the log–likelihood function as in the EM algorithm. There are still
serious issues concerning identifiability and over-parameterization.

Finally, we analyzed matrix-exponential distributions for both univariate and
multivariate cases. Since ME distributions (distributions with rational Laplace
transform) have support [0,∞), we considered prudent before pursuing multi-
variate estimation, to introduce a new class of distributions whose support is
(−∞,∞), obviously with similar features to the ME distributions. We called
this type of distributions bilateral ME distributions, and they are defined as dis-
tributions with rational moment generating function. It should be pointed out
that a more comprehensive multivariate analysis of these distributions is needed
as well as the estimation of their parameters.
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Abstract

This paper is concerned with statistical inference for both continuous and
discrete phase–type distributions. We consider maximum likelihood estimation,
where traditionally the EM algorithm has been employed. Certain numerical
aspects of this method is revised and we provide an alternative method for
dealing with the E–step. We also compare the EM algorithm to a direct
Newton–Raphson optimization of the likelihood function. As one of the main
contributions of the paper, we provide formulae for calculating the Fisher
information matrix both for the EM algorithm and Newton–Raphson approach.
The inverse of the Fisher information matrix provides the variances and
covariances of the estimated parameters.

Keywords: Phase–type distributions, Fisher information, EM–algorithm,
Newton–Raphson
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1. Introduction

Phase–type distributions have played an important role in the modeling of complex
stochastic phenomena in the recent decades. They are mathematically tractable and
often allow for exact solutions to functionals of interest such as e.g. the ruin probability
in risk theory or waiting time distributions in queueing theory. Such solutions are
typically explicit or given in terms of some deterministic equations which may require
some standard numerical procedure for its evaluation.

Phase–type distributions [8] can be defined for both discrete and continuous distri-
butions. A continuous (discrete) phase–type distribution is the time until absorption
of a Markov jump process (Markov chain) with finitely many states, one of which is
absorbing and the remaining being transient. It is the Markov jump (Markov chain)
structure underlying the absorption times that makes the phase–type distributions
tractable, and most manipulations with phase–type distributions use this underlying
structure directly in establishing probabilistic arguments.

Estimation and statistical inference for phase–type distributions is of considerable
importance when consolidating its role in applications. The paper by Asmussen, et.
al. [2] was the first to establish a general approach to maximum likelihood estimation
of continuous phase–type distributions. In spite of being mathematically tractable

∗ Postal address: IIMAS-UNAM, A.P. 20-726, 01000 Mexico, D.F., Mexico
∗∗ Postal address: Richard Petersens Plads, Building 305, 2800 Kgs. Lyngby, Denmark
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due to their probabilistic interpretation, this very interpretability complicates the
estimation and inference for phase–type distributions considerably: there are serious
issues concerning identifiability and over–parameterization.

One of the main reasons for using phase–type distributions is their tractability in
many areas of applied probability. Many of the key functionals of interest such as
ruin probabilities in insurance risk and the waiting time distributions in queueing
theory are invariant under different equivalent representations of the same phase–type
distribution.

The main contributions of this paper are methods for calculating the Fisher infor-
mation matrix for discrete and continuous phase–type distributions, and we provide
formulae which relate to both the EM algorithm and the Newton Raphson approach.
The Fisher information matrix is then employed to find confidence regions for the
estimated parameters. We also review some necessary background concerning the EM
algorithms for the discrete and continuous cases, and we shall suggest an alternative
method for calculating matrix–exponentials and related integrals appearing in the E–
step, where originally (see [2]) a Runge–Kutta method was employed. Our method
will speed up the execution of the EM algorithm considerably for small and medium
sized data sets, while the Runge–Kutta method may outperform our method for large
amounts of data.

While the problem concerning over–parameterization in general persists, we shall
only consider distributions which have a unique representation. Confidence regions
for parameters in models which are over–parameterized or non–unique are not well
defined.

The remainder of this paper is organized as follows. In Section 2, we provide some
relevant background on phase–type distributions, while in Section 3 we analyze the
maximum likelihood estimation of these distributions via the EM algorithm and a
Newton–Raphson method. In Section 4 we present methods for obtaining the Fisher
information matrix. A simulation study is provided in Section 5. Finally, the work is
summarized in Section 6.

2. Some basic properties of phase–type distributions

Let {Xt}t∈I be a Markov chain (Markov jump process) with I = {0, 1, 2, . . . } (I =
[0,∞)) and state space E = {1, . . . , p, p+1}, where the states 1, . . . , p are transient and
the state p+ 1 is absorbing. Let πi = P(X0 = i) be the initial probabilities and define
the row vector π = (π1, . . . , πp). Let tij denote the transition probabilities (transition
rates) between the transient states. The transition rates for continuous time processes
are the entries of the intensity matrix. Let T = {tij}i,j=1,...,p denote the transition
matrix (intensity matrix) restricted to the transient states. Finally, let t = (t1, . . . , tp)

′

be the vector of exit probabilities (exit rates). With e being a p-dimensional column
vector of 1’s, we have t = e−Te (t = −Te). We say that τ = inf{t ∈ I|Xt = p+ 1}
has a phase–type distribution with representation (π,T), and write τ ∼ PHp(π,T).
In this paper we will refer to the discrete case by DPH and to the continuous case by
CPH.

Sometimes it is convenient to allow for an atom at zero as well in which case we let
πp+1 > 0 denote the probability of initiating in the absorbing state. If πp+1 = 0, the
probability mass (density) function of τ is f(x) = πTx−1t, (πeTxt), x > 0. We shall
initially assume that the phase–type distributions under consideration do not have an
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atom at zero.

3. Maximum likelihood estimation of phase–type distributions

Consider M independent observations y1, . . . , yM from a PHp(π,T) distribution,
where throughout the paper the order of the distribution p, is assumed to be known.
One may use the Akaike information criterion [1] for estimating p, but this matter will
not be pursued here. Let y = (y1, . . . , yM ). We only observe the times until absorption
and have no information about the underlying Markov chains (jump processes). We
may consider this as a situation of incomplete data since ideally we would be able
to observe all the underlying Markov chains (jump processes) which generate the
absorption times.

Let θ denote a vector containing the parameters (π,T, t). The incomplete data
likelihood function is given by

L(θ;y) =
M∏

k=1

πTyk−1t (DPH), L(θ;y) =
M∏

k=1

πeTykt (CPH). (1)

The log–likelihood function is defined as `(θ;y) = logL(θ;y).

3.1. EM algorithm

One approach to maximizing the incomplete likelihood function is via the EM
algorithm (Expectation–Maximization) [5] for which we shall need the full data or
complete likelihood function, Lf . Let x = (x1, . . . , xM ) denote the full data for the
M absorption times. Thus the xi’s are trajectories of the underlying Markov chains
(Markov jump processes) up to the time of absorption. The full data likelihood is given
in terms of sufficient statistics,

Lf (θ;x) =





∏p
i=1 π

Bi
i

∏p
i,j=1 t

Nij

ij

∏p
i=1 t

Ni
i (DPH)

∏p
i=1 π

Bi
i

∏p
i,j=1

i 6=j
t
Nij

ij e−tijZi
∏p
i=1 t

Ni
i e−tiZi , (CPH)

(2)

where Bi is the number of Markov chains (Markov jump processes) initiating in state
i, Nij the number of transitions from state i to state j, Ni the number of chains
(processes) jumping from state i to the absorbing state, and Zi the total time the
processes spent in state i.

The full log–likelihood function `f is hence given by

`f (θ;x) =





∑p
i=1Bi log(πi) +

∑p
i,j=1Nij log(tij) +

∑p
i=1Ni log(ti) (DPH)

∑p
i=1Bi log(πi) +

∑p
i,j=1

i 6=j
Nij log(tij) +

∑p
i=1Ni log(ti)

−∑p
i,j=1

i 6=j
tijZi −

∑p
i=1 tiZi. (CPH)

(3)

The full likelihood is easily maximized applying e.g. the method of Lagrange multi-
pliers, attending the constraints. We get that the maximum likelihood estimators of
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π,T, and t, are given by

π̂i =
Bi
M
, t̂ij =

Nij
Ji

, t̂i =
Ni
Ji
, (DPH)

π̂i =
Bi
M
, t̂ij =

Nij
Zi

, t̂i =
Ni
Zi
, (CPH)

where Ji is the total number of jumps out of state i (DPH), whereas t̂ii = 1−∑j 6=i t̂ij−
t̂i (DPH) and t̂ii = −∑j 6=i t̂ij − t̂i (CPH).

The EM algorithm works as follows. Let θ0 = (π0,T0, t0) be (in principle) any
choice of initial parameters.

1. Calculate h : θ 7−→ Eθ0(`f (θ;x)|y).

2. Maximize h. Let θ̂ = (π̂, T̂, t̂) denote the point which maximizes h.

3. Set θ0 = θ̂ and goto 1.

Since the log–likelihood function is linear in the sufficient statistics Bi, Nij , and Ni, it is
straightforward to calculate its conditional expectation if the corresponding conditional
expectations of the sufficient statistics are known. To this end, consider one data point
y (time until absorption). The general case with more than one data then follows by
summing up the conditional expectations over all data points y1, . . . , yM .

First, we consider the discrete case (see also [3]). We notice that Bi = 1{X0=i} and
hence

E(Bi|τ = y) = P(X0 = i|τ = y)

=
P(τ = y|X0 = i)P(X0 = i)

P(τ = y)

=
e′iT

y−1t

πTy−1t
πi.

Here ei denotes a p-dimensional column vector with 1 in the i-th entry and 0 otherwise.
Concerning Nij , if τ = y we have that

Nij = 1{y≥2}

y−2∑

k=0

1{Xk=i,Xk+1=j}.

Thus

E(Nij |τ = y) = 1{y≥2}

y−2∑

k=0

P(Xk = i,Xk+1 = j|τ = y)

= 1{y≥2}

y−2∑

k=0

P(τ = y|Xk+1 = j)P(Xk+1 = j|Xk = i)P(Xk = i)

P(τ = y)

= 1{y≥2}

y−2∑

k=0

e′jT
(y−(k+1)−1)tπTkei

πTy−1t
tij .
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Similar calculations yields

E(Ni|τ = y) =
πTy−1ei

πTy−1t
ti.

Finally, E(Ji) =
∑p
j=1E(Nij) + E(Ni). The final EM algorithm for the discrete case

then translates into

0. Let θ0 = (π0,T0, t0).

1. Under θ0, calculate conditional expectations Eθ0(Bi|y), Eθ0(Nij |y), and Eθ0(Ni|y).
Let E(Ji|y) =

∑p
j=1E(Nij |y) + E(Ni|y).

2. Let π̂i =
Eθ0(Bi|y)

M
, t̂ij =

Eθ0(Nij |y)

Eθ0(Ji|y)
, and t̂i =

Eθ0(Ni|y)

Eθ0(Ji|y)
.

3. Set θ0 = (π0,T0, t0) = (π̂, T̂, t̂) and goto 1.

The EM algorithm for the CPH is similar, only changing the formulae for the con-
ditional expectations which can be found in [2]. As a curiosity, in the derivation of
the conditional expectation of Nij given discrete data in continuous time, [2] uses
a discretization argument where they approximate the continuous process by the
corresponding Markov chain formula derived above.

The corresponding formulae for the CPH (see [2]) are given by

E(Bi|τ = y) =
e′ie

Tyt

πeTyt
πi

E(Nij |τ = y) =

∫ y
0
πeTueie

′
je

T(y−u)tdu

πeTyt
tij

E(Ni|τ = y) =
πeTyei
πeTyt

ti

E(Zi|τ = y) =

∫ y
0
πeTueie

′
ie

T(y−u)tdu

πeTyt
.

If zero is contained in the data we also need to include an atom of a certain size at
zero in the specification of the phase–type distribution. Allowing for πp+1 > 0 we may
recalculate conditional expectations and maxima as above. However, it is immediately
seen that the estimation procedure can be split into the following components. (1)
Let π̂p+1 denote the proportion of zeros in the data set. (2) Eliminate the zeros from

the data. (3) Fit a phase–type distribution PHp(π̂, T̂) to the remaining data. This
procedure, indeed, produces a maximum likelihood estimator for the full model which
contains an atom at zero.

The EM algorithm always converges to a (possibly local) maximum. The conver-
gence is known to be quite slow. Various random initiations of the algorithm may be
needed in order to support the hypothesis that the local maxima reached represents a
global maximum. Also it is important to initiate the algorithm with a representation
of full dimension. If we, for example in the discrete case, decided to initiate with
tij = 1/(p + 1) and πi = 1/p, p being the dimension of the representation, then
this is equivalent to a geometric distribution and it is not difficult to see that all
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subsequent iterations will again give geometric distributions. Hence the maximum
likelihood estimator will also satisfy that all elements of the transition matrix are
equal. If some parameter tij is set to zero initially, then all subsequent values of tij
through the iterations will remain zero. This makes it possible to estimate subclasses
of general discrete phase–type distribution by adequately specifying zeros of certain
transition probabilities from the beginning. If other subclasses or re–parameterizations
like e.g. letting all remaining tij only depend on i are to be considered, then we need
to intervene directly into the likelihood function and calculate new expressions for the
maximum likelihood estimators. The conditional expectations, however, still remain
valid.

The evaluation of the E-step in the CPH version of the EM algorithm can be
numerically challenging. In [2] the authors propose to use a Runge-Kutta method.
Another, and by now standard, method for the evaluation of the matrix exponential
is uniformization. This method can also be applied in the evaluation of E(Nij |τ = y).
The advantage of uniformization is the higher numerical precision. In most cases we
found uniformization to be superior in terms of efficiency too, albeit for a very high
number of observations our implementation was outperformed with respect to speed
by the Runge–Kutta implementation of [2].

EM for CPH using uniformization. In standard uniformization (see [6]) we let K =
1
cT + I, where c = max{−tii : 1 ≤ i ≤ p} and I is the identity matrix of appropriate
dimension (p× p), we have that

eTy =
∞∑

r=0

e−cy
(cy)r

r!
Kr.

Also, for y ∈ {y1, . . . , yM} we have to evaluate the integral J(y) =
∫ y

0
eT(y−u)tπeTudu

for which we shall use uniformization. Here

J(y) =

∫ y

0

(
e−c(y−u)

∞∑

k=0

(cK(y − u))k

k!

)
tπ


e−cu

∞∑

j=0

(cKu)j

j!


 du

= e−cy
∞∑

j=0

∞∑

k=0

(∫ y

0

(cu)j

j!

(c(y − u))k

k!
du

)
KjtπKk

= e−cy
∞∑

j=0

∞∑

k=0

(cy)j+k+1

j!k!

j!k!

(j + k + 1)!
Kj 1

c
tπKk

= e−cy
∞∑

s=0

(cy)s+1

(s+ 1)!
DJ(s), (4)

where DJ(s) =
∑s
j=0 Kj 1

c tπKs−j , which may be calculated recursively. The matrix
J(y) has the following probabilistic interpretation. The (i, j)-th entry of the matrix
is the probability that a phase–type renewal process with inter-arrival distribution
PHp(π,T) (CPH) starting from state i has exactly one arrival in [0, y] and is in state
j by time y. From this interpretation we derive the following recursive formula

J(x+ y) = eTxJ(y) + J(x)eTy.
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By this formula we may calculate J(x + ∆x), using previous terms, improving the
efficiency considerably.

One of the strengths of the uniformization method is the exact upper bound that
can be given on the absolute truncation error, due to the role of the weighting factors
as the terms in the Poisson probability mass function.

A similar exact upper bound can be given when determining an upper limit for the
truncation of the sum involved in calculating J(y). To see this, we will consider the
distribution

qi =
i · λi
λi!

e−λ, i = 0, 1, 2, . . . ,

or

qi =
λi−1

(i− 1)!
e−λ, i = 1, 2, . . . ,

that is the size biased distribution derived from the Poisson distribution with the
probabilistic interpretation that it tells what is the fraction of the mean contributed
by observations of exactly size i. It is a nice property to see, that in a sense the Poisson
distribution is closed under size biasing albeit a shift to the right. If we consider the
factors DJ(s) in the expression for J(y), we see that all row sums of DJ(s) are bounded
by s+1 and thus we can obtain the upper bound for the truncation from the size biased
distribution of the Poisson distribution which happens to be the truncation limit for
the standard uniformization factor plus 1.

3.2. Newton–Raphson maximization

The EM algorithm is a numerical method for optimizing the incomplete likelihood
function. It uses the underlying probabilistic structure of the model and convergence
is guaranteed. As an alternative we shall explore a state–of–the–art Newton–Raphson
algorithm, and compare its performance to the EM algorithm.

The Newton–Raphson method is based on the idea of approximating a function
with its first or second order Taylor expansion. Thus, we need to calculate the
gradient vector of the log–likelihood function. This is computationally demanding,
particularly if the dimension is large. However, the cost of calculating the gradient
could be compensated for by fewer iterations. The method is not designed to work with
boundary conditions. While the calculation of the gradient is rather straightforward,
the task of making an efficient numerical implementation of the formulae is by no
means trivial.

Using the idea given by B. F. Nielsen, et. al. [9], we want to work with an
unconstrained system, and use a package for unconstrained optimization written by
K. Madsen, et. al. [7]. Their program, as well as many other standard routines
available for unconstrained optimization, find the maximum of a given function using
the gradient vector. Since we want to find the maximum of the log-likelihood function,
we calculate the gradient vector based on the parameter transformation which provides
the unconstrained optimization problem. We shall refer to this method as the Direct
Method (DM) since it does not use the underlying probabilistic structure.

The direct method we employ assumes that the parameters are unbounded. This is
obviously not the case for the phase–type intensities so we consider a re–parameterization
τ of the parameters. We also need to provide the gradient at a given point of the
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transformed parameters,

g =
∂`(θ;y)

∂τ
=

(
∂`(θ;y)

∂τm

)

m=1,...,p2+(p−1)

.

Let θ = (θ1, . . . , θp2+(p−1)). By the chain rule this vector can be obtained as

∂`(θ;y)

∂τ
=
∂`(θ;y)

∂θ

∂θ

∂τ
, (5)

where ∂`(θ;y)
∂θ is a p2 + (p− 1)-dimensional row vector and ∂θ

∂τ is the Jacobian matrix.
Taking the derivative of the log-likelihood function w.r.t θ we get that

∂`(θ;y)

∂θ
=

M∑

k=1

1

f(yk)

∂f(yk)

∂θ
,

where f is the density of the phase–type distribution parameterized by θ. Thus, the
problem reduces to finding the derivative of f with respect to the original parameters.
To do this, we introduce

Ψ(y) =

{
Ty−1 for the discrete case (DPH)
eTy for the continuous case (CPH).

By substituting π =
∑p−1
j=1 πje

′
j +

(
1−∑p−1

j=1 πj

)
e′p, the density of the phase–type

distribution evaluated in y is given by

f(y) =

p−1∑

j=1

πje
′
jΨ(y)t +


1−

p−1∑

j=1

πj


 e′pΨ(y)t,

and its partial derivatives w.r.t the original parameters are given by

∂f(y)

∂πm
= e′mΨ(y)t− e′pΨ(y)t

∂f(y)

∂tmn
= π

∂Ψ(y)

∂tmn
t, m 6= n

∂f(y)

∂tm
= πΨ(y)em + π

∂Ψ(y)

∂tm
t.

In order to compute the partial derivatives of Ψ with respect to θm, for m ∈
{1, . . . , p2 + (p− 1)}, we shall need the derivatives of Tr for r ≥ 1, and the derivative
of eTy. In general, we have that

∂Tr

∂θm
=

r−1∑

k=0

Tk ∂T

∂θm
Tr−1−k, r ≥ 1, (6)

where
[
∂T
∂tij

]
ij

= 1,
[
∂T
∂tij

]
ii

= −1, and
[
∂T
∂ti

]
ii

= −1.
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Concerning the derivative of eTy, we shall use a uniformization argument similar to
(4). We get that

∂eTy

∂θm
= e−cy

∞∑

s=0

(cy)s+1

(s+ 1)!
Dm(s) +

∂c

∂θm
yeTy(K− I), (7)

where Dm(s) =
∂Ks+1

∂θm
which is calculated like (6). Since eT(x+y) = eTxeTy, we can

get a recursive version of (7) given by

∂eT(x+y)

∂θm
= eTx

∂eTy

∂θm
+
∂eTx

∂θm
eTy.

In order to deal with unconstrained parameters in the optimization we propose the
following transformation. For m = 1, . . . , p2 + (p− 1), let −∞ < τm <∞ be such that

πi =
exp(τi)

1 +
∑p−1
s=1 exp(τs)

, i = 1, . . . , p− 1, πp =
1

1 +
∑p−1
i=1 exp(τi)

,

and for i, j = 1, . . . , p, i 6= j,

tij =
exp(τip+(j−1))

1 +
∑p
s=1 exp(τip+(s−1))

, ti =
exp(τip+(i−1))

1 +
∑p
s=1 exp(τip+(s−1))

(DPH)

tij = exp(τip+(j−1)), ti = exp(τip+(i−1)). (CPH)

The elements in the diagonal of T are defined as tii = 1−∑p
j=1,j 6=i tij−ti in DPH, and

tii = −∑p
j=1,j 6=i tij − ti in CPH. Note that zeros for πi and tij are not a possibility in

this re–parameterization. However, we can choose to bound tij or ti to 0 with obvious
changes for the τm’s.

The Jacobian matrix is constructed as follows. For i, j = 1, . . . , p − 1 the (i, j)-th
element of this matrix is given by

∂πi
∂τj

= πj1{j=i} − πiπj .

For i, j = 1, . . . , p, and m = p, . . . , p2 + (p − 1), the (ip + (j − 1),m)-th element of

the matrix is given by
∂tij
∂τm

if i 6= j and ∂ti
∂τm

if i = j, where

∂tij
∂τm

=

{
tij1{m=ip+(j−1)} − tij

∑p
r=1(ti1{i=r} + tir1{i 6=r})1{m=ip+(r−1)} (DPH)

tij1{m=ip+(j−1)} (CPH)

∂ti
∂τm

=

{
ti1{m=ip+(i−1)} − ti

∑p
r=1(ti1{i=r} + tir1{i 6=r})1{m=ip+(r−1)} (DPH)

ti1{m=ip+(i−1)}. (CPH)

4. Fisher information

Fisher information is a key concept in the theory of statistical inference and essen-
tially describes the amount of information data provide about unknown parameters.
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It has applications to finding the variance of an estimator, as well as in the asymptotic
behavior of maximum likelihood estimates, and in Bayesian inference.

We present formulae for the Fisher information matrix for a general phase–type
distribution. Frequently we may consider sub–classes such as generalized Erlang or
Hyper–exponential distributions, where several intensities are assumed to be zero.
The corresponding Fisher information is then calculated with the same formulae but
summing over indices where the parameters are different from zero. We present
methods for calculating the Fisher information matrix for both the EM algorithm
and the Newton–Raphson method.

Throughout, we shall assume that the parameters are freely varying and not linked
to each other through some common parameters or formulae.

4.1. Fisher information via the EM algorithm

The EM algorithm also allows for extracting information concerning the Fisher
information matrix as noted by D. Oakes in [10]. Considering L, the incomplete data
likelihood which is maximized by the EM algorithm, the Fisher information matrix is
given by

∂2L(θ;y)

∂θ2
=

{
∂2Q(θ̂|θ)

∂θ̂2
+
∂2Q(θ̂|θ)

∂θ∂θ̂

}

θ̂=θ

, (8)

where
Q(θ̂|θ) = Eθ(`f (θ̂;x) |y) . (9)

Define

Ui =
M∑

l=1

e′iΨ(yl)t

f(yl)
, (10)

Wi =

M∑

l=1

πΨ(yl)ei
f(yl)

, (11)

Vij =





M∑

l=1

1{yl≥2}
1

f(yl)

yl−2∑

k=0

e′jT
yl−k−2tπTkei (DPH)

M∑

l=1

1

f(yl)

∫ yl

0

e′je
T(yl−u)tπeTueidu. (CPH)

(12)

Then (9) becomes

Q(θ̂|θ) =

p−1∑

i=1

log π̂iUiπi + log

(
1−

p−1∑

s=1

π̂s

)
Up

(
1−

p−1∑

s=1

πs

)

+

p∑

i=1

p∑

j=1,j 6=i
log t̂ijVijtij +

p∑

i=1

SiVii +

p∑

i=1

log(t̂i)Witi,

where

Si =

{ (
1−∑p

j=1,j 6=i tij − ti
)

log
(

1−∑p
j=1,j 6=i t̂ij − t̂i

)
(DPH)

−∑p
j=1,j 6=i t̂ij − t̂i. (CPH)
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The elements of the Fisher information matrix (8) are given as follows. For i, j =
1, . . . , p− 1, the (i, j)-th element is given by

∂Ui
∂πj
− ∂Up
∂πj

,

for m = 1, . . . , p− 1 and i, j = 1, . . . , p, the (ip− 1 + j,m)-th element is given by

∂Um
∂tij

− ∂Up
∂tij

if i 6= j,
∂Um
∂ti
− ∂Up

∂ti
if i = j,

the (m, ip− 1 + j)-th element is given by

∂Vij
∂πm

− ∂Vii
∂πm

if i 6= j,
∂Wi

∂πm
− ∂Vii
∂πm

if i = j,

and finally, for i, j,m, n = 1, . . . , p, the (ip− 1 + j,mp− 1 + n)-th element is given by

∂Vij
∂tmn

− ∂Vii
∂tmn

if i 6= j,m 6= n

∂Vij
∂tm

− ∂Vii
∂tm

if i 6= j,m = n

∂Wi

∂tmn
− ∂Vii
∂tmn

if i = j,m 6= n

∂Wi

∂tm
− ∂Vii
∂tm

if i = j,m = n.

The explicit formulae of the above derivatives are given in Appendix A.

4.2. Newton–Raphson estimation

To obtain the Fisher information matrix using the direct method, we take the second
derivative of (5), which at the optimum gives

∂2`(θ;y)

∂τ̄∂τ
=
∂θ

∂τ

∂2`(θ;y)

∂θ̄∂θ

∂θ̄

∂τ̄
, (13)

where ∂2`(θ;y)

∂θ̄∂θ
is a square matrix of second–order partial derivatives. For this, we need

the second derivatives of the density f w.r.t the original parameters (see Appendix B).
For m,n ∈ {1, . . . , p2 + (p− 1)}, and taking the second derivative of (6) we get

∂2Tr

∂θn∂θm
=

r−1∑

k=0

Tk ∂T

∂θm

∂Tr−1−k

∂θn
+
∂Tk

∂θn

∂T

∂θm
Tr−1−k. (14)

In the same way from (7), we have that

∂2eTy

∂θn∂θm
= e−cy

∞∑

k=0

(cy)k+1

(k + 1)!

∂2Kk+1

∂θn∂θm
+

∂c

∂θm
y

(
eTy

∂K

∂θn
+
∂eTy

∂θn
(K− I)

)
, (15)

where ∂2Kr

∂θn∂θm
, can be calculated like (14).
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The quasi Newton method presented in [9] gives an approximate value of the Hessian
matrix for the transformed parameters τ used in the optimization. This can be
transformed into an approximation for the inverse Fisher information matrix using

∂2`(θ;y)

∂θ̄∂θ
=
∂τ

∂θ

∂2`(θ;x)

∂τ̄∂τ

∂τ̄

∂θ̄
.

5. Simulation results

The phase–type representation of a given distribution is, in general, non–unique
and non–minimal. Hence, we explore a subclass of PH distributions for which the
representation is an acyclic graph (APH). A. Cumani [4] has shown that a canonical
representation for the APH subclass exists, and this representation is unique, minimal
and has the form of a Coxian model with real transition rates. This representation is
called a canonical form.

The canonical form representation is given by

π = (1, 0, . . . , 0), T =




t11 t12

t22 t23

. . .
. . .

tp−1,p−1 tp−1,p

tpp



, t =




t1
t2
...

tp−1

tp



. (16)

In this section we present the results of an estimation study considering simulated
data from discrete and continuous phase–type distributions. The discrete phase–type
distribution has the distribution of a shifted negative binomial random variable, 1 +
N , where N is negative binomially distributed with parameters (3, 0.2). The PH–
representation is given by

π = (1, 0, 0), T =




1− p1 (1− p1)p1 (1− p1)p2
1

0 1− p1 (1− p1)p1

0 0 1− p1


 , t =



p3

1

p2
1

p1


 .

Its equivalent canonical representation is given by

π = (1, 0, 0), T =




1− p1 (1− p2
1)p1 0

0 1− p1 p1 − 2p21
1+p1

0 0 1− p1


 , t =




p3
1

2p21
1+p1

p1


 .

For the continuous case, we consider a mixture of three exponential distributions
with parameters λ1 = 1.0, λ2 = 0.1, and λ3 = 0.01. This distribution is also called
Hyper–exponential, and has a PH–representation given by

π = (π1, π2, π3), T =



−λ1 0 0

0 −λ2 0
0 0 −λ3


 , t =



λ1

λ2

λ3


 ,

where π1 = 0.9, π2 = 0.09, and π3 = 0.01. Its equivalent canonical form is given by

π = (1, 0, 0), T =



−λ1 λ1 − t1 0

0 −λ2 λ2 − t2
0 0 −λ3


 , t =




π1λ1 + π2λ2 + π3λ3
π2λ2(λ1−λ2)+π3λ3(λ1−λ3)
π2(λ1−λ2)+π3(λ1−λ3)

λ3


 .
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The way to obtain the canonical form is given in A. Cumani [4]. All estimation is
performed using the canonical form.

After finding the MLE, the Fisher Information (FI) matrix was obtained considering
only the non–zero parameters. As the inverse of the FI is the empirical variance–
covariance matrix, we could obtain the standard deviation (SD) of the parameters (see
tables 1 and 2). The corresponding correlations are given in tables 3 and 4.

Table 1: Maximum likelihood estimators (MLE) and standard deviations (SD) of the shifted
Negative binomial(3,0.2), considering 10000 observations

Parameter true value EM DM
MLE SD MLE SD

t̂1 0.0080 0.0094 0.0009 0.0094 0.0009
t̂12 0.1920 0.1939 0.0426 0.1939 0.0455
t̂2 0.0667 0.0592 0.0118 0.0591 0.0125
t̂23 0.1333 0.1440 0.0387 0.1441 0.0408
t̂3 0.2000 0.2033 0.0426 0.2032 0.0450

Table 2: Maximum likelihood estimators (MLE) and standard deviations (SD) of the Hyper-
exponential, considering 20000 observations

Parameter true value EM DM
MLE SD MLE SD

t̂1 0.9091 0.9160 0.0080 0.9248 0.0080
t̂12 0.0909 0.0934 0.0037 0.0923 0.0037
t̂2 0.0902 0.0922 0.0040 0.0921 0.0040
t̂23 0.0098 0.0136 0.0015 0.0152 0.0017
t̂3 0.0100 0.0115 0.0009 0.0121 0.0010

Table 3: Correlations of the shifted Negative binomial(3,0.2)

t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.0000 -0.0118 -0.1855 0.0677 0.0103
t̂12 -0.0118 1.0000 -0.9336 -0.2623 -0.4973
t̂2 -0.1855 -0.9336 1.0000 0.1916 0.4512
t̂23 0.0677 -0.2623 0.1916 1.0000 -0.6842
t̂3 0.0103 -0.4973 0.4512 -0.6842 1.0000

6. Concluding remarks

The paper by Asmussen et. al. [2] provided the statistical framework for obtaining
maximum likelihood estimates of continuous PH distributions using the EM algorithm.
In this paper we have demonstrated how one can obtain uncertainty estimates of
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Table 4: Correlations of the Hyper–exponential

t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.0000 0.3451 0.2418 0.0591 0.0429
t̂12 0.3451 1.0000 0.5777 0.1874 0.1148
t̂2 0.2418 0.5777 1.0000 0.4171 0.2300
t̂23 0.0591 0.1874 0.4171 1.0000 0.4887
t̂3 0.0429 0.1148 0.2300 0.4887 1.0000

the parameters in cases where the PH distribution is not over–parameterized. The
development is done for discrete as well as for continuous PH distributions. We have
discussed two different ways of analytically obtaining the Fisher Information matrix in
such cases. One of these methods is based on a direct calculation of second derivatives
of the log–likelihood function while the other is based on a paper by Oakes [10] where
the partial derivatives are made using a split of the log–likelihood function as in the
EM algorithm. The methods are quite similar with respect to the actual analytical
and numerical calculations. In particular, the truncation error of the algorithm can in
both cases be controlled exactly in the same way as for the uniformization method. In
turn we suggest a technical alternative based on uniformization for the calculation
of matrix–exponentials and certain integrals in the continuous version of the EM
algorithm. The main advantage of using the uniformization based approach is the
possibility of controlling the numerical error during the successive iterations. We also
demonstrate how one could alternatively obtain maximum likelihood estimates by a
direct approach using an up–to–date (quasi) Newton–Raphson method.

We have demonstrated our results using a couple of numerical examples, one for the
discrete case and one for the continuous case. The two algorithms gave the same result
for the Fisher information, a result that was verified by the approximate information
on the Hessian matrix provided by the quasi Newton–Raphson method.

Our implementations did not provide significant evidence that one of the two op-
timization methods should be preferred over the other. In most cases our imple-
mentations were competitive with the Runge–Kutta based approach also in terms of
efficiency.

In the future we will modify our approach to be able to handle cases with fewer
free parameters in the PH representations. For example, we may consider phase–
type distributions in arbitrary dimensions where certain transition rates are equal or
proportional to each other. In this case we need to provide alternative formulae for
the EM algorithm and the Fisher information.

Another topic for future study is to improve the efficiency of the algorithms. Many
matrix–matrix and matrix–vector products are used a number of times throughout. It
might thus be possible to optimize our implementations further with different strategies
for calculating and storing intermediate results.
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Appendix A. Fisher information matrix, EM

Let Ri(u) = πΨ(u)ei and Qi(u) = e′iΨ(u)t. Then, their derivatives are given by

∂Ri(u)

∂πm
= e′mΨ(u)ei − e′pΨ(u)ei,

∂Qi(u)

∂πm
= 0,

∂Ri(u)

∂tmn
= π

∂Ψ(u)

∂tmn
ei, m 6= n,

∂Qi(u)

∂tmn
= e′i

∂Ψ(u)

∂tmn
t, m 6= n,

∂Ri(u)

∂tm
= π

∂Ψ(u)

∂tm
ei,

∂Qi(u)

∂tm
= e′iΨ(u)em + e′i

∂Ψ(u)

∂tm
t.

Then Ui, Wi, and Vij (see (10), (11), and (12)) become

Ui =
M∑

l=1

Qi(yl)

f(yl)
,

Wi =

M∑

l=1

Ri(yl)

f(yl)
,

Vij =





M∑

l=1

1{yl≥2}
1

f(yl)

yl−2∑

k=0

Qj(yl − k − 1)Ri(k + 1) (DPH)

M∑

l=1

1

f(yl)

∫ yl

0

Qj(yl − u)Ri(u)du. (CPH)

Hence, for n ∈ {1, . . . , p2 + (p− 1)}, the derivatives w.r.t θn are given by

∂Ui
∂θn

=
M∑

l=1

1

f(yl)2

(
f(yl)

∂Qi(yl)

∂θn
−Qi(yl)

∂f(yl)

∂θn

)
,

∂Wi

∂θn
=

M∑

l=1

1

f(yl)2

(
f(yl)

∂Ri(yl)

∂θn
−Ri(yl)

∂f(yl)

∂θn

)
,

∂Vij
∂θn

=





∑M
l=1 1{yl≥2}

∑yl−2
k=0

1
f(yl)2

[
f(yl)

(
Qj(yl − k − 1)∂Ri(k+1)

∂θn
+

∂Qj(yl−k−1)
∂θn

Ri(k + 1)
)

−
(
∂f(yl)
∂θn

)
Qj(yl − k − 1)Ri(k + 1)

]
(DPH)

∑M
l=1

1
f(yl)2

[
f(yl)

∫ yl
0
Qj(yl − u)

(
∂Ri(u)
∂θn

)
+
(
∂Qj(yl−u)

∂θn

)
Ri(u)du

−
(
∂f(yl)
∂θn

) ∫ yl
0
Qj(yl − u)Ri(u)du

]
. (CPH)

Concerning the computation of
∂Vij

∂θn
for CPH, we define the following integrals

J1(y; M) =
∫ y

0
eT(y−u)MeTudu = e−cy

∞∑

s=0

(cy)s+1

(s+ 1)!
DJ1

(s),

J2(y; θn,M) =
∫ y

0
eT(y−u)M∂eTu

∂θn
du = e−cy

∞∑

s=0

(cy)s+2

(s+ 2)!
(DJ2,1(s, θn) + DJ2,2(s, θn)) ,

J3(y; θn,M) =
∫ y

0
∂eT(y−u)

∂θn
MeTudu = e−cy

∞∑

s=0

(cy)s+2

(s+ 2)!
(DJ3,1(s, θn) + DJ3,2(s, θn)) ,
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where M is a (p× p)–matrix and

DJ1
(s) =

s∑

j=0

Kj 1

c
MKs−j ,

DJ2,1(s, θn) =
s∑

j=0

Kj 1

c
M
∂Ks−j+1

∂θn
, DJ2,2(s, θn) =

s∑

j=0

Kj(s+ 1− j) 1

c2
∂c

∂θn
M(K− I)Ks−j ,

DJ3,1(s, θn) =
∑s
j=0

∂Ks−j+1

∂θn
1
cMKj , DJ3,2(s, θn) =

s∑

j=0

Kj(j + 1)
1

c2
∂c

∂θn
(K− I)MKs−j .

Then

∂Vij
∂πm

=

M∑

k=1

1

f(yk)2

[
f(yk)

(
e′jJ1(yk; te′m)ei − e′jJ1(yk; te′p)ei

)
− ∂f(yk)

∂πm
e′jJ1(yk; tπ)ei

]
,

∂Vij
∂tmn

=
M∑

k=1

1

f(yk)2

[
f(yk)

(
e′jJ2(yk; tmn, tπ)ei + e′jJ3 (yk; tmn, tπ) ei

)
− ∂f(yk)

∂tmn
e′jJ1(yk; tπ)ei

]
,

∂Vij
∂tm

=
M∑

k=1

1

f(yk)2

[
f(yk)

(
e′jJ2(yk; tm, tπ)ei + e′jJ1 (xk; emπ) ei + e′jJ3(yk; tm, tπ)ei

)

−∂f(yk)

∂tm
e′jJ1(yk; tπ)ei

]
.

A proper truncation of the infinite sums involved in Ji, i = 1, 2, 3, can be obtained
using the same approach as for J discussed in Section 3.1. The row sums of the matrix
DJ1

(s) are like the ones for DJ(s) bounded by s+ 1, while the row sums of DJ2,1(s, ·),
DJ2,2(s, ·), DJ3,1(s, ·), and DJ3,2(s, ·) are bounded by 1

2 (s+ 1)(s+ 2). Thus to find a
proper level for truncation we can restrict ourselves to the scalar sum

∞∑

s=0

e−cy
(cy)s+2

(s+ 2)!
· 1

2
(s+ 1)(s+ 2) = −1

2

∞∑

s=2

e−cy
(cy)s

s!
· s+

1

2

∞∑

s=2

e−cy
(cy)s

s!
· s2,

which represents the summation of the first and second order moment distribution of
the Poisson distribution.

As in Section 3.1 the truncation level is thus the standard uniformization level plus
1 and plus 2, respectively.

Appendix B. Hessian matrix for the Newton–Raphson method

Taking the second derivative of the log–likelihood function we get

∂2`(θ;y)

∂θ̄∂θ
=

M∑

k=1

1

f(yk)2

[
f(yk)

∂2f(yk)

∂θ̄∂θ
− ∂f(yk)

∂θ̄

∂f(yk)

∂θ

]
,

where the second derivatives of the density with respect to the initial probabilities are
0, i.e.

∂2f(y)

∂πn∂πm
= 0.
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While with respect to the elements of the matrix T, the second derivatives are given
by

∂2f(y)

∂tmn∂tij
= π

∂2Ψ(y)

∂tmn∂tij
t, m 6= n, i 6= j,

and w.r.t the exit probabilities

∂2f(y)

∂tm∂ti
= π

∂Ψ(y)

∂tm
ei + π

∂Ψ(y)

∂ti
em + π

∂2Ψ(y)

∂tm∂ti
t.

Finally,

∂2f(y)

∂πm∂tij
=

∂2f(y)

∂tij∂πm
= e′m

∂Ψ(y)

∂tij
t− e′p

∂Ψ(y)

∂tij
t, i 6= j

∂2f(y)

∂πm∂ti
=

∂2f(y)

∂ti∂πm
= e′mΨ(y)ei − e′pΨ(y)ei + e′m

∂Ψ(y)

∂ti
t− e′p

∂Ψ(y)

∂ti
t

∂2f(y)

∂tmn∂ti
= π

∂Ψ(y)

∂tmn
ei + π

∂2Ψ(y)

∂tmn∂ti
t, m 6= n

∂2f(y)

∂ti∂tmn
= π

∂Ψ(y)

∂tmn
ei + π

∂2Ψ(y)

∂ti∂tmn
t, m 6= n.
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BILATERAL MATRIX–EXPONENTIAL DISTRIBUTIONS

MOGENS BLADT, LUZ JUDITH R. ESPARZA, AND BO FRIIS NIELSEN

Abstract. In this article we consider the classes of bilateral phase–type dis-

tributions and univariate matrix–exponential distributions in order to define

a new general class of probability distributions called bilateral matrix–expo-

nential (BME) distributions, whose support is the entire real line and whose

moment–generating function is a rational function. Moreover, this is extended

to the multivariate case (MVBME) where the distributions have multidimen-

sional rational moment–generating function. We prove a characterization that

states that a random variable is MVBME distributed if and only if all non-null

linear combinations of the coordinates are univariate BME distributed.

Primary 62H05; Secondary 60E10

Bilateral phase–type distribution, matrix–exponential distribution, multivariate

phase–type distribution, moment–generating function.

1. Introduction

Phase–type (PH) distributions (Neuts [12, 13]) have become quite popular in the

last decades as they have been used in a wide range of applications of stochastic

models. A PH distributed random variable can be interpreted as the time till

absorption in an absorbing Markov chain. This class of distributions has enjoyed

such popularity because it forms a dense subset in the space of all distributions

defined on the non-negative real numbers. That is, they can approximate any

non-negative distribution arbitrarily closely (see Asmussen [3]).

In the multivariate case, this class of distributions has been considered initially

by Assaf et.al [6] and later by Kulkarni [11]. Previous work on PH distributions has

been extended into the real line by Shanthikumar [16] and by Ahn and Ramaswami

[1], defining the class of bilateral phase–type distributions.

Another generalization of PH distributions is the class of matrix–exponential

(ME) distributions (distributions with rational Laplace transform), that have been

studied, for instance, by Asmussen and Bladt [5], Bladt and Neuts [7], and in the

multivariate case (denoted by MVME) by Bladt and Nielsen [8].

Asmussen and Bladt [5] have studied the class of ME distributions applying

them in the study of a class of queueing systems. Also identifying some necessary

and sufficient conditions for an ME representation to be minimal. Liefvoort [17]

Date: March 31, 2011.
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proposed a method that provides insight into the minimal representation problem

for phase–type distributions. Indeed, this method characterizes completely the ME

distributions with a finite order. In 2007, Qi-Ming and Hanqin [10] established

some relationships between the Laplace transforms, the distribution functions, and

the minimal ME representations of ME distributions.

Moreover, Bladt and Neuts [7] have studied the class of ME distributions and

they related ME renewal process through a randomly stopped deterministic flow

model. More recently, Bodrog et.al [9] have given a characterization of ME pro-

cesses, presenting an algorithm to compute their finite dimensional moments based

on a set of required (low order) moments.

The main purpose of this paper is to generalize the class of matrix–exponential

(univariate and multivariate) distributions into the real space, in order to unify

a number of distributions and use them, for instance, for modelling whenever the

multivariate Gaussian is not sufficient. For this goal, we introduce the class of

bilateral ME distributions (distributions with rational moment–generating (MG)

function) for both univariate and multivariate cases, as a natural extension of the

ME and MVME distributions, respectively.

The remainder of this paper is organized as follows. In Section 2 we provide

necessary background on PH and ME distributions. Bilateral ME distributions are

defined in Section 3. In Section 4 we give a generalization of Bilateral PH dis-

tributions considering the multivariate case. The minimal order of Bilateral ME

distributions is analyzed in Section 5. The multivariate case of Bilateral ME is con-

sidered in Section 6. In Section 7 as an application, we study terminal distributions

of Markov additive processes with absorption. Finally, the article is concluded in

Section 8.

2. Background

Let J = {J(t)}t≥0 be a continuous time Markov chain with state space composed

by m transient states {1, 2, . . . ,m} and an absorbing one {m + 1}. Suppose that

J has an initial probability vector (α, αm+1), where α in turn denotes a vector of

dimension m; and a generator matrix given by

(1)

(
T t

0 0

)
,

where T is an invertible (m×m)-dimensional matrix satisfying tii < 0 and tij ≥ 0,

for i 6= j; and t is an m-dimensional column vector such that t = −Te, where e

denotes a column vector with 1 at all entries. Then the time to absorption of J ,

τ = inf{t ≥ 0 : J(t) = m + 1}, is said to be phase–type distributed with initial

probability vector α and sub-generator matrix T. Since the dimension of T is m,

we may write this by τ ∼ PHm(α,T). The probability density function of τ , for

x > 0, is given by f(x) = αeTxt (see Neuts [12, 13]).
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Sometimes it is convenient to allow for an atom at zero as well, in which case

we let αm+1 > 0 denote the probability of initiating the process in the absorbing

state.

In general, let X be a non-negative random variable (r.v.) with density function

b(x) = αeTxt, where α is a row vector, t is a column vector, and T is a matrix,

then we say that X is matrix–exponentially distributed. The triple (α,T, t) is

called a representation for the distribution of X, and we write X ∼ ME(α,T, t).

The Laplace–Stieltjes transform of X, its moments, and reduced moments can be

computed as:

LX(s) = E(e−sX) = αm+1 +α(sI−T)−1t,

Mi = E(Xi) = i!α(−T)−(i+1)t,

µi = E(Xi)
i! = α(−T)−(i+1)t,

where I is the identity matrix of appropriate dimension. Indeed, if X is a strictly

continuous r.v., it has no probability mass at zero, i.e., α(−T)−1t = 1.

The Laplace–Stieltjes transform of an ME distributed r.v. is thus rational. It is

immediate that any r.v. with rational Laplace–Stieltjes transform is also ME, see

[5] for details.

It is also clear that a phase–type distribution is matrix–exponential with rep-

resentation (α,T,−Te). Without loss of generality we can take 0 ≤ αe ≤ 1 and

Te + t = 0 also in the ME case.

3. Univariate bilateral matrix–exponential distributions

We aim to generalize the class of matrix–exponential distributions to a class that

we shall call bilateral matrix–exponential distributions on the entire line (−∞,∞).

If a random variable X has a rational moment–generating function, then that

function can be expressed as the fraction of two polynomials A(s) and B(s) as

(2) MX(s) =
B(s)

A(s)
.

Theorem 3.1. X has a rational moment–generating function if and only if the

continuous part of its density function can be written as follows

(3) fX(x) = α+e
T+xt+1{x>0} +α−e

T−|x|t−1{x<0},

where α+ is a row vector of some dimension m+, T+ is a matrix of dimension

m+×m+, and t+ is an m+-dimensional column vector. Similarly, both the vectors

α−,t−, and the matrix T−, are defined by some dimension m−.

Without loss of generality, we can take α+, α−, T+, and T− real valued such

that 0 ≤ α+e +α−e ≤ 1, and T+e + t+ = T−e + t− = 0.
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Proof. Let X be a random variable with density given by (3), then its MG function,

MX(s) = E(esX), is given by

MX(s) =

∫ ∞

−∞
esxdF (x)

= (1−α+e−α−e) +

∫ ∞

−∞
esx
(
α+e

T+xt+1{x>0} +α−e
T−|x|t−1{x<0}

)
dx

= (1−α+e−α−e) +

∫ ∞

0

esxα+e
T+xt+dx+

∫ 0

−∞
esxα−e

T−|x|t−dx

= (1−α+e−α−e) +α+(−sI−T+)−1t+ +α−(sI−T−)−1t−,

where both terms α+(−sI − T+)−1t+ and α−(sI − T−)−1t− are rational ([5]).

Thus MX(s) is the sum of rational functions in s, and then rational.

On the other hand, let MX(s) be the MG function of X given by (2). We can

write A(s) = A+(s)A−(s) where A+(s) is the polynomial which has roots in the

positive half plane and A−(s) the one which has roots in the negative half plane.

Now define B+(s) and B−(s) (see Appendix A), such that

B(s) = (1−α+e−α−e)(A+(s)A−(s)) +A+(s)B−(s) +A−(s)B+(s),

then the MG function becomes

(4) MX(s) = (1−α+e−α−e) +
B+(s)

A+(s)
+
B−(s)

A−(s)
,

where the functions related to B+(s)
A+(s) and B−(s)

A−(s) are non-negative, having support

on the positive and negative reals, respectively.

If we are in the case where there are no positive (negative) roots, then we define

A+(s) = 1 and B+(s) = 0 (A−(s) = 1 and B−(s) = 0).

Then using Lemma 2.1 from Asmussen and Bladt [5] with the appropriate nota-

tion, we get thatMX(s) = (1−α+e−α−e)+α+(−sI−T+)−1t++α−(sI−T−)−1t−,

which represents the MG function of a r.v. with density given by (3). �

Definition 3.1. We say that X is univariate bilateral matrix–exponential or simply

bilateral matrix–exponential (BME) distributed, if it has rational moment–genera-

ting function, i.e. if E(esX) is rational in s.

We denote by X ∼ BME(α+,T+, t+,α−,T−, t−) when X has the density given

by (3).

Observation 3.1. We have seen that if X ∼ BME(α+,

T+, t+,α−,T−, t−) its MG function can be written as (4), where the degree of

A+(s) = det(−sI − T+) is the dimension of T+, let us say m+, and in the same

way the degree of A−(s) = det(sI−T−) is m−, then

MX(s) = (1−α+e−α−e) +
B+(s)

A+(s)
+
B−(s)

A−(s)

=
(1−α+e−α−e)(A+(s)A−(s))

A+(s)A−(s)
+
B+(s)A−(s) +B−(s)A+(s)

A+(s)A−(s)
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has degree m+ + m−. If B+(s) and A+(s) (B−(s) and A−(s)) have no common

factors, then T+ (T−) has the lowest dimension possible. When both T+ and T−
have the lowest dimension, we say that the representation is of minimal order. The

number m = m+ + m− is the order of the distribution. We will analyze this issue

in more detail in Section 5.

4. A generalization of phase–type distributions

Consider a phase–type distributed random variable τ with an order-m represen-

tation (α,T). We can interpret τ as resulting from a simple reward structure on

a finite Markov jump process {J(t)}t≥0. If the reward rate is 1 in each state, then

the total reward is phase–type distributed.

Now, with the help of Markov reward models, we have the following analysis

of phase–type distributions. We assign a real valued constant r(i), referred to as

the reward rate to each state, and a real valued reward function W (t), to J(t)

such that W (t) describes the reward accumulated by J(t) in the interval (0, t). We

assume W (0) = 0, during the sojourn in state i the amount of accumulated reward

increases at rate r(i), i.e. dW (t)/dt = r(i), when J(t) = i. If r(i) is negative W (t)

decreases during the sojourn in i. The amount of reward accumulated during the

interval (0, t) is

(5) W (t) =

∫ t

0

r(J(s))ds.

If the rewards are different in each state and strictly positive, we obtain a

phase–type distributed random variable, X ∼ PHm(α,∆(r)−1T), where ∆(r)

is the diagonal matrix composed of the reward rates of the transient states r =

(r(1), . . . , r(m))′. Its MG function is given by

(6) MX(s) = αm+1 +α(sT−1∆(r) + I)−1e,

see Ahn and Ramaswami [1].

When the reward vector r is a non-zero real vector, we obtain the class of bilateral

phase–type distributions, which was introduced by Ahn and Ramaswami [1] and it

is denoted in this paper by BPH*.

Definition 4.1. [1] Let X denote the total accumulated reward until absorption,

that is, X = W (τ). X is said to be a bilaterally phase–type distributed random

variable with initial probability vector α, transient generator T, and reward matrix

∆(r). We denote this by X ∼ BPH∗(α,T,∆(r)).

It is clear from the construction of the BPH* class that it has an atom at zero

if and only if αm+1 = 1−αe > 0.

Note that the moment–generating function (6) is rational (see Theorem 3.1), i.e.

X is BME distributed with representation given in the Theorem 4.1 by Ahn and
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Ramaswami [1]. And, even more, it turns out to be also valid for some i such as

r(i) = 0 (see Bladt and Nielsen [8]).

Kulkarni [11] used a similar construction as (5) to define a multivariate phase–

type (MPH*) distributed random variable. In order to define the class of multi-

variate bilateral phase–type distributions, in the following analysis we will present

the construction of the MPH* class and its characterization given in [8].

For j = 1, . . . , k, let rj = (rj(1), . . . , rj(m))′ be k non-negative m-column reward

vectors. And define R = (r1, . . . , rk) the (m×k)-dimensional reward matrix. Now,

like (5) we have

Xj =

∫ τ

0

rj(J(t))dt, 1 ≤ j ≤ k,

and the vector X = (X1, . . . , Xk) is said to have MPH* distribution with represen-

tation (α,T,R).

From Theorem 2.3.2 by Bladt and Nielsen [8], we get that if X ∼ MPH∗(α,T,R),

then 〈X,a〉 ∼ PHm(α,∆(Ra)−1T), for all k-dimensional column vectors a such

that Ra > 0. In addition, the MG function of 〈X,a〉 is given by

(7) M〈X,a〉(s) = αm+1 +α(sT−1∆(Ra) + I)−1e.

Now, let Xj ∼ BPH∗(α,T,∆(rj)), where the m-dimensional column vectors rj

are the rewards associated with the variable Xj . Note that, now the rewards can

be negative. Then, for R = (r1, . . . , rk), we say that X = (X1, . . . , Xk) is multi-

variate bilateral phase–type (denoted by MBPH*) distributed with representation

(α,T,R).

Theorem 4.1. X = (X1, . . . , Xk) ∼ MBPH∗(α,T,R) if and only if 〈X,a〉 ∼
BPH∗(α,T,∆(Ra)), for all k-dimensional real vector a.

Proof. From (6) we can get the MG function of 〈X,a〉, which turns out to be the

same as (7).

On the other hand, since the MG function of X is given in (7) with s = 1 and

a = s, then we get the result. �

For more details of the proof see [8].

Partial differential equations. A computational technique for the distributions

in the MBPH* class is using partial differential equations. Let X = (X1, . . . , Xk)

be in MBPH* with representation (α,T,R). For 1 ≤ i ≤ m, define

F̄i(x1, . . . , xk) = P(X1 > x1, . . . , Xk > xk|J(0) = i),

then

F̄ (x1, . . . , xk) = P(X1 > x1, . . . , Xk > xk)

=
m∑

i=1

αiF̄i(x1, . . . , xk).
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Theorem 4.2. The functions F̄i(x1, . . . , xk), 1 ≤ i ≤ m, satisfy the following

system of simultaneous linear partial differential equations

k∑

j=1

rj(i)
∂F̄i
∂xj

=
m∑

l=1

tilF̄l, 1 ≤ i ≤ m.

See Kulkarni [11] for a proof.

In order to generalize the MBPH* class, we define the following.

Definition 4.2. For X = (X1, . . . , Xk), let MVBME* be the class of distributions

such that the MG function of X is given by

(8) MX(s) = αm+1 +α(T−1∆(Rs) + I)−1e,

then we say that the vector X is MVBME* with representation (α,T,R).

The partial differential equations are still valid when generalizing MBPH* to

MVBME*. In addition, if T is such that (e′i,T,−Te), where ei denotes the i-

th column unit vector, is a distribution for all 1 ≤ i ≤ m, then we also have a

corresponding probabilistic interpretation.

The following theorem gives an explicit formula for calculating cross–moments

of the components of a MVBME* distributed random variable. Bladt and Nielsen

[8] have proved a similar result for a class which generalizes MPH* distributions.

Theorem 4.3. The cross–moments E
(∏k

i=1X
ai
i

)
, where X = (X1, . . . , Xk) ∼

MVBME∗(α,T,R) and ai ∈ N, are given by

α
a!∑

l=1

(
a∏

i=1

T−1∆(Rσl(i))

)
e,

where a =
∑k
i=1 ai, Ri is the i-th column of R, and σ1, . . . , σa! are the ordered

permutations of a-tuples of derivatives, within σl(i) being the value among 1, . . . , k

at the i-th position of the permutation σl.

Proof. We can obtain the cross–moments by

E

(
k∏

i=1

Xai
i

)
= Ma

X(0) =
daMX(s)

dsa11 dsa22 . . . dsakk

∣∣∣∣
s=0

,

where MX(s) is given in (8).

Since

d
dsi

(
T−1∆(Rs) + I

)−1
=
(
T−1∆(Rs) + I

)−1
T−1∆(Ri)

(
T−1∆(Rs) + I

)−1
,

then by induction and substituting s = 0, we get the result. �

For more details of the demonstration we refer the reader to Nielsen et.al [14].
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One example of using bilateral phase–type distributions is considering the Ladder

process, as Asmussen has shown in [2]. The same example but considering matrix–

exponential distributions as ladder height distributions is given by Asmussen and

Bladt [5].

5. Order of bilateral matrix–exponential distributions

The study of matrix–exponential distributions and their representations have

been deeply studied in the last decades. This is due to their important role in

applications in areas like queuing theory, insurance, stochastic modeling, among

others. In this section we will extend this analysis considering BME distributions.

We know in advance that the order of the ME-representation (α,T, t) is given

by the dimension of T, and the smallest order from among the equivalent repre-

sentations is called the degree (see Liefvoort [17]). Also, a representation whose

order is equal to the degree is said to be of minimal order, and this is called the

order of the distribution (He and Zhang [10]). Having these concepts, we will

translate them directly to BME-representations, where the order of the represen-

tation (α+,T+, t+,α−,T−, t−) is given by the dimension of the matrix T+ plus

the dimension of the matrix T−.

Asmussen and Bladt [5] identified some necessary and sufficient conditions for an

ME representation to be minimal and developed a method for computing a minimal

ME representation from an ME distribution. The ME order can play an impor-

tant role in finding minimal representations, He and Zhang [10] introduced certain

Hankel matrices that can be used to compute the ME order of ME distributions.

In this section, we will establish a relationship between the MG function and the

minimal BME representation of BME distributions using Hankel matrices.

For j ≥ 0 the non-centralized moments of X ∼ BME(α+,

T+, t+,α−,T−, t−) are given by

Mj = E(xj)

= M+
j +M−j ,

where M+
j = j!α+(−T+)−(j+1)t+ and M−j = (−1)jj!α−

(−T−)−(j+1)t−. The reduced moments are given by

(9) µj =
Mj

j!
=
M+
j

j!
+
M−j
j!

=: µ+
j + µ−j ,

where µ+
j > 0, for all j, and µ−j > 0 if j is even and µ−j < 0 if j is odd.

Moreover, the MG function of X is rational and has a power series expansion of

the form MX(s) =
∑
j µjs

j , where µj is the j -th reduced moment. Then by (9),

we get MX(s) =
∑
j µ

+
j s

j +
∑
j µ
−
j s

j .
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Let m the minimal order of the distribution, then its MG function can be written

as follows

MX(s) =
bms

m + bm−1sm−1 + · · ·+ b1s+ 1

amsm + am−1sm−1 + · · ·+ a1s+ 1
=
B(s)

A(s)
,

that is well defined in a strip containing the imaginary axis.

Since µ0 = 1, we get that

(10)
B(s)

A(s)
= 1 +

∞∑

j=1

µjs
j ,

multiplying (10) by A(s) and equating coefficients, we get that the equations cor-

responding to powers m+ 1, . . . , 2m of s satisfy the following system

−µm = Hmam,

where µm = (µm+1, . . . , µ2m)′, am = (am, . . . , a1)′, and Hm is the (m × m)-

dimensional Hankel matrix given by

(11) Hm =




µ1 µ2 µm

µ2 µ3 µm+1

...
...

. . .
...

µm µm+1 µ2m−1



,

with Hankel determinant defined by

(12) φm = det(Hm).

The equation system must have a unique solution due to the uniqueness of the

MG function and the assumption of minimality, then Hm must have full rank, i.e.

φm 6= 0. On the other hand, considering the equations corresponding to powers

m+ 1, . . . , 2m+ 1 of s, we get that

0 = Hm+1a
∗
m

where 0 is the (m+1)-dimensional column vector of zeros and a∗m = (am, . . . , a1, 1)′.

Note that Hm+1 has rank m, since the determinant of the lower-left m ×m sub-

matrix is different from zero. Hence φm+1 = 0.

By continuation of the argument we see that rank(Hl) = m for l ≥ m, this

means that φl = 0 for l > m.

Thus the minimal order of the BME distribution can be checked through the

verification of the determinants to be the highest index of the determinant for

which it is different from zero. Note that some determinants φl for l < m could be

zero or non-zero. See also Liefvoort [17] and He and Zhang [10].

Example 5.1. Suppose X is a random variable with density given by

fX(x) = pe−x1{x>0} + (1− p)ex1{x<0}, p ∈ (0, 1).
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With the notation presented before, we have that m+ = 1 and m− = 1. The

MG function is given by

MX(s) =
(1− 2p)s− 1

s2 − 1
,

and the Hankel determinants are given by

φ1 = 2p− 1, φ2 = 4p2 − 4p, φl = 0, for l > 2.

Example 5.2. Suppose X has the following density

fX(x) = p

(
2

3
e−x(1 + cos(x))

)
1{x>0} + (1− p)ex1{x<0},

with p ∈ (0, 1).

Then we have that m+ = 3 and m− = 1. The MG function of X is given by

MX(s) =
1

3

(−7p+ 3)s3 + (13p− 9)s2 + (−10p+ 12)s− 6

s4 − 2s3 + s2 + 2s− 2
,

and the Hankel determinants are given by

φ1 = (5/3)p− 1

φ2 = (9/4)p2 − (13/6)p

φ3 = (307/432)p3 − (103/144)p2

φ4 = −(25/216)p4 + (25/216)p3

φl = 0, for l > 4.

6. Multivariate bilateral matrix–exponential distributions

We will define the class of multivariate bilateral matrix–exponential distributions

as a natural extension of the univariate case.

Definition 6.1. A random vector X ∈ Rk of dimension k is multivariate bilateral

matrix–exponential (MVBME) distributed if the joint moment–generating function

E(e〈X,s〉), s ∈ Rk, is a multidimensional rational function.

Let X ∈ Rk. In order to prove our main characterization we proceed by deriving

the following two lemmas.

Lemma 6.1. Assume that 〈X,a〉 has a BME distribution for all a ∈ Rk \ 0.

Then the (minimal) order m(a) of the univariate BME distribution for 〈X,a〉 is a

bounded function of a.

Proof. Let φi(a) denote the ith-order Hankel determinant (see (12)) corresponding

to 〈X,a〉, and let Ci = {a ∈ Rk \ 0 : φj(a) = 0, j ≥ i}. For a1 ∈ Rk \ 0 we let

m1 = m(a1), then φi(a) = 0 for i > m1.

The ith-order Hankel determinant is a sum of monomials of order i(i + 1) and

hence a continuous function. Thus there exists a neighborhood B around a1 for

which φm(b) 6= 0 and b ∈ B. Hence the order of the BME distribution of 〈X,b〉 is

at least the order of 〈X,a〉 for b ∈ B.
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Since φm1
is a non-vanishing k-dimensional polynomial, then Cm1

has k-dimensional

Lebesgue measure zero. Suppose there exists a2 ∈ Rk \ 0 such that m2 = m(a2) >

m1, then a1 ∈ Cm2 , and Cm1 ⊆ Cm2 .

If the order of the MG function for 〈X,a〉 is unbounded, then there exists a

sequence ai with mi = m(ai) such that mi ↑ ∞, and the set C = ∪∞i=1Cmi has

k-dimensional Lebesgue measure zero, contradicting the assumption of 〈X,a〉 being

BME distributed (of finite order). �

The next lemma shows that the rational MG function is of a particularly simple

form.

Lemma 6.2. Assume that 〈X,a〉 has a univariate bilateral matrix–exponential

distribution for all a ∈ Rk \ 0, and suppose the order of the distribution of 〈X,a〉
is bounded by some m. Then, we may write the MG function of 〈X,a〉 as

b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1

ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1
,

where the terms b̃j(a) and ãj(a) are sums of k-dimensional monomials in a of

degree j.

Proof. Since 〈X,a〉 ∼ BME its MG function can be written as

(13)
b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1

ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1
,

where b̃i(a) and ãi(a) (ãm(a) 6= 0) are functions in a.

Let ãi(a) = Pi(a)+Ei(a), where Pi(a) is a sum of all, if any, i-th order monomials

appearing in the expression for ãi(a), while Ei(a) = ãi(a)− Pi(a).

Let µm(a) = (µm+1(a), . . . , µ2m(a))′ and Hm(a) the Hankel matrix (11) now

depending on a.

Now, since

(14)
b̃m(a)sm + b̃m−1(a)sm−1 + · · ·+ b̃1(a)s+ 1

ãm(a)sm + ãm−1(a)sm−1 + · · ·+ ã1(a)s+ 1
= 1 +

∞∑

j=1

µj(a)sj ,

we get the following system of equations

−µm(a) = Hm(a)Pm(a) +Hm(a)Em(a),

where Pm(a) = (Pm(a), . . . , P1(a))′ and Em(a) = (Em(a),

. . . , E1(a))′.

For 1 ≤ j ≤ m, µm+j(a) is a sum of monomials of order m + j as the corre-

sponding terms of Hm(a)Pm(a). Note that we can re-write Ej(a) as E>j(a) +

Ejirra(a) +Ejrat(a), where E>j represents the sum of monomials with order greater

than j, and Ejirra (respectively Ejrat) is the sum of irrational (rational) monomials

in the j-th equation. Then, we get that Em(a) = E>m(a) + Eirra(a) + Erat(a).
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It is easy to see that Hm(a)Em(a) does not contain monomials of order m+ j,

since:

• Hm(a)E>m(a) has monomials of order greater than m+ j,

• Hm(a)Eirra(a) has irrational monomials,

and for the rational case, i.e. Hm(a)Erat(a) we refer the reader to [8] to see a proof

that does not have monomials of order m+ j. Then, by coefficient matching we get

that

Hm(a)Em(a) = 0.

This implies that Em(a) = 0, since Hm(a) is non-singular. Hence all ãi(a) are

sums of monomials of order i. From (14) we can also see that b̃i(a) are sums of

monomials of order i. �

Our theorem which characterizes the class of MVBME distributions is the fol-

lowing.

Theorem 6.1. A vector X follows a multivariate bilateral matrix–exponential dis-

tribution, i.e. X ∼MVBME, if and only if 〈X,a〉 ∼ BME for all a ∈ Rk \ 0.

Proof. Let X ∼MVBME, then E(e〈X,sa〉) is rational in sa for s ∈ R and a ∈ Rk\0.

Since

E(e〈X,sa〉) = E(es〈X,a〉),

then E(es〈X,a〉) is rational in s, i.e. 〈X,a〉 ∼ BME.

On the other hand, suppose that 〈X,a〉 has rational MG function, for all a ∈
Rk\0. Then we know that the MG function can be expressed in the form of Lemma

6.2. By setting s = 1 this rational function coincide with the multidimensional MG

function of X at a. �

Example 6.1. Wishart distribution.

The Wishart distribution was formulated by John Wishart in 1928, [18]. Let

X1 = (xi1)1≤i≤p, X2 = (xi2)1≤i≤p, . . . , Xν = (xiν)1≤i≤p be p-dimensional random

column vectors distributed independently according to the p-dimensional Normal

distributions Np(µ1,Σ), . . . ,Np(µν ,Σ) with mean vectors µ1 = (µi1)1≤i≤p, . . . ,

µν = (µiν)1≤i≤p (respectively), and a common variance–covariance matrix Σ. The

distribution of a (p × p) symmetric random matrix W = (wij)1≤i,j≤p defined by

wij =
∑ν
t=1 xitxjt is the real non-central Wishart distribution Wp(ν,Σ,Λ), where

Λ = (λij)1≤i,j≤p is the mean square matrix defined by λij =
∑ν
t=1 µitµjt. The

Wishart distribution for Λ = 0 is said to be central and is denoted by Wp(ν,Σ).

The moment–generating function of the central Wishart distribution (Numata

and Kuriki [15]) is given by

(15) MW (Θ) = E[etr(ΘW )] = det( I− 2ΘΣ)−
ν
2 ,
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where Θ = (θij)1≤i,j≤p is a symmetric parameter matrix, and tr(·) is the trace of

a matrix.

If we define the following vectors in Rp2

s = ((θi1)1≤i≤p, (θi2)1≤i≤p, . . . , (θip)1≤i≤p),

X = ((wi1)1≤i≤p, (wi2)1≤i≤p, . . . , (wip)1≤i≤p),

then E(e〈s,X〉) is given by (15), which is a rational function whenever ν is an even

integer number. This means that X ∼ MVBME.

7. Markov additive processes with absorption

Let Y = (Y1, . . . , Ym) ∼ MVBME*(α,T, I), where T is of dimension m. When

the distribution is in the MBPH* class, then it can be interpreted as the joint

distribution of the sojourn times in each of the transient phases before absorption.

Now we consider a multidimensional reward structure X = (X1, . . . , Xk) such

that

Xj =
m∑

i=1

Bij , j = 1, . . . , k

where Bi = (Bi1, . . . , Bik) ∼ Nk(Yir(i), YiΣ(i)), with Σ(i) = σ(i)σ(i)′ for some

σ(i), i = 1, . . . ,m.

The joint moment–generating function of X is given by

MX(s) = E(e〈s,X〉)

=

∫ ∞

−∞
. . .

∫ ∞

−∞

m∏

i=1

exp

(
yisr(i)′ + yi

1

2
sΣ(i)s′

)
dF (y),

which is the moment–generating function of Y evaluated in θi = sr(i)′ + 1
2sΣ(i)s′,

i.e. (see (8))

MX(s) = α
(
T−1∆(θ) + I

)−1
e,

where θ = (θ1, . . . , θm).

Thus, the moment–generating function is obviously rational so X is MVBME

distributed.

Note that all these arguments are also valid for the MBPH* class (see (7)), where

the probabilistic interpretation is easier. In the following analysis we will present

an application of this class considering Markov additive processes.

Analysis of terminal distributions with added multidimensional Brown-

ian components. Let J = {J(t)}t≥0 be an irreducible Markov (jump) process as

given in Section 2, i.e. with finite state space {1, . . . ,m,m+1}, where J eventually

get absorbed at state {m + 1}. The infinitesimal generator matrix of J according

to E = {1, . . . ,m} and {m+ 1} is given by (1).
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Now, define the real-valued process W = {W (t)}t≥0 as evolving a Brownian

motion with parameters r(i) (drift) and σ2(i) (variation) during intervals when the

phase equals i ∈ E, such as

(16) W (t) =

∫ t

0

r(J(s))ds+

∫ t

0

σ(J(s))dB(s),

where B is a standard Brownian motion. This is in fact known to be the most

general Markov additive process on J with skipfree (continuous) paths ([4]). We

assume that all states in E communicate and that the absorption time, say τ , is

finite a.s. Then, W gets absorbed as well at W (τ), the terminal value.

The case of all σ2 being equal to 0 corresponds to a fluid model, and when

σ2(i) > 0 for all i, we say that corresponds to the Brownian case. Asmussen [4] has

proved that the class of terminal distributions for both cases fluid and Brownian,

is a natural way to approach the class BPH*. Indeed, in Corollaries 1 and 3 of [4],

we can find phase–type representations.

For the multivariate case, let us define X = (X1, . . . , Xk) where each Xn, 1 ≤
n ≤ k, is given by

Xn =

∫ τ

0

rn(J(t))dt+

∫ τ

0

σn(J(t))dB(t),

then we can write X as follows

(17) X =

∫ τ

0

r(J(t))dt+

∫ τ

0

σ(J(t))dB(t),

where B is a k-dimensional standard Brownian motion. Thus, X evolves a k-

dimensional Brownian motion with drift vector r(i) and diffusion matrix Σ(i) =

σ(i)σ(i)′.

In Section 4, we analyzed the phase–type representation of X for the fluid model,

i.e. when Σ(i) = 0 for all i. And when Σ(i) is positive definite (Brownian model),

the phase–type representation was already given in this section.

8. Conclusion

In this article we have generalized the class of matrix–exponential distributions

considering a general support. For this purpose we defined the new class called Bi-

lateral ME distributions (distributions with rational moment–generating function).

We also analyzed the multivariate case, which domain is the real space. Our main

characterization of this is based on the one presented in [8] for multivariate ME

distributions.

Moreover, we have analyzed and used the theory already written about bilateral

phase–type distributions ([1]) in order to give a generalization of them for the

multivariate case. Indeed, we have applied this into Markov additive processes. We

believe that these distributions have high use in areas like statistics, finance, and

computer science, where general reward rates may have advantages.
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A more comprehensive multivariate analysis of this class is needed as well as the

estimation of their parameters.
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Appendix A. Existence of B+ and B−

In the following, we will give an analysis of the existence of B+ and B− assuming

that we do not have an atom at zero.

Suppose that the polynomial A(s) can be written as A(s) =
∏r
j=1(s− λj)νj , for

some r such as
∑r
j=1 νj = deg(A), and whose poles are given by λj . Then, for

Ak(s) =
∏

j 6=k
(s− λj)νj =

A(s)

(s− λk)νk
, k = 1, . . . , r,

we get that

(18)
B(s)

A(s)
=

r∑

j=1

Cj(s)

(s− λj)νj
,

where the polynomial Cj(s) is the Taylor polynomial of B(s)
Aj(s)

of order νj − 1 at the

point λj , i.e.

Cj(s) :=

νj−1∑

k=0

1

k!

(
B(s)

Aj(s)

)k
λj(s− λj)k.

Taylor’s theorem (in the real or complex case) provides a proof of the existence

and uniqueness of the partial fraction decomposition, and a characterization of the

coefficients. If we define

A+(s) :=
r∏

j=1

(s− λj)νj1{λj>0}, A−(s) :=
r∏

j=1

(s− λj)νj1{λj<0},

From (18) we get

B(s)

A(s)
=

r∑

j=1

Cj(s)

(s− λj)νj
1{λj>0} +

r∑

j=1

Cj(s)

(s− λj)νj
1{λj<0}

=
B+(s)

A+(s)
+
B−(s)

A−(s)
,

where

B+(s) :=

r∑

j=1

Cj(s)1{λj>0}

r∏

k 6=j
(s− λk)νk1{λk>0},

B−(s) :=
r∑

j=1

Cj(s)1{λj<0}

r∏

k 6=j
(s− λk)νk1{λk<0}.
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