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Abstract

All real structures are inherently nonlinear. Whether a structure exhi@ir or nonlinear behavior, depends
mainly on the excitation level. So far no unequivocal framework for érpemtal detection, localization, and
characterization of structural nonlinearities from dynamic measuremeists.ekhe present study suggests
a framework for the detection of structural nonlinearities. Two methodsldtection are compared, the
homogeneity method and a Hilbert transform based method. Based on tleeseettods, a nonlinearity
index is suggested. Through simulations and laboratory experiments it isndgated, for a simple but
representative nonlinear structure, that both detection methods are algig2¢d even weak nonlinearities,
and that the nonlinearity index provides a sensitive and robust medsupealmearity. For a range of input
force amplitudes, it is shown that it is possible to estimate a systems linear adirteaoregimes in terms of
input amplitude, and asses the strength of the nonlinearity.

1 Introduction

Systems are often referred to as being linear or nonlinear. Howeveyst#m are inherently nonlinear,
though for many systems it is possible to linearize around an operating pbenergy is pumped into a
system with increasing intensity, the system will at some point start behawimigearly, e.g. the system
might break or collide with other systems. In essence a system behaviligeaoly is a system where the
response is not linearly related to the input. Hence a linear system is anbemveathematical abstraction.
Linear systems holds many convenient features: Linear systems haverakyquilibrium position, the

principle of super position is valid, and many linear models are more or lessaltkelescribed by well

proven theories. Nonlinear systems typically have multiple equilibria, both stadlenstable, the principle
of super position is not valid, the system might exhibit chaotic motions, aret aralytic solutions are only
available for a few special cases.

Tools for detection, quantification, localization and characterization ofimearities in engineering struc-
tures from experimental observations would be useful in a number titappns, e.g.:

e Modd validation and improvement Methods for detecting and quantifying nonlinearities could help
validating linear models and establishing ranges of validity of linear models. Wittoarkrange of



validity it should be possible to determine whether to use a linear or nonlineaglmedrthermore,
identified nonlinearities can be implemented in nonlinear models, thus improving thelsno

e Sructural health monitoring Many types of structural damage and malfunctions will manifest them
self as structural nonlinearities. One example of this is breathing crabish vg essentially a bilinear
stiffness nonlinearity. Reliable methods for detection, quantification antidatian of nonlinearities
from operational measurements could reduce inspection times and en&bieitets to detect damage
otherwise not visible on the structure.

e Sensor fault detection Accelerometers and other dynamic transducers are widely used in indoistry
measure and monitor the dynamics of structures. The measurements amdiahlg when the sensors
are working properly. A malfunctioning sensor, e.g. a sensor thatily pietached from the structure
will typically act as a structural nonlinearity. Detection and localization metbhodkl enable users to
pinpoint the defect sensor.

The first prerequisite for such applications is the ability to detect struchunalinearities experimentally
from dynamic measurements, which is the focus of this present study.

In [1] a survey of the most common methods for identification of structuralinearities is given. Other
suggested methods include [2] and [3] in which spectral densities atefoseetection, [[4] suggests a
detection method based on reciprocal modal vectors, [5] suggests mpattegnition method| [6] and][7]
describe how the Hilbert transform can be used for detection,[andh{B[H uses the concept of nonlinear
normal modes for detection and characterization of nonlinearity.

For this present study the Hilbert transform based method and the hoeiggmethod are selected. Mainly
because of their practical applicability, but also because they allow a fvayamtifying the nonlinearity
by introducing a nonlinearity index. The two methods will first be tested on alatinan model, to gain
knowledge of the performance in a noise free environment. The methetisear applied to an experimental
system to gain knowledge of the methods performance in a more realistic setting.

First the homogeneity method, Hilbert transform based method, and naitlriadex are introduced, then
modeling and results from both simulated and experimental study are progia@dinally discussed.

2 Methods for Detection and Quantification

2.1 The Homogeneity Method

The simplest approach for the detection of structural nonlinearity is basedploiting that the frequency
response function (FRF) of linear systems is independent of input amglibadhe following this feature is
referred to as theomogeneity of a systeml[[lL]. In contrast to linear systems, the FRF of a nonlineamsyste
depends on the input force magnitude. E.g. a system with a hardeningrmaminearity will exhibit an
increase of the resonant frequencies with increasing input force.

A large challenge when using the homogeneity condition for detection is quiagtithe FRF distortion
and providing a measure of the nonlinearity level with physical meaning. dritérature there seems
to be no unequivocal way of doing this. Here we present a suggestigedion cross correlating FRFs.
Conventionally the cross correlatidt),, () of two functionsa(t) andb(t) in time domain is defined as:

Rup(7) = / T a(Ob(t + F)dt )

— 00



In the present application, the cross correlation is used in the freqaenegin with two FRFs ¥ (w) and
HY(w):

Ry e (Aw) = /_ T () HE (0 + Aw)dw 2)

where H (w) and H'(w) are FRFs obtained with high and low level excitation, respectively. Thescro
correlation is a measure of how closely correlated the two FRFs are astifuof a frequency shiff\w.
Using the normalized cross correlation a valig;: ;2 (A®) = 1 implies that the two FRFs are identical
at lag= A&. The cross correlation is normalized such that the auto correlations #yeatihw = 0.The
squared normalized correlation coefficient is a measure of how much wditiaece in the two functions that
is shared. Using the cross correlation with the FRFs of a given systeiteaat two input levels, provides
information on how the FRF is distorted in the applied input range. If the squanoss correlation of the
two FRFs is 1 at a lag of O Hz, then there is no FRF distortion in the applied iapgerdue to nonlinearity.
If there is no FRF distortion, the system behaves linearly in the input rabigee the FRF distortion is a
direct indication of nonlinearity, the squared cross correlation coetticielagAw = 0 will be used as a
guantitative measure of the strength of the nonlinearity in the applied inpye rdme value oAw giving the
highest correlation coefficient is an estimate of the shift of resonaagadncy in the input amplitude range.
The squared normalized cross correlation coefficient will in the followiagdferred to as the nonlinearity
indexdg,:.

010 = || Rygr i (0)|[7 (3)

where|| Ry .|| is the normalized cross correlation coefficieRt: is the FRF of the system excited at a
low level, andH 7 is the FRF of the system excited at a high level.

Note thatdy,, will only indicate if the system is behaving linearly or nonlinearly in the appliedigmpli-
tude range. Also, since the nonlinearity index is based on cross corgelRiRs, the index will have high
sensitivity to nonlinearities shifting the resonant frequency, and lesitiséy to nonlinearities, which only
scales the FRF magnitude.

2.1.1 Steps of the Homogeneity Method

1. Excite the system at two input levels within the operating range of the steuahd measure the
response.

2. Calculate the FRFs from low level and high level excitation. The low antl leigel excitation should
reflect the operating range of the structure. The Low level excitationlghme sufficiently high, so
that the coherence of averaged FRFs is close to unity in the applied fsgrastge. The high level
excitation should reflect the highest operating level of the system.

3. Calculate and evaluate the cross correlation of the two FRFs

(a) Ifthe nonlinearity measuig;, exhibits values below unity, then the system exhibits nonlinearity
in the applied excitation range.

(b) The shift of resonant frequency can be estimated as the valdevdjiving the highest cross
correlation coefficient.



2.2 The Hilbert Transform Based Method

The Hilbert transform is an integral transform, as the Fourier transforieontrast to the Fourier transform,
the Hilbert transform maps functions into the same domain.The Hilbert transf6r of a FRFH (w) is
defined in [6] as:

H(H(w)) = Z;Pv/m H("gdg 4)

where PV denotes the Cauchy principal value of the integral, which isedesidce the integrand has a
singularity. The Cauchy principal value is used to estimate the value of imprttegrals, so that for any
function f(x) with a singularity atc = b:

c b—e c
PV/ f(z)dx = EliI(J)a+ { (x)dx + . f(:z:)da:} (5)

If the Hilbert transform is applied to a FRE,(w), of a linear system, the transform will relate the imaginary
part of the FRF to the real part/[6]:

Re(G(w)) = —%PV /_ b Wd@ (6)
> Re(G(w))

Im(G(w)) = %PV / 40 @)

—00

Q—w

Hence the Hilbert transform of the FRF of a linear system will return tharaidg-RF, the real part of the
transformed FRF is the imaginary part of the original FRF and vice vegaation [6) and(7) are referred
to as the Hilbert transform pairs. For nonlinear systdms (B) - (7) is nurgély valid, hence the Hilbert
transform of the FRF of a nonlinear system will return a distorted verdigimeo-RF. The distortion, hence
the level of nonlinearity is quantified in a similar manner as for the homogeneityohatking the squared
cross correlation coefficient:

Sri = || Ryer (0)]? (8)

where||R || is the normalized cross correlation coefficieftt,is the FRF of the system an#” is the
Hilbert transform ofH, and:

Ryp(Aw) = /_OO H(w)H (w + Aw)dw 9)

Note thatd; will only indicate if the system is behaving linearly or nonlinearly at the applipdtiampli-
tude.

2.2.1 Steps of the Hilbert Transform based Method

1. Excite the structure at an input level in the upper range of the thetoerange of the structure, and
measure the response.

2. Calculate the FRHE{, and its Hilbert transforr.
3. Calculate the nonlinearity index;;

(a) If o, < 1, then the system exhibits nonlinearity at the applied excitation amplitude.



2.3 The Methods Compared

The homogeneity methods has the advantage of providing a physical meddhbe change in system be-
havior in a given input rangéy, will indicate how the system behaves in a certain amplitude range. On the
other hand, the homogeneity method requires two series of excitation, aghéesHilbert transform based
method only requires one.

3 Benchmark Model

To test and compare the performance of the methods, a mechanical bekohmazl was used. This model
constitutes the raw concept of what was realized in the laboratory, andifséchin a numerical model.

The N dof lumped mass model, cf. Figuké 1, is essentially linear and was chosanseeit is simple

and resembles a variety of structures of engineering interest. Nonlinga@ltier;, ©;), of different types

can be added to the underlying linear system and tested. The implementatienrafriinearities in the
simulation and experimental model, respectively, is given in the sddtion[4 drftekSnathematical model of
the benchmark model is:

MX + Cx + KX + q(z,2) = f (10)

whereM is the mass matrixC the damping matrixK the stiffness matrixq(z, ) a vector containing
nonlinear termsf = f(¢) the forcing vector and = x(¢) € R the deflection vector.

4 Simulation Study

4.1 Simulation model

To evaluate the detection methods, a simulation model based on Eqlation (10eiménfed. Excitation of
the model is constant amplitude swept sines. Three types of nonlinearéiea@emented: cubic stiffness
(ex?), cubic dampingdi?), and a nonsmooth stiffness nonlinearity{), whereez; is defined as:

€e=0, x <Tsop (11
e=10% ki, x; < Lstop (12)

All simulations are carried out with the parameters given in Table 1 using M4 ODE45 solver.

X X X Xit1

7 F: Fy(©) F: F.(0 ': Fi(v F: Fa
/ kl ) ko ki ki+1
S—m— SV V— — M — —M—
—i- e e— = ™ —it = —it Ml
/ C] CQ Ci Ci+1
Y J - - -

0O, (x,,x)) O, (x5 %) 0, (x;,x,) O (X1, X4)

Figure 1: Mechanical model, where:; is mass of dofi, k; and¢; is the linear stiffness and damping connecting
the dof’s in the modelg; is the displacement of théth dof, f;(¢) is the applied force acting on dof Q;(z, ) is a
grounded nonlinearity acting on dafandXN is the number of dofs in the system.



Table 1: Parameters for simulations

Sampling frequency 500 Hz
Input sweep range 0to 50 Hz
Sweep rate 0.5 Hz/s
Discrete masses; 1 Kg
Linear stiffness; 1500 N/m
Damping coefficient; 1
FRF estimator H1

To compare the performance of the two methods, a frame of referenceoidlingd. Both methods are tested
at different levels of nonlinearity. Therefore a measure of the noniigdavel is needed. Equatioh ([LO) can
be multiplied byx” and terms expressing the instantaneous power of the linear stiffness/deonsies and
the total power of the nonlinear forces can be identified:

Hin,damp Plin,stiff Pnonlin

—~ =
Mk + xTex + xTkx +xTq(z, ) = xT'f (13)

In the following thelevel of nonlinearity in the systems being simulated, is defined as the fraction of the root
mean square (RMS) over time of the power terms:

o RMS(Pnonlin{damp/stiff})

n= (14)
RMS(-Plin{damp/stiff})
where
1 tend
RMS(Pnonlin/lin{damp/stiff}) = m /t Pnonlin/lin{d(zmp/stiff}dt (15)

The results of the simulations with smooth nonlinearities will be evaluated usinghe results for the
nonsmooth nonlinearities will be plotted as a function of the maximum displacerhtm dof associated
with the nonlinearity.

4.2 Simulation Results

Only results for a 3-dof system are presented. Systems with up to 9 dafsested, but the results from the
3-dof case are representative for all the tested cases. The metkadstad on the same data sets, and the
results are therefore directly comparable.

4.2.1 The Homogeneity Method

Figure[2 shows results obtained with the Homogeneity method applied to a sy#tem eubic stiffness
nonlinearity. It is evident thaiy,, diverges from unity at approximately> 10~2-5. Hence the nonlinearity
is detected at this magnitude of nonlinearity.



Figure[3 shows the results obtained with the Homogeneity method applied to msydlea nonsmooth
nonlinearity. A very clear limit between the system’s linear and nonlinear regrapparent. When the
displacement amplitude does not exceed the position of the stopdthes 1. When the stop is hitjz,
decreases radically. The lowest valuesg gf are found when using the FRF based on the output gathered at
the dof associated with the nonlinearity.

Figure[4 shows results obtained with the Homogeneity method applied to a sydtem eubic damping
nonlinearity. It appears that the decreasé@f from unity occurs at a much higher valuemptompared to
the case with the smooth stiffness nonlinearity. This is because the resgueaicis not shifted as with the
stiffness nonlinearity case. Since the FRF is not shifted but only lowenedgnitude, the cross correlation
coefficient will not decrease as much as in the stiffness nonlinearity case
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Figure 2: Nonlinearity indexdg, as a function of nonlinearity leve]. Simulation results with the homogeneity
method applied to a 3-dof system with fixed input leveld ahd50 N and increasing magnitude of cubic nonlinearity
€;, at position: (a) dof 2 (b) dof 3. The nonlinearity index isotdated based on all possible FRE$;, (—), Hi2 (- - ),
andHy3 (— - —)
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Figure 3: Nonlinearity indexdy, as a function of the maximum displacement of the dof assediafith the non-
linearity. Simulation results from the homogeneity metlapgblied to a 3 dof system with hard stopzat= 0.5 and
increasing input force. (a) Gap at dof 2, (b) Gap at dof 3. Towmlinearity index is calculated based on all three
possible FRF's: Hy1 (=), Hi2 (- - -), andHy3 (— - —). (——) indicates position of hard stop
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Figure 4: Nonlinearity indexdz, as a function of nonlinearity leve}. Simulation results from the homogeneity
method applied to a 3 dof system with an increasing cubic dagmuonlinearity. (a) Nonlinearity at dof 1, (b) Nonlin-
earity at dof 3. Swept sine excitation with amplitude 1 and\&Wtons at dof 1. The nonlinearity index is calculated
based on all three possible FRFB;, (—), His (- - -), andHy3 (— - —)

4.2.2 Hilbert Transform Based Method

Figurel® shows the results from the system with a cubic stiffness nonlineadtfFiguré b with a nonsmooth
stiffness nonlinearity. From Figufé 5 it is seen that the drofyinoccurs at approximately = 10!, This

is a larger value than the one obtained using the homogeneity method, hemtitbéretransform method

is not as sensitive as the homogeneity method. It is also noted that the drgpisinot as distinct as for
the homogeneity method. Figure 6 shows a dropgfwhen the deflection amplitude of the dof associated
with the nonlinearity reaches; = 0.5, but the drop is far from as distinct as for the homogeneity method.
For the case with the nonlinearity associated with dof 2, the drop is hardlific#g.
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Figure 5:Nonlinearity index of Hilbert transform based method apglio a 3-dof system with increasing coefficient
of cubic stiffness nonlinearity,; as a function of nonlinearity leve). Simulation perform with constant force and
increasing coefficient of cubic term. (a) Nonlinearity af 8p(b) Nonlinearity at dof 3.H; (), Hi2 (- - ), andHy3
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Figure 6:Nonlinearity index of Hilbert transform based method aggblio a 3-dof system with gap nonlinearity placed
atz; = 0.5m. Simulations performed with increasing force. (a) Nordinty at dof 2, (b) Nonlinearity at dof 31,
(=), Hi2 (- - ), andHy3 (— - —). Position of hard stop-{—)

5 Experimental Testing

To asses the practical capabilities of the detection methods, the methodgpised #0 experimental data.

5.1 Experimental model

The experimental setup is shown in Figlife 7. The accelerations are meéadweach of the three masses
attached to the clamped beam, and a vibration shaker provides forceat Tois setup is chosen because
the behavior of the system in the frequency range covering the lowestthodes can be described by 13

In the simulated study a linear swept sine excitation was used, but duedrartimitations an exponential
sweep is used in the experimental case. Parameters for the experinginéarie Tablé 2, and the equipment
used is listed in Tablgl 3.

In the experimental tests the same types of stiffness nonlinearities as in the simsiatlp will be realized,

smooth and nonsmooth. The implementation of these two nonlinearities is shownie[Ely The smooth
nonlinearity is realized using opposing neodymium magnets whereas th@oaotimsnonlinearity is realized
using a one sided mechanical rigid stop with an attached rubber piece tohighiftequency components
induced by the impacts.

If results should be directly comparable to the simulation study, the smooth nanityna the experimental
setting should be cubic. This is ensured by testing the static stiffness of stexrsyith and without the
smooth nonlinearity attached, using a laser displacement sensor andnaciyeter, see Figufe 9a)

Table 2: Parameters for experimental tests of detection methods

3 dof system
Excitation type Exponential sweep
Sweep rate 0.036 decades/sec
Excitation duration 64 sec
Excitation dof 1
Frequency range 0-100 Hz
Frequency lines 6400




Table 3: Equipment

Description Official name
Accelerometers| B&K: 4507B, 4507, 4508, 4399
Force transducey Endevco: 2312 + B&K: 2646
Shaker B&K 4810
Front end B&K Slots: 3109, 3032A
Software B& K Pulse
Fixtures Aluminium
Masses Aluminium
Beam Hardened stell 400 x 35 x 1.5 mim

Figure 7:Experimental model, top-view.

From Figurg 9(B) it is seen that with no nonlinearities attached, the stiffadisgar in the tested displace-
ment range, whereas with the magnets attached (Higuile 9(c)) the stiffhtres system appears to be cubic.
The linear domain indicated in Figyre 9(c) is defined as the range in whichigtdtline can be fitted to the

data with a correlation coefficient larger tta99.

5.2 Experimental Results
5.2.1 Homogeneity Method

Figure[10(d) anfl 10(p) showdg;, as a function of the displacement when the homogeneity method is ap-
plied to a 3 dof system with a smooth stiffness nonlinearity at dof 2 and a 3ydt#m with a nonsmooth
nonlinearity at dof 2, respectively.

With the smooth nonlinearity attached it appears that is approximately unity at displacements below 7
mm. At displacements larger than 7mm, d, drops, hence indicating nonlinear behavior. This displace-
ment corresponds approximately to the limits of the estimated linear domain defiRignhie9.

From Figure[ T0(B) it seen thaty, drops when the hard stop is hity = 7mm), indicating nonlinear
behavior at displacements larger than the distance to the stop. The laxgat dy, is seen whery, is



(b)

Figure 8:Realization of nonlinearities: a) Smooth nonlinearity,dpposing magnets, b) nonsmooth nonlinearity, by

hard stop with rubber.
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Figure 9:a) Experimental setup for static test without nonlineabity-orce measured by dynamometer as a function
of displacement from static test without nonlinearity cydgmeasured by dynamometer as a function of displacement
from static test with smooth nonlinearity attached. Meadwalues (- -), Measured values, with linear stiffness

subtracted€ + +)
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Figure 10:Nonlinearity indexdy, as a function of displacement when the homogeneity methplieapto a 3 dof
system a with: a) A smooth nonlinearity (magnets) at dof 2nsEant low level excitation and increasing high level
excitation. Low level amplitude (RMS): 0.80 N. b) A nonsmiwabnlinearity (hard stop). Constant low level excitation
and increasing high level excitation. Stop at dof 2 (distatacstop: 7 mm), low level amplitude (RMS): 0.81 Ny,
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Figure 11:Nonlinearity indexdy; as a function of displacement when the homogeneity methplieaipto a 3 dof
system a with: a) A smooth nonlinearity (magnets) at dof 2nsfant low level excitation and increasing high level
excitation. Low level amplitude (RMS): 0.80 N. b) A nonsmivapbnlinearity (hard stop). Constant low level excitation
and increasing high level excitation. Stop at dof 2 (distatecstop: 7 mm), low level amplitude (RMS): 0.81 Ny,
(=), Hi2 (- ), andHy3 (— - —)

calculated fromH 5, indicating this as the position of the stop. The system was tested with the noitjinea
at the two other position, but there were no consistency in the indications tafdation of the nonlinearities.

5.2.2 Hilbert Transform Based Method

Figure[11(d) shows the results from applying the Hilbert transformdoasghod on the 3 dof system with a
smooth stiffness nonlinearity at dof 2 are shown. Figure 11(b) showe#ut when the Hilbert transform
based method is applied to a 3 dof system with a nonsmooth nonlinearity at dof 2.

From figure$ 11(&) arjd 11{b) it seen that in both cases the decrehsedietection parametey;, occurs at



a larger deflection amplitudes than with the homogeneity method. This cordsspinthe results from the
simulation study.

6 Discussion

6.1 Homogeneity Method

The homogeneity method gives a measure of the physical change in syatewids, and is easy to relate
to, even without much knowledge of nonlinear systems. Since the nonlineatity is based on cross cor-
relating FRFs at two levels of input, the value of the index is greatly depé¢madetine range of excitation

amplitudes. It is therefore necessary to establish an amplitude range gétemainder study before apply-
ing the method. The FRFs tested must represent the operating range ydtéma.sThe low level excitation

must be at the lowest possible level of excitation giving a satisfying coberd he high level excitation must
be at the highest operating level. In this way, nonlinear behavior in thextipg range will be captured. As
a conseqguence, conclusions can only be drawn for the excited amplitgie. r

Since the nonlinearity index is based on the cross correlation, the method isenegive to nonlinearities

shifting the resonant frequency. Damping nonlinearities, which only gddine height of the resonance
peaks, will not result in a drop in the nonlinearity index as distinct as with tnesi§ nonlinearity, even

at equal levels of nonlinearity. Since the effect of a damping nonlineanitst system is not as radical as
the effect of a stiffness nonlinearity, the less distinct detection might nanbissue. An issue with the

nonlinearity index, which is not assessed in this study, is that its sensitiityngdis on the width of the

resonance peaks, and hence of the damping of the system. If the systeiy ightly damped and has

very narrow resonance peaks, even small frequency shifts wiluged low nonlinearity index, indicating

a strong nonlinearity. To obtain a low index for a highly damped system thedrecy shift has to be very

large. Again this resembles the actual behavior of the system, and mighe patfilematic. The phenomena
might be overcome by introducing a term in the nonlinearity index, correctinthé observed damping of
the system.

6.2 Hilbert Transform Based Method

Since the nonlinearity index obtained from the Hilbert transform based mhé&hmased on the cross correla-
tion function, the method suffers from the same problems as the homogeneitydné&tte Hilbert transform
based method requires only excitation at one level for the method to detectiagarity. The excitation
must be sufficiently high for the nonlinearity to become significant. It is tioeeefecommended to apply
the method to data obtained at the system’s highest operating level. Againgions can only be drawn
for the system at the excited amplitude. To get a more thorough knowledye sf/stem, tests should be
performed at varying input levels.

6.3 Excitation

In this study the excitation was performed using a sweept sine forcinge it methods are based on
frequency domain data, the excitation could also have been of other gygesandom or pseudo random
noise. The way to obtain the FRF is not important. However, it is important tdleet@ control the level
of excitation. If the level of input can not be controlled, it is not possiblediaclude anything regarding the
range of a systems linear and nonlinear regime.



6.4 Extension to General Systems

Recalling from the introduction that nonlinear systems are highly individuglisieimportant to note that
the results presented in this paper are only valid for the tested systems.nly igassible to speculate on
the performance of the methods applied to other types of systems, and nemsiex tests must be made
to make more general conclusions. Both detection methods are based adigtdtions. In the simple
system tested, even weak nonlinearities influenced the FRF. In a lagtemsyweak nonlinearities might be
present in sub systems that will not influence the global system’s FRFjkrioulbe detected. Therefore, for
detection in larger and more complex systems it might be necessary to exciaesngte small sub systems
to detect localized nonlinearities.

7 Conclusions

Two methods for experimental detection of structural nonlinearity weredtestel a nonlinearity index was
suggested. Both method where tested on both simulated and experimentalndtita.simulation study
it was shown that both methods were able to detect three types of nonlireasitieoth and nonsmooth
stiffness, and smooth damping nonlinearity. Both methods were least sensitlamping nonlinearities.
For all three types of nonlinearities it was observed that the homogeneitpdsetas the most sensitive of
the two methods. In the experimental study only the two types of stiffness eanilies were tested. As for
the simulation study, it was observed that the homogeneity method had a gessgivity than the Hilbert
transform based method.
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