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Abstract
All real structures are inherently nonlinear. Whether a structure exhibitslinear or nonlinear behavior, depends
mainly on the excitation level. So far no unequivocal framework for experimental detection, localization, and
characterization of structural nonlinearities from dynamic measurements exists. The present study suggests
a framework for the detection of structural nonlinearities. Two methods fordetection are compared, the
homogeneity method and a Hilbert transform based method. Based on these two methods, a nonlinearity
index is suggested. Through simulations and laboratory experiments it is demonstrated, for a simple but
representative nonlinear structure, that both detection methods are able todetect even weak nonlinearities,
and that the nonlinearity index provides a sensitive and robust measure of nonlinearity. For a range of input
force amplitudes, it is shown that it is possible to estimate a systems linear and nonlinear regimes in terms of
input amplitude, and asses the strength of the nonlinearity.

1 Introduction

Systems are often referred to as being linear or nonlinear. However, allsystem are inherently nonlinear,
though for many systems it is possible to linearize around an operating point. If energy is pumped into a
system with increasing intensity, the system will at some point start behaving nonlinearly, e.g. the system
might break or collide with other systems. In essence a system behaving nonlinearly is a system where the
response is not linearly related to the input. Hence a linear system is a convenient mathematical abstraction.
Linear systems holds many convenient features: Linear systems have onlyone equilibrium position, the
principle of super position is valid, and many linear models are more or less alikeand described by well
proven theories. Nonlinear systems typically have multiple equilibria, both stableand unstable, the principle
of super position is not valid, the system might exhibit chaotic motions, and exact analytic solutions are only
available for a few special cases.

Tools for detection, quantification, localization and characterization of nonlinearities in engineering struc-
tures from experimental observations would be useful in a number of applications, e.g.:

• Model validation and improvement Methods for detecting and quantifying nonlinearities could help
validating linear models and establishing ranges of validity of linear models. With a known range of



validity it should be possible to determine whether to use a linear or nonlinear model. Furthermore,
identified nonlinearities can be implemented in nonlinear models, thus improving the models.

• Structural health monitoring Many types of structural damage and malfunctions will manifest them
self as structural nonlinearities. One example of this is breathing cracks, which is essentially a bilinear
stiffness nonlinearity. Reliable methods for detection, quantification and localization of nonlinearities
from operational measurements could reduce inspection times and enable technicians to detect damage
otherwise not visible on the structure.

• Sensor fault detection Accelerometers and other dynamic transducers are widely used in industryto
measure and monitor the dynamics of structures. The measurements are only reliable when the sensors
are working properly. A malfunctioning sensor, e.g. a sensor that is partly detached from the structure
will typically act as a structural nonlinearity. Detection and localization methodscould enable users to
pinpoint the defect sensor.

The first prerequisite for such applications is the ability to detect structuralnonlinearities experimentally
from dynamic measurements, which is the focus of this present study.

In [1] a survey of the most common methods for identification of structural nonlinearities is given. Other
suggested methods include [2] and [3] in which spectral densities are used for detection, [4] suggests a
detection method based on reciprocal modal vectors, [5] suggests a pattern recognition method, [6] and [7]
describe how the Hilbert transform can be used for detection, and [8] and [9] uses the concept of nonlinear
normal modes for detection and characterization of nonlinearity.

For this present study the Hilbert transform based method and the homogeneity method are selected. Mainly
because of their practical applicability, but also because they allow a way of quantifying the nonlinearity
by introducing a nonlinearity index. The two methods will first be tested on a simulation model, to gain
knowledge of the performance in a noise free environment. The methods are then applied to an experimental
system to gain knowledge of the methods performance in a more realistic setting.

First the homogeneity method, Hilbert transform based method, and nonlinearity index are introduced, then
modeling and results from both simulated and experimental study are provided, and finally discussed.

2 Methods for Detection and Quantification

2.1 The Homogeneity Method

The simplest approach for the detection of structural nonlinearity is basedon exploiting that the frequency
response function (FRF) of linear systems is independent of input amplitude. In the following this feature is
referred to as thehomogeneity of a system [1]. In contrast to linear systems, the FRF of a nonlinear system
depends on the input force magnitude. E.g. a system with a hardening cubicnonlinearity will exhibit an
increase of the resonant frequencies with increasing input force.

A large challenge when using the homogeneity condition for detection is quantifying the FRF distortion
and providing a measure of the nonlinearity level with physical meaning. In the literature there seems
to be no unequivocal way of doing this. Here we present a suggestion based on cross correlating FRFs.
Conventionally the cross correlationRab(τ) of two functionsa(t) andb(t) in time domain is defined as:

Rab(τ) =

∫ ∞

−∞
a(t)b(t+ τ)dt (1)



In the present application, the cross correlation is used in the frequencydomain with two FRFs,HH(ω) and
HL(ω):

RHHHL(∆ω) =

∫ ∞

−∞
HH(ω)HL(ω +∆ω)dω (2)

whereHH(ω) andHL(ω) are FRFs obtained with high and low level excitation, respectively. The cross
correlation is a measure of how closely correlated the two FRFs are as a function of a frequency shift∆ω.
Using the normalized cross correlation a value,RH1H2(∆ω̃) = 1 implies that the two FRFs are identical
at lag= ∆ω̃. The cross correlation is normalized such that the auto correlations are unity at ∆ω = 0.The
squared normalized correlation coefficient is a measure of how much of thevariance in the two functions that
is shared. Using the cross correlation with the FRFs of a given system excited at two input levels, provides
information on how the FRF is distorted in the applied input range. If the squared cross correlation of the
two FRFs is 1 at a lag of 0 Hz, then there is no FRF distortion in the applied input range due to nonlinearity.
If there is no FRF distortion, the system behaves linearly in the input range.Since the FRF distortion is a
direct indication of nonlinearity, the squared cross correlation coefficient at lag∆ω = 0 will be used as a
quantitative measure of the strength of the nonlinearity in the applied input range. The value of∆ω giving the
highest correlation coefficient is an estimate of the shift of resonance frequency in the input amplitude range.
The squared normalized cross correlation coefficient will in the following be referred to as the nonlinearity
indexδHo:.

δHo = ||RHHHL(0)||2 (3)

where||RHHHL || is the normalized cross correlation coefficient,HL is the FRF of the system excited at a
low level, andHH is the FRF of the system excited at a high level.

Note thatδHo will only indicate if the system is behaving linearly or nonlinearly in the applied input ampli-
tude range. Also, since the nonlinearity index is based on cross correlating FRFs, the index will have high
sensitivity to nonlinearities shifting the resonant frequency, and less sensitivity to nonlinearities, which only
scales the FRF magnitude.

2.1.1 Steps of the Homogeneity Method

1. Excite the system at two input levels within the operating range of the structure and measure the
response.

2. Calculate the FRFs from low level and high level excitation. The low and high level excitation should
reflect the operating range of the structure. The Low level excitation should be sufficiently high, so
that the coherence of averaged FRFs is close to unity in the applied frequency range. The high level
excitation should reflect the highest operating level of the system.

3. Calculate and evaluate the cross correlation of the two FRFs

(a) If the nonlinearity measureδHo exhibits values below unity, then the system exhibits nonlinearity
in the applied excitation range.

(b) The shift of resonant frequency can be estimated as the value of∆ω giving the highest cross
correlation coefficient.



2.2 The Hilbert Transform Based Method

The Hilbert transform is an integral transform, as the Fourier transform.In contrast to the Fourier transform,
the Hilbert transform maps functions into the same domain.The Hilbert transform H of a FRFH(ω) is
defined in [6] as:

H (H(ω)) =
1

iπ
PV

∫ ∞

−∞

H(ω)

Ω− ω
dΩ (4)

where PV denotes the Cauchy principal value of the integral, which is needed since the integrand has a
singularity. The Cauchy principal value is used to estimate the value of improperintegrals, so that for any
functionf(x) with a singularity atx = b:

PV

∫ c

a
f(x)dx ≡ lim

ǫ→0+

[∫ b−ǫ

a
f(x)dx+

∫ c

b+ǫ
f(x)dx

]

(5)

If the Hilbert transform is applied to a FRF,G(ω), of a linear system, the transform will relate the imaginary
part of the FRF to the real part [6]:

Re(G(ω)) = −
1

π
PV

∫ ∞

−∞

Im(G(ω))

Ω− ω
dΩ (6)

Im(G(ω)) =
1

π
PV

∫ ∞

−∞

Re(G(ω))

Ω− ω
dΩ (7)

Hence the Hilbert transform of the FRF of a linear system will return the original FRF, the real part of the
transformed FRF is the imaginary part of the original FRF and vice versa. Equation (6) and (7) are referred
to as the Hilbert transform pairs. For nonlinear systems (6) - (7) is not generally valid, hence the Hilbert
transform of the FRF of a nonlinear system will return a distorted version of the FRF. The distortion, hence
the level of nonlinearity is quantified in a similar manner as for the homogeneity method, using the squared
cross correlation coefficient:

δHi = ||RHH(0)||2 (8)

where||RH H || is the normalized cross correlation coefficient,H is the FRF of the system andH is the
Hilbert transform ofH, and:

RHH(∆ω) =

∫ ∞

−∞
H(ω)H(ω +∆ω)dω (9)

Note thatδHi will only indicate if the system is behaving linearly or nonlinearly at the applied input ampli-
tude.

2.2.1 Steps of the Hilbert Transform based Method

1. Excite the structure at an input level in the upper range of the the operating range of the structure, and
measure the response.

2. Calculate the FRF,H, and its Hilbert transformH.

3. Calculate the nonlinearity indexδHi

(a) If δHi < 1, then the system exhibits nonlinearity at the applied excitation amplitude.



2.3 The Methods Compared

The homogeneity methods has the advantage of providing a physical measure of the change in system be-
havior in a given input range,δHo will indicate how the system behaves in a certain amplitude range. On the
other hand, the homogeneity method requires two series of excitation, whereas the Hilbert transform based
method only requires one.

3 Benchmark Model

To test and compare the performance of the methods, a mechanical benchmark model was used. This model
constitutes the raw concept of what was realized in the laboratory, and simplified in a numerical model.

The N dof lumped mass model, cf. Figure 1, is essentially linear and was chosen because it is simple
and resembles a variety of structures of engineering interest. Nonlinearities, Qi(xi, ẋi), of different types
can be added to the underlying linear system and tested. The implementation of the nonlinearities in the
simulation and experimental model, respectively, is given in the section 4 and 5. The mathematical model of
the benchmark model is:

Mẍ + Cẋ + Kx + q(x, ẋ) = f (10)

whereM is the mass matrix,C the damping matrix,K the stiffness matrix,q(x, ẋ) a vector containing
nonlinear terms,f = f(t) the forcing vector andx = x(t) ∈ R the deflection vector.

4 Simulation Study

4.1 Simulation model

To evaluate the detection methods, a simulation model based on Equation (10) is implemented. Excitation of
the model is constant amplitude swept sines. Three types of nonlinearities are implemented: cubic stiffness
(ǫx3i ), cubic damping (ǫẋ3i ), and a nonsmooth stiffness nonlinearity (ǫxi), whereǫxi is defined as:

ǫ = 0, xi < xstop (11)

ǫ = 103 · ki, xi ≤ xstop (12)

All simulations are carried out with the parameters given in Table 1 using MATLAB’s ODE45 solver.

Figure 1: Mechanical model, wheremi is mass of dofi, ki andci is the linear stiffness and damping connecting
the dof’s in the model,xi is the displacement of thei’th dof, fi(t) is the applied force acting on dofi, Qi(x, ẋ) is a
grounded nonlinearity acting on dofi, andN is the number of dofs in the system.



Table 1: Parameters for simulations

Sampling frequency 500 Hz
Input sweep range 0 to 50 Hz
Sweep rate 0.5 Hz/s
Discrete massesmi 1 Kg
Linear stiffnesski 1500 N/m
Damping coefficientci 1
FRF estimator H1

To compare the performance of the two methods, a frame of reference is introduced. Both methods are tested
at different levels of nonlinearity. Therefore a measure of the nonlinearity level is needed. Equation (10) can
be multiplied byẋT and terms expressing the instantaneous power of the linear stiffness/damping forces and
the total power of the nonlinear forces can be identified:

ẋT Mẍ +

Plin,damp
︷ ︸︸ ︷

ẋT Cẋ +

Plin,stiff
︷ ︸︸ ︷

ẋT Kẋ +

Pnonlin
︷ ︸︸ ︷

ẋT q(x, ẋ) = ẋT f (13)

In the following thelevel of nonlinearity in the systems being simulated, is defined as the fraction of the root
mean square (RMS) over time of the power terms:

η =
RMS(Pnonlin{damp/stiff})

RMS(Plin{damp/stiff})
(14)

where

RMS(Pnonlin/lin{damp/stiff}) =

√

1

tend − tstart

∫ tend

tstart

Pnonlin/lin{damp/stiff}dt (15)

The results of the simulations with smooth nonlinearities will be evaluated usingη. The results for the
nonsmooth nonlinearities will be plotted as a function of the maximum displacement of the dof associated
with the nonlinearity.

4.2 Simulation Results

Only results for a 3-dof system are presented. Systems with up to 9 dofs were tested, but the results from the
3-dof case are representative for all the tested cases. The methods are tested on the same data sets, and the
results are therefore directly comparable.

4.2.1 The Homogeneity Method

Figure 2 shows results obtained with the Homogeneity method applied to a system with a cubic stiffness
nonlinearity. It is evident thatδHo diverges from unity at approximatelyη > 10−2.5. Hence the nonlinearity
is detected at this magnitude of nonlinearity.



Figure 3 shows the results obtained with the Homogeneity method applied to a system with a nonsmooth
nonlinearity. A very clear limit between the system’s linear and nonlinear regimeis apparent. When the
displacement amplitude does not exceed the position of the stop, thenδHo = 1. When the stop is hit,δHo

decreases radically. The lowest values ofδHo are found when using the FRF based on the output gathered at
the dof associated with the nonlinearity.

Figure 4 shows results obtained with the Homogeneity method applied to a system with a cubic damping
nonlinearity. It appears that the decrease ofδHo from unity occurs at a much higher value ofη compared to
the case with the smooth stiffness nonlinearity. This is because the resonance peak is not shifted as with the
stiffness nonlinearity case. Since the FRF is not shifted but only lowered inmagnitude, the cross correlation
coefficient will not decrease as much as in the stiffness nonlinearity case.
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Figure 2: Nonlinearity indexδHo as a function of nonlinearity levelη. Simulation results with the homogeneity
method applied to a 3-dof system with fixed input levels of1 and50N and increasing magnitude of cubic nonlinearity
ǫi, at position: (a) dof 2 (b) dof 3. The nonlinearity index is calculated based on all possible FRFs:H11 (−), H12 (· · ·),
andH13 (− · −)
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Figure 3: Nonlinearity indexδHo as a function of the maximum displacement of the dof associated with the non-
linearity. Simulation results from the homogeneity methodapplied to a 3 dof system with hard stop atxi = 0.5 and
increasing input force. (a) Gap at dof 2, (b) Gap at dof 3. The nonlinearity index is calculated based on all three
possible FRF’s: :H11 (−), H12 (· · ·), andH13 (− · −). (−−) indicates position of hard stop
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Figure 4: Nonlinearity indexδHo as a function of nonlinearity levelη. Simulation results from the homogeneity
method applied to a 3 dof system with an increasing cubic damping nonlinearity. (a) Nonlinearity at dof 1, (b) Nonlin-
earity at dof 3. Swept sine excitation with amplitude 1 and 50Newtons at dof 1. The nonlinearity index is calculated
based on all three possible FRF’s:H11 (−), H12 (· · ·), andH13 (− · −)

4.2.2 Hilbert Transform Based Method

Figure 5 shows the results from the system with a cubic stiffness nonlinearityand Figure 6 with a nonsmooth
stiffness nonlinearity. From Figure 5 it is seen that the drop inδHi occurs at approximatelyη = 10−1. This
is a larger value than the one obtained using the homogeneity method, hence theHilbert transform method
is not as sensitive as the homogeneity method. It is also noted that the drop inδHi is not as distinct as for
the homogeneity method. Figure 6 shows a drop ofδHi when the deflection amplitude of the dof associated
with the nonlinearity reachesxi = 0.5, but the drop is far from as distinct as for the homogeneity method.
For the case with the nonlinearity associated with dof 2, the drop is hardly significant.
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Figure 5:Nonlinearity index of Hilbert transform based method applied to a 3-dof system with increasing coefficient
of cubic stiffness nonlinearity,ǫi as a function of nonlinearity levelη. Simulation perform with constant force and
increasing coefficient of cubic term. (a) Nonlinearity at dof 2, (b) Nonlinearity at dof 3.H11 (−), H12 (· · ·), andH13

(− · −)
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Figure 6:Nonlinearity index of Hilbert transform based method applied to a 3-dof system with gap nonlinearity placed
at xi = 0.5m. Simulations performed with increasing force. (a) Nonlinearity at dof 2, (b) Nonlinearity at dof 3.H11

(−), H12 (· · ·), andH13 (− · −). Position of hard stop (−−)

5 Experimental Testing

To asses the practical capabilities of the detection methods, the methods were applied to experimental data.

5.1 Experimental model

The experimental setup is shown in Figure 7. The accelerations are measured at each of the three masses
attached to the clamped beam, and a vibration shaker provides force at dof1. This setup is chosen because
the behavior of the system in the frequency range covering the lowest three modes can be described by 13

In the simulated study a linear swept sine excitation was used, but due hardware limitations an exponential
sweep is used in the experimental case. Parameters for the experiment aregiven in Table 2, and the equipment
used is listed in Table 3.

In the experimental tests the same types of stiffness nonlinearities as in the simulation study will be realized,
smooth and nonsmooth. The implementation of these two nonlinearities is shown in Figure 11. The smooth
nonlinearity is realized using opposing neodymium magnets whereas the nonsmooth nonlinearity is realized
using a one sided mechanical rigid stop with an attached rubber piece to avoidhigh frequency components
induced by the impacts.

If results should be directly comparable to the simulation study, the smooth nonlinearity in the experimental
setting should be cubic. This is ensured by testing the static stiffness of the system with and without the
smooth nonlinearity attached, using a laser displacement sensor and a dynamometer, see Figure 9(a)

Table 2: Parameters for experimental tests of detection methods

3 dof system
Excitation type Exponential sweep
Sweep rate 0.036 decades/sec
Excitation duration 64 sec
Excitation dof 1
Frequency range 0-100 Hz
Frequency lines 6400



Table 3: Equipment

Description Official name
Accelerometers B&K: 4507B, 4507, 4508, 4399
Force transducer Endevco: 2312 + B&K: 2646
Shaker B&K 4810
Front end B&K Slots: 3109, 3032A
Software B& K Pulse
Fixtures Aluminium
Masses Aluminium
Beam Hardened stell 400 x 35 x 1.5 mm

Figure 7:Experimental model, top-view.

From Figure 9(b) it is seen that with no nonlinearities attached, the stiffnessis linear in the tested displace-
ment range, whereas with the magnets attached (Figure 9(c)) the stiffnessoff the system appears to be cubic.
The linear domain indicated in Figure 9(c) is defined as the range in which a straight line can be fitted to the
data with a correlation coefficient larger that0.99.

5.2 Experimental Results

5.2.1 Homogeneity Method

Figure 10(a) and 10(b) showsδHo as a function of the displacement when the homogeneity method is ap-
plied to a 3 dof system with a smooth stiffness nonlinearity at dof 2 and a 3 dof system with a nonsmooth
nonlinearity at dof 2, respectively.

With the smooth nonlinearity attached it appears thatδHo is approximately unity at displacements below 7
mm. At displacements larger than≈ 7mm, δHo drops, hence indicating nonlinear behavior. This displace-
ment corresponds approximately to the limits of the estimated linear domain defined inFigure 9.

From Figure 10(b) it seen thatδHo drops when the hard stop is hit (x2 = 7mm), indicating nonlinear
behavior at displacements larger than the distance to the stop. The largest drop in δHo is seen whenδHo is



(a) (b)

Figure 8:Realization of nonlinearities: a) Smooth nonlinearity, byopposing magnets, b) nonsmooth nonlinearity, by
hard stop with rubber.

(a)

−20 −10 0 10 20
−4

−3

−2

−1

0

1

2

3

4

F
o
rc

e
[N

]

Displacement [mm]

(b)

−20 −10 0 10 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

F
o
rc

e
[N

]

Displacement [mm]

Linear

domain

(c)

Figure 9:a) Experimental setup for static test without nonlinearityb) Force measured by dynamometer as a function
of displacement from static test without nonlinearity c) Force measured by dynamometer as a function of displacement
from static test with smooth nonlinearity attached. Measured values (· · ·), Measured values, with linear stiffness
subtracted (+++)
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Figure 10:Nonlinearity indexδHo as a function of displacement when the homogeneity method applied to a 3 dof
system a with: a) A smooth nonlinearity (magnets) at dof 2. Constant low level excitation and increasing high level
excitation. Low level amplitude (RMS): 0.80 N. b) A nonsmooth nonlinearity (hard stop). Constant low level excitation
and increasing high level excitation. Stop at dof 2 (distance to stop: 7 mm), low level amplitude (RMS): 0.81 N.H11

(−), H12 (· · ·), andH13 (− · −)
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Figure 11:Nonlinearity indexδHi as a function of displacement when the homogeneity method applied to a 3 dof
system a with: a) A smooth nonlinearity (magnets) at dof 2. Constant low level excitation and increasing high level
excitation. Low level amplitude (RMS): 0.80 N. b) A nonsmooth nonlinearity (hard stop). Constant low level excitation
and increasing high level excitation. Stop at dof 2 (distance to stop: 7 mm), low level amplitude (RMS): 0.81 N.H11

(−), H12 (· · ·), andH13 (− · −)

calculated fromH12, indicating this as the position of the stop. The system was tested with the nonlinearity
at the two other position, but there were no consistency in the indications of the location of the nonlinearities.

5.2.2 Hilbert Transform Based Method

Figure 11(a) shows the results from applying the Hilbert transform based method on the 3 dof system with a
smooth stiffness nonlinearity at dof 2 are shown. Figure 11(b) shows theresult when the Hilbert transform
based method is applied to a 3 dof system with a nonsmooth nonlinearity at dof 2.

From figures 11(a) and 11(b) it seen that in both cases the decrease inthe detection parameter,δHi, occurs at



a larger deflection amplitudes than with the homogeneity method. This corresponds to the results from the
simulation study.

6 Discussion

6.1 Homogeneity Method

The homogeneity method gives a measure of the physical change in system behavior, and is easy to relate
to, even without much knowledge of nonlinear systems. Since the nonlinearityindex is based on cross cor-
relating FRFs at two levels of input, the value of the index is greatly dependent on the range of excitation
amplitudes. It is therefore necessary to establish an amplitude range of the system under study before apply-
ing the method. The FRFs tested must represent the operating range of the system. The low level excitation
must be at the lowest possible level of excitation giving a satisfying coherence. The high level excitation must
be at the highest operating level. In this way, nonlinear behavior in the operating range will be captured. As
a consequence, conclusions can only be drawn for the excited amplitude range.

Since the nonlinearity index is based on the cross correlation, the method is mostsensitive to nonlinearities
shifting the resonant frequency. Damping nonlinearities, which only change the height of the resonance
peaks, will not result in a drop in the nonlinearity index as distinct as with a stiffness nonlinearity, even
at equal levels of nonlinearity. Since the effect of a damping nonlinearity on a system is not as radical as
the effect of a stiffness nonlinearity, the less distinct detection might not bean issue. An issue with the
nonlinearity index, which is not assessed in this study, is that its sensitivity depends on the width of the
resonance peaks, and hence of the damping of the system. If the system isonly lightly damped and has
very narrow resonance peaks, even small frequency shifts will produce a low nonlinearity index, indicating
a strong nonlinearity. To obtain a low index for a highly damped system the frequency shift has to be very
large. Again this resembles the actual behavior of the system, and might not be problematic. The phenomena
might be overcome by introducing a term in the nonlinearity index, correcting for the observed damping of
the system.

6.2 Hilbert Transform Based Method

Since the nonlinearity index obtained from the Hilbert transform based method is based on the cross correla-
tion function, the method suffers from the same problems as the homogeneity method. The Hilbert transform
based method requires only excitation at one level for the method to detect a nonlinearity. The excitation
must be sufficiently high for the nonlinearity to become significant. It is therefore recommended to apply
the method to data obtained at the system’s highest operating level. Again conclusions can only be drawn
for the system at the excited amplitude. To get a more thorough knowledge ofthe system, tests should be
performed at varying input levels.

6.3 Excitation

In this study the excitation was performed using a sweept sine forcing. Since both methods are based on
frequency domain data, the excitation could also have been of other types,e.g. random or pseudo random
noise. The way to obtain the FRF is not important. However, it is important to be able to control the level
of excitation. If the level of input can not be controlled, it is not possible toconclude anything regarding the
range of a systems linear and nonlinear regime.



6.4 Extension to General Systems

Recalling from the introduction that nonlinear systems are highly individualistic, it is important to note that
the results presented in this paper are only valid for the tested systems. It is only possible to speculate on
the performance of the methods applied to other types of systems, and more extensive tests must be made
to make more general conclusions. Both detection methods are based on FRFdistortions. In the simple
system tested, even weak nonlinearities influenced the FRF. In a larger system, weak nonlinearities might be
present in sub systems that will not influence the global system’s FRF enough to be detected. Therefore, for
detection in larger and more complex systems it might be necessary to excite andevaluate small sub systems
to detect localized nonlinearities.

7 Conclusions

Two methods for experimental detection of structural nonlinearity were tested, and a nonlinearity index was
suggested. Both method where tested on both simulated and experimental data.In the simulation study
it was shown that both methods were able to detect three types of nonlinearities, smooth and nonsmooth
stiffness, and smooth damping nonlinearity. Both methods were least sensitive to damping nonlinearities.
For all three types of nonlinearities it was observed that the homogeneity methods was the most sensitive of
the two methods. In the experimental study only the two types of stiffness nonlinearities were tested. As for
the simulation study, it was observed that the homogeneity method had a greatersensitivity than the Hilbert
transform based method.
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