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Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To
avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating
generalized nonlinear Schrödinger equation is formulated. Calculated slow-light modes in a solid core chalcogen-
ide PCF are used to parameterize the model, which is shown to support standing and moving spatial solitons.
Inclusion of Raman scattering slows down moving solitons exponentially, so that the zero-velocity soliton be-
comes an attractor state. An analytical expression for the deceleration rate that compares favorably with the nu-
merical results is derived. Collisions of successive solitons due to the Raman deceleration are studied numerically,
and it is found that the soliton interaction is mostly repulsive, as expected from the established theory of fiber
solitons. © 2010 Optical Society of America

OCIS codes: 060.4005, 060.4370, 060.5295, 060.5530, 190.5650, 190.6135.

1. INTRODUCTION
Slow-light states in photonic bandgap (PBG) structures have
been extensively studied in the last few years, due to the pro-
spects of all-optical signal buffering or enhancement of light–
matter interactions (for a recent review, see [1]). While the
fabricated slow-light waveguides have so far been realized
in planar photonic crystals, a theoretical possibility exists
of achieving slow-light guidance in high-index optical fibers
as well [2]. By fabricating microstructured fibers of high-index
materials, a complete PBG in the plane of the fiber cross sec-
tion can be opened up, which will allow guidance of modes
with propagation constants around zero. By very general
arguments of time-reversal symmetry, such modes will have
a vanishing group velocity when the propagation constant,
β, becomes zero. It was recently pointed out that the refractive
index of As2Se3 chalcogenide glass is high enough to open up
robust in-plane bandgaps in realistic fiber geometries [3].
Since fiber drawing from such glasses is well established [4],
the fabrication of slow-mode fibers seems a realistic opportu-
nity, and it is therefore interesting to study their properties to
identify possible applications. Applications for gas sensing
with enhanced sensitivity was studied theoretically in a recent
paper [5]. The purpose of the present work is to set up a gen-
eral framework for modeling the nonlinear properties of
slow-mode fibers and use it to investigate the propagation
of fundamental solitons in the slow state.

Traditionally, nonlinear pulse propagation in optical fibers
has been modeled by z-stepping schemes, in which the pulse
profile as a function of time is specified at the input end and
then propagated along the fiber by a first-order differential
equation known as the nonlinear Schrödinger equation
(NLSE) and its generalizations. In recent years, substantial
efforts have been put into developing such schemes to deal
with the challenges of modern fiber technology, including full-
vectorial effects [6–8], strong mode profile dispersion [9–12],
and ultrashort pulses [10]. However, any such method will
naturally run into problems when it encounters a zero-velocity

state, and one indeed finds that both the nonlinear coefficient
and the dispersion parameter derived in the z-propagation
schemes diverge at β ¼ 0. A further problem is that modeling
of pulse propagation around β ¼ 0 should account for both
forward- and backward-propagating states, whose boundary
conditions should be specified at opposite ends of the fiber,
since physically one controls the input to the fiber, whereas
calculation of the output is desired. This further complicates
the formulation of a z-stepping numerical method. Both of
these problems can be circumvented by propagating in the
time domain, since time propagation is unidirectional and
cannot be slowed down or stopped. The derivation of time-
propagated nonlinear equations for forward-propagating
states only has been discussed by Kolesik and Moloney [12].
An early study of nonlinear propagation in slow fiber modes
utilized a full finite-difference time-domain propagation of
Maxwell’s equations, and also derived a time-domain NLSE
for the slowmode [13]. In this paper, a novel and more general
time-propagating formalism is derived, which includes both
instantaneous (Kerr) and delayed (Raman) nonlinear re-
sponse, and can in principle handle both slow and fast states
and their interactions. The formalism is applied to slow-state
solitons, and it is shown that the Raman effect will act to ex-
ponentially decrease their velocity, such that the zero-velocity
soliton becomes an attractor state of the system. To the
author’s knowledge, this aspect of soliton propagation in
slow-light states has not previously been discussed in the
literature.

2. FORMAL THEORY
The starting point is the Maxwell equations in the presence of
a nonlinear polarization term:

∇ × E ¼ −μ0
∂H
∂t

; ð1Þ

∇ ×H ¼ ε0εðr⊥Þ
∂E
∂t

þ ∂PNL

∂t
: ð2Þ
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Here ε is the relative dielectric constant of the medium, as-
sumed z-independent for a straight waveguide, and PNL is
the nonlinear part of the induced polarization. The E and H
fields are expanded into modal fields:

Hðr; tÞ ¼ 1ffiffiffiffiffi
2π

p
X
m

Z
dβ½ðAmðt; βÞ

þ δmðt; βÞÞhmðr⊥; βÞeiðωmðβÞt−βzÞ

þ ðA�
mðt;−βÞ þ δ�mðt;−βÞÞ

× h�mðr⊥;−βÞe−iðωmðβÞtþβzÞ�; ð3Þ

Eðr; tÞ ¼ 1ffiffiffiffiffi
2π

p
X
m

Z
dβ½Amðt; βÞemðr⊥; βÞeiðωmðβÞt−βzÞ

þ A�
mðt;−βÞe�mðr⊥;−βÞe−iðωmðβÞtþβzÞ�; ð4Þ

where the β integration extends over both positive and nega-
tive values. The modes hmðr; t; βÞ, emðr; t; βÞ given by

hmðr; t; βÞ ¼ hmðr⊥; βÞeiðωmðβÞt−βzÞ;

emðr; t; βÞ ¼ emðr⊥; βÞeiðωmðβÞt−βzÞ; ð5Þ

fulfill the linear Maxwell equations

∇ × emðr; t; βÞ ¼ −μ0
∂hmðr; t; βÞ

∂t
;

∇ × hmðr; t; βÞ ¼ ε0εðr⊥Þ
∂emðr; t; βÞ

∂t
; ð6Þ

and it is readily shown that the fieldsE andH are real, and that,
in the case of linear propagation, the expansion coefficients
Amðt; βÞ are time-independent, and the δmðt; βÞ coefficients
are zero. In the case of nonlinear propagation, theAmðt; βÞ coef-
ficients will acquire a time dependence, and the δmðt; βÞ coeffi-
cients must then be nonzero, because both E, H and e, h must
satisfy Eq. (1). Inserting Eqs. (3) and (4) into Eq. (1), one finds
that this requirement leads to the equation

∂Amðt; βÞ
∂t

¼ −iωmðβÞδmðt; βÞ −
∂δmðt; βÞ

∂t
: ð7Þ

Assuming that ∂2Amðt; βÞ=∂t2 is negligible, this equation is ap-
proximately satisfied by

−iωmðβÞδmðt; βÞ ¼
∂Amðt; βÞ

∂t
; ð8Þ

an approximation which will be used below to obtain a closed-
form expression for ∂Amðt; βÞ=∂t. It should be noted that the
assumption of slowly varying Amðt; βÞ coefficients is not re-
lated to the duration of the pulse but rather to the time scale
overwhich significant spectral changesoccur, due to nonlinear
processes. In the strictly linear regime, Amðt; βÞ would be con-
stant and δmðt; βÞ ¼ 0 regardless of the pulse duration.

The fields e and h are normalized so that

ε0
Z

dr⊥εðr⊥Þe�mðr⊥; βÞ · enðr⊥; βÞ

¼ μ0
Z

dr⊥h
�
mðr⊥; βÞ · hnðr⊥; βÞ ¼

1
2
δmn; ð9Þ

which implies that the time-averaged field energy in the pulse
is given by

�Z
drE · D

�
t

¼
X
m

Z
dβ∣Amðt; βÞ∣2: ð10Þ

The transverse fields emðr⊥; βÞ and hmðr⊥; βÞ fulfill the
condition

e�mðr⊥;−βÞ ¼ emðr⊥; βÞ; h�mðr⊥;−βÞ ¼ −hmðr⊥; βÞ; ð11Þ

as may be seen by taking the complex conjugate of Eq. (6).
From Eq. (2), one obtains

Z
dre�mðr; t; βÞ ·

�
∂PNL

∂t
þ ε0ε

∂E
∂t

�
¼

Z
dre�mðr; t; βÞ ·∇ ×H

¼
Z

drH ·∇ × e�mðr; t; βÞ ¼ iμ0ωmðβÞ
Z

drH · h�mðr; t; βÞ:
ð12Þ

Inserting the field expansions Eqs. (3) and (4) and using
Eqs. (8), (9), and (11) yields the result

1ffiffiffiffiffi
2π

p
Z

dre�mðr; t; βÞ ·
∂PNL

∂t
þ
�
iωmðβÞAmðt; βÞ þ

∂Amðt; βÞ
∂t

þ
�
∂A�ðt;−βÞ

∂t
− iωmðβÞA�

mðt;−βÞ
�
e−2iωmðβÞt

�

× ε0
Z

dr⊥εðr⊥Þ∣emðr⊥; βÞ∣2

¼ iωmðβÞμ0½Amðt; βÞ þ δmðt; βÞ − ðA�
mðt;−βÞ

þ δ�mðt;−βÞÞe−2iωmðβÞt�
Z

dr⊥∣hmðr⊥; βÞ∣2;

⇓
∂Amðt; βÞ

∂t
þ ∂A�ðt;−βÞ

∂t
e−2iωmðβÞt

¼ −
1ffiffiffiffiffi
2π

p
Z

dre�mðr; t; βÞ ·
∂PNL

∂t
: ð13Þ

To proceed further, the functional form of the nonlinear po-
larization must be specified. In this work, a PNL consisting of
Kerr and Raman terms will be considered [14]:

PNLðr; tÞ ¼ ε0½χð3ÞK ðrÞ...Eðr; tÞEðr; tÞEðr; tÞ

þ χð3ÞR ðrÞ...Eðr; tÞ
Z

t

−∞
dt1Rðt − t1ÞEðr; t1ÞEðr; t1Þ�;

ð14Þ

where χð3ÞK and χð3ÞR are the Kerr and Raman susceptibility ten-
sors, respectively. If the field expansion (4) is inserted into
Eq. (14), and the result is substituted into Eq. (13), the
right-hand side will consist of terms oscillating with frequen-
cies ∼0, �2ω0, and −4ω0, where ω0 is some suitably chosen
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center frequency, and the spectral width of the light is as-
sumed smaller than ω0. The þ2ω0 and −4ω0 terms correspond
to third-harmonic generation processes, which are assumed to
be negligible here, since the PBG-guided slow mode will not
exist at the third-harmonic frequency, and other fast-moving
modes will be very far from phase matching. A propagation
equation is obtained by equating the slowly varying terms
in Eq. (13). First, the part of PNL oscillating at ∼ω0, which will
hereafter be denoted PNL, is determined:

PNLðr; tÞ ¼
X
npq

ε0
ð2πÞ3=2

Z
dβ1−3e−iðβ1þβ2þβ3Þz

�
½2~Anðt; β1Þ~Apðt; β2Þ

× ~A�
qðt;−β3Þ þ ~A�

nðt;−β1Þ~Apðt; β2Þ

× ~Aqðt; β3Þ�χð3ÞK
..
.
enðr⊥; β1Þepðr⊥; β2Þe�qðr⊥;−β3Þ

þ
�
2~Anðt; β1Þ

Z
t

−∞
dt1Rðt − t1Þ~Apðt1; β2Þ

× ~A�
qðt1;−β3Þ þ ~A�

nðt;−β1Þ
Z

t

−∞
dt1Rðt − t1Þ

× ~Apðt1; β2Þ~Aqðt1; β3Þ
�
χð3ÞR

..

.
enðr⊥; β1Þ

epðr⊥; β2Þe�qðr⊥;−β3Þ
	
; ð15Þ

~Amðt; βÞ ¼ Amðt; βÞeiωmðβÞt: ð16Þ

Next, the time derivative of PNL is evaluated. Here it is as-
sumed that ∂ ~A=∂t ≈ iω~A, i.e., that ∂A=∂t is negligible com-
pared to iωA. This is justified, since A is a constant in the
linear case, so ∂A=∂t must at least be proportional to χð3Þ,
and a term proportional to both ∂A=∂t and χð3Þ would thus
be of second order in χð3Þ. It will also be assumed that the last
Raman term in Eq. (16) is negligible, since the Raman re-
sponse function is convoluted with a term oscillating at
∼2ω0 [15]. With these approximations, one finds

∂PNLðr; tÞ
∂t

¼
X
npq

ε0
ð2πÞ3=2

Z
dβ1−3e−iðβ1þβ2þβ3Þzfi½2ðωnðβ1Þ

þ ωpðβ2Þ − ωqðβ3ÞÞ × ~Anðt; β1Þ~Apðt; β2Þ~A�
qðt;−β3Þ

þ ðωpðβ2Þ þ ωqðβ3Þ − ωnðβ1ÞÞ~A�
nðt;−β1Þ~Apðt; β2Þ

× ~Aqðt; β3Þ� × χð3ÞK
..
.
enðr⊥; β1Þepðr⊥; β2Þe�qðr⊥;−β3Þ

þ 2~Anðt; β1Þ
Z

t

−∞
dt1ðiωnðβ1ÞRðt − t1Þ

þ R0ðt − t1ÞÞ~Apðt1; β2Þ~A�
qðt1;−β3Þ

× χð3ÞR
..
.
enðr⊥; β1Þepðr⊥; β2Þe�qðr⊥;−β3Þg: ð17Þ

Inserting Eq. (17) into Eq. (13) and throwing away the fast-
oscillating term on the left-hand side, one obtains the propa-
gation equation

∂Amðt; βÞ
∂t

¼ −e−iωmðβÞt ε0
2π

X
npq

Z
dβ1dβ2fKmnpqðβ; β1; β2Þ

× ½2~Anðt; β1Þ~Apðt; β2Þ~A�
qðt; β1 þ β2 − βÞ

× iðωnðβ1Þ þ ωpðβ2Þ − ωqðβ1 þ β2 − βÞÞ
þ ~A�

nðt;−β1Þ~Apðt; β2Þ~Aqðt; β − β1 − β2Þiðωpðβ2Þ
þ ωqðβ1 þ β2 − βÞ − ωnðβ1ÞÞ�
þ Rmnpqðβ; β1; β2Þ2~Anðt; β1Þ

×
Z

t

−∞
dt1~Apðt1; β2Þ~A�

qðt1; β1 þ β2 − βÞðR0ðt − t1Þ

þ iωnðβ1ÞRðt − t1ÞÞ; ð18Þ

Kmnpqðβ; β1; β2Þ ¼
Z

dr⊥e
�
mðr⊥; βÞ

· χð3ÞK ðr⊥Þ..
.
enðr⊥; β1Þepðr⊥; β2Þe�qðr⊥; β1 þ β2 − βÞ; ð19Þ

Rmnpqðβ; β1; β2Þ ¼
Z

dr⊥e
�
mðr⊥; βÞ

· χð3ÞR ðr⊥Þ..
.
enðr⊥; β1Þepðr⊥; β2Þe�qðr⊥; β1 þ β2 − βÞ: ð20Þ

Equation (18) is fairly general. In the following, it will be
simplified to treat the case of a pulse propagating in a single
optical mode. Thus, the mode indices on frequencies and A

coefficients will from now on be suppressed. Furthermore,
the complicated integration kernels K and Rwill be simplified
to obtain a numerically tractable propagation equation [11]. In
this work, the mode profile dispersion will be neglected, so
that all β-dependent transverse fields are replaced by the
β ¼ 0 field distribution, and K , R become constant functions.
Since the transverse fields may be taken real at β ¼ 0, the χð3Þ
tensor products may be written as

K ¼ χð3ÞKxxxx

Z
m

dr⊥∣eðr⊥; 0Þ∣4;

R ¼ χð3ÞRxxxx

Z
m

dr⊥∣eðr⊥; 0Þ∣4; ð21Þ

where it has been assumed that the microstructured fiber
cross section is composed of alternating sections of dielectric
material and air and that only the dielectric material contri-
butes appreciably to the nonlinear effects. Therefore, the
cross-sectional integral has been restricted to the region
where dielectric material is present. That only the xxxx com-
ponent of χð3Þ matters may be seen by introducing a local co-
ordinate system at each point in the transverse plane whose
x-axis is aligned with the field polarization vector at that point.
The expression for K can be further rewritten as

K ¼ χð3ÞKxxxx

R
m dr⊥ε2ðr⊥Þ∣eðr⊥; 0Þ∣4

4ε20ε2m
�R

dr⊥εðr⊥Þ∣eðr⊥; 0Þ∣2
�
2

≡
χð3ÞKxxxx

4ε20ε2mAeffðβ ¼ 0Þ ; ð22Þ

with a similar expression for R. Here εm is the relative permit-
tivity of the nonlinear material.
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The effective-area parameter Aeff defined in Eq. (22) differs
from those usually obtained in z-propagating formulations.
One expression that can be simply related to Aeff was sug-
gested in Ref. [16]:

~AeffðβÞ ¼ εm
�
vg

c

�
2

�R
dr⊥εðr⊥Þ∣eðr⊥; βÞ∣2

�
2

R
m dr⊥ε2ðr⊥Þ∣eðr⊥; βÞ∣4

¼ εm
�
vg

c

�
2
AeffðβÞ; ð23Þ

where vg is the group velocity. This effective area vanishes
for a zero-velocity state, whereas Aeff remains finite. The dif-
ference is due to the fact that the transverse fields in
z-propagating schemes are normalized to the z-propagating
power, whereas the fields in the time-propagating formalism
developed here are normalized to the energy density, as
shown by Eq. (9). An alternative formulation has recently
been proposed by Afshar V. and Monro [7], in which both
an effective-area parameter and an averaged nonlinear refrac-
tive index is determined from the modal fields and fiber cross
section. In this formulation, the proposed effective area would
stay finite for β → 0; however, the averaged nonlinear index
would diverge, again due to the vanishing of the power nor-
malization integral.

With the above approximations to K and R and the further
definitions

Bðt; βÞ ¼ iωðβÞ~Amðt; βÞ;
~Aðt; zÞ ¼ 1ffiffiffiffiffi

2π
p

Z
dβe−iβz~Amðt; βÞ;

Bðt; zÞ ¼ 1ffiffiffiffiffi
2π

p
Z

dβe−iβzBðt; βÞ; ð24Þ

the propagation equation can be rewritten as

∂Aðt; βÞ
∂t

¼ −e−iωðβÞt
N2

Aeff

1ffiffiffiffiffi
2π

p
Z

dzeiβz½ð1 − f RÞð2∣~Aðt; zÞ∣2Bðt; zÞ

þ ~A2ðt; zÞB�ðt; zÞÞ þ f Rð~Aðt; zÞGðt; zÞ
þ Bðt; zÞFðt; zÞÞ�; ð25Þ

Fðt; zÞ ¼
Z

t

−∞
dt1Rðt − t1Þ∣~Aðt1; zÞ∣2;

Gðt; zÞ ¼
Z

t

−∞
dt1R0ðt − t1Þ∣~Aðt1; zÞ∣2; ð26Þ

N2 ¼
3χð3Þs

4ε0ε2m
; χð3Þs ¼ χð3ÞKxxxx þ

2
3
χð3ÞRxxxx; f R ¼ 2χð3ÞRxxxx

3χð3Þs

:

ð27Þ

These are the propagation equations, which will be solved nu-
merically. Approximating the Raman term as an instantaneous
interaction, assuming B ≈ iω0

~A, and recasting Eq. (25) as an
equation for ~A, one obtains

∂~Amðt; βÞ
∂t

¼ iωðβÞ~Amðt; βÞ

− iω0
N2

Aeff

1ffiffiffiffiffi
2π

p
Z

dzeiβz~Aðt; zÞ∣~Aðt; zÞ∣2: ð28Þ

Inserting ωðβÞ ¼ ω0 þ ðω2=2Þβ2 and transforming the equation
into the z domain, this becomes the well-known NLSE

∂ ~Aðt;zÞ
∂t

¼ i

�
ω0 −

ω2

2
∂2

∂z2

�
~Aðt;zÞ− iω0

N2

Aeff

~Aðt;zÞ∣~Aðt;zÞ∣2: ð29Þ

The iω0 term can be eliminated by letting ~Aðt; zÞ → ~Aðt; zÞeiω0t.
This propagation equation was derived from first-order pertur-
bation theory by Soljačić et al. [13]. In the present derivation,
it appears as a limiting case of the more general Eq. (25),
which is not significantly more challenging from a numerical
point of view.

Whereas dispersion in the NLSE is quantified by the param-
eter β2 ¼ d2β=dω2, in Eq. (29) it is given by ω2 ¼ d2ω=dβ2. If
ω2 is positive, as is typically the case, Eq. (29) is equivalent to
the NLSE in the case of anomalous dispersion, β2 < 0. This
implies the existence of solitonic solutions of the form

Aðt; zÞ ¼
ffiffiffiffiffi
ξ0

p
sech

�
z − vgt

z0

�
eitðωðβ0Þ−1=2TNLÞe−iβ0z;

z20 ¼
ω2

Γξ0
; Γ ¼ ω0N2

Aeff
; TNL ¼ 1

Γξ0
; ð30Þ

where ξ0 is the peak energy density of the soliton, and vg is the
group velocity at β0. This formula describes both stationary
and moving solitons. Sufficiently energetic pulses of any
shape and duration can be expected to break up into solitons,
if coupled into a slow mode of the fiber.

The inclusion of the Raman term breaks the equivalence
between the t- and z-propagating nonlinear equations, which
is to be expected because the Raman interaction is nonlocal in
time but not in space. Evaluation of the functions F and G is
numerically cumbersome in the general case, because an in-
tegral over A functions from many previous time steps must
be performed. However, if the Raman response function is ap-
proximated by a single damped-harmonic oscillator form [14],

RðtÞ ¼ τ21 þ τ22
τ1τ22

sin

�
t

τ1

�
e
− t
τ2 ; ð31Þ

one may write

Gðt; zÞ ¼ τ21 þ τ22
2iτ1τ22

Z
t

−∞
dt1

��
i

τ1
−
1
τ2

�
e



i
τ1
− 1
τ2

�
ðt−t1Þ

þ
�
i

τ1
þ 1
τ2

�
e
−



i
τ1
þ 1

τ2

�
ðt−t1Þ

�
× ∣~Aðt1; zÞ∣2

≡ Gþðt; zÞ þ G−ðt; zÞ; ð32Þ

∂G�ðt; zÞ
∂t

¼ τ21 þ τ22
2iτ1τ22

�
i

τ1
∓

1
τ2

�
∣~Aðt; zÞ∣2 þ

�
� i

τ1
−
1
τ2

�
G�ðt; zÞ;

ð33Þ
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∂Fðt; zÞ
∂t

¼ Gðt; zÞ: ð34Þ

Using these formulae, the F and G functions may be updated
“on the fly,” without referencing earlier values of ~Aðt; zÞ.

3. NUMERICAL RESULTS
A. Slow Modes in As2Se3 Fibers
To obtain physically reasonable parameters for the nonlinear
propagation equation derived in Section 2, some calculations
of mode profiles in high-index As2Se3 microstructured fibers
were undertaken. The linear Maxwell equations for the guided
modes were solved by expanding the magnetic field and the
dielectric function in-plane waves, using a freely available
software package [17]. A supercell of 8 × 8 elementary unit
cells of the cladding structure was used to incorporate the de-
fect, and a coupling-reducing k point was used to enhance
convergence with respect to supercell size [18]. The resolu-
tion of the Fourier grid was 64 × 64 points in each cladding
unit cell. Oskooi et al. have earlier studied the formation of
in-plane bandgaps and slow-mode guidance in As2Se3 micro-
structures at high air-filling fractions and suggested to in-
crease the bandgap size by fabricating a cladding structure
consisting of cylinders joined by planar slabs [3]. Unfortu-
nately, such a structure is not the easiest one to fabricate
as it does not conform to the “natural” glass flow during a fiber
draw. In this paper, the cladding will be described using the
geometric model put forward by Mortensen and Nielsen [19].
The structure is shown in Fig. 1 and is characterized by four
parameters: the center-to-center airhole distance, or pitch Λ,
the curvature radius of the cladding airhole corners, dcl, the
smallest glass bridge width, wb, and the curvature radius of
the airhole surfaces pointing towards the core, dc. A range
of cladding structures were investigated by varying dcl and
wb; however, the largest bandgaps were found for airholes
with dcl values close to Λ −wb, having a close to circular
shape. For the further simulations, a structure with dcl ¼
0:82Λ and wb ¼ 0:1Λ was chosen, which featured an in-plane
bandgap of more than 4% relative to the center frequency. Two
core structures were investigated, one with dc ¼ dcl and an-
other with dc ¼ 0:5 Λ. In Fig. 2, the bandgaps and guided
modes are plotted for the two structures. Λ was set to
1 μm, which gives guided modes at around 2 μm for a material
refractive index of 2.817. Experimentally, this is an interesting
wavelength, since powerful thulium-based fiber laser sources
are currently being developed, while at the same time the two-
photon absorption, which is problematic at 1:55 μm, should be
significantly suppressed.

At the β ¼ 0 point, all modes can be characterized as
being either transverse electric (TE) or transverse magnetic
(TM). At finite values of β, the modes can be divided into non-
degenerate modes of either TE or TM character, or doubly
degenerate hybrid modes. In the large core, dc ¼ dcl, two non-
degenerate modes, one of TE and one of TM character, are
found. The TE mode is much less dispersive than the TM
mode, and the two modes cross in frequency around
β ¼ 1:4 μm−1. In theory, this crossing may appear undisturbed
due to the different symmetries of the eigenmodes. In prac-
tice, small deviations from the perfectly symmetric fiber struc-
ture would likely couple the two modes, leading to an avoided
crossing at this point. In the small core, a doubly degenerate

hybrid mode, having TE character at β ¼ 0, is guided well in-
side the bandgap over a large range, whereas two nondegene-
rate modes are weakly guided at either low or high β values.
The hybrid mode was chosen to provide input parameters for
the nonlinear simulations, as it seems to have fairly represen-
tative values of dispersion and effective area. The ω2 param-
eter was estimated to be 26:23 μm2=ps, and the effective area
at β ¼ 0 was approximately 1:7 μm2. The dashed curve in
Fig. 2(b) shows the parabolic approximation to the dispersion
curve with this value of ω2. A close resemblance is

Fig. 1. Generic fiber structure investigated in this work. The defining
parameters are the pitch, Λ, the core and cladding airhole curvature
radii, dc, dcl, and the minimal glass bridge width,wb. The core center is
at the lower left corner of the figure.

Fig. 2. (Color online) Bandgap boundaries (solid black curves) and
guided-mode dispersion curves for two different core designs with (a)
dc ¼ 0:82 and (b) dc ¼ 0:5. Insets show modal field energy distribu-
tions. The dashed black curve in (b) is a quadratic approximation
to the hybrid-mode dispersion curve (red circles).
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observed up to β values around 1 μm−1, after which higher-
order corrections begin to make a significant difference. In
the simulations, pulses peaking at β values below 1 μm−1 will
therefore be studied.

If the effective-area parameter defined in Eq. (22) is calcu-
lated for both zero and finite β, a variation of ∼20% is found
over the β range from 0–1:2 μm−1, which is relevant for the
pulse propagation simulations discussed in Subsection 3.B.
Thus, the neglect of mode profile dispersion appears to be
a reasonable first approximation, but is at the same time
the most significant simplification of the propagation equa-
tions used in the this paper. It is emphasized that the inclusion
of a β-dependent effective area in Eq. (25) will not necessarily
lead to a correct treatment of mode profile dispersion, since
such a procedure would not capture the full complexity of the
integration kernels K and R [11].

B. Soliton Propagation
To numerically solve Eqs. (25) and (26), a fourth-order
Runge–Kutta algorithm is used [20]. The functions ~Aðt; zÞ,
Bðt; zÞ, Fðt; zÞ, andGðt; zÞ are represented on a linear grid with
32,768 points and a discretization stepΔz ¼ 0:5 μm. Transfor-
mations between the z and β representations are done by fast
Fourier transforms. The nonlinear refractive index of As2Se3
was recently measured to vary between 0:75 × 10−5 μm2=W
and 1:1 × 10−5 μm2=W at wavelengths from 1470 to 1560 nm
[21]. Here, an estimate of 6 × 10−6 μm2=W is assumed for
the longer wavelength of 2 μm. From this n2 value, the value
of χð3Þ, and thereby N2, can be calculated. For the Raman re-
sponse function, Eq. (31), the peak Raman gain has been es-
timated to lie around a frequency shift of 7 THz with a spectral
width of ∼1:4 THz [21]. To match these values, time constants
of τ1 ¼ 23 fs, τ2 ¼ 230 fs were chosen, while f R was set to 0.2,
similar to what one has for silica.

Intuitively, since the Raman scattering process acts to
downshift the frequency of the light, it can be expected to
push moving solitons towards the zero-velocity soliton state
at β ¼ 0, where the frequency is at a minimum. To test this
hypothesis, ideal solitons were launched at β ¼ 0:6 μm−1, cor-
responding to an initial group velocity of 15:7 μm=ps ≈ 0:052c.
In Fig. 3, the group velocity as a function of propagation time
is plotted for three different soliton energies, corresponding to
spatial FWHM values of 7.1, 5.8, and 5:0 μm. The curves were
obtained by direct numerical differentiation of the peak pulse
position and correspond well to the group velocity at the peak
of the spectral function as a function of time. One observes a
roughly exponential decay of the soliton velocity, with a decay
constant proportional to E4

p, or equivalently, z−40 .
These findings may be explained by treating the Raman

interaction as a perturbation to the fundamental soliton,
Eq. (30). Considering the averaged β value of the pulse

�β ¼
R
dβ∣Aðt; βÞ∣2βR
dβ∣Aðt; βÞ∣2 ; ð35Þ

the time derivative of this function is given by

d �β
dt

¼
R
dβ

�
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A�ðt; βÞ ∂Aðt;βÞ∂t þ Aðt; βÞ ∂A�ðt;βÞ

∂t
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ðβ − �βÞ

Ep

: ð36Þ

The time derivative of Aðt; βÞ is given by Eq. (18). The Kerr
term in the nonlinear polarization does not contribute to
the frequency shift, and neither does the Raman term invol-
ving Gðt; zÞ. However, the Raman term proportional to
Fðt; zÞ gives a finite contribution to d �β =dt. Inserting the soli-
ton functional form from Eq. (30) into Eq. (26) and expanding
the time dependence of ~Aðt; zÞ to linear order yields

Fðt; zÞ ¼
Z

t

−∞
dt1Rðt − t1Þ∣~Aðt1; zÞ∣2
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τ1
τ2 þ

τ2
τ1

� ∂∣Aðt; zÞ∣2
∂t

¼ ∣~Aðt; zÞ∣2

− 4
ξ0vg
z0

sech3
�
z − vgt

z0

�
sinh

�
z − vgt

z0

� τ1�
τ1
τ2 þ

τ2
τ1

� :

ð37Þ

This approximation becomes increasingly well justified as the
soliton velocity decreases. Only the term proportional to
∂ ~A=∂t contributes to d �β =dt. Substituting only this part of
the F term from Eq. (25) for ∂A=∂t, one finds

A�ðt;βÞ∂Aðt;βÞ
∂t

¼−
4ωτ1�
τ1
τ2þ

τ2
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�z0ξ20f R
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∞
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�
sinh

�
z−vgt

z0

�
;

ð38Þ

Fig. 3. (Color online) Soliton velocity versus time for three different
pulse energies. The curves were determined by direct numerical dif-
ferentiation of the soliton peak position as a function of time.
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and thereby, using Eq. (36) and the fact that Ep ¼ 2ξ0z0,

d �β
dt

¼ −
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� ξ0
z20

f R
N2

Aeff
vg

Z
∞

−∞
duusech

�πu
2

�

×
Z

∞

0
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Since vg ¼ ω2
�β, Eq. (39) implies

vgðtÞ ¼ vgðt ¼ 0Þe−t=t0 ; t0 ¼
15
16

�
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ωτ1
z20

ξ0
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f RN2ω2
: ð40Þ

The numerically calculated deceleration rates match very well
with this result, especially as the velocity becomes low so that
the linear expansion of the temporal pulse profile becomes
increasingly accurate. The soliton will propagate no further
than

z∞ ¼
Z

∞

0
dtvgðtÞ ¼ vgðt ¼ 0Þt0: ð41Þ

For an initial group velocity of 15:7 μm=ps, this yields z∞ ≈
3:15 mm for the 144 pJ soliton, which is also in fairly good
agreement with the result of the numerical simulations. Note
also that the z20=ξ0 dependence of t0 may be rewritten as a z40
or ξ−20 dependence using Eq. (30).

A further point of interest is what will happen if two iden-
tical solitons are launched with some delay in between, e.g.,
from a pulsed laser with a fast repetition rate. Since both so-
litons in isolation would come to rest at the same point in the
fiber, some interaction must eventually occur, even if the so-
litons are initially well separated. From the established theory
of solitons, it is known that solitons propagating in close
proximity will either attract or repel each other, depending
on their relative phase. For most values of the relative phase,
the interaction is repulsive. In the case of slow solitons, a si-
milar behavior is found. In Fig. 4, the interaction of two iden-
tical solitons, launched with a time interval of 2 ns, is shown
for three different values of the relative phase at input. The
typical case is that the solitons repel each other with little ex-
change of energy and end up with a separation of a few tens of
micrometers. However, with a carefully chosen relative phase,
a strong collision with some transfer of energy is seen.

4. DISCUSSION
The results of Section 3 indicate that very slow moving soli-
tons may be obtained in high-index photonic crystal fibers
(PCFs) by using the inherent effects of Raman scattering in
the glass. In this section, a short discussion regarding the prac-
tical feasibility of observing such decelerated solitons will be
attempted.

The calculations presented in Section 3 do not account
for losses in the fiber. In fact, both waveguiding (“leakage”)
loss and material absorption/scattering losses will be present.
While the leakage loss can always be brought down by

enlarging the size of the PBG cladding region, the material-
related losses are a fundamental limitation. Typical material
loss figures cited for fast-moving light in bulk As2Se3 glass
are of the order of 1 dB=m, with losses for high-quality fibers
attaining similar values [4]. When the group velocity ap-
proaches zero, the loss per unit length will of course diverge;
however, for the time propagation formalism adopted here,
the relevant quantity is the loss per unit time, which should
remain finite. Assuming a group velocity of ∼100 μm=ps in
an ordinary fiber mode, or in bulk As2Se3, a loss of 1 dB=m
translates into 0:1 dB=ns, which would not greatly affect
the simulations performed here. Another possible limitation

Fig. 4. (Color online) Collisions between 144 pJ solitons launched
with a time interval of 2 ns. The time is measured relative to the
launch of the second soliton. For a relative input phase ϕ ¼ 0:87
radians (upper left panel), a strong interaction is observed, and the
first soliton eventually carries away about 63% of the total energy.
For ϕ ¼ 0:9 radians (upper right), the interaction is already signifi-
cantly reduced, and the first soliton eventually carries 53% of the en-
ergy. For ϕ ¼ 1:0 radians (lower panel), the interaction is still further
reduced, although notable oscillations are seen after the collision.
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may be the breakdown threshold of As2Se3. The peak energy
density of the shortest soliton simulated above is about
25 pJ=μm, which in a pulse moving at 100 μm=ps would cor-
respond to a power of 2:5 kW. While the spatial FWHM of the
soliton is only about 5 μm, its temporal duration becomes very
long as the velocity decreases. It is then a question whether
this energy density can be sustained in a core of only 1:7 μm2.
If the pulse energy is reduced, the Raman deceleration pro-
cess takes more time and losses may then start to play a role,
further reducing the nonlinear effects. A possible remedy may
be to amplify the pulse continuously by Raman interaction
with a CW pump in the fundamental (fast) core mode of
the fiber.

5. CONCLUSION
In conclusion, a time-propagating generalized NLSE has been
derived and applied to the case of a slow mode in a high-index
PCF. The fiber is found to support stationary as well as mov-
ing solitons, and it is shown that Raman scattering will drive
the moving solitons exponentially toward the stationary state.
If a second soliton is launched, it will interact repulsively with
the first soliton for most values of the relative phase between
the solitons. Thus, the fundamental zero-velocity soliton ap-
pears to be an attractor state in this type of fiber and should
be observable if sufficient energy can be coupled into the slow
fiber mode by any means.

The general formalism developed in this paper, as well as
the fundamental results on soliton behavior in the slow state,
will be of high importance for further studies of the nonlinear
properties of slow modes in fibers. As for practical applica-
tions of the nonlinear soliton deceleration, highly tunable de-
lay lines and light buffering appear to be the most obvious
possibilities.
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