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Abstract

In a previous paper we demonstrated that the well known matrix-geometric solu-
tion of Quasi-Birth-and-Death (QBD) processes is valid also if we introduce Rational
Arrival Process (RAP) components. Here we extend those results and we offer an
alternative proof by using results obtained by Tweedie.

We prove the matrix-geometric form for certain kind of operators on the stationary
measure for discrete time Markov chains of GI/M/1 type. We apply this result to
an embedded Markov chain modelling a queue with RAP components. We also
discuss the straightforward modification of the standard algorithms for calculating
the matrix R in the traditional QBD framework to this extended environment.

Finally we present examples demonstrating great reductions in dimensionality
from the traditional QBD framework to the QBD – RAP framework.
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1 Introduction

Neuts [18] introduced the matrix geometric solutions to queues with components of phase-

type (PH) distributions and the versatile arrival process, later streamlined as the Markovian

Arrival Process (MAP) [15]. Lipsky and coauthors [12, 13, 14] and later Asmussen and

Bladt [2] showed how the PH formalism generalises into a Matrix–Exponential (ME) form

with similar analytic expressions albeit without the probabilistic interpretation of sojourn

times in finite state Markov chains. PH distributions belong to a strict subclass of distri-

butions with rational Laplace transform [8], which were later shown to be equivalent to the

class of ME distributions [12, 13, 14]. Bladt and Neuts [6] discussed an interpretation of ME

distributions as flows leading to a possible way of extending the field of Matrix-Analytic

Methods (MAM) to models involving ME-distributions.

The extension of the MAP to Rational Arrival Processes (RAP) was given by Asmussen

and Bladt [3]. They also showed that the class of RAPs was the class of all point processes

where a time-shifted version varied in a finite-dimensional space. See also Mitchell [17] for

related work.

In [4] we showed how to generalise the method of Ramaswami [24] to the setting of a cer-

tain bivariate Markov chain, the most important sub-model probably being the RAP/ME/1

queue. Thus in that paper we showed how to extend the most modern MAM arguments

to queues with RAP components. In this paper we provide an alternative proof that

can be applied in a more general setting. Tweedie [27] showed how the MAM formulas in

discrete time extend to cases with general phase state space turning the non-linear matrix–

polynomial equation into an operator–polynomial equation. To our knowledge this work

has only had limited applications so far, see Sengupta [25], Nielsen and Ramaswami [20]

and Breuer [7] for examples.

In [20] Nielsen and Ramaswami demonstrated how the operator equation turns into

a Neuts–type matrix equation, see e.g. [18, 19], when the underlying operators can be

represented by a countable set of basis functions. The examples of Nielsen and Ramaswami

might be considered somewhat contrived. Nevertheless, that paper demonstrated how a

linear structure in the operator might transform into a matrix–polynomial equation. The

equivalence of the RAP to the class of point processes on a finite-dimensional space and

the linear nature of the RAP construction, gives hope that the operator–polynomial form

will translate into some form of matrix–polynomial equation too.

In this paper we show that this is indeed the case. In contrast to Nielsen and Ra-

maswami [20], where the measure itself had a linear expansion, we use a kind of operator
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linearity. We consider an operator (Γ), that maps measures to some vector space, such

that Γ can be considered a descriptor of the measure. We then consider operators Π map-

ping measures to measures in such a way that the effect on the descriptor Γ is a linear

function, identifying a matrix P , characterising the operator Π. We then show how to

obtain the value of the operator evaluated at the stationary measure without explicitly

calculating the stationary measure. This is done by solving a matrix equation similar to

the well-known matrix equation of the standard MAM setting. In doing so we establish

a general framework in which the work by Nielsen and Ramaswami (linear expansion of

the measure) and our work on queues with RAP components (linear nature of the RAP

construction) both turn out to be special cases.

In Section 2 we set up the terminology and present the concept of an operator being Γ-

linear, that is linear with respect to a descriptor Γ, that maps measures to a vector space.

In Section 3 we apply this concept to the results of Tweedie for Markov chains of the

GI/M/1-type structure, where the phase variable takes values in some general space. Now

the work of Nielsen and Ramaswami arises as a special case of these more general results.

We then move on to show how to make an appropriate formulation for queues with RAP-

components in Section 4, where the operator Γ is the expectation operator. Specifically, we

apply the theory to the GI/RAP/1 queue and the QBD with RAP-components. This latter

queue was the topic of our previous paper [4]. In Section 5 we present our examples. These

have been carefully chosen to demonstrate two main points. First, that such analysis is

correct and the algorithms appear to be numerically stable. For this reason we have chosen

examples where the representations of the underlying distributions are genuinely ME of a

given order (and not PH of that order), but for which there exist PH representations using

higher orders. This enables us to analyse the models directly using the theory contained

in this paper and to cross-check these results with those attained using the traditional

analysis involving the (larger) PH representations. Second, we consider a sequence of

such examples, where the equivalent PH representation requires increasing order. This

demonstrates the potential computational savings of being allowed to use the more compact

ME representations and allows us to give an initial demonstration of the numerical stability

of our approach, even as the underlying distributions leave the class of PH distributions.

In Appendix A we develop these example processes and distributions from first principles

and include detailed explanations of how they were created with the desired properties.

We hope that these may become standard examples for future work in this area.

We delay the consideration of M/G/1-type structures with RAP components to future
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work.

2 Operator Linearity

In this section we introduce the general framework, which is a Markov chain on the state

space N0 × J, where N0 = {0} ∪ N and N is the natural numbers, and J is a general

measurable space. In turn we define a certain property (Γ-linearity) of operators that map

measures on J to other measures on J.

2.1 Simple properties of operator linearity

We consider a set J equipped with a σ-algebra J and denote the set of signed finite

measures on (J,J ) by M. Of particular importance is the subset Mp ⊂ M consisting of

the measures with total variation at most 1. Next we define the set of operators (kernels)

that take an element of Mp to Mp and denote that set by P, such that Π̂ ∈ P : Mp →Mp.

The operator Π̂ is defined through its kernel Π̃(x, J), as Π̂(ϕ)(J) =
∫
J ϕ(dx)Π̃(x, J), where

x ∈ J and J ∈ J , Π̃(x, J) is such that Π̃(x, ·) is a measure for each x ∈ J, and Π̃(·, J) is

measurable in J for fixed J . We then define the set G of linear continuous operators on

M? ⊆ M taking values in some real or complex, normed vector space V with a countable

basis, such that Γ ∈ G : M? → V. Of course Γ might be defined and linear for all ϕ ∈ M,

in which case we can take M? = M. Thus an operator Γ is a descriptor that extracts some

characteristic from a signed finite measure µ ∈ M?. We will take special interest in the

restriction of Γ to M?
p = Mp ∩M? of measures of total variation at most one.

Definition 1 An element Π̂ ∈ P is said to be Γ-linear with respect to M?
p ⊆ Mp if

Π̂ : M?
p → M?

p and Γ(Π̂(ϕ)) = Γ(ϕ)P , for all ϕ ∈ M?
p, for a unique matrix P . Whenever

M?
p = Mp we simply say that Π̂ is Γ-linear.

Without loss of generality, we can choose V?
p, the image of M?

p in such a way that the

matrix P is unique. To see this, suppose that P1 and P2 are two matrices such that

Γ(Π̂(ϕ)) = Γ(ϕ)P1, and Γ(Π̂(ϕ)) = Γ(ϕ)P2, for all ϕ ∈ M?
p. Therefore, Γ(ϕ)P1 = Γ(ϕ)P2

for all ϕ ∈M?
p and so P1−P2 maps all vectors in Γ(M?

p) to the zero vector. Consequently,

we can redefine the vector space V?
p in order that P is unique. Some care is needed in

doing this when more than one Γ-linear operator isconsidered simultaneously.
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Lemma 1 If Π̂1 ∈ P and Π̂2 ∈ P are both Γ-linear with respect to M?
p with matrices P1

and P2 respectively, then Π̂ = Π̂2(Π̂1) given by the kernel Π̃: Π̂(ϕ)(·) =
∫
J
ϕ(dx)Π̃(x, ·) =∫

J
∫
Jϕ(dx)Π̃1(x, dy)Π̃2(y, ·)) is Γ-linear with P = P1P2.

Proof: For any ϕ ∈M?
p

Γ(Π̂(ϕ)(·)) = Γ

(∫
J

∫
J
ϕ(dx)Π̃1(x, dy)Π̃2(y, ·)

)
= Γ

(∫
J
ν(dy)Π̃2(y, ·)

)
,

where ν(·) =
∫
J ϕ(dx)Π̃1(x, ·). Thus by the Γ-linearity of Π̂2, we have

Γ(Π̂2(Π̂1(ϕ))(·)) = Γ(ν(·))P2 = Γ

(∫
J
ϕ(dx)Π̃1(x, ·)

)
P2 = Γ(ϕ(·))P1P2,

by the Γ-linearity of Π̂1.

2.2 Level-partitioned discrete-time Markov chain with a general
phase space J

We now consider a Markov chain Xn = (Ln,Jn) in discrete time on the bivariate state

space (N0 × J), where J is some general measurable space. We have chosen to use the

symbol J to describe the second component of the state, which we will call the phase

throughout. The block-structured matrix

P̃ (x, J) =


P̃00(x, J) P̃01(x, J) P̃02(x, J) . . .

P̃10(x, J) P̃11(x, J) P̃12(x, J) . . .

P̃20(x, J) P̃21(x, J) P̃22(x, J) . . .
...

...
...

 , (1)

is the transition kernel of Xn, that is, P (Ln+1 = j,Jn+1 ∈ J |Ln = i,Jn = x) = P̃i,j(x, J).

Here x ∈ J and J ∈ J is any measurable set in the σ-algebra J imposed on J. For a dis-

cussion of Markov chains on a general state space, see the book by Meyn and Tweedie [16].

Obviously the P̃i,j define Π̂i,j ∈ P by

Π̂i,j(ϕi)(J) =

∫
J
ϕi(dx)P̃i,j(x, J).

Let K denote the set of signed finite measures on N0×J and Kp denote the set of measures

of total variation most 1 on N0×J . It follows that P̃ correspondingly defines Π̂ : Kp → Kp,
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with ϕ = (ϕ0, ϕ1, ϕ2 . . . ) ∈MN0×J , by

Π̂(ϕ) =

(
∞∑
i=0

Π̂i,0(ϕi),
∞∑
i=0

Π̂i,1(ϕi), . . .

)

=

(
∞∑
i=0

∫
J
ϕi(dx)P̃i,0(x, ·),

∞∑
i=0

∫
J1

ϕi(dx)P̃i,1(x, ·), . . .

)
.

Lemma 2 Let ϕ ∈ K?
p ⊆ Kp be a measure of total variation at most one on (N0 × J)

with components ϕi ∈ M?
p ⊆ Mp that are themselves measures of total variation at most

one on J. Define Γ(ϕ) as the infinite vector of Γ operating on the components of ϕ, such

that Γ(ϕ) = (Γ(ϕ0),Γ(ϕ1), . . . ). Now if Π̂i,j is Γ-linear with respect to M?
p with matrix Pij

for all (i, j) then Π̂ is Γ-linear with respect to K?
p with matrix

P =


P00 P01 P02 . . .
P10 P11 P12 . . .
P20 P21 P22 . . .

...
...

...

 .
Proof: The result follows directly from the linearity of Γ and the Γ-linearity of Π̂i,j with

respect to M?
p. Consider the jth element of Γ(Π̂(ϕ)) given by Γ

(∑∞
i=0 Π̂i,j(ϕi)

)
. Then

Γ

(
∞∑
i=0

Π̂i,j(ϕi)

)
= Γ

(
N∑
i=0

Π̂i,j(ϕi)

)
+ Γ

(
∞∑

i=N+1

Π̂i,j(ϕi)

)

=
N∑
i=0

Γ
(

Π̂i,j(ϕi)
)

+ Γ

(
∞∑

i=N+1

Π̂i,j(ϕi)

)
,

for any positive integer N , due to the linearity of Γ. As Γ is linear and continuous, it is

also bounded [9, Theorem 3.1, Page 44]. Thus Γ
(∑∞

i=N+1 Π̂i,j(ϕi)
)

vanishes for N →∞.

By taking the limit of the right-hand side, we then have

Γ

(
∞∑
i=0

Π̂i,j(ϕi)

)
=
∞∑
i=0

Γ
(

Π̂i,j(ϕi)
)
.
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Now we can use the Γ-linearity of the Π̂i,j with respect to M?
p to show that

Γ(Π̂(ϕ)) =

(
Γ

(
∞∑
i=0

Π̂i,0(ϕi)

)
,Γ

(
∞∑
i=0

Π̂i,1(ϕi)

)
, . . .

)

=

(
∞∑
i=0

Γ(Π̂i,0(ϕi)),
∞∑
i=0

Γ(Π̂i,1(ϕi)), . . .

)

=

(
∞∑
i=0

Γ(ϕi)Pi,0,
∞∑
i=0

Γ(ϕi)Pi,1, . . .

)
= Γ(ϕ)P,

where convergence of the sums are ensured by the continuity of Γ and the boundedness of

ϕ.

2.3 Generalisations needed to cope with complex boundary be-
haviour

In many applications it is convenient to operate with a different state space for the phase at

the boundary. This poses no real change to the essential arguments, however, it complicates

notation a little. We introduce the general measure space (J0,J0) and the corresponding

operator Γ0 mapping from M∗p0 to some real or complex, normed vector space V0 with a

countable basis, to describe the behaviour at level 0. We shall also need the mappings

Π̂0i : M?
p0
→ M?

p and Π̂i0 : M?
p → M?

p0
, for all i ≥ 1. Now Γ–linearity of Π̂0i and Π̂i0

means the existence of unique matrices P0i and Pi0 such that Γ(Π̂0i(ϕ0)) = Γ0(ϕ0)P0i and

Γ0(Π̂i0(ϕ)) = Γ(ϕ)Pi0, for all i ≥ 0. Usually, for this to be meaningful in a practical

context, the spaces J0 and J would have somewhat similar structures as for instance being

subsets of different Euclidean spaces, and similarly, Γ0 and Γ would be somewhat related

operators such that the definition of Γ on M?
p would lead naturally to the definition of Γ0

on M?
p0

. We shall see that this will indeed be the case when we deal with our main example

in Section 4.

3 Tweedie’s operator geometric results

Tweedie [27] considered kernels of the type in (1) with a special structure, that has been

termed GI/M/1-type by Neuts [18]. Here P̃i,j = Ãi−j+1 for 0 < j ≤ i + 1, P̃i,j = 0 for
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i+ 1 < j and P̃i,0 = B̃i+1. Thus

P̃ (x, J) =


B̃1(x, J) Ã0(x, J) 0 0 . . .

B̃2(x, J) Ã1(x, J) Ã0(x, J) 0 . . .

B̃3(x, J) Ã2(x, J) Ã1(x, J) Ã0(x, J) . . .
...

...
...

 .
Tweedie showed [27, Theorem 2], that an invariant measure µ(·) = (µ0(·), µ1(·), . . .) of the

Markov chain Xn = (Ln,Jn) is of the form

µi+1(J) =

∫
J
µi(dx)S̃(x, J), (2)

where the kernel S̃(x, J) is the minimal non-negative solution to

S̃(x, J) =
∞∑
j=0

∫
J
S̃j(x, dy)Ãj(y, J), (3)

and the kernel S̃j(x, J) is the j-th iterate

S̃j(x, J) =

∫
J
S̃j−1(x, dy)S̃(y, J).

The measure µ0(·) at level zero, subject to normalisation, can be found from

µ0(J) =
∞∑
j=1

∫
J

∫
J
µ0(dx)S̃j−1(x, dy)B̃j(y, J), (4)

where, from Proposition 1 of Tweedie [27],
∑∞

j=1

∫
J S̃

j−1(x, dy)B̃j(y, J) = 1 for all x ∈
J. Tweedie considers the Φ–irreducibility condition, see for example [26]. The stability

criterion is primarily discussed when one has B̃k =
∑∞

i=k Ãi, in which case [27, Theorem

5] positive recurrence of the Φ-irreducible Markov chain is guaranteed when∫
J
ν(dx)

∞∑
k=0

kÃk(x, J) > 1,

where ν(·) is the unique Φ–irreducible measure of Ã(x, J) =
∑∞

k=0 Ãk(x, J).
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3.1 Complex boundary behaviour

The boundary behaviour at level 0 is sometimes such that the entrance from level 0 to

level 1 can not be described by the kernel Ã0(x, J). In that case the usual structure is

P̃ (x, J) =


B̃1(x, J) B̃0(x, J) 0 0 0 . . .

B̃2(x, J) Ã1(x, J) Ã0(x, J) 0 0 . . .

B̃3(x, J) Ã2(x, J) Ã1(x, J) Ã0(x, J) 0 . . .

B̃4(x, J) Ã3(x, J) Ã2(x, J) Ã1(x, J) Ã0(x, J) . . .
...

...
...

. . . . . . . . .

 .

It is straightforward that (2) is still valid for i ≥ 1 while (4) needs minor adjustments and

an additional equation is needed.

µ0(J) =

∫
J
µ0(dx)B̃1(x, J) +

∞∑
j=1

∫
J

∫
J
µ1(dx)S̃j−1(x, dy)B̃j+1(y, J), (5)

µ1(J) =

∫
J
µ0(dx)B̃0(x, J) +

∞∑
j=1

∫
J

∫
J
µ1(dx)S̃j−1(x, dy)Ãj(y, J). (6)

From here on we deal with this more general structure.

3.2 Operator linearity of Tweedie’s Ãi and B̃i kernels

As part of the proof [27, Theorem 2] Tweedie introduced the sequence of kernels S̃i(x, J),

with

S̃0(x, J) = 0, S̃i+1(x, J) =
∞∑
k=0

∫
J
S̃ki (x, dy)Ãk(y, J), i ≥ 0,

and showed that limi→∞ S̃i(x, J) = S̃(x, J) with S̃i(x, J) ≤ S̃i+1(x, J). We define Ŝ, Ŝk,

and Âk to be the operators associated with the kernels S̃, S̃i, and Ãk respectively. We then

have the following important result.

Lemma 3 If for all k ≥ 0 the Âk are Γ-linear with respect to M?
p with matrix Ak, then all

elements of the sequence Ŝi are Γ-linear with respect to M?
p. The matrices Si corresponding

to S̃i are given by the (equivalent) matrix sequence

S0 = 0, Si+1 =
∞∑
k=0

Ski Ak, i ≥ 0.
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Proof: We have Γ(Ŝ0) = 0 due to the continuity of Γ. Now Ŝ1 is Γ-linear with respect to

M?
p with matrix A0 as Ŝ1 is identical to Â0. We continue similarly to the argument used

in the proof of Lemma 2.

Γ(Ŝi+1(φ)) =
∞∑
k=0

Γ
(
Âk

(
Ŝki (φ)

))
= Γ (φ)

N∑
k=0

Ski Ak +
∞∑

k=N+1

Γ
(
Âk

(
Ŝki (φ)

))
.

The last term can be bounded by∣∣∣∣∣
∞∑

k=N+1

Γ
(
Âk

(
Ŝki (φ)

))∣∣∣∣∣ ≤
∞∑

k=N+1

∣∣∣Γ(Âk (Ŝki (φ)
))∣∣∣

≤
∞∑

k=N+1

|Γ|
∣∣∣Âk (Ŝki (φ)

)∣∣∣ ≤ |Γ| ∞∑
k=N+1

∣∣∣Âk (Ŝki (φ)
)∣∣∣ ,

and we see that
∑∞

k=N+1 Âk

(
Ŝki (φ)

)
vanishes as N → ∞. The induction hypothesis

completes the proof.

We are now ready to state our main result.

Theorem 4 If for all k ≥ 0 the Âk are Γ-linear with respect to M?
p with matrix Ak, then

the operator Ŝ is Γ-linear with respect to M?
p with matrix S which is a solution to

S =
∞∑
k=0

SkAk. (7)

Proof: Since we know that S̃i(x, J)↗ S̃(x, J) as i→∞, and Γ is a continuous operator,

then by continuity we have that limi→∞ Γ(Ŝi(ϕ)) = Γ(limi→∞ Ŝi(ϕ)) = Γ(Ŝ(ϕ)).

Further, we have just shown that Γ(Ŝi(ϕ)) = Γ(ϕ)Si and so Γ(Ŝ(ϕ)) = Γ(ϕ)S with

S = limi→∞ Si, which must exist as Γ(Ŝ(ϕ)) is well-defined and bounded. Thus we can

conclude that the operator Ŝ is Γ-linear with respect to M?
p with matrix S and that S

obeys

S =
∞∑
k=0

SkAk. (8)

Lemma 3 and Theorem 4 provide the natural analogue of the Neuts’ algorithm for de-

termining the matrix R in a traditional QBD. They are nearly a restatement of the result
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of Neuts [18] with the important distinction that there is no direct probabilistic interpre-

tation involved. Rather, it shows that the same matrix equation governs the calculation of

some derived quantities in the more generalised setting of Tweedie [27]. We shall formally

present this as an algorithm for future reference.

Algorithm 1 Given ε > 0,

1. let S0 = 0, set i = 0, and

2. iteratively calculate, Si+1 =
∑∞

k=0 S
k
i Ak, while setting i := i+1, until ||Si+1−Si|| < ε.

Finally we state the main result converting the operator-geometric result of Tweedie [27]

into a matrix-geometric expression under the operation of Γ.

Corollary 5 Assume that B̂k and Âk are Γ-linear with respect to M?
p with matrices Bk and

Ak for all k ≥ 0. Let µ = (µ0, µ1, µ2, . . . ) be the stationary measure determined by equations

(2), (5), and (6). Then µ0 ∈ M?
p0

, µk ∈ M?
p for k ≥ 1, and we have Γ(µk+1) = Γ(µk)S,

for k ≥ 1, with Γ0(µ0) and Γ(µ1) given by Γ0(µ0) = Γ0(µ0)B1 + Γ(µ1)
∑∞

k=1 S
k−1Bk+1, and

Γ(µ1) = Γ0(µ0)B0 + Γ(µ1)
∑∞

k=1 S
k−1Ak.

Proof: By the Γ-linearity of Âk and B̂k with respect to M?
p we have that P̂ is Γ-linear

with respect to K?
p. A sequence of measures φ(n) iterated with P̂ starting with an element

φ(0) = (φ
(0)
0 , φ

(0)
1 , . . . ) ∈ K?

p with φ
(0)
0 ∈M?

p0
and φ

(0)
i ∈M?

p will stay in the set K?
p. The limit

of the sequence φ(n) will also belong to K?
p, as we show below. We have φ(n+1) = P̂

(
φ(n)

)
,

and suppose the limit of φ(n) is φ∗. Thus

Γ
(
P̂ (φ∗)

)
= Γ

(
P̂
(
φ(n) + φ∗ − φ(n)

))
= Γ

(
P̂
(
φ(n)

)
+ P̂

(
φ∗ − φ(n)

))
= Γ

(
P̂
(
φ(n)

))
+ Γ

(
P̂
(
φ∗ − φ(n)

))
= Γ

(
φ(n)

)
P + Γ

(
P̂
(
φ∗ − φ(n)

))
.

Now as n → ∞ the right hand side tends to Γ (φ∗)P and so φ∗ ∈ K?
p as claimed. From

the uniqueness of the stationary measure we conclude that it has the property stated in

the theorem.

The expression for Γ(µk) follows immediately from equation (2) upon the application

of Γ. From (5) and (6) we obtain the equations for Γ(µ0) and Γ(µ1) using Lemma 1.

Corollary 6 Suppose the conditions of Corollary 5 are met such that µ1 ∈M?
p then

∞∑
k=0

Γ(µ1)Sk <∞, elementwise
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Proof: To prove the finiteness of Γ(µ1)
∑∞

k=0 S
k consider

∞∑
i=0

Ŝi(µ1),

which is a finite measure as

ζ =

∫
µ1(dx)

∞∑
i=0

S̃i(x,E) <∞

since
∑∞

i=0 S̃
i(x,E) < ∞ for x µ1 a.e. ([27, Theorem 2 (iv)]). Now ζ−1

∑∞
i=0 Ŝ

i(µ1) is a

measure of total variation at most one, that belongs to M?
p, therefore

∞ > Γ

(
ζ−1

∞∑
i=0

Ŝi(µ1)

)
=
∞∑
i=0

Γ
(
ζ−1Ŝi(µ1)

)
= ζ−1

∞∑
i=0

Γ(µ1)Si.

The minimal non-negative characterisation of Neuts [18] is re-cast in the positive-

recurrent case as a matrix S that is a solution to Equation (7) while obeying Corollary 6.

Note that, although we haven’t analytically characterised which solution of (7) we

require, we have shown that the solution delivered by Algorithm 1 is the required solution.

We shall use this idea later to justify that a suite of other algorithms also deliver the

required solution.

3.3 Birth and death structures and level censoring

In this section we consider the case when the Markov chain has a birth and death like

structure, that is the transition kernel is of the form

P̃ (x, J) =


B̃1(x, J) B̃0(x, J) 0 0 0 . . .

B̃2(x, J) Ã1(x, J) Ã0(x, J) 0 0 . . .

0 Ã2(x, J) Ã1(x, J) Ã0(x, J) 0 . . .

0 0 Ã2(x, J) Ã1(x, J) Ã0(x, J) . . .
...

...
...

. . . . . . . . .

 .
If we consider this Markov chain only at successive visits to even numbered levels we obtain

a new level–censored chain with kernel

P̃ (1)(x, J) =


B̃

(1)
1 (x, J) B̃

(1)
0 (x, J) 0 0 0 . . .

B̃
(1)
2 (x, J) Ã

(1)
1 (x, J) Ã

(1)
0 (x, J) 0 0 . . .

0 Ã
(1)
2 (x, J) Ã

(1)
1 (x, J) Ã

(1)
0 (x, J) 0 . . .

0 0 Ã
(1)
2 (x, J) Ã

(1)
1 (x, J) Ã

(1)
0 (x, J) . . .

...
...

...
. . . . . . . . .

 ,
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where we have

B̃
(1)
1 (x, J) =

∫
J
H̃0(x, dy)L̃0(y, J), B̃

(1)
0 (x, J) =

∫
J
H̃0(x, dy)H̃(y, J),

B̃
(1)
2 (x, J) =

∫
J
L̃(x, dy)L̃0(y, J), Ã

(1)
1 (x, J) =

∫
J

(
H̃(x, dy)L̃(y, J) + L̃(x, dy)H̃(y, J)

)
,

Ã
(1)
0 (x, J) = H̃2(x, J), and Ã

(1)
2 (x, J) = L̃2(x, J),

with

L̃(x, J) =
∞∑
i=0

∫
J
Ãi1(x, dy)Ã2(y, J), H̃(x, J) =

∞∑
i=0

∫
J
Ãi1(x, dy)Ã0(y, J),

L̃0(x, J) =
∞∑
i=0

∫
J
Ãi1(x, dy)B̃2(y, J), H̃0(x, J) =

∞∑
i=0

∫
J
B̃i

1(x, dy)B̃0(y, J).

Thus the new structure is still that of a birth and death process.

Corollary 7 When Ãk = 0 for k > 2 and B̃k = 0 for k > 1 then the logarithmic reduction

algorithm of Latouche and Ramaswami [11] applies verbatim to the matrices A0, A1, A2, B0

and B1, associated with Γ-linearity.

Proof: By following the argument in Latouche and Ramaswami [11] with the current

machinery, the result follows immediately. We also need to show that we have the required

solution of (7). Although the arguments presented in [11] are probabilistic, they can be

expressed (albeit much more tediously) in algebraic form. This can be used to show that

the solution delivered by the logarithmic reduction algorithm is the same as the solution

delivered by Algorithm 1 and so the logarithmic reduction algorithm must deliver the

required solution.

Similarly, all the known algorithms in the QBD literature that rely on level–censored

arguments, can be justified in this extended environment.

3.4 Kernels expressed in an orthonormal basis

Here we describe the model of Nielsen and Ramaswami [20] in the current framework and

then show how their result can be interpreted as a special case of the more general results

of the current paper.
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In [20] Nielsen and Ramaswami took J to be the unit interval and considered kernels

P̃i,j(x, J) mapping x ∈ [0, 1] to some Borel set J ∈ J. Further they assumed that the

kernels P̃i,j(x, J) had a density p̃i,j(x, y) which could be expressed by orthonormal basis

functions, φk(x) ∈ L2, in the following way

p̃i,j(x, y) =
∑
k,`

Pi,j;k,`φk(x)φ`(y), here

∫ 1

0

φk(x)φ`(x)dx = Ik(`),

where Ik(`) is an indicator function such that Ik(`) = 1 when ` = k and 0 otherwise. They

defined the set M?
p as the set of measures on the unit interval with a density that could

be expressed by the same basis functions. Now define Γ as the vector of coordinates of

the density of the measure when expressed in terms of the orthonormal basis functions

φk(x). Thus, if we denote a measure in M?
p by ϕ(·) and its density by ϕ′(x) and express

the density as ϕ′(x) = γφ(x) =
∑

k γkφk(x), then Γ(ϕ) = γ.

The work of Nielsen and Ramaswami can be reinterpreted in the language of this paper

as showing that the P̃i,j are Γ-linear with respect to M?
p with matrix Pi,j = (Pi,j;k,`)k,`. To

see this, consider

Π̃i,j(ϕ
′)(y) =

∫ 1

0

ϕ′(x)p̃i,j(x, y)dx =

∫ 1

0

∑
m

γmφm(x)
∑
k,`

Pi,j;k,`φk(x)φ`(y)dx

=
∑
m

γm
∑
k,`

Pi,j;k,`

∫ 1

0

φm(x)φk(x)dxφ`(y) =
∑
k,`

γkPi,j;k,`φ`(y) = γPi,jφ(y),

and so, Γ(Π̃i,j(ϕ)) = γPi,j = Γ(ϕ)Pi,j.

Nielsen and Ramaswami [20] considered the case of a Quasi-Birth-and-Death structure,

as in (9), where Ãk(x, J) = 0 for k > 2. Let µ′k(x) be the density of the phase variable

being x at level k under the stationary measure of the Markov chain. This can now be

found by Theorem 4 and Corollary 5 as µ′k(x) = γ(k)φ(x), and so Γ(µk(x)) = γ(k), where

γ(k) = γ(0)Sk, with S being the solution to S = A0 +SA1 +S2A2, arising from Algorithm 1,

and γ(0) = γ(0)(B0 + SB1). Nielsen and Ramaswami finally obtained numerical results

effectively, by applying Corollary 7.

4 Queues with RAP and ME components

PH distributions and MAPs are by now standard models in the applied queueing and

performance literature. The MAP is a point process with finite dimensional distribution
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of the first n points given by

f(t1, t2, . . . , tn) = αeCt1DeC(t2−t1)D . . . eC(tn−tn−1)De. (9)

That is a sequence of possibly dependent PH variables having the same sub–generator. The

algebraic extension of PH distributions is termed ME distributions and goes back to [8],

while the formulation as a matrix–exponential is newer. See e.g. [2] for a quite exhaustive

treatment. Asmussen and Bladt [3] introduced the corresponding generalisation of a MAP

as a point process of possibly dependent ME distributed random variables having the same

governing matrix. Their starting point was to define a RAP as a point process, where there

exists a version of the prediction process that varies in a finite dimensional space under

the time shift operator. They proved that a process is a RAP if and only if it has a finite

dimensional distribution given by (9). They also introduced the piecewise deterministic

process J(t) (known as A(t) in [3]) as an interpretation of the behaviour of the prediction

process. We use the same parameterisation as that of [3] such that αe = 1, (C +D)e = 0,

with all entries of α, C, and D being real. In [4] we introduced the concept of a Batch

Rational Arrival Process (BRAP) as a marked RAP with countable mark space, derived

directly from [3]. In that paper we also introduced the concept of a QBD with RAP

components as a random walk governed by a BRAP with two different marks (-1,+1) and

reflected at zero. The sojourn time at level 0 is given by an ME distribution, where the

initial vector of the ME distribution might depend on the phase vector from which level 1

is left.

4.1 The GI/RAP/1 queue

We now consider the case of a queue with general renewal input governed by the distribution

F (·) and a RAP(C,D) service process. The bivariate random variables Xn = (Ln,Jn),

where Ln is the number of customers in the queue at the nth arrival and Jn is the phase

vector of the RAP at the nth arrival, form a discrete time Markov chain on N0 × J. We

adhere to the convention that the phase of the RAP is kept constant during idle periods.

A change of behaviour during idle periods would manifest itself in the B̃k kernels only. The

transition probability law of that Markov chain is given by

P (j, J) =


B̃0(j, J) Ã0(j, J) 0 0 . . .

B̃1(j, J) Ã1(j, J) Ã0(j, J) 0 . . .

B̃2(j, J) Ã2(j, J) Ã1(j, J) Ã0(j, J)
. . .

...
...

...
. . . . . .


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with

Ãk(j, J) =

∫ ∞
0

P̃k(j, t; J)dF (t), k ≥ 0 (10)

B̃k(j, J) =

∫ ∞
0

Q̃k+1(j, t; J)dF (t), k ≥ 0. (11)

Here P̃k(j, t; J) denotes the probability that the RAP(C,D) has had exactly k events at

time t, a customer is being served, and the phase vector J is in the set J ∈ J , given it had

the value j ∈ J immediately after the last arrival; while Q̃k(j, t; J) denotes the probability

that the RAP(C,D) has had exactly k events at time t, and at the expiry of the kth event

the phase vector is in the set J ∈ J and then remains there as the queue is empty, given

it had the value j ∈ J immediately after the last arrival. The role of Γ will here be taken

as the expectation operator of the measure of the phase vector of the RAP, which clearly

exists and is in J for any measure on J, as J is compact and convex.

We now show that Ãk and B̃k are expectation-linear. In order to show this we first

show that P̃k(j, t; J) and Q̃k(j, t; J) are expectation-linear for all k and t. We have from

the definition of the RAP(C,D) that

P̃0(j, t; J) = jeCteIJ

(
jeCt

jeCte

)
,

where IJ(J) is an indicator function for the event J ∈ J . For P̃1 and Q̃1 we get

P̃1(j, t; J) =

∫ t

0

jeCt1DeC(t−t1)eIJ

(
jeCt1DeC(t−t1)

jeCt1DeC(t−t1)e

)
dt1,

Q̃1(j, t; J) =

∫ t

0

jeCt1DeIJ

(
jeCt1D

jeCt1De

)
dt1,

and for k ≥ 2,

P̃k(j, t; J) =

∫ t

0

∫
J
P̃1(j, t1; dy)P̃k−1(y, t− t1; J)dt1,

Q̃k(j, t; J) =

∫ t

0

∫
J
P̃1(j, t1; dy)Q̃k−1(y, t− t1; J)dt1.

Lemma 8 The kernels P̃k(j, t; J), for all k ≥ 0, and Q̃k(j, t; J), for all k ≥ 1, are

expectation-linear, that is ∫
J
yP̃k(j, t; dy) = jPk(t)
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for the set of matrices Pk(t), k ≥ 0, given by

Pk(t) =


eCt, k = 0,∫ t

0
eCt1DeC(t−t1)dt1, k = 1,∫ t

0
P1(t1)Pk−1(t− t1)dt1, k > 1,

(12)

and ∫
J
yQ̃k(j, t; dy) = jQi(t)

for the set of matrices Qk(t), k ≥ 1, given by

Qk(t) =


∫ t

0
eCt1Ddt1, k = 1,∫ t

0
P1(t1)Qk−1(t− t1)dt1, k > 1.

(13)

Proof: First∫
J
yP̃0(j, t; dy) =

∫
J
yjeCteIdy

(
jeCt

jeCte

)
= jeCte

∫
J
yIdy

(
jeCt

jeCte

)
= jeCte

(
jeCt

jeCte

)
= jeCt = jP0(t).

Also, ∫
J
yP̃1(j, t; dy) =

∫
J
y

∫ t

0

jeCt1DeC(t−t1)eIdy

(
jeCt1DeC(t−t1)

jeCt1DeC(t−t1)e

)
dt1

=

∫ t

0

jeCt1DeC(t−t1)e

∫
J
yIdy

(
jeCt1DeC(t−t1)

jeCt1DeC(t−t1)e

)
dt1

=

∫ t

0

jeCt1DeC(t−t1)e

(
jeCt1DeC(t−t1)

jeCt1DeC(t−t1)e

)
dt1

= j

∫ t

0

eCt1DeC(t−t1)dt1 = jP1(t).

Then, for k > 1,∫
J
yP̃k(j, t; dy) =

∫
J
y

∫ t

0

∫
J
P̃1(j, t1; dz)P̃k−1(z, t− t1; dy)dt1

=

∫ t

0

∫
J
P̃1(j, t1; dz)

∫
J
yP̃k−1(z, t− t1; dy)dt1

=

∫ t

0

∫
J
P̃1(j, t1; dz)zPk−1(t− t1)dt

=

∫ t

0

jP1(t1)Pk−1(t− t1)dt = j

∫ t

0

P1(t1)Pk−1(t− t1)dt1,
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where the third equality is due to the induction hypothesis.

Similar arguments apply for the Q̃k(j, t; J).

Corollary 9 The kernels Ãk(j, J) and B̃k(j, J), for k ≥ 0, are expectation-linear with

matrices Ak =
∫∞

0
Pk(t)dF (t) and Bk =

∫∞
0
Qk+1(t)dF (t), respectively.

Proof: Application of Lemma 8 to equations (10) and (11) yields the result immedi-

ately.

Thus this corollary establishes that we can apply Theorem 4 and Corollary 5 to the

GI/RAP/1 queue, effectively obtaining exactly the same non-linear matrix equation as

in [18]. We can also use Lemma 3 to determine the required solution, say R, to that

equation. We could also use the cyclic-reduction algorithm of Bini and Meini [5] in this

environment, as it can be justified using level-censoring arguments (see Hunt [10]). As it

delivers the same solution as does Algorithm 1, the cyclic-reduction algorithm must also

deliver the required solution, R. The only - but important - differences are the more general

model to which these apply and the change in the interpretation of the R matrix.

4.2 A QBD with RAP-components

The model in Section 4.1 was naturally formed in discrete time. We will now pay attention

to a model which following traditional analysis would be formulated in continuous time.

However, in order to apply the methodology of Tweedie we have to analyse the queue in

discrete time then later consider an interpretation in continuous time, which not surpris-

ingly happens to be straightforward and natural in our case. The most natural queue of

this type is the queue with RAP input and ME service time where the space J would be

the Cartesian product of the two spaces JRAP and JME of the two components respectively.

See [4] for a more thorough discussion of these issues and how to describe more complex

boundary behaviour. To analyse this QBD with RAP-components within the framework

of Tweedie we will consider the state of the process at level changes only.

In continuous time we denote the process by X(t) = (L(t),J(t)) and denote by Tn the

time of the nth level change. Now we define Xn = X(Tn) = (Ln,Jn). Due to the piecewise

deterministic nature of the RAP this process is a Markov chain on the state space N0 × J.

The block kernels of Tweedie’s framework take on the specific form

P (Ln+1 = i+ 1,Jn+1 ∈ J |Ln = i,Jn = j) = Ã0(j, J), n ≥ 1,
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and

P (Ln+1 = i− 1,Jn+1 ∈ J |Ln = i,Jn = j) = Ã2(j, J), n ≥ 2,

P (Ln+1 = 1,Jn+1 ∈ J |Ln = 0,Jn = j) = B̃0(j, J)

and

P (Ln+1 = 0,Jn+1 ∈ J0|Ln = 1,Jn = j) = B̃2(j, J),

while all other Ãi’s and B̃i’s are 0. The kernels Ãi, i = 0, 2 are expressed in the parameters

of the QBD with RAP components, as

Ãi(j, J) =

∫ ∞
0

jeA1tAieIJ

(
jeA1tAi
jeA1tAie

)
dt.

Lemma 10 The kernels Ãi(j, J), i = 0, 2 are expectation linear with matrices (−A1)−1Ai.

Proof: By definition, for i = 0, 2 we have∫
J
yÃi(j, dy) =

∫
J
y

∫ ∞
0

jeA1tAieIdy

(
jeA1tAi
jeA1tAie

)
dt

=

∫ ∞
0

jeA1tAie

∫
J
yIdy

(
jeA1tAi
jeA1tAie

)
dt

=

∫ ∞
0

jeA1tAie
jeA1tAi
jeA1tAie

dt

=

∫ ∞
0

jeA1tdtAi = j(−A1)−1Ai.

Lemma 11 The kernels B̃i(j, J), i = 0, 2 are expectation linear with matrices (−B1)−1B0

(−A1)−1B2 respectively.

Proof: The proof follow exactly the same lines as the proof of Lemma 10, with obvious

minor modifications.

Now we can apply the results of Section 3 to the stationary measure µ(·) = (µ0(·), µ1(·), . . .).
By choosing Γ to be the expectation operator, we let νi = Γ(µi) =

∫
J yµi(dy) = E(Jn I(Ln =

i)). Then Theorem 4 and Corollary 5 show that νi is given by

νi+1 = νiS,
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where S is the solution to

S = (−A1)−1A0 + S2(−A1)−1A2, (14)

delivered by Algorithm 1. Here ν0, ν1 are given by ν0 = ν1(−A1)−1B2 and ν1 =

ν0(−B1)−1B0 + ν1S(−A1)−1A2.

4.2.1 Stability condition

For the irreducible case, from Tweedie [27] we have that the stability condition is equal to

φ(−A1)−1A0e < φA2(−A1)−1e

where φ(−A1)−1(A0 + A2) = φ. Now inserting the relation φ =
θ(A0 + A2)
θ(A0 + A2)e

, where

θA = 0, we easily obtain the natural analogue of the standard stability condition.

4.2.2 From the embedded process to the time stationary process

In the previous section, all probabilistic calculations were done from the perspective of the

distribution of the phase at the time of level changes in the stationary process. In this

section we exploit those results and determine the expectation of the phase at an arbitrary

time-point in the stationary process.

Let the stationary measure of the QBD with RAP components be denoted by π(·) =

(π0(·), π1(·), . . .) and recall that µ(·) = (µ0(·), µ1(·), . . .) is the stationary measure of the

embedded process. Again, choosing Γ to be the expectation operator, we let θi = Γ(πi) =∫
J yπi(dy) = E(J t I(Lt = i)). Now, for some normalising constant K

πi(J) = K

∫ ∞
t=0

∫
J
µi(dy)yeA1teIJ

(
yeA1t

yeA1te

)
dt,

and applying the expectation operator Γ to this yields

θi = Γ(πi) = K

∫
J
z

∫ ∞
t=0

∫
J
µi(dy)yeA1teIdz

(
yeA1t

yeA1te

)
dt

= K

∫ ∞
t=0

∫
J
µi(dy)yeA1te

∫
J
zIdz

(
yeA1t

yeA1te

)
dt = K

∫ ∞
t=0

∫
J
µi(dy)yeA1te

yeA1t

yeA1te
dt

= K

∫ ∞
t=0

∫
J
yµi(dy)eA1tdt = K

∫ ∞
t=0

νie
A1tdt,= Kνi(−A1)−1.

Thus using the results of the previous section, we know that

θi+1 = Kνi+1(−A1)−1 = KνiS(−A1)−1 = θi(−A1)S(−A1)−1 = θiR,
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with R = (−A1)S(−A1)−1, and where S is the solution of equation (14). Now, this can be

rewritten as

(−A1)−1R(−A1) = (−A1)−1A0 + (−A1)−1R2A2.

Premultiplication by A1 gives the expression,

R2A2 +RA1 + A0 = 0,

which is well-known in the traditional QBD framework. The vector θ0 and possibly θ1 is

determined from boundary equations.

This result was proved in Bean and Nielsen [4] for exactly this class of problems using

arguments based on taboo-probabilities and the last time of entering a set of states. We can

now apply Lemma 3 and Corollary 7 directly in this environment and so have shown that

all algorithms for standard QBDs that rely on level–censoring arguments can be applied

directly to QBDs with RAP components.

5 Example

We consider some families of examples, which we believe to be of generic interest, particu-

larly in the interface between ME and PH distributions. We hope that these may become

standard example distributions in this area.

• A family of ME distributions of order 3 governed by the parameter a ≥ 0, which

can be made to have smaller coefficient of variation than the Erlang distribution of

order p. For a > 0 we develop a TPH representation of order 5 (which may not be

of minimal order), but for a = 0 there is no PH representation.

• A family of ME distributions of order 3 governed by the parameter η ≥ 1. For η > 1,

we develop a minimal order (> 3) PH representation. As η → 1 the minimal order

of the PH representation tends to ∞.

In Appendix A we present the detailed derivations of these families of distributions, to

assist others in devising different families with similar characteristics.

In our queueing example, we consider a RAP/ME/1 queue which for specific choices of

parameters has an alternative formulation as a MAP/PH/1 queue, although, generally of

higher (in some cases significantly higher) order.
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Service time distribution

As service time distribution we choose a distribution from the family parameterised by

a ≥ 0, ε ≥ 0 with density

f(x) =
λ
2
((λx− ε)2 + aε2))

1− ε+ 1+a
2
ε2

e−λx,

which is an ME distribution of order 3 with α and S given by

α =
1

1 + 1+a
2
ε2 − ε

(1,−ε, 1 + a

2
ε2), and S =

 −λ λ 0
0 −λ λ
0 0 −λ

 .
For certain values of a and ε the minimal PH order is at least 4. We give an explicit PH

representation for this distribution of order 5 in Appendix A.

Arrival process

As arrival process we consider a process switching between a high and a low activity

regime. In each regime arrivals occur according to a Poisson process with rate γ1 and γ2

respectively. When γ2 = 0 the process is an ON-OFF process. The sojourn time in the

high regime is governed by an ME-distribution of the second family , with density

λ1(λ2
2 + ω2)

λ2
2 + ω2 + bλ1λ2

(
e−λ1t + be−λ2t cos (ωt)

)
.

The relationship between λ1 and λ2 needs to be such that λ2 = ηλ1 where η ≥ 1. We have

Poisson arrivals with rate γ1 while visiting this regime. The sojourn time in the second

regime is exponential with intensity λ3. We have Poisson arrivals with rate γ2 while visiting

this regime. The C and D matrices for this RAP arrival process are

C =


−(λ1 + γ1) 0 0 λ1

(−λ1+λ2−ω)(λ22+ω2)

λ22+ω2+bλ1ω
−(λ2 + γ1)

(λ22+ω2+bλ1λ2)ω

λ22+ω2+bλ1ω

λ1(λ22+ω2)

λ22+ω2+bλ1ω
(−λ1+λ2+ω)(λ22+ω2)

λ22+ω2+bλ1λ2
− (λ22+ω2+bλ1ω)ω

λ22+ω2+bλ1λ2
−(λ2 + γ1)

λ1(1+b)(λ22+ω2)

λ22+ω2+bλ1λ2

0 0 λ3 −(λ3 + γ2)

 ,

D =


γ1 0 0 0
0 γ1 0 0
0 0 γ1 0
0 0 0 γ2

 .
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η 1.01 1.1 1.5 2 3
n 4945 505 105 65 35

Table 1: Dimension of the matrices in the MAP/PH/1 queue as a function of the param-
eter η.

The alternative MAP formulation, valid when η > 1, (with n states) and b = −1 is

C =

(
T − γ1I λ(1− p)en
λ3α2 −λ3 − γ2

)
,

where en is a column vector of zeros with a one in the last place, and where the specific

forms of T and α2 are given in Appendix A, as are the values of λ and p. Finally,

D =

(
γ1I 0
0 γ2

)
.

5.1 Numerical findings

We present two main experiments, both chosen so that the mean of the service time

distribution is 1, and the arrival process is an ON-OFF process with γ1 = 1.9 and γ2 = 0.

For the arrival process, we fixed ω = π. Finally λ3 was chosen such that the mean time in

the high and low regime would be the same.

In the first experiment, we let a = 1 and then choose ε = 0.18350 so that the service-

time distribution has minimal form-factor of 1.311, but still has a TPH(5) representation

(see Appendix A). For the arrival process, we ensure η > 1 and allow it to range over a

set of values η ∈ {3, 2, 1.5, 1.1, 1.01}. We then chose λ1 such that the mean sojourn-time

in the high regime was 100. We have experienced no problems with numerical stability

whatsoever. In all the cases we have tried, the maximum relative error between the two

queue length distributions of the two comparable queues was less than 10−10. However,

obviously the computing time for the MAP/PH/1 queue grows rapidly with increasing η.

In Table 1 we show how the dimensionality of the problem grows as η gets closer to 1. The

dimension of the problem in the RAP/ME/1 formulation is always 12.

In the second experiment, we chose the parameters so that there was no comparable

model possible in the traditional QBD framework. In other words, we analysed a pure

RAP/ME/1 system. Therefore, for the service-time distribution we let a = 0 and then

choose ε = 0.41577 so that the service-time distribution again has minimal form-factor,

this time of 1.277. However, in this case, because a = 0 there is no TPH(5) representation
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and in fact there can be no PH representation at all (see Appendix A). For the arrival

process we then let η = 1 and so again there can be no PH representation for this ME

distribution either. Further, we chose λ1 so that the mean sojourn-time in the high regime

was 100. Again, we experienced no problems with numerical stability whatsoever.

For curiosity we present the queue length distribution (probability mass function) for

a non-empty system in Figure 1. The probability of the system being empty is 0.05. The
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Figure 1: The queue length probability distribution (where the queue length is greater
than 0) for a QBD-structured queue with RAP-components, that has no QBD parallel.

figure is constructed for the pure RAP/ME/1 case. However, for values of η close to one

there is practically no difference. Apparently the minor difference between the two service

time distributions is also quite insignificant.

For all cases we have tried with η > 1 and a PH service time distribution all the
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eigenvalues of R in the RAP/ME/1 formulation were included in the set of eigenvalues

for (the much larger) R in the MAP/PH/1 case. We conjecture that this is a general

property without providing any proof.

6 Conclusion

In this paper we introduced the concept of Γ–linearity on order to rapidly reproduce results

by Nielsen and Ramaswami [20] and Bean and Nielsen [4]. We then used the concept of

Γ–linearity to produce new results for the GI/RAP/1 queue and finally justified that all

algorithms based on level censoring arguments for the analysis of the standard QBD queue

can be used in our more general setting.
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A Derivation of distributions families for examples

In this appendix we discuss the derivation of the distributions of our example section,

Section 5, in some more detail, as we find that our considerations leading to these examples

might be of more general interest.

A.1 Service time distribution

Aldous and Shepp [1] proved that the least variable PH distribution among distributions

with generators of order n is Erlang-n. O’Cinneide [23] showed that there exist ME dis-

tributions with generators of order n, that are less variable - in terms of the coefficient of

variation - than the Erlang-n distribution. In this section we provide a specific family of

such distributions, parameterised by a ≥ 0 and of 3. When a > 0 we offer an alternative

formulation as an order 5 phase type distribution. We do not claim the latter to be of

minimal PH-order, however we certainly claim that the minimal PH-order is larger than 3

due to the results of Aldous and Shepp, and O’Cinneide. Consider the following mixture

of the first three Erlang distributions

f(x) =
λ
2
((λx− ε)2 + aε2))

1− ε+ 1+a
2
ε2

e−λx

=

(
λ3

2
x2 − ελ2x+ 1

2
(1 + a)ε2λ

)
1− ε+ 1+a

2
ε2

e−λx.

This distribution has α and S given by

α =
1

1 + 1+a
2
ε2 − ε

(1,−ε, 1 + a

2
ε2), and S =

 −λ λ 0
0 −λ λ
0 0 −λ

 ,
with mean

M1 =
6− 4 ε+ (1 + a)ε2

λ (2− 2 ε+ (1 + a)ε2)
,

which is 1 when λ is chosen so that

λ =

(
6− 4 ε+ (1 + a)ε2

2− 2 ε+ (1 + a)ε2

)
.

The ratio of the second non–central moment to the first moment squared (Palm’s form-

factor) is

2(12− 6ε+ (1 + a)ε2)(2− 2ε+ (1 + a)ε2)

(6− 4ε+ (1 + a)ε2)2
.
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This function has a global minimum at a point where a is negative. Minimising with

respect to ε, for fixed values of non-negative a, is obtained by solving the cubic in ε,

(a2 − 1)ε3 + 9(1 + a)ε2 − 18(1 + a)ε+ 6 = 0.

We did not manage to reduce the analytical solution of this equation to anything simple.

For a = 0 the minimal form-factor is 1.277 (as compared to 4
3

for the Erlang distribution),

obtained when ε = 0.41577. For a = 1, the minimal form-factor is 1.311, obtained when

ε = 0.18350. The distribution can not be in PH for a = 0 as the density becomes 0

when x = ε/λ. However, the distribution is in PH for a > 0, see O’Cinneide [21]. The

distribution is even in TPH (Phase-Type with upper triangular(bidiagonal) generator) as

all the poles of the Laplace Stieljtes transform of the distribution are real [22]. However,

a TPH representation might not be of minimal order as a general PH-distribution with

a generator of lower order than the one needed in the class of TPH might suffice. We

now claim, that we can find a distribution in TPH with a specific form of generator. We

proceed by deriving an initial probability vector such that this is indeed the case. We

consider distributions in TPH(5) with the following generator

T =


−λ1 λ1 0 0 0

0 −λ λ 0 0
0 0 −λ λ 0
0 0 0 −λ 0
0 0 0 0 −λ1

 .
Our choice is motivated by the following considerations. We need to have at least three

poles at −λ which, given the diagonal structure of the TPH distribution, leads to at

least three phases with −λ on the diagonal. We need at least one phase with a diagonal

value other than −λ in order to get a density with negative coefficients for some of the

Erlang components. The current choice is close to the most simple one could hope for.

The TPH(5) distribution includes a subset of the set of distributions with basis functions

(densities) given by

f(t) =


λ3

2
t2e−λt

λ2te−λt

λe−λt

λ1e
−λ1t

 .
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Any PH density of the generator T can be expressed as f(t) = α1Hf(t) with the coefficient

matrix K given by

H =



λ1
λ1−λ

−λ1 λ
(λ1−λ)2

λ1 λ2

(λ1−λ)3
−λ3

(λ1−λ)3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

We want to find α1 such that α1H = (α, 0). This linear system is under-determined

leaving us some room to manipulate to get a solution of a usable form, namely

αT1 =



(ρ−1)3y
1+1/2 ε2a−ε+1/2 ε2

1−(ρ−1)2ρ y
1+1/2 ε2a−ε+1/2 ε2

(ρ−1)ρ y−ε
1+1/2 ε2a−ε+1/2 ε2

1/2 (1+a)ε2−yρ
1+1/2 ε2a−ε+1/2 ε2

y
1+1/2 ε2a−ε+1/2 ε2


,

where ρ = λ1
λ

and y is the free parameter in the solution. For a = 1 we can choose ρ = 1+ 1
ε

and y = ε3

1+ε
so that

α1 =
[

1
(ε2−ε+1)(ε+1)

0 0 0 ε3

(ε2−ε+1)(ε+1)

]
.

A.2 Generic ME - distribution for RAP/MAP arrival process

We consider the set of distributions with basis functions (densities) given by

g(t) =

 λ1e
−λ1t

λ1(λ22+ω2)

λ22+ω2+bλ1λ2

(
e−λ1t + be−λ2t sin (ωt)

)
λ1(λ22+ω2)

λ22+ω2+bλ1λ2

(
e−λ1t + be−λ2t cos (ωt)

)


for sojourn time in the high regime. In particular we pick the third component of these.

This distribution has mean

2λ2
2ω2 + λ2

4 + ω4 − ω2λ1
2b+ λ2

2λ1
2b(

λ2
2 + ω2 + b λ1 λ2

)
λ1

(
λ2

2 + ω2
) .
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Following the steps of Asmussen and Bladt [3, page 135] we derive the ME-generator of

this distribution to be

C =

 −λ1 0 0
(−λ1+λ2−ω)(λ22+ω2)

λ22+ω2+bλ1ω
−λ2

(λ22+ω2+bλ1λ2)ω

λ22+ω2+bλ1ω
(−λ1+λ2+ω)(λ22+ω2)

λ22+ω2+bλ1λ2
− (λ22+ω2+bλ1ω)ω

λ22+ω2+bλ1λ2
−λ2

 ,

where the initial vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) will pick up the three components of

g(t). We now turn to possible PH-distributions of this form. A distribution with rational

Laplace transform is in PH if it has a positive density for all positive arguments and if the

pole of maximum real part is unique and real, see O’Cinneide [21]. As a consequence the

distribution will be in PH whenever |b| ≤ 1 and λ1 < λ2. We know from O’Cinneide [22]

that the minimum number of phases in a PH-representation n is given by:

ω

λ2 − λ1

≤ cot
(π
n

)
⇔ n ≥ π

arctan
(
λ2−λ1
ω

) . (15)

We now consider PH distributions of order n with generator T , where Tii = −λ, i = 1, . . . n,

Ti,i+1 = λ, i = 1, . . . , n− 1, Tn,1 = pλ and all other entries are zero. We denote the initial

vector of this distribution by α2. The densities of this PH distribution are given by α2h(t),

where h(t) = eTt(−Te). By straightforward algebra we find the LST’s of the l’th element

of h(t), hl(t), to be

H̃l(s) =
λn+1−l(1− p)(s+ λ)l−1

(s+ λ)n − pλn
.

We denote the roots of (s + λ)n − pλn by zj where zj = −λ + λp
1
nuj, where uj are

the n solutions to the equation un = 1, such that zn−j = z̄j. Now by partial fraction

decomposition we have, for some κij, j = 0, . . . , n− 1,

H̃l(s) =
n−1∑
j=0

κlj
s+ zj

.

We find

κlj =
λn+1−l(1− p)(zj + λ)l−1∏

k 6=j(zj − zk)
= λ(1− p)p

l
n

ul−1
j∏

k 6=j(uj − uk)
.

Now a standard result in complex analysis tells us that
∏

k 6=j(uj − uk) = nūj. We thus get

κlj =
λ

n
(1− p)p

l
n
ul−1
j

ūj
=
λ

n
(1− p)p

l
nulj =

λ

n
(1− p)p

l
n

(
cos

(
2πjl

n

)
+ i sin

(
2πjl

n

))
.
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With ul = (ul−1
0 , ul−1

1 , ul−1
2 , . . . , ul−1

n−1) we have

Ψ = {κlj} =
λ

n
(1− p)∆(p?)


u1

u2
...
un

 ,
where ∆(c) is a diagonal matrix of the elements of the vector c and the l’th element of p?

is p
l
n . It is straightforward to verify that

Ψ−1 =
1

λ(1− p)
[
u′1 u

′
n u

′
n−1 . . . u′2

]
∆(p?)−1.

If we set b = −1, then the distribution we are aiming for is a scalar multiple of eu0t −
1
2

(eu1t + eū1t) = eu0t − 1
2

(eu1t + eun−1t). Here the unnormalised vector α2 is determined

by multiplying the vector
(
1,−1

2
, 0, 0, . . . , 0,−1

2

)
by Ψ−1. Finally we see that the fol-

lowing phase type distribution with α2,i = K
(
1− cos

(
i2π
n

))
p

−i
n and {Tii = −λ, i =

1, . . . , n, Ti,i+1 = λ, i = 1, . . . , n − 1, Tn,1 = pλ} is identical to the ME distribution with

λ1 = λ
(

1− p 1
n

)
, λ2 = λ

(
1− p 1

n cos
(

2π
n

))
, and ω = λp

1
n sin

(
2π
n

)
. For a given ME distri-

bution (i.e. given λ1, λ2, and ω) if

n =
2π

arcsin
(

2ω(λ2−λ1)
(λ2−λ1)2+ω2

) ∈ Z+,

then there is an equivalent PH distribution with (α, T ) representation where

p =

(
(λ2 − λ1)2 + ω2

(λ2 + λ1)(λ2 − λ1) + ω2

)n
, λ =

(λ2 + λ1)(λ2 − λ1) + ω2

2(λ2 − λ1)
,

and the representation is minimal. The minimality can be seen by inserting the values of

λ1, λ2, and ω in expression (15) and expressing cos
(

2π
n

)
and sin

(
2π
n

)
in terms of cos

(
π
n

)
and sin

(
π
n

)
.


