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Abstract

Results are presented for optimal layout of materials in the spatial and temporal
domains for a 1D structure subjected to transient wave propagation. A general
optimization procedure is outlined including derivation of design sensitivities for
the case when the mass density and stiffness vary in time. The outlined optimiza-
tion procedure is exemplified on a 1D wave propagation problem in which a single
gaussian pulse is compressed when propagating through the optimized structure.
Special emphasis is put on the use of a time-discontinuous Galerkin integration
scheme that facilitates analysis of a system with a time-varying mass matrix.

Keywords: dynamic structures, topology optimization, wave propagation, tran-
sient analysis.

1 Introduction

The method of topology optimization is a popular method for obtaining the op-
timal layout of one or several material constituents in structures and materials
(Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 2003). The methodology has
within the last two decades evolved into a mature and diverse research field involv-
ing advanced numerical procedures and various application areas such as fluids
(Borrvall and Petersson, 2003), waves (Sigmund and Jensen, 2003), electromag-
netism (Cox and Dobson, 1999) as well as various coupled problems such as e.g.
fluid-structure interaction (Yoon et al., 2007). Additionally, industrial applica-
tions in the automotive and aerospace industries are established and widespread.
The success has been facilitated by the large design freedom inherently associated
with the concept, but also by efficient numerical techniques such as adjoint sensi-
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tivity analysis for rapid computation of gradients (Tortorelli and Michaleris, 1994),
various penalization and regularization techniques for obtaining both meaning-
ful and useful designs (Sigmund and Petersson, 1998) and the close integration
with mathematical programming tools, such as the method of moving asymptotes
(MMA) (Svanberg, 1987).

Recently it was suggested to apply (and somewhat extend) the standard topol-
ogy optimization framework to design a 1D structure in which the stiffness could
change both in space and time (Jensen, 2009). As an example an optimized ”dy-
namic structure” that prohibits wave propagation was designed and manifested
itself as a moving bandgap structure with layers of stiff inclusions moving with the
propagating wave. The dynamic structure was demonstrated to reduce the trans-
mission of a wave pulse with about a factor 3 compared to an optimized static
structure. The present paper extends the described work by allowing materials
that have not only time-varying stiffness but also a time-varying mass density.
This extension requires special attention to the choice of time-integration scheme
since many standard schemes fail. However, it allows for extended manipulation
of the wave propagation as illustrated in the example in the present paper, in
which a single gaussian wave pulse is compressed when propagating through the
optimized structure. Preliminary results for this design problem in the case of
time-varying stiffness were presented in (Jensen, 2008).

The basic setting for obtaining optimal space and time distributions of mate-
rials for problems governed by the wave equation was first presented in (Maestre
et al., 2007; Maestre and Pedregal, 2009). These papers analyze 1D and 2D
problems with a strong focus on the mathematical aspects of the optimization
problem. Both the present paper and the aforementioned works root in the fun-
damental concept of dynamic materials. This concept was introduced by Lurie
and Blekhman in (Lurie, 1997; Blekhman and Lurie, 2000; Lurie, 2006; Blekhman,
2008) who unfolded the rich and complex behavior of materials with properties
that vary in space and time. At a similar time the dynamics of structures with
space and time varying properties was also studied in the work by Krylov and
Sorokin (Krylov and Sorokin, 1997) and later in (Sorokin et al., 2000; Sorokin and
Grishina, 2004).

The basis for the presented optimization problem is time-integration of the
transient model equation coupled with adjoint sensitivity analysis. Thus, the
problem closely resembles previous studies that have been carried out for topology
optimization of static structures using a transient formulation, e.g. (Min et al.,
1999; Turteltaub, 2005; Dahl et al., 2008).

The outline of the paper is as follows. In Section 2 the governing equation is
presented and the basic setup defined. In Section 3 the design parametrization
is defined and design sensitivities are derived. Section 4 is devoted to numerical
analysis of the transient direct and adjoint equations and numerical simulation re-
sults are presented. In Section 5 an optimization problem is defined and examples
of optimized designs are presented. Section 6 summarizes and gives conclusions.
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2 Governing equation

The starting point for the analysis and subsequent optimization study is a time-
dependent FE model in which the mass matrix (M(t)) and the stiffness matrix
(K(t)) are allowed to vary in time:

∂

∂t

(

M(t)v
)

+Cv +K(t)u = f(t) (1)

in whichC is a constant damping matrix and f(t) is the transient load. The vector
u(t) contains the unknown nodal displacements and the notation v = ∂u/∂t
has been used to denote the unknown velocities. It is assumed that the mass
matrix is diagonal, e.g. obtained by a standard lumping procedure. This will be
of importance when choosing a proper time-integration routine but it should be
emphasized that all formulas derived in the following hold also for the case of M
being non-diagonal.

The governing equation is solved in the time domain with the trivial initial
conditions:

u(t) = v(t) = 0 (2)

which imposes only limited loss of generality and facilitates the sensitivity analysis
as shown later.

It should be noted that although the terms mass matrix/mass density and stiff-
ness matrix/stiffness are used here and in the following presentation, the equations
could just as well apply to an electromagnetic or an acoustic problem with proper
renaming of involved parameters. However, the terminology from elasticity will
be kept throughout this paper.

3 Parametrization and sensitivities

The density approach to topology optimization (Bendsøe, 1989) is adapted to the
present problem. With this approach a single design variable xe (”density”) is
assigned to each element is the FE model. As in (Jensen, 2009) this is expanded
to the space-time case by defining a vector of continuous design variables:

xj = {x1
j , x2

j , . . . , xN
j }T (3)

for each of a predefined number M of time intervals (such that j ∈ [1,M ]), for
which the design will be allowed to change. In Eq. (3) N is the number of spatial
elements in the FE model. Thus, for a 1D spatial structure, as considered in
the example in Section 5, the corresponding design space is two-dimensional with
dimension N ×M .

The value of the density variable xe
j will determine the material properties of

that space-time element by an interpolation between two predefined materials 1
and 2, where the variable is allowed to take any value from 0 to 1 (xe

j ∈ [0; 1]).
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By rescaling the equations with respect to the material properties of material 1,
the mass and stiffness matrices can be written as:

Mj =

N
∑

e=1

(1 + xe
j(ρ− 1))Me (4)

Kj =

N
∑

e=1

(1 + xe
j(E − 1))Ke (5)

such that ρ,E denote the contrast between the two materials for the mass density
and stiffness, respectively. In Eqs. (4)–(5), Me and Ke are local mass and stiffness
matrices expressed in global coordinates.

Analytical expressions for the design sensitivities are now derived. The opti-
mization is based on an objective that is assumed to be written as:

φ =

∫ T

0

c(u)dt (6)

in which c is a real scalar function of the time-dependent displacement vector
and T is the total simulation time. It should emphasized that more complicated
objective functions, e.g. with a dependence on the velocities or an integration
different from the total simulation time, can be treated with minor modification
to the following derivation.

The derivative wrt. a single design variable in the j’th time-interval and e’th
spatial variable is denoted ()′ = ∂/∂xe

j and thus the sensitivity of φ wrt. to xe
j is:

φ′ =

∫ T

0

∂c

∂u
u′dt (7)

Eq. (7) involves the term u′ which is difficult to evaluate explicitly. However,
the adjoint method can be used to circumvent this problem in an efficient way
(Arora and Holtz, 1997). For this purpose the residual vector R:

R =
∂

∂t
(Mv) +Cv +Ku− f(t) (8)

is differentiated wrt. xe
j :

R′ =
∂

∂t
(M′v +Mv′) +Cv′ +K′u+Ku′ (9)

in which it has been used that f (the transient load) and C (the damping matrix)
are both independent of the design.

With the aid of Eq. (9), Eq. (7) is reformulated as:

φ′ =

∫ T

0

(
∂c

∂u
u′ + λTR′)dt (10)
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in which λ denote an unknown vector of Lagrangian multipliers to be determined
in the following.

Expanding the expression in Eq. (10) and using integration by parts leads to
the following equation:

φ′ =

∫ T

0

(λTK′u− γTM′v)dt +

∫ T

0

(
∂c

∂u
+

∂

∂t
(γTM)− γTC+ λTK)u′dt

+
[

λT (M′v +Mv′ +Cu′)− γTMu′
]T

0
(11)

in which the notation γ = ∂λ/∂t has been introduced.
Now the unknowns (λ,γ) can be chosen so that the last integral in expression

(11) vanishes along with the bracketed term that originates in the boundary con-
tribution from integrating by parts (if the trivial initial conditions in Eq. (2) are
applied as well). This leads to the following adjoint equation:

∂

∂t
(MTγ)−CTγ +KTλ = −(

∂c

∂u
)T (12)

along with the following terminal conditions:

λ(T ) = γ(T ) = 0 (13)

The sensitivities can then be computed from the remaining expression:

φ′ =

∫ T

0

(λTK′u− γTM′v)dt =

∫ T
+

j

T
−

j

(λTK′u− γTM′v)dt (14)

in which the integral can be reduced to the j′th time interval ranging from T −

j

to T +
j simply because K′ and M′ vanish outside the interval belonging to the

specific design variable.
The expression can be further reduced to element level as follows:

φ′ =

∫ T
+

j

T
−

j

(

(E − 1)(λe)TKeue − (ρ− 1)(γe)TMeve
)

dt (15)

by using the material interpolations defined in Eqs. (4)–(5).

4 Numerical analysis

Special care has to be taken to solve the direct and adjoint problems in Eqs. (1)–
(2) and Eqs. (12)–(13) in the case where M is not constant. In this case, v and γ

are not continuous and the numerical integration scheme must be able to handle
this difficulty. A time-discontinuous Galerkin procedure (Wiberg and Li, 1999)
allows for discontinuous field variables in time domain and is applicable for this
case. An explicit version of the scheme is applied. The choice of an explicit solver
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(in combination with a lumped mass matrix) is essential for an efficient solution
of the equations.

The basic numerical procedure is described shortly in the following for the
direct problem of solving for u(t),v(t). The adjoint problem for λ(t),γ(t) is
solved in a similar way. The total simulation time T is divided into Nt equidistant
intervals and a discrete set of displacement and velocity vectors ui,vi is obtained
for i ∈ [1, Nt +1] including the initial conditions. Each time interval (k ∈ [1, Nt])
is treated as a time element and an inner-loop iterative procedure is used to obtain
a velocity vector at the beginning of the interval denoted vk

1 and one at the end
of the interval denoted vk

2 . For the n’th inner-loop iteration the updates of vk
1

and vk
2 are:

M(vk
1 )

n = (Mv2)
k−1 + ∆t

6 (f1 − f2)

+ (∆t)2

18 K(vk
1 − 2vk

2)
n−1 − ∆t

6 C(vk
1 − vk

2)
n−1 (16)

M(vk
2 )

n = ((Mv2)
k−1 −∆t(Ku)k−1) + ∆t

2 (f1 + f2)

− (∆t)2

6 K(2vk
1 − vk

2 )
n−1 − ∆t

2 C(vk
1 + vk

2)
n−1 (17)

in which f1 and f2 is the load vector evaluated at the beginning and end of the time
interval, respectively. The values of (vk

1 )
n−1 and (vk

2)
n−1 for the initial iteration

(n = 1) are taken to be equal to the value of vk−1
2 . These inner loop iterations

are continued until vk
1 and vk

2 do not change more than some predefined small
tolerance (usually 2-3 iterations are performed).

Based on the converged time element values the recorded velocity and dis-
placement vector at discrete time i is then:

vi = vk
2 (18)

ui = ui−1 + ∆t
2 (vk

1 + vk
2 ) (19)

4.1 Test problem

The explicit time-discontinuous Galerkin formulation is now compared to a stan-
dard explicit central difference scheme as previously employed in (Jensen, 2009).
The model problem is depicted in Fig. 1 and the setting is described in the fol-
lowing. A sine-modulated gaussian pulse propagates in a homogeneous medium
with material properties ρ = E = 1 and a t = t0 the material properties change
instantaneously to ρ = ρ0 and E = E0. As a result the propagating wave splits up
into a forward and a backward travelling wave. It can be shown analytically that
the relative change in wave energy at the moment of change of material properties
is given as:

∆E

E
= 1

2 (E0 +
1

ρ0
)− 1 (20)

In Fig. 2 the wave energy is plotted as a function of time. Both plots in
the figure correspond to the case where the material properties are changed at
t0 = 0.85 s. In the first plot the material properties are ρ0 = 1 and E0 = 1.5,
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which correspond to a relative energy jump of 0.25 and as appears from the plot
this jump is accurately predicted by the time-discontinuous Galerkin procedure
but also with a normal central difference scheme. In the second plot ρ0 = 2 and
E = 1.5 are chosen and thus zero energy jump should occur. From the plot we
can see that the time-discontinuous scheme correctly captures the behavior as
opposed to the central difference scheme.

It should be mentioned that the time-discontinuous scheme is computationally
more expensive than the straightforward central-difference scheme since it involves
inner loop iterations. This depends on the specific value of the tolerance set for
the inner-loop iterations (see(Wiberg and Li, 1999) for more details). It is possible
that more efficient schemes could be developed.

5 Example: pulse compression

The optimization algorithm is now demonstrated on the particular design problem
illustrated in Fig. 3. A single gaussian pulse is send through a one-dimensional
structure and the transmitted wave is recorded. Wave propagation in the bar is
simulated by applying a time-dependent load at the left boundary and adding
absorbing boundary conditions in form of simple dampers in both ends.

The purpose of the optimization problem is to design the structure so that that
the difference between the recorded output and a specified target is minimized.
Thus, the following objective function is considered:

φ =

∫ T

0

(uout − u∗
out)

2dt (21)

in which uout is the displacement history of the output point, u∗
out is the output

point target, and T is the total simulation time.

E = 1

ρ = 1

E = E0

t < t0

t > t0

ρ = ρ0

Figure 1: Propagation of a sine-modulated gaussian pulse in a homogeneous
medium with an instant change of material properties at t = t0.
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Figure 2: Simulation values of the wave energy in the homogeneous structure
with an instantaneous change of material properties at t0 = 0.85 s. a) ρ0 = 1 and
E0 = 1.5 and b) ρ0 = 2 and E0 = 1.5.
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Figure 3: Design problem. A single gaussian pulse is to be compressed when
propagating through the design domain by a suitable stiffness and mass density
distribution in space and time.
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The wave pulse is generated by applying the following force at the input point:

f(t) = −4u0δ(t− t0)e
−δ(t−t0)

2

(22)

in which δ determines the width of the pulse, t0 is the time center for the pulse,
and u0 is the amplitude of the resulting input wave pulse:

u(t) = u0e
−δ(t−t0)

2

(23)

As the target output pulse we choose

u∗
out(t) = ũ0e

−c̃δ(t−t̃0)
2

(24)

in which c̃ represents the specified compression of the pulse.

5.1 Auxiliary design variables

In Eq. (24) the pulse time center at the output point is specified as t̃0 and the
amplitude of the output wave is specified to be ũ0. Instead of fixing these values
they are included in the optimization problem via extra design variables.

It is obvious that a reshaping of the wave leads to some delay of the pulse and
the best value of t̃0 is not known a priori and is thus natural to include in the
design problem. The value of t̃0 is given as:

t̃0 = (t̃0)min + x1((t̃0)max − (t̃0)min) (25)

so that the corresponding extra design variable x1 takes values from 0 to 1. The
minimum and maximum values are simply chosen large enough so that the value
of x1 does not reach the 0 or 1 limit during the optimization process.

The extra design variable x2 associated with the output wave amplitude ũ0 is
defined as follows:

ũ0 = (ũ0)min + x2((ũ0)max − (ũ0)min) (26)

in which the minimum and maximum values are specified as values close to u0,
e.g. (ũ0)min = 0.8u0 and (ũ0)max = 1.2u0. In this way the optimization problem is
relaxed somewhat in order to allow the optimization algorithm to find an optimal
compression of the pulse without a too strict constraint on the pulse amplitude.
It should be emphasized that obtaining an output pulse with an amplitude larger
than the input pulse is possible also for an uncompressed pulse, since the energy
is not conserved due to the external control of the material properties.

The sensitivities wrt. the auxiliary design variables can be obtained in a
straightforward manner from Eqs. (21), (24)–(26).
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5.2 Optimization problem

The optimization problem can now be written as:

minxj,x1,x2
φ =

∫ T

0
(uout − u∗

out)
2dt

s.t. : ∂
∂t

(

M(t)v
)

+Cv +K(t)u = f(t)
t ∈ [0; T ]
u(0) = v(0) = 0

0 ≤ xj ≤ 1, j ∈ [1,M ]
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

(27)

and is solved using the derived expressions for the design sensitivities in combi-
nation with the method of moving asymptotes (Svanberg, 1987).

5.3 Results and discussion

In the following results are presented for the optimization problem described
above. The model and simulation details are as follows. A unit length design
domain is split into N = 500 spatial elements. The total simulation time is
chosen to be T = 1.8 s and the numerical time-integration is performed using
Nt = 9000 time steps. The input pulse is defined via the parameters u0 = 1,
δ = 100 s−2 and t0 = 0.3 s.

The optimization problem is defined by specifying the target pulse with a
compression corresponding to c̃ = 3.5. The limits for the auxiliary design variables
are chosen to be (t̃0)min = 1.2 s, (t̃0)max = 1.35 s, (ũ0)min = 0.8u0 and (ũ0)max =
1.2u0. The design is allowed to change M = 36 times during the simulation time
and in order to keep the designs simpler the spatial elements are grouped into
20 patches. Thus, the total number of design variables in the model becomes
20× 36 + 2 = 722.

Fig. 4 shows an example of a pulse that is compressed when propagating
through a space-time optimized structure obtained with material parameters ρ =
1 and E = 1.75. The curves in Fig. 4 additionally illustrate how the pulse, apart
from being compressed, is delayed in the optimized structure when compared to
the pulse propagating in the homogeneous structure. In this case the optimized
value of the delay parameter is t̃0 ≈ 1.25 s, whereas the optimized value of the
output pulse amplitude ũ0 is very close to the input pulse amplitude u0 = 1.

In Fig. 5 four plots are presented, each showing a compressed output pulse
compared to the target output pulse, each for a different set of material parameter
contrasts ρ and E. Note, that the targets are different for the four plots since
they depend on the optimized values of the auxiliary design variables x1 and x2.

Fig. 5a,b are obtained for structures that are optimized with a constant value
of ρ = 1 but two different values of E (stiffness contrast). For low E (E = 1.25)
it is evident that the target compression of the pulse cannot be obtained. There
is a discrepancy between the curves near the tip and at the pulse front and tail
where the pulse has not been compressed enough. However, when the contrast is
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Figure 4: Left: input wave pulse. Right: optimized compressed wave pulse and
for comparison the uncompressed output wave pulse.
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Figure 5: Four examples of output pulse through the optimized structure and the
corresponding target pulse. The material parameters are: a) ρ = 1, E = 1.25, b)
ρ = 1, E = 1.75, c) ρ = 1.33, E = 1.25, d) ρ = 0.75, E = 1.25.

increased (E = 1.75) a much better match to the target is obtained. The pulse
front (corresponding to the part of the curve near t = 1.1 s) is still somewhat off
the target.

In Fig. 5c,d the stiffness contrast is kept at the lower value (E = 1.25), but
now the mass density contrast is changed to ρ = 1.33 and ρ = 0.75, respectively.
It is evident from Fig. 5c that for this material property combination (ρ = 1.33)
the targeted pulse compression is not possible at all, whereas for ρ = 0.75 the
compression of the pulse is nearly perfect (with the pulse front still being slightly
off). Thus it is clear that the combined effect of the two material parameters is
very important and they should be chosen carefully in order to obtain the desired
compression effect.

In the examples shown, the corresponding design variables range broadly from
0 to 1 (see Fig. 6a) which implies that the corresponding material properties in
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a) b)

Figure 6: Space-time plot of the material distribution in the optimized struc-
ture. a) without penalization of intermediate densities, b) with penalization of
intermediate densities.

the structure should be interpolations of material 1 and material 2. There is
nothing in the optimization formulation as stated, that forces a binary 0-1 design
that would be creatable with only the two materials available. If it is required
that the structure can be fabricated with only the two specified sets of material
properties, an explicit penalization scheme can be employed (e.g. (Borrvall and
Petersson, 2001)). In this way the objective is appended with a penalizing term:

φ =

∫ T

0

(uout − u∗
out)

2dt+ ǫ

M
∑

j=1

N
∑

e=1

xe
j(1− xe

j) (28)

and in this way intermediate values of the design variables (between 0 and 1) are
expensive and the design will inevitably be pushed toward a binary 0-1 design if
the parameter ǫ is sufficiently large.

In Fig. 6a the space-time design variables in the optimized designs are plotted
for the case of ρ = 0.75, E = 1.25 and in Fig. 6b the design variables are plot-
ted with the optimization performed on the new objective function with explicit
penalization in Eq. (28). The penalization has been employed by using the non-
penalized structure as a staring point and increasing the value of ǫ in a number of
steps using a continuation approach until most of the design variable take values
that are 0 or 1. As appears from the figure only a few of the design variables
are now intermediate. However, Fig. 7 shows that the almost perfect 0-1 design
has been obtained at the cost of some of the performance of the structure. Espe-
cially, near the pulse tail the output pulse for the 0-1 optimized structure is quite
different from the target.

Finally, in order to further illustrate the space-time distribution of the ma-
terial properties, Fig. 8 show snapshots of the design variables along with the
wave profile at four different time instances. The plots are for the non-penalized
structure in Fig. 6a.

6 Summary and conclusions

This paper reports on a topology optimization procedure for the distribution of
material in space and time. The procedure is applied to a 1D transient wave
propagation problem in which a gaussian wave pulse is compressed when propa-
gating through the structure which is composed of materials with different mass
and stiffness parameters.
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Figure 7: Target output pulse and output pulse for the optimized design without
and with penalization of intermediate design variables.

Figure 8: Illustration of the compression of the pulse as it propagates through the
dynamic structure, corresponding to the space-time design shown in Fig. 6a and
the output pulse in Fig. 5d.
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Expressions for the design sensitivities are derived using the adjoint method.
This leads to a terminal value transient problem. The direct and the adjoint
discretized equations are solved using a time-discontinuous Galerkin procedure.
This allows for correct simulation of the system when the mass matrix is not
constant in time, however, at the expense of extra computational effort. The
performance of the numerical scheme is demonstrated on a wave propagation
problem in which the material properties change instantly. It is shown that the
time-discontinuous scheme correctly simulates the problem whereas a standard
central difference scheme fails if the mass matrix is not constant in time.

The optimization procedure is demonstrated on a 1D wave propagation prob-
lem in which a single gaussian pulse is compressed through an optimized space
and time distribution of two materials with different mass density and stiffness.
The optimization problem is formulated as a minimization problem in which the
difference between the output pulse and a specified target output is minimized.
Two auxiliary design parameters are introduced to relax the problem. They con-
trol the temporal location of the output pulse and its amplitude, which are allowed
to vary within some predefined limits. The optimization problem is solved with
the mathematical programming tool MMA.

It is shown that is it possible to compress the pulse depending on the specific
values of mass and stiffness contrasts but that the designs will be composed of
material properties that are mixtures of two predefined materials. An explicit
penalization scheme is finally introduced in order to eliminate intermediate design
variables so that the designs are primarily composed of the two available materials.
This is shown to compromise the performance to some extend. The example
clearly demonstrates that the pulse compression can be accomplished by using
the presented scheme and indicates promising perspectives for using space-time
topology optimization to create devices for more complex pulse shaping.
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