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Preface

This Ph.D. dissertation has been submitted to the Technical University of
Denmark in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

The work presented in this dissertation is based on the work carried out from
August 1st, 2007 to July 31th, 2010 at the Center for Fast Ultrasound Imag-
ing, Department of Electrical Engineering, Technical University of Denmark.
It includes four journal papers, three conference papers, and two accepted
abstracts for conference proceedings 2010.

The preparation of this Ph.D. dissertation has been conducted through three
years of research. It has taken my skills within mathematical modeling to
a whole new level and taught me the physics and science within medical
ultrasound transducers and modeling of ultrasound wave propagation. The
project has given me the opportunity to travel around the world to attend
conferences in New York, Santiago de Chile, Beijing, Stockholm, and Rome.
A privilege I have valued very much and which has expanded my knowledge
within ultrasound. Yet another valuable asset of my study was given to me
through my time abroad at the Stanford University, where I worked with a
research group from which I learned many professional engineering skills as
an engineer and which helped me grow personally.

During my study period I have had the great opportunity to teach students
in signal processing and to share my knowledge within mathematical mod-
eling with professors, colleagues and students. A valuable asset of the Ph.D.
education that I am going to miss.

David Bæk
Kgs. Lyngby, July 2010
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Abstract

This Ph.D. dissertation addresses ultrasound transducer modeling for medi-
cal ultrasound imaging and combines the modeling with the ultrasound sim-
ulation program Field II. The project firstly presents two new models for spa-
tial impulse responses (SIR)s to a rectangular elevation focused transducer
(REFT) and to a convex rectangular elevation focused transducer (CREFT).
These models are solvable on an analog time scale and give exact smooth so-
lutions to the Rayleigh integral. The REFT model exhibits a root mean square
(RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.37 %
at 100 MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to
the exact numerical solution on a CREFT transducer. A convex non-elevation
focused, a REFT, and a linear flat transducer are shown to be covered with
the CREFT model as well. Pressure pulses calculated with a one-dimensional
transducer model in combination with Field II are calculated on a circular
piezoceramic transducer and a convex 128 element commercial transducer.
The pulses are shown to be predictable within ±2 dB of the amplitude which
is excellent for this modeling. Intensity profiles are shown to be predicted
with a RMS deviation of 5.5 % to 11.0 %. Finite element modeling of piezo-
ceramics in combination with Field II is addressed and reveals the influence
of restricting the modeling of transducers to the one-dimensional case. An
investigation on modeling capacitive micromachined ultrasonic transducers
(CMUT)s with Field II is addressed. It is shown how a single circular CMUT
cell can be well approximated with a simple square transducer encapsulat-
ing the cell, and how this influence the modeling of full array elements. An
optimal cell discretization with Field II’s mathematical elements is addressed
as well. The error in modeling CMUT cells as squares or flat circular plates
instead of curved circular cells is also addressed.
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Abbreviations

SIR Spatial impulse response
RMS Root mean square
CMUT Capacitive Micromachined Ultrasonic Transducers
REFT Rectangular elevation focused transducer
CREFT Convex rectangular elevation focused transducer
FEM Finite element model
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CHAPTER

ONE

Introduction

The fundamental purpose of this research project has been to investigate ul-
trasound transducer modeling techniques that can improve the simulation
software Field II [1, 2]. Field II is a widely known and well recognized sim-
ulation software. It is capable of simulating the pressure field and the pulse-
echo response from an inhomogeneous medium such as the human body,
and its main application areas are within ultrasound imaging and blood flow
estimation. Typically the program is used to simulate RF-data as it would
be received by a real medical ultrasound scanner. The program has, due to
its high flexibility, been accepted by the ultrasound community as one of the
leading simulation programs within ultrasound research. The flexibility of
the program makes it possible to simulate any transducer geometry, excita-
tion wave form, focusing, and attenuation, and as simulation output the pro-
gram can return beam-formed RF-lines, spatial impulse responses, pressure
fields, pulse-echo responses, and received RF-data of a transducer in a vari-
ety of combinations. Field II is therefore, amongst others, capable of doing
very complex simulations for standard ultrasound imaging, synthetic aper-
ture, adaptive beam-forming, compound imaging, diverse flow simulations,
and pressure field simulations. It can handle these for both homogeneous
and inhomogeneous mediums of theoretically any size and any transducer
geometry.

The implementation and the calculation principle performed inside the ker-
nel of Field II are the main keys to its fast computational ability and suc-
cess. Fundamentally speaking the program predicts wave propagation in
the field in front of the transducer by calculating a unique impulse response
that relates a scatter point in front of the transducer (an inhomogeneity in the
medium) to the transducer’s surface geometry. This relation is called the spa-
tial impulse response (SIR). The SIR is then convolved with the transducer’s
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electromechanical impulse response and the excitation waveform to yield the
actual pressure at the point’s location. Both of the wave forms are to be sup-
plied by the user and are not pre-calculated by the program. If a pulse-echo
response from a scatter point is to be calculated then also the SIR in receive
and the mechanical to electrical impulse response of the transducer are con-
volved onto the result [3]. This is performed in the time domain, and it is
therefore essential for the program to have a fast evaluation of the SIR and
also a fast convolution algorithm. The solvers for finding the SIR currently
rely on subdividing the transducer surface into smaller piston transducer el-
ements (mathematical elements (ME)) in the shape of either rectangles [1] or
triangles [4]. The superposition principle is then utilized to add the response
from each ME to yield the overall SIR. This is a very fast calculation prin-
ciple and can approximate the SIR from any transducer geometry. Clearly
the drawback of this method arises when too coarse a subdivision is applied
whereby an inaccurate summation will be present. This is especially the case
for curved surfaces. It is therefore a trade off between accuracy and compu-
tation time with this method.

A valuable asset to improve on the theory of the SIR calculation method and
Field II for the special group of transducers with either a convex unfocused,
a rectangular elevation focused, or a convex rectangular elevation focused
geometry would be to calculate the SIR from a closed form mathematical ex-
pression that can be analytically or semi-analytically solved without subdi-
viding the surface into ME. These transducers are of special interest because
they can be found in medical ultrasound imaging applications.

A part of this research project has been concerned with finding such math-
ematical expressions for rectangular elevation focused elements and con-
vex rectangular elevation focused elements that are analytically and semi-
analytically solvable. The development has been considered novel and has
been submitted for publication. These works are found in the appended
chapters titled: Paper I and Paper II (see table of contents) which fully docu-
ment this work. A single abstract on this topic, which has been accepted for a
conference publication ultimo 2010, has also been written. It can be found in
the appended chapter titled: Abstract I. A supplying discussion of the theory
of SIRs and the findings in the publications are the topics of Chapter 2.

Chapter 3 summarizes and addresses the work published in the journal pa-
per appended in the chapter: Paper III. This work focuses on combining Field
II with a one-dimensional piezoelectrical transducer modeling principle orig-
inally suggested by Willatzen [5], and it fully documents this part of the Ph.D.
work. The purpose of the work was to get an estimation of the accuracy in
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predicting pressure pulses with Field II and this kind of transducer model-
ing. Two transducers were modeled, a single element circular pz27 ceramic
and a 128 element convex commercial medical transducer. The reason for
this choice was that it was possible to achieve a set of valuable simulation pa-
rameters and construction drawings from the manufacturer to the transducer
handle. Usually these information are protected property of the manufactur-
ers of commercial transducers, and to respect this for the manufacturer the
name and version number of the given transducer is not mentioned in this
publication. Two conference papers used as initial studies, and of which the
results have been improved in Paper III are attached in Paper VI and Paper
VII. These studies were pre-studies of the main journal paper.

An interesting parameter sensitivity study is addressed in the conference con-
tribution in the chapter titled Paper V. This paper addresses the validity of
the input simulation parameters applied in Paper III, and it discusses the
piezoceramic model’s sensitivity to its input parameters.

Finally, the chapter discusses the findings in the journal paper in the chapter
Paper IV. This journal paper investigates a finite element model in combina-
tion with Field II. It emphasizes the influence of restricting the modeling of
the impulse responses to a one-dimensional model as is assumed in Paper III.

Chapter 4 addresses the feasibility of simulating capacitive micromachined
ultrasonic transducers (CMUTs) with Field II. The project was conducted in
collaboration with the Ginzton Laboratory at the Stanford University, Califor-
nia, and its purpose was to investigate simulation of the SIR for CMUTs with
the current Field II modeling capacity. The importance of this project can
be realized by studying the extent of publications within medical imaging
that is concerned with CMUTs. Field II is currently not supporting build-in
predefined transducer models for CMUT transducers. The current version
only supports the geometry of the classical piezoceramic transducers, and
developers with the need to simulate CMUT devices have to create their own
models using the Field II’s manual transducer setup. An abstract Abstract II
has been accepted for a conference proceeding on this work.

For the reading of this dissertation it is recommended to read the journals
Paper I and Paper II as well as Abstract I prior to entering Section 2.2 of
Chapter 2. Prior to entering Chapter 3 is it recommended to read journal
papers Paper III and Paper IV as well as conference paper Paper V. Chapter
4 can be read as it is and followed by Abstract II.

3
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CHAPTER

TWO

Spatial impulse responses for
rectangular elevation focused
and convex elevation focused

transducers

As described in the introduction, the spatial impulse response (SIR) for dou-
ble curved transducers is currently calculated by subdividing the surface into
smaller elements. An interest to find an algorithm which without surface dis-
cretization can solve the SIR for these types of transducers efficiently and ex-
actly has originated. In order to complement the currently available solution
methods, this part of the research project has been concerned with finding a
closed form analytical and semi-analytical solution for SIRs of the problem.

This chapter firstly gives an overview of the relevant literature for SIRs that
was applied in the inspiration process of the development. Afterwards a
discussion on the derivation and the nature of the SIR for simple flat trans-
ducer elements is presented. This is intended to give the reader an overview
of the topic and to clarify associated problems with the technique. A pre-
sentation and a discussion follow. They are based on two new developed
algorithms for SIRs which are presented in the journal papers by the author
and inserted into the chapters: Paper I and Paper II. Paper I presents an ex-
act semi-analytical solution for the elevation focused rectangular transducer,
and Paper II presents an exact solution for the rectangular convex elevation
focused transducers (double curved transducers) through an approximation
can be solved analytically. Finally a conclusion and a discussion of future
development is presented.
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2.1 Literature and state of the art within spatial impulse re -
sponses

A literature study within the field of acoustic wave radiation from acoustic
transducers reveals a research field that has been studied thoroughly through
history and is well understood by the acoustic research community. Some of
the earliest publications with relevance to SIR date back to Lord Rayleigh [6]
in 1945 on the theory of sound, the work on concave cylindrical transduc-
ers by O’Neil [7] in 1949, or e.g. Oberhettinger [8] from 1961 on transient
solutions of baffled pistons. These references direct the attention to several
other works that have been written in between these years which cannot all
be mentioned and often only touch the issue of SIRs tangentially. A litera-
ture review on the theory of sound radiation from acoustic transducers will
therefore only consider references that have a direct relevance to the study of
SIRs of which the work presented in this chapter is concerned with. It should,
however, be mentioned that for the interested reader Freedman [9] has pub-
lished a literature summary in 1969 containing many of the works known
at that time. A similarly excellent study has been conducted by Harris in
1981 [10].

A good starting point for the review is the work by Tupholme [11] in 1969.
In this work he describes how the velocity potential for circular pistons, strip
pistons, and wedge formed pistons can be easily formulated using Green’s
function on Helmholtz’s equation. He applied a formulation with step func-
tions from which the velocity profile can be evaluated as a dependence of a
field points’ location relative to the transducer.

Later Stephanishen [12–14] has in a series of papers described the velocity
potential or the pressure prediction from circular and rectangular pistons as
a time convolution between the surface velocity and a surface integral. The
integrand of the surface integral was formulated by using the well known
Green’s function. This principle applied the assumption that the radiating
surface moves uniformly, and it is valid in both near- and far-field for a pis-
ton mounted in an infinite planar baffle. The principle formulates a simple
method for evaluating time-dependent calculations of the pressure field. A
time convolution between a surface velocity and a spatial integral was for-
mulated as:

φ(~x, t) = v(t) ⋆
t h(~x, t), (2.1)

where

h(~x, t) =
1

2π

∫

S

δ(t − |~x − ~x0|/c)

|~x − ~x0|
dS. (2.2)
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The velocity profile v(t) of the transducer surface is assumed to be spatial
independent, and the impulse integral of the expression is entirely depending
on the observing point’s location relative to the transducer surface, S.

Lockwood and Willette [15] presented a high speed calculation method for
calculating the pressure in the near-field of a harmonic excitated piston by
representing the surface integral of the pressure integral with a single inte-
gral. They showed how the impulse response for a rectangular flat trans-
ducer could be formulated in a closed form with numerical integration and
represented it with a proper choice of Dirac delta functions.

Following the publications by Tupholme, Stephanishen, and Lockwood and
Willette several works have been presented with main focus on finding ana-
lytical solutions to the integral in (2.2) on simple geometries such as rectan-
gles, triangles, circles, and concave annular pistons. Among these is the work
by Jensen and Svendsen in [1], where Tupholme’s and Stephanishen’s meth-
ods were adapted for the development of a far-field approach. This method
subdivides the surface into smaller rectangular elements and can be used to
formulate any transducer geometry. Jensen also adapted the SIR method to
formulate the response from triangular flat transducer elements [4] and for
arbitrary shaped flat apertures in a bounding line method [2]. A similar ap-
proach was applied in 2004 by Neild et. al. in [16]. Penttinen and Luukkala
presented a solution for the concave focused annular pistons in [17] in 1976.
They did this by geometrically formulating the small integration segment,
dS, in (2.2) and showed that their algorithm was in consistency with the SIR
for flat circular pistons. Arditti, Foster, and Hunt later formulated analytical
expression for the SIR of concave annular pistons following the same princi-
ple, and they also commented on concave annular concentric rings in [18] in
1981.

O’Neil [7] commented on applying the Rayleigh surface integral method for
slightly curved transducers. The problem associated with the integral is its
limited validity for curved transducers. The integral does not account for the
fact that a slightly curved transducer will introduce reflections and diffrac-
tion. However, O’Neil assumed that this secondary diffraction effect is neg-
ligible as long as the transducer curvature is small compared to the wave-
length. The same assumptions are defended by Penttinen and Luukkala [17]
and Arditti et. al [18].

Tjotta et al. [19] considered the situation in which the surface velocity for pla-
nar radiators is non-uniform. This resulted in a somewhat more complicated
mathematical description if the velocity distribution takes on a form that is
not directly solvable with their method. Furthermore, they presented a study
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on non-planar radiators, in which they applied Green’s formula instead of
the Rayleigh integral.

Literature addressing rectangular focused transducer elements includes
among others Piwakowski and Sbai [20] who present a method to solve an
arbitrary geometry by reformulating the classical Rayleigh integral into a
weighted sum and by discretization of the surface into smaller elements. This
method is found in the DREAM software [21, 22]. Another interesting inves-
tigation was presented by Faure et. al [23] for a curved strip, i.e. a part of
a sphere cut out with four lines. This work showed reasonable consistency
between simulated results and measurements. The authors commented on
the slight error as being caused by the measurement setup. Their work in-
dicates that the secondary diffraction effect has little significance as O’Neil,
Penttinen, Luukkala, and Arditti also assumed in their works. A cylindrical
transducer was considered by Theumann et. al [24]. They formulated the
radiation using the SIR method and solved (2.2) in cylindrical coordinates.
They achieved reasonably good results with experiments which support the
conclusion made by Faure et. al [23]. They found an analytical expression
for a point located at the center of the cylinder and for points anywhere else
a numerical solver was needed. In 1999 Wu and Stepinski [25] presented a
method to calculate a SIR from a linear array with concave surface. They for-
mulated the SIR by subdividing the surface into thin rectangular strips with
the same length as the height of the aperture/element, and they then utilized
that each rectangular strip has a well known analytical response. Compari-
son with measurements validated their model and showed good consistency.

The thorough interest in calculating the pressure field from arbitrary trans-
ducer geometries has especially been motivated by medical ultrasound re-
search. Modern medical transducers can consist of several array elements
arranged linearly, curved, or in matrix form. Their applications are typical
for pulse-echo measurements in inhomogeneous mediums, which complicate
the simulation of the response significantly. To cope with this development
several simulation programs for simulating such complicated environments
have been developed. These programs utilize many of the references men-
tioned above and are either based on the SIR principle or on an advanced
numerical integration. Among these programs one can find Ultrasim [26],
DREAM [22], DELFI [27], and Field II [1, 2].
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2.1.1 The nature of the spatial impulse response

The SIR concept can easily be derived from the Rayleigh integral. The pres-
sure field from an aperture can be defined as

p(~r1, t) =
ρ

2π

∫

S

∂v(~r0,t− | ~r1− ~r0|
c

)

∂t

|~r1 − ~r0|
dS, (2.3)

where v is the normal velocity of the aperture, ~r0 is a vector describing a
location on the aperture surface, ~r1 is the location vector of a given point,
P , at which the pressure is to be predicted, c is the speed of sound of the
medium in front of the aperture, and ρ is the corresponding density. This in-
tegral is only exact for the situation where the transducer surface is flat, and
it is required that no reflection from one part of the surface affects another
part of the surface. It is furthermore derived with the assumption that the
medium is homogeneous, and that the wave propagation is linear. Linear
wave propagation is necessary because the integral follows Huygen’s prin-
ciple by adding contributions from many small surface elements, dS, which
requires linear assumptions. Figure 2.1 shows the geometrical definition of
the vectors ~r0 and ~r1 for a flat rectangular piston placed in an infinite baffle
as well as the definition of the Cartesian coordinate system.

A velocity potential, φ, can be introduced and related to the pressure as [28]:

v(~r0, t) = −∇φ(~r0, t), (2.4)

p(~r1, t) = ρ
∂φ(~r0, t)

∂t
. (2.5)

This makes it possible to formulate the velocity potential as

φ(~r0, t) =

∫

S

v(~r0, t − |~r1−~r0|
c )

2π|~r1 − ~r0|
dS. (2.6)

Since the wave propagation is assumed to be linear it is possible to separate
the surface movement from the spatial wave propagation by introducing a
delta function and a time convolution:

φ(~r0, t) =

∫

S

∫

T

v(~r0, t1)δ(t − t1 − |~r1−~r0|
c )

2π|~r1 − ~r0|
dt1dS. (2.7)

This integral can be separated if it is assumed that the surface movement of
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Figure 2.1: Figure showing the definition of an aperture placed in an infinite baffle
and the vectors ~r0 and ~r1 as well as the point P.

the transducer is uniform, i.e. spatial independent

φ(~r0, t) =

∫

T
v(t1)

∫

S

δ(t − t1 − |~r1−~r0|
c )

2π|~r1 − ~r0|
dSdt1

= v(t) ⋆
t

∫

S

δ(t − |~r1−~r0|
c )

2π|~r1 − ~r0|
dS, (2.8)

where ⋆
t is the time convolution.

Recall from (2.2) that

h(~r1, t) =

∫

S

δ(t − |~r1−~r0|
c )

2π|~r1 − ~r0|
dS. (2.9)

This is the spatial impulse response.

The simplest way to analyze the nature of this integral is to consider a rect-
angular flat transducer and a point, P , located somewhere in front of the
transducer. A wave emanating from such given point, which is possible
due to acoustical reciprocity, will eventually intersect the transducer, and the
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Figure 2.3: Figure showing how the cross-
ing between the sphere and the aperture
is defined with two angles and a projected
circle. Two time instances are depicted.

intersection will form a circular arc. By projecting P onto the plane of the
transducer as depicted in Fig. 2.2 a new one-dimensional manifold with the
projected point P’ defining the coordinate center is formed. This projection
makes it beneficial to transform the integral (2.9) into polar coordinates as
suggested by Jensen [2]. Working with polar coordinates in the plane of the
transducer yields a very simple solution to the complicated integral in (2.9)

h(~r1, t) =
c

2π
[Θ2(t) − Θ1(t)]. (2.10)

The SIR for this simple situation is therefore found by identifying the angles
Θ1(t) and Θ2(t) in radians, which can be geometrically found as illustrated
in Fig 2.3.

In the solution form (2.10), c will be the speed of sound and the angles Θ2(t)
and Θ1(t) define the angle difference created to a given time instance t, as
shown in Fig. 2.3. The unit for the SIR is therefore the one of velocity, m/s.
Furthermore, from (2.10) it can be identified that for a closed arc segment
the response takes on the value for the speed of sound, and in this simple
form it can easily be verified that the SIR is related to the arc length of the
intersection.

It can therefore be proven that the pressure can be expressed by

p(~r1, t) = ρ
∂v(t)

∂t
⋆
t h(~r0, t), (2.11)
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Examples of SIRs with a simple flat rectangular transducer and six points lo-
cated in the xz-plane as depicted on Fig. 2.4 can be seen in Fig. 2.5. All points
are placed in the same y-plane, i.e. y = 0. The figures clearly show that
the pulse shapes are different, which is due to the points’ geometrical depen-
dency to the transducer. Points close to and in front of the transducer are
initially constant (c). The flat constant section is shortened as the point gets
further away from the transducer. Points very far away from the transducer
give responses that take on the shape of a sharp spike. Theoretically, there
will always be a flat constant section as long as no focusing occurs. However,
to resolve a flat section smaller time steps need to be considered in the plot-
ting and in the simulation. Figure 2.6 depicts the corresponding normalized
pressure calculations of the points as described with (2.11). For illustration
purposes a two cycle Hanning weighted excitation pulse has been applied
here. In consistency with the definition (2.10) and the illustration in Fig. 2.3
discontinuities are seen on the responses in Fig. 2.5. These correspond to
wave crossings of the aperture edges.

Practically speaking the SIR itself is of no interest in actual measurement sit-
uations. Recall that the actual measured pressure can be found as a time
convolution between the excitation waveform of the transducer and the im-
pulse response wherefore the SIR is hidden in the measured response, and it
is to be considered a mathematical operator.

2.1.2 Spatial impulse responses in medical imaging and Field II

In medical imaging the propagating medium, the tissue, is highly in-
homogeneous. A reformulation of the wave equation to include a scattering
term has therefore been presented in [3]. This reformulation has shown that
a pulse-echo response can be approximated with the SIR principle. For ref-
erence purposes the developed expression is mentioned here in its original
form

pr(~r5, t) = vpe(t) ⋆
t fm(~r1) ⋆

t hpe(~r1, ~r5, t). (2.12)

The term vpe(t) is the transducer’s two way impulse response and excitation
wave form. fm(~r1) is a scattering term that was introduced accounting for a
weak scattering assumption, and hpe(~r1, ~r5, t) is a pulse echo SIR. The latter
corresponds to a convolution between SIRs in transmission with the SIRs in
reception. For array transducers these are different, but for single element
transducers the terms become identical. The vectors ~r1 and ~r5 are vectors
defining the transducer location and the point location similar to what was
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Figure 2.5: SIR for the six points.
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Figure 2.6: Pressure corresponding to the
impulses in Fig. 2.5. A two cycle Hanning
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shown in Fig. 2.1. For image simulation within medical imaging a compu-
tationally heavy part in generating RF-data is found in hpe which has to be
performed as efficiently as possible.

To simulate RF-data for imaging with Field II one has to know on forehand
the pulse form of vpe, and an assumption of the scattering tissue has to be
represented with a scatterer map. The scatterer map is related to fm and can
consist of thousands of scatterers (reflecting Ps). Field II calculates the SIR for
each scatter point, and it does this for all transmit and all receive elements.
This can include a fair amount of calculations for typical medical transducers
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with e.g. 192 transmit and receive elements and e.g. 1 million scatter points.
Beam-forming and image processing are to be performed afterwards. A dis-
cussion of the exact influence of the different terms in (2.12) can be found
in [3].

Curved transducers can be represented in Field II by building the surface of
many smaller flat elements, so called mathematical elements. The SIR is cal-
culated by summing the response from each smaller element at the correct
time instances. This method is very efficient in terms of calculation speed
on computers with large memory since very simple solutions for the subre-
sponse are known, e.g. (2.10). The drawback is, however, the accuracy of the
phase summation. Smooth curves and energy conservation of the SIR pulse
require very exact phase summation, which is a challenge if the sampling fre-
quency is relatively low, and the subdivision is too coarse. However, such
one is an important factor for a simulation program utilizing the SIR method.
High sampling frequency yields an exact summation, but is on the cost of
longer convolution times in e.g. (2.12).

2.2 A new model for a rectangular elevation focused transduc er

A journal paper describing the development of the SIR for an elevation fo-
cused rectangular transducer can be found in the chapter: Paper I. It fully
documents the development and the work that this part of the Ph.D. project
has been concerned with. The presented model solves the problems on dis-
cretizing the transducer surface as described in the previous sections. The
current section is an addendum and a summary to the journal in Paper I. It
presents and discusses the developed algorithm for the SIR.

The development was initially inspired by the closed form analytical solution
for the intersecting curves between a sphere and a cylinder where the center
of the sphere is located on the boundary of the closed cylinder. The arising
intersecting curves are called Viviani’s curves. The preparations for Paper
I investigated whether it was possible to adapt the equations for Viviani’s
curves to the problem of finding a common expression for the curve length
when the center of the sphere is located arbitrarily in front of the cylinder.
The curve length is interesting since it has been shown for flat transducer
elements that the SIR is proportional to the curve length e.g. (2.10). The
investigations, however, showed that algorithms for the curve length took
on an extensive mathematical formula that required a numerical solver. The
approach was therefore abandoned and a method inspired by Theumann et.
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Figure 2.7: Figure defining the geometry and the coordinate system
of a considered cylinder section. Figure taken from Paper I.

al [24] was adapted.

The geometry of an elevation focused rectangular transducer element corre-
sponds to an open cylinder and is in Paper I geometrically defined as de-
picted in Fig. 2.7. The center of the curvature is located at the x-axis along
which the element width, L, is defined. The height, H , of the element is de-
fined along the y-axis, and the depth of the field is defined along the z-axis,
i.e. into the page. An opening angle, V , and a radius, rc, define a height, H ,
and the element’s corners are defined as c1, c2, c3, and c4.

In the paper it is shown that the surface integral (2.9) can be represented with
an elliptical line integral

H(θmin, θmax) =

∫ θmax

θmin

rcc

2π
√

ζ cos[θ + γ] − f(τ)
dθ. (2.13)

The different terms are given by: f(τ) = r2
c + l2 − (cτ)2, l2 = |OQ|, and

ζ = 2rcl, where τ represents a given time instance, and |OQ| is a line segment
dependent on a point’s location relatively to the transducer (see Paper I). The
integration angles, θmax and θmin, are found by properly analyzing a projec-
tion of the intersection onto circles as illustrated in Fig. 2.8. The intersection
between the cylinder section and a sphere is illustrated with the curved arc
in the figure. Notice that the actual transducer is illustrated by I . Two imag-
inary transducers are drawn as II and III , represented with dashed lines in
Fig 2.8. The intersecting arc is divided into a left (superscript L) and a right
(superscript R), and projections of the intersection onto a left and a right circle
are also shown in the figure. As time proceeds in the simulation the angles
change due to changes to the intersections.
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Figure 2.8: Figure showing the projection of the intersection onto two circles. (I) is
the actual transducer. (II) and (III) are imaginary transducers. Figure taken from
Paper I.

As described in Paper I the equations for the SIR are highly dependent on the
point P’s location relative to the transducer. The development showed that
the propagation medium in front of the transducer can be divided into five
different zones in which a point can be located.

No fully analytical solution was found for the integral (2.13) or the SIR in gen-
eral, however, a semi-analytical solution was found by utilizing the elliptical
integral function of the first kind.

Discussion of the results and the validity of the model

Simulations with the developed algorithm are made with Field II as reference
in the journal paper.

The simulations are conducted on 2500 randomly distributed points on a
transducer with a height, H , of 30 mm and a length, L, of 30 mm. The el-
evation radius, rc, is 28 mm. Simulations at sampling frequencies of 3400
MHz and 100 MHz are conducted. The errors are calculated as the root mean
square (RMS) of the difference between Field II and a MATLAB implementa-
tion of the developed algorithm relative to the RMS of the Field II prediction.
This is chosen because an error calculation like this is very sensitive to dif-
ferences, and it is therefore very important that the same time instances are
subtracted. A slight shift in times or differences will hereby immediately be
revealed.

The chosen transducer size is relatively large seen in the perspective of med-
ical ultrasound imaging. However, the work is conducted as a validation of
the model, and a transducer as chosen is sufficient for this task. A smaller
transducer would reveal the same results on another time scale, but would
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presented model. Figure taken from Paper I.

also require considerations of energy conservation of the pulses at lower sam-
pling frequencies. This is, however, a topic concerning the implementation
and is for instance to be considered in an actual Field II implementation. By
simulating on a large transducer this is partially avoided with the given sam-
pling frequency.

Figure 2.9 shows SIR pulses calculated with the model and Field II at a sam-
pling frequency of 3400 MHz. Circles represent the Field II solution, and the
dashed line represents the model. Clearly a good consistency is found. How-
ever, it should be noticed that a small inconsistency at the horizontal line
segment at around 12.1 µs is found. This is a consequence of the summation
principle applied in Field II, and it shows the advantage of the developed
algorithm to give a smooth accurate response.

Figure 2.10a is suggested in Paper I. It shows the deviation errors from 2500
random point simulations. The errors are projected down to the xy-plane
for visualization. The errors are calculated for each of the 2500 points and
simulated at 3400 MHz. The color intensity corresponds to the error and
the white square indicates the bounding lines of the transducer when it is
projected onto the xy-plane as well. A maximum error of 3.5 % is found.
The highest concentration of errors is located inside the square (directly in
front of the transducer), and Fig. 2.10b shows the distribution of the errors
and indicates that a significant part of the errors is below 1 %. The average
deviation is calculated to 0.41 %. The same study applied with a 100 MHz
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the errors. Figure taken from Paper I.

sampling frequency revealed a mean deviation of 1.37 %, and a maximum
error of 24.7 % was found for a response with a very sharp spike.

A strong validation of the integral in (2.13) can be found if the limit function
is applied to the integrand in its full form:

Real

[
lim

rc→∞

[
1

2π

rcc√
c2τ2 + 2lrc cos [θ + γ] − l2 − r2

c

]
]

]
=

c

2π
. (2.14)

This yields exactly the same constant c
2π that was encountered in (2.10) for flat

transducer elements. The algorithm can therefore be used to approximate the
response from a purely flat transducer. Calculation of θ will, however, be a
numerical unstable task because the angle differences in the integration will
be very small when rc → ∞.

2.3 A new algorithm for a rectangular convex elevation focus ed
transducer

This section is an addendum to and a summary of the work in the journal
paper inserted into the chapter Paper II. This paper describes in detail the de-
velopment and the results of an algorithm for a rectangular convex elevation
focused aperture, which was developed in this Ph.D. project.
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Figure 2.11: Figure showing the geometry definition of a double curved transducer.
Figure taken from Paper II.

A rectangular convex elevation focused transducer (double curved trans-
ducer) is in this context represented by a section of a torus. It is defined with
both an elevation focused and a convex rotation radius. The latter will give a
spreading radiation, and the former will concentrate the energy. The geom-
etry is depicted in Fig. 2.11. The transducer is defined in torus coordinates
placed in the Cartesian coordinate system. It is represented with a convex
opening angle γR, which is measured relatively to the z-axis. The z-axis goes
directly through the center of the transducer and defines a symmetry. The
convex radius, R, is measured from the zero reference to the center of the
outer circle, and an inner radius is defined as r. A limiting minimum open-
ing angle is defined as θmin and a similar maximum opening angle is defined
as θmax = π − θmin.

The surface integral (2.9) is shown to be representable with a line integral as
it also is the case for the rectangular elevation focused transducer:

h(ti) =
1

2π

∫ θmax(ti)

θmin(ti)

cr

|OP ∗|
√

1 − (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2|OP ∗|R−2|OP ∗|r sin θ)2

dθ, (2.15)

where k = |OP ∗|2 + r2 + R2 + y2
p when a point is defined as P = {xp, yp, zp},

and |OP ∗| is the direct horizontal distance to a point.

The angles θmin and θmax in (2.15) are to be evaluated at each time step as it
was for the rectangular elevation focused model. The propagation medium
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in front of the transducer is divided into ten different zones at which a point
can be located. Each zone has its unique definition of the integration angles
in (2.15).

It was not possible to find a direct analytical expression for the elliptical inte-
gral (2.15). Instead a suitable approximation is possible because of the inte-
grand’s nature. It is shown that an approximation of the term

(−k + c2t2 + 2ryp cos θ + 2rR sin θ)2

(2|OP ∗|R − 2|OP ∗|r sin θ)2
(2.16)

in (2.15) can be achieved by performing a Taylor expansion to second order
around either one or three points or by a direct second order polynomial
fitting. The three-point Taylor approximation divides the integral into three
sub integrations. The approximations result in the expression (2.16) to be
representable by Aθ2 + Bθ + C + higher order terms, whereby the integral
becomes analytically integrable.

I(θ) =
1

2π

∫
cr

|OP ∗|
√

1 − (Aθ2 + Bθ + C)
dθ

=
1

2π

i cr log
[
2
√

−Aθ2 − Bθ − C + 1 − i (2Aθ+B)√
A

]

√
A|OP ∗|

, (2.17)

where i =
√

−1. For a programing environment (2.17) is very suitable and
can be rapidly calculated.

Each of the polynomial fittings is performed by using three points for finding
the unknown coefficients A, B, and C. These three points are located at the
upper integration value θmax, the lower integration value θmin, and the mean
integration value (θmax + θmin)/2.

Discussion of the results and the validity of the model

Several transducer configurations are tested for this algorithm. Firstly, a dou-
ble curved transducer with a width, a height, an outer radius R, and an inner
radius r of 20 mm, 30 mm, 60 mm, and 90 mm, respectively, is investigated
with a 5 GHz sampling frequency. The exact model is solved using a numer-
ical integration, and it is compared to Field II, the one-point Taylor approxi-
mation (1T), the three-point Taylor approximation (3T), and the second order
polynomial fitting (2p).
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Setup: /Solver: G-K Field II 1T 3T 2p

Double curved: {0, 0, 10} mm x 0.40 0.80 0.03 0.18
Double curved: {0, 0, 105} mm x 0.49 3.58 0.01 0.83
Double curved: 200 points x 0.45 1.78 0.01 0.45
Convex no elev.: {0, 0, 40} mm x 6.90 5.90 0.01 0.03
Convex no elev.: 200 points x 3.80 2.50 2.50
Linear flat: 200 points x 3.56 3.56 34.86
Linear elev. focused: 200 points x 4.43 3.46 33.30

Table 2.1: Table showing the different relative deviations of the model and the
solvers found in Paper II. The x indicates which solver was applied as reference, and
all numbers are in percent. G-k is the Gauss-Konrod numerical solver of MATLAB.

Figure 2.12a shows a comparison between all the solvers as a full pulse view.
The results are from a point located directly in front of the transducer in a
distance of 10 mm. The difference between the pulses are negligible, and a
zoom as shown in Fig. 2.12b is made to reveal the difference. On the zoom it
can be identified that the Numerical solver, Field II, and the 3T give consistent
results, whereas the 2p and the 1T have difficulties in capturing all the energy
of the pulse. The reasons for failure of the 2p and the 1T are different. The
2p method is based on calculating the exact values at the outer integration
values, θmin and θmax, as well as at the mean angle value of these two, (θmin+
θmax)/2. This results in a polynomial fitting that captures most of the energy
stored at the edges and at the mean integration angle, but not necessarily
in between these intervals. The 1T method fails, because it approximates the
function from the mean integration angle, whereby in this case an inadequate
polynomial fit is made at the minimum and the maximum integration angles.

Table 2.1 summarizes the relative root mean square errors for the different
simulation cases. The error/deviation is calculated as the RMS of the differ-
ence between a prediction by a reference solver and a prediction by one of
the other solvers relative to the RMS of the reference prediction. The refer-
ence solver for the different setups is in Table 2.1 indicated with an x. The
first three rows of the table presents results for a double curved transducer
setup with single point comparisons {0, 0, 10} mm, {0, 0, 105} mm, and 200
points comparison. A 200 points comparison is based on distributing points
across all zones in front of the transducer and then calculating the mean rel-
ative error from the relative error of all the points. The table also represents
simulation studies where a convex non-elevation focused transducer is mim-
icked. This is done by increasing the value of r to 6 meter. Furthermore, it
presents results for mimicking a flat linear transducer element and a linear
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Figure 2.12: Figure showing the comparison between the different solvers. a) Full
pulse. b) Zoom onto (a). Figure taken from Paper II.

elevation focused transducer element.

For the double curved simulation the table reveals that all solvers exhibit
almost the same error, and it is seen that the situation depicted in Fig. 2.12b,
corresponding to the first row in the table, is of no significant influence to
the overall error. The 1T solver is seen to give an error of 0.80 %, which is
relatively small compared to what the other solvers exhibit. In contrary, it is
seen that for steep spike simulations (points far away from the transducer)
as represented by the second row in the table both the 1T and the 2p solver
are relatively more challenged. With the 200 points simulation both Field II
and the 3T stay almost constant in their performance, whereas the 2p has
improved its performance.

When simulating a setup mimicking a convex non-elevation focused trans-
ducer Field II had to be applied as reference because the numerical solver
was unstable for some point calculations. However, the analytical approx-
imations exhibit a much more stable behavior. The error calculations show
that the model is still in consistency with what Field II predicts. For linear
flat transducers and linear elevation focused transducers it is seen that the
2p solver fails completely. It becomes very unstable for some points and is
therefore disqualified for these types of setup.

A consideration of the integrand in (2.15) with the limit theory is useful for
validating the model mathematically. Consider the case where the distance

22



|OP ∗| (see paper) is defined with |OP ∗| = R − L, where L is the horizontal
distance from the point to the center of the concave curvature. This will yield

Integrand =
1

2π

cr

(R − L)
√

1 − (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2(R−L)R−2(R−L)r sin θ)2

dθ, (2.18)

The limit for R → ∞ is

lim
R→∞

[Integrand] =
1

2π

cr√
−L2 − r2 + c2t2 − y2

p + 2ryp cos[θ] + 2Lr sin[θ]

(2.19)

This limit operation changes the double curved transducer to the rectangular
elevation focused one. The limit expression in (2.19) is very similar to the
integrand of (2.13).

Consider next the case where the limit r → ∞ on the latter limit is performed

Real


 lim

r→∞


 1

2π

cr√
−L2 − r2 + c2t2 − y2

p + 2ryp cos[θ] + 2Lr sin[θ]





 =

c

2π
.

(2.20)

This reveals the constant factor c
2π , which was found for the planar transduc-

ers in (2.10) and in (2.14). This makes the model consistent with the literature
findings.

2.4 Conclusion

The study presented in Paper I reveals that a semi-analytical model can be
formulated to calculate the SIR in consistency with Field II. This model is
the exact solution to the complicated surface integral of the single curved
transducer. It was, however, not possible to find an exact simple analytical
solution to this model. The model avoids discretizing the transducer surface
and can therefore give smooth curves on an analog time scale. The RMS de-
viations for 2500 random points are ranging from 0 % to 3.5 %, and the mean
error was found to be 0.41 %. This is valid for a sampling frequency of 3400
MHz and with Field II as reference. When the sampling frequency is lowered
to 100 MHz the mean error was found to be 1.37 %, and the maximum error
was 24.7 %, which is for spiky pulse responses.
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The model presented in Paper II shows that an elliptical line integral can be
formulated for the complicated surface integral of the double curved trans-
ducer. This elliptical integral is an exact model to the SIR, but no direct ana-
lytical solution was found to it. The integral can, however, be solved with a
second order polynomial approximation to a part of the integral’s integrand.
When the integrand is approximated like this it gets possible to integrate the
elliptical integral and find an analytical solution. The accuracy of the approxi-
mation is therefore dependent on the accuracy of the polynomial fitting. Best
results are achieved by dividing the integral into three parts. A Taylor ex-
pansion of each interval exhibits best accuracy and stability for finding the
polynomial fit. A mean RMS accuracy of 0.01 % can be found when compar-
ing the prediction from 200 random points solved with the three-point Taylor
approximation and with a numerical integration of the exact integral as ref-
erence. Field II exhibited in comparison and RMS deviation of 0.45 % for the
same comparison. A convex non-elevation focused transducer can be mim-
icked with the model. This yields a RMS deviation of 2.5 % when compared
to Field II and 200 random points predictions. A linear flat transducer can
be mimicked with a mean RMS of 3.56 % compared to Field II predictions
on 200 random points. Finally a linear elevation focused transducer can be
simulated with a mean RMS of 3.46 % relative to the Field II prediction.

A given implementation into the Field II software of this model is recom-
mended to be done by dividing the integration interval into three parts. More
Taylor point approximations can also be performed in the predictions. This
will, however, not lower the RMS error significantly, since the three point
approximation exhibits a very low error on its predictions. Instead, more
subdivision of the integral will increase the computation time.

2.5 Future development

A calculation speed comparison between Field II and a C-implementation of
the models presented in Paper I and Paper II would be the next step in quali-
fying the models for a practical implementation into a program such as Field
II. This process has been initiated. In principle a stable implementation of the
model in Paper II would make the elevation focused rectangular model su-
perfluous. It should, however, be investigated more in depth if this is always
the case for all configurations of R, r, height, and width.

The degree of curvature that can be accepted for the models should also be
addressed in a future study. It was indicated in the literature review that the
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Rayleigh integral could be accepted for slightly curved transducers. This is,
however, a weak definition, and an exact definition of this term would be a
natural follow-up on the presented study.

It should also be remembered that the presented SIRs assume that the trans-
ducer surface moves uniformly and as a piston. This approximation may be
valid for many transducers, but a natural question that arises is how much
curvature can be allowed before interfering surface waves, traveling across
the surface, becomes of noticeable influence for the piston movement and
how much does the roughness of the surface influence the solution? This
should also be addressed in future investigations. Both of the above aspects
may be best solved through a finite element study of such a model.

A conference paper on the double curved transducer model, which is ac-
cepted on Abstract I, is in preparation.
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CHAPTER

THREE

Combining Field II with
piezoceramic transducer models

A calculation of the emitted pressure from medical ultrasound transducers
by utilizing Field II requires knowledge of the transducer surface’s exact ge-
ometry, the input terminal’s excitation wave form, and the electrical to me-
chanical impulse response of the transducer. The geometry of the transducer
mainly determines the spatial impulse response (SIR) as described in Section
2.1.1, and is, for certain transducer geometries, easily set up with the Field
II software. The wavelets have to be calculated externally or measured. The
actual pressure pulse as measured in an experiment will be dependent on the
SIR convolved with the excitation pulse and the transducer’s surface acceler-
ation, which is mathematically described in equation (2.11) in Section 2.1.1.

The importance of knowing the volt-to-surface acceleration for a transducer
in connection to the simulation software Field II can be realized when in-vivo
experiments in medical imaging research are to be performed. Such exper-
iments are only allowed if a limited amount of ultrasound energy is trans-
mitted into the human tissue. Intensity measurements are therefore to be
conducted prior to a new measurement setup, where the emitted amount of
energy is unknown. A hydrophone measurement is a reliable way of ensur-
ing a satisfactory intensity level, however, it is also a cumbersome procedure
if the experimental waveform is often changed. Prediction of the intensity
level through simulation would lighten this procedure.

The motivation for the work presented in this chapter is to investigate a hy-
brid modeling of pressure fields with piezoelectric transducer models and
the Field II simulation software.
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The chapter is organized in five major sections. The first section gives a brief
review of literatures utilized in the investigations. The second section com-
ments on the author’s work presented in the journal paper found in the chap-
ter: Paper III. This paper presents a one-dimensional model in combination
with Field II, and it compares one-dimensional simulations with measure-
ment on both a circular piezoceramic disc and a more complex convex med-
ical transducer. The section following discusses the simulation parameters’
influence on the one-dimensional model as documented in the author’s con-
ference paper found in the chapter: Paper V. The third section discusses the
results found in the author’s journal paper found in the chapter: Paper IV.
This journal paper compares the one-dimensional modeling principle with
a full three-dimensional axissymetrical model, where both models are com-
bined with Field II. A discussion and a conclusion then follows. Finally the
chapter is ended with comments on future developments.

3.1 Inspiring literatures for the development

The literature addressing piezoelectric transducer modeling is very exhaus-
tive. Piezoelectric modeling is a well established knowledge, and it would be
overwhelming to comment on all the relevant references that has been pub-
lished since the works by Mason [29], Redwood [30], or Krimholtz et al. [31]
became sort of the golden standard for equivalence diagram transducer mod-
eling of piezoceramic transducers. Instead, this section briefly emphasize
some of the works that have given inspiration to the publications discussed
in this chapter. More references can also be found in the author’s works in-
serted in the chapters: Paper III, Paper IV, Paper VI, Paper V, and Paper VII.

First of all the work ”Acoustic Fields and Waves in Solids” by B. A Auld [32]
should be mentioned. This book is a comprehensive work on acoustic wave
fields and waves in solids. It describes and derives the basic principles be-
hind the acoustics and electrostatic behavior of solids. The reference is an
ideal starting point for understanding the acoustic vibrations in solids due
to the piezoelectric effect and wave propagation in solids. It considers vibra-
tions mainly in three-dimensional coordinates when dealing with theory, and
it gives examples mostly in one-dimensional form. Furthermore, it presents
some basic one-dimensional models for transducers based on the transmis-
sion line models in perspective of the KLM [31] modeling principle. The
theories and examples presented are suitable for composite transducer simu-
lation.
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”Piezoelectric Transducers and Applications” [33] is also a work that needs
to be mentioned here. It is a good preview into the piezoelectric transduc-
ers and presents several transducer principles by means of the transmission
line model. The models are based on simple analytical models, by using
the analogy to standard electronic components. Furthermore, the book de-
scribes electronic systems for driving the different transducers. It gives a nice
overview of the piezoelectric transducers.

The journal paper [5] by Willatzen 2001 is deriving the piezoelectric constitu-
tive equations from a thermodynamic perspective. These equations are lim-
ited to the one-dimensional case, in which plane harmonic waves are con-
sidered. By applying one-dimensional assumptions the article models and
derives a reciprocal transducer system with backing layer, piezo layer, and
two matching layers to a given fluid. The model has the advantage that it
can model both mechanical and electrical losses and damping in the differ-
ent mediums by considering the physics of the ultrasound’s interaction with
the medium. Furthermore, it can be coupled to any electronic driving net-
work when knowing the impedance of these networks. The method is a good
starting point for modeling since the model contains a potential for being ex-
panded into two- or three-dimensional coordinates as well as cylindrical co-
ordinates. An earlier paper by the same author concerns the same model [34].
The journal is furthermore a good addendum to the work by Auld [32].

An interesting paper by Maréchal et al. [35] shows that rather accurate results
can be achieved with the KLM model for focused and axisymmetric trans-
ducers. This article is using an expanded form of the KLM model to model
a one-dimensional axisymmetric transducer with a lens in front. It uses the
reflection and transmission coefficient principles between each single layer.
The extension to the KLM model is a curved lens which is divided into circu-
lar rings, and it applies Snell’s law to find the refraction of the elements. The
response is then integrated up across the front to model the acoustic field at
the focal point. The model is validated against experimental and FEM results
which exhibit good similarity. From this journal it can be learned that focused
transducers can be modeled accurately with simple models.

P. Schnabel [36] presented an interesting modeling principle with piezoelec-
tric transducers in cylindrical coordinates. It was shown how the different vi-
bration modes and their dispersion could be studied. It was also shown how
the coupling between a surrounding non-piezoelectric rim could be consid-
ered in relation to the piezoceramic.

Algueró et al. [37] published a set of material parameters for the Pz27 piezo-
ceramic with a variety of shapes. These parameters they achieved by mea-
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surements. Their intention was to predict these parameters from a few mea-
surement. These parameters has an imaginary and a real part and can be
used to simulate the loss mechanism of the the piezoceramic.

A good discussion on the implementation of finite element equations with
boundary conditions and several simulation examples can be found in the
master thesis by Amby [38] 2005.

The interested reader can find a derivation of the full three-dimensional equa-
tion set in Cartesian coordinates for the piezoelectric effect in solids and from
a thermodynamical point of view in Appendix A.

3.2 Field II combined with a one-dimensional transducer mod el

Despite the many modeling principles that can be found in the literature the
modeling principle by Willatzen [5] was elected for initial investigation in
combination with Field II. The results of this is found in the journal paper
Paper III, which fully documents this work.

The modeling principle was chosen due to several reasons. Firstly, the
model can reveal the displacement, velocity, acceleration, and electrical con-
ditions of an arbitrary number of solid layers, piezoelectric as well as non-
piezoelectric. This is true for the case, where the transducer is assumed to
move one-dimensional. An implementation of the modeling principle can be
easily performed into a MATLAB or a C-environment when continuity of ve-
locity and tension are preserved at the boundaries as described in Paper III.
Yet another advantage of the model is its avoidance of calculating equivalent
model parameters. This qualifies the model for a simple intuitive implemen-
tation. Secondly, the model is capable of modeling attenuation of the wave
propagation inside the solids. Similar abilities are also applicable for the clas-
sical electrical equivalent models e.g the KLM model, but by comparing the
literature on these transducers the simple one-dimensional model [5] was
found more suitable and interesting in combination with Field II. The reason
is its simplicity and its potential for revealing information on the transducer’s
behavior.

The results presented in Paper III on both a simple Pz27 piezoceramic and
a commercial convex array show that good consistency between prediction
and measurements is achieved. The amplitude on pressure pulses is found
to be calculated within ±2 dB. The root mean square (RMS) errors calculated
as the RMS of the difference between pressure pulse prediction and measure-
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ments and divided with the RMS of the measurement are found in the range
between 11 % and 36 %. Measurements of the current through the Pz27 sam-
ples are found to exhibit a deviation of 8 − 36 %. As commented on in the
journal paper, these errors may seem large. However, the RMS comparison is
very efficient to reveal differences, and by considering the plot comparisons
it becomes clear that the pulses are very closely related. Worst responses are
found for short pulses.

Intensity profiles for the commercial transducer is found to be predicted
within 5.9 % to 20 %, and the profile shapes indicate that the geometry of
the transducer element is well captured.

A tendency for the pressure pulses is the drifting of the pulse tails. It is seen
that a pressure pulse can be nearly π/2 out of phase, which indicates that
the free oscillating behavior of the model has a resonance frequency that is
slightly different from the measured. This is commented on in the journal
paper, and it is concluded that to improve on this error a better attenuation
algorithm is required and a better control of the input parameters is needed.
This also helps explaining that worst RMS results are found for short pulses.

The attenuation assumptions applied are not frequency dependent and are
restricted to a mechanical quality factor or measurements published by
Algueró et al. [37]. Modeling a frequency dependent attenuation would im-
prove the results.

Despite the transducer model’s simplicity it is capable of predicting rapid
changes of the current pulse shape of the Pz27, which e.g. is seen in the
current plot of Fig. 3.1. In the figure a measurement (M) is compared with
the simulation results where an attenuation based on a real valued param-
eter set [5] and a complex valued parameter set [37] is used as character-
istic input parameters. It is seen how the tail of the measured current pulse
rapidly changes direction and how well the model captures this change. Such
changes are in principle difficult to capture for a simple model like the one
applied here. It is therefore a strong ability of the model that the rapid change
in the tail oscillation of the current pulse is captured. The figure also reveals
that the model works well with both sets of simulation parameters.

The modeling of the commercial transducer is a rather difficult task. It con-
sists of a complicated structure which consists of five material layers. Many
years of electronic design by the manufacturer have developed a complicated
driving circuit, which is not fully accounted for in the modeling. An exact
model of the electronic will therefore affect the amplitude deviation in the
positive direction.
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Figure 3.1: Current comparison between measured (sold) and simulated current
through the electronic circuit. Two simulation parameter sets were applied. One
complex-valued (dotted line). One real-valued (circle). Figure taken from Paper III.

An array transducer as the one considered is fabricated to behave as an ideal
piston. This is attempted by dicing a single transducer element into smaller
rectangular elements. The small elements are then intended to operate as
one-dimensional pistons. The overall response is therefore a summation of
all the contributions, which is why it is assumed that it is possible for a sim-
ple one-dimensional simulation model and the measurements to be closely
correlated.

Considerations about both acoustic and electronic cross talks are neglected
in the modeling. These phenomena are not possible to model with the one-
dimensional model and Field II, but should ideally be considered as well.

The modeling is performed in a hybrid modeling environment between a
piezoceramic model and Field II, which sets these natural limitations. It
therefore must be argued that it is very satisfactory results that has been
achieved with the modeling in the journal. The model is therefore a good
candidate as an permanent model implemented into Field II, and it can be
used for fast prediction of the pressure pulses.

3.3 An investigation of simulation parameters’ influence on the
one-dimensional modeling

The chapter Paper V includes a conference publication by the author, which is
a follow-up on Paper III. On the basis of the findings presented in Paper III it
was necessary to investigate how sensitive the transducer model is to inaccu-
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racies and changes in the characteristic simulation parameters. The validity
of the input parameters to simulations should always be questioned in a sim-
ulation study. In a transducer modeling study where results are compared
with measurements on a commercial transducer as complex as the one used
in Paper III is it even more critical to consider the results in relation to the in-
put parameters. The conference contribution described in Paper V addresses
this topic for the commercial transducer investigated in Paper III.

The study is conducted with the measurements from Paper III as reference.
Each input simulation parameter, that is not concerned with the Field II sim-
ulation domain, is altered ±20 % in steps of 2 % while all other parameters
are kept at the intial value. Two comparisons are made. One where the RMS
deviation between predicted pressure pulse shapes and measured pulse is
considered and one where the difference between intensity measurement and
prediction is compared. These two comparison each reveal their valuable in-
formation. The pressure pulse comparison reveals how the given parameter
affects the pulse shape and phase of the pulse. The intensity comparison re-
veals how the given parameter affects the overall energy of the pulse. Both
comparison are valuable dependent on the perspective of the study. An in-
vestigation interested in the pulse form comparison is a very phase sensitive
study. An investigation with focus on the intensity error may be considering
FDA regulations.

The study reveals that the pressure pulse comparisons are mainly sensitive
to changes in the density, the stiffness, and the thickness of the piezoceramic
and the lens material. The lens material shows out to affect the model the
most. It is amongst others shown that a −4 % change in the lens stiffness
yields a 6 % change in relative RMS error, and a −4 % change in the piezo-
ceramic stiffness yields a −1.2 % change. The latter implies that the error is
being improved on. The influence of the matching layers is of relatively less
influence compared to the ceramic and the lens. For the intensity predictions
is it shown that the pulse errors are mainly sensitive to the piezoceramic and
the loading electronic.

The study indicates that the source for errors can be found in all of the sim-
ulation parameters. Focus should, however, mainly be on optimizing the
stiffness, the density and the length of the piezoceramic and the lens if better
results on the given transducer is to be achieved.
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3.4 Combining Field II with an axisymmetric finite element
model

This section discusses the findings in the journal paper by the author and
found in the chapter: Paper IV. This journal paper presents the mathemat-
ics of a finite element model (FEM) for an axisymmetric piezoceramic trans-
ducer, and it compares the FEM with the one-dimensional modeling principle
described in Paper III. The axisymmetric model is inspired by the publication
by Schnabel [36] and was implemented in an extended form into the finite el-
ement software from Comsol [39].

The axisymmetrical model in Paper IV is interesting as a model because it
benefits from expressing a complicated interaction between particle move-
ment in the thickness direction and movement in the radial direction under
the assumption of linearity, no rotation, or torque. This is performed through
a set of partial differential equations in cylindrical coordinates, and it can re-
veal exactly the same information as the one-dimensional model in Paper III
and more to it. The model therefore has a great potential for revealing the
exact behavior of a crystal’s thickness and radial movement with an arbitrary
number of adjacent material layers, and it is easily combinable with Field II
if the surface response is integrated and averaged.

The journal paper models a Pz27 piezoceramic circular disc with silver elec-
trodes mounted on both sides. This piezoceramic is identical with the discs
found in Paper III. The FEM model is furthermore modeling a plastic rim
placed along the perimeter of the discs. This is done to mimic a transducer
fixture and to create an isotropic domain in which the radial waves can prop-
agate. As an extension to the FEM model the paper is also concerned with
showing how the impulse response of the transducer impedance can be used
to load the ceramic with an arbitrary electronic loading. This is shown to be
possible outside the FEM modeling domain. The motivation for the paper
is therefore clearly to further validate the modeling principle in Paper III, to
study the influence of the coupled modes, the frequency response, the pres-
sure, and the hybrid modeling with Field II.

Note, however, that the FEM is significantly more complicated and cumber-
some to implement than the one-dimensional model. It is therefore a trade-off
between complexity and relevant information needed in the context of a Field
II simulation that should determine the relevance of applying this model in
ultrasound imaging context.

The results show that an exact comparison between pressure pulses can be
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made between the one-dimensional model and the FEM when radial move-
ment of the outer boundaries of the ceramic is prevented. This is valid both
when a loading electronic network is applied and not. If the radial move-
ment is allowed, then a decrease of 2 dB in pressure amplitude is found on
the FEM model compared to the one-dimensional one. A similar decrease of
1.5 dB is found when an electronic network is accounted for. Small resonance
spikes below the main resonance frequency is revealed as a consequence of
the free radial movement. These resonance spikes cannot be captured with
the one-dimensional model. It is therefore expected that the amplitude for
the FEM should be smaller than for the one-dimensional one. The shape of
the pressure pulse predicted with the FEM model is seen to have a slightly
more bulky pulse tail, which is due to the allowance of radial movements of
the boundary.

3.5 Conclusion

Modeling of pressure pulses with a one-dimensional modeling principle as
suggested by Willatzen [5] can be made within ±2 dB with a circular pz27
piezoceramic and a convex commercial transducer. This is with the assump-
tion that manufacturer information on the simulation parameters are exact
and with an approximation of the electronic loading network. Pressure pulse
shapes can be predicted with an RMS deviation of 11 − 36 % and a deviation
of 8−36 % on current pulse measurements. Intenity profiles can be predicted
with an RMS of 5.8 − 19.8 %.

For better prediction is it needed to consult the input simulation parameters
more accurately. Especially the stiffness, the density, and the length of the
piezoceramic and the lens material of the commercial transducer.

The one-dimensional model was found to give exactly the same pressure pre-
diction in combination with Field II as a circular axisymmetric model where
the outer radial boundary is constrained to no movement. If the boundary
is free and only restricted by a plastic ring will the one-dimensional model
overshoots on the amplitude.

3.6 Future development

A more exact prediction with the hybrid modeling attempts can be found
if the input parameters are measured for each transducer element. This is
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therefore an obvious topic for future investigation which users of this work
should be concerned with.

It would also be beneficial to pursue if a backward prediction of the ac-
tual simulation parameters that are needed to simulate complicated medical
transducers could be made. As implied earlier, simulation parameters for
medical transducers are somewhat bound by confidentiality by the manufac-
turers. General users of Field II and the mathematical models presented here
may therefore be left to a guessing or estimation of the needed input param-
eters. This clearly has the drawback that it can have an infinite number of
combinations, and as a consequence it would be easier simply to measure the
impulse response. It is therefore suggested that future development is con-
cerned with a backward estimation procedure that can reveal the simulation
parameters accurately.

Surface measurements of the vibrating surfaces for both the circular piston
and the medical transducer would also be interesting projects as a follow-up
to conduct. These would reveal the actual behavior of the non-ideal surface
and give an idea of how well the planar approximation is valid. Attempts to
measure the surface movements with an interferometer of the convex med-
ical transducer has been attempted in the project. However, it showed out
to be a rather difficult task since the surface is dark, curved, and very rough.
The experiment therefore gave no valid and stable information. Acoustical
holography experiments conducted by Sapozhnikov et al. [40], however, in-
dicated that the axisymmetric assumption of a circular piston is very well
valid. A holography investigation of the convex transducer could therefore
also be attempted with the model suggested in Sapozhnikov et al. [41].

A comparison with measurements is in Paper IV not investigated. It could,
however, be interesting with a follow-up on this in a future development to
see if the FEM pressure prediction can get closer to the measured.
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CHAPTER

FOUR

Capacitive micromachined
ultrasonic transducer simulations

with Field II

Field II was originally developed with the classical piezoelectric transducers
in mind. As consequence, all of its currently predefined transducer geome-
tries are based on flat, curved, or double curved transducers with rectangular
elements as the ones which are often found in medical imaging applications.
The improvement of Field II’s support of other transducer geometries has to
date not been of major concern since the piezoceramic transducers have been
dominating within the field of ultrasound imaging.

The Capacitive Micromachined Ultrasonic Transducer (CMUT), however, has
become a fast developing transducer which has caught significant attention
from the medical imaging community. A CMUT transducer for medical
imaging can in principle take on any transducer geometry. It is build up
of smaller capacitive units, which typically have a circular, a rectangular, or
a hexagonal shape. Field II does currently not have predefined models for
these kinds of transducers.

This chapter describes an investigation of these new transducers in relation to
Field II and ultrasound imaging. Consequently, this chapter is dealing with
a technology study of the CMUT and a feasibility study on what it takes to
combine Field II with these new transducers. The chapter is structured as
follows: First a review of the technology and the relevant literature is done.
Then a discussion on combining Field II with CMUTs follows. Finally differ-
ent studies are presented and commented on.
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4.1 A description of the CMUT technology

This section describes the principle of operation of a CMUT.

A classical CMUT transducer is based on the capacitor principle. It is a trans-
ducer that consists of a bottom electrode, an insulation layer, a vacuum sealed
air gap, a top plate/membrane, and an electrode as shown in Fig. 4.1.

t

g
0

Bottom electrode

Plate r
cell

Figure 4.1: A typical cross section of a circular axissymetric CMUT membrane.

The two electrodes are defining the capacitor. By applying a DC bias across
the electrodes an electrostatic force will displace the electrodes toward each
other. This force results in a deflection of the top plate and of the top elec-
trode whereby the capacitance of the CMUT changes and exhibits a spatial
dependency. The deflection makes the plate pre-stressed and the transducer
therefore becomes highly sensitive to any disturbances such as an incoming
pressure wave or an applied AC excitation. Any vibration forced by an in-
coming pressure wave will result in a measurable change in the capacitance.

The amount of static deflection is highly dependent on the DC bias. If the
voltage is relatively small, only a slight deflection will occur, and the CMUT
will be less sensitive to disturbances. However, if the DC bias is increased
until a certain value at which the electrostatic force becomes greater than
the upward directed forces of the top plate, a collapse or a so called pull-
in will occur. The DC value at which this occurs is called the pull-in voltage.
At pull-in the bottom of the top plate collapses and sticks to the bottom in-
sulation layer. At this configuration the plate displacement becomes highly
non-linear, but the transmission and the receive sensitivity can be improved
by changing the state between pull-in and snap-back, which is the term for a
plate leaving the collapsed mode [42,43]. The drawback of a collapsed CMUT
is the stressing of the plate which may become unreliable over time. Conven-
tionally the CMUTs are driven at a DC bias around 80 − 90 % of the pull-in
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voltage.

Because the pull-in is a highly non-linear operation, calculations become dif-
ficult. To date exact calculations on the non-linear operation require FEM
tools, and it is usually desired to operate in the approximately linear domain
when analytical calculations are to be made.

The geometry of a CMUT can vary. Typical geometries are circles, hexagons,
squares, or rectangles, but in principle no limitation is made to this. An array
transducer for medical ultrasound applications will have each element build
up of many smaller CMUT units. In conventional CMUT terminology each
unit is called a cell. All cells on an array element are excitated at the same
time and with the same pulse. The cells thereby operate as one unit.

A piston type CMUT transducer can also been found in the literature [44].
This reference presents fabrication and measurements off a piston CMUT. A
piston CMUT is a classical CMUT but with an extra mass at the center of
the top plate. The width of the mass can be as the width of the electrode.
The benefits of this method are a more uniform electrical field and a more
ideal-piston shaped movement. This gives better transmission and receiv-
ing efficiency compared to the classical CMUTs with uniform thick top plate.
Several references reporting on this transducer type can be found in [44].

The CMUT technology has some advantages and disadvantages compared
to classical piezoceramic transducers [45]:

• + CMUTs have a much poorer ringing effect than piezo. As a result
CMUT impulses are very short and broad banded (typically > 100 %
when submerged)

• + Because the CMUT has a much lower acoustic impedance than piezo
then matching layers are less critical for efficient transmission of the
waves

• + Opposite piezoceramic transducers then CMUTs do not need backing
layers. CMUTs transmit most of the energy into the medium

• + The couplings coefficient can in principle be 100 % for CMUTs

• -/+ It is possible to transmit at a pressure level identical to piezo. How-
ever, this brings the current technology to its maximum level (2005)

• -/+ CMUTs are operating in the non-linear domain compared to piezo
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A basic description of the fabrication process of the CMUT is very helpful in
understanding the CMUT structure and operation. For this Fig. 4.2 is con-
venient. The following description is based on the wafer bonding technique.
This technique requires a conductive silicon wafer as illustrated in (a). This
wafer is exposed to thermal oxidation whereby an oxide layer is grown on
top of the wafer (b). A fine mask is then put on to the oxide layer, and a
pattern is etched into the oxide using e.g. lithography and etching fluid (c).
A second oxide layer is then grown to create an insulation layer (d). A sec-
ond silicon wafer, that is to be used as the top plate, is bounded to a carrier
wafer(e). These are separated with an oxide layer, and the construction is
called a silicon-on-insulation. The carrier wafer is necessary because the sili-
con that is to be used as plate, is very thin and may brake when the bonding
is performed. Flipping the construction in (e) upside down and bonding it
with the construction in (d) creates the construction in (f). The carrier wafer
and the oxide are then removed by grinding and etching. Electrodes can
afterwards be deployed to the top and the bottom to create the electrical con-
nections. The fabrication is applying standard processes found in the semi
conductor industry which makes the CMUTs attractive for mass production.

More advanced manufacturing processes where e.g. electrode connections
from top to bottom, flip-chip bonding, or piston shaped CMUTs are described
can be studied in detail in other works such as [44,46–49]. These works again
reference several publications on the topic.

a)

b)

c)

d)

e)

f)

g)

Figure 4.2: A typical process layout for CMUT fabrication using wafer bonding.
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Modeling plate deflection of CMUTs

A model that can calculate a realistic deflection of a cell’s top plate is needed
to conduct the intended investigation. A literature review reveals that there
are several attempts to model the deflection behavior of CMUT transducers
and their transient and dynamical behavior as well. Some of the modeling
principles can be found in [50–53] which again reference several other works.
The literature review reveals, however, that due to the complexity in the non-
linear behavior of the top plate displacement, certain approximations have
to be made. Most of the analytical expressions are only applicable for the
static situation and are usually calculated on the basis of an equivalent piston
model.

In this context two authors’ works should be mentioned. The first work is
the publication by Lohfink [54]. She presents a one-dimensional model that
relies on finding an equivalent resonance frequency, an equivalent area, and
a mass of the deflected plate from which the CMUT can be modeled as a one-
dimensional mass-spring-damper system. These equivalents are, however,
found from a static and a harmonic FEM simulation. She validates the model
against ANSYS FEM simulations, and a very good consistency between a
simple one-dimensional model and FEM is seen.

The second work that is to be mentioned is the dissertation by Wygant [55]
and his paper [56] based on [55]. This literature present a one-dimensional
equivalent model that calculates the deflection based on an average deflec-
tion of the plate. Simple expressions are given for the pull-in voltage, and
equations that account for slight non-linear effects are presented as well. This
model does not require pre-calculated FEM parameters and can therefore be
used for a fast initial estimation of the pull-in voltage and the degree of de-
flection. It is, however, only valid for calculations on circular cells and with
weak non-linearities. Because of the model’s simplicity is it chosen for calcu-
lating the plate deflection in the following investigations. A short review of
the theory and the mathematics for this model can be found in Appendix B.

4.2 Assumptions in combining Field II with CMUTs

As mentioned in chapter 2 Field II calculates the pressure or the pulse-echo
response by calculating the SIR. The same technique is also possible with
CMUT transducers. A single CMUT cell can take on several geometries such
as the ones of circular, rectangular, hexagonal etc. Only for the special case, in
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which the cells are circular and the plate is deflected uniformly with the cur-
vature of a sphere, analytical solutions for the SIR can be found as shown by
Arditi et al. [18]. The calculations for a whole element in this special case are
easily performed through a coordinate translation of each cell. A summing
of each cell’s response would yield a full transducer element’s response as a
linear approximation and with no cross talk consideration.

To cover CMUT geometries with the Field II program a surface discretization
with small flat mathematical elements as the ones Field II currently utilizes
for all other transducer geometries is necessary. This approach would avoid
the process of developing new algorithms for the SIR of all the known ge-
ometries that a CMUT currently is seen to be manufactured with.

a) b)

Figure 4.3: Figure showing the cross section of two types of CMUT cells. a) Classical
CMUT. b) Piston CMUT with an extra mass added at the center.

Figure 4.3 shows the deflection situations for two types of cells. One for reg-
ular classical cells and one for piston type cells. Plate material in the middle
of the cell will for the case in Fig. 4.3a be moving a longer vertical distance
than plate material at the edges. The movement of the edge material will,
however, not be entirely normal to the surface as required for the SIR to be
valid. It is therefore necessary to assume that when a cell is excitated with a
small AC waveform, then the movement of the plate is approximately sim-
ilar to that of a piston moving in the normal direction of the deflected plate
surface. This approximation is very similar to what is required in the case of
curved transducers developed in the journal papers in Paper I and Paper II.
For piston type cells as depicted in Fig 4.3b this approximation becomes even
more valid. This is because a large fraction of the plate is moving as a real
piston, and the side material will have a relatively little contribution to both
the pressure field and the electrical field.

For large AC waveforms these approaches will most likely fail because of
the non-linear stretching of the plate, and collapsed mode studies may also
break down in the near-field. Furthermore, these considerations are only of
significant influence for the case where the wave length of the transmission
is much smaller than the curvature and the radius of the cell it self. For cells
placed in a pattern of cells on a large transducer element, these possible errors
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become of small influence far from the element. Hence, it is expected that for
medical imaging applications the influence of the non-ideal radiation pattern
from each cell will be very small far from the transducer element.

If the above assumptions can be accepted in a simulation, a Field II simula-
tion, where each cell is subdivided into smaller mathematical elements and
where an external program calculates the cell’s deflection profile, will be pos-
sible.

4.3 Study cases and results

A program that defines CMUTs in Field II terminology was crated. This pro-
gram sets a user defined number of cells on each transducer element in a
linear one-dimensional or two-dimensional array. These cells can be set with
a deflection that is dictated by the solution to the static deflection model pre-
sented in [55] and described in Appendix B. This model is solved by setting
the effective cell radius, rcell, and proper material properties. The distribution
of the cells can be performed in an evenly spaced grid with a NxM number of
cells along the lateral direction and the elevation direction, respectively. The
cells are placed with a cell-to-cell pitch which is the same in both directions.
A minimum pitch corresponding to a cell’s diameter is allowed. The exci-
tations of all the cells are set identical to the excitation of the corresponding
element.

The number of mathematical elements needed to resolve a single cell is con-
trolled with a resolution factor, n. This factor is an integer number and corre-
sponds to the number of mathematical elements that fits across a cell’s radius.
It therefore scales the number of elements with the radius of the cells.

Figure 4.4 to Fig. 4.6 show examples of how the current CMUT program
works. The plots show all mathematical elements as defined in Field II.
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Figure 4.4: Example of a 2x3 multi row transducer. Each element has 4 cells.

Figure 4.5: Example of an element
with four cells having a shape func-
tion. Notice that the deflection is am-
plified with 100 for easier visualiza-
tion.

Figure 4.6: Example of a collapsed
cell. Notice that the deflection is am-
plified with 100 for easier visualiza-
tion.

4.3.1 Approximating the spatial impulse response of a single cell

If it is assumed that the cell deflections are infinitely small, whereby each
cell is considered a plane piston, the only physical difference between a full
transducer element with each cell modeled (ECM) or as a single square model
(SSM), where no cells are considered, is the active area. Clearly the active area

44



3.1333 3.1333 3.1334 3.1334
0

500

1000

1500

Time [µs]

h 
[m

/s
]

SIR

 

 
square
cell
scaled

Figure 4.7: Spatial impulse responses
for a square element, square, a flat
circular cell with no deflection, cell,
and a scaled version of square, scaled.
Sampling frequency 104 GHz. Only
each 12th point is shown.
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Figure 4.8: The pressure correspond-
ing to the spatial impulse responses in
Fig. 4.7 when a two cycle Hanning
weighted tone burst at 10 MHz is ap-
plied. Sampling frequency 104 GHz.
Only each 24000th point is shown.

for a SSM is bigger than the one for an ECM. If it is furthermore assumed that
the cells are distributed with a pitch corresponding to twice the cell radius,
i.e. the boundary rims being in contact, the fraction between the active areas
will be

f =
Asquare

Acell
=

2rc2rc

πr2
c

=
4

π
, (4.1)

where Asquare is the active area of the SSM, and Acell is the active area of an
ECM.

Consider a single cell with a radius of 18 µm. If the SIR is calculated at a point
{xp, yp, zp} = {0, 0, 4.7} mm for this cell with no deflection and a correspond-
ing cell approximated with a rectangular transducer element with the height
and the width of twice the cell radius, then the SIRs become as shown in Fig.
4.7. The simulation is conducted at a high sampling frequency of 104 GHz
and with Field II set to the bounding lines solver. In the figure cell, square,
and scaled are the responses from the circular cell, the square element, and
the square element scaled with 1/f , respectively.

As seen in Fig. 4.7 the response from the square element is spread along a
longer time interval, which is also to be expected. However, if the pulses,
hcell and hscaled are integrated and the difference in percentage relative to
hcell is found, the error amounts to 0.02 %. Fig. 4.8 shows the pressure pulses
of the same setup when a 10 MHz two cycle Hanning weighted excitation
pulse is applied. The RMS difference relative to the RMS of the cell response
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Points Solver Deviation

Area deviation {0, 0, 4.7} mm Lines 0.02 %
Pressure deviation {0, 0, 4.7} mm Lines 0.032 %
Pulse-echo deviation {0, 0, 4.7} mm Lines 0.064 %
Mean area deviation 20 points Lines 0.021 %
Mean pressure deviation 20 points Lines 0.05 %
Mean pulse-echo deviation 20 points Lines 0.10 %
Mean area deviation 20 points Rect 0.022 %
Mean pressure deviation 20 points Rect 0.051 %
Mean pulse-echo deviation 20 points Rect 0.103 %

Table 4.1: Table showing the deviation between the area of spatial impulse re-
sponses, pressure pulses, and pulse-echo pulses between a flat circular CMUT cell
and a scaled version of the response from a square transducer element. Two different
Field II solvers were applied.

is calculated to be 0.032 %. Clearly the slightly longer time interval of the SIR
presented by the square does not have much influence on the pressure and
the pulse-echo at this 10 MHz pulse. Calculation of the pulse-echo deviation
reveals a 0.064 % deviation, which is twice the deviation for the pressure.
This indicates an accumulation of the error proportional to the number of
convolutions.

The same study with 20 points randomly distributed within a space of 10 ·
rcell x 10 · rcell x 0.01 m in front of the cell was performed. A rectangular
solver, which is a far-field solver in Field II, and a similar line solver, which
is a very exact solver in Field II, were applied. The mean error of the three
simulations is listed in Table 4.1, where also the given solver is indicated.
Area integration comparison is stated in the table as ”Area deviation”.

The pulse start times in Fig. 4.7 are identical because the shortest distances
between the cell and the point are identical for the two models. It should,
however, be noticed that in some cases, for points outside the transducer
perimeter, the shortest distance to the square is shorter than for the cell,
which will introduce a start time error. The end time will always have a
larger value for the square model.

If the cell is deflected as calculated with the model in section 4.1, then a focus
point is introduced. A 36 volt DC bias for a cell with the material parameters
listed in Table 4.2 yields a deflection of 33.4 nm. Calculating the mean error
for 20 points as above yields the mean deviations shown in Table 4.3. Notice
that the deviations are significantly different for the two solvers, ”Lines” and
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Young’s module 169 GPa
Poison ratio ν 0.29 []
Gap height g0 150 nm
Plate thickness t 1.125 µm
cv 0.43
rcell 18 µm
Exterior pressure 101.3 kPa

Table 4.2: Simulation parameters used for calculating the cell deflection.

Points Solver Deviation

Mean area deviation 20 points Lines 1.85 %
Mean pressure deviation 20 points Lines 5.62 %
Mean pulse-echo deviation 20 points Lines 11.12 %
Mean area deviation 20 points Rect 1.87 %
Mean pressure deviation 20 points Rect 3.99 %
Mean pulse-echo deviation 20 points Rect 7.92 %

Table 4.3: Table showing the deviation between the area of spatial impulse re-
sponses, pressure pulses, and pulse-echo pulses between a deflecting circular CMUT
cell and a scaled version of the response from a square transducer element. Two dif-
ferent Field II solvers were applied.

”Rect”, compared to the case in Table 4.1.

In Table 4.3 a higher deviation is found compared to the flat cell simula-
tion. This is also to be expected, since the cell has a focus point, and for this
high resolution simulation such focus point becomes influential to the phase
and the concentration of the energy of the pressure pulses and the pulse-
echo pulses. Figure 4.9 shows the difference in the SIRs for the square and
the scaled rectangular responses together with the deflected cell response.
Clearly the pulses are different but the area of the curves are close to being
identical, in average 1.85 % as Table 4.3 reveals. Figure 4.10 shows the pulse
echo response as calculated with the solver, ”Lines”, for one of the 20 points.
A 10 MHz excitation was applied. From this figure the deviation can be iden-
tified as a slight phase difference in the pulses.
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Figure 4.9: An example of the differ-
ence between the spatial impulse re-
sponses when the cell deflects.
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Figure 4.10: The pulse echo response
when a 10 MHz excitation pulse is ap-
plied.

4.3.2 Resolution of a CMUT cell

The above study was conducted with a very high number of mathematical
elements to form the geometry of the cell very exactly, and it was performed
at an undesired high sampling frequency. In practical simulations with Field
II a sampling frequency around 200-400 MHz is more suitable, which is pos-
sible because of Field II’s energy preservation of the pulses. Furthermore,
as few mathematical elements as possible are preferred. The following sec-
tion describes a study in which the sampling frequency is lowered to 200
MHz and 400 MHz, and the radius of the cell is varied from 18 µm to 30 µm.
The resolution of a single cell is controlled by adjusting the integer resolution
number, n, as described in section 4.3 and the responses are solved using the
rectangular solver. The times for solving the SIR and for solving the pressure
for 20 random points each solved a 1000 times, are measured when varying n
in the interval 1 to 30 and the sampling frequency. The RMS of the difference
between a high resolution solution solved at 104 GHz and n = 30, and the
solutions found at the lower sampling frequencies are calculated for pressure
pulse predictions with a 10 MHz excitation waveform. The area difference of
the SIR is calculated as well.

The mean computation times for the SIR are found in Fig. 4.11. This time
is found to be exponentially increasing for an increasing resolution number.
The same observation can be made for the pressure prediction in Fig. 4.12.
Figure 4.13 shows the mean RMS deviation between pressure pulses at the
high sampling frequency and pressure pulses at the lower sampling frequen-
cies. The figure reveals the interesting fact that the responses have stabilized
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Figure 4.11: Mean calculation time for
spatial impulse responses of 20 ran-
dom points, each solved a 1000 times.
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Figure 4.12: Mean calculation time for
pressure pulses of 20 random points,
each solved a 1000 times.
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Figure 4.13: The mean RMS of the pressure pulses for 20 random points , each solved
1000 times calculated relatively to a high resolution solution at 104 GHz and n = 30.

after n = 5. It can furthermore be identified that the errors are decreasing
for higher sampling frequencies, and the relative size between mathematical
element size and sampling frequency is important for the amount of error. It
can also be identified that the 200 MHz sampling frequency yields a relatively
large deviation compared to the 400 MHz sampling frequency.

49



Points Solver Sampling Deviation

Mean area deviation 200 points Rect 5 GHz 1.78 %
Mean pulse-echo deviation 200 points Rect 5 GHz 3.19 %
Mean area deviation 200 points Rect 400 MHz 3.89 %
Mean pulse-echo deviation 200 points Rect 400 MHz 5.29 %
Mean area deviation 200 points Rect 200 MHz 4.07 %
Mean pulse-echo deviation 200 points Rect 200 MHz 4.83 %

Table 4.4: Table showing the deviations calculated for 200 random points with an
element populated with 5x150 cells.

4.3.3 Approximation of a populated transducer element

An investigation with a transducer element fully populated with cells is re-
quired for ultrasound imaging simulation. Consider a single CMUT element
populated with 5x150 cells in the lateral and the elevation plane. Each cell
has a radius of rcell = 18 µm, and the cell to cell pitch is cellp = 38 µm. A cor-
responding rectangular element is assumed to have the dimensions 5 · cellp x
150 · cellp.

The study for a single cell simulation showed that the response from the rect-
angular element could be scaled with the area fraction (4.1). It must there-
fore be assumed that within certain limitations this will be applicable for a
whole element, where the cell to cell spacing prevents the cell boundaries
from touching each other. However, the scaling factor is no longer π/4 but
instead the fraction between active areas.

A setup of Field II to model a single element with and without cells was per-
formed. The cells were assumed to deflect 33.4 nm as in all the other studies.
200 random points were used to calculate the pulse-echo response. An inte-
gration of the SIRs was performed and a RMS deviation between pulse-echo
responses was calculated. The cell resolution was set to n = 6, which is based
on the results in Fig. 4.13, and sampling frequencies of 5 GHz, 400 MHz, and
200 MHz were investigated. The results are presented in Table 4.4.

Table 4.4 reveals that a deviation ranging from 1.7 % to 5.29 % can be found
between the two modeling principles. It also reveals that the increase in devi-
ation is relatively little by lowering the sampling frequency from 5 Ghz to 400
MHz. A plot of the response from one of the 200 points investigated reveals
the difference in pulse shape as shown in Fig. 4.14.

Figure 4.14a shows the pulse shapes of the three calculation methods, and
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Figure 4.14: Pulse-echo response for a single point calculated with the rectangular
transducer, Square, CMUT cells, Cell, and a scaling of the rectangular response,
Scale a) Full pulse shapes. b) Zoom onto (a).

Fig. 4.14b shows a zoom onto (a). Fig. 4.14b reveals that the response for
the CMUT yields a ripple shape which is due to the summing of many small
responses from circular cells.

4.4 Comparing envelope data of point spread functions for di f-
ferent CMUT configurations

This section compares point spread functions calculated using a standard
linear array, equivalent CMUT model with flat elements, and an equivalent
CMUT model with deflecting cells.

The simulation setup uses a 15 element array with the height and element
width of 6 mm x 198 µm. Each major element is assumed to have 5x150 cells
populated systematically in the lateral and the elevation plane. Each cell has
rcell = 18 µm, and the cell to cell pitch is 40 µm. The equivalent rectangular
model has an element height and a width of 6 mm x 196 µm with a kerf of
2 µm. The model parameters for calculating the deflection are as found in
Table 4.2, and a deflection of 33.4 nm with a DC bias of 36 volt is used.

Two point spread functions are simulated. One at 1 mm distance from the
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Figure 4.15: Point spread func-
tion of a point at 1 mm mod-
eled with rectangular elements in
a linear array, i.e. no cells.
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Figure 4.16: Point spread func-
tion of a point at 1 mm modeled
with CMUT model and flat cells.
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Figure 4.17: Point spread func-
tion of a point at 1 mm modeled
with CMUT model and shaped
cells.

transducer and one at 15 mm from the transducer. Both points are located in
the middle image plane. The elements are assumed excitated with a 2 cycle
10 MHz pulse, and the impulse response of the transducer is a 2 cycle Han-
ning weighted pulse. This is a plausible situation in imaging. The sampling
frequency was set to 400 MHz and the cell resolution to n = 5. The solver
applied was the rectangular solver in Field II.

The images in Fig. 4.15 to Fig. 4.17 are representing the point spread function
at 1mm, when the RF-data is compressed to a dynamic range of 60 dB. The
difference is found to be very small and is mainly located behind the point as
a small tail.

The same study for a point located at 15 mm is depicted in Fig. 4.15 to Fig.
4.17. From these figures all the differences are found even smaller than for
the 1 mm point.

All grouped figures are plotted to the same scale for comparison.
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Figure 4.18: Point spread func-
tion of a point at 15 mm mod-
eled with rectangular elements in
a linear array, i.e. no cells.
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Figure 4.19: Point spread func-
tion of a point at 15 mm modeled
with CMUT model and flat cells.
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Figure 4.20: Point spread func-
tion of a point at 15 mm modeled
with CMUT model and shaped
cells.

4.5 Discussion

Computationally it will be faster to model the transducer without the cells
and then scale the response to get a good approximation. This approach will
only require a minor change in the Field II source code. This method, how-
ever, is only beneficial when the far-field is utilized.

Yet another remark on Field II combined with CMUTs has to be made. Simu-
lations very close to the aperture will require near-field considerations, which
also can imply cross talk considerations. This phenomenon is indeed difficult
to capture with Field II and would probably be better solved with a finite el-
ement program.

4.6 Conclusion

The SIR from a single circular transducer cell can be approximated by a
square element enclosing the circle. The square element response will, how-
ever, always have a longer time interval. The area of the SIR curves can be
approximated by scaling the response from a fraction between active cell area
and full element area. The RMS deviation of this principle is around 0.02 %
for flat unfocused cells and 1.85 % for deflecting cells. Scaling can be applied
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for pressure pulses and pulse-echo responses as well. For flat cells the pres-
sure deviation is around 0.05 %, and the pulse-echo response is 0.10 %. For
deflecting cells the pressure RMS deviation is ranging from 3.99 % to 5.62 %
depending on the Field II solver applied. The pulse-echo RMS deviation is
ranging from 7.92 % to 11.12 %. The RMS deviation has a factor of two in
difference between pressure and pulse-echo responses. A full element with
5x150 cells can be similar approximated with scaling of the area.

The response from a single cell can be resolved with a resolution factor of
n = 5. Higher resolution factors were seen to give almost identical RMS
deviations on the pressure pulses. Increasing the resolution factor increases
the calculation time exponentially.

The influence of approximating a CMUT element with a flat square element
or with all cells and no deflection can hardly be identified on the imaging
of point spread functions. Exact simulation close to the transducer, how-
ever, requires full modeling of the cells which also requires high sampling
frequency. As a consequence imaging with CMUTs in Field II can be well
performed using the standard rectangular transducer models that currently
are implemented into the program. This is in line with the assumption that
the pulse wavelength has to be large compared to the cell.

4.7 Future development

A disadvantage of not modeling all the cells is the missing ability to study
the exact effect of a mis-functioning cell or the missing ability to retrieve the
response from each single cell. This can, however, be a valuable information
to have in a beam-forming context. Currently only models are considered
where all cells on a given element are excitated and received with in parallel.
This should be improved on.

The Field II modeling is dependent on the piston movement of the cell’s plate.
For high precision simulation the validity of this approximation should be
addressed and compared with finite element simulations. This is a topic for
future investigation.

A conference paper based on the accepted abstract Abstract II is in prepara-
tion and addresses the results in the chapter.

54



CHAPTER

FIVE

Project conclusion

This project was divided into three research topics. 1) Modeling of a spatial
impulse response (SIR) for a convex rectangular elevation focused transducer
(CREFT) and a rectangular elevation focused transducer (REFT). 2) Hybrid
modeling between transducer impulse response models and Field II. 3) In-
vestigation of combining CMUTs with Field II.

1) The research on SIRs resulted in two new and exact models for SIRs. One
model for the REFT and one for the CREFT. A semi-analytical solution for
the SIR of the REFT was found. This solution is best solved with an elliptical
integral of the first kind. It can exhibit a root mean square (RMS) deviation,
relatively to the Field II prediction, below 3.5 %. This is applicable for simu-
lations on 2500 randomly distributed points at a sampling frequency of 3400
MHz. The mean error can be caclulated to 0.41 % precision. The largest er-
rors are located in front of the transducer. At a 100 MHz sampling frequency
the mean error was found to be 1.37 %. The SIR model for the CREFT has no
direct analytical solution but can be approximated to give an analytical solu-
tion. A mean error calculated on 200 random points and solved by dividing
the integrand into three parts yields an error of 0.01 %. The CREFT model
can predict the SIR from a rectangular elevation focused element, a convex
non-elevation focused element, and a linear planar element. Each transducer
approximation is represented with a RMS deviation relative to the Field II
prediction of 3.46 %, 2.5 %, and 3.56 %, respectively. It is therefore proven
that the model can approximate general rectangular and symmetric trans-
ducer geometries.

2) The work on combining the Field II program with a one-dimensional trans-
ducer model revealed that the pressure amplitude can be predicted within
±2 dB. This was shown by simulating the pressure response from a circu-
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lar piezoceramic transducer of Pz27 material and by simulating a commer-
cial 128 element transducer. The RMS deviations of the pressure waveforms
range from 11 % to 36 %. It was also shown that combining Field II with an
axisymmetric finite element model (FEM) of the Pz27 ceramic can give iden-
tical results with the one-dimensional transducer model applied above. This
is when the radial movement of the radial perimeter is prevented. The am-
plitude difference is 2 dB with the assumption that the radial movement of
the transducer perimeter is free in the FEM. A parameter sensitivity study re-
veals that the stiffness, the density, and the length of firstly the lens material
and secondly the piezoceramic affect the model of the commercial transducer
the most.

3) Responses from circular CMUT cells can be approximated with a scaling
of the response from a flat rectangular transducer. The scaling is performed
with the ratio between the active areas of a transducer element that neglects
the presence of all the cells and a transducer element that accounts for all the
cells. Simulation of the response from a cell with a deflecting surface is only
beneficial close to the cell and at high frequencies, as long as the cell size is
small compared to the simulation distance. At a typical sampling frequency
for Field II of 400 MHz the point spread functions are only slightly affected
by the modeling of the cell deflections close to the transducer. No visual
difference is to be observed far away from the transducer.
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Spatialimpulse response of a rectangular elevation
focused transducer

David Bæk, Morten Willatzen, and Jørgen Arendt Jensen

Abstract—The spatial impulse response for a concave
cylindrical rectangle is solved using the Rayleigh integral.
A concave cylindrical rectangle forms a typical medical
ultrasound transducer element and the spatial impulse
response is often represented by a far field approximation.
This work presents, to first order in diffraction effects, an
exact solution to the Rayleigh integral on such transducer
elements. The expressions are derived such that simple line
integrals are to be solved. Comparison is made with the
Field II simulation software, and root mean square errors
are calculated as the difference between pulse shapes of the
exact solution to the Rayleigh integral and Field II relative
to the root mean square of the Field II pulse forms. The
errors range from 0 % to 3.5 % when 2500 simulation
points are compared.

I. I NTRODUCTION

CAlculation of a time dependent pressure field in
front of a transducer can be performed efficiently

by applying the well-known method of the spatial im-
pulse response as suggested by Tupholme and Stepan-
ishen [1], [2]. With this method the time dependent
acoustic pressure is found by multiplying the fluid den-
sity of the medium-of-propagation with the convolu-
tion between a transducer’s surface acceleration and the
source’s spatial impulse response. The spatial impulse
response is dependent on the aperture geometry as well
as the source location relative to the aperture. Several
works have investigated the pressure fields from baffled
planar pistons of circular, annular, and planar square
geometries by using this computational efficient method.
In the case of simple geometries, a tractable analytical
representation of their spatial impulse responses exists
which is preferable for pressure field calculations. Some
of the interesting works that investigate these transducers
are found in a series of references [3], [4], [5], [6],
[7], [8], [9]. More complicated expressions for concave
annular transducers have also been developed [10], [11]
which made it possible to calculate the pressure field
from focused piston transducers efficiently by assuming
a uniform velocity distribution on the surface of the
transducer. Additionally work as the ones by Tjøtta et
al. [12] or Verhoef et al. [13] discuss these focused

transducers with emphasis to nonuniform velocity distri-
butions. However, the latter simple transducer geometries
are not adequate in describing the geometries of modern
medical ultrasonic array transducers that often consist
of linear arrays with concave elements or arrays with
concave and/or convex geometries. The spatial impulse
response for such more complex transducers are typ-
ically found by sub dividing the elements into either
strips or small rectangles of which a exact known or
approximate solution can be found [14], [15], [16]. Other
interesting methods for arbitrary surfaces rely on solving
the Rayleigh’s surface integral numerically by applying
advanced approximations [17]. Most of the solutions rely
on Huygen’s principle as well as the far-field approxi-
mation. A practical example of the use of these methods
can be found in the Field II software package [18], [19]
where the methods described in the references by Jensen
[20], [8] are some of the few that are practically applied
in pressure predictions for complex medical transducers.
Other examples are the DELFI [21], DREAM [22], and
Ultrasim [23] simulation programs that utilize the spatial
impulse response method.

Only little focus has been on finding exact expressions
for the spatial impulse response of rectangular elevation
focused transducers in part due to the fact that a simple
analytical solution is not available. The motivation of
this paper is to find the exact solution of the spatial
impulse response represented by the Rayleigh integral
to a such concave rectangular transducer by means of
a semi-analytical expression. The long-term motivation
is to incorporate the obtained solution into the Field II
software package as an alternative to the current far-field
approximation.

In the work by Theumann et al. [24], a related ap-
proach was taken in obtaining exact impulse responses.
The authors validated their model by measurements on a
closed cylindrical transducer and found good agreement.
Their solution may also be extended to consider cylindri-
cal shells as well. However, the expressions found were
limited to account for field points within the radius of
the concave cylinder. In addition, solutions for points of
axis in front of cylindrical shells are cumbersome to find
due to their method of integration limits.
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This work applies a similar method for developing
expressions but the focus is on cylindrical shells account-
ing for field points located both inside and outside the
concave radius of the shell. The latter is desirable in
connection with the Field II software where such points
may occur.

II. T HEORY

The integral form of the spatial impulse response is
well known from the literature [2]:

h(r̄, t) =
1

2π

∫

S

δ[t − r′

c ]

r′ dS, (1)

where r̄ is the spatial coordinate of a given point in
front of the transducer,t is the time,c is the speed of
sound, andr′ is the distance from̄r to the transducer
surface elementdS. The integration surface,S, is a
cylindrical shell as shown in Fig. 1. Since this work is
concentrated on a curved transducer geometry it should
also be noted that the Rayleigh integral (1) is only exact
for plane transducers. However, for transducers where
the wavelength is much smaller than the curvature as
well as the extent of the transducer all distortion from
the secondary diffraction effects will be insignificantly
small [25], [10]. This situation is usually the case in
medical ultrasonic applications. Therefore, (1) is a good
approximation.

The shell will be described by the cylindrical variables
x, rc, andθ being the axial, radial, and azimuthal coor-
dinates, respectively. The Cartesian coordinate system is
chosen so that a pointP in front of the transducer has the
coordinates{xp, yp, zp}. The geometrical focus defines
the zero reference for they and thez coordinate, and the
transducer half widthL/2 defines the zero reference for
thex coordinate. The shell has a full length restricted to
L, and a heightH as depicted in Fig. 1. The heightH is
defined by an opening angleV given byH = 2rc sin(V ).
The transducer corners are defined asc1, c2, c3, andc4.
In the following, these are paired such thatc1 and c2

belong to the transducer arc atx = −L/2. Accordingly,
the cornersc3 and c4 are associated with the arc at
x = L/2.

A surface element,dS, in cylindrical coordinates is
defined as

dS = rcdxdθ, (2)

where θ is the azimuthal angle,rc is the cylindrical
radius, anddx is the lateral span of the element. To
find an expression for this surface element, a geometrical
consideration as shown in Fig. 2 may be used.

Fig. 1. Figure showing the geometrical definition of the cylindrical
shell.

From this figure the distance|NQ| may be given by
the cosine relation

|NQ|2 = r2
c + |OQ|2 − 2rc|OQ| cos[θ + γ], (3)

where|OQ| = l =
√

z2
p + y2

p andγ = sin−1[ zp

l ]. Using
the Phytagorean theorem on the triangle NPQ to get the
time-dependent distance|PQ| yields

|PQ|2 = ξ2 = (ct)2 − |NQ|2, (4)

where it has been used that the distance|NP | = ct.
Note that the distance|PQ| is always parallel to thex-
axis such that a single surface elementdS at any given
time instance can be found as

dS = rc
∂ξ

∂t
dtdθ

=
rcc

2t dt dθ√
(ct)2 − r2

c − l2 + 2rcl cos[θ + γ]
. (5)

If one substitutes the latter expression fordS into the in-
tegral expression in (1), the integral will be transformed
into a line integral along an intersecting curve created by
the crossing between the cylindrical shell and a sphere
emanating from the pointP . Again, this result applies
at any given time interval. Consequently, the integration
variable will then effectively be the azimuthal coordinate
θ. If one also considers the intersection as consisting of
two domains, one to the left side (i.e.x <= xp) and one
to the right side (i.ex > xp) of the pointP then at any
given time instancet = τ , (1) becomes

h =

∫ θL
max

θL
min

rcc

2π
√

ζ cos[θ + γ] − f(τ)
dθ +

∫ θR
max

θR
min

rcc

2π
√

ζ cos[θ + γ] − f(τ)
dθ, (6)

where it has been used thatr′ = ct, f(τ) = r2
c + l2 −

(cτ)2, andζ = 2rcl.



3

Fig. 2. Figure showing the cylinder shell and the distances applied in the derivation of the response at a pointP .

For values ofP = {x, y, 0}, and closing the shell to
form a cylinder, (V= π), the above expression becomes
identical with the expressions suggested by Theumann
et al. [24] for a closed cylinder. However, (6) has the
advantage that it describes the spatial impulse response
from any spatial point in front of a cylindrical shell
transducer an extension not accounted for by Theumann
et al. [24].

Since the integrands of the integrals in (6) are identical
it is convenient to define the following general integral
function

H =

∫ θmax

θmin

rcc

2π
√

ζcos[θ + γ] − f(τ)
dθ, (7)

where the integration boundaries are point and time
dependent.

A. Integration boundary conditions

The integration limits are time dependent and may be
found as the horizontal projections of the intersecting
lines onto two circular arcs with radiusrc as shown in
Fig. 3. Theθ angles on each circle reveal the integration
limits. Fig. 3 shows the actual transducer surface as the
middle domain indicated with (I) and two imaginary
neighboring surface domains (II) and (III). The arcs
contributing to the spatial impulse response are only
the arcs in (I). However, as will be apparent in the
following sections, the arc contributions from (II) and
(III) are subtracted again. The different angles are given
by isolatingθ in (4) yielding

θ = cos−1

[
ξ2 − (ct)2 + r2

c + l2

2rcl

]
− γ,

= cos−1

[
ξ2 + f(t)

ζ

]
− γ. (8)

Any integration limit is found by choosing an appropriate
value for ξ in (8). Such values are determined in the
following.

B. Integration limits in different domains

The integration limits consists of a maximum angle
and a minimum angle. One set of integration limits is
given at the vertical aperture boundary arc atx = −L/2.
These angles are here defined asφL

max and φL
min. An-

other set of integration limits are defined at the vertical
aperture boundary atx = L/2. These are defined as
φR

max andφR
min. Finally, an integration limit set is found

at x = xp denoted byφmax andφmin.
Independent of the pointP ’s location, the angles

will be dependent on the absolute distance fromxp

to the aperture’s vertical boundaries atx = ±L/2 as
is clear from (8). Hence, the following functions are
conveniently defined

σ1[xp] =

{
|L/2 + xp| xp ≤ L/2
|L/2 − xp| xp > L/2,

(9)

σ2[xp] =

{
|L/2 − xp| xp ≤ L/2
L/2 + xp xp > L/2.

(10)

A set of general angle definitions is hereby:

φmax ={
cos−1

[
f [t]
ζ

]
− γ −1 ≤ f(t)

ζ ≤ 1

φmaximum else,
(11)

φmin ={
− cos−1

[
f [t]
ζ

]
− γ −1 ≤ f(t)

ζ ≤ 1

φminimum else,
(12)
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Fig. 3. Figure showing the left and right integration boundaries for the pointP at a given time instance as projections onto circles of radius
rc. The actual transducer is the middle transducer (I). (II) and (III) are imaginary transducers.

φR
min ={

− cos−1
[

σ2[xp]2+f [t]
ζ

]
− γ −1 ≤ σ2[xp]2+f(t)

ζ ≤ 1

φminimum else,
(13)

φR
max ={

cos−1
[

σ2[xp]2+f [t]
ζ

]
− γ −1 ≤ σ2[xp]2+f(t)

ζ ≤ 1

φmaximum else,
(14)

φL
min ={

− cos−1
[

σ1[xp]2+f [t]
ζ

]
− γ −1 ≤ σ1[xp]2+f(t)

ζ ≤ 1

φminimum else,
(15)

φL
max ={

cos−1
[

σ1[xp]2+f [t]
ζ

]
− γ −1 ≤ σ1[xp]2+f(t)

ζ ≤ 1

φmaximum else.
(16)

The different angle definitions are constrained to be
purely real valued as is ensured by the limits±1 on
the conditions. If a constraint is violated, it must be
set to an angleφmaximum or φminimum dependent on
the location of the pointP in front of the aperture.
These angles may be set to the maximum and minimum
allowable angles for the given point location. This will
be defined for each zone in the following.

III. T IME OF FLIGHT TO THE TRANSDUCER CORNERS

The time of flight from the pointP to the transducer
corners can advantageously be defined ast1, t2, t3, t4
and are found as

t1 =

{
t̄1 yp ≥ 0
t̄2 yp < 0

, t2 =

{
t̄2 yp ≥ 0
t̄1 yp < 0

,

t3 =

{
t̄3 yp ≥ 0
t̄4 yp < 0

, t4 =

{
t̄4 yp ≥ 0
t̄3 yp < 0

, (17)

where the intermediate times̄t1, t̄2, t̄3, t̄4 are given by

t̄1 =

{
tc1 xp ≤ L/2
tc3 xp > L/2

, t̄2 =

{
tc2 xp ≤ L/2
tc4 xp > L/2

,

t̄3 =

{
tc3 xp ≤ L/2
tc1 xp > L/2

, t̄4 =

{
tc4 xp ≤ L/2
tc2 xp > L/2

.

(18)

In this way the pointP can be placed anywhere in
front of the transducer. The nearest corners are defined as
corner 1 (c1) and corner 2 (c2), and these have the same
x-value but opposite signs on theiry-values. Similar
relations are valid for corner 3 (c3) and corner 4 (c4) of
the transducer. This way one can exploit the symmetry
of the transducer to simplify the number of cases.

The following sections will describe the spatial im-
pulse responses to be calculated from different point
locations by using the above angle definitions.

Fig. 4 is useful in defining the different zones where
the pointP can be located. These zones have different
representations of the spatial impulse responses and are
therefore to be considered independently. Notice in Fig.
4b that the zones 3 and 4 are only drawn on the left
and the right side, respectively. A mirror image of both
zones is clearly also found on the right and the left side
of the aperture. The drawing of this has been left out to
simplify the picture.

IV. SPATIAL IMPULSE RESPONSE FOR POINTS IN

ZONE 1

This zone is defined as

−L/2 ≤ xp ≤ L/2, zp < 0, |yp| < |zp| tan [V ]. (19)

The determination of the different integration limits
depends on the time of flight from the emitting point
to the aperture corners, edges, and the shortest distance
to the aperture. Fig. 5 illustrates some time steps of the
integration limits for this zone. Two time instances of
intersection are shown in the figure, and the transducer
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Fig. 4. a) An assembly split of the different zones within the aperture width, i.e.−L/2 ≤ xp ≤ L/2. b) An assembly split of the zones
3, and 4 outside the aperture width. Notice that a duplicate of zone 3 is also to be found on the right side of zone 1, and that accordingly a
duplicate of zone 4 is on the left side of zone 1.

Fig. 5. Picture showing the integration angles for zone 1. The
transduceris seen as a back view in thex−y plane perpendicular to
thez-axis. The intersections at two time instances are plotted starting
with the arc (1) and then the arc (2). The direction of the propagation
is indicated with arrows.

is plotted as seen from the back side and forward along
the positivez-direction.

The boundary angles for this zone are therefore given
as follows whenφmaximum = π/2+V andφminimum =

π/2 − V are choosen

θ0
max =

{
φmax φmax < φmaximum

φmaximum else,
(20)

θ0
min =

{
φmin φmin > φminimum

φminimum else,
(21)

θR
max =

{
φR

max φR
max < φmaximum

φmaximum else,
(22)

θR
min =

{
φR

min φR
min > φminimum

φminimum else,
(23)

θL
max =

{
φL

max φL
max < φmaximum

φmaximum else,
(24)

θL
min =

{
φL

min φL
min > φminimum

φminimum else.
(25)

The significant time of flights for a wave to arrive at
the aperture is formulated as follows

t0 = (rc − l)/c, (26)

tL =
√

(rc − l)2 + σ1[xp]2/c, (27)

tR =
√

(rc − l)2 + σ2[xp]2/c, (28)

tmax = max{t1, t2, t3, t4}. (29)

Here t0 is the smallest time always being the direct
distance from a pointP to the aperture on a line going
through the transducer focus. The two flight timestL

and tR are the shortest distances to the nearest edge at
x = ±L/2. The end timetmax is the maximum time of
flight to the different transducer corners.

This gives the following definition of the spatial
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impulseresponse,h

h(t) =



0 t < t0
Λ tL ≥ t ≤ tR

Λ − H[θR
min, θR

max] tL ≥ t > tR

Λ − H[θL
min, θL

max] tL < t ≤ tR

Λ − H[θR
min, θR

max] − H[θL
min, θL

max] tL < t > tR

0 t > tmax,
(30)

were

Λ = 2H[θ0
min, θ0

max]. (31)

The definition used for Λ calculates the full
contribution on the intersection of the domainsI, II,
and III (see Fig. 2). The arc contributions outside
the aperture are to be subtracted from the full arc
contribution, i.e., the imaginary arcs onII and III
are to be subtracted by solvingH[θL

min, θL
max] and

H[θR
min, θR

max] as seen in (30). Notice that the same
result to h(t), can be achieved by finding the arc
contributions onI alone.

V. SPATIAL IMPULSE RESPONSE FOR POINTS IN ZONE

2

This zone is defined as

−L/2 ≤ xp ≤ L/2, |yp| > |zp| tan [V ]. (32)

The angle definitions of this zone are identical with
the ones from zone 1 (20)-(25), however, the important
time of flights are defined slightly differently:

t0 = min

{ √
(H/2 − yp)2 + Z2/c,√
(H/2 + yp)2 + Z2/c,

(33)

tL = t1, (34)

tR = t3, (35)

tmax = max{t2, t4}. (36)

whereZ = zp + rc cos [V ]. The timestL and tR are the
times of flight to the closest transducer corner atx =
−L/2 andx = L/2, respectively. They are dependent on
the coordinateyp to exploit the symmetry aroundy = 0.
The timet0 is the shortest distance to the pointP . The
definition of h is identical to the one used in (30).

VI. SPATIAL IMPULSE RESPONSE FOR ZONE3

This zone is defined by the constraints

−L/2 > xp > L/2, yp = y, zp ≤ 0.

or

−L/2 > xp > L/2, |yp| > |zp| tan [V ], zp > 0.

Fig. 6. Picture showing the integration angles for zone 3. The
transduceris seen from a back view in thex − y plane. The
intersections at two time instances are plotted starting with the arc
(1) and ending with the arc (2). The direction of the propagation is
indicated with arrows. The dotted arc length outside the aperture is
to be subtracted in h.

Fig. 6 shows how to define the integration boundaries
for this zone. A point located outside the aperture width
will generate a wave that travels from one aperture side
to the opposite aperture side. This is shown by the
intersecting arcs 1 and 2 where 1 is the intersection for
an earlier time instance. One integration boundary set is
denotedθ1

min and θ1
max. Another is denotedθ2

min and
θ2
max. Notice, that the latter is relevant only when the

waves cross the boundary furthest away.
The boundary angles for this zone are defined as

θ1
max =

{
φL

max φL
max < φmaximum

φmaximum else,
(37)

θ1
min =

{
φL

min φL
min > φminimum

φminimum else,
(38)

θ2
max =

{
φR

max φR
max < φmaximum

φmaximum else,
(39)

θ2
min =

{
φR

min φR
min > φminimum

φminimum else.
(40)

Hereφmaximum = π/2 + V andφminimum = π/2 − V .
Some special time of flights for this zone are defined

as

t0 =

{
ts1 |yp| ≤ |zp| tan [V ]
t1 |yp| > |zp| tan [V ],

(41)

t5 =

{
ts2 |yp| ≤ |zp| tan [V ]
t3 |yp| > |zp| tan [V ].

(42)
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Fig. 7. Picture showing the integration angles for zone 4. The
transduceris seen as a back view in thex−y plane. The intersections
at two time instances are plotted starting with the dashed arcs (1)
and ending with the solid arc (2). The direction of the propagation
is indicated with arrows.

The above timests1 and ts2 are given by

ts1 =
√

(|xp| − L/2)2 + (rc − l)2/c, (43)

ts2 =
√

(|xp| + L/2)2 + (rc − l)2/c. (44)

The time t5 is the time of flight for the wave front to
reach the furthest away boundary relative to the point
P . Also recall thatt1 and t3 are adequate to define the
time of flights to the appropriate corners. This is because
symmetry is exploited in (17).

The maximum time is calculated as

tmax = t4. (45)

The spatial impulse response then becomes

h = (46)



H[θ1
min, θ1

max] t0 ≤ t < t5
H[θ1

min, θ1
max] − H[θ2

min, θ2
max] t5 ≤ t ≤ tmax

0 else.

VII. SPATIAL IMPULSE RESPONSE FOR ZONE4

This zone is defined as

−L/2 > xp > L/2, |yp| ≤ |zp| tan [V ], zp > 0.

Fig. 7 shows how waves emanating from this zone
cross the aperture. The crossing between the aperture and
the propagating wave generates a crossing line bending
away from the source point. As a result, one must divide

Fig. 8. Figure showing how to define theθd
min anglefor this zone.

the integration boundaries into an upper setθup
min and

θup
max and a lower setθd

min andθd
max. Hereφmaximum =

π − γ.
These angles may therefore be written as

θup
max =

{
φL

max φL
max ≤ φmaximum

φmaximum else,
(47)

θup
min =

{
π/2 − V t1 ≤ t ≤ t3
φR

max else,
(48)

θd
max =

{
π/2 + V t2 ≤ t ≤ t4
2π − 2γ − φR

max else,
(49)

θd
min =

{
2π − 2γ − φL

max η
φmaximum else.

(50)

whereη = ((2π − 2γ − φL
max) ≥ (φmaximum)) & (t ≥

t2). The angle definitions2π − 2γ − φR,L
max are given by

considering Fig. 8. Theα angle is given by2γ + φL
max

and is dependent on theγ angle. Recall that the zero
reference for these angles are defined along the y-axis.
The definition forθd

max can be derived similarly.
The spatial impulse response becomes

h =



H[θup
min, θup

max] t0 ≤ t ≤ t2
H[θup

min, θup
max] − H[θd

min, θd
max] t2 < t ≤ tmax

0 else,
(51)

where

t0 =
√

(|xp| − L/2)2 + (rc + l)2/c, (52)

and tmax =
√

(|xp| + L/2)2 + (rc + l)2/c.
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Fig. 9. Picture showing the integration angles for zone 5. The
transduceris seen as a back view in thex−y plane. The intersections
at three time instances are plotted starting with the dashed arcs (1)
and ending with the solid arcs (3). The direction of the propagation
is indicated with arrows.

VIII. S PATIAL IMPULSE RESPONSE FOR ZONE5

This zone is defined as

−L/2 ≤ xp ≤ L/2, |yp| ≤ |zp| tan [V ], zp > 0.

It is different from the previous zones as Fig. 9 reveals.
In this zone, arcs are split apart (dashed arcs 1) and as
time exceeds the arcs will combine and create two new
arcs (solid arcs 3). The angles are therefore divided into
upper and lower angles on both sides of the transducer as
shown in Fig. 9. For the upper arcs the following angle
definitions are valid

θup
max = φmax, (53)

θup
min = π/2 − V, (54)

θR,up
max = φR

max, (55)

θup
min = π/2 − V, (56)

θL,up
max = φL

max, (57)

θL,up
min = π/2 − V. (58)

Hereφmaximum = π − γ. The spatial impulse response
for these angles then becomes

hup =



0 t < tstart

Λup t1 ≥ t ≤ t3
Λup − H[θR,up

min , θR,up
max ] t3 < t ≤ t1

Λup − H[θL,up
min , θL,up

max ] t3 ≥ t > t1
Λup − H[θL,up

min , θL,up
max ] − H[θR,up

min , θR,up
max ] t3 < t > t1

0 t > tmax,

(59)

where Λup = 2H[θup
min, θup

max]. The start time and the

end time are found as

tstart = min

{ √
(H/2 − yp)2 + (zp + rccos[V ])2/c√
(H/2 + yp)2 + (zp + rccos[V ])2/c,

(60)

tmax = max

{ √
(L/2 − xp)2 + (rc + l)2/c√
(L/2 + xp)2 + (rc + l)2/c.

(61)

For the lower arcs the following angles are to be
defined

θd
max = 2π − 2γ − φmax, (62)

θd
min = π/2 + V, (63)

θR,d
max = 2π − 2γ − φR

max, (64)

θR,d
min = π/2 + V, (65)

θL,d
max = 2π − 2γ − φL

max, (66)

θL,d
min = π/2 + V. (67)

The spatial impulse response then becomes

hd =



0 t < tstart

Λd t4 ≥ t ≤ t2
Λd − H[θR,d

min, θR,d
max] t4 < t ≤ t2

Λd − H[θL,d
min, θL,d

max] t4 > t ≥ t2
Λd − H[θL,d

min, θL,d
max] − H[θR,d

min, θR,d
max] t4 < t > t2

0 t > tmax,

(68)

whereΛd = 2H[θd
min, θd

max].
The final spatial impulse response is therefore

h = hup − hd. (69)

Notice the minus sign in the latter. This is necessary
since the integrals forhd becomes negative.

IX. SPATIAL IMPULSE RESPONSE FORzp = 0 AND

yp = 0

Points located along the center axis of curvature of the
transducer are characterized by a special expression of
the spatial impulse response. For such points (7) becomes

H =
1

2π

∫ θmax

θmin

rcc√
c2t2 − r2

c

dθ,

=
crc(θmax − θmin)

2π
√

c2t2 − r2
c

. (70)

The boundary angles will, at any time, be the maximum
and minimum allowable angles forθmax andθmin. Since
the point is located in the focus point a spherical wave
intersecting the cylinder shell will intersect in a line
parallel to they − z plane because thex coordinate of
the intersection will be constant and dependent on time
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only. This is proved in the appendix A. The integration
angles are therefore given by

θmax =
π

2
+ V, (71)

θmin =
π

2
− V. (72)

Thetimes of significance in this zone are the start time
and the time of flight to the right and the left vertical
boundaries. These times are given by

tR =

√
r2
c + σ2[xp]2

c
, (73)

tL =

√
r2
c + σ1[xp]2

c
. (74)

tstart =





rc

c −L/2 ≥ xp ≤ L/2
tR xp > L/2
tL xp < −L/2.

(75)

The spatial impulse response yields

h =



2H[θmin, θmax] t0 < t ≤ min{tR, tL}
H[θmin, θmax] min{tR, tL} < t ≤ max{tR, tL}
0 else.

(76)

X. SOLVING THE INTEGRALS

Clearly the above angle definitions and time defini-
tions are rapidly calculated using a computer. The time
consuming part of the suggested algorithm is unarguably
the integral calculation ofH in (7). This integral is
of an elliptical type which generally has no analytical
solution. It can, however, always be directly evaluated
using a numerical integration scheme. Yet another way
of solving the integral is by considering the indefinite
integral form

∫
q√

f(τ) + ζcos[θ + γ]
dθ =

=
2q

√
f [τ ]+ζcos[θ+γ]

f [τ ]+ζ√
f [τ ] + ζcos[θ + γ]

F [α, ρ] , (77)

where

q =
rcc

2π
, α =

θ + γ

2
, ρ =

2ζ

f [τ ] + ζ
. (78)

ThefunctionF [α, ρ] is the elliptical integral function of
the first kind

F [α, ρ] =

∫ α

0

1√
1 − ρ sin2[ξ]

dξ, (79)

where α is the upper integration boundary. The latter
integral can be evaluated using infinite series expres-
sions [26], by numerical integration, or using the method

suggested by Carlson [27]. The latter is computationally
very efficient and a c/Fortran implementation increases
the simulation speed significantly.

XI. SIMULATION CASE

As a reliable reference for validating the above spatial
impulse responses the Field II simulation program is
used. This software is capable of simulating spatial
impulse responses from any given point in front of a
concave rectangular transducer.

A simulation case with a concave rectangular trans-
ducer having a concave radiusrc = 28 mm, a height
H = 30 mm, and a lengthL = 30 mm is chosen. Points
in all zones are analyzed by generating 2500 random
simulation points covering all zones. The corresponding
spatial impulse response from each point is calculated
and compared with the Field II predictions. Sampling
frequencies of 3400 MHz and 100 MHz are applied. The
highest sampling frequency of 3400 MHz is applied to
ensure sufficient accuracy on short impulse responses.
This especially applies to focus zones. The 100 MHz
sampling frequency is chosen because it is the usually
applied sampling frequency applied in Field II.

XII. R ESULTS

Fig. 10 is a comparison between a Field II simulation
and a simulation using this work. The result is for a point
P in zone 1 located at{xp, yp, zp} = {1, 1, −10} mm.

The solid line is the prediction of this work, and the
circles are the prediction of Field II. Clearly, the com-
parison verifies excellent agreement. The simulation was
performed with a sampling frequency,fs, of 100 MHz
corresponding to a root mean square error (RMS) of
3.2 % relative to the Field II prediction. Notice that only
each tenth sample is plotted in the figure thus circles are
seen spread apart at some of the arc lengths. Figure 11 is
a simulation at the point{xp, yp, zp} = {8.7, 7.7, 40.9}
mm. This simulation yielded an RMS error of24.7 %
which is due to the sharp peak that is not captured with
Field II as shown in the figure.

To quantify the models accuracy at several points in
front of the transducer a three dimensional simulation
domain with the dimensions50x50x100 mm for the
x, y, z coordinates, respectively, were defined. The sim-
ulation space was set to start atz = −27.9 mm and
placed symmetrically around{x, y} = {0, 0}. It was
furthermore ensured that no points were located behind
the transducer. Thex and y coordinates were linearly
spaced and thez coordinates were randomly distributed
with a Gaussian distribution. This yields 2500 simulation
points covering all the zones in front of the transducer.
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Fig. 10. Spatial impulse response at{xp, yp, zp} =
{1, 1,−10} mm. Circles are Field II. Solid line is the
presented model.
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Fig. 11. Spatial impulse response for a point
{xp, yp, zp} = {8.7, 7.7, 40.9} mm. The error is24.7 %
with a samplings frequency of100 MHz.

The sampling frequency was significantly increased to
3400 MHz which decreases errors due to inconsistency
in eventually sharp edges.

Figure 12a shows a projection of all the errors onto
the x-y plane as a gray scale plot. The solid white
square in the figure shows the contour of the trans-
ducer when projected onto the x-y plane. A given pixel
color corresponds to the relative deviation and deviations
ranging from approximately0 % to 3.5 % are found.
The mean deviation was calcualted to0.41 %. Also
it should be identified that points located outside the
transducer’s lateral width has the highest agreement.
Figure 12b shows the distribution of the errors. Clearly
it is seen that the deviations are clustered below1 %,
revealing that the consistency in general is very high.
Simulations using the exact same point locations but with
a samplings frequency of100 MHz were also made. A
mean deviation of1.37 % and a maximum deviation of
24.7 % corresponding to the results seen in Fig. 11 were
then found.

XIII. D ISCUSSION

As seen on Fig. 10 and Fig. 11 the algorithm benefits
from giving smooth curve segments as compared to
Field II. This is because the algorithm is not sensitive
to discretization errors in summing the responses from
many smaller surface elements. Smooth line segments in
the context of simulating pulse-echo spatial impulse re-
sponses and convolving responses with excitation pulses
may be of minor influence. This is because of the
filtering effect these convolutions will exhibit. However,
calculating the spatial impulse response by using a
parameterized representation of the transducer has some
advantages. Firstly less computation for each point may

have to be performed. The calculations are in contrary
more exhausting but can be performed efficiently within
the cache of the cpu and may require less memory
allocation and accessing. Secondly, the whole spatial
impulse response can be represented on an analog time
scale for the whole transducer element. This limits the
numerical round-off error in the energy conservation
when summing the spatial impulse responses from more
transducer elements. This is, e.g., an important topic
when delay time simulation is performed in medical
imaging.

Implementation of the algorithm into a medical imag-
ing program such as Field II requires consideration of
energy conservation. Field II is capable of simulating the
spatial impulse response for small elements at a relatively
low sampling frequency (100 MHz). The program is
capable of this because it integrates the area of an spatial
impulse response within two samples. This means that
if edge times of a spatial impulse response are within
the desired sampling times, then the energy is conserved
in this interval by sub-integration. This requirement is
also needed for the algorithm presented in this paper
if it is to work as an alternative solver for a program
as Field II. Yet another advantage of the new algorithm
is, however, that it does not have to sub-integrate for
all discretized surface elements, and the conservation of
energy calculation is not dependent on near- or far-fields.

The model presented in this work is not entirely
analytical because of the elliptical integral of the first
kind that has to be evaluated in (79). However, the
elliptical integral is very efficiently evaluated and the
function is in mathematics often used as an analytical
manipulator. Therefore one could argue that the spatial
impulse response can be found by a semi-analytical
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Fig. 12. a) Projection of the errors in percentage onto the x-y plane. The whitesquare indicates the contours of the transducer. b) Distribution
of the errors.

expression.

XIV. C ONCLUSION

Exact expressions for the Rayleigh integral on a con-
cave cylindrical shell transducer have been derived and
compared to the Field II software simulation program.
The spatial impulse response had to be represented in
six different ways corresponding to six zones defined in
front of the transducer. In order to solve for the impulse
response an elliptical integral was evaluated. Evaluation
of this integral is the most time consuming part in the
algorithm, and thus has to be solved as efficiently as
possible if the algorithms are to compete with far-field
approximations on prediction time. The root mean square
errors for the different zones are ranging from0 % to
3.5 % where the error is calculated in percent relative
to the Field II prediction for a3400 MHz samplings
frequency. An average error for 2500 simulation points
spread across all the domains was found to be0.41 %.

APPENDIX

To prove that for points satisfyingzp = 0 and yp =
0 the intersection curve of a sphere and a cylinder is
parallel to they − z plane one considers the general
expression of a sphere

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2

s , (80)

and a cylinder with its length along the x direction

y2 + z2 = r2
c , (81)

where Rs and rc are the radius of the sphere and the
cylinder shell, respectively. The coordinatesx0, y0, and
z0 are the center of the sphere.

Combining (80) and (81) yields

x = ±
√

R2
s − r2

c + x0, (82)

z = ±
√

r2
c − y2. (83)

Thereforethe parametric representation of the intersec-
tion becomes

{x, y, z} = {±
√

R2
s − r2

c + x0, y, ±
√

r2
c − y2}. (84)

It is hereby proved that the intersection will be a circular
arc in they − z plane. This plane is located atx but
dependent on time asRs = ct.
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Calculation of the pressure field from transducers with both a convex and a concave geometry is a
complicated assignment that often is solved by subdividing the transducer surface into smaller flat
elements of which the spatial impulse response is well known. This method is often seen applied
to curved transducers because an analytical solution is not known. In this work a semi-analytical
algorithm for the exact solution to a first order in diffraction effect of the spatial impulse response
of rectangular shaped double curved transducers is presented. The algorithm and an approximation
of it are investigated. The approximation reformulates the algorithm to an analytical integrable
expression which is computationally efficient to solve. Simulation results are compared with the
simulation software Field II. By calculating the response from 200 different points yields a mean
error for the different approximations ranging from 0.03 % to 0.8 % relative to a numerical solution
for the spatial impulse response. It is shown that the presented algorithm gives consistent results
with Field II for both a linear flat, a linear focused, and a convex non-focused element. Best solution
was found to be 0.01 % with a three-point Taylor expansion.

PACS numbers: 43.38.Hz,43.20.Px,43.40.Rj

I. INTRODUCTION

Calculation of spatial impulse responses for pressure calculations and pulse-echo responses has been a well known
technique for decades. Some of the first works within this field were by Tupholme and Stepanishen1,2 and several
analytical expressions for rectangular, plane circular, concave circular, and array transducer have been reported since
then3–11. Also expressions for transducers with a slightly in-homogenous surface movement have been introduced12,13.
Most of these works represent simple transducer geometries, which are not the types often used in medical imaging. The
simple solutions can be used to calculate the spatial impulse response of more complicated geometries such as annular
arrays, linear elevation focused transducers, convex transducers, and double curved transducers, i.e., rectangular
transducers with a convex geometry and an elevation focused geometry. Typically this is done by subdividing the
surface into smaller simpler elements such as triangles or rectangles. The final response is then calculated by applying
superposition of all the responses. An example where this principle is practically applied is the Field II simulation
software package14,15. This package utilizes the algorithms described by Jensen8,16,17. Only a minor part of the
literature within spatial impulse responses addresses the problem of finding analytical expressions of curved rectangular
transducers. Within these literatures the works18–20 show that subdivision of the elements into small stripes or
rectangles are possible. The motivation for applying these assumptions is that no analytical solution this far has been
found. Theumann et al.21 formulated a semi-analytical expression for points inside a closed cylinder. To model the
response from slightly curved transducer elements, that often are found in medical imaging, simulation tools such as
Ultrasim22, DREAM23, DELFI24, and Field II typically apply a discretization of the surface into smaller elements
and they then solve for the spatial impulse response by summing up contributions from smaller planar elements or
they utilize a special integration technique that efficiently solves the Rayleigh integral.

This paper presents an exact expression for the spatial impulse response of a rectangular convex elevation focused
transducer (or double curved transducer) in the form of an elliptical integral. This integral is shown to be solvable
by applying either a Taylor expansion or fitting a second order polynomial to a part of the elliptical integral. Both
the elliptical integral and the different approximations are the topic of this paper.

a)Electronic address: db@elektro.dtu.dk
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FIG. 1. Figure showing the geometrical definition of the double curved transducer.

II. THEORY

The spatial impulse response is assumed by the Rayleigh integral1,2:

h(~r, t) =
1

2π

∫

S

δ(t − |~r|
c )

|~r| dS (1)

For this equation to hold it is assumed that the wavelength is much smaller than the curvature of the transducer. It
is thereby assumed that the secondary diffraction effects are negligible10,25 and it is furthermore assumed that the
surface movement is uniform.

A torus can be formed by an outer revolution angle γ and an inner revolution angle θ describing a circle that rides
on the outer circle. The angles are limited within 0 − 2π for γ and 0 − π for θ.

A double curved transducer as considered in this work is defined by the torus coordinates

x = (R − r sin θ) sin γ (2)

z = (R − r sin θ) cos γ, (3)

y = r cos θ, (4)

where the angles γ and θ are the revolving angles and R and r define the outer and the inner circle radius, respectively.
Figure 1 depicts the boundary limiting angles and the geometry. The maximum and minimum opening angles for the
concave curvature are defined as θmin and θmax, where θmax = π − θmin. Similarly do γL and γR define the limiting
angles of the convex curvature and due to the transducer symmetry: γR = −γL. It should be noted that in this
work the positive angle definition for γ is calculated CCW around the y-axis and relative to the z-axis. The angle γR

is therefore negative. Furthermore, the θ angle definition has its zero reference from the vertical line going through
the point {0, 0, R} parallel to the y-axis, hence 0 ≤ θ ≤ π. All Cartesian coordinates are relative to the {0, 0, 0}
coordinate. A point, P = {xp, yp, zp}, can be placed at any location in front of the transducer, to the left and to the
right, below or above the transducer. The only requirement for the point’s location is that a spherical wave emitted
from the location does not meet the backside of the concave transducer before meeting the front side.

To perform the integration in (1) a definition of the surface element, dS, on the torus surface S is needed

dS = r(R − r sin θ)dγdθ, (5)

which is valid when the torus is parametric defined as T (γ, θ) = z~i + x~j + y~k.
By considering Fig. 2 and by applying cosine relations one can obtain an expression for the angle β as

β = cos−1

[ |OP ∗|2 + (R − r sin [θ])2 − ((ct)2 − (yp − r cos [θ])2)

2(R − r sin [θ])|OP ∗|

]

= cos−1

[
k − c2t2 − 2ryp cos [θ] − 2rR sin [θ]

2|OP ∗|R − 2|OP ∗|r sin [θ]

]
, (6)
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FIG. 2. Figure showing the geometrical definition of the angle β.

where t is the time and c is the speed of sound and k = |OP ∗|2 + r2 + R2 + y2
p.

At any time instance the surface element, dS, can be found as

dS = r(R − r sin θ)
∂β

∂t
dtdθ

= r(R − r sin θ)
2c2t

(2|OP ∗|R − 2|OP ∗|r sin θ)
√

1 − (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2|OP∗|R−2|OP∗|r sin θ)2

dtdθ. (7)

By substituting (7) into (1) the integral for the spatial impulse response becomes:

h(ti) =
1

2π

∫ θmax(ti)

θmin(ti)

cr

|OP ∗|
√

1 − (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2|OP∗|R−2|OP∗|r sin θ)2

dθ. (8)

Notice that β is another definition of γ but with a zero reference to the point P’s location. The surface integral in
(1) has hereby been transformed into a line integral of elliptical form that integrates along the intersection between
a crossing sphere and the transducer.

The integration boundaries θmin and θmax are to be found from (6). A general expression for the angle θ is found
by isolating it in (6) for a given angle of β. This will due to the cos−1() yield four solutions of which two are valid for
the integration domain defined for this type of transducer. The two remaining angles are to be used if π ≤ θ ≤ 2π.

θ = cos−1

[
f1 ± f2

f3

]
, (9)

where

f1 = 2ryp(k − c2t2 − 2|OP ∗|R cos (β))), (10)

f2 = [(2rR − 2|OP ∗|r cos (β))2(−(k − c2 t2)2 + (2r)2(R2 + y2
p) + ...

+ (2|OP ∗| cos (β)(2R(k − 2 r2 − c2t2) + 2|OP ∗|(r2 − R2) cos (β))))]1/2, (11)

f3 = 4r2
[
R2 + y2

p + |OP ∗| cos (β) (|OP ∗| cos (β) − 2R)
]
. (12)

There are three values of β to which the integration boundaries occur. These are for the angles at which the
intersecting curve crosses the vertical side edges, and for the angle at which the intersecting curve can be split into
two arcs by a vertical plane through P and the y-axis. The values are βl = (γL − γp), βr = (γR − γp), and β0 = 0,
where

γp = tan−1

[
xp

zp

]
. (13)

The angle γp is the angle to which the point P is located relative to the z-axis in the xz-plane.
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FIG. 3. Figure showing the definition of the integration angles θL
min, θL

max, θR
min, and θR

max, which occur when the spherical
wave has passed the boundaries of the transducer. The transducer is seen from the back side toward the positive z-axis.

Each value of β corresponds to a wave crossing that have passed a transducer edge (γL and γR) or not yet passed an
edge (γp). This is illustrated by Fig. 3, where a transducer is seen from the back side in the xy-plane and towards the
positive z-axis. The solid arcs are defining the intersection between a sphere emanating from a point P and the dotted
lines are the sphere’s crossing with a fictive extension of the transducer depicted. The integration angles associated
with βl are θL

min and θL
max. The corresponding angles for βr are θR

min and θR
max while for β0 the associated angles

are θ0
min and θ0

max. The angles θL
min, θL

max, θR
min, and θR

max found in Fig. 3 are illustrated as being defined at the
transition from solid to dotted wave line. The angles θ0

min and θ0
max split the solid arcs into a left and a right arc

line. For the depicted situation in Fig. 3 the spatial impulse response found from (8) is calculated by organizing the
integration angles as

h = 2
1

2π

∫ θ0
max

θ0
min

I(θ)dθ − 1

2π

∫ θL
max

θL
min

I(θ)dθ − 1

2π

∫ θR
max

θR
min

I(θ)dθ, (14)

where I(θ) is the integrand found in (8).
It is beneficial to define two functions for the integration angles as:

θ[t, χ, ts, θs, te, θe, β] =





θs t ≤ ts

cos−1
[

f1(β,t)+χf2(β,t)
f3(β,t)

]
ts < t < te

θe t ≥ te,

(15)

θsingle[t, χ, β]) = cos−1

[
f1(β, t) + χf2(β, t)

f3(β, t)

]
. (16)

Here ts defines a lower time at which the integration angle is a constant. Similarly, te defines an upper time at which
the angle is constant. In between these times the angle θ takes on a time dependent value. The constant χ takes on
the values 1 or −1 and determines the sign in front of the function f2. The function θsingle is useful for calculating
single angle values, which is necessary in some of the follow definitions of the spatial impulse response. By defining
the integration angles as having a value at all time instances the number of time branching needed to define the
spatial impulse response is limited. By this it is meant that the pulse will have a starting time, which corresponds
to the time at which the sphere touches the aperture the first time, similarly the pulse has an end time. In between
these two times many crossings between the edges of the aperture and the sphere will occur. By properly subtracting
and adding line contributions each time the sphere crosses a boundary, one can achieve much fewer expressions that
accounts for all point locations in front of the transducer. This is shown in the following.

III. TIME OF FLIGHT DEFINITIONS

To fully describe all possible locations of a point in front of the transducer one needs to define nine time of flight
values. These times are given by the distance from the point, P, to each transducer corner, shortest distance to the
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side edges at γL and γR, the shortest distances to the upper and the lower horizontal edges at θmax and θmin, and
the shortest distance to the transducer. The transducer corners are defined as c1, c2, c3, and c4. Corner coordinates
em are defined as ci = {x, y, z}:

c1 = {(R − r sin [θmin]) sin [γL], r cos [θmin], (R − r sin [θmin]) cos [γL]}, (17)

c2 = {(R − r sin [θmax]) sin [γL], r cos [θmax], (R − r sin [θmax]) cos [γL]}, (18)

c3 = {(R − r sin [θmin]) sin [γR], r cos [θmin], (R − r sin [θmin]) cos [γR]}, (19)

c4 = {(R − r sin [θmax]) sin [γR], r cos [θmax], (R − r sin [θmax]) cos [γR]}, (20)

Coordinates for the shortest distances to the vertical edges at γL and γR are geometrically differently defined
according to the location of the point, P, and is in this work referred to as cL, and cR, respectively. Similar situations
occur for coordinates defining the shortest distance to the upper and the lower horizontal transducer edges. The
location of these horizontal edges are defined by θmin and θmax as shown in Fig. 1. The coordinates to the shortest
distance at these locations are here defined as c5 and c6 for the edges associated with θmin and θmax, respectively.
The location of the coordinate for the shortest distance to the transducer is denoted c0.

The time of flight associated with the different coordinates are hereafter defined as tc0
, tc1

, tc2
, tc3

, tc4
, tc5

, tc6
, tcL

,
and tcR

.

IV. THE DIFFERENT ZONES

The final integral expression in (1) takes on different forms depending on where the point, P, is located relative to
the transducer. It is beneficial to define different zones at which the point can be located at relative to the transducer.
In this work it is chosen to define ten zones in total as mathematically described in the following. These defini-
tions will cover all possible zones that a point P can be found in. See the multimedia file for an animation of the zones.

Zone 1: θmin ≤ θp ≤ θmax , |OP ∗| < R , γR ≤ γp ≤ γL,
Zone 2: θmin ≥ θp ≤ θmax , |OP ∗| < R , γL ≤ γp ≤ γR,
Zone 3: (|θp| > θmax || |θp| < θmin) , γR ≤ γp ≤ γL , yp! = 0 , |OP ∗| ≥ R,
Zone 4: ((γp < γR) || (γp > γL)) , |OP ∗| > R , θmin < |θp| < θmax,
Zone 5: θmin < |θp| < θmax , γL ≥ γp ≥ γR , |OP ∗| > R,
Zone 6: ((θmax < θp) || (θmin > θp)) , ((γp < γR) || (γp > γL)) , yp! = 0 , |OP ∗| < R,
Zone 7: ((|θp| > θmax)||(|θp| < θmin)) , γR ≤ γp ≤ γL , yp! = 0 , |OP ∗| < R,
Zone 8: ((θmax < |θp|) || (θmin > |θp|)) , ((γp < γR) || (γp > γL)) , yp! = 0 , |OP ∗| ≥ R,
Zone 9: yp = 0 , |OP ∗| = R
Zone 10: |OP ∗| = R , γL ≤ γp ≤ γR , yp = 0,

See an illustration of the zones in the video: ”ZoneVideo” found on attached CD.

A. Spatial impulse response for Zone 1

This zone is located directly in front of the transducer and before the elevation focus. A sphere emanating from
within this zone may intersect the transducer as shown in Fig. 4a and Fig. 4b. Initially the crossing will be a closed
arc with upper and lower integration boundaries θ0

min and θ0
max as seen in Fig. 4a. The angle θ0

min gets equal to θmin

when the crossing exceeds the upper horizontal edge of the transducer. A similar situation occurs for the θ0
max that

equals θmax when the crossing exceeds the lower horizontal edge of the transducer. For the time instances, at which
the intersections have not yet exceeded the vertical side of the transducer, the spatial impulse response is calculated
as

h = 2
1

2π

∫ θ0
max

θ0
min

I(θ)dθ, (21)

where I(θ) is the integrand found in (8). The factor of two is because the integration only integrates along one of the
two line segments. Due to the symmetry of the segments the integral must be multiplied with a factor of two.

For the time instances where the intersections crosses the vertical sides of the transducer, i.e γR and γL, two new
set of integration limits occur: θR

max and θR
min for γR and θL

max and θL
min for γL as seen in Fig. 4b. The spatial impulse

response can then be calculated following one of two principles. The first principle relies on integrating along arcs
that actually intersect the transducer (See solid lines on Fig. 4). The spatial impulse response is then formulated as

h =
1

2π

∫ θR
min

θ0
min

I(θ)dθ +
1

2π

∫ θL
min

θ0
min

I(θ)dθ +
1

2π

∫ θ0
max

θR
max

I(θ)dθ +
1

2π

∫ θ0
max

θL
max

I(θ)dθ. (22)
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FIG. 4. Figure showing a sphere’s crossing with a transducer (solid) and virtual crossings (dotted). View seen from the
transducer back side in direction of the z-axis. a) The sphere has not yet crossed the side edges. The point is centered at
xp = 0, which gives symmetry. b) The sphere has crossed the edges. Dotted lines indicate the virtual arc crossings. The point
is offset to the left, which makes the left virtual arc significant bigger than the right virtual arc. See an illustration of the angles
being created by the crossing in the video: ”AngleVideo” found on the attached CD.

This yields four integrations.
The second method relies on calculating contributions from arc lengths located outside the transducer geometry as

if the transducer was violating the limitations by γL ≤ γ ≤ γR. One should then subtract contributions from these
virtual arcs from the total response. A mathematical formulation of this can be found as

h = 2
1

2π

∫ θ0
max

θ0
min

I(θ)dθ − 1

2π

∫ θL
max

θL
min

I(θ)dθ − 1

2π

∫ θR
max

θR
min

I(θ)dθ. (23)

The latter principle requires three integrations and may be considered more stable than the first principle because
it has fewer small arc contributions. Throughout this work the second principle is utilized for formulating the spatial
impulse response in all zones. Note, however, that the first integration principle will give exactly the same result and
could just as well have been used.

The complete spatial impulse response for the current zone using the latter principle is formulated as

hzone1(t) = 2h[θ[t, 1, t0, θ0, tc5
, θmin, β0], θ[t, −1, t0, θ0, tc6

, θmax, β0]]−
h[θ[t, 1, t0, θR, tc3

, θmin, βr], θ[t, −1, t0, θR, tc4
, θmax, βr]]−

h[θ[t, 1, t0, θL, tc1
, θmin, βl], θ[t, −1, t0, θL, tc2

, θmax, βl]]. (24)

This pulse is therefore defined from the minimum time instance, t0, to the maximum time instance, which is one
of the times tc1, tc2, tc3, tc4, tc5, or tc6. Note that (24) accounts for the different edge times and angle limitations
through the formulation of the analytical function θ in (15).

A short analysis of the integration angles represented in (24) can be performed for a given case by plotting the
different θ angles as shown in Fig. 5. The considered situation is shown for a point located at {xp, yp, zp} = {5, 0, 45}
mm on a transducer with a height of 30 mm, outer radius, R, of 60 mm, inner radius, r, of 90 mm and a γL = 0.26.
The point is therefore placed in the xz-plane wherefore tc5

== tc6
. Furthermore, the point is placed to the left

(xp > 0) of the z-axis, which results in tcL
< tcR

and tc1
== tc2

< tc3
== tc4

. The contribution from the virtual arc
to the left of the transducer is therefore only nonzero in the time interval tcL

≤ t ≤ tc3
and for the right virtual arc

it is the time interval tcR
≤ t ≤ tc3

. Notice also that the function (15) introduces a cut off at tc1
and tc2

, which are
the time instances at which the virtual arc length to the left of the transducer exceeds the minimum and maximum
opening angles θmin and θmax.

B. Spatial impulse response for Zone 2 to Zone 10

The same analysis principle as applied for Zone 1 can be applied for all other zones.

Convex elevation focused transducers 6
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FIG. 5. Figure showing the integration angles plotted for a point located in Zone 1 of a transducer. The angles show that the
wave crosses the left edge before it crosses the right. Start and end times are tc0 and tc3 , respectively.

1. Zone 2

For Zone 2 the spatial impulse response formulation is dependent on the point being to the right or to the left of
the transducer. The responses are formulated as follows:

For γp < γR

hzone2(t) = h[θ[t, 1, tcR
, θcR

, tc3
, θmin, βr], θ[t, −1, tcR

, θcR
, tc4

, θmax, βr]]−
h[θ[t, 1, tcL

, θcL
, tc1

, θmin, βl], θ[t, −1, tcL
, θcL

, tc2
, θmax, βl]]. (25)

For γp > γL

hzone2(t) = h[θ[t, 1, tcL
, θcL

, tc1
, θmin, βl], θ[t, −1, tcL

, θcL
, tc2

, θmax, βl]]−
h[θ[t, 1, tcR

, θcR
, tc3

, θmin, βr], θ[t, −1, tcR
, θcR

, tc4
, θmax, βr]]. (26)

2. Zone 3

For Zone 3 the spatial impulse response is formulated as follows:
If yp > 0

χr =

{
1, θsingle[tc3

, 1, βr] == θmin

−1, else
(27)

χl =

{
1, θsingle[tc1

, 1, βl] == θmin

−1, else
(28)
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hzone3(t) = 2h[θ[t, 1, tc5
, θmin, tc5

, θmin, βo], θ[t, 1, tc5
, θmin, tc6

, θmax, βo]]+

h[θ[t, χr, tc3
, θmin, tc3

, θmin, βr], θ[t, χr, tc3
, θmin, tc4

, θmax, βr]]−
h[θ[t, χl, tc1

, θmin, tc1
, θmin, βl], θ[t, χl, tc1

, θmin, tc2
, θmax, βl]], (29)

and for yp < 0

χr =

{
−1, θsingle[tc4

, −1, βr] == θmax

1, else
(30)

χl =

{
−1, θsingle[tc2

, 1, βl] == θmax

1, else
(31)

hzone3(t) = 2h[θ[t, −1, tc6
, θmax, tc5

, θmin, βo], θ[t, −1, tc6
, θmax, tc6

, θmax, βo]]+

h[θ[t, χr, tc4
, θmax, tc3

, θmin, βr], θ[t, χr, tc4
, θmax, tc4

, θmax, βr]]−
h[θ[t, χl, tc2

, θmax, tc1
, θmin, βl], θ[t, χl, tc2

, θmax, tc2
, θmax, βl]], (32)

The determination of the sign for χl,r is needed because the nature of the angles at the side edges of the transducer
is dependent on the point being before or after the elevation focus for a translated and rotated coordinate system to
these edges. This means that if the location of the z-coordinate of the point, P, is before or after the elevation focus
at the edge when the coordinates xp, yp, zp are transformed to a coordinate system located at the given edge, it alters
the sign of χr,l. A reformulation of the zone definitions may avoid this problem, but for the zone definitions applied
in this work it is valid.

3. Zone 4

For Zone 4 the equations are dependent on γL ≤ γp ≤ γR. For γL ≤ γp the formulation becomes

hzone4(t) = h[θ[t, −1, tc2
, θmax, tcL

, θcL
, βl], θ[t, −1, tc2

, θmax, tc2
, θmax, βl]]+

h[θ[t, 1, tc1
, θmin, tc1

, θmin, βl], θ[t, 1, tc1
, θmin, tcL

, θcL
, βl]]−

h[θ[t, −1, tc4
, θmax, tcR

, θcR
, βr], θ[t, −1, tc4

, θmax, tc4
, θmax, βr]]−

h[θ[t, 1, tc3
, θmin, tc3

, θmin, βr], θ[t, 1, tc3
, θmin, tcR

, θcR
, βr]], (33)

and for γp ≤ γR the formulation becomes

hzone4(t) = h[θ[t, −1, tc4
, θmax, tcR

, θcR
, βr], θ[t, −1, tc4

, θmax, tc4
, θmax, βr]]+

h[θ[t, 1, tc3
, θmin, tc3

, θmin, βr], θ[t, 1, tc3
, θmin, tcR

, θcR
, βr]]−

h[θ[t, −1, tc2
, θmax, tcL

, θcL
, βl], θ[t, −1, tc2

, θmax, tc2
, θmax, βl]]−

h[θ[t, 1, tc1
, θmin, tc1

, θmin, βl], θ[t, 1, tc1
, θmin, tcL

, θcL
, βl]], (34)

4. Zone 5

For Zone 5 only one expression is needed for describing the spatial impulse response

hzone5(t) = 2h[θ[t, 1, tc5
, θmin, tc5

, θmin, β0], θ[t, 1, tc5
, θmin, tc0

, θ0, β0]]+

2h[θ[t, −1, tc6
, θmax, tc0

, θ0, β0], θ[t, −1, tc6
, θmax, tc6

, θmax, β0]]−
h[θ[t, 1, tc3

, θmin, tc3
, θmin, βr], θ[t, 1, tc3

, θmin, tcR
, θR, βr]]−

h[θ[t, −1, tc4
, θmax, tcR

, θR, βr], θ[t, −1, tc4
, θmax, tc4

, θmax, βr]]−
h[θ[t, 1, tc1

, θmin, tc1
, θmin, βl], θ[t, 1, tc1

, θmin, tcL
, θL, βl]]−

h[θ[t, −1, tc2
, θmax, tcL

, θL, βl], θ[t, −1, tc2
, θmax, tc2

, θmax, βl]]. (35)
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5. Zone 6

In Zone 6 four different cases are defined. Zone 6 is located to the left and to the right of the transducer and the
sign of χ is dependent on the point P being below or above the z-axis for this zone.

For yp < 0 and γp < γR the spatial impulse response is formulated as

hzone6(t) = h[θ[t, 1, tc4
, θmax, tc3

, θmin, βr], θ[t, 1, tc4
, θmax, tc4

, θmax, βr]]−
h[θ[t, 1, tc2

, θmax, tc1
, θmin, βl], θ[t, 1, tc2

, θmax, tc2
, θmax, βl]]. (36)

For yp > 0 and γp < γR the spatial impulse response is formulated as

hzone6(t) = h[θ[t, −1, tc3
, θmin, tc3

, θmin, βr], θ[t, −1, tc3
, θmin, tc4

, θmax, βr]]−
h[θ[t, −1, tc1

, θmin, tc1
, θmin, βl], θ[t, −1, tc1

, θmin, tc2
, θmax, βl]]. (37)

For yp < 0 and γp > γR the spatial impulse response is formulated as

hzone6(t) = h[θ[t, 1, tc2
, θmax, tc1

, θmin, βl], θ[t, 1, tc2
, θmax, tc2

, θmax, βl]]−
h[θ[t, 1, tc4

, θmax, tc3
, θmin, βr], θ[t, 1, tc4

, θmax, tc4
, θmax, βr]]. (38)

For yp > 0 and γp > γR the spatial impulse response is formulated as

hzone6(t) = h[θ[t, −1, tc1
, θmin, tc1

, θmin, βl], θ[t, −1, tc1
, θmin, tc2

, θmax, βl]]−
h[θ[t, −1, tc3

, θmin, tc3
, θmin, βr], θ[t, −1, tc3

, θmin, tc4
, θmax, βr]]. (39)

6. Zone 7

This zone is dependent on the sign of yp. For yp > 0 the spatial impulse response becomes

hzone7(t) = 2h[θ[t, −1, tc0
, θmin, tc0

, θmin, β0], θ[t, −1, tc0
, θmin, tc6

, θmax, β0]]−
h[θ[t, −1, tc3

, θmin, tc3
, θmin, βr], θ[t, −1, tc3

, θmin, tc4
, θmax, βr]]−

h[θ[t, −1, tc1
, θmin, tc1

, θmin, βl], θ[t, −1, tc1
, θmin, tc2

, θmax, βl]]. (40)

For yp < 0 the spatial impulse response becomes

hzone7(t) = 2h[θ[t, 1, tc0
, θmax, tc5

, θmin, β0], θ[t, 1, tc0
, θmax, tc0

, θmax, β0]]−
h[θ[t, 1, tc4

, θmax, tc3
, θmin, βr], θ[t, 1, tc4

, θmax, tc4
, θmax, βr]]−

h[θ[t, 1, tc2
, θmax, tc1

, θmin, βl], θ[t, 1, tc2
, θmax, tc2

, θmax, βl]]. (41)

7. Zone 8

Zone 8 is very similar to Zone 6, where four conditions were found and it relies on finding the sign of χ as it was
seen in Zone 3. For yp < 0 and γp < γR the spatial impulse response is formulated as

χr =

{
−1, θsingle[tc4

, −1, βr] == θmax

1, else
(42)

χl =

{
−1, θsingle[tc2

, −1, βl] == θmax

1, else
(43)

hzone8(t) = h[θ[t, χr, tc4
, θmax, tc3

, θmin, βr], θ[t, χr, tc4
, θmax, tc4

, θmax, βr]]−
h[θ[t, χl, tc2

, θmax, tc1
, θmin, βl], θ[t, χl, tc2

, θmax, tc2
, θmax, βl]]. (44)

For yp > 0 and γp < γR the spatial impulse response is formulated as

χr =

{
1, θsingle[tc3

, 1, βr] == θmin

−1, else
(45)
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χl =

{
−1, θsingle[tc1

, −1, βl] == θmin

1, else
(46)

hzone8(t) = h[θ[t, χr, tc3
, θmin, tc3

, θmin, βr], θ[t, χr, tc3
, θmin, tc4

, θmax, βr]]−
h[θ[t, χl, tc1

, θmin, tc1
, θmin, βl], θ[t, χl, tc1

, θmin, tc2
, θmax, βl]]. (47)

For yp < 0 and γp > γL the spatial impulse response is formulated as

χl =

{
−1, θsingle[tc2

, −1, βl] == θmax

1, else
(48)

χr =

{
−1, θsingle[tc4

, −1, βr] == θmax

1, else
(49)

hzone8(t) = h[θ[t, χl, tc2
, θmax, tc1

, θmin, βl], θ[t, χl, tc2
, θmax, tc2

, θmax, βl]]−
h[θ[t, χr, tc4

, θmax, tc3
, θmin, βr], θ[t, χr, tc4

, θmax, tc4
, θmax, βr]]. (50)

For yp > 0 and γp > γL the spatial impulse response is formulated as

χl =

{
1, θsingle[tc1

, 1, βl] == θmin

−1, else
(51)

χr =

{
1, θsingle[tc3

, 1, βr] == θmax

−1, else
(52)

hzone8(t) = h[θ[t, χl, tc1
, θmin, tc1

, θmin, βl], θ[t, χl, tc1
, θmin, tc2

, θmax, βl]]−
h[θ[t, χr, tc3

, θmin, tc3
, θmin, βr], θ[t, χr, tc3

, θmin, tc4
, θmax, βr]]. (53)

8. Zone 9

This zone is located at the elevation focus of the transducer. Considering (8) and setting R = |OP ∗| and yp = 0
yields

hf (ti) =
1

2π

∫ θmax(ti)

θmin(ti)

c r

R

√
1 −

(
1 +

r2 −c2 t2i
2 R2−2 r R sin θ

)2
dθ. (54)

For the initial time step, where r2 −c2 t2i = 0, the integral is infinite, which is both a numerical problem and physically
not appropriate. This has to be accounted for in a given implementation by either finding an asymptotic value using
the gradient of the integration values from time t > tminimum and the following time steps, or by finding the initial
step from a point located just before the elevation focus as well as one located just after the elevation focus. These
initial values may give an approximate mean value of the initial samples at the elevation focus. The mean energy
between these two samples may then be distributed across the samples.

The spatial impulse response takes on the following form

hzone9(t) = 2hf [θ[t, 1, tc0
, θmin, tc0

, θmin, β0], θ[t, 1, tc0
, θmax, tc0

, θmax, β0]] − ...

hf [θ[t, 1, tcL
, θL, tc1

, θmin, βl], θ[t, −1, tcL
, θL, tc2

, θmax, βl]] − ...

hf [θ[t, 1, tcR
, θR, tc3

, θmin, βr], θ[t, −1, tcR
, θR, tc4

, θmax, βr]]. (55)

Notice that the θ[t, 1, tc0
, θmin, tc0

, θmin, β0] for the first integration equals θmin and θ[t, 1, tc0
, θmax, tc0

, θmax, β0] equals
θmax for all time instances.
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FIG. 6. Figure showing the curve shape of the integrand in (56) at different time steps. It is clearly seen how the curve increases
asymptotic forward infinity at φmin and φmax. Notice that a full symmetric case is shown for the plot. Symmetry is always
the case, however, depending on the value of φmin and φmax one or both spikes at the start and end of the integration domain
may not be present.

9. Zone 10

This zone is similar to Zone 2 and only differ at yp = 0. All time of flight calculations are the same. Also the spatial
impulse response is given by (25) and (26) as for Zone 2.

V. APPROXIMATING THE INTEGRAL EXPRESSION

The integral in (8) is of elliptical type and requires a numerical solver to find the result. However, the following anal-
ysis of the integral will show that an approximation of the integrand makes the spatial impulse response analytically
integrable.

Consider (8) in the following form

h =
1

2π

∫ φmax

φmin

cr

|OP ∗|
√

1 − P [θ]
dθ, (56)

where

P [θ] =
(−k + c2t2 + 2ryp cos θ + 2rR sin θ)2

(2|OP ∗|R − 2|OP ∗|r sin θ)2
. (57)

Example plots for the integrand at several time instance are seen in Fig. 6. The vertical lines indicate the location
of the φmin and φmax at different time steps and as indicated by the form of (57) the integrand approaches infinity
for P [θ] → 1.

Because of the integrand’s nature it gets difficult, (but not impossible), to perform a series expansion that can
replace the integrand and reveal an analytical integrable integrand without introducing a significant error in energy
conservation close to the maximum integration angles. As a consequence this method may not be the most effective
one to apply.

It may be more beneficial to consider the expression in (57) and apply a second order Taylor expansion to this
polynomial and achieve a second order polynomial, T [θ, θ0], around a local integration angle θ0.

T [θ, θ0] = A[θ0]θ
2 + B[θ0]θ + C[θ0], (58)

Convex elevation focused transducers 11
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difference between P [θ] and T [θ] at the two time instances. Notice how φmin and φmax includes a wider angle difference for
T2 and how the error has increased significantly.

where A[θ0], B[θ0], and C[θ0] are the coefficients found by ordering the Taylor series.
Expanding the polynomial into only a second order is in this work beneficial, contrary higher order expansions,

since the indefinite integral of the spatial impulse response becomes analytically integrable

Int =
1

2π

∫
cr

|OP ∗|
√

1 − (Aθ2 + Bθ + C)
dθ (59)

=
1

2π

c r tan−1
[

B+2Aθ
2
√

A
√

1−C−Bθ−Aθ2

]

|OP ∗|
√

A
(60)

=
1

2π

i c r log
[
2
√

−Aθ2 − Bθ − C + 1 − i (2Aθ+B)√
A

]

√
A|OP ∗|

, (61)

where i =
√

−1.
An integration of (56) can be found by performing the second order Taylor expansion around a sufficient number of

θ0 angles within the interval of φmin and φmax and then make the corresponding sub integrations. This will, however,
compromise the desired benefit of a fast computational expression in the analytical expression.

Consider Fig. 7a. This figure shows how the second order polynomial, T [θ, θ0], fits (57) for θ0 = φmin+φmax

2 at
different time steps. It is seen that when a small angle interval ∆φ = φmax−φmin is considered, as for the T1 example,
a very close curve fit is possible. However, Fig. 7b. shows that for bigger ∆φ, as for the T2 example, the residual of
the expansion becomes of more and more influence at the outer integration boundaries, which is a natural consequence
of the Taylor expansion. This is an undesirable consequence that becomes very important for calculations on large
transducers, since a significant amount of energy is located in the neighborhood of φmin and φmax as shown in Fig. 6

A strategy for capturing the energy at the outer integration boundaries could therefore be to perform Taylor
expansions at φmin, φmax, and φmin+φmax

2 and then subdivide the integration into three intervals:

(
φmin → φmin + φ0

2

)
,

(
φmin + φ0

2
→ φmax + φ0

2

)
,

(
φmax + φ0

2
→ φmax

)
. (62)

This method ensures better conservation of the energy near the outer integration angles than a single expansion
around the mean integration value does. Furthermore, it captures the centered curvature. The cost of this method is
however, three times more calculation time for small angles.
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VI. SIMULATIONS

To test the developed algorithms an adaptive Gauss-Kronrod quadrature numerical integrator from MATLAB is
applied for solving the exact form of the integral in (8). As reference to validate the pulse shape of the exact solution
a high resolution transducer model in Field II is used. Furthermore, to approximate the integral of the spatial impulse
response simulations with a three-point Taylor expansion, as described above, a single-point Taylor expansion at the
mean integration angle, and a direct second order polynomial fit are implemented. The latter implementation uses
three points to find the coefficients of a second order polynomial. These three points are P [φmin], P [(φmin +φmax)/2],
and P [φmax]. The latter method differs from the three-point Taylor approximation, because it finds a best polynomial
fit through the three points and not a local fit as the Taylor expansion does.

The error is calculated as

Ei = 100

√
1
N

∑
N (hi − hnumerical)2

√
1
N

∑
N h2

numerical

, (63)

where hnumerical is the exact solution to the spatial impulse response as represented by (8) and solved using the
numerical integrator. hi is the spatial impulse response calculated with either Field II, hF , the three-point Taylor
expansion, h3T , the single-point Taylor expansion, h1T , or the second order polynomial fit, h2p. N is the number of
samples in the response. To get sample times aligned a simple spline interpolation between the points are performed.
This is necessary since start times for the pulses may be calculated slightly differently in Field II than in the MATLAB
implementation applied in this work.

A double curved transducer with a width of 20 mm and a 30 mm height is simulated. The outer radius, R, is 60 mm
and the inner radius, r, is 90 mm. Initially a single response from a point located in Zone 1 at {xp, yp, zp} = {0, 0, 10}
mm is calculated. The coordinates are defined using the coordinate definition of Field II. The zero reference for
the z-coordinate is located at the outer most z-coordinates for the transducer defined in the torus coordinates. The
sampling frequency is set to 5 GHz. A second simulation case investigates 200 points randomly distributed in front
of the transducer and covering all zones.

A third simulation investigates the error for the situation where R = 90 mm and r = 6 m by comparing h3T and
h1T with Field II as reference. The mean error is calculated for 200 points randomly distributed across the zones.
This simulation will due to the transducers’ large inner radius, r, mimic a convex transducer with no elevation focus.
Yet a fourth simulation investigates R = 6 m and r = 6 m which corresponds to a plane transducer and the mean
error of simulating 200 points are calculated. Finally a study case where R = 6 m and r = 60 mm is performed. This
type of transducer corresponds to a elevation focused linear rectangular transducer. The transducer dimensions for
simulation case three, four, and five are changed to a more realistic size with a width of 1 mm and a height of 10 mm.
The sampling frequency is fixed at 5 GHz.

VII. RESULTS

Figure 8a shows the results of simulating the double curved transducer i.e. R = 60 mm and r = 90 mm at the
point {xp, yp, zp} = {0, 0, 10} mm. Clearly all the solvers agree visually on the result from a full pulse perspective
and a zoom as shown in Fig. 8b is needed to visually identify the difference. The relative errors were found to be:
EField = 0.40%, E1T = 0.80 %, E3T = 0.03 %, and E2p = 0.18 %. A higher exactness for the 3T approximator was
seen compared to the other solvers. Performing the same simulation for 200 points randomly distributed across all
zones resulted in a mean error (ME) of: MEField = 0.45 %, ME1T = 1.78 %, ME3T = 0.01 %, and ME2p = 0.45 %.
Also calculating the mean of the solving time, Ti, for each solver yielded: TNumerical = 73.0 s, T1T = 8.7 s, T3T = 9.4
s, and T2p = 7.0 s. Clearly the numerical solver is by far the slowest, which was also expected, however, the mean
times show that an improvement in the error from 1.78 % to 0.01 % can be achieved with a 8.1 % increase in simulation
time by applying the three point approximator instead of the fast one point approximator or an improvement in the
error from 0.45 % to 0.01 % with a 34.3 % increase in simulation time by changing the solver from the polynomial
fitting to the three point expansion. Notice that the Field II calculation time has been left out since it cannot relate
to the above times because Field II is implemented in C and the algorithm in this work is implemented in MATLAB.

Figure 9a shows a simulation for a point at {xp, yp, zp} = {0, 0, 105} mm. A point at this location introduces a
sharp spike to the response. From Fig. 9a a zoom onto the spike in Fig. 9a is to be found. Clearly the one point
solver h1T is calculating the spike incorrectly. This may look like a wrong edge calculation for this solver, however, the
implementation of edge calculation, zones etc. are identical with all the other zones, which are seen to calculate the
response more correctly. The errors where found to be EField = 0.49 %, E1T = 3.58 %, E3T = 0.006 %, E2p = 0.83 %.

Figure 10a shows the result of simulating a point at {xp, yp, zp} = {0, 0, 40} mm on a convex non-elevation focused
transducer using the model presented in this work. Figure 10b shows a zoom from Fig. 10a of the horizontal line
section. From the latter it can be seen that the h1T curve is having difficulties in capturing the pulse shape. The

Convex elevation focused transducers 13



7 8 9 10 11 12 13 14 15
0

500

1000

1500

h 
[m

/s
]

 

 
Zoom

a)
Numerical
Field II
h

1T

h
3T

h
2p

7.5 8 8.5 9 9.5 10 10.5
1468

1470

1472

1474

1476

1478

1480

Time [µS]

h 
[m

/s
]

Zoom

 

 

b)

Numerical
Field II
h

1T

h
3T

h
2p

FIG. 8. Results of simulating a single point in front of a double curved transducer. a) Full pulse profile. b) Zoom onto (a) to
magnify the difference.
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FIG. 9. Results of simulating a sharp spiking spatial impulse response from a double curved transducer. EField = 0.49%,
E1T = 3.580 %, E3T = 0.006 %, E2p = 0.83 %. Only a few data points are shown from each curve a) Full pulse profile. b)
Zoom onto (a) to magnify the difference.

error, Ei, relative to the numerical solution is EField = 6.9 %, E1T = 5.9 %, E3T = 0.01 %, E2p = 0.0283 %. This
shows that the 3T and the 2p are good solvers for convex arrays, and the error EField shows that the algorithm has
consistency with what Field II predicts. Further experiments with simulations at points close to the convex transducer
e.g. {xp, yp, zp} = {0, 0, 1} mm have shown that the numerical integrator breaks down. However, the approximating
models are still stable. Field II is therefore applied as the reference to get a measure of the error for simulations in
all zones of a convex transducer. 200 points were investigated and the mean error for each solver was found to be
ME1T = 3.8 %, ME3T = 2.5 %, ME2p = 2.5 %, which indicate a rather identical performance of the solvers.
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FIG. 10. Results of simulating a convex non-elevation focused array.

Changing the transducer geometry to a linear flat transducer R = 6 m and r = 6 m for the model presented here
and for Field II yields a mean error of ME1T = 3.56 %, ME3T = 3.56 %, ME2p = 34.86 % for 200 points and with
Field II as the reference. The errors show that the model can capture the response from plane transducers as well. It
also indicates that the polynomial fitting, 2p, fails to predict the response in contrary to the 1T and the 3T analytical
solvers.

Finally a linear elevation focused array was considered. This transducer is mimicked by, R = 6 m, r = 60 mm,
height = 10 mm, and γL = 83µrad, which corresponds to a width of approximately 1 mm. The mean error relative to
Field II was found to be ME1T = 4.43 %, ME3T = 3.46 %, and ME2p = 33.30 % for a simulation with 200 points. The
mean solving time for the three approximating methods was found to be T1T = 0.49 s, T3T = 0.57 s, and T2p = 0.33
s. This implies an error improvement of 21.9 % with a 15.4 % increase in the simulation time when using the 3T
instead of the 1T and a 89 % improvement in the error when applying the 3T instead of the 2p solver. The latter
improvement costs 72.7 % more calculation time.

VIII. DISCUSSION

The results showed that a very accurate prediction of the exact solution to (8) could be achieved by using the three-
point Taylor expansion, 3T, for all transducer configurations. However, also good results were achieved by calculating
the second order polynomial and the one point Taylor expansion for the double curved transducer. As it could be
seen on Fig. 9 the 1T calculations fails for steep spikes. This is because the main energy that represent the spike is
found at the outer integration values φmin and φmax when approximating (57) around the given time instances. The
1T solver in contrary seems to be more stable for linear arrays which the 2p showed not to be. This shows that the
solvers 1T and 2p are sensitive to the curvatures of the transducer. Choosing which solver that operates the best is
therefore application dependent. Clearly the 3T exhibits the best performance, but for the cost of a slight increase
in the solution time relative to the other solvers. It should also be mentioned that the influence of miscalculating
a spike as seen in Fig. 9 is significant when the pure shape of the spatial impulse responses are to be compared.
However, it should be recalled that the spatial impulse response are typically convolved with a band-limited pulse
representing the transducer in emission or in pulse-echo. Therefore, when the spatial impulse response is used in a
convolution an error, as the ones typical for the 1T, becomes of less influence. If the convolved pulse is sufficiently
band-limited for the given application, then it may be beneficial to calculate the responses with the slightly faster
approximation of 1T and 2p. It should, however, be noted that the 8.1 % percent increase in simulation time that
the 3T approximation offers relatively to the 1T or 34.3 % relatively to the 2p are relatively small compared to the
high accuracy and stability it represents for the double curved transducer.

From the results it is also noticeable that the algorithm is a fairly good approximation as a model for linear arrays,
elevation focused linear arrays, and convex arrays with no elevation focus. The model therefore represents an all-round
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formulation of the spatial impulse response of general rectangular arrays. Further development should therefore focus
on a fast and competitive implementation into a C/Fortran environment from which a simulation time comparison
between recognized programs such as Ultrasim, Dream, DELFI, and Field II could be made.

Yet another aspect that should be commented on in context of an practical implementation is the sampling frequency.
The sampling frequency applied in this work is relatively large, 5 GHz, which was chosen to validate the algorithm
directly. A much lower sampling frequency should be applied if the algorithm and the solver should be implemented
into a simulation program such as Field II, which is usually operated at a 100 MHz and with small elements. The
combination between small elements and low sampling frequency is only possible if the implementation preserves
conservation of energy in the spatial impulse response. This may be achieved by performing an area integration of
the pulse within the samples. This area integration is then spread out onto the different global samples. In other
words a sub-integration procedure is to be performed and is a trivial task to perform.

IX. CONCLUSION

An exact mathematical formulation for the spatial impulse response to a double curved transducer has been pre-
sented. The response can be represented with an integral of elliptical type. For this integral to be solved it requires
a numerical integrator. It has been shown that a good approximation of the integral can be achieved by applying a
three-point Taylor expansion to a part of the integral. The Taylor expansion yields an analytical integrable expression.
A single-point Taylor expansion and a second order polynomial fit was also shown to give good results for simulations
of a double curved transducer. The presented algorithm exhibited consistent results with Field II for both a double
curved transducer, a linear flat transducer, a linear elevation focused transducer, and a convex non-elevation focused
transducer. The three-point Taylor approximation showed to be the most stable approximation, of the cost of a
slightly higher simulation time.
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FIELD II is a simulation software capable of predicting the field pressure in front of transducers
having any complicated geometry. A calibrated prediction with this program is, however, dependent
on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse
response is not calculated by FIELD II. This work investigates the usability of combining a
one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer
here refers to a transducer composed of several material layers. Measurements of pressure and
current from Pz27 piezoceramic disks as well as pressure and intensity measurements in front of a
128 element commercial convex medical transducer are compared to the simulations. Results show
that the models can predict the pressure from the piezoceramic disks with a root mean square �rms�
error of 11.2% to 36.2% with a 2 dB amplitude decrease. The current through the external driving
circuits are predicted within 8.6% to 36% rms error. Prediction errors of 30% and in the range of
5.8%–19.9% for the pressure and the intensity, respectively, are found when simulating the
commercial transducer. It is concluded that the multilayer transducer model and the FIELD II software
in combination give good agreement with measurements.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3365317�

PACS number�s�: 43.38.Fx, 43.20.Px, 43.58.Vb �AJZ� Pages: 2825–2835

I. INTRODUCTION

The FIELD II program1,2 is widely used within several
ultrasound imaging research areas. It is suitable for simulat-
ing rf-data for signal processing and testing of several trans-
ducer geometries. However, Field II requires knowledge of
each of the transducer elements’ surface acceleration to per-
form calibrated pressure predictions. The acceleration is
most often measured or approximated by a tapered tone
burst. The tapered tone burst method may be found adequate
for generating rf-data for signal processing as well as in stud-
ies of the transducer geometry where the transducers impulse
response is mainly needed for, e.g., a proper matched filter-
ing. Another useful area for the FIELD II software is for in-
tensity simulation by calculating the pressure at a given point
of interest. For such simulations to be useful in intensity
validation processes, which have to fulfill Food and Drug
Administration �FDA� requirements, it is no longer accept-
able to have knowledge of an approximated impulse re-
sponse. Direct measurement of the impulse response may
then be needed. Measuring the impulse response is an expen-
sive and cumbersome method, hence a direct simulation of
the transducer and its driving circuits could be beneficial.
Such an approach would also ease the development of new

multilayered transducers and prediction of their pressure
field responses.

To simulate the pressure response from transducers, a
model which can predict the volt-to-surface acceleration con-
version of multilayered transducers is needed. Methods for
modeling piezoelectric transducers are well known in
literature.3–8 Most of these models are based on electrical
equivalent circuits benefiting from transmission line theory
to represent the electromechanical coupling and acoustic
wave propagation, and others rely on deriving impedance
matrices for describing the transducer behavior. All of these
methods have their advantage and disadvantages depending
on the application of use.

This paper, however, investigates the accuracy in com-
bining a one-dimensional modeling principle as described by
Willatzen9,10 with the FIELD II simulation software. This hy-
brid modeling principle was briefly discussed in our previous
works11,12 and is in this work extended and investigated in
detail. The model is based on Navier’s equations, Maxwell–
Poisson’s law, and piezoelectric constitutive equations and
can be easily solved in a closed form using, e.g., Gauss
elimination. The modeling principle can account for both
electrical and mechanical losses by using the mechanical
quality factor and the dielectrical loss factor tan��� or by
using the transducers’ characteristic parameters in a
complex-valued form which accounts implicitly for
attenuation.13 Furthermore, by solving the closed form equa-

a�Author to whom correspondence should be addressed. Electronic mail:
db@elektro.dtu.dk
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tions for a multilayered structure, it is possible to extract
knowledge of particle displacement, velocity, acceleration,
and dielectrical effects at any position inside a multilayer
transducer assumed to operate in its longitudinal mode. The
input parameters for the model are those directly found in the
constitutive matrices such as the stiffness matrix, the piezo-
electric stress constant matrix, and the permittivity matrix
wherefore the influence of each constitutive parameter can be
studied directly. All these matrices are most often directly
available by the material manufacturers and are, thus, not
hidden in an effective constant as is the case with electrical
equivalent models. Furthermore, the volt-to-surface accelera-
tion impulse response can easily be solved for using the
method presented by Willatzen10 to any bandwidth of inter-
est. The bandwidth is only limited by the computer power
available and may be restricted depending on the number of
resonance frequencies needed. The modeling principle is
therefore beneficial for both transducer designers and FIELD II

users, especially since the modeling principle is mathemati-
cally very suitable for predicting this impulse response in a
form that can be directly exported for use in the FIELD II

software.
In this paper, the modeling principle is used for describ-

ing circular Pz27 piezoceramics from Ferroperm Piezocer-
amics A/S, Kvistgaard, Denmark. The ceramics are mounted
with silver electrodes, immersed into water and driven with a
function generator. Furthermore, a slightly more complicated
transducer model describing a commercial 128 element con-
vex medical ultrasound transducer from BK Medical Aps.
�Herlev, Denmark� is presented with a simplified model de-
scription of a driving transmitter unit from BK Medical Aps.
Pressure predictions along the center axis of the ceramic as
well as pressure and intensity predictions in the elevation
plane of the convex transducer are performed by combining
the models with the FIELD II software. All simulations are
compared with measurements to quantify the accuracy of the
models.

II. THEORY

Section II A describes the basic equations needed to set
up a consistent equation set for solving simple resistance
loaded piezoceramics as well as more complicated electronic
loaded commercial medical transducers. It shows how at-
tenuation and boundary conditions can be included into the
transducer model, and it discusses how to set up the FIELD II

program for handling the piezoceramics and the convex
transducer.

A. Acoustical wave propagation in solid layers

The time-dependent velocity and tension at any spatial
position inside a one-dimensional transducer layer can be
found based on monofrequency solutions for the particle ve-
locity u and the tension T:10

u33�z,t,�� =
c33

D SA

Za
e�−jkz−j�t� −

c33
D SB

Za
e�jkz−j�t�, �1�

T33�z,t,�� = c33
D �SAe�−jkz−j�t� + SBe�jkz−j�t�� − h33D , �2�

where c33
D and h33 are the stiffness constant in the longitudi-

nal direction and the piezoelectric constant defined as
e33 /�33

S , respectively. Here e33 and �33
S are the piezoelectrical

coupling coefficient for stress-charge form and the electric
permittivity, respectively. The propagation constant k is de-
fined as � /v33 where � is the radial frequency, and v33 is the
wave velocity defined by �c33

D /�. Here � is the given layer’s
material density. The acoustical impedance Za is defined as
Za=v33�. The unknown coefficients SA and SB are frequency
and boundary dependent constants, and D is the frequency-
dependent electric displacement. In the following, any sub-
scripts of 33 are discarded since the transducers are assumed
to operate in the longitudinal thickness mode only.

For nonpiezoelectric layers the same solutions are valid.
However, the piezoelectrical constant vanishes and the elec-
trical displacement D can be neglected.

Tension and particle velocities must be continuous ev-
erywhere and, in particular, at interfaces

TLayer1
= TLayer2

, �3�

uLayer1
= uLayer2

. �4�

B. Modeling losses

Losses, which influence the transducer response, can
mainly be divided into acoustical and electrical losses.10,14–16

The acoustical losses arise due to many physical mecha-
nisms such as heating, viscosity, and cross-talks which are all
relatively complicated mechanisms to model. Two ways of
modeling losses are presented and tested with the modeling
here. One method applies purely real-valued transducer pa-
rameters from which the attenuation can be approximated
explicitly. Another method utilizes a complex-valued trans-
ducer parameter set which implicitly accounts for losses.13

The real-valued method accounts for losses by using a

complex propagation constant k̄ instead of a real-valued one
in, e.g., Eqs. �1� and �2�. A transformation of the real-valued

propagation constant may therefore be performed as k→ k̄
=kr+j�, where kr=� /vr and vr is the phase velocity. The
attenuation constant � is an approximation of mechanical
losses and has the units �1/m�. It may be found using the
mechanical quality factor, Qm, as �=� / �Qm��, where � is
the wavelength. A complex phase velocity can therefore be
found as

v̄ =
�

k̄
=

�

kr + j�
=

vr

1 +
j�vr

�

, �5�

and by substitution the complex propagation constant be-
comes

k̄ =
�

v̄
. �6�

Electrical losses may be defined in two categories: losses due
to the electrical network and losses due to the transducer
materials. Losses in the electrical network may be very cum-
bersome to account for since they highly depend on the
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transmitter system, cables, element cross-talks, etc. Thor-
ough knowledge of the electrical network design is therefore
needed. The dielectrical losses in the transducer, however,
can be modeled by defining the dielectrical loss factor as a
complex-valued one ��=�+j� tan �, where tan��� is the di-
electric loss factor.10 This method is suitable if only real-
valued material constants for the transducer are known.

The second suggested method for modeling both electri-
cal and acoustical losses in the transducer is by applying
complex-valued material coefficients for cD , h , e , �S. This
method may be theoretically more powerful than the method
of using the mechanical quality factor and the dielectric loss
factor, since it has been found that loss contributions in pi-
ezoelectric materials can be directly included into each ma-
terial constant when defining them as complex valued.13,17,18

C. Electrical networks

The circular piezoceramic disks considered in this paper
are assumed to be driven with a function generator in series
with an internal and an external resistance, Rin, Rext. The
schematics is found in Fig. 1. The resistance Rext seen in the
figure is modeled as a series loading resistance. This resis-
tance was used in the practical experiment to determine the
current flow through the circuit.

This assumption makes the electrical constitutive equa-
tions identical with other works10 where the resistance load-
ing is modeled as a simple electrical impedance and gives
the following electrical equation to be satisfied:

− j�V = − A�Rin + Rext��2D − j�
Lp

�S D − h�u�Lp� − u�0�� ,

�7�

where Lp and A are the piezoelectric thickness and cross
section, respectively.

A model for the exact electrical loading of a commercial
medical transducer is more complicated to handle. It consists
of a coaxial cable and the transmitter unit of the scanner
driving the transducer. In this paper, a transmitter from BK
Medical Aps. for driving the convex array transducer is ap-
plied. A simplified circuit diagram for the applied scanner
and transducer is shown in Fig. 2, where the electronic com-
ponents L1 and L2 are inductances. R1, R2, and Rmux are
passive resistances.

The coaxial cable is modeled using lossless transmission
line theory where forward and backward traveling voltage
and current waves in the frequency domain are given by

Vcoax = V+ej�zcoax + V−e−j�zcoax, �8�

Icoax =
V+

Z0
ej�zcoax −

V−

Z0
e−j�zcoax. �9�

Here Z0 is the characteristic impedance of the cable, and � is
the propagation constant defined as �LC, where L and C are
the cable series inductance per unit length and the shunt ca-
pacitance per unit length, respectively. The variable zcoax de-
scribes the distance along the coaxial cable.

The voltage, Vpe, across the piezoceramic is defined as

Vpe = − j�
Lp

�S D − h�up�Lp� − up�0�� , �10�

where Lp is the thickness of the piezoceramic.
The boundary conditions for the coaxial cable at the

transducer end have to satisfy both current and voltage con-
tinuity. By recalling the relation between electrical displace-
ment and displacement current: I=A��D /�t� while having
zcoax=0 at the transducer end of the cable, the following
equations have to be satisfied:

V+ + V− = Vpe, �11�

V+

Z0
−

V−

Z0
= − j�AD . �12�

At the other end of the cable, zcoax=−Lcoax. Circuit analysis
of the cable yields

V��� = � Zg

R2 − j�L2
+ 1�V+e−j�Lcoax + ¯

+ � Zg

R2 − j�L2
− 1�V−ej�Lcoax, �13�

where Zg=R1+Rmux−j�L1 �see Fig. 2� and V��� is the Fou-
rier transform of the driving pulse.

D. Transducer model for the circular piezoceramic
disk

The piezoceramic disks used in testing our model are
standard Pz27 piezoceramic samples produced by Ferroperm
Piezoceramics A/S, Kvistgård, Denmark. The samples are
circular in the cross section and coated with silver electrodes.
Measurements were performed submerged into water which
gives a setup as shown in Fig. 3. A function generator with
an internal and an external series resistance was applied for
driving. Therefore, modeling of

Tback = cAg
D �AAg,1 + BAg,1� , �14�

FIG. 1. Schematics of the electronic network loading the Pz27.

FIG. 2. Simplified electronic network loading the commercial transducer.
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Tback

Zback
=

cAg
D

ZAg
�AAg,1 − BAg,1� , �15�

cp
D�Ap + Bp� − hD = cAg

D �AAg,1e−jkAgLAg + BAg,1ejkAgLAg� ,

�16�

cp
D

Zp
�Ap − Bp� =

cAg
D

ZAg
�AAg,1e−jkAgLAg − BAg,1ejkAgLAg� , �17�

cAg
D �AAg,2 + BAg,2� = cp

D�Ape−jkpLp + BpejkpLp� − hD , �18�

cAg
D

ZAg
�AAg,2 − BAg,2� =

cp
D

Zp
�Ape−jkpLp − BpejkpLp� , �19�

Tfront = cAg
D �AAg,2e−jkAgLAg + BAg,2ejkAgLAg� , �20�

−
Tfront

Zfront
=

cAg
D

ZAg
�AAg,2e−jkAgLAg − BAg,2ejkAgLAg� , �21�

− j�V��� = − ��Rin + Rext��2A + j�
Lp

�S 	D − h
cp

D

Zp

	�Ap − Bp� + h
cAg

D

ZAg
�AAg,2 − BAg,2� , �22�

this setup using the above described modeling method, yields
a three layer solid transducer model, which is described by
Eqs. �14�–�22�. These equations model the electronics as re-
sistances in series with a function generator having an inter-
nal resistance, Rin, and an external series resistance, Rext.

The subscripts Ag1, Ag2, and p in Eqs. �14�–�22� are
referring to the first silver layer, the second silver layer, and
the piezoceramic layer, respectively, and they are used as
subscripts for the unknown coefficients A and B. This model
involves nine equations with nine unknowns to be solved in
MATLAB.

E. Transducer model for a 128 element convex array

A medical convex array has a more complicated struc-
ture than regular circular disks as considered above. It con-
sists of several matching layers, and the surface is geometri-
cally more complicated. However, the modeling of each
element’s impulse response follows the same principle as
discussed above. Each element of the convex transducer un-
der consideration in this paper consists of a backing layer, a

piezoceramic layer, a first matching layer �ML1�, a second
matching layer �ML2�, and a lens. Each of the 128 major
elements consists of smaller subelements which are created
as subdivided elements in two columns. Each subelement
measures a rectangle of 0.1	0.1 mm2 as shown in Fig. 4.
Together all the subelements and subpitch measure 10 mm in
height and define the major elements of which there are 128.
The transducer has a convex radius of 29 mm and an eleva-
tion focus at 70 mm.

Considering the electronic network to be as shown in
Fig. 2, and with parameter knowledge of the different layers
for the different elements one can establish a consistent set of
Eqs. �23�–�35� for this transducer.

Tback = cp
D�Ap + Bp� − hD , �23�

Tback

Zback
=

cp
D

Zp
�Ap − Bp� , �24�

cML1
D �AML1 + BML1� = cp

D�Ape−jkpLp + BpejkpLp� − hD ,

�25�

cML1
D

ZML1
�AML1 − BML1� =

cp
D

Zp
�Ape−jkpLp − BpejkpLp� , �26�

cML2
D �AML2 + BML2� = cML1

D �AML1e−jkML1LML1

+ BML1ejkML1LML1� , �27�

cML2
D

ZML2
�AML2 − BML2� =

cML1
D

ZML1
�AML1e−jkML1LML1

− BML1ejkML1LML1� , �28�

clens
D �Alens + Blens� = cML2

D �AML2e−jkML2LML2

+ BML2ejkML2LML2� , �29�

clens
D

Zlens
�Alens − Blens� =

cML2
D

ZML2
�AML2e−jkML2LML2

− BML2ejkML2LML2� , �30�

Tfront = clens
D �Alense

−jklensLlens + Blense
jklensLlens� , �31�

FIG. 3. �Color online� Illustration of the longitudinal cross section of a Pz27
ceramic layered with silver electrodes and submerged into water.

FIG. 4. Illustration of the subdivided elements of a convex ultrasound trans-
ducer under consideration.
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−
Tfront

Zfront
=

clens
D

Zlens
�Alense

−jklensLlens − Blense
jklensLlens� , �32�

− j�V+ + − j�V− = − j�
Lp

�S D − �h
cML1

D

ZML1
�AML1 − BML1�

− h
cp

D

Zp
�Ap − Bp�� , �33�

− j�AD =
1

Z0
V+ −

1

Z0
V−, �34�

V��� = �Zg

Z0
+

Zg

R2 − j�L2
+ 1	V+ej�Lcoax

+ �−
Zg

Z0
+

Zg

R2 − j�L2
+ 1	V−e−j�Lcoax. �35�

III. NUMERICAL SIMULATION

A. Solving the equations

The equation sets �14�–�35� are solved in MATLAB for
each frequency component at a time for the bandwidth of
interest. The surface acceleration is found from Eq. �1�
evaluated at the interface between water and the front layer
�the lens�. It is then multiplied with −j� to convert from
velocity to acceleration, before the inverse Fourier transform

f�t� =
1

�2�



−





F���e−j�tdt . �36�

is used for calculating the resulting impulse response.

1. Model data for Pz27 ceramics

The model input data set used for investigation with
Pz27 materials is found in Table I. The table contains two
sets of data. One set is a real-valued data set of material
constants for testing of the model with attenuation based on
the mechanical quality factor and the dielectrical loss factor.
This set was manufacturer supplied. A second set consists of
complex-valued data of material constants measured by Al-
gueró et al.13 These data are in their work supplied with a
standard deviation which is the added/subtracted terms in the
Table I. However, our analysis shows that best amplitude
results are found by setting the deviation to zero for h and �S

and +�0.7−j0.006�	1010 for the stiffness constant cp
D which

is the maximum allowable value according to Algueró et
al.13 The complex-valued data set is suitable for testing how
well the model works with complex input data. The density
of both the real-valued and the complex-valued data set is
lowered with 2.5%, which is within the manufacturers toler-
ances. The small adjustments is made to create the best am-
plitude pulse shape for long pulses. This also gives the best
shape for short pulses.

Two thicknesses of the piezoceramics were applied: 0.94
and 0.5 mm corresponding to a resonance frequency of 2.1
MHz and 4.0 MHz, respectively. Both types of ceramics
were coated with silver with an estimated thickness of
9 �m. The ceramics were driven with a function generator
having an internal resistance Rin of 50 � and an external
resistance Rext of 47.5 �. The radius of the ceramics was
estimated to be 5.05 mm and the attenuation constants were
calculated to �2.1 MHz=19 m−1 and �4 MHz=36 m−1 for the
2.1 MHz samples and the 4.0 MHz samples, respectively.

2. Model data for the convex transducer

Table II lists the input parameters needed for predicting
the impulse response of the convex ultrasound transducer.
The thicknesses of the different layers Lp, LML1, LML2, and
Llens are set to 0.38, 0.17, 0.11, and 0.46 mm, respectively.
The attenuation coefficients are calculated to be
�1036,0,139,186,308,0.025� �1/m� for the backing layer, the
piezoceramic layer, the ML1, the ML2, the lens, and water,
respectively.

The electronic components R1, R2, Rmux, L1, and L2

found in Fig. 2 are set to 100 �, 20 �, 22 �, 3.9 �H, and
10 �H, respectively. The coaxial cable has a characteristic
impedance of 75 �, a length Lcoax of 2.2 m, an estimated
inductance per unit length, L, of 0.387 �H /m, and an esti-
mated capacitance per unit length, C, of 67 pF /m. The later
estimations are taken from product descriptions of similar
coaxial cables. This estimation is found acceptable through
simulation investigations on the influence of these param-
eters for the final results. This was done by varying the pa-
rameters and identifying the effect on the pressure pulse.

TABLE I. Model parameters for Pz27.

Real case Complex case

� 7 700 7 700 kg /m3

cp
D 1.44	1011 ��813.9+j0.113� �0.7−j0.006��	1010 N /m2

h 1.98	109 ��21.0+j0.148� �0.4−j0.004��	108 V/m
�S 914�0 ��822−j10.3� �12−j0.4��	�0 F/m
tan � 0.017 0.017
�Ag 10 600 10 600 kg /m3

cAg
D 1.13	1011 1.13	1011 N /m2

�w 1 000 1 000 kg /m3

cw
D 2.19	109 2.19	109 N /m2

TABLE II. Simulation parameters for the convex ultrasound transducer.

Value Unit

�p 7870 kg /m3

�ML1 2140 kg /m3

�ML2 1130 kg /m3

�lens 1260 kg /m3

�back 2160 kg /m3

�front 1000 kg /m3

cp
D 1.103	1011 N /m2

cML1
D 1.750	1010 N /m2

cML2
D 4.983	109 N /m2

clens
D 1.235	109 N /m2

cback
D 1.017	1010 N /m2

cfront
D 2.372	109 N /m2

�S 11.5	10−9 F/m
h 1.713	109 V/m
tan��� 0.16
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This showed that an exact value does not have significant
influence on the errors. To provide an estimate of the input
waveform for the FIELD II model, the transmitter output was
measured without the transducer being present.

B. Setting up FIELD II

For FIELD II to calculate the pressure, the surface accel-
eration and the transducer surface geometry must be defined.
For the piezoceramic disks FIELD II was set up to calculate
the point pressure field using square element sizes of 0.1
	0.1 mm2 for the piston model.

For the convex array two possible surface models with
which to set up FIELD II were investigated. One setup models
each single subelement on the surface of the lens. In reality
the lens material has a continuous smooth surface without
any subdicing hence waves propagating from the underlying
subdiced materials through the lens will propagate spheri-
cally forward toward the lens surface. These waves will su-
perpose at the front surface according to Huygen’s principle
and give an approximate plane wave transmission. Modeling
of each single element therefore assumes no superposition in
the lens material.

The second setup also assumes one-dimensional opera-
tion of the lens surface. Here, however, the operation of each
major element is modeled as vibrating in one dimension only
and as if no dicing occurs on the underlying materials. This
defines the area, A, in Eq. �34� to be the area of the total
major element, whereas for the first setup A is the size of
each subdivided element as shown in Fig. 4.

FIELD II supports two possible built-in functions for
modeling the convex transducer, xdc_convex_focused_multi-
row, and xdc_convex_focused_array. The first function is
suitable for setting up each subelement, and the second is
suitable for modeling only the major elements.

The pressure at the points of interest along the centerline
of an active element was calculated by simulation. At each
measurement point in front of the convex transducer, the
pressure at several points within the radius of the needle
hydrophone was calculated. These point pressures were then
used to account for the hydrophone area by averaging over
the surface:

phyd =
1

Ahyd



Ahyd

p�r̄,t�dS , �37�

where phyd is the average pressure detected by the hydro-
phone, p�r̄ , t� is the spatial pressure calculation by FIELD II,
and Ahyd is the area of the hydrophone. This integral is solved
numerically as

phyd =
1


i=0

N

�si


i=0

N

pi�r̄,t��si, �38�

where N is the number of integration areas and pi is the
calculated pressure at the center of the area �si.

The sampling frequency for the convex array modeling
was set to 400 MHz. The pressure were calculated using 40
times 40 mathematical elements on the major elements.

IV. MEASUREMENTS

A. The Pz27 ceramic disks

The ceramic disks were driven by an Agilent 33220A
function generator that supplied a tone burst of 1, 4, and 10
cycles to the samples with a 20 Vpp from the internal source
V in Fig. 1. The pressure pulses were captured with a needle
hydrophone having a 250 �m radius and were sampled us-
ing a remote controlled Agilent MSO6014A oscilloscope.
The oscilloscope was set up to average 128 times to lower
the noise level, which was found relatively high for the
samples. Measurements were performed on five different
samples at 2.1 MHz and on five different samples at 4.0
MHz. Measurements were performed submerged into dem-
ineralized water, and the hydrophone was each time centered
along the center axis of the elements to find the peak ampli-
tude.

B. The convex array

Measurements with this transducer were performed on
three center elements in three depths, 33, 72, and 112 mm
along each of the element’s centerlines. A shooting sequence
was applied where only the considered element transmitted.
Furthermore, at each of the three depths the pressures in the
elevation plane were measured. The transducer was driven at
4.0 MHz using a BK Medical Aps. transmitter, delivering a
10 cycle tone burst with a limited peak amplitude of 31 V.
The output voltage was limited to avoid too high nonlinear
effects on the pressure pulses. All these setups were achieved
by using our in house RASMUS �Ref. 19� system, which can
be used to drive a transducer in transmit and receive with
arbitrary configuration.

V. RESULTS

A. The results on the ceramic disks

Five transducer samples with a resonance frequency of
2.1 MHz and five transducer samples with a resonance fre-
quency of 4.0 MHz have been measured. The average of
these samples are used as a reference for comparison in the
following. This has been done to minimize measurement un-
certainties as well as differences in the samples.

Figure 5 shows a comparison between measured and
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FIG. 5. Pressure comparison between measured �solid� and simulated pres-
sure with a 2.1 MHz driving frequency. Two simulation parameter sets were
applied. One complex-valued �dotted line+cross� and one real-valued
�circles�.
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simulated pressure pulses. The measured pulse is compared
to simulations using the complex-valued and real-valued data
sets. The comparison is made with an excitation pulse of 1
cycle at 2.1 MHz. Results indicate good agreement between
measurement and model output which is a general character-
istic for all combinations of pulses and samples that have
been tested. A short pulse of 1 cycle has been chosen in Fig.
5 because a one-pulse excitation is the most difficult excita-
tion situation to capture for the model. From the figure a
slight overshoot is found as well as a slight tail drifting.
From consecutive measurements it has been found that an
amplitude decrease of the prediction of around 2 dB is
needed to achieve the lowest error calculation. This ampli-
tude adjustment has been used in the following results.

An example of current comparison between measured
and simulated current flow through the driving circuit of the
piezoceramic disk setup is shown in Fig. 6. This figure
clearly exemplifies that the current is captured very well. A 1
cycle excitation of 2.1 MHz was applied here as well and it
can be identified that the pulse tail exhibits the same drifting
behavior as the above pressure pulse. Furthermore, it is no-
ticeable that the model captures the rapid change in pulse
behavior found in the beginning of the oscillating tail, indi-
cating that the model has a certain capability to capture sud-
den changes in the pulse behavior.

Table III shows the results of a quantitative error calcu-
lation of the model’s accuracy compared to the mean of the
measurement as well as the deviation in the physical samples
themselves. The sample deviations are calculated as the root
mean square �rms� error relative to the rms of the mean of
the measured pulses and is for a given measurement se-
quence defined as

rmsm = 100 ·

� 1

N

m=1

N
1

Ns

i=1

Ns

�P̄�m� − P�m,i��2

� 1

N

m=1

N

P̄�m�2

. �39�

Here P̄�m�, P�m , i�, and N are the mean pressure of Ns pi-
ezoceramic samples, the measured pressure for the ith ce-
ramic sample, and the number of time samples acquired, re-
spectively.

The error of the simulation is calculated as the relative
error with respect to the mean of the measurement. This is
calculated as

rmss = 100 ·

� 1

N

m=1

N

��P̄�m� − Ps�m��2�

� 1

N

m=1

N

P̄�m�2

, �40�

where Ps is the pressure predicted by the model. From Table
III it can be identified that the model has a significantly
higher rms error in all predictions relative to the average of
the measurements than each sample deviates from the aver-
age. This is a consequence of the drifting tail behavior and
the slight overshoot on the transitions as is indicated on Fig.
5. The errors may seem high, however, it must be recalled
that the rms error calculation is a very sensitive method of
quantification. Therefore, a slight drift in phase results in a
high error contribution.

From the table it becomes clear that the measured cur-
rent standard deviation is ranging from 3.2% to 12.1% for
short pulses and from 3.7% to 7.7% for long pulses, where
best behavior is found for the 2.1 MHz pulses. For pressure
measurements it is found that short pulses can be measured
with a deviation error around 26% down to 8.5%, where best
results are found for long pulses with a center frequency of
2.1 MHz. The error on the current simulation is found to be
higher than the measurement deviation. The maximum simu-
lated current error is found to be around 36.0% for short
pulses while for long pulses the error is 17.9%. The best
current result is found in the 4.0 MHz simulation, where a
8.6% error is found. Comparison of the current error calcu-
lated relative to simulations using either the real-valued data
set or the complex-valued data set is seen to exhibit almost
identical error prediction relative to the measured. This indi-
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FIG. 6. Current comparison between measured �solid� and simulated pres-
sure through the electronic circuit. Two simulation parameter sets were ap-
plied. One complex-valued �dotted line�. One real-valued �circle�.

TABLE III. rms error in percentages for the model and measurements relative to the mean of the measurements using 1, 4, and 10 cycle excitations at 2.1 and
4.0 MHz resonance frequencies, respectively. Current �I� and pressure �P� errors are shown. Errors using either a real-valued data set �Re� or a complex-valued
data set �C� in the simulation are shown. It is compared against deviations in the measurements �M�.

1 cycle excitation 4 cycle excitation 10 cycle excitation

Re C M Re C M Re C M

I: 2.1 MHz 36.0 35.5 3.2 24.9 25.4 4.8 17.1 17.9 3.7
I: 4 MHz 29.0 25.3 12.1 16.0 14.3 9.9 9.8 8.6 7.7
P: 2.1 MHz 36.2 36.0 10.0 21.6 24.4 8.5 14.3 20.0 8.5
P: 4 MHz 20.3 25.2 25.3 13.7 18.2 24.8 11.2 18.4 25.8
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cates that the model is capable of working with both types of
data set and that the attenuation based on the mechanical
quality factor is capturing the acoustic losses with a maxi-
mum difference of 3.7%. Prediction errors for the pressure
pulses are found to range from 11.2% to 36.2% rms error
with best results found with the 4.0 MHz center frequency.
The 4.0 MHz predicted pulses are found to be closer to the
mean measurement than each individual piezoceramic
sample. This indicates the importance of using several
samples for comparison, which gives the level of accuracy
that one can expect.

B. Results for the convex transducer when modeling
each single subelement

A comparison between the simulated and the measured
pressure at a distance of 72 mm along the center axis of an
active element is shown in Fig. 7. Several measurements and
tests in different depths have shown that the simulations un-
dershoot the amplitude by approximately 1.7 dB relative to
the mean measurement, which is the value found to give the
smallest rms error. The following rms results are therefore
calculated with this adjustment in amplitude. From Fig. 7 it
is furthermore found that the model captures the pulse be-
havior relatively well. Only a slight overshoot on the transi-
tion is found and some missing behavior on the pulse tail can
be seen.

Figure 8 is an example of a measured intensity profile at
a distance of 72 mm from an active element. The profile is
measured in the elevation and the lateral direction and is
calculated as the spatial peak pulse average intensity, which
is chosen due to its suitability for pulse comparison. When
comparing a simulated intensity profile in the elevation plane
with measurements, it is very important that the proper lat-
eral direction is found in the measurement. If this is not
found one may compare with a wrong measurement profile.
As is seen in Fig. 8 the deviation of the intensity profiles in
the lateral direction can be seen to be small and may be
quantified by an rms error calculated as

rmsprof = 100 ·

� 1

N

m=1

N
1

Ns

i=1

Ns

�Ī�m� − I�m,i��2

� 1

N

m=1

N

Ī�m�2

, �41�

where Ī�m�, I�m , i�, Ns, and N are the mean intensity profile,
the measured intensity profile at the ith lateral direction, the
number of lateral profiles, and the number of elevation points
measured, respectively. Table IV lists calculated rms errors
for measurements of intensity profiles from three center ele-
ments at three different depths: 33, 72, and 112 mm.

Table IV shows that measurements on Element 65 and
66 are within a 1.5% deviation relative to the mean but in-
creasing for Element 64 around the focus point. Therefore, a
simulated intensity profile compared with an intensity profile
for Element 65 and 66 for any of the lateral directions can be
made with similar error predictions. However, Element 64
may give a highly different error prediction due to the high
relative deviation of its measured lateral profiles. Therefore,
in the following, all simulated intensity profiles along the
elements’ center axes are compared with the laterally average
of measured intensity profiles.

Figure 9 shows an intensity comparison in the elevation
plane between simulated and averaged intensity profiles at
the three depths. From the results plotted in the figure, it is
found that the tendency of the intensity level is captured

TABLE IV. Intensity profiles’ relative rms errors measured at three depths.

rms % intensity

Depth �mm� 33 72 112
Element 64 3.4 8.9 0.9
Element 65 1.0 0.6 1.5
Element 66 1.5 1.1 1.1
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element in the lateral plane and the elevation plane. The colors also indicate
the intensity level.
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through the whole elevation plane in the three depths 33, 72,
and 112 mm. However, it is pointed out that the 1.7 dB
amplitude adjustment on the pressure pulses is also used
here.

The consistent tendency on the shape of the intensity
curves is due to the setup of the FIELD II program and is not
to be credited the impulse response calculated by the trans-
ducer model. This is because the shape of the intensity pro-
file is entirely dependent on the spatial impulse response. It
is therefore to be concluded that the FIELD II setup with the
many subdivided elements is performed properly.

A quantitative comparison between the simulated and
measured intensity and pressure is shown in Table V. The
table shows the relative rms error between the simulated and
the measured pressure in percent, which is calculated simi-
larly as in Eq. �40�. The calculation is made using the mea-
sured pressure in the three different measurement points
along the element’s center lines. The center lines are found
by searching for the maximum amplitudes of the measure-
ments along the lateral direction. Accordingly the intensity
rms error is calculated for the intensity studies in the eleva-
tion plane using the lateral average. Both results are listed in
Table V.

From Table V, it is found that the pressure prediction at
the three depths in between differ by 2% rms error relative to
the mean, which is a much better result than the one found
for the piezoceramics in Table III. This indicates that the
transducer is very homogeneous in its performance, and that
the measurements along the center lines are performed uni-
formly. A comparison between simulated- and measured
pressures corresponds to an rms error equal to 25.2% to
27.2%. The rms intensity errors of the three elements in be-
tween are found to differ by 5.1%–14.6% at 112 mm, 7.1%–
16.2% at 72 mm, and 11.5%–19.5% at 33 mm. This increase
in difference the closer the measurements are to the trans-
ducer is mainly due to the transducer’s nonideal surface.
Small deviations in the surface profile are of influence close
to the transducer surface, since these are not accounted for in
the FIELD II setup.

C. The results on the convex transducer modeling
only the major elements

Figure 10 shows a comparison between simulated and
measured pressures at a distance of approximately 33 mm
from an emitting transducer element. The comparison does
not involve an amplitude correction as seen in the previous
results, which indicates that modeling of the major elements
instead of each subelement predicts a better amplitude result.
The same pulse behavior is, however, found with lacking
information on pulse tails and slight overshoot on transitions.

Figure 11 is an intensity plot similar to Fig. 9. From the
figure it can be identified that the amplitudes are well pre-
dicted and that the FIELD II surface model is predicting the
intensity profile nicely in this configuration. The prediction is
close to the one found in Fig. 9.

Table VI shows the quantitative rms errors for the inten-
sity. As can be identified from the numerical errors on the
pressure predictions only a small increase in the errors is
found. Notice, that the data are given without amplitude cor-
rection which was not found necessary when using the given
surface model of FIELD II. This indicates that the extra area
contribution from the kerfs of the subdivided elements in
between gives the extra small amplitude contribution needed
for having a calibrated model. The intensity errors found in
Table VI are found to be almost identical with those in Table
V, which also implies that the two transducer models are
working almost identically.

VI. DISCUSSION

Figure 5 shows that the free oscillating pulse tail may
approach an almost � /2 phase shift. Such a phase drift is due
to several consequences of the presented modeling. One con-
sequence is the use of a one-dimensional model which re-
stricts the impulse response to account for dispersion modes
that are only valid in the thickness mode �vibrations and
dependencies along the z coordinate only�. The attenuation in
this direction is, furthermore, modeled as being frequency
independent. A more detailed model involves frequency-
dependent attenuation algorithms and a multidimensional
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FIG. 10. Comparison between a simulated and a measured pressure pulse at
a distance of 33 mm.
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FIG. 11. Elevation intensity comparison between simulated and measured
values at three depths using major elements only.

TABLE V. rms error at three depths with 1.7 dB amplitude correction.

rms % intensity rms % pressure

Depth �mm� 33 72 112 33 72 112
Element 64 11.5 14.2 5.9 26.2 26.3 27.2
Element 65 19.5 16.2 14.6 25.2 27.1 26.7
Element 66 15.2 7.1 5.8 26.0 26.2 26.1

TABLE VI. rms error at three depths with 0 dB amplitude correction.

rms % intensity rms % pressure

Depth �mm� 33 72 112 33 72 112
Element 64 14.6 6.7 13.0 29.9 33.3 31.2
Element 65 19.9 9.6 5.76 29.4 34.0 30.7
Element 66 19.8 8.3 6.24 29.6 33.7 30.8
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analysis. The amplitudes calculated in water may also be
adjusted slightly since attenuation in water was not ac-
counted for in FIELD II. This amounts to a maximum multi-
plication factor for the 112 mm 4 MHz pressure pulse of
approximately 0.96 which will yield an amplitude difference
of approximately 0.3 dB. Also inaccuracies of the input pa-
rameters are possible error sources.20 The simulations in this
work rely on the exactness of the input parameters obtained
by consulting the manufacturers and the work by Algueró et
al.13 as wells as the simplified electronic circuit.20 However,
these parameters may be slightly different from those char-
acterizing the samples used in the presented experiments. A
correction of the free resonance frequency of the different
transducers requires a fine tuning of especially the density �,
the stiffness cD, and the thickness L, by performing measure-
ments on each individual transducer. For the pz27 samples
also exact consideration of wire connections, soldering, and
immersion medium would improve the errors, which to some
extend is also applicable for the commercial transducer.

Despite the relatively high quantitative error found in
this work it must also be argued that the model’s simplicity
makes it a qualified tool for fast hybrid modeling with FIELD

II compared to hybrid modeling linked up against time-
consuming finite-element programs. Impulse responses, nev-
ertheless, calculated using the latter programs benefit in the
level of detail from the full dimensionality, however, it is
also more sensitive to the accuracy of input parameters.

VII. CONCLUSION

It has been shown that a one-dimensional model for ul-
trasound multilayer transducers can be implemented to pre-
dict the required volt-to-surface acceleration converted im-
pulse response needed by the FIELD II software to calculate
the field pressure in front of piezoceramic disk samples as
well as from a more complicated 128 element convex ultra-
sound transducer. The implemented model predicts the cur-
rent flow through simple electrical circuits driving piezocer-
amic disks within an rms error of 8.6%–36% for long and
short pulses, respectively, and within 11.2% to 36.2% for
pressure pulses, respectively. All pressure amplitudes were
found to give an approximately 2 dB overshoot in prediction.
Both the real-valued data set and the complex-valued data set
were found to exhibit almost identical results, which implies
that the model works well with both types of parameter sets.
Furthermore, it implies that it is possible to model losses in
the piezoceramic using the mechanical quality factor or com-
plex material parameter sets.

Pressure measurements carried out on the medical con-
vex transducer and compared to model predictions yield rms
errors of 26%–30% depending on the surface model used.
Generally, the different pressure measurements were found
to differ within 2%. Comparison of measured and simulated
intensities was found to give an error between 5.8% and
19.8%, where the largest errors were found close to the ele-
ments. The results also show that the simplified electronic
circuit describing the transmitter unit and the coaxial cable
models the voltage amplitude across the piezoelectric trans-

ducer elements properly. It has been shown that using a mea-
surement of the transmitter output voltage as an input exci-
tation waveform for the FIELD II model gives good agreement
between simulated and measured results. It can also be con-
cluded that modeling of each single subdivided element
gives almost the same result for the pulse shape as modeling
the entire element as a whole surface does. However, an
undershoot of approximately 1.7 dB was found.

The FIELD II program combined with the one-dimen-
sional modeling principle is therefore a good candidate for
performing fast hybrid modeling of acoustic fields.
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Multilayer piezoelectric transducer models
combined with Field II

David Bæk, Morten Willatzen, and Jørgen Arendt Jensen

Abstract—A one-dimensional and a three-dimensional
axisymmetric transducer model have been compared to
determine their feasibility to predict the volt-to-surface
impulse response of a circular Pz27 piezoceramic disc.
The ceramic is assumed mounted with silver electrodes,
bounded at the outer circular boundary with a polymer
ring, and submerged into water. The transducer models
are developed to account for any external electrical loading
impedance in the driving circuit. The models are adapted
to calculate the surface acceleration needed by the Field
II software in predicting pressure pulses at any location
in front of the transducer. Results show that both models
predict the longitudinal resonances with consistency. The
one-dimensional model is found to exhibit approximately
2.9 dB peak overshoot at the lowest longitudinal reso-
nance frequencies prediction. These values are decreasing
for higher longitudinal modes. If the three-dimensional
model is restricted in its radial movement at the circular
boundary both models exhibit identical results. The Field
II predicted pressure pulses are found to have oscillating
consistency with a 2.0 dB overshoot on the maximum am-
plitude using the one-dimensional compared to the three-
dimensional model. This is with no electronic loading. With
a 50 Ω loading an amplitude overshoot is found to be 1.5
dB.

I. I NTRODUCTION

It has previously been shown that a one-dimensional
transducer model is bale to predict the surface accel-
eration needed for performing calibrated Field II [4],
[5] simulations [1], [2], [3]. Good agreement has been
found for circular piezo ceramic discs and with a 128
element commercial convex medical transducer. Field
II is an ultrasound simulation program that is capable
of simulating the acoustic scattering of tissue, and the
program can be used to simulate the RF-data needed
for ultrasound medical imaging or the field pressure.
The program, however, only accounts for a simulation
domain ranging from the transducer surface and into the
tissue, and not for the actual waveform of the moving
transducer surface. This waveform has to be provided
externally by the user. The motivation for the works in
[1], [2], [3] was to combine Field II with a transducer
model, whereby a significant improvement of the pro-
gram’s applicability could be achieved. The investiga-

tions of the one-dimensional model should then be the
foundation for determining whether such a model should
be implemented permanently into the Field II program
and available for the ultrasound simulation community.
The one-dimensional modeling principle applied in the
works was chosen for investigation due to its ability
to reveal information such as displacement, velocity,
acceleration, and electrical displacement to any position
in a multilayer transducer and it was chosen for its
simplicity. Such information is beneficial in a transducer
development context and essential for Field II calibrated
intensity simulations.

A one-dimensional model is particularly applicable
when vibrations occur along one direction of the trans-
ducer only, albeit this is no strict requirement. There are,
however, transducer applications where the transducer
is not just operating in one direction. This could be
transducers of ceramic discs with relative big radius
compared to the thickness whereby radial modes may
occur. In these situations it may be valuable to include
the radial modes in the simulations.

Modeling transducer responses in one and more di-
mensions is well addressed in the literature [6], [7],
[8], [9], [10], [11], [12]. However, a detailed compar-
ison between a one-dimensional model [13] and a two-
dimensional model, linked up with Field II, has not yet
been investigated. This would, however, be a natural
follow-up on the work with combining Field II with a
one-dimensional model since a two-dimensional model
could also be considered for implementation into the
Field II source code.

In this work a two-dimensional axisymmetric trans-
ducer model originally suggested by Schnabel [14] is
extended to include an electronic loading network as
well as general acoustic impedance load conditions.
This model is suitable for modeling ultrasonic trans-
ducers where radial modes are present and contribute
to the surface movement. This axisymmetric model is
compared with the one-dimensional modeling [13] to
identify the strength and weaknesses between the two
models in predicting the frequency response of a circular
piezoceramic transducer. The transducer considered is
submerged into water, enclosed in a polymer ring, and
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coated with silver electrodes. Furthermore, combining
Field II with each of the two models makes a comparison
between model output pressure pulses possible. This will
reveal information on the influence of the radial modes
in a Field II simulation. Moreover, this analysis presents
a feasibility study of the Field II software with a three-
dimensional axisymmetric transducer model.

II. T HEORY

This work is concerned with an axisymmetric piezo-
ceramic disc coated with silver electrodes and mounted
in a polymer ring, where the outer boundaries are fixed
as depicted in Fig. 1a. The transducer’s longitudinal axis
is chosen as thez-axis (with origo at the bottom plane
of the transducer), and ther coordinate is the distance
from the longitudinal axis. The electronic network con-
sists of an impedance,Zload, in series with a function
generator,Vdrive, (internal resistanceZin) driving the
piezoceramic disc. It is furthermore assumed that the
whole transducer is submerged into water. Fig. 1b shows
the cross section of the transducer. Similarly, Fig. 1c
identifies the boundaries of the transducer. The materials
of this transducer consist of a piezoelectric domain of a
Pz27 material poled in thez-direction. This domain is
to be modeled with a coupling between displacements
and the electrical field generated by the vibration and the
driving force. The silver electrodes and the polymer ring
are modeled as isotropic materials where no coupling
between electricity and displacement is present.

A. The governing equations for a axisymmetric trans-
ducer

The governing equations describing a6mm two-
dimensional axisymmetric piezoceramic are well known
from the literature [14]. They are typically described
using cylindrical coordinatesr, z, θ, wherer is the radial
coordinate axis,z is the thickness axis coordinate, and
θ is the azimuthal coordinate. If the disk is assumed to
be axisymmetric, poled in its longitudinal direction,z,
and driven with a potential across the faces perpendicular
to the z-direction, then no torsional mode should occur
and there is no dependence of the azimuthal angle. If
the particle displacements associated with the different
coordinates are defined asur, uz, and uθ the above
assumptions can be formulated as:

uθ = 0,
∂

∂θ
= 0, Dθ = 0, (1)

whereDθ is the electrical displacement in theθ direction
and where ∂

∂θ defines the derivative with respect to the
θ coordinate.

Fig. 1. Drawing of the transducer setup considered in this paper.
a) A piezoceramic transducer with silver electrodes enclosed in a
ring of plastic. A function generator with an internal resistanceZin

and an external impedanceZload is loading the transducer. b) cross
sectional cut of the transducer. c) boundary numbering of the cross
section.

These statements follow as a consequence of full
axisymmetric assumptions and no tangential movement
or twisting of the cylinder.

The constitutive equations that obey the above as-
sumptions in cylindrical coordinates can be written as
[14], [15]

Trr = cE
11ur,r + cE

12

ur

r
+ cE

13uz,z + e31V,z, (2)

Tθθ = cE
12ur,r + cE

11

ur

r
+ cE

13uz,z + e31V,z, (3)

Tzz = cE
13ur,r + cE

13

ur

r
+ cE

33uz,z + e33V,z, (4)

Trz = cE
44ur,z + cE

44uz,r + e15V,r, (5)

Trθ = 0, (6)

Tθz = 0, (7)

Dr = e15ur,z + e15uz,r − ǫS
11V,r, (8)

Dθ = 0, (9)

Dz = e31

(
ur,r +

ur

r

)
+ e33uz,z − ǫS

33V,z, (10)

where T and D are the tension and the electrical
displacement, respectively. The electrical potential is
defined asV , the electric field is thenE = −∇V where
∇ is the gradient operator. The constantscE

ij , eij , andǫS
ij
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are respectively the stiffness coefficient under constant
electrical field, the piezoelectric coupling coefficient for
stress-charge form, and the electrical permitivity. Note
the notation for the derivatives used in this work is:
∂u
∂xi

= u,xi
and ∂u

∂t = u,t.

The equations-of-motion and the Maxwell-Poisson
equation [14]-[15] yield

ρuz,tt = Trz,r +
Trz

r
+ Tzz,z, (11)

ρur,tt = Trr,r +
Trr

r
+ Trz,z − Tθθ

r
, (12)

Dr,r +
Dr

r
+ Dz,z = 0, (13)

whereρ is the density.

Consider (11), (12), and (13) and assume a time
harmonic solution of the forme−ωt. Insertion of the
expressions forTrr, Trz, Tθθ, Tzz, Dr, andDz into the
latter three equations yields (14), (15), and (16). These
equations are the equations coupling displacement with
electrical effects inside a piezoelectric material.

B. Boundary conditions

The boundary conditions needed to solve (14)-(16) at
the interface between solid-fluid, boundary B0, and B4
in Fig. 1 are defined as

Tzz = −nz · ωZfluiduz, (17)

whereZfluid is the specific acoustic impedance of the
fluid given by the product between the fluid density
and the thermodynamical speed of sound,ρfluidvfluid,
and nz is the unit normal parallel to thez-axis under
investigation i.enz = 1 at ∂ΩB0 andnz = −1 at ∂ΩB4.
This is the impedance method of modeling the coupling
between a vibrating solid and a fluid [16].

The boundary conditions at a solid-solid interface
have to preserve continuity of stress and displacement.
Continuity of stresses at an interface is achieved through
the normal of the stresses

n · TΩl

ij = n · TΩk

ij at ∂Ωl,k, (18)

whereTΩl

ij is the stress equation from the solid domain
l. TΩk

ij is the stress equation from solid domaink at the
boundary∂Ωl,k andn is the boundary normal vector.

Continuity of displacement requires:

uΩl
r = uΩk

r , (19)

uΩl
z = uΩk

z . (20)

The boundaries B1, B2, and B3 in Fig. 1c are con-
sidered insulating meaning that there is assumed no

flow of current into the silver electrodes and the ring
material. However, in principle also the silver electrodes
are conductors, but due to their high conductivity they
are neglected in this study, where the silver electrodes
are considered to be non-conducting acoustic waveguides
only. Therefore, the boundaries B1, B2, and B3 are
insulating boundaries which mathematically are satisfied
by

n · Dj = 0. (21)

C. Isotropic materials

To model a non-piezoelectric ring around the bound-
ary of the axisymmetric model or matching layers in
extension of the poled direction, electrical coupling of
the above equations (14)-(15) is to be removed. Equation
(16) is not applicable to such materials and can therefore
be neglected. The stress coefficients,cE , for isotropic
materials can be found by means of the Young’s module,
Y , and the Poisson ratio,ν, by [15]:

c11 =
Y (1 − ν)

(1 + ν)(1 − 2ν)
, (22)

c12 =
Y ν

(1 + ν)(1 − 2ν)
, (23)

c44 =
Y

2(1 + ν)
. (24)

Notice that the stiffness constants in (14)-(15), when
modeling an isotropic material, are related throughc11 =
c22 = c33, c12 = c13 = c23, c44 = c55 = c66 =
1
2 (c11 − c12).

D. Combining the electronic network with the 2D model

The electronic network loading the transducer in Fig.
1 is not accounted for by solving (14)-(21). However,
knowledge of the transducer’s characteristic electrical
impedance can be achieved by solving the above set of
equations for the impulse frequency response using a
Fourier transform of a voltage impulse,Vdrive(ω), where
in this study the Fourier transform pair used is

V (t) =
1√
2π

∫ ∞

−∞
V (ω)e−ωtdω, (25)

V (ω) =
1√
2π

∫ ∞

−∞
V (t)eωtdt. (26)

The impedance is then found from Ohm’s law as

Zpiezo =
Vdrive

I
, (27)

whereI is the current running through the circuit. The
displacement current flowing through the piezo material
is given by: I = A∂D

∂t where A is the cross-sectional
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ω2ρur + (c11ur,r + c12
ur

r
+ c13uz,z + e31V,z)r + (cE

44(ur,z + uz,r) + e15V,r)z +
(cE

11 − cE
12)ur,r + (cE

12 − cE
11)

ur

r

r
= 0,

(14)

ω2ρuz + (cE
44ur,z + cE

44uz,r + e15V,r)r + (cE
13(ur,r +

ur

r
) + cE

33uz,z + e33V,z)z +
cE
44ur,z + cE

44uz,r + e15V,r

r
= 0,

(15)

(e15ur,z + e15ur,z − ǫS
11V,r)r + (e31(ur,r +

ur

r
) + e33uz,z − ǫS

33V,z)z +
e15ur,z + e15uz,r − ǫS

11V,r

r
= 0.

(16)

area of the ceramic (equal to(πR2)). By assuming a
time-harmonic solution of the current it may be found
as

I = −ω

∫

A
nz · DdA = −ω

∫

A
DzdA, (28)

I = −ω2π
∫ R

0

(
e31

(
∂ur

∂r
+

ur

r

)
+ e33

∂uz

∂z
− ǫS

33

∂V

∂z

)
rdr,

(29)

whereR is the radius of the ceramic andnz is the normal
to the boundaries B0 and B4.

The voltage found across the electrodes, when an
electronic loading is present, is found by use of Ohm’s
law:

Velectrodes(ω) = Vdrive(ω)
Zpiezo(ω)

Zpiezo(ω) + Zexternal(ω)
, (30)

where Zexternal = Zload + Zin and Vdrive are the
external loading impedance and the Fourier transform of
the driving pulse, respectively. Hence, the (frequency-
dependent) transfer function of the electrical network as

Helectronic(ω) =
Zpiezo(ω)

Zpiezo(ω) + Zexternal(ω)
. (31)

The voltage-to-surface longitudinal displacement,uz,
of the transducer, when driven withVdrive, is then found
through

uz = uzresponse
· Velectrodes. (32)

The valueuzresponse
is the frequency response of the

surface movement found by solving (14)-(21) at B0 and
B4.

The above prescribed method of including the elec-
tronic network benefits from the fact thatuzresponse

is to
be calculated only once for the transducer, whereafter it
can be subject to any electrical loading condition.

III. I MPLEMENTING THE 2D EQUATIONS

In this paper, implementation of (14)-(21) into COM-
SOL [17] is briefly discussed for the equations of the
four domains in Fig. 1. This discussion is chosen because
an actual description of the implementation into a finite
element program is seldom seen in the literature.

A basic equation set in COMSOL in a two-
dimensional general mode reads:

−∇ · (c∇u + αu − γ) + au + β∇u = f, (33)

where the elementsc, α, a, f, β, γ are scalar constants
or matrices. The∇ is in this work defined as{ ∂

∂r , ∂
∂z}

andu is a vector of unknown variables to be solved for.
The corresponding mixed boundary conditions to (33)
are defined as

n · (c∇u + αu − γ) + qu = g − hT λ, (34)

hu = r, (35)

whereλ is a Lagrange multiplier,q andh are coefficient
matrices that can be set to any value.

Since the normal of the stresses and the dielectrical
effects on a solid’s boundaries should satisfy (18) and
(21), it is advantageous to make sure that in a piezo-
electric domain the mixed boundary conditions becomes
n · (c∇u + αu − γ) = {Tlk, Dl}T ,where l, k = {r, z}.
Ensuring this, the matrixq and g in (34) can be used
to define the boundary condition (17). Furthermore, the
Direchlet boundary condition,hu = r, may be used to
ensure continuity of displacements (19) and (20).

The different coefficients for the piezoelectrical mate-
rial are therefore to be formulated as in (36) by assuming
u = {upiezo

r , upiezo
z , V }T . For isotropic domains where

the same definitions are to be made with allei,j and
ǫS set to zero the implementation is similar. In such
domainsu = {uiso

r , uiso
z }T , and consequently, (16) is

to be left out in this work. However, if it is necessary to
model electrical conductivity in the isotropic materials
then (16) is to be kept, andǫS 6= 0. The remaining
vectors and matrices of (33) is to be set to zero. Then
by utilizing the above implementation principle on the
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c =




[
cE
11 0
0 cE

44

] [
0 cE

13

cE
44 0

] [
0 eE

31

eE
15 0

]

[
0 cE

44

cE
13 0

] [
cE
44 0
0 cE

33

] [
eE
15 0
0 eE

33

]

[
0 eE

15

eE
31 0

] [
eE
15 0
0 eE

33

] [
−ǫS

11 0
0 −ǫS

33

]




, α =




[
cE
12/r
0

] [
0
0

] [
0
0

]

[
0

cE
13/r

] [
0
0

] [
0
0

]

[
0

eE
31/r

] [
0
0

] [
0
0

]




,

β =




[
−(cE

11 − cE
12)/r

0

] [
0
0

] [
0
0

]

[
0

−cE
44/r

] [
−cE

44/r
0

] [
−eE

15/r
0

]

[
0

−eE
15/r

] [
−eE

15/r
0

] [
ǫS
11

0

]




, a =




[
−ρω2 − (cE

12−cE
11)

r2

] [
0

] [
0

]
[

0
] [

−ρω2
] [

0
]

[
0

] [
0

] [
0

]


 . (36)

setup in Fig. 1 nine unknowns are to be solved for each
frequency component inside a given bandwidth.

A. The one-dimensional model

The one-dimensional model governing the setup
in Fig. 1 is found using the transducer model by
Willatzen [13]. This model was investigated earlier in
[1], [2], and [3] where it was compared with measure-
ments and good agreement was found. According to the
one-dimensional model, the particle velocity and stress
obey the expressions:

u33(z, t, ω) =
cD
33SA

Za
e(−kz−ωt) − cD

33SB

Za
e(kz−ωt),

(37)

T33(z, t, ω) = cD
33[SAe(−kz−ωt) + SBe(kz−ωt)] − h33D,

(38)

wherecD
33 andh33 are, respectively, the stiffness constant

in the longitudinal direction and the piezoelectric con-
stant defined ase33/ǫS

33. Heree33 andǫS
33 are the piezo-

electrical coupling coefficients for stress-charge form and
the electrical permitivity. The propagation constantk is
defined asω/v33, whereω is the radial frequency, and

v33 is the wave velocity defined by
√

cD
33/ρ. Here ρ

is the given layer’s material density. Furthermore, the
acoustical impedanceZa is defined asZa = v33ρ. The
unknown coefficientsSA and SB are frequency and
layer-dependent coefficients, andD is the frequency-
dependent electrical displacement.

The boundary conditions to be fulfilled are continuity
of stress and velocity as described in [13] whereby a
set of equations is obtained (39)-(47).

TheA andB subscriptsAg1, Ag2, andp in (39) - (47)
refer to the first silver layer, the second silver layer, and
the piezoceramic, respectively. This modeling yields nine
equations with nine unknowns to be solved in Matlab.

IV. PRESSURE CALCULATION FROM THE SURFACE

VIBRATION

The Field II software is applied for modeling the
domain in front of the transducer. The calculation is
performed by convolving the transducer dependent spa-
tial impulse response with the time domain surface
acceleration of the transducer as

p(r̄, t) = ρv(t) ⊗ h(r̄, t), (48)

whereh, v, andρ are the spatial impulse response, the
surface acceleration and the density, respectively. The⊗
is the time convolution symbol. The surface acceleration
is to be extracted from the solved system of equations
of the one-dimensional and the two-dimensional model,
which for the one-dimensional case is given by

v(t) = F−1[− ωuAg,2(LAg,2, t, ω)], (49)

where F−1 is the inverse Fourier transform (26), and
uAg,2 is defined in consistency with (37) given by

uAg,2(LAg,2, t, ω) =
cD
Ag,2SAg,2

ZAg,2
e(−kAg,2LAg,2−ωt)...

−
cD
Ag,2SAg,2

ZAg,2
e(kAg,2LAg,2−ωt).

(50)

The surface acceleration given from the two-
dimensional model is found by

v(t, r) = F−1[(− ω)2 uz(r, ω)] at ΩB0.(51)

In (51) it is to be recalled, that the surface movement is
not necessarily constant along the radial direction as is
assumed in (49).

The latter is a problem in context with the Field II
software since this software cannot be brought to account
for the radial movement of a transducer surface, which
is why only uz can be considered as a source to the
two-dimensional full model and notur. Furthermore, to
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TBack = cD
Ag (AAg,1 + BAg,1) , (39)

TBack

ZBack
=

cD
Ag

ZAg
(AAg,1 − BAg,1) , (40)

cD
p (Ap + Bp) − hD = cD

Ag

(
AAg,1e

−kAgLAg + BAg,1e
kAgLAg

)
, (41)

cD
p

Zp
(Ap − Bp) =

cD
Ag

ZAg

(
AAg,1e

−kAgLAg − BAg,1e
kAgLAg

)
, (42)

cD
Ag (AAg,2 + BAg,2) = cD

p

(
Ape

−kpLp + Bpe
kpLp

)
− hD, (43)

cD
Ag

ZAg
(AAg,2 − BAg,2) =

cD
p

Zp

(
Ape

−kpLp − Bpe
kpLp

)
, (44)

TFront = cD
Ag

(
AAg,2e

−kAgLAg + BAg,2e
kAgLAg

)
, (45)

− TFront

ZFront
=

cD
Ag

ZAg

(
AAg,2e

−kAgLAg − BAg,2e
kAgLAg

)
, (46)

−ωV (ω) = −
(

Zexternalω
2A + ω

Lp

ǫS

)
D − h

cD
p

Zp
(Ap − Bp) + h

cD
Ag

ZAg
(AAg,2 − BAg,2) , (47)

model the true contribution to a pressure from a discrete
set of points along the front surfaceB0 (e.g correspond-
ing to the solved displacements in the grid nodal points)
Field II should be set up to model many small individual
transducer elements which encloses the circular surface
in a grid net. Each small transducer is then assumed
to have an impulse response corresponding to the one
calculated in the enclosed grid point by the 2D model.
The built-in piston model of Field II cannot be used to
model the whole circular transducer area because each
mathematical element cannot be dedicated a separate
impulse response. To model the many small transducer
elements is, therefore, a cumbersome procedure.

Therefore, a more reasonable comparison between
a two-dimensional and a one-dimensional model is to
compare the average surface movement of the two-
dimensional surface with the one-dimensional model’s
prediction. In this way, only a single surface response is
obtained and the regular piston models can be used for
comparison.

Since the 2D model solves for the surface movement
from r = 0 to r = R in the region of interest then the
average movement may be found as

uaverage =
2π

πR2

∫ R

0
uz(LAg,2, r)rdr, (52)

where the integration is to be performed along the
boundary B0.

V. SIMULATION TEST CASES

Comparison between the two models is performed
using two test cases of the setup in Fig. 1.

2D model of type I : The first case constrains the
radial movement at boundary B1 for the two-dimensional
model which is enforced by the boundary condition

upiezo
r = 0 at ∂ΩB1. (53)

All other boundary conditions are set up to satisfy (17)-
(21).

2D model of type II : The second test case has no
radial restriction on B1 but constraints the radial and
longitudinal movement at B5 in the ring domain. This is
chosen to simulate that the ring is mounted into a rigid
fixture prohibiting expansions.

The piezoceramic considered in this work is the Pz27
ceramic from Ferroperm Piezoceramic A/S, Kvistgaard,
Denmark, whose database contains the needed simu-
lation parameters. The material parameters describing
the silver electrodes and the surrounding ring material
(assumed to be polyethylene) are found in [15]. All the
simulation parameters are given in Table I.

The thickness of the piezoceramic,Lp, is set to0.94
mm, and the thickness of the silver electrodes,LAg, is
set to9 µm. Furthermore, cross sectional dimensions of
the polyethylene are set to2 mm x (2Lag +Lp) mm, and
the inner radius of the ring is set to5 mm. The electronic
loading network has a total series impedance of50 Ω.

Comparison is made firstly by assuming no external
electronic loading of the transducer (i.e.Zexternal = 0),
secondly comparison is made by loading the transducer
with the external circuit. Frequency responses are found
using the voltage Fourier transform. This allowsZpiezo

to be determined as a function of frequency.
Field II is set up to predict the pressure pulses at a

distance of70 mm along the transducer’s center axis
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TABLE I
MODEL PARAMETERS FORPZ27, SILVER , POLYETHYLENE, AND

WATER.

Piezo:
Constant Value Unit

ρ 7700
kg
m3

cE

11 = cE

22 1.47·1011 N
m2

cE

12 1.05·1011 N
m2

cE

33 1.13·1011 N
m2

cE

44 2.3·1010 N
m2

cE

31 = cE

13 9.37·1010 N
m2

eE

15 11.64 N
m2

eE

33 16 N
m2

eE

31 −3.09 N
m2

ǫS

11 1130 · ǫ0 F
m

ǫS

33 914 · ǫ0 F
m

ǫ0 8.8541 · 10−12 F
m

h 1.98·109 V
m

Silver:

ρAg 10600
kg
m3

cE

11 11.9·1010 N
m2

cE

12 8.94·1010 N
m2

cE

44 4.37·1010 N
m2

cD

Ag 11.9 · 1010 N
m2

Ring material:

ρring 900
kg
m3

cE

11 0.34·1010 N
m2

cE

12 2.88·109 N
m2

cE

44 0.026·1010 N
m2

Water:

ρw 1000
kg
m3

cD
w 2.1904·109 N

m2

using its piston model with a radius of5 mm. The
Field II setup is chosen to model mathematical elements
on the surface with square sizes of0.1 mm times
0.1 mm and with the inverse Fourier transform of the
surface acceleration response (49) and (52) applied as
the impulse response.

As driving pulse in the Field II calculation, a10 cycle
tone burst with 2.1 MHz center frequency and an ampli-
tude of10 V is used. Any tone burst could be applied,
however, the choice of a 10 cycle tone burst limits the
bandwidth of frequency components needed to be solved
for.

VI. RESULTS

Fig. 2 is a comparison between the frequency response
of the front surface displacement between the 1D model
(1D-M), the 2D model of type I (2D-I), and the 2D
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Fig. 2. Absolute value of the frequency response of the surface
displacement. Black dotted line is the 1D model. Circles are the 2D-
I. Solid line is the 2D-II.

model of type II (2D-II). The figure shows that the
1D-M and the 2D-I give almost identical frequency
responses and the ceramics longitudinal resonance fre-
quencies around2.1 MHz and 6.6 MHz are predicted
with both models. The 2D-II model is found to have
a 2.9 dB lower peak at the2.1 MHz resonance. For
2D-II simulation energy is seen to be transfered from
the lower longitudinal resonance to radial resonances at
lower frequencies. Note also that the concentration of
the spectrum around the resonance at2.1 MHz is lower
compared to the prediction by 1D-M and 2D-I. The
reason is conservation of energy in the system, which
limits the energy concentration around the longitudinal
resonance while transferring it to the ring- and radial
modes.

Fig. 3 is a comparison between the different front
surface accelerations predicted by each of the three
models. The discussion of this comparison is similar to
the above where good agreement between all models is
obtained. The lower radial modes have been damped
significantly compared to the longitudinal resonances
which is due to the squared frequency components
arising from a twice time derivation of the displacement
solution i.e(−ω)2uz (see (51)). A twice time differen-
tiation is therefore seen to work as an amplifying filter
for the higher frequencies where the lower frequencies
are damped. The lower radial resonances are therefore
expected to have limited effect on the pressure prediction
in (48).

Fig. 4 is a comparison between the electrical
impedances. A good consistency between all the models
for frequencies above1 MHz is found, whereas for below
1 MHz the radial resonances are seen to influence the
response. Furthermore, for low frequencies an increase
toward infinity in the impedance is found, which is in
good agreement with theory. The ceramic is a dielectric
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Fig. 3. Absolute value of the surface acceleration frequency
response. Black dotted line is the 1D model. Circles are the 2D-I.
Solid line is the 2D-II.
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Fig. 4. Absolute electrical impedance frequency comparison between
1D and 2D with and without radial modes. Black dotted line is the
1D model. Circles are the 2D-I. Solid line is the 2D-II.

material, which implies that the current through it has
to be zero at its DC value. This also corresponds to an
infinite big impedance, which is found in Fig. 4 for
frequency → 0.

Fig. 5a shows a pressure prediction70 mm away from
the transducer surface by using the Field II software.
Prediction of the pressure using the 1D-M and the 2D-I
is found to be very consistent here as well. They have
the same amplitude and the same tail behavior. However,
the 2D-II is found to have a2.0 dB lower maximum
amplitude and a faster attenuating tail compared to the
two other models. This implies, that the ring material is
absorbing energy from the longitudinal resonance, which
also can be supported by considering Fig. 3. The smaller
and discontinuous amplitude at the lowest longitudinal
resonance in Fig. 3 supports this fact. The dashed squares
marked A and B in Fig. 5 show the zooming areas for
the subplots Fig. 5b and Fig. 5c. Fig. 5b shows a zoom
of the three pulses’ behavior at the end of the driving
force period. From this it is clearly identified how well
the 1D-M and the 2D-I are coinciding. Also the lower
amplitude of 2D-II is clearly identified. Fig. 5c is a zoom
that shows the different tail behavior of the 2D-II model.
An extra ringing effect is found on this tail which is not
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Fig. 6. Electrical transfer function of the loading network for free
and restricted radial movement. Circles are the 2D-I. Solid line is the
2D-II.
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Fig. 7. Pressure comparison with loading networkZexternal =
50 Ω. Black dotted line is the 1D model. Circles are the 2D-I. Solid
line is the 2D-II.

found with the 1D-M and the 2D-I model.

Fig. 6 shows a comparison of the transfer function
found in (31). This equation is only valid for the 2D
models and it shows the frequency dependent amplifica-
tion of the system. From this it can be found that the
radial resonance frequencies may be amplified, by using
proper driving frequencies.

Fig. 7 shows the resultant pressure simulation from ap-
plying the loading network on the 2D impulse response.
It shows that the 1D-M and the 2D-I give consistent
results as expected. However, it also shows that the 2D-
II test case leads to a higher pulse amplitude relative
to the 1D-M and 2D-I compared to Fig. 5, and the
tail of the pulse also has a relatively higher amplitude
compared to the two other models. This is different from
what was seen in Fig. 5 where the tail of the 2D-II was
ringing out relatively faster than the two other models
did. The maximum peak pulse amplitude of the 2D-
II model undershoots with1.5 dB. Therefore due to
the amplifying behavior of the radial frequencies found
in the transfer function plotted in Fig. 6, the radial
resonances transfer relatively more energy into the tail’s
ringing as seen in Fig. 7.
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(b) Zoom of A cut in (a).
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Fig. 5. Pressure comparison between 1D prediction, 2D prediction with locked radial boundary and 2D with free boundary. Black dotted
line is the 1D model. Circles are the 2D-I. Solid line is the 2D-II. (a) is the full view pressure pulse. The dotted squares are the zoom areas
of the subfigures (b) and (c).

VII. D ISCUSSION

In the previous section, it was found that the 2D
model suggested by Schnabel [14] and the 1D modeling
principle suggested by Willatzen [13] agree well in
the prediction of the surface acceleration, displacement,
and electrical impedance. Also the combination between
Field II and the models was shown to give consistent re-
sults. This implies that the simple axisymmetrical model
has a big potential for implementation into Field II, but it
also validates the simple 1D model. An investigation of
a proper meshing algorithm and a stable solver would
therefore be a natural follow-up project. Clearly the
amount of calculations for the 2D model is significant
higher than for the 1D model. Each simulation in context
with Field II should therefore critically consider whether
the radial frequency components are needed. For Field II
simulations, where the purpose is to verify the influence
of changes in the electronic network on the 2D response,
this model comes in handy, which is because the model
can calculate the transducer’s impedance response once
and for all.

VIII. C ONCLUSION

The one-dimensional model is shown to give similar
results as compared to a three-dimensional axisymmet-
rical model when radial movement of the piezoceramic
rim is restricted. When no radial restriction is applied
a lower amplitude of the pressure pulses is found and
the energy is seen transfered to the radial resonance
modes. These modes are giving small pulse oscillations
at the transducer tails. It has been shown that it is
possible to calculate the impulse response of the volt-to-
surface acceleration as well as the transducer’s electrical

impedance. These can next be applied to load the trans-
ducer with an electronic network. The obtained impulse
responses can be used to investigate the behavior of the
physical transducer as well.
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Abstract—The influence of different model parameters describ-
ing a multilayer transducer model is addressed by altering each
single simulation parameter within ±20 % in steps of2 % and by
calculating the pressure and the intensity at a field point located
112 mm from the source. The simulations are compared with a
hydrophone measured pressure pulse and intensity from a single
element of a 128 element convex medical transducer. Results
show that mainly the lens material and the ceramic material
are of importance for errors in the pressure pulse prediction.
Specifically the thickness, the density, and the stiffness constants
are of significance. Among the results it is found that a−4 %
change in lens stiffness yields a6 % relative error change and
a −4 % change in ceramic stiffness yields a−1.2 % relative
error change. When calculating intensity the piezoceramic and
electronic driving circuits are of importance, where a similar
change in the lens and the ceramic stiffness shows a−0.1% and
a −12% relative error change, respectively.

I. I NTRODUCTION

A transducer modeling principle has previously been de-
veloped and tested as a supplement to the Field II simulation
software [1], [2], [3]. This modeling principle is a step towards
calibrated intensity and pressure simulations using Field II
[4], [5]. It was shown that the modeling principle is accurate
within 0-2 dB for simulations on a simple piston model and
a more advanced convex multilayered medical transducer [2],
[6]. However, any exact prediction of the amplitude, phase, and
attenuation tendency of the pressure pulses from complicated
transducers is highly dependent on accurate knowledge of
material constants as well as the electronic driving circuits.
Such information is most often only known by manufacturers,
and these may not even have an accurate estimate. This there-
fore influences transducer simulations [7], [8]. Also physical
dimensions of the transducer, surface roughness, element cross
talk, temperature, nonlinearity etc. are influencing the accuracy
of the predictions. Previous studies [1], [2], [6] assumed
knowledge of exact simulation parameters. However, small
deviations in the predictions relative to the measured were
found.

In this paper the influence of the different material parame-
ters needed to represent a convex ultrasound transducer using
the modeling principle used in [2] and [6] is investigated.
The study is made by changing the different parameters of
the transducer model within±20 % of the values calculated
from manufacturer information. The influence is studied as the
error of the pressure and the intensity predictions relative to
measurements.

II. T HEORY

The model parameter study in this work is based on a 128
element convex medical transducer from BK Medical Aps. A
cross section and a front view drawing in Fig. 1 illustrate how a
single element of this transducer is build. A transducer element
consists of a backing layer (B), a piezoceramic layer (P), a first
matching layer (ML1), a second matching layer (ML2), and a
lens (L) as seen in Fig. 1a. The transducer front is assumed
to be lowered into water, wherefore the lens is in contact with
the water (W). Fig. 1b shows a single element’s front view
dimensions. The transducer is assumed to be driven with a

Fig. 1. Sketch of a single transducer element. a) Longitudinalcross section
view. b) Front view of a single element.

transmitter unit from BK Medical placed inside our RASMUS
[9] research scanner. Fig. 2 is a simplified representation of the
driving electronic of such a setup. Clearly the driving circuit
represented here is much less complicated than what is found
in such scanner. However, by using the above simplification
the complexity of the modeling is decreased.

Fig. 2. Approximated electronic loading.

418978-1-4244-4390-1/09/$25.00 ©2009 IEEE 2009 IEEE International Ultrasonics Symposium Proceedings
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TB = cD
p (Ap + Bp) − hD, (1)

TB

ZB
=

cD
p

Zp
(Ap − Bp) , (2)

cD
ML1 (AML1 + BML1) = cD

p

(
Ape−kpLp + BpekpLp

)
− hD, (3)

cD
ML1

ZML1
(AML1 − BML1) =

cD
p

Zp

(
Ape−kpLp − BpekpLp

)
, (4)

cD
ML2 (AML2 + BML2) = cD

ML1

(
AML1e

−kML1LML1 + BML1e
kML1LML1

)
, (5)

cD
ML2

ZML2
(AML2 − BML2) =

cD
ML1

ZML1

(
AML1e

−kML1LML1 − BML1e
kML1LML1

)
, (6)

cD
L (AL + BL) = cD

ML2

(
AML2e

−kML2LML2 + BML2e
kML2LML2

)
, (7)

cD
L

ZL
(AL − BL) =

cD
ML2

ZML2

(
AML2e

−kML2LML2 − BML2e
kML2LML2

)
, (8)

TW = cD
L

(
ALe−kLLL + BLekLLL

)
, (9)

− TW

ZW
=

cD
L

ZL

(
ALe−kLLL − BLekLLL

)
, (10)

−ωV+ + −ωV− = −ω
Lp

ǫS
D −

[
h

cD
ML1

ZML1
(AML1 − BML1) − h

cD
p

Zp
(Ap − Bp)

]
, (11)

−ωAD =
1

Z0
V+ − 1

Z0
V−, (12)

V (ω) =

(
Zg

Z0
+

Zg

R2 − ωL2
+ 1

)
V+eγLcoax +

(
−Zg

Z0
+

Zg

R2 − ωL2
+ 1

)
V−e−γLcoax . (13)

Equations (1) to (13) [6] are used to model the transducer
setup. The equations are to be solved for the unknown co-
efficients TF , TW , Ap, Bp, AML1, BML1, AML2, BML2,
AL, BL, D, V+, and V−, by casting the equation system
into matrix form and applying Matlab. The model assumes
all layers to operate in their thickness modes only, (i.e. the 33
mode). The coefficientsZB , ZML1, ZML2, ZL, andZF are
the acoustic impedances given byZi = ρivi, whereρ andv are
the material layer density and the speed of sound in complex
form [3], respectively. The mechanical stiffness coefficients
cD
B , cD

P , cD
ML1, cD

ML2, cD
L , and cD

W are used to calculate the
real valued form of the speed of sound asvr

i =
√

cD
i /ρi. The

complex valued form of the velocity isvr
i /(1 +

αiv
r
i

ω ), where
αi is the attenuation constant of the material [3]. The wave
propagation constantskP , kML1, kML2, andkL account for
attenuation and are given byki = ω/vi, whereω is the angular
frequency. The four layersP , ML1, ML2, and L have the
thicknessesLP , LML1, LML2, andLL, respectively. Special
constants for the ceramic are the piezoelectric coefficienth and
the permittivityǫS . The latter is accounting for dielectric losses
through ǫS = ǫS

r + ǫS
r tan (δ), where ǫS

r is the real valued
permittivity andtan (δ) is the tangential loss factor [3]. The
electronic network is represented with the coax cable having
length Lcoax, characteristic impedanceZ0. γ is the propa-
gation constant defined asω

√
L3,coaxCcoax, where L3,coax

andCcoax are the cable series inductance per unit length and
the shunt capacitance per unit length. The impedanceZg is
given byZg = R1 + R3 − ωL1, whereR1, R3, andL1 are
resistances and an inductance.R2 andL2 are a resistance and
an inductance. The front cross sectional area,A, is given by

the dimensions shown in Fig. 1b.

III. M EASUREMENTS

The measurements of the pressure field from a single trans-
mitting element is performed by submerging the transducer
into a water bath and placing a needle hydrophone in front
of it at a distance of approximately 112 mm. An Agilent
MSO6014A oscilloscope was used to sample the measured
pressure, and the transducer was driven at4.0 MHz using the
RASMUS system.

IV. SIMULATION

The Field II software was set up to represent the convex
transducer using the commandxdc convex focused array.
The sampling frequency was set to400 MHz. The simula-
tions in our previous works [2], [6] used a fixed parameter
set calculated from manufacturer supplied informations. The
latter parameters are used as the zero reference (ZR). All
35 parameters are altered in steps of2 % within a limit of
±20 % around their ZR value. When altering one parameter,
the remaining parameters are held at the ZR. For each altering
the root mean square (RMS) error is calcualted for the pressure
and the intensity relative to the measured value. The pressure
pulses are fixed in time, meaning that the cross correlation
time that yields the lowest RMS error when using the ZR for
simulation is aplied to all the pressure pulses where parameters
differ from the ZR. To compare intensities the spatial peak
pulse average is used.
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(f) Changes in the electronic components.

Fig. 3. RMS errors when simulated pressure pulses are compared with measurements.

V. RESULTS

Fig. 3a to 3d show the relative RMS errors in percent when
subtracting simulated and measured pressure pulses from each
other. The errors seen in the figures are all subtracted a32.9 %
RMS error being the RMS error when using the ZR model
values. This results initially in a0 % RMS for a0 % altering
of the parameters as shown in the figures. From the figures it is
clearly identified that the model is mainly sensitive to the lens
(subscript L) and the ceramic (subscript P) parameters. All
other components have a relatively neglectibly small affect on
the error. Additionally it can be concluded, that the stiffness,
cD
i , the length,Li, and the density,ρi, are the important

parameters of the materials. Obviously these three constants
affect the phase of the simulated pulse through the propagation
constantski. The attenuation constant is seen to affect the
model linearly, however, the affect is small as shown in Fig.
3d.

Fig. 3e shows the RMS error of the pressure pulse compar-
ison when changes toA, h, ǫS , and tan (δ) are performed.
From these results it is identified that the main factors areh
andǫS which both exhibit a non linear affect on the equations.
Notice that the RMS error can even be lowered by2.3−2.5 %
RMS by increasing the values of these two parameters with
6 − 8 %. Changes to the area,A, and the ceramics electrical

damping are only of slight effect. Notice, however, that for the
area,A, only the area in (12), and not the area set by defining
the geometry in the Field II software, is altered. This is done
because this study investigates the sensitivity of the transducer
model describing the impulse response and not the Field II
surface model and/or changes in the geometry. Clearly, the
error would change if the area of the Field II elements where
changed as well.

The errors in Fig. 3f indicate that changes in the electronic
loading have an affect. However, the error is small compared
to changes in the lens and the ceramic, and the affect on the
model has a non linear tendency for most of the electronic
parameters.

The last six plots, Fig. 4a to 4f, show the RMS intensity
errors (IE). For IEs the exact phase requirements are not
necessarily needed. The influencing factor is the energy of
the pulse itself.

Fig. 4a to Fig. 4c reveal that the piezoceramic is affecting
the error more than the lens material, which is different from
the pressure pulse study. Also notice that the error is not more
sensitive to lens parameters as compared to other transducer
material parameters. The attenuation constant in Fig. 4d is
an exception albeit the influence of errors in that parameter
is relatively small. Fig. 4e shows the same tendency as Fig.
3e hence conclusions are the same. Fig. 4f shows that the

420 2009 IEEE International Ultrasonics Symposium Proceedings



−20 −10 0 10 20

−40

−20

0

20

40

Deviation [%]

%
 R

M
S

cD

 

 

cD
B

cD
P

cD
ML1

cD
ML2

cD
L

cD
W

(a) Changes in the stiffness components and the
intensity error.

−20 −10 0 10 20

−20

0

20

40

Deviation [%]

%
 R

M
S

Length

 

 

L
P

L
ML1

L
ML2

L
L

(b) Changes in the length components and the inten-
sity error.

−20 −10 0 10 20
−40

−20

0

20

40

Deviation [%]

%
 R

M
S

ρ

 

 

ρ
B

ρ
P

ρ
ML1

ρ
ML2

ρ
L

ρ
W

(c) Changes in the density components and the
intensity error.
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intensity error.

Fig. 4. RMS errors of the intensity when comparing simulation and measurements.

electronic components have increased their influences. The
reason for this can be explained by the fact that the loading
electronic mainly determines the clamped voltage across the
piezoceramic more than influencing the phase of the pulse.
This is also why it theoretically is possible to generate a zero
error for the intensity with these parameters. By studying the
figures quantitatively it can be found that a RMS PPE of
approximately6 % for −4 % stiffness change of thecD

L and
a PPE of approximately−1.2 % for a −4 % changecD

P are
found. A slight error improvement is therefore achieved by
changingcD

P . The same study for the RMS IE is−0.1 %
and −12 % for cD

L and cD
P , respectively. Note alsocD

P in
Fig. 4a, where a−8 % change improves the IE by−22.3 %.
Similar tendencies are found forLP andρP in Fig. 4b-c. This
indicates that it is possible to approach the measured energy
by changing these parameters. However, this may result in an
increasing PPE.

VI. CONCLUSION

By altering the different model parameters one at a time it
is determined that for PPE calculations of simulated pressure
relative to the measured the model exhibits highest sensitivity
to the piezoceramic and the lens parameters. Mainly the
stiffness, the thickness, and the density of these two layers are
of importance. The remaining parameters were seen to have
much less influence on the PPE. When comparing the RMS

IE the lens became of less significance but the piezoceramic is
still influential. Also the electronic network has a significant
influence on the IE.
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Abstract—Field II is a program for simulating ultrasound
transducer fields. It is capable of calculating the emitted and
pulse-echoed fields for both pulsed and continuous wave trans-
ducers. To make it fully calibrated a model of the trans-
ducer’s electro-mechanical impulse response must be included.
We examine an adapted one dimensional transducer model
originally proposed by Willatzen [9] to calibrate Field II. This
model is modified to calculate the required impulse responses
needed by Field II for a calibrated field pressure and external
circuit current calculation. The testing has been performed with
Pz27 piezoceramic discs from Ferroperm Piezoceramics A/S,
Kvistgaard, Denmark. The transmitted acoustic pressures from
two sets of each five disc samples with 10.08 mm diameters
were measured in an automatic water bath needle hydrophone
setup together with the current flow through the driving circuit.
Resonance frequencies at 2.1 MHz and 4 MHz were applied.
Two types of circuits were considered, one circuit with a simple
resistance load of 47.5 Ω and one with an example of a LR
tuning circuit typically found in commercial transducers. The
measurements were averaged 128 times and afterwards compared
to the calibrated Field II program for 1, 4, and 10 cycle
excitations. Two parameter sets were applied for modeling, one
real valued Pz27 parameter set, manufacturer supplied, and one
complex valued parameter set found in literature, Algueró et al.
[11]. The latter implicitly accounts for attenuation. Results show
that the combination of the model and Field II can calculate the
pressure within −15 % to 5 % RMS error for long excitation
bursts and 7 % to 23 % for short excitation bursts. Furthermore
it is shown that current simulations can be done within 1 % to
maximum 33 % RMS error, where best current simulations are
found for 4 MHz long burst simulations and worst case is found
for 2.1 MHz short bursts. Finally it is shown that maximum
pressure deviation for the real parameter set and the complex
parameter simulation is 3 % for pressure and 5.3 % for current.

I. INTRODUCTION

The ultrasound simulation program Field II [1], [2] has
been developed to calculate the scattered pressure field from
inhomogeneous tissue in front of a transducer. The field
calculations are based on time convolutions between the
transducer’s surface acceleration and spatial impulse responses
[2]. To predict the actual pressure level from the convolution
by Field II, the transducer’s 1D electro-mechanical impulse
response needs to be either measured or calculated by a
mathematical model.

Models for 1D piezoelectric transducers have been pre-
sented in early papers such as those by Mason [3], Redwood
[4], or Krimholtz et al. [5] and extensively used and expanded
in later works. Some later references which employ these

electrical equivalent circuits (EEC) models, are papers with
emphasis on EEC multilayer transducers [6], [7], [8], which
implies that 1D transducer modeling is a standard tool as of
today. However, 1D EEC models hide, to some extent, the real
electro-acoustics relationship, the time and position dependent
stresses, strains and electric field of the transducer and the
influence of the real physical quantities such as stiffness and
dielectricity are not easily found.

Willatzen [9], [10] has proposed a multilayered 1D model
based on the basic equations of electro-acoustics, where the
electrical network is included as an impedance loading. The
model may be of special interest for transducer development
since the real physical state can be found directly as a function
of time and position together with the influence of the physical
piezoelectric quantities. The model thus has an interesting
advantage in calibrating Field II.

This paper investigates the usability of the model for
simulating the pressure and current response of a single
piezoceramic transducer mounted with silver electrodes and
submerged into water by combining it with Field II. We
compare the calculated pressure and current with measured
values. Two electronic networks are considered for loading, a
single 47.5 Ω resistor in series with the piezoceramic and a LR
network typically found in medical transducers. Pz27 ceramic
discs from Ferroperm Piezoceramics A/S, Kvistgaard, Den-
mark, are applied for simulations and measurements because
of manufacturer available parameters, which are real valued,
and complex valued parameters found by Algueró et al. [11]
that implicitly include losses.

II. THEORY

By following the method suggested in [9] and by applying
circuit analysis as described in Johnson [12] for the circuit
diagram in Fig. 1 and the transducer setup in Fig. 2, one obtain
(1) - (10).

In these equations subscripts Ag,p denote the silver and
ceramic material respectively and it is assumed that the silver
thicknesses, LAg, are identical on each side of the piezo-
ceramic. cD

Ag,p are the stiffness constant, ZAg,p,Front,Back

are the acoustic impedance of the different medias given by
Z = ρv, where v is the wave velocity and ρ the density. kAg,p

are the wave propagation constants defined by k = ω
v , and ω is

the radial frequency. The piezoelectric constant h is defined as
e33

εS , where e33 and εS are the piezoelectric coupling coefficient
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TBack = cD
Ag (AAg,1 + BAg,1) , (1)

TBack

ZBack
=

cD
Ag

ZAg
(AAg,1 − BAg,1) , (2)

cD
p (Ap + Bp) − hD = cD

Ag

(
AAg,1e

−jkAgLAg + BAg,1e
jkAgLAg

)
, (3)

cD
p

Zp
(Ap − Bp) =

cD
Ag

ZAg

(
AAg,1e

−jkAgLAg − BAg,1e
jkAgLAg

)
, (4)

cD
Ag (AAg,2 + BAg,2) = cD

p

(
Ape−jkpLp + BpejkpLp

)
− hD, (5)

cD
Ag

ZAg
(AAg,2 − BAg,2) =

cD
p

Zp

(
Ape−jkpLp − BpejkpLp

)
, (6)

TF ront = cD
Ag

(
AAg,2e

−jkAgLAg + BAg,2e
jkAgLAg

)
, (7)

− TF ront

ZF ront
=

cD
Ag

ZAg

(
AAg,2e

−jkAgLAg − BAg,2e
jkAgLAg

)
(8)

−jωV (ω) = −
(

zeω
2A + jωzx

Lp

εS

)
D + hzx

cD
p

Zp
(Ap − Bp) + hzx

cD
Ag

ZAg
(BAg,2 − AAg,2) , (9)

ze = δ(i)
R1R2

(R3 − jwL)
+ R1 + R2 , zx = 1 + δ(i)

R1

(R3 − jwL)
. (10)

for stress-charge form and the electrical permitivity under
constant strain, respectively. R1, R2, R3 are passive resistors,
and L is an inductor. The switch d on Fig. (1) is accounted
for by the unit delta function δ in (10). d makes it possible to
choose between LR tuned circuits and a simple resistor loop.

R 1 R 2

R 3

L

d

P z 2 7

R i n

V

Fig. 1. Electronic circuit systems.

Fig. 2. Model of transducer setup.

As driving source, a Fourier transform of a tone burst, V (ω),
is applied. The unknown TFront and TBack variables are the
tensions on the transducers front and back plane respectively,
and D is the unknown electric displacement. Furthermore,
AAg,i, BAg,i, Ap and Bp are unknown complex coefficients

in the general expression for the particle velocity [9]:

u(z, t) =
cD

Z

[
Ae−jkz−jωt − Bejkz−jωt

]
. (11)

By time differentiating the particle velocity on the front surface
of the transducer, the surface acceleration is found, whereby
the field pressure can be found through the Field II convolution

p(�r, t) = ρ
∂u

∂t
∗ h(�r, t), (12)

where �r and h(�r, t) are the spatial coordinate and the spatial
impulse response, respectively, as defined in Field II [2] .

The nine unknown variables: AAg,1, BAg,1, AAg,2, BAg,2,
Ap, Bp, TFront, TBack and D are solved by using MATLAB.

To account for losses in the ceramic we apply two ap-
proaches. The first approach is to use complex values for
cD
p , εS, h found in the article by Algueró et al. [11]. This

article lists an experimental estimation of several parameters
in complex form which implicitly accounts for acoustic losses.
The second approach is to model losses by including a
complex propagation constant as suggested in [9]. This is
done by deriving a complex speed of sound by converting
the propagation constant from real form to complex form as
k → k̄ = kr + jα, where kr = ω

vr and vr is the real velocity.
The attenuation constant α approximates mechanical losses
in narrow band transducers [9] and has the units [1/m]. The
evaluation of the complex propagation constant can be made
by calculating a complex speed of sound

v̄ =
ω

k̄
=

ω

kr + jα
=

vr

1 + jαvr

ω

, (13)

and then substituting the propagation constant for each ma-
terial layer with a complex one k̄ = ω

v̄ . Dielectric losses in
the piezoceramic can be accounted for by substituting the real
valued dielectric constant ε with the complex one ε + j tan δ
in (9), where tan δ is the dielectric loss factor.
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TABLE I
RMS ERROR IN PERCENT FOR THE MODEL AND MEASUREMENTS RELATIVE TO THE MEAN OF THE MEASUREMENTS USING 1,4, AND 10 CYCLE

EXCITATIONS AT 2.1 MHZ AND 4 MHZ RESONANCE FREQUENCIES AND EITHER SIMPLE RESISTANCE AS CIRCUIT OR A LR CIRCUIT.

1 cycle excitation 4 cycle excitation 10 cycle excitation
R1 only: Real Measured Complex Real Measured Complex Real Measured Complex

Current 2.1 MHz 36.0 3.2 35.5 24.9 4.8 25.4 17.1 3.7 17.9
Current 4 MHz 29.0 12.1 25.3 16.0 9.9 14.3 9.8 7.7 8.6
Pressure 2.1 MHz 37.0 10.0 36.4 24.6 8.5 23.9 15.0 8.5 15.8
Pressure 4 MHz 19.0 25.3 18.0 13.7 24.8 14.1 10.4 25.8 10.7

LR circuit:
Current 2.1 MHz 49.0 4.5 43.7 34.0 4.0 33.6 21.5 4.3 22.5
Pressure 2.1 MHz 30.1 9.6 33.1 21.1 7.7 19.0 11.5 7.0 12.5

III. NUMERICAL SIMULATION

The numerical simulations are highly dependent on accurate
model parameters. Piezoceramic manufacturer supplied pa-
rameters and estimated parameters from the paper of Algueró
et al. [11] are used. Parameters for the silver electrodes are
found by consulting a Ferroperm material database. Table II
lists the simulation parameters for the real valued data set
simulation and for the complex valued simulation.

TABLE II
MODEL PARAMETERS FOR PZ27.

Real case Complex case

ρ 7700 7700
kg
m3

cD
p 1.44·1011 [(813.9+j0.113) ± (0.7−j0.006)]·1010 N

m2

h 1.98·109 [(21.0 + j0.148) ± (0.4 − j0.004)]·108 V
m

εS 9.14·102ε0 [(822 − j10.3) ± (12 − j0.4)] · ε0
F
m

tan δ 0.017 0.017 []

ρAg 10600 10600
kg
m3

cD
Ag 1.1265·1011 1.1265·1011 N

m2

ρw 1000 1000
kg
m3

cD
w 2.1904·109 2.1904·109 N

m2

Velocities and stiffness constants are calculated from v =√
cD

ρ . The thickness of a silver layer, LAg, is estimated by
manufacturer to 9 μm, the radius of the discs are estimated
to 5.04 mm, and the ceramic thicknesses are 0.94 mm and
0.5 mm giving a 2.1 MHz and a 4 MHz resonance frequency,
respectively.

The attenuation constant α for the real valued data set is to
be approximated by α = π

Qmλ [9], giving α2.1 MHz = 19 1
m

and α4MHz = 36 1
m when Qm = 80 is the mechanical quality

factor and λ is the acoustic wavelength.
The electronic loading for purely resistance loading, i.e

δ(i �= 0), R1 and R2 were chosen to be 47.5 Ω and 0 Ω
respectively, whereas for the LR tuning circuit test, δ(i = 0),
the components were set to L = 6.1 μH , R1 = 47.5 Ω,
R2 = 75.6 Ω, and R3 = 10.3 Ω. The internal resistance,
Rin, of the generator was 50 Ω. All values was chosen in the
range of what can be expected in a commercial transducer.

Field II was set up to calculate the point pressure field using
its piston model, with mathematical square element sizes of
0.1 mm times 0.1 mm. The sampling frequency was set to

600 MHz and convergence was found for the model in the
sense that insignificant amplitude and phase changes were
found.

IV. EXPERIMENTAL SETUP

An automatic water tank needle hydrophone setup was
set up to measure the field pressure. Current flow through
the driving circuit was measured through R1. The ceramics
were mounted in a specially made slot that ensured identi-
cal mounting position at sample exchange. The acquisitions
and excitations were performed with an Agilent MSO6014A
oscilloscope and an Agilent 33220A Function Generator that
supplied a 10.4 Vpp excitation burst. The measurements were
averaged 128 times to minimize measurement noise. Five discs
at resonance frequencies of 2.1 and 4 MHz were measured
with burst excitations of 1, 4, and 10 cycles.

V. RESULTS

The mean of five measurements and the corresponding
simulations with 1 cycle excitation at 2.1 MHz when the LR-
network is applied are plotted in Fig. 3 and Fig. 4 for current
and pressure, respectively. These figures show the model’s

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−6

−0.06

−0.04

−0.02

0

0.02

0.04

Time [s]

C
u

rr
en

t 
[A

]

Measured vs. simulated current

 

 

Measured
Real valued data set
Complex valued data set

Fig. 3. Simulated and measured current through R1 for 1 cycle excitation.

general ability to predict the waveforms for short bursts. The
model exhibits a limited capability in capturing the correct
phase on the pulse tails, and it shows an acceptable capability
to represent the main excitation period. Also the pressure
levels calculated by Field II are seen to be consistent with
the mean of the measurements in Fig. 4. However, to account
for the hydrophone area we found it necessary to lower the
measurements 3.5 dB from what the calibration chart implies,
which is a consequence of the Field II’s point calculation.
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Fig. 4. Calculated and measured pressure at a point 70 mm from the
transducer surface.

A quantisation of the model’s accuracy when applying the
two data sets for the two disc thicknesses, 0.94 mm and
0.5 mm, using one of the two types of electronic circuits
is presented in Table I. The table shows the RMS error
in percentage of the simulations and measurement samples
relative to the mean of the five measurements at 2.1 and
4 MHz respectively. The two data sets for simulation were
lowered with 2.5 % in density for both sample types and −0.03
mm in thickness for the 4 MHz samples to achieve the best
pulse behaviour. These values are within the manufacturers
tolerances and can therefore be considered acceptable.

From Table I it can be concluded that current measurements
were performed relatively stable, within 3 − 12 % devia-
tion, and pressure measurements were fluctuating significantly
more, within 7 − 26 %. The latter indicates the difficulty
in achieving a consistent point measurement with a needle
hydrophone in front of the piezoceramics. Furthermore, the
table expresses a clear consistency between simulation with
the two parameter sets, found only to differ within 0 − 8 %.
These results indicate that the estimated values for attenuation,
α, may be acceptable ones to use.

It should be noticed that the current simulations are dif-
fering relatively more from measurements than the pressure
simulations are from corresponding measurements. This is due
to pulse tails and transients, which are rapidly changing or
drifting for current measurements. An ability that should be
considered a model weakness.

The LR circuit simulation is found to exhibit errors at
the same level as the simple circuit configuration which
demonstrates the validity of the LR circuit model.

Finally, the table reveals that the model performs best in
capturing long bursts, which is seen on the increase in error
as the pulses get shorter for both current and pressure. The
reason is due to generally slight overshoots on transients and
pulse tail drifts, which affect the error calculation on short
pulses significantly.

It is noticeable that simulation errors can be smaller than
measured errors as was the case for the 4 MHz simulation.

VI. CONCLUSION

The presented research has shown the importance of apply-
ing the correct data sets for this one dimensional model. A

need to adjust the density constant to “calibrate” the model
to the measurement envelope form were found. As a result
the model performs best for long burst excitations. The one
dimensional model coupled with Field II was found to perform
best when calculating the field pressure. Here, simulation
errors lower than experimental errors were found. Current
measurements, however, were found to exhibit a slightly
higher degree of error. Both the complex and the real valued
data set were seen to give almost the same simulation results,
only differing within 8 %.

Thus, the model is concluded to work well with both
parameter sets.
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Abstract 

Field II is an ultrasound simulation program capable of simulating the pressure scattering from inhomogeneous tissue. The 
simulations are based on a convolution between spatial impulse responses from the field in front of the transducer and the volt-to-
surface acceleration impulse response of the transducer. For such simulations to reflect actual measured intensities and pressure
levels, the transducer impulse response is to be known. This work presents results of combining a modified form of a 1D linear 
transducer model originally suggested by Willatzen together with the Field II program to calibrate the pressure and intensity 
simulations of a 128 element convex medical transducer with elevation focus at 70 mm. The simulations are compared to 
pressure measurements from a transducer driven at 4.0 MHz using a research scanner with a commercial transducer amplifier 
from BK Medical (Herlev, Denmark). As input waveform to the Field II model we measured the output voltage of the research 
amplifier. The peak voltage was limited to 31 V to avoid too high non-linear effects. We measured the hydrophone output from 
three transducer front elements by averaging 40 shoot sequences on each element using a remotely controlled Agilent 
MSO6014A oscilloscope.  The pressure along the center line in a distance of 33 mm, 72 mm, and 112 mm from each element 
was measured as well as the intensity in the elevation plane in each depth.  
Results show that the 1D modeling of the linear transducer impulse response predicts the pulse waveforms satisfying. We show a 
root mean square error of approximately 26 % on the pressure prediction and a root mean square error on the intensity prediction
from 5.8-16.2 % from 72 mm to 112 mm, and an average of 15.4 % at 33 mm, when a 1.7 dB amplitude correction is made. 
PACS: 43.38.Fx;43.20.Px;43.58.Vb 

Keywords: Field II calibration; calibrated measurement; convex transducer; transducer impulse response 

1. Introduction 

Field II [1, 2] is a simulation software for simulating the pressure as well as the pulse-echo response in front of a 
medical ultrasound transducers. The results of a Field II simulation have proven to predict consistent results with 
measurements [3]. However, to do intensity simulations, non-normalized pressure and pulse-echo simulations with a 
medical transducer the exact impulse response of each transducer element has to be known on forehand. These 
impulse responses are most often seen approximated by weighted tone bursts or direct measurements when applied 
in Field II simulations. Impulse responses are also seen approximated with extensions of one dimensional models 
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such as those presented in early papers by Mason [4], Redwood [5], or Krimholtz et al. [6], which are all based on
electrical equivalent circuit (EEC) models. These models, however, to some extent, hide the time and position
dependent stresses, strains, and electric field of the transducer. Furthermore, the influence of the real physical
quantities such as stiffness and dielectricity are not easily found.

We have previously shown [3] that a modified version of a 1D transducer modeling principle originally presented
by Willatzen [7] works well together with Field II for circular piston models. This model does not rely on equivalent
circuits of the acoustics and it can provide displacement, velocity and acceleration to any point in a multi layered
transducer assumed operating in longitudinal mode. Simulation of complex medical transducers requires, however,
usually full knowledge of transducer material properties as well as the electronic loading network which complicates
the modeling of such transducers.

In this paper we investigate the usability of the 1D model we applied for circular pistons [3] together with Field II 
for simulating the pressure and intensity in front of a 128 element convex array transducer by having knowledge of
manufacturer supplied transducer parameters of the acoustic layers and by assuming a simplified version of the
electronic transmit network. We compare hydrophone measurements along the center axis of three elements as well
as the intensity profile in the elevation plane in front of these elements with simulation results.

2. Theory

Each element of the 128 element convex transducer consists of a backing material, a piezo element, two matching
layers and a lens. Furthermore, each transducer element measures 10 mm x 0.24 mm in elevation height and width.
Each transducer element area is sub-diced into two columns of 0.1 mm x 0.1 mm smaller elements. The geometrical
setup is shown in Fig. 1.

We use our 1D transducer model in the same manner as found in previous works [3, 7], i.e., a set of linear
equations which is solved for the unique impulse response of the surface acceleration, v, on a given sub element.
This surface acceleration is then applied in the Field II pressure calculation: 

(1),t),r,t)r h(vp(

where v is the element surface acceleration, ),( trh  is the spatial impulse response dependent on the spatial
coordinate r. The constant  is the density of the propagation media in front of the transducer, and * is the time
convolution.

Field II is a field point pressure calculator which implies that to achieve proper comparison with hydrophone
measurements an average pressure calculation across the hydrophone area should be calculated. For a circular
needle hydrophone it is reasonable to consider the received pressure as [7] 

(2)tp
A

p ,,1(
A

rec dSrt )()

where A is the hydrophone area. This integral can be solved by discretization

(3)

where N is the number of sub areas, ds, inside the total hydrophone area, A, and pi is the calculated point pressure at
the center of the sub area dsi.

i
irec

ds
,),()(

N

iN

i

dstrptp 1

i

The electronic network loading the considered transducer and transmitter can be divided into two parts. The first
part is the transmitter part found inside the scanner, the second part is found from the scanner output plug to the
transducer ceramic as shown in Fig. 2.
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Fig.1  A frontal view of the transducer elements.

Fig.2  Simplified electronics driving the transducer.

Because we do not model the exact transmitter source the generator output voltage is measured before connecting
the two networks for performing pressure measurements. This measured voltage is later applied for simulations as 
described in the next section.

The coaxial cable is modeled using transmission line theories, by assuming a lossless coaxial cable that
terminates into the piezo ceramics and into the components L1, R1, L2, R2, Rmux, which are inductors and resistors
used to terminate dc-voltages and drive the transducer.
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C DC C C

v

These assumptions result in a set of equations (4)-(16), where BackFrontBack and Front  are the tension on the
transducer’s front and backplane as well as the acoustic impedances on the front and backplane of the transducer,
respectively. The constants , ML1 , ML 2 , and LENS  are the stiffness constants for the piezoceramic, matching
layer one (ML1), matching layer two (ML2), and the lens respectively. The acoustic impedances are given by

ZTT ,, Z

D
p

D D

Z k LENSk

vk /
, where  is the material density and v is the wave velocity. , , , and  are the wave

propagation constants for the different layers defined by
pk 1MLk 2ML

S e S

, where  is the radial frequency. The
thickness of each material layer is defined as , , , and . The piezo electric constant h is defined
as 33 , where 33  and  are the piezo electric coupling coefficient for stress-charge form and the 
electrical permittivity under constant strain. Z

pL 1MLL 2MLL LENSL

eh /
0 is the characteristic cable impedance, and CL  is the

propagation constant in the coaxial cable with L and C being the inductance and capacitance per meter. The function
V( ) is the Fourier transform of a unit impulse and Zg  is defined as 

(17)11 LiRRZg mux

Finally, the coefficients Ap, Bp, AML1, BML1, AML2, BML2, ALENS, BLENS, TBack, TFront,, D, V+ , and V- are the coefficients to 
be solved for using Matlab. The coefficients V+  and V- coefficients are related to the coaxial transmission line.

3. Numerical simulation

The manufacturer of the transducer materials has supplied material parameters corresponding to the different
layers. From these values the needed parameter constants are calculated and represented in Table 1.

Table1 Simulation parameters

The electronic components R1, R2, Rmux, L1, L2, Z0, L and C have the values 100 , 20 , 22 , 3.9 μH, 10 μH,
75 , 3.87 μH/m and 67 pF/m, respectively. The cable length, Lcoax, is measured to be 2.2 m.

The acoustic losses are accounted for by applying a complex wave velocity defined in (18) [3, 7], with vr as the
real-valued wave velocity defined in (19)

(18),
/1 v

v ri
rv
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'

(19),/Dr cv
where  in (19) is the material density.

The attenuation constants, , are calculated from information supplied by the manufacturer and are found to be:
{1036, 0, 139, 186, 308, 25e-3} [1/m] for the backing layer, the piezoceramic, ML1, ML2, the lens, and the water,
respectively. The dielectric losses are included by changing the dielectric constant to a complex one )tan(i ,
[3, 7].

We set up the Field II program to define the surface of the transducer with all its sub elements using the build-in 
command xdc_convex_focused_multirow. The excitation voltage for simulation was measured as shown in Fig. 2
and applied in the Field II setup. We applied a tone burst of 10 cycles and an excitation center frequency of 4.0
MHz. The sampling frequency was set to 400 MHz.

4. Measurements

Pressure measurements were performed with a needle hydrophone in a de-mineralized water bath setup.  The
transducer was fixed at a known position, and measured data was sampled and they were averaged 40 times using an
Agilent MSO6014A oscilloscope. The excitation voltage was limited to approximately 31 volt peak to lower the
possibility of non-linear effects. We performed a shooting sequence where one element was excitated at the time
using our research scanner [8]. To achieve incident wave fronts normal to the hydrophone we applied three
transducer center elements for which the hydrophone could be moved approximately normal to. Due to the
transducer’s convex nature a measurement normal to all of the 128 elements would require the hydrophone or the
transducer head to be rotated which was not possible with our current setup.

5. Results

A comparison between the simulated and measured pressure at the elevation focus of the transducer for a single
element is shown in Fig. 3. By performing experiments at three depths we found that approximately a 1.7 dB
undershoot on the simulated amplitude was predicted and had to be accounted for in remaining simulations.
Furthermore, as it can be identified in Fig. 3 the pulse shape is very well predicted by the model. However, the
prediction exhibits a slightly too fast attenuation and oscillation at the pulse tail. A similar tendency was also found
in our previous work [3]. This tendency must be followed by the conclusion that the model parameters have a high
degree of accuracy, and that the 1D model is capable of predicting the pulse shape during transition and excitation.
The tail error may be found in loss mechanisms that we do not model. Furthermore, by assuming the model
parameters to be exact then the 1.7 dB adjustment is concluded mainly to be due to the simplified electronic network
modeling.

Fig.3  Pressure comparison between measured (red circles) and
simulated pressure (blue squares) at 72 mm along the center
axis of element 64

Fig.4  Comparison between measured and simulated spatial 
peak pulse average intensity 
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Fig. 4 is a simulation of the spatial peak pulse average intensity for pressure pulses simulated and measured in the
elevation plane at the depths 33 mm, 72 mm, and 112 mm along the center axis of element 64. From these plots one
clearly identify a nice consistency between simulations and measurements, where best results are found in the “far-
field”. Experimental measurements at 33 mm having the purpose to map the intensity in a parallel plane to the
elements proved a highly complex surface shape, which the Field II surface model does not account for. A
comparison between simulation and measurements are therefore expected to be difficult close to the elements as also
shown in Fig. 4.

Table 2 is a quantitative study of the comparison between measurements and simulations. It represents the root
mean square error (RMS) in percents of the difference between simulation and measurements relative to 
measurements. It represents the error in the intensity study along the elevation plane of three elements as well as the
pressure along the elements center axis in three depths.

Table2. RMS error at three depths

From the table it can be identified, that the pressure measurements were performed consistently within an RMS error
of approximately 26 %. This tendency implies that the physical transducer elements have almost identical
performance. For the intensity prediction a higher deviation in the errors are found, which imply that measurements
in the elevation plane are more difficult to measure. One may assume that the hydrophone measurements have not
been adequately normal to the wave fronts at maximum. Also the non-linear effects and possible small inaccuracies 
in time measurements may be sources for errors.

6. Conclusion

This paper has shown that a simplified model of the complicated electronic network loading and driving a 128
element convex transducer is possible within an amplitude adjustment of 1.7 dB by measuring the output voltage of
our research scanner and using it as input for the Field II program. The study has shown that the linear 1D model
predicts the pressure pulse in corporation with Field II within a ~26 % RMS error. We have also found that the 
simplified modeling can predict the elevation intensity of a 10 cycle 4.0 MHz tone burst excitation within a RMS
error of ~5.8-19.5 %, where best results are achieved furthest away from the elements. Errors are mainly found on
pulse tails and due to non-linearity. From the study we also conclude, that the presented 1D transducer model works
very well in predicting the impulse response of the squared transducer elements. However, an improvement in the
electronic network modeling may be needed to achieve proper amplitude simulations with more complicated
excitation pulses.

Acknowledgements

The authors would like to thank Sound Technology, Inc. for supplying the transducer information as well as giving
support in discussions, and would like to thank BK Medical Aps for giving support in discussions.

1000 D. Bæk et al. / Physics Procedia 3 (2010) 995–1001



David Bæk, Jørgen Arendt Jensen, and Morten Willatzen / Physics Procedia 00 (2010) 000–000 

References 

[1]  J.A. Jensen, “ Field: A program for simulating ultrasound systems, paper presented at the 10th Nordic-Baltic Conference on Biomedical 
Imaging Published in Medical & Biological Engineering & Computing”, pp. 351-353, Volume 34, Supplement 1, Part 1, 1996. 

[2]  J.A. Jensen and N.B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers”, IEEE 
Trans. Ultrason., Ferroelec., Freq. Contr., 39, pp. 262-267, 1992.  

[3]  D. Bæk and J.A. Jensen and M. Willatzen, “Testing of a one dimensional model for Field II calibration”, Proc. IEEE Ultrason. Symp. Oct. 
2008, pp. 1417-1420. 

[4]  W.P. Mason, ”Electromechanical Transducers and Wave Filters”, 2nd ed. D. Van Nostrand Company, Inc. 1948, p.205.  

[5]  R. Krimholtz, D.A. Leedom, and G.L. Matthaci, ”New equivalent circuits for elementary piezoelectric transducers”, Electron. Letter., vol 6, 
pp. 398-399, 1970. 

[6]  M. Redwood, “Transient performance of a piezoelectric  transducer”, J.Acoust. Soc. Amer., vol 33, pp. 527-536. 

[7]  M. Willatzen, “Ultrasound transducer modeling-general theory and applications to ultrasound reciprocal systems” IEEE Trans. Ultrason., 
Ferroelec., Freq. Contr., vol. 48, pp. 100-112, 2001 

[8]  J. A. Jensen, O. Holm, L. J. Jensen, H. Bendsen, H. M. Pedersen, K. Salomonsen, J. Hansen, and S. Nikolov, “Experimental  
      ultrasound system for real-time synthetic imaging”, in Proc. IEEE Ultrason. Symp., volume 2, 1595–1599 (1999).
.

D. Bæk et al. / Physics Procedia 3 (2010) 995–1001 1001



138



Abstract I
Testing of a spatial impulse response algorithm for

double curved transducers
David Bæk, Jørgen Arendt Jensen, and Morten Willatzen

Abstract to: Proceedings of the IEEE International Ultrasonics
Symposium

Accepted for conference in San Diego 2010

139



140



Testing of a spatial impulse response algorithm for double curved transducers 

David Bæk*, Jørgen Arendt Jensen*, and Morten Willatzen† 

*Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark 
†Mads Clausen Institute for Product Innovation, University of Southern Denmark, 6400 Sønderborg, Denmark 
Email: db@elektro.dtu.dk , jaj@elektro.dtu.dk , willatzen@mci.sdu.dk 
 
Background, Motivation and Objective  
The spatial impulse response (SIR) method for solving the Rayleigh integral is a well known method for 
fast time response simulation of acoustic. Several analytical expressions have been found for simple 
transducer geometries such as rectangles and discs. However, no analytical solution is found for double 
curved transducers (DCT), i.e. transducers with both concave and convex radius. To calculate the 
pressure from such transducers Field II uses a far‐field approximation by dividing the surface into 
smaller flat elements and then do a summation of the response from all the elements using Huygens 
principle. This calculation method involves several summations, and it relies on exact phase calculation 
to avoid numerical noise in the response.  A stable analytical expression for the SIR would therefore be 
beneficial to the Field II software as an alternative solver. A semi‐analytic algorithm (SAA) has been 
developed, and it is the objective of this work to validate an analytical approximation of the algorithm as 
an alternative solver for Field II. 

Statement of Contribution/Methods  
A semi‐analytical algorithm that finds the SIR for DCT has been developed and implemented. An exact 
solution to this algorithm requires a numerical integrator; however, a part of the algorithm may be 
approximated by a parabola function to yield a computational efficient analytical expression. This paper 
investigates the accuracy of the approximation.  The root mean square (RMS) error of calculating the SIR 
using Field II and the approximated algorithm (AA) are calculated relative to the exact solution on a 
single element transducer with convex and concave radius of 70 mm and 60 mm, respectively. Error 
calculations are performed at sampling frequencies ranging from 40 MHz to 4.94 GHz in steps of 100 
MHz. The transducer width is 250 μm and the height is 10 mm. The exact solution of the semi‐analytical 
solution is solved at 4.94 GHz using MATLAB and used as a reference for the error calculation at point 
locations {x,y,z}= {‐1,0,20}, {‐1,10,120}, and {‐1,0,20} mm for point P1, P2, and P3, respectively.  Field II 
uses 500x550 mathematical elements to gain high resolution. 

Results   
A second order polynomial was found suitable for approximating a part of the SAA. As a consequence 
the SAA could be solved analytically. By comparing the SIR it was found that at 140 MHz the RMS errors 
at the points P1, P2, and P3 are {12.3,3.3,32.4} % and {0.04,0.5,0.09} % for Field II and the AA, 
respectively. At 4.94 GHz the errors are {1.1, 0.8, 10.2} % and {0.04, 0.5, 0.07} %.   

Discussion and Conclusions 

It is found that the AA is accurate within an RMS of 0.5 % at 140 MHz relative to the exact solution, and 
0.5 % at 4.94 GHz exhibiting only a very small error fluctuation. Field II is seen to have up to 32.4 % and 
10.2 % at 140 MHz and 4.94 GHz. The RMS is very fluctuating.  It is concluded that the algorithm has 
potential for implementation into Field II as an accurate solver. Future development should focus on an 
implementation in c code.  
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Simulating CMUTs using Field II 
David Bæk1, Ömer Oralkan2, Mario Kupnik2, Morten Willatzen3, Butrus T. Khuri-Yakub2, Jørgen Arendt Jensen1 

1Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Kgs. 
Lyngby,Denmark, 2Edward L. Ginzton Laboratory, Stanford University, Stanford, CA, USA, 3Mads Clausen Institute 
for Product Innovation,University of Southern Denmark, Sønderborg, Denmark 
Background, Motivation and Objective 
For more than ten years Field II has been a recognized simulation tool for piezo ceramic medical array transducers. 
It has its strength in doing fast computation of the pulse echo spatial impulse response (PESIR) from array elements 
by dividing the elements into smaller mathematical elements (ME) from which it then calculates the PESIR far-field 
responses. The program has predefined models for classical transducer geometries, but currently none for the fast 
advancing CMUTs. Elements of CMUTs consist of many cells. Each plate of these vacuum sealed cells deflects due 
to an applied DC bias voltage and ambient pressure. Therefore, modeling each cell with deflection using Field II 
requires many ME. This paper addresses the error in modeling the PESIR with and without deflection and it 
investigates the possibility of using area scaling of the PESIR when modeling the whole element area as active. 
Statement of Contribution/Methods 
A single flat array element of size 190x5700 μm2 and a corresponding CMUT element with 5x150 cells with 18 μm 
radii, distributed with a pitch of 38 μm, are modeled. Cases with maximum plate deflections of 0 and 12.1 nm are 
studied. The difference in the PESIR due to active area is calculated by comparing the model of a flat full area active 
element (FE) and the model of an element with only the cell areas considered as active. The error is calculated as the 
ratio of the difference of the two PESIRs to the PESIR of modeling only active cells. The root mean square error 
(RMS) of the difference in the pulse shapes relative to the PESIR from active cells is also studied. It is furthermore 
investigated how the errors are affected by scaling the FE’s PESIR with the square of the ratio between the active 
areas of the two element types. The square of the ratio comes into play because the PESIR is a pulse-echo signal. 
The calculations are made at distances of 1, 10, and 100 mm along the elements’ center axis and at a sampling 
frequency of 200 MHz. Finally, a study of the number of mathematical elements needed for modeling deflecting 
plates is studied. 
Results 
With a 0 deflection the un-scaled PESIR of the FE yields an area error ranging from 91-98 %, whereas the scaled 
PESIR of the FE yields 1.2-4.7 % relative error. For a 12.1 nm center deflection the errors range from 90-97 % and 
1.7-6.8 % for the un-scaled and scaled FE area, respectively. The RMS errors range from 91-99 % and 1.2-6.8 % for 
the un-scaled and scaled PESIR, respectively. Best results are found at 100 mm distance. The number of ME across 
the radius, needed to resolve the cells, is found to be 5, which gives a 2.6 % RMS error of the pulse shape. For 
higher resolution the area error oscillates within 0-5 % and the solution time increases exponentially. 
Discussion and Conclusions 
In conclusion PESIR modeling at 200 MHz does not benefit from modeling each cell deflection. Energy of the 
PESIR pulse can be well preserved by area scaling of a PESIR modeled from elements that models the in-between 
cell inactive area as active 
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[37] M. Algueró, C. Alemany, , and L. Pardo, “Method for obtaining the full
set of linear electric, mechanical and electromechanical coefficients and
all related losses of a piezoelectric ceramic,” J. Acoust. Soc. Am., vol. 87,
pp. 209–215, 2004.

[38] T. Amby, Multiphysics Mathematical Modeling of Piezoelectric Transducers,
2005, vol. Master Thesis, University of Southern Denmark, Sonderborg.

[39] “Comsol multiphysics user’s guide, version: Comsol 3.4, comsol ab,
2008.”

[40] O. A. Sapozhnikov, A. V. Morozov, and D. Cathignol, “Piezoelectric
transducer surface vibration characterization using acoustic holography
and laser vibrometry,” in Proc. IEEE Ultrason. Symp., 2004, pp. 161–164.

[41] O. A. Sapozhnikov, A. E. Ponomarev, and M. A. Smagin, “Transient
acoustic holography for reconstructing the particle velocity of the sur-
face of an acoustic transducer,” Acoustical Physics, vol. 52-3, pp. 324–330,
2006.
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APPENDIX

A

Derivations and the physics of
piezoelectric transducer

equations

The following derivation note is based on findings in Auld [32] and Willatzen
[5]. It gathers the most important equations needed for arriving at a set of
solvable equations.

When an external force is applied to a piezoelectric material, its shape will
be linearly deformed. This deformation will result in internal stresses and
heating due to the atoms’ internal bindings.

Because of the atoms relative displacements the internal deformation results
in an internal work, δW . The work will be followed by internal heating due
to both viscosity and friction. External heating, dQ, can also occur. This type
of heating is contributing to the internal energy by increasing the energy of
the electrons. The crystal can also experience a change in stored energy by
means of an applied magnetic field, B.

The total amount of stored energy, due to external forces such as pressure
forces, electric forces and magnetic forces, can be written as:

δU = δW + δQ, (A.1)

where δW is representing the internal work done by external forces, and δQ
represents the internal heating [32] due to external heat supply. The work is a
contribution of mechanical forces TIdSI , electrical forces EidDi and magnetic
forces HidBi. The subscript to cover a full dimensional analysis follows i, k =
1, 2, 3 or i, k = x, y, z. The heat contribution dQ can be defined as τdσ, where
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τ is the temperature and dσ is the differential of the entropy. Finally, the
stored energy can be written as a summation of the above energies:

dU = TikdSik + EidDi + HidBi + τdσ. (A.2)

Tik is the tension, Sik the strain, Ei is the electric field, Di the electric displace-
ment, Hi and Bi are magnetic field quantities, τ is the temperature and σ is
the entropy [32].

The above definitions can be written as matrices in the following manner:

Tik =




TxxTyxTzx

TxyTyyTzy

TxzTyzTzz


 , Sik =




SxxSyxSzx

SxySyySzy

SxzSyzSzz


 . (A.3)

The above matrices can be alternatively written as [32]

TI =




T1

T2

T3

T4

T5

T6




=




Txx

Tyy

Tzz

Tyz

Txz

Txy




, SI =




S1

S2

S3

S4

S5

S6




= SI =




∂ux
∂x
∂uy

∂y
∂uz
∂z

∂uy

∂z + ∂uz
∂y

∂ux
∂z + ∂uz

∂x
∂uy

∂x + ∂ux
∂y




. (A.4)

This notation form is in general given in the litterature [32]. The remaining
matrices are given by

Ei =




Ex

Ey

Ez


 , Di =




Dx

Dy

Dz


 , Bi =




Bx

By

Bz


 , Hi =




Hx

Hy

Hz


 . (A.5)

Consider (A.2). If the stored energy is to be represented as a set of state vari-
ables, the function U(S, D, B, σ) can be established. This implies that one can
introduce the chain rule formulation as

dU =
∂U

∂S
dS +

∂U

∂B
dB +

∂U

∂D
dD +

∂U

∂σ
dσ, (A.6)

where

T =
∂U

∂S
, E =

∂U

∂D
, τ =

∂U

∂σ
, H =

∂U

∂B
. (A.7)

Most piezoelectric transducer modeling is independent of the piezomagnetic
contribution, because it is found to be negligibly small and thus can be dis-
carded [32]. Furthermore, it is a good presumption that the piezo material
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is isentropic, i.e. adiabatic and reversible. This implies that one can leave
out the temperature dependence τ because of the assumption dσ = 0. This
simplifies (A.6) to

dU =
∂U

∂S
dS +

∂U

∂D
dD. (A.8)

All processes can be expressed in terms of their enthalpy. The enthalpy is an
expression of the useful work which can be obtained from a closed system.
For a piezoelectric crystal one can write the total enthalpy as a contribution
of the following terms

He = U − EiDi − TikSik. (A.9)

When neglecting the electrical contribution in (A.9), the Helmholtz free en-
ergy function is found. It is typically denoted by A. Similarly, the enthalpy
associated with the electrical effects can be found when neglecting the ten-
sion. The latter is presented with Ā. These functions are then written as

A = U − TikSik, Ā = U − EiDi. (A.10)

Applying the method suggested in (A.8) one can write the following useful
expressions for He:

dHe = dU − d(EiDi) − d(TikSik) = TikdSik + EidDi − EidDi− (A.11)

TikdSik − SikdTik − DidEi

dHe = −DidEi − SikdTik. (A.12)

The same method applied on A and Ā yields

dA = EidDi − SikTik dĀ = −DidEi + TikSik. (A.13)

Applying the chain rule to (A.6), (A.12) and (A.13) yields several expressions
for constants which are commonly found in the piezoelectric world [5, 32].
These can be defined as

hikl = −
(

∂Ei

∂Skl

)

D

=

(
∂2U

∂Skl∂Di

)
= −

(
∂Tkl

∂Di

)

S

, (A.14)

dikl =

(
∂Di

∂Tkl

)

E

, (A.15)

gikl = −
(

∂Ei

∂Tkl

)

D

, (A.16)

eikl =

(
∂Di

∂Skl

)

E

. (A.17)
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Many more combinations can be derived by assuming that the order of differ-
entiation is of no significance. Similarly, the permitivity tensor can be found
as

ǫT
ik =

(
∂Di

∂Ek

)

T

, ǫS
ik =

(
∂Di

∂Ek

)

S

. (A.18)

The inverse permitivity is given as

βT
ik =

(
∂Ei

∂Dk

)

T

, βS
ik =

(
∂Ei

∂Dk

)

S

. (A.19)

Compliance and stiffness tensors are defined as

sD
iklm =

(
∂Sik

∂Tlm

)

D

, sE
iklm =

(
∂Sik

∂Tlm

)

E

, (A.20)

cD
iklm =

(
∂Tik

∂Slm

)

D

, cE
iklm =

(
∂Tik

∂Slm

)

E

. (A.21)

The permitivity is an expression for the solids capacitance behavior, and the
stiffness tensor expresses how stiff the solid is in its constraints. c is to be
compared to the well known proportionality constant found in Hooks law
for linear stress-strain. The compliance tensor, s, is the inverse of c.

Piezoelectric constitutive equations

Combination of the above expressions gives several piezoelectric equations
[5]:

Di = ǫT
ikEk + diklTkl, (A.22)

Ek = βT
ikDi + gklmTlm, (A.23)

Di = ǫS
ikEk + eiklSkl, (A.24)

Ek = βS
ikDi + hklmSlm, (A.25)

Skl = diklEi + sE
klmnTmn, (A.26)

Tkl = −eiklEi + CE
klmnSmn, (A.27)

Skl = giklDi + sD
klmnTmn, (A.28)

Tkl = −hiklDi + cD
klmnSmn. (A.29)

These expressions are the ones usually applied in piezoelectric formulations.
Note that it is sufficient to apply only two equations, e.g. (A.25) and (A.29) to
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find the unknowns. It also implies that many possible combinations can be
made dependent on the given application.

Consider (A.29) and write it out in the form of (A.4). Furthermore, restrict the
consideration to the material PZT- 5H. This material has a hexagonal atomic
structure [32]




T1

T2

T3

T4

T5

T6




=




cD
11 cD

12 cD
13 0 0 0

cD
12 cD

11 cD
13 0 0 0

cD
13 cD

13 cD
33 0 0 0

0 0 0 cD
44 0 0

0 0 0 0 cD
44 0

0 0 0 0 0 cD
66




·




S1

S2

S3

S4

S5

S6




−




0 0 hz1

0 0 hz2

0 0 hz3

0 hx5 0
hx5 0 0
0 0 0




·




Dx

Dy

Dz


 .

(A.30)

Consider also the second possible set of equations, which account for the
electrical affects given by (A.25).




Ex

Ey

Ez


 =




0 0 0 0 hx5 0
0 0 0 hx5 0 0

hz1 hz1 hz3 0 0 0


 ·




S1

S2

S3

S4

S5

S6




−




βS
xx 0 0
0 βS

yy 0

0 0 βS
zz


 ·




Dx

Dy

Dz


 .

(A.31)

Introducing the electrical potential yields an alternative way of representing
the electric field

Ē = −∇φ. (A.32)

This modifies the above equation set to the following form




−∂φ
∂x

−∂φ
∂y

−∂φ
∂z


 =




0 0 0 0 hx5 0
0 0 0 hx5 0 0

hz1 hz1 hz3 0 0 0


 ·




S1

S2

S3

S4

S5

S6




−




βS
xx 0 0
0 βS

yy 0

0 0 βS
zz


 ·




Dx

Dy

Dz


 .

(A.33)

These equations constitute the piezoelectric equations in a full dimensional
analysis. However, to solve the acoustic field inside the piezo element one
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has to introduce Newton’s second law of force

∇ · T = ρ
∂2u

∂t2
− F, (A.34)

where u is the particle displacement and F is the external force. This force
accounts for all forces and their reaction acting on an infinite volume element
inside the crystal. Using the abbreviated subscripts presented in (A.4) and
Auld [32], the gradient operator takes the following form

∇· →




∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


 (A.35)

Written out in full (A.34) yields

∂T1

∂x
+

∂T5

∂z
+

∂T6

∂y
= ρ

∂2ux

∂t2
− Fx,

∂T2

∂y
+

∂T4

∂z
+

∂T6

∂x
= ρ

∂2uy

∂t2
− Fy,

∂T3

∂z
+

∂T4

∂y
+

∂T5

∂x
= ρ

∂2uz

∂t2
− Fz. (A.36)

The above yields 13 unknown variables and 12 equations. To solve this com-
bination of equations in their full form an equation introducing the elec-
tric circuit driving the crystal can be applied. The crystal will generally be
mounted with two electrodes on two parallel sides. Between these two sides
an electrical potential may be formulated e.g.

V (t) = IZe +

∫ rL

r0
Eidri, (A.37)

where I is the current in the external circuits, Ze is the electrical impedance
of the external circuit, and V (t) is the applied source voltage. Written with
the potential function (A.37) becomes

V (t) = A
∂Di

∂t
Ze +

∫ rL

r0
− ∂φ

∂ri
dri, (A.38)

where the following relation between current and electrical displacement was
applied

Ii = A
∂Di

∂t
. (A.39)
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13 equations has then been presented with 13 unknowns.

For other equation combinations of (A.22) to (A.29) it may be helpful to in-
troduce the conservation of charge statement as well. This equation state

∇ · D = ρfree. (A.40)

Since one can assume that there is no source generator inside the material
ρfree = 0.

Non-piezoelectric solid materials

The constitutive equations for non-piezoelectric materials are simpler than
those for piezoelectric materials since one do not have the coupling between
mechanical displacement and electric fields. These two phenomenas can be
considered separately. However, in the context of transducer modeling it is
only interesting to consider the mechanical behavior.

The relation between stress-strain is

T = c : S, (A.41)

S = s : T. (A.42)

The stiffness matrix for an isotropic medium yields [32]

c =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




. (A.43)

The compliance matrix s is the inverse of the stiffness matrix coefficients.

The constants c11, c12, c44 are in literature shown to be formulated by means
of Young’s modulus and the Poisson ratio as:

c11 =
Y (1 − ν)

(1 + ν)(1 − 2ν)
, c12 =

Y ν

(1 + ν)(1 − 2ν)
, c44 =

Y (1 − 2ν)

(1 + ν)(1 − 2ν)
,

(A.44)

where Y is the Young’s modulus and ν is the Poisson ratio.
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Newton’s second law, (A.34), is also applicable in non-piezoelectric materi-
als.

One-dimensional equations

The above full dimensional modeling is a very computational heavy way of
modeling. To approximate the above in a simple manner one can consider
the one dimensional case. Assume a transducer to operate in its thickness
mode only. It is poled and only allowed to operate in one dimension.
Furthermore, one assumes that the operation is performed in the third
direction, i.e. the z-direction. This implies that one can consider the 33, zz
operation mode only. This simplifies the above equation sets.

For Equation (A.30) one then finds

T3 = cD
33S3 − hz3Dz (A.45)

or (A.46)

Tzz = cD
33

∂uz

∂z
− hz3Dz. (A.47)

Equation (A.33) is simplified to

−∂φ

∂z
= hz3

∂uz

∂z
− βs

zzDz. (A.48)

Also Equation (A.49) is applicable in the following form

V (t) = A
∂Dz

∂t
Ze +

∫ rL

r0
−∂φ

∂z
dz. (A.49)
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APPENDIX

B

Description of a model for a
deflecting CMUT plate

The following description is based on the reference [55].

The external forces deflecting down the top plate of a circular axissymetric
CMUT are a combination between the surrounding pressure and the electro-
static force pulling the plate down towards the pull-in point. This force can
be written as a pressure

P0 = Patm +
Fe

πa2
, (B.1)

where a = rcell is the effective radius of the CMUT cell, Patm is the surround-
ing pressure, and Fe is the electrostatic force.

The plate takes on a form that for a circular membrane may be calculated
from classical membrane theory by solving a fourth order equation set [28]
or by applying a polynomial of the following type [56]:

w(r) =
P0a

4

64D

(
1 +

r2

a2

)2

. (B.2)

Here r is the radial coordinate, and D is the flexural rigidity. The latter is
given from

D =
Et3

12(1 − ν2)
, (B.3)

where t is the membrane thickness, ν is the poison ratio, and E is the Young’s
module.
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The maximum deflection, wpk is found when r = 0

wpk =
P0a

4

64D
. (B.4)

An integration of the shape function (B.2) in polar coordinates shows that the
average plate deflection is related to the peak deflection:

wavg =
wpk

3
. (B.5)

The CMUT is a capacitor with a vacuum sealed air gap. The capacitance of
the CMUT is then found to be

C =
ǫ0πa2 arctan

√
wpk

g0√
g0wpk

, (B.6)

where ǫ0 is the free permittivity constant, and g0 is the effective air gap height.
See e.g. Fig. 4.1 for terminology.

The average displacement for small displacements of the plate relatively to
its thickness can be described with the linear Hooke’s law and can be used to
express the mechanical force at the center deflection point

Fm =
P0a

2

192πD
wavg = k1wavg. (B.7)

To find the average deflection one must solve the equality

Fm(wavg) − Fe(wavg) = 0. (B.8)

This yields the average static deflection of the membrane to a given applied
DC bias. Fe is the electrostatic force and is given by

Fe =
1

2
V 2 ∂C

∂wavg
, (B.9)

where V is the applied voltage. Notice that the initial displacement when
V = 0 is different from zero because of the sealed vacuum cavity.

The above is valid for small deflections. An extra term may be introduced
as suggested in [55] or [56] which can account for larger displacement and
weak non-linear behavior of the plate. In [55] a k3 term is introduced for the
non-linear part

k3 =
18cvk1

t2
. (B.10)
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The constant cv is a material constant dependent on the material being used.

To calculate the average displacement with the non-linear term the mechani-
cal force should be introduced as

Fm = k1(wawg − watm) + k3(wawg − watm)3, (B.11)

where watm is the displacement when no electrical forces occur. The displace-
ment is found by solving

Fm(wavg) − Fe(wavg) = 0. (B.12)
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