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In this paper He'’s variational iteration method is used to solve some examples of
linear and non-linear forth-order boundary value problems. The first problem com-

pared with homotopy analysis method solution and the other ones with the exact so-

lution. The results show the high accuracy and speed of convergence of this method.

1t is found that the variational iteration method is a powerful method for solving of
the non-linear equations.

Key words: magnetohydrodynamics, variational iteration method, fourth-order
differential equations, boundary value problems

Introduction

The theoretical study of magnetohydrodynamics (MHD) channel flow has been a sub-
ject of great interest due to its widespread applications in designing cooling systems with liquid
metals, MHD generators, accelerators, pumps, and flow meters.

Besides the common applications of generation and motive power from electricity,
which exist in everything from an electric toothbrush to a portable recreational vehicle electrical
generator, there are some more unusual applications of the motor principle, or Lenz’s law. By
examining some of the most complex uses of electromagnetism for motors and pumps, some
very unusual and counter-intuitive applications of electromagnetic fields for propulsion will be-
come apparent.

The MHD is a field of magnetic pumping which uses the Lenz’s law to pump liquids
using only an electromagnetic field. This unique concept allows MHD to pump conducting lig-
uids with absolutely “no moving parts”. There is simply a changing electromagnetic field devel-
oped through the medium being pumped which will cause it to move. The most common appli-
cation of these electromagnetodynamic pumps is in the metal industry where molten metal can
be pumped and stirred without contact, right through the walls of the vessel containing the mol-
ten metal. Pumps of this type are utilized in nuclear reactors where liquid sodium is pumped
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through the reactor core for cooling. The high temperature and reactivity of this molten salt
would destroy any normal impeller. By pumping right through the walls of the piping the dan-
gerously radioactive salt is isolated from the pumps themselves which is beneficial for safety
and maintenance reasons [1].

Raptis et al. [2] considered the unsteady MHD flow of a viscous and electrically con-
ducting fluid past to a plate by the presence of radiation. Moreover, they derived analytical solu-
tions for the mean temperature, velocity, magnetic field, and the effect of the radiation on the
temperature.

The non-Newtonian fluids are considered as more appropriate models of fluids in in-
dustrial and technological applications than Newtonian fluids. Such fluids exhibit the non-linear
relationship between stress and the rate of strain at every point of flow. Due to non-linear de-
pendence of stresses on the rate of strain for non-Newtonian fluids, the flow analysis is much
more complicated in comparison with Newtonian fluids. The constitutive equations are very
complex involving a number of parameters and the solutions of the resulting equations in gen-
eral are more difficult to obtain. This is not only true of exact analytical solutions but even of nu-
merical solutions. Several investigators are now engaged in finding the analytical or numerical
solutions for flow problems that arise using different non-Newtonian fluids. One of the impor-
tant classes of non-Newtonian fluids is viscoelastic fluid. However, even the most commonly
used simplest subclass of viscoelastic fluids is that of the so-called second order fluid that can
give rise to problems which are far from trivial [3].

The problem which governs the MHD boundary layer flow is [4]:

%4_%:0 (1)
ox Oy
du ov  0%u o, O0u 8u o3u  Ou 0*v  d3u) oB}
U—+v—-=v +— — +u +— +v - u 2)
Ox oy 0y* p |\ Ox 0y? 0x0y? Ox 0y? 0y3 Jol
%=v=0 at y=0 3)
oy
Vv H
u=0, v=— at y=— 4
5y & y=7 “4)

Here, p is the density, v — the kinematic viscosity, ¢ — the electrical conductivity, H —
the width of the channel, o, —the material parameter of second grade fluid,  and v — the veloc-
ity components in the x and y directions and the fluid injection or extraction takes place through
the porous walls with velocity V/2. Note that /> 0 corresponds to the suction case and V' < 0 for
injection.

Defining: .

= = w= IO, =IO (5)

Equation (1) is identically satisfied and egs. (2)-(4) reduce to eq. (8) which models
MHD flow of a second grade fluid in a porous channel and was analyzed using variational itera-
tion method. In addition to first example, we investigate two linear and non-linear fourth order
boundary value problems in the following.

For ordinary and partial differential equations, some of the analytical/approximate
techniques that have been developed include perturbation [5-7], variational iteration [8-23], de-
composition [24-26], homotopy perturbation [27-34], etc. At first, almost all perturbation meth-
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ods are based on an assumption that a small parameter must exist in the equation. This so-called
small parameter assumption greatly restricts applications of perturbation techniques. As is well
known, an overwhelming majority of non-linear problems have no small parameters at all. Sec-
ondly, the determination of small parameters seems to be a special art requiring special tech-
niques. Furthermore, the approximate solutions solved by the perturbation methods are valid, in
most cases, only for the small values of the parameters. It is obvious that all these limitations
come from the small parameter assumption.

Variational iteration method (VIM) [8-23] was introduced by He [8-14] based on the
use of restricted variations and correction functionals which has found a wide application for the
solution of non-linear ordinary and partial differential equations. This method does not require
the presence of small parameters in the differential equation, and provides the solution (or an ap-
proximation to it) as a sequence of iterates. The method does not require that the non-linearities
be differentiable with respect to the dependent variable and its derivatives.

Basic idea of He’s variational iteration method

To clarify the basic ideas of VIM, we consider the following differential equation:
Lu + Nu = g(%) (6)

where L is a linear operator, N a non-linear operator, and g(¢) an inhomogeneous term. Accord-
ing to VIM, we can write down a correction functional as follows:

0 () =1, (1) + iz[Lun (1) + Nii, (2) - g(1)]de (7)

where 4 is a general Lagrangian multiplier which can be identified optimally via the variational
theory. The subscript 7 indicates the n' approximation and #,is considered as a restricted varia-
tion 6u, =0.

Numerical examples
Example 1

Consider the following non-linear fourth-order differential equation:

V"= M?y'(x) +Re[y'(x)? = p(x)y" ()] —a[2p(x) y" (x) = y"(x)* = p(x) ™ ()] =0 (8)

with the boundary conditions
w0)=0, y"(0)=0; »(05)=05; y'(05)=0 )

where M2 =oBZH?/u, Re = HV/v, and @ = a,/H,, [3]. B, is a constant magnetic field, applied
perpendicular to the channel walls and the electric field is considered to be zero. The induced
magnetic field is neglected for small magnetic Reynolds number. Re > 0 indicates the suction
case and Re <0 stands for injection. It should be noted that for o =0, eq. (8) is related to Newto-
nian fluid.

Its correction variational functional can be expressed as follows:

Yot (¥) = 3, (0) + [ {A[Y" (1) = M2y (v) + Rey'(2)% = W())"(7)] -
—a23()y"(7) = ¥"(2)? = W(@)y" (9)]}dr =0 (10)
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After some computations, we obtain the following stationary conditions:

209 — 2 =0 (11)
1+ A" =0, 2" _.=0 (12)
2. =0, ,1|T:x =0 (13)

The Lagrangian multiplier can therefore be identified as:

l(f)Z% (14)

and the variational iteration formula is obtained in the form:

X _ 3
Yo () =y, (x) +J‘ =07 6x) (@) = M2y, (1) + Re[y, (1)* = 3, (@D, (D] = 4, (15)

o (—al2y, (D) y)(0) = y(D)? =y, @Oy (D]}

We start with the initial approximation of y,(x), but since no initial approximation of
Vo(x) is available, we make one in the form of a polynomial as:

Yo(x)=a+bx +cx? +dx3 (16)

which depends on the order of differentiation, and a, b, ¢, and d are unknown constants to be
later determined.
Using the above iteration formula (15), we can directly obtain other components as:

Y (x)=-05ax? —001666a* Rex® + cx + a?dx? +016666bd Re x? + ax3 +
+bx? +0la3x3 —003333abRe x> —002777b> Rex* —05a3x* +
+004166aM 2x* +016666a2bx* +005555bM 2x3 —033333ab%x? —
—0083333¢2 Rex? +008333cM 2x2 +033333a2cx3 —066666a2bx3 —
—005555hcRe x* +016666x3ad Re + d (17)

For a special case: M =2, Re =0, and o = 0.2, y,(x) will be:

» (x)=-05ax? + cx +02adx? + ax3 + bx? +002a2x> —0la?x* +
+0.16666ax* +0033333abx* +022222bx3 —006666b%x2 +

+033333cx2 +006666acx —013333abx? +d (18)
Incorporating the boundary conditions, eq. (9), into y,(x), we have:

»n0)=d=0 (19)

¥5(0)=—a +04ad +2b —013333H2 +066666¢=0 (20)

1, (05)=0010416a +058333¢c +005ad +027777b -
—000562a? —001458ab —001666b* +000833ac +d = 05 (21)
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1(05)=033333a +133333¢c+02ad +116666b —
—-004375a2 —008333ab — 00666652 +005ac =0 (22)
Solving the system of equations simultaneously, we obtain:
a=-1.246731807, b=-1.044604271, c=1.481954721, d=0 (23)

Therefore, we obtain the following first-order approximate solution for special case,

M=2,Re=0,=0.2:
¥1(x) =0.03108x> — 0.31981x*-1.77568x> + 0.5-10x2 + 1.481954721x (24)

In the same manner, the restof the components of the iteration formula can be obtained.

0.5 0.5
yx[ zall
04 0.4

r — - M=8

- —e— M=4 Re=0
03[ — M=0 0.3k —e—Re =20

i F u Re =40
02 0.2
0.1 B 01l

00 L 0|1\ L O|2 L \0\3\ ! 0|4I | "y ) | L L | )
‘ : : G 0 01 02 03 04 , 05

Figure 1. Variation of y(x) for different values of
M for o = 0.2, Re =2 : (HAM and VIM)

Figure 2. Variation of y(x) for different values of
Re fora = 0.2, M =2 : (HAM and VIM)

Y (F
LaE Figures 1-3 show comparison of homotopy
13 —— 5=l analysis method HAM [3] and VIM results
E - Re =20

;?: —— Re=40 which reveals excellent agreement between the
4E methods.

0.9F

0.8F Example 2

0.7f

06F Now consider another non-linear fourth-or-

i 3 der BVP:

0.4F

03f YV () + y(x)y' (x)—4x7 =24=0 (25)

02

o1k Subject to the boundary conditions:
%:' - 'o.|1 ' ‘ol,zl - 'ol,é - ‘o|.4' x ‘0‘5 »0)=0 »"(025)=6

Figure 3. Variation of dy(x)/dx for different
values of Re for ¢ =0.2, M=2 : (HAM and VIM)

(26)
y'(05)=3 yl)=1
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Its correction variational functional in can be expressed as:

Yot () = 3, () + [ AL (D) + 3, (0) 3, () — 4x7 —24]dr 27)
0
After some computations, we obtain the following stationary conditions:
AV=0 (28)
1+A",.., =0 A", =0 (29)
ey =0 Ao =0 (30)
The Lagrangian multiplier can, therefore, be identified as:
—7)3
A1) = % (31)

and the variational iteration formula is obtained in the form:

X _ 3
Y ()= 3, () + | {% D3 (1) + 3, (1) + ¥, (D)4 —24]}dr (32)
0

Now we assume that the initial approximation has the form:

Vo(x)=a+bx +cx? +dx3 (33)
where a, b, ¢, and d are unknown constants to be further determined. Using the iteration formula
(32), we can directly obtain the other components as follows:

¥, (x) =000005x!" —000298abx® —000476acx” —000238bx7 —
—000833adx® —000833hcx® —001666bdx> —000833cx> + (34)

+x4 —004166¢cdx* + ax? —000009ax? + bx? + cx +d
Incorporating the boundary conditions, eq. (26), into y,(x), we have:

1 (0)=d=0 35)
» (1) =-000833ac —000297ab — 000833bc — 000009a > —

—00023852 —000833¢2 +1005+a+b+c=1 (36)

11(05) =-000625ac — 00026041 ab — 0015625 bc —000055a2 —
—000312b2 —002083c2 +3a +2b+300011=3 (37)

1(025) =-000391ac — 000097ab — 0015625bc —0000122a2 —
—00019531h% —003125¢26a + 600001 =6 (38)
Solving the system of equations simultaneously, we obtain:

a=-00000012703, b=-0000052345, ¢=-000045143, d=0 (39)

Therefore, we obtain the following first-order approximate solution, in the form:
7 (x)=50505-10"*x"1 —160104-10"15x° —1979125-10"13x8 —
—925486-10712x7 —196921-10-10x6 —169826-109 x5 +x* —
—0127-104x3 —05234-104x2 —04514-10-3 (40)
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)
The exact solution is y(x) = x*. Plotting the =~ )
exact and VIM solutions, it is clear that the re- ¢

EXAGT
sults are in excellent agreement (fig 4). c.8 = VIV
[eirg
Example 3 .
0.5

Consider the linear boundary value problem

[T T [TTTT [ TTT [ TI T[T 7T TTI[T ] T T

as follows: 04
PE) @) - ) e (1 =3)=0 (41)
Subject to the following conditions: o
»0)=1 »'(0)=0 (42) R— o5 o7 PR
y)=0, y()=-e Figure 4. The comparison between the exact and

Its correction variational functional can be ~ YIM solutions
expressed as:

Yot (¥) = 2, 0) + [ AL () = 3, (1) = vy (7) = e* (x =3)]dz (43)
0
After some computations, we obtain the following stationary conditions:
A"=0 (44)
1+, =0 A4|,., =0 (45)
The Lagrangian multiplier can, therefore, be identified as:
— )3
() = % (46)

and the variational iteration formula is obtained in the form:

X

(T B X) 3 iv " x
Vi1 (¥) = ¥, (x) +I T[yn (1) =y, (1)) n(7) — e (x = 3)]pdr (47)
0
Now we assume that the initial approximation has the form:

Yo(x) = a + bx + cx? + dx? (48)

Where a, b, ¢, and d are unknown constants to be further determined. Using the above
iteration formula (47), we can directly obtain the other components as:

3, (¥) =000119ax7 +000277bx6 + (005a +000833¢)x 5
+(008333b +004166d)x* + (a +066666)x3 + (b+25)x2 +
+c+6)x+e(x—T)+d+7 (49)

Incorporating the boundary conditions, eq. (42), into y,(x), and solving the equations,
we obtain:
n(0)y=d=1 (50)

¥ (1) =105119a + 1086115 +100833c — 6e +1720833 =0 (51)
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N(O0)=6+c—6e’ =0 (52)
y (1)=325833a +235b—- 042473 = —e (53)
Solving the system of equations simultaneously, we obtain:
a=-0.35486, h=-0.48394, ¢=0,d=1 (54)
In the same manner, the rest of the components of the iteration formula can be obtained
as: ¥ (x) =—000042x7 —000134x6 —001774x5 —000134x4 + (55)
+ 031180x3 +201606x2 +e*(x —7) +6x +8
The exact solution for this problem is: (1 — x)e*
Figure 5 shows the comparison between
i VIM and exact solution (fig. 5).
0.9F —MVIM
a8f ) Conclusions
O7F
Sk In this work, we studied the application of
i the VIM fourth order boundary value problems.
Sip The figures clearly show that the results by
a.4F VIM are in excellent agreement with the HAM
0.3l and exact solutions. VIM provides highly accu-
02k rate numerical solutions in comparison with
- other methods, and it is expected here that VIM
o T as a powerful mathematical tool can solve a
0 0.25 0.5 075 1 large class of linear and non-linear differential
system and equations used in engineering and
Figure 5. The comparison between the exact and physics.

VIM solutions
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