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Abstract: Up to 16 W output power has been obtained using spectral beam 
combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting 
volume Bragg grating, a combining efficiency as high as 93.7% is achieved, 
resulting in a single beam with high spatial coherence. The result represents 
the highest output power achieved by spectral beam combining of two 
single element tapered diode lasers. Since spectral beam combining does 
not affect beam propagation parameters, M

2
-values of 1.8 (fast axis) and 3.3 

(slow axis) match the M
2
- values of the laser with lowest spatial coherence. 

The principle of spectral beam combining used in our experiments can be 
expanded to combine more than two tapered diode lasers and hence it is 
expected that the output power may be increased even further in the future. 

©2011 Optical Society of America 

OCIS codes: (140.2020) Diode lasers; (140.3298) Laser beam combining. 
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1. Introduction 

Since their development, it has always been a goal to increase the output power of diode 
lasers. Although a lot of efforts have been put into diode laser technology, there are still some 
fundamental issues that limit the output power. One major problem, especially for CW lasers, 
is the heat generated [1]. The output power is mostly limited by heat effects causing 
degradation and optical damage. One way of increasing the output power while maintaining 
the beam quality, is to use beam combining [2]. This principle basically describes the 
combination of two or more moderately operated lasers by an external optical element 
without affecting the beam quality. This allows for high-power laser systems with increased 
brightness. 

There are two techniques, coherent and incoherent beam combining [2,3]. In both cases 
the beams are combined using different optical elements. Power scaling is simply done by 
increasing the number and/or the output power of the individual lasers. In coherent beam 
combining a precise control of wavelengths and relative phases of the gain elements are 
required. Only if single frequency operation and phase stabilization are achieved, the 
individual fields will add constructively in the near and far-field. This of course becomes 
more challenging the more elements that have to be combined. However, several hundreds of 
watts have been reported by several groups based on coherent beam combining of fiber laser 
arrays [4,5]. Beam combining efficiencies, representing the ratio of the combined power to 
the sum of power emitted from the individual gain elements, of more than 90% can be 
reached using this technique [6,7]. When looking for an alternative to sophisticated fiber 
lasers, diode lasers offer lower optical output powers but very high optical conversion 
efficiencies [8,9]. Moreover, due to their reduced dimensions such lasers allow for compact 
combining systems with increased cost-effectiveness. In this regard 12.8 W of output power 
was achieved when coherently adding a 47 emitter array [10]. 
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When coherence is not the important issue, incoherent beam combining can be used [3]. 
The biggest advantages here are the reduced tolerance requirements allowing for much 
simpler setups. One example is polarization coupling [11]. With this method, two 
orthogonally polarized laser beams are combined using components like a thin film polarizer, 
polarizing beam splitters and others. The resulting beam is a single unpolarized beam with the 
added power of the individual lasers. But due to the requirements of orthogonal polarizations, 
power scaling just by increasing the number of comparable lasers is not possible. 

An example suitable for power scaling is spectral beam combining (SBC) [2,3]. Here, two 
or multiple lasers at slightly different wavelengths are combined. The spectrum then consists 
of multiple peaks corresponding to the individual laser emissions. As for coherent beam 
combining the highest output powers are achieved using fiber lasers. In this respect 522 W of 
average output power with a combining efficiency of 93% was reported when using a surface 
grating [12]. With a reduced combining efficiency of 61% even 2 kW of power was shown 
[13]. Reaching these high output powers makes the combination of fiber lasers very attractive 
for certain applications. However, when focusing on applications requiring only several tens 
of Watts, e.g. welding of polymers and metal foils [14], bending of glass and ceramics [15], 
soldering of electric circuit boards [16], marking of plastics [16] or sintering of metal 
powders [16,17], using high power fiber lasers would not fully exploit their potentials. In this 
regard diode lasers represent a suitable alternative. Besides their advantages mentioned 
above, diode lasers also offer a wider range of wavelengths due to their material compositions 
[18]. This might provide additional advantages for certain applications and even enable new 
applications not accessible using laser emissions based on atomic transitions. Furthermore, 
these applications may benefit from the possibility of power scaling using diode lasers. 

When spectrally combining comparable diode lasers it is recommended to reduce the 
wavelength separation. In both cases mentioned above [12,13], lasers emitting around  
1060 nm and spectrally spaced 2.5 nm to 5 nm were used. Using comparable diode lasers this 
could cause a serious reduction of performance due to heat effects when tuning their 
wavelengths by changing the laser temperatures. Unfortunately, realizing small spectral 
separation using surface gratings requires large source-to-grating distances in order to 
spatially separate the individual emitters. One solution to this problem could be using diode 
laser arrays. Here the wavelength spread is given by the focal length of the lens used within 
the setup, the pitch between the emitters and the dispersion of the grating depending on the 
grating period and the angle of incidence for the center array element [19]. In this context 
combining of a 100 emitter array reaching 35 W in pulsed mode at 915 nm with a beam 
quality of 1.4 was reported [20]. Vijayakumar et al. demonstrated the first ever combining of 
a tapered diode laser bar reaching 9.3 W with a combining efficiency of 63% [21]. However, 
diode laser arrays have the disadvantage of mounting induced smiles, leading to a degradation 
of the beam quality even when the array consists of individual near diffraction limited 
emitters [20]. Furthermore, setups for spectral beam combining of diode laser arrays are 
limited by the gain bandwidth of the semiconductor material and large focal length lenses are 
required to obtain small wavelength separation between individual emitters. Another possible 
drawback comes into play once emitters fail, with an exchange of single emitters being 
clearly impossible. 

When combining single lasers instead, the resulting beam quality matches the value of the 
individual lasers. This immediately increases the chance of achieving a combined near 
diffraction limited beam just by choosing the proper lasers. Regarding SBC of individual 
lasers with smaller wavelength separations, volume Bragg gratings (VBG) have been shown 
to be a suitable alternative [22,23]. In these experiments five diode lasers as well as five fiber 
lasers emitting at around 1060 nm and spectrally spaced 0.5 nm were successfully combined. 
Written in photo-thermo-refractive (PTR) glass such gratings offer excellent thermo-
mechanical properties, high transmittance in the visible and near-infrared, polarization 
insensitivity and diffraction efficiencies exceeding 99% [24]. These characteristics make 
volume Bragg gratings (VBG) suitable for compact and robust high power, high brightness, 
beam combining systems. In this respect a maximum of 770 W was achieved coupling 5 fiber 
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lasers with a combining efficiency of 91.7% [24]. Comparable combining efficiencies of  
92% - 94% were achieved coupling 5 low power fiber-pigtailed diode lasers [22]. This also 
proofs the reliability of such gratings within a large power range. The increase in combining 
efficiency compared to the combining of diode laser arrays [21] might result from an 
increased flexibility in terms of optical alignments and adjustments of laser parameters. 

In this paper, we present spectral beam combining of high-power 1060 nm DBR-tapered 
diode lasers using a volume Bragg grating. Previously, such lasers have been demonstrated to 
emit 12 W of output power with nearly diffraction limited beam qualities measured up to  
10 W [25]. By combining two lasers, spectrally separated by 0.5 nm, we achieve a single 
beam with 16 W of output power and a beam quality of 1.8 (fast axis) and 3.3 (slow axis). To 
the best of our knowledge this represents the highest output power in spectral beam 
combining of single emitter diode lasers. The corresponding combining efficiency of 93.7% is 
comparable to the values reported above and even slightly increased to 95.4% at low powers. 

These results clearly indicate the feasibility of simple, high-efficient, compact diode laser 
based light sources. By combining multiple high-power DBR-tapered diode lasers, future 
systems could then offer several tens of Watts with single, near diffraction limited output 
beams. As a consequence, this would make these light sources interesting for applications 
within materials processing as mentioned above. 

2. Experimental setup 

The configuration of the setup for spectral beam combining is shown in Fig. 1. A detailed 
description of the structure and layout of the 1060 nm DBR-tapered diode lasers can be found 
in [25,26]. Each of the 6 mm long lasers is mounted p-side up on a CuW heat spreader, which 
itself is mounted on a 25 x 25 mm

2
 conduction cooled package (CCP) mount allowing for 

efficient cooling. The current to the ridge and the tapered section of both lasers are controlled 
individually. Each laser is collimated in both axes using AR-coated lenses to avoid optical 
feedback. Collimating the fast axes is done by aspheric lenses with a focal length of 3.1 mm 
and a numerical aperture of 0.68. The slow axes are collimated by cylindrical lenses with a  
15 mm focal length. This generates a nearly circular beam around 2 mm in diameter and 
compensates for astigmatism, originating from the tapered diode laser. Since the astigmatism 
of these lasers changes with current, the setup allows for correcting the position of the 
cylindrical lenses when changing the injection currents. 

 

Fig. 1. Sketch of the spectral beam combining setup based on two DBR-tapered diode lasers 
and a reflecting volume Bragg grating. The beam transmitting the grating is indicated by 
dashes, the diffracted beam by dots. The arrow signifies the propagation of the combined 
beam. 

The grating (OptiGrate) is a reflecting VBG, meaning the planes of constant refractive 
index are parallel to the surface of the PTR glass [22]. Therefore the transmitting beam 
(dashes) passes through and the diffracted beam (dots) reflects back to the same side of the 
grating as the incoming beam. Due to the unique performance of such Bragg gratings, having 
diffraction efficiencies close to unity when the Bragg condition is fulfilled and close to zero at 
multiple points offset from this condition, optimum SBC is achieved by adjusting the angles 
of incidence and wavelengths properly. The spectral spacing between maximum diffraction 
and zero diffraction depends on the spatial frequency of the grating [28]. According to the 
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specification sheet the VBG used in this setup (L x W x H = (3.4 x 10 x 10) mm
3
) has an 

average diffraction efficiency of 99.2% at 1062 nm and a spectral selectivity of 0.3 nm 
(FWHM). 

3. Individual laser characterization 

As discussed above, the injection currents for the ridge and the tapered section of both lasers 
are controlled individually. For all experiments, the DBR ridge sections are operated 
constantly at 300 mA. Therefore the term injection current in the following text and figures 
refers to the tapered sections only. Additionally, the laser whose beam is transmitted by the 
grating hereinafter is referred to as transmitted laser, the laser whose beam is diffracted as 
diffracted laser. Figure 2a shows the power-current characteristics of both lasers at laser 
temperatures of 20 °C. At 14 A, the diffracted laser emits 8.46 W of output power and the 
transmitted laser 8.92 W. The slope efficiencies are 0.71 W/A and 0.74 W/A, respectively. 
Within the measured current range both lasers show no signs of thermal roll over. 

 

Fig. 2. (a) Power current characteristics of DBR-tapered diode lasers at 300 mA to the ridge 
section and operating temperatures of 20 °C. (b) Optical spectra of the lasers at 14 A to the 
tapered section. 

At maximum current the centre wavelengths are 1062.92 nm for the diffracted laser and 
1063.01 nm for the transmitted laser (Fig. 2b). All spectra are measured with an Advantest 
Q8347 optical spectrum analyzer. Due to the intrinsic wavelength stabilization DBR-tapered 
diode lasers emit light in single longitudinal modes, resulting in spectral widths below 10 pm 
(FWHM). In both cases side mode suppression above 25 dB is achieved limited by the 
dynamic range of the optical spectrum analyzer. 

The optimum SBC requires a proper adjustment of wavelengths. There are different ways 
of tuning the emission wavelengths of diode lasers. One of them is by changing the injection 
current (Fig. 3a). Assuming a linear dependence at higher currents a shift towards longer 
wavelengths of 0.02 nm/A is measured. Another and more effective way is by changing the 
laser temperature (Fig. 3b). At maximum current a shift of 0.09 nm/K is observed. With the 
given spectral characteristics and the wavelengths being tunable, both lasers are suited for 
spectral beam combining with the specified grating. 
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Fig. 3. (a) Wavelength versus injection current of DBR-tapered diode lasers at 300 mA to the 
ridge section and operating temperatures of 20 °C. (b) Wavelength versus temperature of the 
lasers at 14 A to the tapered section. 

Additionally, the beam propagation parameters (M
2
1/e

2
) are calculated by measuring the 

beam widths along the beam waists of the focused beams. This is done using an additional 
spherical lens with a focal length of 120 mm and a Photon, Inc. beam scanner. The measured 
widths are then fitted to a hyperbolic equation. At maximum current, the values for the 
diffracted laser are 1.4 (fast axis) and 3.2 (slow axis). The transmitted laser shows 1.5 (fast 
axis) and 2.1 (slow axis). In comparison, the decrease in beam quality for the diffracted laser 
could be explained by side lobes in the beam profile, therefore increasing the measured beam 
widths using the 1/e

2
 criteria. 

A more thorough characterization of comparable lasers including the beam profiles, 
astigmatism and power current characteristics at different current settings can be found in 
[25]. 

4. Spectral beam combining of two tapered diode lasers 

The optimum SBC is obtained only by the proper adjustment of the angles of incidence and 
the emission wavelengths. Figure 4a shows the measured output power achieved with spectral 
beam combining at various injection currents. 

 

Fig. 4. (a) Output power of the individual lasers and the combined beam at 300 mA to the ridge 
section and different injection currents to the tapered section. The angles of incidence and the 
laser temperatures are adjusted for maximum diffraction and transmission at each current 
value. Star symbols indicate the corresponding combining efficiency achieved at each current. 
(b) Optical spectrum of the combined output beam at 14 A to the tapered section. 

At each current value, the angles of incidence and wavelengths are adjusted for maximum 
transmission and diffraction. The highest combined output power at maximum current is 
16.08 W corresponding to an electro-optical efficiency of about 25%. At this current, the 
transmitted laser is operated at 15.47 °C, emitting 9.11 W at 1062.65 nm and the diffracted 
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laser is operated at 23.0 °C, emitting 8.05 W at 1063.17 nm, resulting in a combining 
efficiency of 93.7%. A slight increase in combining efficiency is measured at lower currents. 
Observations with lower efficiencies in high-power regimes are usually associated with a 
slight degradation of laser parameters rather than deteriorating grating parameters [27]. 
Losses in general can be linked to finite divergences [28] and grating vector non-uniformities 
across the large aperture. However, the results ranging between 93% and 96% are comparable 
to the values achieved by others [22–24]. The temperature tuning of both lasers for optimum 
performance results in a wavelength separation of 0.5 nm (Fig. 4b). 

 

Fig. 5. Beam caustics of the combined beam at 300 mA to the ridge section and 14 A to the 
tapered section. 

 

Fig. 6. Beam profiles of the combined beam at 300 mA to the ridge section and 14 A to the 
tapered section. (a) Near field profile in the fast axis. (b) Near field profile in the slow axis. (c) 
Far field profile in the fast axis (d) Far field profile in the slow axis. 
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The beam propagation parameters (M
2
1/e

2
) of the combined beam at maximum current are 

1.8 (fast axis) and 3.3 (slow axis). The corresponding beam caustics for both axes of the 
combined beam are shown in Fig. 5. The resulting values are comparable to the laser with 
lowest beam quality. A similar behavior is observed at low currents. While measuring the 
beam widths along the beam waist of the focused beam, the beam profiles of the combined 
beam are recorded simultaneously. Figure 6 shows the corresponding near field and far field 
profiles measured at injection currents of 14 A. In the near field the combined beam shows 
beam widths of 97.0 µm (fast axis) and 88.7 µm (slow axis). The divergence angles are 
measured to be 1.4° (fast axis) and 2.9° (slow axis). At 6 A the beam widths of the near field 
are more or less comparable. The divergence angles are reduced, improving the beam 
propagation parameters to 1.6 (fast axis) and 2.4 (slow axis) at that current value. 

5. Conclusion 

Spectral beam combining of two DBR-tapered diode lasers is demonstrated with a combined 
output power of 16 W. Both DBR-tapered diode lasers emit around 1063 nm and are 
spectrally separated by 0.5 nm. Using a reflecting volume Bragg grating we obtain combining 
efficiencies of 93% - 96%. As expected, the beam propagation parameters are not affected by 
this technique. Therefore the values of 1.8 (fast axis) and 3.3 (slow axis) match the tapered 
diode laser with lowest beam quality. 

Power scaling using multiple high-power DBR-tapered diode lasers should be possible in 
the future. This could lead to efficient, cost-effective and compact systems offering single, 
near diffraction limited output beams with multiple tens of Watts. 
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