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Resume

En model af den menneskelige auditive periferi gaende fra det ydre gre til
hgrenerve udvikledes. Modellen bestar af fglgende komponenter: det ydre gres
overfgrselsfunktion, mellemgrets overfgrselsfunktion, model af basilar membran
hastighed, model af de indre harcellers receptor potentiale, model af sandsyn-
lighed for frigivelse af neurotransmitter fra indre harceller, hgrenervens refrak-
tionsperiode.

Modellen bygger pa tidligere publicerde modeller, men parametre for basilar
membran modellen og modellen for sandsynlighed for frigivelse af neurotrans-
mitter fra indre harceller blev tilpasset data fra psykofysiske og fysiologiske
eksperimenter for normalt hgrende og hgrehsemmede.

De psykofysiske data stammede fra tre postmaskerings eksperimenter. Den
sakaldte “temporal window model” blev afprgvet og den blev fundet i stand til
at redeggre for data med undtagelse af lavfrekvent stimulus. Det blev foreslaet
at “temporal window model” burde vaere frekvensafheengig.

Sensorineuralt hgretab blev simuleret som en kombination af ydre- og indre
harcelletab. Procentdelen af dgde indre harceller blev beregnet udfra en ny
metode, som relaterer teerskler for individuelle fibre i hgrenerven til den abso-
lutte psykofysiske hgretzerskel.

Sluttelig blev en model for hgrenervens fiber population foreslaet bade for nor-
malt hgrende og for hgrehsemmede.
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Abstract

A model of human auditory periphery, ranging from the outer ear to the auditory
nerve, was developed. The model consists of the following components: outer
ear transfer function, middle ear transfer function, basilar membrane velocity,
inner hair cell receptor potential, inner hair cell probability of neurotransmitter
release and auditory nerve fibre refractoriness.

The model builds on previously published models, however, parameters for basi-
lar membrane velocity and inner hair cell probability of neurotransmitter release
were successfully fitted to model data from psychophysical and physiological
data for normal hearing and impaired hearing.

The psychophysical data consisted in forward masking data from three studies.
The “temporal window model” was tested and found to account for the data,
except for low frequency stimulus. It was suggested that the temporal window
should be frequency dependent.

Impaired hearing was modelled as a combination of outer- and inner hair cell
loss. The percentage of dead inner hair cells was calculated based on a new
computational method relating auditory nerve fibre thresholds to behavioural
thresholds.

Finally, a model of the entire auditory nerve fibre population was proposed for
normal and impaired hearing.
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Preface

In 1993 I worked on the project ’Speech Recognition using Neural Networks’
as a part of my Master Degree in computer science. This project raised a
basic question in my mind: How is speech represented in the underlying system
enabling humans to perform so well in speech recognition in comparison to
computers?

Years later, in 1999, I contacted Claus Elberling, Head of Oticon’s Research
Unit at Eriksholm. He encouraged me to apply for a Ph.D. grant from the Oti-
con foundation with Associate Professor Torben Poulsen, Acoustic Technology,
Technical University of Denmark as supervisor. We discussed the subject of
my Ph.D., and arrived at ’A Model for the Representation of Speech Signals in
Normal and Impaired Ears’, the eventual title of the thesis.

We were fortunate enough to receive the grant and in pursuit of the answer to
my previous question I started working on my Ph.D. August 2000.

Thus it was quite easy to decide a two part structure of the project. The first
part should deal with the underlying encoding of sound signals in the auditory
periphery of normal and impaired hearing. The second part should investigate
the encoding of speech.

As the project progressed, it became more and more apparent that modelling
peripheral processing would be the most important part of the thesis. In fact,
peripheral modelling constitutes the first six out of eight chapters. As a conse-
quence less time and effort has gone into examining speech encoding. I believe
that the present thesis does justice to its title, albeit not quite the way it was
originally planned.

Lyngby, 31st of October Thomas Ulrich Christiansen
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Chapter 1

The Outer- and Middle Ear
Model

This chapter deals with the anatomy and functional aspects of the outer- and
middle ear. Moreover, it briefly discusses some of the measuring techniques
employed in obtaining the physical characteristics of the outer- and middle ear.
The end goal is the design of a digital filter describing the physical characteristics
of the outer- and middle ear.

Since the main focus of this thesis is on processing in the inner ear and auditory
nerve the chapter is kept short. It is in three sections. The first section discusses
the outer ear. The second section deals with the middle ear and the third section
describes the design of the digital filter.

1.1 Characteristics of the outer ear

The outer ear, pinna or auricle is a groove filled, oval shape of cartilage (c.f.
Figure 1.1). The biggest groove is the concha. The approximately 25 mm exter-
nal auditory canal, the meatus, leads to the ear drum, the tympanic membrane,
(c.f. Figure 1.2). The wall of the first 15-18 mm of the meatus is soft made up
of cartilage and skin — the inner 7-10 mm wall is made of bone. The tympanic
membrane consists of fibrous tissue which seals the middle ear from the outside
air.
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Figure 1.1: Taken from www.fauxpress.com/kimball/med/sensory/

The human pinna is not directly attached to muscles as is the case for some
mammals. For this reason the pinna is locked in position relative to the head.
The head can be moved relative to the torso and sound source.

The head-related transfer function (HRTF) is the signal spectrum at the source
divided by the spectrum at the tympanic membrane. Its characteristics are
formed by the torso, head, pinna and meatus diffraction and reflection proper-
ties.

The most fundamental HRTF is a free field, frontal, zero angle elevation sound
incidence measurement with the head and torso in “normal position” (e.g. Pra-
long and Carlile [1994]). Varying the sound incidence in the horizontal plane,
the azimuth, and the vertical plane it is possible to chart the HRTFs. Normally
the head and torso are in “normal position” for these types of measurements.

Sometimes the HRTF is specified as consisting of two components: a) transfer
function that is common to all source locations, such as contribution from the
recording microphone and from meatus resonances, and b) transfer function de-
pending on source location. The latter is called the directional transfer function
and is determined by the torso, head and pinna.
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Figure 1.2: Redrawn from Pickles [1982]

Usually the measurements are performed on a KEMAR model of torso and
head equipped with pinnae made from molds of test subject ears. There are
many good practical reasons for using a KEMAR: ear canal seems to change
considerably with movement of the jaw and head, the delicacy of the tympanic
membrane make microphone positioning difficult and last but not least the KE-
MAR does not require breaks. The downside is that the material of the imprint
of the ear is not identical to the human pinna and tympanic membrane.

As such the HRTF is a measure of purely passive mechanical properties as
opposed to the active! mechanisms in the middle and inner ear.

Recording HRTF's is not a trivial matter since placing the recording micro-
phone in the meatus affects the sound field. Moreover, the microphone position
presents a problem in that theoretically it should be placed as close to the
tympanic membrane as possible in order to avoid longitudinal standing waves.
However, the complex acoustic field close to the tympanic membrane means that
more distal positions in the canal are often used. Since the transfer function
depends heavily on the position of the microphone, transfer functions should be

IThe word “active” is used here in the sense “physiologically evoked” i.e. through muscle
activity or hair cell contraction
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specified along side with the microphone position as a reference. Pralong and
Carlile [1994] used a position 2 mm from the tympanic membrane.

An example of sound distribution in the meatus is shown in Figure 1.3. This
figure indirectly shows HRTF dependence on microphone position.

HRTF/mic position

{10 dB

5mm

10 mm

14 mm / \ ,

Amplitude (dB)

20 mm

0.2 0.5 1 2 5 10 15
Frequency (kHz)

Figure 1.3: The transfer function from a reference point in the meatus to the tympanic
membrane. The parameter is the distance from the reference point to the tympanic membrane.
The figure indicates the dependence of transfer function on microphone location. Re-plotted
from Mehrgardt and Mellert [1977]

Comparing HRTF's for various sound incidences the microphone position is not
important in that the differences of HRTFs is of interest.

Inter-subject variability of HRTFs is very high especially for high frequencies
due to the naturally occurring variability in pinna shapes [Pralong and Carlile,
1996].

An example of an HRTF for frontal incidence is shown in Figure 1.4.

In psychoacoustic experiments the stimulus is frequently presented in head-
phones. Therefore creating a faithful presentation of the stimulus at the tym-
panic membrane requires a headphone transfer function (HpTF) in addition to
the HRTF. To be more exact, in order to recreate a given stimulus at a given
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place in the meatus the signal is convolved with the HRTF and the inverse HpTF
(both HRTF and HpTF should be measured to the same reference point). The
HpTF of course depends on the headphones, but also on the test subject. As
for the HRTF intersubject variability of the HpTF is significant in the 4-10 kHz
region.

HRTF frontal incidence
10 T

Amplitude (dB)

L L
100 300 1000 3000 10000
Frequency (Hz)

Figure 1.4: HRTF for frontal incidence. Redrawn from Florentine and Buus [1981]

An example of an HpTF is shown in Figure 1.5.

Since the psychoacoustic experiments in this thesis do not involve directional
transfer functions it is sufficient to take the HpTF into account.

(=]

Gain (dB)
=)

-20

-3 10
Frequency (kHz)

Figure 1.5: HpTf. Re-plotted from Pralong and Carlile [1996]
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1.2 Characteristics of the middle ear

The middle ear contains the three smallest bones in the body the hammer,
anvil and stirrup more formally the malleus, incus and stapes, together referred
to as the ossicles. The tympanic membrane is attached to the malleus at the
manubrium (the hammer handle). The malleus is in turn attached rigidly to the
incus. When the tympanic membrane is pushed inward the malleus and incus
move in a rotation like fashion shown in Figure 1.6. The force is propagated to
the stapes which in turn delivers it to the inner ear fluids via the oval window
of the cochlea.

Axis of Ligament
Rotation

Malleus

Eardrum

(pars flaccida) e

{ Footplate

Tendon

Middle-Ear

: Round
Cavity

Window

7
Eardrum
(pars tensa)

Eustachian
Tube

Figure 1.6: The middle ear. Redrawn from Geisler [1998]

Attached to the stapes is the stapedial muscle, the smallest muscle in the human
body. It is activated by sound levels above approximately 80 dB SPL. The
muscle pulls the stapes slightly out of alignment with the incus (perpendicular
to the axis of vibration) lowering the efficiency of sound propagation to the inner
ear. This reflex called the stapedial reflex. The manubrium of the malleus is
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also attached to a muscle, tensor tympani?, which has a similar effect to the
stapedial muscle. Less is known about the workings of the tensor tympani, but
in some mammals it is activated together with the stapedial muscle in response
to intense sounds. The term middle ear reflex or acoustic reflex refers to the
activation of the stapedial muscle and tensor tympani.

Middle ear reflex attenuation

w
o

N
(=}

=
o

Attenuation (dB)

o

1 1 1 1 1 1 Ll
02 03 05 07 1 15 2 3 4 5678 10 15
Frequency (kHz)

Figure 1.7: The effective attenuation provided by the middle ear reflex. Re-plotted
from Geisler [1998]

The acoustic reflex provides a “gain control” protecting the inner ear from loud
sounds. The latency of the reflex is approximately 10 ms and the effective
attenuation is approximately 0.6 dB per dB increase in stimulus level above
the reflex threshold. Although the reflex does attenuate loud sounds it does
not prevent damage to the inner ear, be it from long duration noise or sudden
impulse sound.

The acoustic reflex is also triggered immediately before vocalisation in humans.
The “reflex” is elicited at lower levels when triggered by vocalisation (approxi-
mately 70 dB SPL) and the muscle contractions occur immediately before the
actual vocal fold vibration. Figure 1.7 shows the attenuation caused by the
middle ear reflex.

The main evolutional justification for the ossicles is not, however, the “gain
control” just described. The ossicles perform impedance matching between air
and the inner ear fluids. Without the mechanism most of the sound would sim-
ply be reflected from the inner ear fluids. The middle ear achieves the matching
through three interdependent lever actions: 1) The area of contact of the malleus

2The name “tensor tympani” is used because when activated the manubrium is pulled
inward and so is the tympanic membrane so in effect activation affects the tympanic membrane
hence tensor tympani
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manubrium to the tympanic membrane is 17 times greater than the area of con-
tact between the stapes and the oval window [Yost, 2000]. 2) The displacement
of the malleus is 1.3 times greater than the displacement of the stapes [Yost,
2000] and 3) Because of its conical shape the tympanic membrane buckles when
pushed inward. This doubles the force exerted on the malleus relative to the
force exerted on the tympanic membrane [Tonndorf and Khanna, 1972; Yost,
2000]. All together the middle ear enhances the sound pressure at the tympanic
membrane by a factor of 17 x 1.3 x 2 = 44 or approximately 30 dB, which is
comparable to the loss that would have occurred due to the change of media
from air to fluid without the middle ear.

1.E-07

1.E-08

1.E-09 ©

o Extrapolated

e Derived from Goode et al. (1994)

—FIR filter

1.E-10 R ! et
100 1000 10000

Frequency (Hz)

Stapes peak velocity (m/s) at 0 dB
PL

Figure 1.8: The frequency response of the middle ear. Redrawn from Lopez-Poveda and
Meddis [2001] based on Goode et al. [1994]

This factor, and the underlying factors, are all approximations since the seem-
ingly simple task of anatomically measuring them is not so simple after all [Ton-
ndorf and Khanna, 1972]. Moreover, the impedance matching is frequency de-
pendent. Two main factors influence the frequency characteristics of the middle
ear: the mass of the ossicles and the spring-like behaviour of the entire middle
ear. The mass dependence gives the middle ear a low pass filter characteristic.
The spring-like influence originating from the ligaments and muscles combined
with the compression of air in the middle ear cavity, gives a high pass filter
characteristics. These two influences add to give the middle ear its bandpass
like filter shape shown in Figure 1.8 with a centre frequency around 1 kHz (c.f.
eg. [Goode et al., 1994; Puria et al., 1997; Aibara et al., 2001]).
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1.3 Implementing the outer- and middle ear
model

Because of the simplicity of the models employed here, it is convenient to com-
bine the outer- and middle ear models into one filter, which will be referred to as
“pre-emphasis filter” i.e., the combined HpTF and middle ear transfer function.

Two types of pre-emphasis filters are applied: Average data filters and individu-
alised filters. The filters are applied according to the task at hand e.g. modelling
the performance of a specific test subject in a psychoacoustic experiment the
pre-emphasis filter for that person is used.

The average data filter was constructed according to Lopez-Poveda and Med-
dis [2001] which in turn is developed based on HpTF data from Pralong and
Carlile [1996] (c.f. Figure 1.5) and middle ear data from Goode et al. [1994] (c.f.
Figure 1.8).

Since the middle ear part of the average pre-emphasis filter was modelled based
on Goode et al. [1994] no phase response data were available. So while modelling
the magnitude spectrum in the pre-emphasis filter the phase response was not
modelled. For this reason and for simplicity a linear phase response was chosen
thus ignoring the phase data for the outer ear.

The pre-emphasis filter was implemented as a 512 tab, finite impulse response
filter. The tabs were calculated by applying the Matlab inverse fourier transform
to the combined magnitude spectra for the outer- and middle ear data shown
in Figures 1.5 and 1.8 thus assuming a linear phase.

The work of Puria et al. [1997]; Aibara et al. [2001] provides phase response of
the middle ear and thus it is now possible to build a pre-emphasis filter with a
realistic magnitude and phase response. It remains to be seen how much differ-
ence such an improved pre-emphasis filter would provide. Moreover, even though
impressive as the measurements of the middle ear are, they are post-mortem,
in-vitro measurements thus neglecting physiological aspects as well as dynamical
aspects of the middle ear cavity. Nevertheless, it seems worth while applying
the phase data in order to build as accurate a pre-emphasis filter as possible.
Very recent research questions the traditional views of the human middle ear
bandpass characteristics and suggest a much flatter characteristics Ruggero and
Temchin [2003].

The frequency response of the final average pre-emphasis filter is shown in Fig-
ure 1.9.



10 CHAPTER 1. THE OUTER- AND MIDDLE EAR MODEL

Frequency response of the pre-emphasis filter
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Figure 1.9: The frequency response of the pre-emphasis filter normalised so that the maxi-
mum pressure gain is 0 dB



Chapter 2

The Basilar Membrane
Model

The waveform in the air is propagated through the outer- and middle ear to
the inner ear fluids. As we saw in Chapter 1 the outer ear, middle ear bones
and muscles transform the waveform. The inner ear fluids and physiology also
transform the waveform, yet it does so in a radically different way.

Since the revolutionary measurements by Békésy [1960] the importance of basilar
membrane vibration for mammalian transduction of sound has been recognised
and scrutinised by countless scholars. This chapter focuses on the vibration of
the basilar membrane and modelling efforts hereof.

Many parts of cochlear anatomy and physiology affect the movement and should
be taken into consideration when describing basilar membrane vibration. In
addition to the basilar membrane’s own properties, outer hair cell motility and
tectorial membrane movement are two prominent examples of aspects of cochlea
physiology affecting basilar membrane vibration. The next section, entitled
Cochlear mechanics, briefly deals with this topic.

The section “Taxonomy of basilar membrane models” categorises the modelling
efforts from literature. Following this is a description of the basilar membrane
model employed throughout this thesis. Finally, alternative models are briefly
discussed in Section 2.4.

11



12 CHAPTER 2. THE BASILAR MEMBRANE MODEL
2.1 Cochlear mechanics

Cochlear mechanics literature is immensely rich and to give an exhaustive or
even detailed account here would be out of proportions. However, in order to
understand some of the limitations of the simplified models it is appropriate to
discuss the basic concepts of cochlear mechanics here.

This is done in four sections. First, the anatomy is discussed, followed by
observations of basilar membrane vibration. The role of the hair cells is discussed
in Section 2.1.3 and finally Section 2.1.4 briefly defines sensorineural hearing loss.

2.1.1 Basic anatomy

Sound is propagated to the cochlea through the oval window via the bones in the
middle ear. The cochlea is a tubular structure coiled like a snail. It is divided
into three fluid filled chambers along its length by Reissner’s membrane and the
basilar membrane (c.f. Figure 2.1).
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Figure 2.1: The three scali and the organ of corti. Redrawn from Geisler [1998]

The three dimensions are usually referred to as 1) Longitudinal dimension
(meaning in the direction from base to apex), 2) Vertical dimension (mean-
ing in the direction from the scala tympani to scala vestibuli), and 3) Radial
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dimension (meaning in the direction from the spiral ganglion to the spiral liga-
ment, c.f. Figure 2.1). This “coordinate system” is relative to the physiological
structures. In particular the longitudinal dimension is coiled as the cochlea has
just over 2% turns (c.f. Figure 2.2).
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Figure 2.2: The cochlea seen from the outside. Redrawn from Yost [2000]

Reissner’s membrane is so thin and flexible that it is considered mechanically
transparent — it has no influence on acoustic waves. Its purpose is to electrically
insulate and physically separate the perilymph in the scala vestibuli from the
endolymph in scala media.

The basilar membrane is approximately 35 mm in length. It is attached to the
bony spiral lamina on the side of the modiolus (spiral ganglion in Figure 2.1)
and to the spiral ligament on the other side. The basilar membrane is at its
narrowest and thickest at the base, and thus widens and gets thinner towards
the apex. As a result the stiffness varies by a factor of 100 along its length, with
the stiffest part at the base [Greenberg, 1988; Naidu and Mountain, 1998]. It
appears to be made from unstructured fibre material containing collagen and
fibronectin.
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Figure 2.3: The distribution and electrical properties of perilymph and endolymph. Redrawn
from Geisler [1998]

The basilar membrane carries the Organ of Corti. Together the organ of Corti
and the basilar membrane are also referred to as the cochlear partition. The
organ of Corti supports three rows of outer hair cells and one row of inner hair
cells (c.f. Figure 2.3).

The outer hair cells are closest to the outside of the cochlea, hence the name.
Humans have approximately 12,000 outer hair cells and approximately 3,500
inner hair cells. Both hair cell types have stereocilia (“hairs”) protruding from
their top. The stereocilia are arranged in stair-like configuration (c.f. Figure 2.4).
On the inner hair cells the stereocilia form rows — on outer hair cells they form

[43 3

a “w” or “v’-shape seen from above.

Note how the stereocilium decreases its diameter dramatically close to its base.
This enables the rigid stereocilia to move more easily in response to sheering
forces. The stereocilia are interconnected by tip links. The tip links are believed
to control passage of potassium and calcium ions into the stereocilia [Assad et al.,
1991].

Two types of nerve fibres are attached to the base of the hair cells. Outer hair
cells have predominantly efferent nerve fibres, whereas inner hair cells predom-
inantly have afferent nerve fibres. Efferent nerve fibres receive nerve impulses
from the brain — afferent nerve fibres send nerve impulses to the brain. We will
return to how inner hair cells generate nerve impulse in Chapter 4.
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Figure 2.4: The structure of a “generic vertebrate hair cell”. Mammalian hair cells do
not have the special type of stereocilia called kinocilia shown in the Figure [Pickles, 1982].
Redrawn from Geisler [1998].

Reissner’s membrane separates the scala vestibuli from the scala media, which
in turn is separated form scala tympani by the cochlear partition. Scala vestibuli
and scala tympani are connected at the apex by the helicotrema (c.f. Figure 2.5).
These two scali contain perilymph whereas scala media contain endolymph. To
be more precise perilymph fills the organ of corti up to the reticular lamina (the
top of the hair cells) as shown in Figure 2.3.

Perilymph resembles other extracellular fluids of the body as it has a low con-
centration of potassium ions (K1), a high concentration of sodium ions (Na™)
and a electrical potential equal to that of the vascular system.

Although endolymph is an extracellular fluid it is unique in that it has a high
concentration of potassium ions and a low concentration of sodium ions. More-
over, scala media holds an electrical potential of +60 to +100 mV relative to
the vascular system. This is referred to as the endocochlear potential. Its sig-
nificance is discussed in Section 2.1.3.
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The inner hair cells are flask shaped; the outer hair cells have an elongated
cylindric shape. The inner hair cells are locked in position by supporting cells.
In contrast, the outer hair cells are only supported by Deiters’ cells at their
bases enabling them to move much more freely (c.f. Figure 2.3).

There is one row of inner hair cells along the cochlear partition whereas the
outer hair cells are arranged in three rows.

The tectorial membrane is a gelatinous structure lying on top of the hair cells.
It appears to be attached to the cilia of the outer hair cells while not touching
the inner hair cell cilia.

2.1.2 Basilar membrane vibration

When the stapes propagates sound to the inner ear a local pressure change occur
in the scala vestibuli fluid. This creates a fluid pressure wave which propagates
along the scala vestibuli, through the helicotrema and back to the base in the
scala tympani (c.f. Figure 2.5) where the round window is pushed outward.
Moreover, the pressure wave exerts pressure on the basilar membrane which is
pushed towards scala tympani. The bulk of the energy transmitted from scala
vestibuli to the scala tympani is transmitted across the basilar membrane and
hence through scala media.

o
Vestibular Reissner's Membrane
System j Helicotrema
B, —> Acoustic Ene ? Scala Vestibul
1 T N it Ve
8 e i ) X

LS —ry A ATV L e

Scala Tympani (Perilymph)
Scala Media

& Endolymph
Window | - Partition i Al

Figure 2.5: Basilar membrane vibration in the uncoiled cochlea. Redrawn from Geisler [1998]

When the basilar membrane moves the organ of corti moves with it vertically.
As a result the place where the basilar membrane is attached to the spiral lamina
becomes a pivot point creating a radial, sheering force (c.f. Figure 2.6).
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Figure 2.6: Organ of corti movement and connection to the influence of the tectorial mem-
brane on outer hair cells

The interaction of the pressure wave in the fluid and the mechanical response of
the basilar membrane results in a complex movement which, to this very day, is
not fully understood. A more detailed account of the theoretical issues involved
in cochlear mechanics is beyond the scope of this thesis. Rather, the remainder
of this section is dedicated to observations of net basilar membrane vibration.
Good accounts of cochlear mechanics can be found in Yates [1995] and Geisler
[1998].
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Figure 2.7: Net basilar membrane vibration and envelope. Redrawn from Zwicker and Fastl
[1990]
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The mechanical properties, i.e. the varying stiffness, of the basilar membrane
means that any given place, in the longitudinal dimension, has a “preferred fre-
quency” to which it responds more than other frequencies. This frequency is
referred to as the characteristic frequency for the given place. In other words
a frequency to place mapping occurs at the basilar membrane with the basal
end responding to high frequencies, and the apical end responding to lower fre-
quencies. Although it is tempting to use wordings like “the basilar membrane
resonates at characteristic frequency” care should be taken since the word “reso-
nance” is normally applied when describing purely physical systems. In the case
of the basilar membrane physical properties act together with a whole range of
physiological processes complicating the matter considerably. So using the word
resonance in this connection for convenience is acceptable albeit a gross simpli-
fication.

Figure 2.7 shows a schematic drawing of basilar membrane response to pure
tones. Note that the response is not symmetrical around the place of the char-
acteristic frequency. The amplitude drops steeply on the apical side.

Measuring basilar membrane vibration was first done by von Békésy using visible
light in a stroboscopic technique [Békésy, 1960]. The Mossbauer technique was
used by Rhode [1971] producing remarkable results. Twenty years later laser
interferometry, yet a more accurate method, was used by Ruggero and Rich
[1991]. The latest in measuring technique is applying scanning laser interferom-
etry making it possible to take snapshots of a range of the basilar membrane,
not just a point [Ren, 2002].

The measuring techniques frequently provide basilar membrane vibration in
terms of vibration velocity rather than vibration amplitude. Throughout this
thesis vibration velocity is employed. Converting from displacement to velocity
can be achieved using the simple formula

v=2nfD (2.1)

where v is velocity, f is frequency and D is displacement[Meddis et al., 2001].

Figure 2.8 shows the response of at a particular place on the basilar membrane
to different pure tones. Note the broadening of frequency range to which the
basilar membrane responds with level. Also, note the fact that the characteristic
frequency, 9 kHz in the figure, decrease with level.

Figure 2.9 shows the response of at a particular (basal) place on the basilar
membrane to different levels of tones. This curve is frequently referred to as the
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Figure 2.8: Measurements of basilar membrane velocity as a function of stimulus frequency

for a site close to the oval window of the chinchilla. The parameter designates the level in dB
SPL. Re-plotted from Ruggero and Rich [1991]
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Figure 2.9: Measurements of basilar membrane velocity as a function of stimulus intensity
for a site close to the oval window of the chinchilla. The parameter is stimulus frequency.

Re-plotted from Ruggero [1992]
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input/ouput curve. Note how tones in the vicinity of the (9 kHz) characteristic
frequency show a “compressive nonlinear” response. “Nonlinear” in the sense
that an increase in the stimulus intensity level by 20 dB does not result in a
20 dB increase in the velocity response. “Compressive” in the sense that the
slope is less than unity'. Interestingly, the response to frequencies well below
best frequency is linear as indicated for the 5 kHz tone. Had it not been for
the compression the basilar membrane excursion for a stimulus level of 90 dB
would have been 10,000 times that of a stimulus of 10 dB, which according to
Equation 2.1 yields %W = 18um. This is more than three times
the height of the hair cell and would mean that the sensory cells would be in

danger of physical damage.
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Figure 2.10: Measurements of basilar membrane velocity as a function of stimulus intensity
for a site close to the chinchilla apex. The parameter is stimulus frequency. Re-plotted
from Rhode and Cooper [1996]

Figure 2.10 shows the response of at a particular apical place on the basilar
membrane to different levels of tones, c.f. Figure 2.9. The apical measurements
show very little compression, the slopes of the curves are close to unity, in
comparison with a basal site.

INote the abscissa scale is given in dB SPL which means that “unity slope” is 20 dB per
velocity decade
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This concludes the brief introduction to basilar membrane vibration character-
istics. Interesting topics like the phase characteristics and suppression were not
discussed in order to keep the section short.

2.1.3 The role of the hair cells

Figure 2.6 illustrates how the sheering forces come about. Moreover, the spring
effect thought to exist between the outer hair cells and the tectorial membrane
is illustrated. The movement of the stereocilia themselves is seen shown in Fig-
ure 2.11. This figure also shows how the space between the tectorial membrane
and the reticular lamina provides a radial fluid flow in which the stereocilia
sway.

Tectorial Membrane
Hensen's

Movement

Cells

Figure 2.11: Inner- and outer hair cell stereocilia movement in the fluids between the reticular
lamina and the tectorial membrane. Redrawn from Geisler [1998]

The sheering motion of the stereocilia causes ion channels to be opened as
illustrated in Figure 2.12. The ion channel opening mechanism is believed to
be mechanical because of the speed at which it occurs (< 50us) [Geisler, 1998].
The influx of ions depolarises the hair cell.

Since the endolymphatic space has a potential of approximately +80 mV and
the potential inside the hair cell is less than -40 mV (outer hair cells = -60 mV
and inner hair cells ~ -40 mV), the potential difference across the apical end of
the hair cell is very large — in fact the largest difference known in the human
body. This means that opening ion channels allows a high current to flow. Since
all the individual cilia contribute to this process this transduction mechanism
is extremely sensitive and quick: 10 nm tip deflection results in approximately
1 mV voltage change [Geisler, 1998].
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Figure 2.12: Tip links opening ion channels

Comparing the mechanical power absorbed by the hair cell, due to cilia friction,
with the electrical power transduced into the hair cell shows that the mechanical
power is amplified many times as the signal is transduced. The factor is approx-
imately 100 at 160 Hz [Geisler, 1998]. The added power originates from the
voltage differences across the cell membrane which is sustained by homeostatic

mechanisms?2.

For the inner hair cell, depolarisation initialises the process whereby nerve im-
pulses are generated. This process is discussed in greater detail in Chapter 4.

For the outer hair cell the depolarisation has an additional effect: it makes the
cell contract to a shorter and thicker state [Brownell et al., 1985]. Conversely
hyperpolarisation makes the cell elongate. The protein prestin, placed on the ba-
solateral sides of the outer hair cell membrane, responds to the transmembrane
voltage change by contracting or expanding [Zheng et al., 2000].

The length change is 30 nm/mV [Santos-Sacchi and J., 1988] giving a maximum
of 1-2 um). It appears to be sufficient in accounting for the amplitude boost
of basilar membrane vibration at low levels. The speed of the contraction is a
different matter. Even though outer hair cell length change is capable of fol-
lowing voltage changes up to at least 79 kHz [Frank et al., 1999] the voltage
change cannot be conveyed to the hair cell this rapidly due to the capacitance

2Homeostasis is the physiological processes maintaining an equilibrium. In this case the dif-
ference in transmembrane potential which is maintained by stria vascularis. This contraption
is sometimes referred to as “the battery of the ear”
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of the basolateral membrane. It rolls of at approximately 6 dB/octave above 1
kHz [Russell et al., 1986] making the reverse transduction almost negligible at
high frequencies. This is in stark contrast to the basilar membrane measure-
ments and thus poses a problem for this somatic electromotility explanation of
active amplification in the cochlea.

An alternative conjecture places the outer hair cell motor mechanism in the
stereocilia [Hudspeth and Gillespie, 1994]. The motor is thought to be a result
of actin-myosin interaction with the calcium current, the result being a shearing
force from the stereocilia on the basilar membrane. Traditionally, the argument
is the other way around: Basilar membrane displacement leads to a shearing
force on the stereocilia. In theory, stereocilia movement would provide a better
account of the active mechanism, however, no direct observations supporting
this is possible at present|Yates, 1995].

2.1.4 Sensorineural hearing loss

Sensorineural or neurosensory hearing losses are caused by problems in the hair-
cells. Malfunctioning or loss of outer hair cells accounts for mild to moderate
hearing losses while severe to profound hearing losses also involve malfunctioning
of inner hair cells.

The outer hair cell is the single most prominent source of nonlinearity in the pe-
ripheral hearing system. They provide the large dynamic range of the auditory
system, and therefore malfunctioning outer hair cell results in a reduced dy-
namic range. Sensorineural hearing loss thus means a loss of dynamic range and
sensitivity. As we shall see later this has implications for frequency selectivity,
loudness, temporal integration and many other related auditory properties.

Hence, understanding hair cell function and malfunction is fundamental to hopes
of improving understanding of hearing in general and hearing loss in particular.

2.2 Taxonomy of cochlear models

This section provides an overview of the types of cochlear models employed at
present. The goal is to provide the background for the model used in this thesis.

The term cochlear model is most frequently used for models describing the
micro- and/or hydromechanics of the inner ear. For reasons of simplicity the
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focus is kept on basilar membrane vibration. Figure 2.13 presents an attempt
of grouping the various types of cochlear models.

filters

filters

Figure 2.13: An attempt at categorising cochlear models. For details please refer to the text

2.2.1 Hydromechanical models

The hydromechanical models focus on the fluids in the cochlear encasement
and their interaction with the organ of Corti. Hence they are also known as
hydromechanical models. The basilar membrane itself is reduced to a single
mass with very simple viscoelastic properties.

One-dimensional models in Figure 2.13, provide response along the longitudi-
nal dimension. T'wo-dimensional models also incorporate vertical displacement.
Three-dimensional models include a description of the radial dimension. Fre-
quently, one-dimensional models are expressed in terms of the pressure difference
between the upper- and lower- scalae at a given place on the basilar membrane.

The ratio between the mass of the scala fluids and the mass of the basilar
membrane decreases from base to apex, as the scali narrows and the basilar
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Figure 2.14: Schematised drawing of the cross section of one cochlear turn showing a mag-
nified view of the Organ of Corti. Redrawn from Mountain and Hubbard [1996]

membrane gets wider and thicker. The two-dimensional models take this into
account yielding a more accurate description. In particular the steepness of high
frequency fall-off is better modelled.

The arcuate and pectinate zones (see Figure 2.14) show differences in com-
pliance. Three-dimensional models have been proposed to take this fact into
account. Historically, the success of three-dimensional models has been hin-
dered by the considerable analytical complexity involved. Furthermore, com-
puter power has been a limiting factor.

The discovery of evoked otoacoustic emissions [Kemp, 1978] has lead to the
emergence of active hydromechanical models — models that mimic the active
production of kinetic energy in the cochlea. This subdivision of the hydrome-
chanical models is not shown in Figure 2.13. Alone the hydromechanical models
fail to explain significant experimental results [Mountain and Hubbard, 1996],
and today hydromechanical models primarily serve a complementary role to the
micromechanical models.

2.2.2 Micromechanical models

Micromechanical models focus on the mechanical properties of the many com-
ponents constituting the organ of Corti rather than the fluids in the cochlea.
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The complex anatomy of the organ of Corti makes modelling of the mechanical
properties an intricate matter subject to ubiquitous speculation.

Micromechanical models are categorised in terms of their “degrees of freedom”
rather than their dimensionality. The degrees of freedom are, in turn, deter-
mined by the level of detail at which the mechanics of the anatomy is modelled.
The degrees of freedom are not shown in Figure 2.13. The micromechanical
models can either be passive or active. Passive models presuppose that the en-
ergy entering the cochlea dissipates whereas active models presuppose that the
cochlea generates energy which in turn dissipates.

Multimodal models allow more than one wave propagation mode. They are ei-
ther hydromechanical or micromechanical. Multimodal, micromechanical mod-
els are “state-of-the-art” in cochlear modelling e.g. Sen and Allen [1999].

Extensive and detailed experimental animal- as well as human data is necessary
for further progress in the area to occur. Thus progress hinges on improved mea-
suring techniques. Particularly mid-frequency human cochlear responses are in
demand, but also simultaneous measurements of pressure and volume velocities
would be valuable for shedding light on the active cochlear mechanisms [Moun-
tain and Hubbard, 1996]. A recent step in this direction was achieved when
longitudinal patterns of 1 mm sections of the basilar membrane was recorded
with a scanning laser [Ren, 2002].

Other mechanical models have been realised, e.g. physical replica of the basilar
membrane mounted inside a duct.

2.2.3 Phenomenological models

Modelling basilar membrane response can also be performed at a “conceptual”
level, i.e. signal processing schemes can be applied in order to produce the desired
response irrespective of the intrinsic physiology and mechanics. An approach
similar to the one-dimensional model described above is an arrangement of cas-
caded filters each tuned to a lower frequency than the preceding filter. The
travelling wave of the cochlea is modelled as the signal travels along the cas-
caded filters. The transmission line model proposed by Giguere and Woodland
[1994] is a well-known example.

An alternative approach is to present the signal to a filter bank i.e., filters in
parallel where each filter represents one place on the basilar membrane. The
Dual Resonance Non Linear (DRNL) filter bank presented in this thesis falls in
this latter category of cochlear models.
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2.3 The chosen basilar membrane model

The basilar membrane model used throughout this thesis is the DRNL. The
explanation in the following is based on work performed at the hearing group
in the Psychology Department, University of Essex [Meddis et al., 2001; Lopez-
Poveda and Meddis, 2001; Sumner et al., 2002; Holmes, 2002; Sumner et al.,
2003] and personal experience of the author in connection with the research
stay with the hearing group.

The basilar membrane used in this thesis is introduced in Section 2.3.1. This
is followed by two sections describing the parameters of the model — the first
describes the parameters of the model which have been fixed to published val-
ues [Lopez-Poveda and Meddis, 2001], the second describes the parameters in-
vestigated in the thesis.

2.3.1 Introducing the DRNL filter

The DRNL is a filter arrangement that models basilar membrane response for
a given place along the basilar membrane. It accepts input in terms of stapes
velocity, in units of m/s, and the output is transversal, i.e. vertical dimension,
velocity of the basilar membrane, in units of m/s.
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Figure 2.15: The fundamental DRNL filter setup. Top row shows the linear processing path.
The lower row shows the nonlinear path

The DRNL has two processing paths: One linear and one nonlinear (c.f. Fig-
ure 2.15). The output is the sum of the two processing paths. The linear path
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consists of a linear gain, a gammatone filter [Patterson et al., 1991] and a low
pass filter in cascade. The nonlinear path consists of a gammatone bandpass
filter, a compression function followed by a second gammatone filter. The band-
pass filters themselves are cascaded gammatone filters. The low pass filters
consists of four cascaded second order Butterworth filters (e.g. Steiglitz [1996]).
Since the centre frequency of the linear path deviates slightly from the centre
frequency of the nonlinear path the filter shows “dual resonance” hence the
name.

The nonlinear function used is a “broken-stick” given by:

y(#) = sgu(x(t)) min(alx(#)[, blx(t)[°) (2.2)

where x(t) is the input time signal, y(¢) is the output, sgn(z) is a function which
is 1 for x > 0 and —1 for < 0, min(z,y) is a function defined as the smallest
of z and y, a,b and ¢ are parameters of the model (see below for details).

2.3.2 The fixed DRNL parameters

This section describes the “fixed” parts of the DRNL, i.e. the parameters not
varied from previously published parameters [Lopez-Poveda and Meddis, 2001].

The low pass filter in the linear path was constructed from cascading four sec-
ond order Butterworth filters which each have 6 dB down points at the centre
frequency of the gammatone filters of the linear path.

Similarly the low pass filters of the nonlinear path was constructed from cas-
cading three low pass second order Butterworth filters with 6 dB down points
at the centre frequency of the gammatone filters of the nonlinear path.

The low pass filters could have been chosen to be subject to fitting in terms
of number of filters in the cascade and initially they were indeed (c.f. Lopez-
Poveda and Meddis [2001] Table I and Table II where the low pass filter cascade
in the linear path differ). However, it was decided to fix the low pass filters as
described, in order to limit the number of free parameters. Initial investigation
justified this decision [Meddis et al., 2001] and further support was given by the
current version of the DRNL [Lopez-Poveda and Meddis, 2001].

The three gammatone filters used were each constructed from a cascade of three
gammatone in cascade resembling the auditory filter shapes [Hartmann, 1997].



2.3. THE CHOSEN BASILAR MEMBRANE MODEL

29

DRNL Filter Components

0 T T T C il » T T T
Y, o LP
—10- =-= GT 4
—_— LP*GT

201 B
an)
=
£ 730r 1
©
© -~

-40- . 4

-~
.~
.
-50 hd b
~
~
~
~
-60 1 2 1 1 1 1 1 1 1 ~
5 6 7 8 9 10 11 12 13 14 15
Frequency (kHz)

Figure 2.16: The frequency response of the low pass and gammatone filters used in the
DRNL. The low pass filter shown is cascaded four times, the gammatone is cascaded three
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Figure 2.16 shows the various filter functions involved which make up the DRNL.
The implementation of the compression is illustrated by Figure 2.17.

The parameter ¢ controls the slope of the nonlinear part of the broken-stick non-
linearity (together with b, c.f. Figure 2.17 and Equation 2.2). This parameter
was fixed to the value 0.25 by Meddis et al. [2001] who concluded that satisfac-
tory results could be achieved with this value although Plack et al. [2002] used
0.16.

The output of the model was chosen to be basilar membrane vibration velocity
for the given place on the basilar membrane. The alternative, basilar membrane
displacement, could have been used, but it was found that compression threshold
changed less with respect to frequency when using the velocity measure [Meddis
et al., 2001]. Moreover, modern measurements tend to provide velocities rather
than displacements.

2.3.3 The free DRNL parameters

This section describes the DRNL parameters that are modified from published
values. These parameters will be referred to as “free parameters”. Not allowing
all DRNL parameters to vary is productive in two ways:

1. The number of parameters in the DRNL is quite high. Fixing some pa-
rameters dramatically constrains parameter space.

2. It enables comparisons between studies.

The potential downside, that the DRNL will not accurately model the data, has
not been a serious problem thus far.

Adjusting the parameters as described in the following, allows the DRNL model
to account for specific experimental data. Below is a list of the DRNL-parameters
which are allowed to vary when modelling experimental data.

CFyin The centre frequency of the linear filter path.

BWji, The filter bandwidth for the linear filter path given as the 3 dB down
points.

g The gain factor of the linear path. This scalar is used for balancing the
contribution of the linear path against the contribution from the nonlinear
path. In Figure 2.15 this is called linear gain.
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CF,1 The centre frequency of the nonlinear filter path which is slightly higher
than Cﬂin.

BW,,; The filter bandwidth for the nonlinear filter path given as the 3 dB down
point of the three cascaded gammatone filters.

a The slope of the linear part of the broken-stick nonlinearity. Together with b
this parameter determines the gain of the nonlinear path (c.f. Figure 2.17.

b The “slope” of the nonlinear part of the broken-stick nonlinearity. Together
with ¢ this parameter controls the slope and indirectly the intercept of the
nonlinear part of the broken-stick nonlinearity.

An example of DRNL parameter values is given in Appendix A. It is important
to note that each of these parameters has one value for each place along the
basilar membrane. So for a given place on the basilar membrane each variable
has a value. This set of parameter values defines the model response for this one
place only. Defining the response for the entire basilar membrane, i.e. defining
a DRNL filter bank, is described in Section 2.3.5.

2.3.4 Examples of DRNL properties

The DRNL filter arrangement may seem obscure and unfounded in view of the
complex physical and physiological mechanisms described in this chapter. The
justification for the DRNL is that it models basilar membrane vibration quite
well and that it is computationally effective [Meddis et al., 2001]. The remainder
of this section provides examples of the key properties of the DRNL supporting
this claim.

In order to evaluate how powerful the DRNL is Meddis et al. [2001] performed
a number of comparisons to animal data. The comparisons were done for:

Basic basilar membrane input/output function The results for the 800
Hz best frequency for the chinchilla, 10 kHz and 18 kHz best frequency for
the guinea pig where modelled successfully. The notches in basilar mem-
brane response reported in animal data at 100 dB SPL was also modelled,
at least for the 10 kHz best frequency.
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Basilar membrane phase response The phase lag is greater in the model
than in the animal data for high intensities and frequencies just above best
frequency. Improvement might be achieved by means of broader filters in
the nonlinear path.

Two tone suppression Two tone suppression was not found at the apical
site (800 Hz) as expected. Strong two tone suppression was successfully
modelled for the basal sites (10 kHz and 18 kHz).

Basilar membrane impulse response There are some discrepancies between
animal data and model impulse response. The culprit is speculated to be
the imperfection of clicks produced by loudspeakers in the animal stud-
ies. A simulation of DRNL response to “imperfect clicks” supports the
speculation [Meddis, 2002].

Distortion products The distortion products 2f; — fo and 3f; — 2f; were
tested for f; = 12.5 kHz and f; = 14 kHz for 50 dB SPL stimulus at 10
kHz best frequency . The results were comparable to the measurements

available.
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Figure 2.18: Change in DRNL filter shape and centre frequency with level

Yet another key property of the basilar membrane is its level dependant filter
shape illustrated in Figure 2.8. The DRNL models this property as indicated in
Figure 2.18. The DRNL filter response broadens with level as does the response
of the basilar membrane.

In order to look at the change in filter shape quantitatively, a comparison of
psychophysically determined filter shapes with DRNL filter shapes is shown in
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Psychophysical filtershapes Modelled isointensity curves
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Figure 2.19: Comparison of iso-intensity curves to psychophysically measured data. The
data for the psychophysical measured data in the panel to the left is taken from Baker et al.
[1998]. The modelled data for the panel to the right is taken from Lopez-Poveda and Meddis
[2001]

Figure 2.19. The main difference between the psychophysical data and the model
data is the distinct notch below characteristic frequency in the DRNL data. The
DRNL data is consistent with physiological data [Rhode and Recio, 2000]. The
discrepancy from simultaneous masking data to the psychophysical data can
be explained in the following way: In a simultaneous masking experiment the
subject is simultaneously monitoring several auditory filters always selecting
the optimal filter for probe detection. Hence the auditory filter in the notch
region will not be utilised for probe detection since an adjacent filter provides an
optimal probe-to-masker representation. This explanation resolves the apparent
conflict between psychophysical and physiological data.

Finally, the “basal ward” shift in characteristic frequency is an important prop-
erty of the basilar membrane. This effect, by which the characteristic place for a
given frequency at low levels moves towards the oval window at higher levels, is
implicitly shown in Figure 2.8. The figure shows data for a specific point on the
basilar membrane. That point responds best to 9 kHz tones at low levels and to
7 kHz tones at higher levels — the characteristic frequency decreases with level
for a given point on the basilar membrane. In other words there is an “apical
ward” shift in characteristic place for a given frequency with increasing level or
conversely there is a “basal ward” shift in characteristic frequency for a given
place with increasing level.

That this is modelled qualitatively can be seen from Figure 2.18. The extent of
the characteristic frequency change is believed to be in the region of a factor of
1.1 to 1.4 between characteristic frequency at 65 dB SPL and 95 dB SPL [Mc-
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Fadden and Yama, 1983]. This constraint is observed when adjusting DRNL
parameters, but not subject to further investigation at present.

2.3.5 From animal data to a human filter bank

The basic construction of the DRNL was based on animal data. This section
presents a description of how the human DRNL filter bank was developed [Lopez-
Poveda and Meddis, 2001].

The DRNL as described above simulates the vibration at a given point on the
basilar membrane. Generalising the idea to provide filter responses for the entire
basilar membrane requires a bank of DRNL filters, one for each point on the
basilar membrane where the response is to be simulated. This in turn requires
parameter values for the each of the parameters in in Appendix A, Table A.1.

Lopez-Poveda and Meddis [2001] describes such a filter bank based on human
data from a psychoacoustic experiment. First the individual DRNL parameters
were fitted for six different frequencies corresponding to six points on the basilar
membrane. For each of the seven free parameters (c.f. Section 2.3.3) a function
of the form shown in Equation 2.3 was established.

porNL(f) = 10PoFmIogi0(f) (2.3)

where, f is frequency, pprnr(f) is parameter value at frequency f, po is the
linear regression intercept, m is the linear regression slope.

For instance, to calculate the bandwidth of the nonlinear path (BW,,;) for the
10 kHz place one needs the values of m and pg for this parameter. These values
are -3.1930 x 1072 and 7.7426 x 107! respectively (c.f. Appendix A and later
in this section) yielding a bandwidth of the nonlinear path (BW,,;) equal to
10(=0-0319340.774262 log,1(10000)) — 1346. In this way extrapolation and interpo-
lation enables generalisation of the data obtained from a few points to extend
to all of the basilar membrane.

In fact, the f in Equation 2.3 was substituted with CFyp, so that only six
parameters needed to fit the regression line. This correspond to defining the
characteristic frequency of a given place of the basilar membrane as the fre-
quency where the response is greatest at low levels. It is convenient and does
not affect the capabilities of the DRNL.
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Pulsation threshold data for characteristic frequencies 250 Hz, 500 Hz, 1 kHz,
2 kHz, 4 kHz, and 8 kHz were collected [Plack and Oxenham, 2000a]. The
thresholds were measured for signal levels ranging from 25 dB SPL to 85 dB SPL
in steps of 5 dB. From this, the DRNL parameters in Table A.1 were determined
for the six frequencies so as to best fit the experimental data [Lopez-Poveda and
Meddis, 2001].

The next step was then to fit the pg and m linear regression coeflicients as best
possible. So replacing the individual direct parameter values from Table A.1
with the two linear regression coefficients py and m provides a description of
basilar membrane vibration for any given point. The terms DRNL and DRNL
filter bank will be used interchangeably in the remainder of the thesis. The
resulting filter bank parameters are shown in Table A.1.

2.3.6 Fitting DRNL parameters using pulsation threshold
data

This section provides an example of a psychoacoustic experiment that can be
used for building a human DRNL filter bank. It was actually the first method
to be employed [Lopez-Poveda and Meddis, 2001].

The pulsation threshold technique first introduced by Houtgast [1972], can be
described as follows: An interrupted sound is perceived as continuous if another
sound fills the interruption period with sufficient energy. This effect is called
the continuity effect [Elfner and Caskey, 1965]. Take the example of a pure tone
signal (T) and a lower frequency pure tone masker (M). T is alternated with M.
Consider the place at the basilar membrane with best frequency equal to that
of T. If the basilar membrane response to M at this place is equal to or greater
than the response to T, the stimulus will be perceived as continuous. For a given
frequency and level of T, the pulsating threshold is determined as the level of
M at which the perception changes from pulsating to continuous. Frequently a
0.6 T-to-M frequency ratio is used [Plack and Oxenham, 2000a] in this type of
experiment.

If T and M are sufficiently far apart in frequency it can be assumed that the
basilar membrane at the best frequency of T responds compressive nonlinearly
to any increase in the level of T, e.g. an increase of 20 dB in the level of T results
in (much) less than 20 dB increase in basilar membrane response. Moreover,
the basilar membrane responds linearly to any increase of the level of M at this
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place, e.g. a 20 dB increase in the level of M yields a 20 dB increase in response.
Hence basilar membrane compression can be estimated as follows:

For a given level the pulsation threshold is determined. An increase in the level
of T is applied and the pulsation threshold is determined for this level. The
compression ratio is simply the T-to-M level ratio. By reiterating the method
for multiple levels and frequencies the shape of the masking function can be
estimated.

The data obtained using this method is valuable for two reasons 1) it gives
an estimate of human basilar membrane compression and 2) it does so for the
mid-frequency range. An alternative approach, direct measurement in nonhu-
man cochleae, is only possible at the apical and basal turns at present [Plack
and Oxenham, 2000a] and thus only provide nonhuman data outside the mid-
frequency range. The accuracy of the compression ratio determined using pul-
sation threshold is quite good, although care must be taken in order to avoid
the caveats inherently associated with psychoacoustic experiments.

2.4 Other basilar membrane models

A great number of phenomenological basilar membrane models have been pro-
posed over the past three decades [Lyon, 1982; Seneff, 1988; Shamma, 1988;
Jenison, 1991; Carney, 1993; Kollmeier et al., 1993; Giguere and Woodland,
1994; Dau et al., 1996; Irino and Patterson, 1997; Meddis et al., 2001; Heinz
et al., 2001a; Zhang et al., 2001]. Rather than a review of all the models two
models have been selected to illustrate the diversity of the approaches employed
namely the transmission line models and the gammatone filter models.

2.4.1 Transmission line models

In transmission line models, much like the one dimensional models in Fig-
ure 2.13, the pressure difference between scala media and scala tympani is simu-
lated by a number of segments [Lyon, 1982; Giguere and Woodland, 1994]. These
segments represent equidistantly placed sites along the basilar membrane. Each
segment has a “passive” component corresponding to the passive mechanical
properties of the basilar membrane and an “active” component corresponding
to the outer hair cell feedback of mechanical energy to the basilar membrane.
Transmission line models thus reflect the travelling wave directly.
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Giguere and Woodland [1994] implemented the passive components of the model
as digital filters derived from the laws of mechanics combined with measurements
of the hydromechanical and micromechenical entities involved.

The mechanical force generation of the outer hair cells is assumed to consist
of a nonlinear frequency independent transduction of vertical basilar membrane
displacement into a receptor potential and a reverse transduction force generated
by this receptor potential. This mechanism is modelled as a voltage source
saturating at high amplitudes.

The basilar membrane and outer hair cell models proposed by Giguere and
Woodland are components in a model aiming at modelling the transmission of
sound from the free field to the auditory nerve. Although workings of the model
is described in detail, no elaborate evaluation of the model has, to the knowledge
of the author, been published.

The model accounts for otoacoustic emissions. Moreover, the efficient imple-
mentation makes the model a viable choice for inner ear modelling. As such it
is a useful tool for studying the behaviour of the auditory periphery in general.

2.4.2 The gammatone filter
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Figure 2.20: Illustration of notched noise experiment designed for deriving auditory filter
shapes. Redrawn from Hartmann [1997]

The roex(p) filter was proposed by Patterson [1976]. It is based on notched
noise masking experiments estimating the transfer function of a hypothesised
auditory filter centred at a given frequency f.. The experiment is illustrated
in Figure 2.20. Masking thresholds are measured yielding the notch width as
a function of signal power. From this the transfer function for a given cen-
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tre frequency can be estimated. The parameterised functional form suggested
by Patterson and Nimmo-Smith [1980] is shown in Equation 2.4.

[H(/)IP = (1+pg)e ™ (2.4)
where p is parameter describing the width of the filter and ¢ is the normalised
deviation of frequency f to centre frequency f. given by g = |f ;f <.

The roex(p) filter does not have a well-defined impulse response and is thus
not easy to implement. For this reason the gammatone filter is often used
for simulating basilar membrane filtering [Patterson et al., 1991]. The impulse
response h(t) of the gammatone filter is given in Equation 2.5.

h(t) — p1¢(n=1) e_2ﬂbtcos(2ﬂ'fct + ¢) (2'5)

where 7 is the order of the filter, b is a decay factor and f, is the centre frequency
of the filter.

The amplitude response of a fourth order gammatone filter is very close to the
roex(p) filters. Further, the impulse response provides a good match to auditory
nerve fibre responses from physiological studies, e.g. Carney and Yin [1988].

2.4.3 Level dependent gammatone filters

The gammatone and the roex(p) transfer functions are symmetrical around cen-
tre frequency on a linear frequency scale, in contrasts to the results of other
notched noise experiments [Moore et al., 1990; Glasberg and Moore, 1990].
These studies show that the high frequency slopes are steeper than the low
frequency slopes. Moreover, the asymmetry increases with level.

One approach remedying this deficiency, the gammachirp filter, was proposed
by Irino and Patterson [1997]. The impulse response of the gammachirp filter
is given by:

h(t) = b1t e =2 eog (2 fot 4 ¢ Int + @) (2.6)

where 7 is the order of the filter, b is a decay factor, f. is the centre frequency
of the filter and c is an additional parameter used for implementing level depen-
dence.
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The level dependent filter shape is achieved by fitting the “new” parameter
¢ to data from notched noise experiments. The impulse response shown in
Equation 2.6 is identical to the gammatone impulse response except for the
term cln(t). Figure 2.21 shows the transfer function of the gammachirp filter.
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Figure 2.21: The transfer function of the gammachirp. Redrawn from Irino and Patterson
[1997]

A different approach dealing with the level dependent filter shapes was proposed
by Carney [1993]. The approach is based on a non-linear feedback mechanism
reflecting the role of the outer hair cells (c.f. Figure 2.22).

In this case the gammatone filter impulse response is parameterised slightly
differently:

h(t) = (t —a)/r"! e~ (t=)/T cos(wer(t — a)) (2.7)

where « is onset delay, 7 is envelope decay time constant, w.f is the radian
centre frequency and 7 is the order of the filter.

Briefly, the feedback loop effectively changes parameter 7 of Equation 2.7 to
model the broadening of filters with level. The filter asymmetry is controlled
by the low-pass filter in the feed back stage. To align the responses in time
according to the travelling wave, the signal is delayed.

This approach is just a part of a model aimed at auditory nerve responses and
has exclusively been evaluated in this context.

The description of gammatone filters have focused on describing individual filters
i.e., to model basilar membrane vibration for a single place along the basilar
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Figure 2.22: Schematic diagram of the feedback model used in Carney [1993]

membrane, one filter is constructed. In this way any given point on the basilar
membrane can be modelled. With a gammatone filter bank the full basilar
membrane vibration can be modelled limited only by the resolution of the filter
bank.

Gammatone filters and gammatone filter banks are perhaps the most widely
used model of basilar membrane vibration at present. Its well documented,
easy implementable and computationally efficient properties are the reasons for
its success.

2.4.4 Comments to basilar membrane models

The few examples of phenomenological basilar membrane models here are not
exhaustive, but illustrates some of the proposed methods.

Two recent methods must be mentioned in this connection, although they are
not discussed in detail. The model proposed by Dau et al. [1996] presents a
quantitative model of the “effective” signal processing in the auditory periphery.
It does so based on adaptation loops, which is a novel concept.

The model suggested by Heinz et al. [2001b] and Zhang et al. [2001] is physiologi-
cally based, but implemented as a computer model. The model is comprehensive
in that it systematically accounts for large data sets.

The models discussed here have all been constructed from a theoretical baseline
paired with data from physiological or psychoacoustic experiments. The result
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is a mathematical description of basilar membrane vibration covering particular
phenomena.

The next natural step in developing more general models would be to include
more phenomena from multiple studies. The main problem arises when attempt-
ing to do this, is inter-subject and inter-study variability. For instance in order
to account for data in the pulsation threshold experiment from Section 2.3.6 as-
sumptions were made about the outer- and middle ear transfer functions. This
information cannot be expected to be available from the study — and it is not
available. It is possible, in this example, to model the data with a set of DRNL
parameters and some assumptions about the outer- and middle ear, but it is not
clear how general the derived parameters are. This fundamental problem is not
specific to the DRNL, rather all models that claim to be general, i.e. capable of
explaining several phenomena, face this challenge. Rather than discarding these
types of models, however, this challenge should be addressed.
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Chapter 3

Modifying the Basilar
Membrane Model

This chapter describes how the DRNL parameters described in the preceeding
chapter are modified in order to match a range of forward masking experiments.
The eventual goal of this chapter is to arrive at a tractable, quantitative model
description of the basilar membrane.

Section 3.1 describes the fundamentals of forward masking and how to model it.
Next, a description of actual modelling efforts is given in Section 3.2. The two
following sections summarises the results in that the final DRNL parameters
for normal hearing and impaired hearing are presented. Finally, Section 3.5
summarises the issues presented in the chapter.

3.1 Theoretical background for modelling for-
ward masking

This section describes the background for modelling forward masking. It does
so by first introducing the basic psychoacoustics of forward masking. Next, a
description of the methods employed in modelling forward masking is given.
This description focuses on one method namely the so-called temporal window
model.

43
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3.1.1 The basic psychoacoustics of forward masking

Non-simultaneous masking or temporal masking are terms used to describe phe-
nomena where time effects play the major role. The study of non-simultaneous
masking combines aspects from temporal integration of loudness and frequency
selectivity. Both of these topics are essential within hearing research and have
been the topic of numerous theories and models over the years [Viemeister and
Wakefield, 1991; Glasberg and Moore, 1990; Moore et al., 1997; Zwicker et al.,
1957; Buus et al., 1999]). A general review of loudness and frequency selectivity
is beyond the scope of this thesis. Instead this section concentrates on forward
masking.

In temporal masking a short signal typically called probe (or sometimes just
“signal”) is presented non-simultaneously to a longer duration masker. Two
types of non-simultaneous masking exist: forward masking (the masker is pre-
sented before the probe) and backward masking (the masker is presented after
the probe). Figure 3.1 shows the basic stimulus structure applied in forward
masking experiments.

Masker

Probe

Masker-
to-probe
time gap
-

Level —

Time —

Figure 3.1: Illustration of the stimulus forward masking experiment

Backward masking is poorly understood partly because subjects improve per-
formance with practise [Moore et al., 1988]. Therefore backward masking exper-
iments require highly trained subjects making these experiments lengthy. More
importantly even in trained subjects the effect is small [Oxenham and Moore,
1994]. In forward masking, in contrast, the effect is clear. The following will
concentrate on forward masking.
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Some facts about non-simultaneous masking.

1. Forward masking increases as the time between masker and probe is de-
creased.

2. Regardless of masker level no forward masking occurs after 100-200 ms [Moore,
1997] (obviously discounting physical damage to the hearing system).

3. The rate of recovery from forward masking increases with masker level [Moore,
1997].

4. Forward masking is influenced by the relationship between masker and
probe frequencies.

5. The relationship between forward masker level and masked threshold is not
simple, i.e. a 10 dB increase in masker level does not necessarily produce
a 10 dB increase in masker level.

6. The amount of forward masking increases with duration of the masker.
The duration effect is effective up to between 50 ms [Fastl, 1976] and 200
ms [Zwicker, 1984]. This is sometimes referred to as the masker duration
effect. The term “time-intensity trade” is also used in this connection.

7. The masker duration effect increases with level [Plack and Oxenham,
2000b].

8. Forward and backward masking are not additive [Wilson and Carhart,
1971] in the sense that if a forward and backward masker were equally
effective by themselves, applying them together with the probe, does not
increase masking by 3 dB. This phenomenon is sometimes called excess
masking.

The fact that the relationship between masker level and masked threshold is not
simple can be explained by compression taken place at the basilar membrane.
Typically the masker is in the compressed region of the basilar membrane in-
put/output function. Therefore increasing the masker level by 6 dB will mean
an increase in response of (much) less than 6 dB. If the probe is in the linear
region of the basilar membrane input/output function the response increases
linearly and hence the threshold increase is much less than 6 dB.

That the masker duration effect increases with level can also be explained by
compression. Typically the probe is in the low level, linear region of the basilar
membrane input/output function, and the masker is in the compressed region.
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Increasing masker duration in this configuration will entail a proportional in-
crease in probe level. At higher levels, in contrast, the probe might reach the
compressed region of the basilar membrane input/output function. Increasing
the masker duration in this configuration will require a larger than proportional
increase in probe level.

Excess masking can be explained in terms of compression and temporal integra-
tion. Consider the example where an equally effective forward and backward
masker are presented separately for the same probe level. Probe detection is
believed to be achieved at a certain probe-to-masker energy ratio. In this exam-
ple this ratio is the same for the forward and backward maskers. Presenting the
forward and backward masker together, would mean the probe-to-masker en-
ergy is simply halved. Simply doubling the level of the probe would not restore
the detectable probe-to-masker energy ratio since the probe is independently
compressed.

The origin of forward masking

Forward masking is believed to originate from a combination of three sources:
the basilar membrane, the auditory nerve and “a more central location”. Firstly,
even after cessation of the stimulus the basilar membrane vibrates for some
time eliciting signals to the higher levels of the hearing system. In this way
the basilar membrane plays a significant role in forward masking. Secondly,
generally adaptation occurs in the auditory nerve even for stimulus of very short
duration (e.g. Meddis [1986]). However, this effect has been deemed too small to
be considered contributing significantly to forward masking [Relkin and Turner,
1988; Turner et al., 1994]. Moreover, adaptation alone cannot account for a
range of forward masking phenomena quantitatively. The role of adaptation
has recently been revisited [Oxenham, 2001] with the conclusion that it cannot
be ruled out that adaptation, in the auditory nerve or elsewhere, plays a role in
forward masking. Thirdly, the term “more central location” indicates that the
exact origin is not known at present. As we shall see in the following section this
“more central location” can be modelled as a black box based on behavioural
studies.

Simultaneous masking versus non-simultaneous masking

The main reason for using non-simultaneous masking for estimating basilar
membrane compression is that the simultaneous masking paradigms inherently
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have the problem of suppression. When a masker is presented simultaneously
with a tone they interact causing the nonlinear phenomenon of suppression to
occur. In many situations the suppression effects can be ignored safely in si-
multaneous masking. However, for estimating basilar membrane compression
simultaneous masking experiments have shown great discrepancies to physio-
logical estimates. For instance the compression ratio was estimated to approxi-
mately 2.5 in van der Heijden and Kohlrausch [1995] whereas Yates et al. [1990]
and Yates [1990] arrived at 4 - 5. One possible explanation for the discrepancy
could be suppression [Oxenham and Plack, 1997].

In forward masking suppression effects can be completely eliminated by using
pure tone maskers. On the other hand, other problems like spectral splatter
and off-frequency listening are introduced. These issues have to be catered for
by carefully designing the experiment.

3.1.2 Modelling forward masking

This section describes how forward masking can be modelled focusing on the
temporal window model [Moore et al., 1988]. The temporal window model is,
as most models of forward masking, a “persistence” model in that it hypoth-
esises that forward masking is due to persistence of neural activity. The most
successful example of an alternative modelling approach is the feedback loops
presented in Dau et al. [1996]; Dau and Piischel [1996].

Temporal integration

Traditionally the time-intensity trade has been described by a temporal integra-
tion or accumulation process which frequently is given by a convolution integral
of the type:

y(t) = / h(t —7)x(7) dr (3.1)

— 00

where y(t) is the function describing the temporal integration for time ¢, x is
the signal as a function of time 7, h is a monotonically increasing weighting
function. An alternative way of viewing the same temporal integration process
as described in Equation 3.1 is simply as low pass filtering applying a filter with
impulse response h(—t).
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This view clearly neglects the influence of peripheral processing and thus more
recent models of temporal masking incorporate knowledge about the auditory
periphery. In these models the input to the temporal integrator is taken from
the output of the auditory periphery model. The auditory periphery model
can be a simple power law or a complex physiological, mechanical or electrical
model.

Temporal masking models applying the setup described above have traditionally
been focusing on describing h in Equation 3.1. The models of the auditory
periphery has been relatively simple, e.g. Oxenham and Moore [1994], consisting
of applying a compression coefficient of 0.25 to the signal. Other models are
slightly more advanced in that they divide the input/output function into a
linear and a nonlinear region, e.g. Plack and Oxenham [1998]; Oxenham [2001].

Plack et al. [2002] suggested utilising the DRNL as the basilar membrane model
while maintaining the temporal window model proposed by Oxenham and Moore
[1994]. In this approach, which is adopted in this thesis, it is important to ob-
serve that the DRNL models basilar membrane velocity, which is at odds with
the fact that the temporal window operates in the intensity domain. Simply
squaring the DRNL output eliminates this problem. An additional complica-
tion of the approach is the fact that transduction only occurs for stereocilia
shearing in one direction. Simply half-rectifying the DRNL output eliminates
this problem.

The temporal window

The temporal window model is shown in its general, time-domain form in Equa-
tions 3.2 and 3.3 where W (t) corresponds to h(t) in Equation 3.1. Figure 3.2
shows the weighting function graphically.

W(t) = (1 — w)et/Tor 4 wet/Tos t <0 (3.2)

W(t) =e Tt >0 (3.3)

where t is time relative to the centre of the window, W is the weighting function
describing the shape of the temporal window, Ty, is the time constant determin-
ing the slope of the window at time after the peak, T3, and Ty, are the time
constants before the peak, determining the slope close to the peak and skirt of
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the window respectively, and w is the weighting factor determining the relative
contributions of T, and T,.

The convention used here for the time axis is that ¢ < 0 describes forward
masking and ¢ > 0 describes backward masking. Calculating the value of the
conjectured internal variable for temporal masking is thus done by calculating
the DRNL response for the relevant frequencies, to the stimulus and convolving
the result with function W from Equations 3.2 and 3.3.

Weighting

Time =0

Figure 3.2: Illustration of the temporal window

The temporal model has more recently been used by Plack and Oxenham [1998];
Plack et al. [2002], where the set of parameters taken from Oxenham and Moore
[1994] subject AO was used. The parameters are shown in the first column (TW
1) of Table 3.1. TW 2 corresponds to “Fit 2” of Oxenham [2001] and TW 3
corresponds to “Fit 3”7 of Oxenham [2001].

Combining Equations 3.2 and 3.3 with one column of constants from Table 3.1
gives instances of the function h in Equation 3.1.

Although the temporal window model in its generic form (Equations 3.2 and 3.2)
is considered “general” the constants in Table 3.1 must be specified in order to
apply the model. Oxenham [2001] argues that these constants depend on the
model of the periphery. In other words the auditory periphery nonlinearity and
the temporal window are interdependent and should be specified together.

The three sets of the temporal window model constants showed in Table 3.1 are
the ones used in this thesis.
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Table 3.1: Temporal window model weights and time constants

TW1 TW2 TW3
w 0.025 0.206 0.170

T, 3.5 3.5 3.5
Ty 4 3.1 4.6
Tys 20 210 166

Determining thresholds with the temporal window model

The output of the temporal window is the time course of the value of a conjec-
tured internal variable representing “signal strength”. In the implementation
described here a DRNL filter bank consisting of many frequency channels is
applied as the model of the auditory periphery resulting in a spectro-temporal
representation of a given signal. Modelling a two-alternative-forced-choice for-
ward masking paradigm experiment, this spectro-temporal representation can
be applied in the following way:

Thresholds predicted by the model is hypothesised to be determined by the
ratio k between value of the internal variable calculated for the masker alone
and the value of the internal variable calculated for masker and probe, at some
“optimum place in the spectro-temporal representation”.

In the case of pure tone maskers and pure tone probes it is assumed that the
optimum place in the spectral domain corresponds to the probe frequency. So
in this case the DRNL filter bank is reduced to one channel only. The optimum
time is simply the time where the ratio is the biggest c.f. Figure 3.3.

There is no obvious way of estimating the ratio k& which is the criterion for
the threshold. For this reason k is often allowed to act as a “free parameter”
enabling fitting of the thresholds. However, it seems reasonable to use the same
k-value for similar conditions.

In order to be able to account for the threshold of the probe in the absence of
the masker the additional concept of a noise floor is introduced. This means
that a constant is added to the internal variable (calculated as the temporal
window output). This constant, the noise floor, is determined by the threshold
of the probe in the absence of the masker as described in Equation 3.4.
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Figure 3.3: Illustration of the modelled internal representation in a forward masking exper-
iment with 50 ms time gap. The solid lines shows the response to masker-and-probe whereas
the dotted line shows the response to the masker alone. The arrows mark stimulus events (ces-
sation of masker and onset of probe). For illustration purposes this example shows a probe
far above threshold

max(y(Stnr))

R=—"

(3.4)

where R is the noise floor, y(sp,-) is the output of the temporal window model
as described above in response to the probe at absolute threshold and k is the
chosen decision ratio.

Briefly, modelling the results from a forward masking experiment is done in the
following way: A threshold ratio k is chosen. From this k£ and the absolute
threshold of the probe, i.e. probe without masker, the internal noise floor is
calculated. For each condition in the experiment, the modelled threshold is
determined by calculating the output to the temporal window, adding the noise
floor and calculating the maximum ratio of the masker versus masker and probe.
When this value reaches k the threshold predicted by the model is determined.

Potential weaknesses of the temporal window model

Although the temporal window models is, in many respects, a powerful model
it does have weaknesses. The following section describes the most significant of
these weaknesses.



52 CHAPTER 3. MODIFYING THE BASILAR MEMBRANE MODEL

It is assumed that the internal representation of the masker decays over time at
the same rate for all frequencies. This rate is described in the temporal window
model constants as shown in Table 3.1. This assumption seems reasonable, but
no direct evidence supporting its validity is known to the author.

For simplicity it is assumed that the internal variable is determined by the basilar
membrane vibration at probe frequency only (as in Plack et al. [2002]) combined
with temporal integration. This seems justified by the fact basilar membrane
response to the probe is at its maximum at the probe frequency. However,
other probe detection methods, like detection by spectral splatter, cannot be
precluded. Also, the basal ward shift of characteristic frequency with level is
neglected. Finally, any influence that adaptation might have is ignored.

3.2 Modelling actual forward masking experi-
ments

The previous section provided the tools for implementing models of forward
masking experiments. This section describes three such simulations of forward
masking experiments, 1) Forward masking with varying masker frequency, 2)
Forward masking with varying probe and gap duration and 3) Forward masking
with varying frequencies and gap durations.

The eventual goal is to arrive at new and improved DRNL parameters. To
this end only data from the latter of the three experiments were used. The
other experiments, described in sections 3.2.1 and 3.2.2, provided experience
with modelling forward masking and guidance in choosing temporal window
parameters.

3.2.1 Forward masking with varying masker frequencies
The psychoacoustic experiment

The first experiment modelled was the forward masking experiment described
in Oxenham and Plack [1997]. Briefly, 4 ms sinusoidal probes' gated with 2
ms raised cosine ramps, i.e. no steady-state portion, were presented 2 ms after
104 ms maskers. The maskers were gated with 2 ms raised cosines ramps at
both ends. To prevent off-frequency listening a background high pass or low

LAll probe and masker in this section durations are given as zero-amplitude times
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pass noise was presented simultaneously. The noise was not implemented in
the model since off-frequency listening was presumed to be eliminated by only
considering out put of one channel. The probe was always a 6 kHz sinusoid
whereas maskers were either 3 kHz or 6 kHz sinusoids. The level of the probe
was varied from 40 dB SPL to 90 dB SPL in steps of 5 dB. For each level,
the corresponding thresholds were determined for both masker frequencies, i.e.
the highest masker level for which the probe could be detected was determined.
Average data across three normal hearing listeners was collected using a two-
alternative-forced-choice scheme.

Modelling of the experiment

The simulation of the experiment was done as outlined in section 3.1.2. Pa-
rameters used for the DRNL was taken from Lopez-Poveda and Meddis [2001],
Table III, without any modifications. The outer ear and middle ear transfer
functions were also derived from Lopez-Poveda and Meddis [2001], Figure 2.
In Plack et al. [2002] the HpTF and the characteristics of the middle ear are not
discussed. The pre-emphasis filter is important in this modelling context for two
reasons 1) It “calibrates” the basilar membrane nonlinearity in that it moves
the input/output function along the abscissa depending on the gain applied and
2) The frequency response of the pre-emphasis filter at 3 kHz relative to 6 kHz
determines the intercept of the 3 kHz masker thresholds (c.f. Figure 3.4). It can
only be speculated that the pre-emphasis filter employed by Plack et al. [2002]
is “reasonable” and most likely with a flat frequency response.

The decision device criterion used was determined as in Plack et al. [2002]. The
optimal value for the criterion variable k& was 2.9 dB in comparison to 1.41
obtained by Plack et al. [2002]. However, any k-value between 2 and 3 dB
provides a reasonable fit to the data.

Results and comments

The result of the modelling efforts using the DRNL parameters from Lopez-
Poveda and Meddis [2001], c.f. Appendix A, is shown in Figure 3.4. Temporal
window parameters from Oxenham and Moore [1994] were employed (c.f. Ta-
ble 3.1).

The model prediction of the data for the 3 kHz masker is 2 — 4 dB too low for
probe levels from 40 to around 75 dB. This corresponds to the compressed region
for the masker. This could be interpreted as an inaccurate model representation
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Figure 3.4: Forward masking study with varying masker frequencies. The total RMS errors
is 4.01 dB

of compression in that the slope of the line from the model data is too steep.
A complementary interpretation of the discrepancy could be offered by the pre-
emphasis filter in that the 3 kHz component is too strongly represented, or
conversely the 6 kHz component is too weakly represented.

The model prediction of the on-frequency masker data is better, but still some
points are 2 — 3 dB away from the measured data points. Again, the slope
appears to be slightly steeper than warranted by the measured data indicating
a slight overestimation of the compression coefficient. However, considering the
limited number of points in the plot these interpretations should be considered
tentative.

The model clearly explains the data qualitatively and to a fair extent also quan-
titatively considering that the standard deviation of the original study is com-
parable to the 2 — 4 dB distance from the measured data points to the simulated
data points. Moreover, considering the fact that this study was done without
any adjustment to the parameters from Lopez-Poveda et al. [2002] and also
keeping in mind that these parameters are actually an approximation to a hu-
man filter bank, for which no data points for the 6 kHz place were employed,
the match is quite remarkable.

This simulation indicates that the proposed method and model is capable of
explaining “basic” forward masking data, i.e. masker level as a function of probe
level for maskers on-frequency and an octave below at 6 kHz probe frequency
and a fixed time gap.



3.2. MODELLING ACTUAL FORWARD MASKING EXPERIMENTS 55

The fact that the model parameters for the 6 kHz place is not optimal for this
simulation suggest that some fitting of the basilar membrane parameters would
improve the results.

In conclusion the obtained model prediction encourages the investigation of
more probe frequencies, more masker frequencies, i.e. more probe-to-masker
frequency combinations, and more time gaps. This is exactly the conditions
examined in Lopez-Poveda et al. [2002], addressed in Section 3.2.3.

Investigating temporal window constants

Table 3.2 shows how different temporal window shapes affect the simulation.
The resulting sum of squared errors are all very close for the three shapes of the
temporal window indicating that the shape is not important for simulating this
experiment. TW 1, TW 2 and TW 3 are as defined in Table 3.1

Table 3.2: Criterion and RMS error for simulation of Plack et al. [2002]

T™W1 T™™W2 TW3
k 2.9 1.5 1.3
RMS error 4.01 4.17 4.05

Given that the time gap is fixed in this experiment and the very short time gap
of 2 ms, it is not surprising that the temporal window shape is not crucial to
the simulation.

3.2.2 Forward masking with varying probe and gap dura-
tions

The original study

The second experiment modelled was the forward masking experiment carried
out by Oxenham [2001]. Briefly, the masker consisted of a 200 ms broadband
Gaussian noise (0 - 7 kHz) gated with 2 ms raised cosine ramps at a fixed
spectrum level of 40 dB re 20 uPa. The probe was a 4 kHz sinusoid. Thresholds
were measured for the following offset-offset intervals: 4, 6, 9, 12, 22, 52 and 102
ms. Within each of these offset-offset times, the same range of signal durations
were used, provided that no overlap in time of masker and probe occurred. For
example thresholds were measured for probe durations of 4, 6, 9 12 and 22 ms
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for the 22 ms offset-offset interval. In the text the probes are referred to by
their half-amplitude duration (2, 4, 7, 10, 20, 50 and 100 ms). A three-interval
forced-choice, two-down, one up adaptive method was used.

In Oxenham [2001] the psychoacoustic experiment was modelled in the following
way: The stimulus was represented by the amplitude envelope which was passed
through a nonlinearity described by:

I 0.78L;n, L;, < 35 dB SPL (3.5)

out = 0.16L;, + 21.7, Ly, > 35 dB SPL '
where L;, is the input amplitude level in dB SPL and L,,; is the level of the
basilar membrane vibration velocity in dB, which is an intensity measure [Plack
and Oxenham, 1998].

The masker amplitude level was set corresponding to the level passing through
the auditory filter centred at 4 kHz with equivalent rectangular bandwidth of
456 Hz according to Glasberg and Moore [1990].

The output from the nonlinearity passed through the temporal window. The
best results are achieved with the “Fit 3” window of Table 3.1 which is the
temporal window parameters specifically fitted to the nonlinearity from Equa-
tion 3.5. Since there is no Gaussian noise involved in this implementation of the
experiment, it is deterministic. This means that the procedural aspects of the
psychoacoustic experiment can be ignored in the modelling efforts.

Modelling the experiment

The implementation of the experiment using the DRNL was done in a similar,
yet slightly different way. The difference between the method used in Oxenham
[2001] and the method employed here is the representation of the stimulus.
Since the DRNL produces actual basilar membrane velocity as output, it is not
possible to present the stimulus as the amplitude envelope. Instead an equivalent
stimulus to the actual time signal, described in the following, was developed.

The criterion as described in Section 3.1.2 only considers output from one of
the DRNL filters in the filter bank, namely the filter centred around the probe
frequency. However, filtering a Gaussian noise at the probe frequency results in
large, random fluctuations in the output. These fluctuations would be spread
across the duration of the masker. Further, comparing two Gaussian noise
maskers, the fluctuations might exceed the chosen criterion ratio k as described
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in Section 3.1.2. This would mean that rather than determine forward masking
thresholds, the model would find thresholds for detecting differences in Gaussian
noises at probe frequency. This has absolutely nothing to do with the desired
forward masking threshold.

Limiting the search for ratio differences between masker and masker+probe to
times after the masker is not enough, since the random fluctuations might peak
towards the end of the masker. Alternatively, frozen noise could have been
used, but then the simulated thresholds depend on the frozen noise. Moreover,
implementing a method using real Gaussian noise would make the simulations
nondeterministic, i.e. depending on the noise, in which case the psychoacoustic
procedure becomes important. It is not obvious how to devise a method for
simulating the three-interval forced choice procedure applied in the study — on
the contrary it raises some fundamental questions as to how humans perform
this task... Even if such a method could be devised, it would require many
iterations in order to eliminate the stochastic element introduced by applying
Gaussian noise?.

A better solution to the problem, which is in line with the amplitude envelope
method used by Oxenham [2001], is to simulate the noise by a pure tone at
probe frequency. The level of this tone is calculated as the level of the noise
passing through the DRNL at probe frequency.

The total level of the 40 dB spectrum level, 7 kHz bandwidth noise is 78 dB SPL
(40 + 10 log 7000 = 78 dB SPL [Hartmann, 1997], Equation 3.62). The level of
the noise that passes through the auditory filter at 4 kHz with an equivalent rect-
angular bandwidth of 456 Hz [Glasberg and Moore, 1990] is 40+ 101og 456 = 67
dB SPL corresponding to the envelope amplitude method used in Oxenham
[2001]. A 70 dB SPL 4 kHz sinusoid filtered by the DRNL filter centred at 4
kHz, with parameters from Lopez-Poveda and Meddis [2001], yields an equiva-
lent amount of excitation as the noise passed through the auditory filter. The
noise masker was thus simulated by the 4 kHz sinusoid, on frequency masker.
The probe was a 4 kHz sinusoid. This makes the simulation deterministic and
thresholds can be found quickly.

20ne of the advantages of modelling psychoacoustic experiments rather than carrying them
out for real is that in most cases the procedural and stochastic aspects of psychophysical
experimentation can be circumvented
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Results and comments

Figure 3.5 compares the simulated results obtained using the DRNL and the
measured results from the original study.

The simulated thresholds are close to the measured thresholds. The average
difference is 1.84 dB, which is considerably better than the 4.05 dB reported
for the “first try” by Oxenham [2001]. Fitting both peripheral nonlinearity and
the temporal window parameters Oxenham [2001] achieves a fit with an RMS
error of 1.34 dB3. Although the fit achieved using the DRNL is not as good as
the fit in Oxenham [2001] it is still quite good. Especially considering that it is
achieved without any fitting at all — the DRNL parameters are taken straight
from Lopez-Poveda and Meddis [2001] and the temporal window parameters are
taken straight from Oxenham and Moore [1994].

Modelled and Measured Thresholds
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Figure 3.5: Comparison of modelled forward masking thresholds to measured thresholds
from Oxenham [2001] as a function of probe duration. Measured data points are plottet as
symbols, modelled data is shown as solid lines, except for the 4 ms offset condition where an
x is used. The parameter is the masker-probe offset-offset time interval. These time intervals

are from top to bottom of the graph 4, 6, 9, 12, 22, 52 and 102 ms. The RMS error or average
euclidian distance between simulated and measured data points is 1.84 dB

3The 1.34 dB is calculated from the sum of squared errors value of 50.7 by dividing by
the number of data points (28) and taking the square root. This is at odds with the fact
that Oxenham [2001] counts the absolute threshold in quiet making the number of data points
29. However, the difference is very small
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One of the conclusions from Oxenham [2001] is that the peripheral nonlinearity
and the temporal window constants should be matched, i.e. a given peripheral
nonlinearity requires a given set of temporal window constants in order to give
accurate predictions.

Table 3.3: Simulation of Oxenham [2001] for different temporal windows.

T™W 1 TW2 TW3
k 3.25 1.30 2.00
RMS error 1.84 2.61 3.38

In order to examine if the DRNL has a better matching set of temporal window
constant the TW 2 and TW 3 constants from Table 3.1 were examined. The
results are shown in Table 3.3. It is clear that the TW 1 constants are better for
simulating this experiment. TW 1 was also better for the experiment by Plack
et al. [2002]). This leads to the preliminary conclusion that TW 1 matches
well with the DRNL parameters employed here. A detailed discussion of the
interdependence of the nonlinearity and the shape of the temporal window can
be found in Section 3.2.4.

3.2.3 Forward masking with varying frequencies and gap
durations

The experiment

In the forward masking experiment in this section [Lopez-Poveda et al., 2002]
the test subjects first had their audiogram made. Further, their thresholds to
the probe signal in quiet was determined.

Their forward masking thresholds were then determined by varying the masker
level for a range of conditions while keeping the probe level at 14 dB SL. The
audiogram was used to determine the physical level of the probe.

The conditions were based on three variables probe frequency, masker frequency
and time gap between masker and probe. Table 3.4 shows the values of these
three variables. The third row shows the masker frequency as the ratio to probe
frequency. For example, the lowest masker frequency for the 500 Hz probe would
be 250 Hz — the highest 800 Hz. The three variables were varied independently,
i.e. the total number of conditions was 10 x 5 x 6 = 300.
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Table 3.4: Conditions used in [Lopez-Poveda et al., 2002].

Time gap Probe frequency Prob-to-masker

values values frequency ratio
10 ms 500 Hz x 0.5
20 ms 1000 Hz x 0.7
30 ms 2000 Hz x 0.9
40 ms 4000 Hz x 1.0
50 ms 8000 Hz x 1.1
60 ms x 1.6
70 ms

80 ms

90 ms

100 ms

The sinusoidal probe had a duration of 8 ms including 4 ms cosine onset ramp
and 4 ms offset ramp (i.e. no steady-state part). The sinusoidal maskers had
a duration of 108 ms including 4 ms cosine onset ramp and 4 ms cosine offset
ramp.

The procedure was a two alternatives forced choice similar to the one used
by Plack and Oxenham [1998]. The thresholds for all the 300 conditions listed
in 3.4 were determined for three test subjects. Each threshold was determined
based on 16 turn points. Each threshold was determined three times. For further
details refer to Lopez-Poveda et al. [2002].

The experiment as outline here is special in that the probe level is not varied
(as one of the only variables!). As we shall see the reason for this is to ensure
that the probe is in the linear section of the basilar membrane input/output
function.

Forward masking simulation results

To get a first impression of how well forward masking thresholds are simulated
by the DRNL and temporal window model, the case where probe and masker
frequency are identical is considered. The results are presented in Figure 3.6.

The RMS errors clearly exceed an acceptable level although the thresholds are
qualitatively matched in the simulation. The slope for the simulated lower
frequencies (500 Hz and 1 kHz) thresholds appear to be slightly off in comparison
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value k was varied across frequency. The TW 3 temporal window provided the best fit
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to the measured data, whereas the slopes for the 2 kHz and 8 kHz seem to
be correctly modelled. The 4 kHz match is particularly bad with a complete
mismatch of the slope. A possible explanation will be explored in Section 3.2.4.

Although the match shown here is not sufficient to claim a quantitative expla-
nation of the data, it does provide a qualitative explanation. Moreover, these
results were obtained without any alterations to previously published DRNL
parameters.

Table 3.5 shows the modelled results summarised by the RMS error in dB for
each of the probe frequencies (rows) and for each of the sets of temporal win-
dow constants (columns). Each RMS error represents data for 6 frequency ratios
per 10 time intervals i.e. 60 data points. The criterion value k was kept con-
stant within each combination of centre frequency and set of temporal window

constants. The DRNL parameters were taken from Lopez-Poveda and Meddis
[2001]

Table 3.5: RMS error for modelled results

™1 TW2 TW3

500 Hz 15.4 16.9 10.7
1 kHz 12.9 13.3 10.6
2 kHz 10.8 10.1 9.3
4 kHz 11.0 11.0 12.3
8 kHz 8.5 7.8 8.4

The overall best fit is provided by the TW 3 temporal window constants and
this window will be used in the remainder of this section. The discussion of
temporal window constants is deferred to Section 3.2.4.

The simulated results for the entire data set, for the subject ELP, is shown in
Figure 3.7. The RMS errors corresponding to Figure 3.7 are shown in Table 3.6.
It shows a breakdown of the RMS error in dB for the combination of the masker-
to-probe frequency ratios (columns) and probe frequencies (rows). The N/A
(not applicable) fields indicate that the simulated thresholds were unrealistically
high (above 105 dB SPL) and therefore not considered. The RMS errors are far
from an acceptable level for every combination of centre frequency and temporal
window constants.

For the low centre frequencies the thresholds for the lower frequency maskers
(frequency ratios 0.5, 0.7, 0.9 and 1) seem to show the correct slope. Conversely,
for the higher centre frequencies the thresholds for the higher frequency maskers
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Complete Forward Masking Results

00f Nk T ' ' ]
80
60
40
12
& 100
it}
T 8
2 60
(0]
-
o 40
0]
X
g 2 _ CFzdkhz
2100 2_ CF x 0.5 (Model)
CFx0.5 (Data)
80 O CFx0.7 (Mode)
4 CFx0.7 Data)
A CFx09 (Model)
60 A CFx09 (Data)
O CFx1.0 (Model)
-@- CFx 10 (Data)
40 % CFx 11 (Model
k- CFx 11 (Data)
D> CFx 16 (Model)
20 ‘ ‘ CF=8kHz | ‘ ‘ . [P CFx16(0a)

20 40 60 80 100 20 40 60 80 100
Time Interval (ms)
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appear to match the measured thresholds. Table 3.6 shows the RMS for the
combination of masker and probe frequencies.

Table 3.6: Detailed modelled results

x05 x07 x0.9 x1 x1.1 x1.6

500 Hz 587 647 4.81 9.30 7.77  22.89
1 kHz 6.38 9.85 12.51 777 11.81 26.00
2 kHz 14.17 13.89 9.91 5.31 412 N/A
4 kHz 13.55 796 1332 11.35 1394 N/A
8 kHz 9.06 9.27  9.30 7.23 540 N/A

Although the previously published DRNL parameters showed acceptable or even
good results in the two simulated studies previously discussed in sections 3.2.1
and 3.2.2 the parameters are inadequate in explaining the data from the more
comprehensive range of conditions in Lopez-Poveda et al. [2002]. For this reason
the DRNL parameters will be modified in order to simulate the data from the
study more accurately. The detailed discussion of the results presented in this
section is thus deferred and collated with the discussion of the improved DRNL
parameters in Section 3.2.3. First, however, the method for improving the DRNL
parameters is discussed.

Fitting DRNL parameters using forward masking data

Although Lopez-Poveda and Meddis [2001] was based on pulsation threshold
data from Plack and Oxenham [2000a] containing much data, it can be argued
that Lopez-Poveda et al. [2002] provides an even better basis for deriving DRNL
parameters in that it contains even more data. FEven though it is difficult to
compare a pulsation threshold study to a forward masking study, for modelling
purposes it seems reasonable to consider the number of data points and their
contribution towards improving the model. Seen from this perspective the two
advantages of Lopez-Poveda et al. [2002] over Plack and Oxenham [2000a] is
that the former investigates more masker-to-probe frequency ratios and more
masker-to-probe time intervals. Eventually, the results should be reconciled,
however, there are many intermediate steps before this can be achieved. Below
is an outline of these intermediate steps.

1. Fit the DRNL parameters to the forward masking data for each of the
subjects. This is only done for the centre frequency represented in the
data (i.e. 0.5, 1, 2, 4 and 8 kHz).
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2. Estimate an average across subjects for each of the derived /modified DRNL
parameters.

3. Derive a filter bank from the five centre frequencies.

4. Compare and adjust the DRNL parameters to the parameters derived
using the pulsation threshold data.

5. Reiterate

Unfortunately, it was not possible to carry out all of the above intermediate steps
in the course of the project. To derive at least one set of DRNL parameters it
was decided to only use data from one test subject. Further, items four and five
from the list were not implemented.

Fitting forward masking data for one subject

The basic fitting method is essentially a trial-and-error method: The thresholds
are determined as described in Section 3.1.2. One or more DRNL parameters are
then modified. The new thresholds and the RMS error are calculated. The RMS
error is compared to the previous best RMS error. If the RMS error is smaller
the new parameters are adopted. It was soon realised that this trial-and-error
method was inadequate in that it was inefficient.

Fundamentally, the trial-an-error procedure has three problems:

1. The procedure does not specify how the DRNL parameters should be
changed in order to improve the thresholds.

2. The 8-dimensional function (7 parameters for each frequency, c.f. Sec-
tion 2.3.3) constitute a large search space with potentially many local
optima. There are no obvious pointers as to what the search space looks
like.

3. Even with a more efficient implementation of computing the masked thresh-
old, computation time is still too long to allow exhaustive search of the
parameter space.

There seems little one can do to fix the latter of the three problems. Approach-
ing the task from an optimisation point of view would provide guidance from
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the comprehensive literature in this research area (e.g. Press et al. [2002]). How-
ever, it would also mean a shift of focus from hearing research to optimisation
research. Moreover, it is not clear if the results would be better using optimi-
sation methods. For these reasons it was decided to improve the trial-and-error
method by addressing the two first problems from the list above. A more trans-
parent way of relating suggested DRNL parameter improvements to the cost
function, i.e. RMS error, was developed.

The details of the method is described in Appendix D

Presentation of the improved results

After applying the parameters with the method described in Appendix D the
thresholds shown in Figure 3.8 were obtained. The corresponding RMS errors
are shown in Table 3.7.

Table 3.7 shows the modelled results summarised by the RMS error in dB for
each of the probe frequencies (rows) and for each of the sets of temporal win-
dow constants (columns). Each RMS error represents data for 6 frequency ratios
per 10 time intervals, i.e. 60 data points. The criterion value k was kept con-
stant within each combination of probe frequency and set of temporal window
constants. The DRNL parameters were fitted using the method described in
Appendix D.

Table 3.7: RMS error for modelled results

™1 TW2 TW3

500 Hz 12.8 10.9 9.4
1 kHz 12.0 18.4 9.4
2 kHz 6.9 6.3 5.9
4 kHz 7.6 12.6 7.0
8 kHz 6.0 4.9 4.9

In comparison to the results from Table 3.5 the improvements are clear. Every
single RMS error is improved in comparison to its counterpart. The improve-
ment is from a few dB to around five dB. Having said that, the RMS errors
are still too big to claim that the measured thresholds are accounted for by the
model.

As was the case for the original DRNL parameters the TW 3 temporal window
provides the better results.
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Figure 3.8: Comparison of all the measured forward masking thresholds to the simulated

thresholds .
provided the best fit

The criterion value k was varied across frequency. The TW 3 temporal window
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Another observation is that the higher probe frequency the lower RMS error.
The is consistent across the three different temporal windows examined.

Table 3.8 shows the RMS errors broken down into the individual probe frequen-
cies (rows) and probe-to-masker frequency ratios (columns). Immediately below
each RMS error the corresponding mean standard deviations for the measured
data point is shown. The N/A (not applicable) fields indicate that the simu-
lated thresholds were unrealistically high (above 105 dB SPL) and therefore not
considered. The mean standard deviations were not presented in Lopez-Poveda
et al. [2002], but were made available by the authors.

Table 3.8: Breakdown of the RMS error in dB

x0.5 x07 x0.9 x1 x1.1 x1.6

500 Hz 8.51 3.27 517 9.24 3.08 21.97
Std Dev 501 4.54 5.09 4.13 4.03 5.78
1 kHz 11.40 5.52 9.22 593 1230 24.00
Std Dev 3.78 3.14 3.44 3.15 8.65 3.15
2 kHz 498 4.65 9.23 4.12 520 N/A
Std Dev 296 3.03 3.35 2.83 3.27 N/A
4 kHz 1.77 212 439 499 1380 N/A
Std Dev 3.54 332 4.00 3.84 3.30 N/A
8 kHz 511 212 3.57 344 10.78 N/A
Std Dev 3.23 2.65 4.13 3.00 3.56 N/A

Comparing RMS error to the standard deviation of the measured data point
seems a reasonable method for assessing the quality of the model prediction.
Using this assessment method the derived DRNL parameters cannot be said
to account for all the measured thresholds in the cases where the probe-to-
masker frequency ratio is above one (the 500 Hz and 2 kHz probe being notable
exceptions for a ratio of 1.1).

Further, the DRNL parameters account poorly for the maskers an octave below
the probes — except for a 4 kHz probe frequency.

The modelled thresholds show a tendency to better match the measured thresh-
olds for shorter time intervals.
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Discussion of the improved results

The fact that the higher probe frequencies provide the better results is hardly
surprising in view of the two previously modelled studies (c.f. sections 3.2.1
and 3.2.2). These studies provided stimuli of either 3, 4, 6 kHz or broadband
Gaussian noise. That the peripheral nonlinearities and the temporal window
model does not directly transfer to account for the data for probe frequencies
of below 4 kHz might seem surprising. However, the modelling efforts pursued
here tried to match the data by modifying the peripheral nonlinearity only.
Modifying both the nonlinearity and the temporal window shape might have
given better results. Theoretically it should be possible, however, to observe
the constraint that the peripheral nonlinearity should “match” the temporal
window [Oxenham, 2001] by fitting the peripheral nonlinearity only.

A possible explanation for the fact that the thresholds for the extreme masker-
to-probe ratios are not modelled convincingly might be the outer-/ middle
ear model employed. While the headphone-to-eardrum transfer function was
carefully measured and modelled the middle ear model was based on data
from Goode et al. [1994] which serves as a generic model. Any discrepancies
between this generic middle ear model and the actual subject middle ear trans-
fer function will thus particularly affect the thresholds for extreme masker-to-
probe frequency ratios. Consider, for example, the probe frequency 500 Hz and
masker frequency 250 Hz. The simulated thresholds are higher than the mea-
sured thresholds. If the middle ear filter had a shallower roll-off towards lower
frequencies this would increase the masking effect and thus lower the required
masker level at thresholds. A similar argument holds for 1 kHz probe frequency
and 500 Hz masker.

Middle ear transfer functions do show variation supporting the argument above
[Puria et al., 1997; Aibara et al., 2001]. In this connection it is important to keep
the criterion value £ in mind. A higher & value means that the model requires a
larger level difference between excitation from the probe and excitation from the
masker, i.e. the larger k-value the lower the thresholds. Moreover, changing the
middle ear transfer function moves the compression knee-point. So improving
the match of the simulated data to the measured data by modifying the middle
function affects the entire fitting procedure.

Another possible factor in explaining the poor results for low frequencies is that
the middle ear reflex is more likely to influence results at low frequencies. The
masker levels are in the range where the middle ear reflex is active and the
middle ear reflex is not implemented in the model.
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Off-frequency listening is more likely at low frequencies because of ringing of
the narrower auditory filters. This fact can explain discrepancies between the
measured data and the simulated data since off-frequency listening was not
modelled.

Moreover, the basal ward shift of characteristic frequency with level is not mod-
elled, which might be a problem since the masker levels are quite high for many
of the conditions.

Finally, one of the basic assumptions of this version of the temporal window
model, that adaptation does not play a role in forward masking, might not turn
out to hold.

3.2.4 Interdependence of nonlinearity and temporal win-
dow in the temporal window model

The temporal window model accounts for forward masking data by means of
the peripheral nonlinearity and a integrator or temporal window. To optimise
this model the integrator parameters must be fitted to the nonlinearity hypoth-
esised [Oxenham, 2001]. In the previous sections three such fits were used. The
conclusion was that the TW 3 constants matched the nonlinearity best.

To explain why this is the case one has to consider the nonlinearities to which
the TW 1, TW 2 and TW 3 constants were derived.

Lowt = 0.5L;, (3.6)
I B 0.78L;n, L, < 35 dB SPL (3.7)
out = 0.16L;, +21.7, L;, > 35 dB SPL '
I _ Lin, Li, < 35 dB SPL (3.8)
out 0.25L;, + 26.25, L;, > 35 dB SPL '

where L, is the level of the basilar membrane output and L;, is the level of
basilar membrane input.

The TW 1 constants [Oxenham and Moore, 1994] were derived with the non-
linearity corresponding to Equation 3.6. The TW 2 constants [Oxenham, 2001]
were derived with the nonlinearity corresponding to Equation 3.7. The TW 3
constants [Oxenham, 2001] were derived with the nonlinearity corresponding to
Equation 3.8.
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On-frequency DRNL 1/O functions
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Figure 3.9: The DRNL I/O functions for five characteristic frequencies with on-frequency
stimulus. The filter bank parameters from Lopez-Poveda and Meddis [2001] were used. The
simulation includes the pre-emphasis filter used in the simulation. In comparison a “flat” outer-
and middle ear model was presumably used in Oxenham and Moore [1994] and Oxenham [2001]

In comparison the DRNL has I/O functions shown in Figure 3.9. For the 4 kHz
data this can be approximated by the function shown in Equation 3.9, where
the output reference is normalised so that 0 dB SPL input corresponds to 0 dB
output.

Lin, Lin < 22 dB SPL
Lowt = { 0.28L;, +15.84, 22 dB SPL < L;, < 65 dB SPL (3.9)
0.69L;, — 10.81, Lin > 65 dB SPL

where L., is the level of the basilar membrane output and L;, is the level of
basilar membrane input.

By directly comparing the DRNL I/O function in Equation 3.9 to the three
auditory nonlinearities described in Equations 3.6 to 3.8 it is clear that up to
25 dB SPL the TW 2 nonlinearity is closer to the DRNL. From 25 to 65 dB
SPL TW 3 nonlinearity is the closest to the DRNL. The TW 1 nonlinearity
is closest above 65 dB SPL. These observations point towards the conclusion
that the TW 3 constants should be used when modelling the nonlinearity with
the DRNL. This conclusion is in agreement with the conclusion based on the
actual simulations, although TW 1 was clearly better for simulating Oxenham
and Plack [1997] and Oxenham [2001].
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Comparison of auditory nonlinearities
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Figure 3.10: Comparison of the nonlinearities used for deriving temporal window constants

Obviously, deriving yet a new set of temporal window constants for the DRNL
would have been optimal, however for time reasons this was not done.

One important consequence of the fact that the temporal window constant
should match the peripheral nonlinearity [Oxenham, 2001] is, that since the
peripheral nonlinearity is a function of frequency, in principle, so should the
temporal window be. This was investigated by Plack and Moore [1990] with a
simpler nonlinearity than the DRNL. In spite of the more sophisticated nonlin-
earity the conclusion, that temporal window shape is a function of frequency,
still appears to hold.

3.3 Final basilar membrane model for normal
hearing

According to the fitting procedure suggested on page 64 data for more subjects
should be fitted and an average filter bank derived. Also, ideally the derived
DRNL parameters should be verified against the original pulsation threshold
study, For time reasons this has not been done.

With the provisions discussed above the DRNL parameters shown in Table 3.9
constitute the basis of constructing a human DRNL filter bank. The parameters
were derived in Section 3.2.3 and provided the best fit in to the study.
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Table 3.9: The DRNL parameters as determined in Section 3.2.3

Centre Frequency (Hz) 500 1000 2000 4000 8000
Linear- CFy;n, (Hz) 462 965 1925 3900 7750
path- BWyi,, (Hz) 130 240 355 316 891
parameters g 316 63 79 3162 891
Nonlinear-  CF,,; (Hz) 500 1000 2000 4000 8000
path- BW,,; (Hz) 103 175 562 891 501
parameters a 5184 7558 9627 11220 43584

b 0.05 0.02 0.02 0.056 0.071

Table 3.10 shows the linear regression line coefficients for the DRNL human filter
bank derived from the parameters presented in Table 3.9. The parameters were
derived using linear regression as described in Section 2.3.5. These parameters
constitute the human DRNL filter bank for normal hearing used in the remainder

of this thesis.

Table 3.10: Derived linear regression line coefficients

Regression coefficients Po m
Linear- CF i, (Hz) -6.8193 x10~2 1.0151 x 10°
path- BW;,, (Hz) 5.3444 x10~1  5.9507 x 10!
parameters g -3.2290 x1072  8.6403 x 10!
Nonlinear- BW,,; (Hz) 2.4926 x 10~ 6.9124 x 101
path- a 1.8371 x 10°  6.7133 x 107!
parameters b -2.2442 x 10°  2.4972 x 107!
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3.4 Final basilar membrane model for impaired
hearing

Sensorineural hearing loss results in a loss of sensitivity in that soft sounds are
not heard. This in turn entails a reduction of the dynamic range of hearing. The
reduction in dynamic range leads to an abnormal growth of loudness referred to
as recruitment. Expressed in terms of auditory signal processing a person with a
sensorineural hearing loss has a less compressive basilar membrane input/output
function.

The loss of sensitivity can be modelled in the DRNL by reducing the output
from the filter. This can be achieved by reducing the contributions from the
linear as well as the nonlinear paths. The reduction from the linear path is
reduced by reducing the linear gain factor g (c.f. Table 3.10).

Reduction in the dynamic range can be simulated in the DRNL by adjusting
the compression scale parameters a and/or b (c.f. Table 3.10) in the nonlinear
path. The method described here, reducing parameters a, b and g was used
in Lopez-Poveda and Meddis [2001]. However, since parameter g represents the
gain effective at high stimulus levels where impaired hearing and normal hearing
converge, it seems unrealistic that ¢ is affected.

The problem remains, that simulating a moderately severe hearing loss, as de-
fined in Stach [1998], requires further reduction in sensitivity than is possible by
modifying compression scale parameters a and b alone. Similarly, moderately
severe hearing losses typically consist in outer and inner hair cell malfunctioning.

Hence inner hair cell loss should be simulated for these types of hearing losses. A
simple model of inner hair cell loss was implemented since the model employed
in this chapter has no explicit inner hair cell component. This simple model
consisted in simply reducing the output of the basilar membrane by a given
number of dB. This reduction was frequency dependant and corresponding to
the conjectured contribution to the hearing loss, from inner hair cells. Chapter 5
discusses details of inner hair cell loss modelling.

The model of hearing impairment should simulate the fact that both inner- and
outer hair cell loss is a function of characteristic frequency. For the outer hair
cells this is simple. Because the DRNL filter bank parameters are a function
of centre frequency, changing the linear regression parameters for a and b can
be done in such a way as to provide a simulated hearing loss which varies with
frequency. A limitation of the DRNL as implemented here, is that the regression
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line parameters can only describe a monotonic function of frequency for any
given DRNL parameter. As we shall see this is sufficient for the purpose here.

Since the model of inner hair cell loss is simply subtracting a given number of dB
from basilar membrane output, this number can simply be defined as a function
of centre frequency. Partitioning the hearing loss into two parts one attributable
to inner hair cell loss and the other to outer hair cell loss has previously been
used [Moore and Glasberg, 1997].

While a forward masking study similar to Lopez-Poveda et al. [2002] for hearing
impaired persons would have been preferred in order to derive a DRNL filter
bank for hearing impaired listeners, time has not permitted such a study. In-
stead a moderately severe hearing loss was simulated based on subject JK’s left
ear data from Oxenham and Plack [1997]. The data consists of an audiogram
and forward masking data for the experiment presented in Section 3.2.1. The
resulting linear regression DRNL parameters are shown in Table 3.11. This filter
bank will serve as the representative of impaired hearing throughout this thesis
and is as such not atypical of presbycusis, c.f. Schuknecht [1964].

In comparison to Table 3.10, on which the parameters are based, only the non-
linear path parameter a has been modified to simulate the hearing loss. This
modification leads to elevated thresholds as shown in the audiogram in Fig-
ure 3.11.

Table 3.11: Derived linear regression line coefficients for impaired hearing

Regression coefficients Po m
Linear- CF i, (Hz) -6.8193 x 1072 1.0151 x 10°
path- BWy;,, (Hz) 5.3444 x 1071 5.9507 x 10~*
parameters g -3.2290 x 1072 8.6403 x 107!
Nonlinear- BW,,; (Hz) 2.4926 x 101 6.9124 x 1071
path- a 5.3000 x 10°  -1.0000 x 10°
parameters b -2.2442 x 10°  2.4972 x 1071

The simulated audiogram in Figure 3.11 shows the moderately severe hearing
loss used as the representative of impaired hearing in this thesis. It is based on
the parameters from Table 3.11 and the assumption that the absolute thresholds
corresponds to a given basilar membrane vibration velocity.

The audiogram only shows the loss of sensitivity associated with sensorineural
hearing loss. It is not possible to asses how the frequency selectivity is affected
only based on the audiogram. In comparison Figure 3.12, which is based in the
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Audiogram for Impaired Hearing
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Figure 3.11: The solid line shows the audiogram for impaired hearing as modelled in this
thesis. The broken lines show the loss caused by outer hair cells i.e. the contribution modelled
by the DRNL. The audiogram was constructed based on the assumption that a given basilar
membrane vibration velocity corresponds to the absolute threshold for a given characteristic
frequency. Thus a velocity of 2/100 mm/s was assumed to correspond to the threshold. For
each frequency a number of dB was subtracted representing hearing loss due to inner hair
cell loss. This was done so the resulting audiogram matches that of subject JK’s left ear
in Oxenham and Plack [1997]. The ISO ISO/DIS 389-8 standard for reference equivalent
thresholds was used as an approximation for converting from sound pressure level to hearing
level
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Audiogram for Normal Hearing
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Figure 3.12: The audiogram for normal hearing as modelled in this thesis. The audiogram
was constructed based on the assumption that a given basilar membrane vibration velocity
corresponds to the absolute threshold for a given characteristic frequency. Thus a velocity of
2/100 mm/s was assumed to correspond to the threshold. The ISO ISO/DIS 389-8 standard
for reference equivalent thresholds was used as an approximation for converting from sound
pressure level to hearing level

DRNL parameters from Table 3.10, shows the audiogram for a normal hearing
person.

In order to justify the DRNL parameters for impaired hearing shown in Ta-
ble 3.11 the experiment from Oxenham and Plack [1997] was simulated for
subject JK’s left ear. The results are shown in Figure 3.13.

Because the threshold for the probe in quiet is 77 dB SPL, very few data points
were measured. The desire to model a “typical” sensorineural hearing loss limits
the data available markedly. This fact and the fact that no two hearing losses
are the same present two of the fundamental problems in modelling hearing loss.

3.5 Summary and conclusion

This chapter presented modelling of three different forward masking experi-
ments. Two of these experiments were used to verify that the idea of using the
DRNL as the nonlinear stage in a temporal window framework is indeed a viable
hypothesis for modelling forward masking as suggested by Plack et al. [2002].
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Forward Masking for Impaired Hearing
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Figure 3.13: The forward masking experiment simulated for the left ear of subject JK
in Oxenham and Plack [1997]. The absolute threshold for the probe in quiet was 77 dB SPL
so only six data points were obtained. The original study shows no significant differences
between thresholds for the 3 kHz masker and 6 kHz masker

The third experiment, described in Section 3.2.3, were used for fitting DRNL
parameters, assuming a fixed temporal window shape. The results were not
completely satisfactory in that conditions where the masker and probe frequen-
cies were different were generally not well accounted for. Moreover, low stimulus
frequencies were not accounted for by the DRNL combined with a fixed temporal
window shape. However, conditions with equal masker and probe frequencies,
which were high frequencies, were accounted for satisfactorily.

Several possible explanations for the problems encountered can be offered.

e In the off-frequency conditions, masker frequency is different from the
probe frequency, the outer- and middle ear plays a role.

e The middle ear reflex is not modelled

e Peripheral adaptation is not modelled

e Detection is assumed to be based on the characteristic place on the basilar
membrane for probe frequency only. With increasing level the character-

istic place moves. This is not modelled.

e The assumption that temporal window shape is independent of frequency
is dubious [Plack and Moore, 1990].
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e At low frequencies ringing in the auditory filter influence probe detection
more than at high frequencies where the filters are broader and thus show
less ringing

e Less is known about peripheral nonlinearity at low frequencies, so the
DRNL parameters might be unrealistic.

Further investigation is needed in order to discern the importance of each of these
potential explanations. This was deemed beyond the scope of this thesis. Instead
DRNL parameters from the successful simulations are used in the following.
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Chapter 4

The Inner Hair Cell and
Auditory Nerve Models

The final stage in the transduction process takes place in the inner hair cell or,
to be more precise, in the stereocilia of the hair cell. In response to deflection
the stereocilia open ion gates causing a change in transmembrane potential —
transduction. At the base of the inner hair cell the depolarisation of the hair
cells causes the release of neurotransmitter into the synaptic cleft. This in turn
causes the auditory nerve fibres to elicit action potentials.

Since the vast majority of afferent auditory nerve fibres project from inner hair
cell this chapter focuses on the role of the inner hair cells and auditory nerve
fibres in forward transduction.

Section 4.1 briefly describes the inner hair cell electrophysiology. After this, the
basic anatomy of the auditory nerve is presented in Section 4.2. Section 4.3
presents fundamental discharge properties of the auditory nerve. Finally, Sec-
tion 4.4 present the model used in this thesis.

4.1 Inner hair cell electrophysiology

The potassium and calcium ions entering the inner hair cells through the stretch
induced opening of ion channels (c.f. Figure 2.12), constitute a current affecting
the charge and the transmembrane potential of the inner hair cell. The current

81
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is referred to as the receptor current or transduction current. Similarly, the
transmembrane potential is called the receptor potential or transduction poten-
tial. The potassium constitute the majority of cations entering the hair cell and
is the main carrier of the transducer current. The role of the calcium ions is
described below and in Section 4.4.2.

Because the apical part of the hair cell is bathed in endolymph and the basal
part is bathed in perilymph, the “transmembrane potential” differs from the
basolateral! part of the hair cell to the apex of the hair cell. The electrochemical
gradient for the potassium ions differs accordingly, i.e. the ions are forced into
the cell at apical channels and leave the cell at basolateral channels, as is the case
in ordinary cells, c.f. Figure 4.1. So while the force driving the ions across the
apical cell membrane is the electrical gradient, the force driving the ions across
the basolateral cell membrane is a combination of the electrical- and chemical
gradients, i.e. the electrochemical gradient.

Excitation
e,

.-I -

e

Figure 4.1: Inner hair cell electrophysiology. Redrawn from [Geisler, 1998]

IThe inner hair cell is “lying on its side” (c.f. Figure 4.1) and therefore the term “basolat-
eral” is used, rather than simply “the basal part”
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Even in the absence of stimulus some ion channels are open allowing a stand-
ing current to flow due to the potential difference between endolymph and the
hair cell. The transducer current is highly asymmetrical in response to ciliary
deflection in the two directions. This is due to the asymmetric opening of the
ion channels, i.e. ion channels open when stereocilia are displaced towards the
taller cilia.

The receptor potential is equally asymmetric in comparison to cilia deflection.
An example of guinea pig inner hair cell receptor potential behaviour is shown in
Figure 4.2. The change in receptor potential affects the cell membrane capaci-
tance in that an increase in receptor potential entails an increase in capacitance.
In Section 4.4.1 a model for this mechanism is presented.
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Figure 4.2: Inner hair cell receptor potential input/output function and response to a pure
tone at approximately 84 dB SPL. Redrawn from [Geisler, 1998]. Original data from [Russell
et al., 1986]

Three types of ionic channels exist: 1) Tension gated, voltage gated and ligand
gated channels.

Although virtually all measurements of transducer gating and transducer chan-
nels originate from non-mammalian vertebrates, it is presumed that the data is
generally applicable to mammalian inner hair cells [Dallos, 1996]. Likewise, it is
presumed that outer hair cell receptor potential in non-mammalian vertebrates
closely resembles that of mammalian outer hair cell receptor potential. Outer
hair cell receptor potential is less asymmetric with respect to cilia displacement
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than inner hair cell receptor potential. The issue of outer hair cell receptor
potential is not discussed any further in this thesis.

The influx of calcium has two main consequences: 1) it opens the calcium gated
potassium channels and 2) it increases the likelihood of vesicles release. The
opening of potassium channels increases cation influx thus helping transduction.
Vesicles contain neurotransmitter. FEach vesicle contains a small number of
neurotransmitter quanta, possibly only one. The vesicles are docked on the
synaptic bar, a type of vesicle pod, which is attached to the cell membrane inside
the cell (c.f. Figure 4.2). When the calcium mediated increase in probability of
vesicle release surpasses a given threshold, the vesicle is released. It fuses with
the cell membrane and diffuses out into the synaptic cleft, where it is picked up
by neurotransmitter receptors in the auditory nerve fibres. It is believed that
this “quantal” release of one vesicle leads to one discharge (one spike) in one
auditory nerve fibre.

The chemical identity of the neurotransmitter has not been firmly established,
but it is believed that it is glutamate or some closely related neurotransmitter.
It appears that whatever it might be it affects glutamate receptors.

4.2 Basic auditory nerve anatomy

Auditory nerve fibres are divided into two categories: afferent fibres and efferent
fibres. Afferent fibres send spikes towards the brainstem, efferent fibres send
spikes from nuclei in the brainstem.

In the following focus will be on afferent fibres. The afferent fibres can further
be divided into two types: Type I (radial) and Type II (outer spiral) fibres. The
radial fibres constitute around 90 % of all the afferent fibres. They exclusively
innervate inner hair cells. Each radial fibre innervate one or two inner hair
cells. Since humans have approximately 3,500 inner hair cells and approximately
30,000 afferent nerve fibres, simple division tells us that each inner hair cell is
innervated by eight nerve fibres. However, considering that some fibres innervate
more than one fibre, it is generally assumed that approximately ten nerve fibres
innervate each inner hair cell. The radial fibres have a insulating myelin sheath.

Less is known about the outer spiral fibres. They are unmyelinated and thinner
than the radial fibres. They innervate more hair cells, some of which are outer
hair cells. The outer spiral cells get their name from the way they project from
the habenula perforata (c.f. Figure 4.3). They cross the tunnel of corti and make
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contact with the first row of outer hair cells. The continue to run towards the
apex thus following a “spiral” route amongst the “outer” hair cells — hence the
name “outer spiral” fibres.

The myelin sheath of the radial fibres enables recording from them. However,
the sheath only covers the part of the axon in the direction from the habenula
perforata towards, and along, the spiral ganglion. For this reason recordings of
auditory nerve fibres are taken from the spiral ganglion and exclusively from
radial fibres. Detailed anatomical investigation of auditory nerve fibres can be
found in [Liberman, 1980, 1982b; Liberman et al., 1990].

p—— efferent nerve fibres
--@ } and endings

afferent nerve fibres
and endings

Figure 4.3: Auditory nerve fibre projection. Redrawn from [Geisler, 1998]

The place of contact between the hair cells and the nerve fibres are called synap-
tic terminals or synapses.

4.3 Auditory nerve discharge properties

This section discusses various discharge properties of the auditory nerve. First,
an account of spontaneous activity and thresholds of auditory nerve fibres is
given in Section 4.3.1. Next, the rate/intesity functions are presented in Sec-
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tion 4.3.2. The concept of auditory nerve fibre adaptation is introduced in Sec-
tion 4.3.3. Finally, Section 4.3.4 briefly discusses the dichotomy of rate/place
representation versus temporal representation of sound stimulus in the auditory
nerve.

4.3.1 Spontaneous activity and thresholds

Due to the resting potential, the probability of vesicle release is above zero even
in the absence of stimulus. This cause a certain amount of spike generation. This
spontaneous activity ranges from close to zero spikes per second to more than
300 spikes per second. Due to the absolute refractory period (see Figure 4.4) the
theoretical maximum firing rate is 1000 spikes per second, but combined with
the relative refractory period firing rates above a few hundred spikes per second
is rarely seen.

+40

Millivolts

TTIrrrrrro1rrrT
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Figure 4.4: The time-course of a typical auditory nerve fibre discharge — the spike. A marks
the beginning of the depolarisation, B marks the beginning of hyperpolarisation, C marks
the undershoot on the way back to the resting potential, D marks the return to the resting
potential. The time between A and is the total refractory period. The time between B and
C is called the absolute refractory period. The time between C and D is called the relative
refractory period. Redrawn from Yost [2000]

Categorising auditory nerve fibres based on their behavioural properties is an
obvious way approaching the massive representation of sound in the auditory
nerve. Two of the basic properties readily measurable in the auditory nerve are
the rate of firing and the threshold of the individual fibre. The former being the
simplest, the latter requiring a definition of threshold.



4.3. AUDITORY NERVE DISCHARGE PROPERTIES 87

m

)

— &

T 60 60 Low spontaneous
e 4

g 208 . 40 Medium spontaneous
“ High spontaneous

L

- .

@ 20 20§

=

=]

& |®. .

Q

o

0 20 40 60 80 100 o] 2 4 3} 8 0
Spontaneous rate (spikes/second)

Figure 4.5: The traditional grouping of auditory nerve fibres into high-, medium- and low
spontaneous rate fibres. Right panel zooms in on spike rates from 0 to 10 spikes per second.
Redrawn from [Liberman, 1978]

Recordings in cat show a bimodal distribution of auditory nerves based on spon-
taneous rate [Kiang, 1965; Liberman, 1978, 1982al: one group has spontaneous
firing rates below 18 spikes per second the other group above 18 spikes per sec-
ond (c.f. the left of Figure 4.5). The thresholds of high spontaneous rate fibres
lie within 20 dB in good preparations [Evans, 1972], whereas the spread in the
lower spontaneous rate group is much larger (c.f. Figure 4.5). Moreover, the
high spontaneous rate fibres display a lower threshold than the lower sponta-
neous rate fibres. This has lead to the suggestion that auditory nerve fibres be
categorised into three groups based on their spontaneous rate: high spontaneous
rate fibres (more than 18 spikes per second), medium spontaneous rate fibres
(between 0.5 and 18 spikes per second) and low spontaneous rate fibres (less than
0,5 spikes per second). Although this categorisation refers to spontaneous rate
only, it reflects the variation in thresholds within the three groups in that high-
and medium spontaneous rate fibres have little variation in threshold, whereas
low spontaneous rate fibres exhibit large variations.

The distribution of spontaneous activity and threshold does not seem to vary
significantly with characteristic frequency of the fibres.

The high spontaneous rate fibres constitute 60 percent, medium spontaneous
rate 25 percent and low spontaneous rate fibres 15 percent of all afferent fi-
bres [Liberman, 1978].

In addition to morphological/anatomical correlates (e.g. [Liberman, 1982b]),
the three way division of nerve fibres correlates with functional aspects, some
of which will be discussed in the following sections.
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4.3.2 Rate/intensity functions

The rate/intensity function is yet a more detailed description of auditory nerve
fibres than the threshold and spontaneous rate, both of which can be determined
from the rate/intensity function. Typical examples for high-, medium- and low
spontaneous rate fibres are shown in Figure 4.6.

Microelectrodes are used to acquire rate/intensity functions from animals. The
stimulus normally used is a pure tone with the same frequency as the char-
acteristic frequency of the fibre. This section exclusively deals with this type

of rate/intensity functions. Responses to more complex stimuli are deferred to
Chapter 7.

The rate/intensity functions are typically based on responses to presentations
of 50-100 ms pure tones averaged across several presentations, and separated by
appropriate periods of silence. Frequently the stimulus level is varied pseudo-
randomly reducing biases caused by artifacts such as the preceding condition or
physical state of the animal.

Typical Rate/Intensity functions

350 T T T

—- HSR fibre = 5
300 | == MSR fibre

=0— LSR fibre

Discharge rate (spikes/second)

0 10 20 30 40 50 60 70 80 90 100
Intensity (dB SPL)

Figure 4.6: Typical rate/intensity functions for high-, medium- and low spontaneous rate
fibres. This figure is drawn based on simulations implemented with fibre parameters taken
from Table II, fibre IDs HSR, MSR and L in [Sumner et al., 2002]. The characteristic
frequency of the fibre was 8 kHz corresponding to the stimulus frequency

In addition to the threshold and spontaneous rate of the fibre, the rate/intensity
function provides information about saturation level of the fibre, i.e. the stimulus
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intensity at which a further increase in stimulus intensity results in little or no
increase in firing rate.

Investigating saturation levels more closely, it is evident that there are three
“saturation types”, which can be distinguished based on the shape of their
rate/intensity functions above threshold: 1) Normal saturation, i.e. maximum
discharge rate within 30 dB of threshold, c.f. Figure 4.6 HSR, 2) Sloping satu-
ration, i.e. initially rapid growth, leading to slower growth, but not saturating;
c.f. Figure 4.6 MSR and 3) Straight, i.e. approximately constant increase in fir-
ing rate with sound pressure level. Although the examples shown here suggest
that there is a one-to-one correspondence between saturation type and sponta-
neous firing rate type, this is controversial. Sachs and Abbas [1974] found high
spontaneous rate fibres with sloping saturation, whereas Liberman [1988] did
not.

In contrasts, it is generally agreed that low spontaneous rate fibres have higher
thresholds than high spontaneous rate fibres. The dynamic range of auditory
nerve fibres is correlated with the spontaneous discharge rate of the fibre. High
spontaneous rate fibres have the narrowest dynamic range (20-30 dB) and the
low spontaneous rate fibre have the widest dynamic range, up to around 60 dB
in terms of stimulus level. It might be argued that looking at the driving force of
spike generation, e.g. basilar membrane vibration velocity, is more appropriate
than considering stimulus level. This gives the dynamic range of around 20
dB. Following this conjecture, that all auditory nerve fibres have this dynamic
range, and combining it with the fact that high spontaneous rate fibres have
low thresholds, it is tempting to say that auditory nerve fibres mainly differ in
spontaneous rates and thresholds. It follows that the variations in saturation
type and dynamic range (here dynamic range in terms of stimulus level) can
be explained from the compressive nonlinearity of the basilar membrane [Yates
et al., 1990].

The distribution of auditory nerve fibres according to threshold and dynamic
range raises an interesting question: Is it possible to account for the 120 dB
dynamic range of human loudness perception by means of a firing rate mea-
sure? Just counting the number of fibres is not adequate [Relkin and Doucet,
1997]. The majority of fibres saturate at a relatively low level, and for this
reason intensity discrimination performance should decrease with level This is
not the case. Counting the spikes in a cleverer fashion would work: The high
spontaneous rate fibres would provide the intensity coding at lower levels, and
the lower spontaneous rate fibres would gradually take over as intensity is in-
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creased. It has been shown that, in theory and by statistical methods, this is
indeed a possibility [Viemeister, 1988].

As this section has shown the grouping of auditory nerve fibres according to
their spontaneous rate, though apparently superficial and crude, does provide
additional information about auditory nerve fibre properties.

4.3.3 Adaptation

The previous section covered the changes in average firing rate in response to
pure tones. The averaging was carried out over a relatively long period of time
(50-100 ms). Looking at the detailed time-course of the discharge patterns of
auditory nerve fibre the basic response pattern shown in Figure 4.7 emerges.

Low spontaneous rate fibres qualitatively show the same adaptation behaviour
as the high spontaneous rate fibre shown in Figure 4.7. The main difference
being that the recovery process is up to 10 times longer for low spontaneous
rate fibres.

8

8

Firing rate (apikes/s)

[v]
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Figure 4.7: Responses from a high spontaneous rate fibre in gerbil. A 400 ms pure tone
starting at 50 ms was presented. The figure shows the response in a post-stimulus time
histogram. From 0-50 ms spontaneous activity is seen, A rapid on-set response is elicited
immediately after stimulus onset. From 50-200 ms a gradual decrease in firing rate takes place
(adaptation). The discharge rate drops dramatically at stimulus off-set (450 ms). It actually
overshoots the spontaneous rate level. From 450 ms and onwards recovery to the normal
spontaneous rate takes place. Redrawn from [Westerman and Smith, 1987]
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Primary auditory neuron adaptation can be explained by the so-called reservoir
model in which the release of neurotransmitter at any one synapse is described
as a tank (reservoir) with a valve. The tank holds a certain amount of neuro-
transmitter. The valve controls the release of neurotransmitter and is equivalent
to the transmembrane potential. A constant influx of neurotransmitter and an
overflow keeps the neurotransmitter level in the tank within “operational range”.
The probability of generating a spike is a combination of the transmembrane po-
tential and the amount of neurotransmitter available for release. More complex
models include multiple interconnected reservoirs and more detailed descriptions
of the path taken by the neurotransmitter (e.g. [Meddis, 1986]). Since funda-
mental knowledge of neurotransmitter release is still missing, the details of such
models, while interesting, remain speculative. We will return to models of the
synapse in Section 4.4.2.

The transmembrane potential controls the release of neurotransmitter. However,
examining neurotransmitter release more closely it appears that chemical agents
affect the spontaneous rate differently than the “driven” rate. This, in turn, sug-
gests more than one underlying mechanism for neurotransmitter release [Guth
et al., 1991]. However complex and poorly understood these underlying mech-
anisms are, it is believed that the principal component involves calcium ions,
which mediate neurotransmitter release in all synapses in the brain.

4.3.4 Temporal properties of auditory nerve fibres

The previous sections has concentrated on firing rates in a variety of situations:
absence of stimulus, stimulus at high and low levels. Moreover, a rate based sug-
gestion of how intensity is coded in the human auditory system was presented.
Temporal coding provides an alternative explanation to rate coding of not just
intensity coding, but the encoding of a all properties of sound.

This dichotomy, rate versus temporal encoding of sound properties, forms the
basis for discussing the brainstem mechanisms at play. It appears that rather
than competing explanations, the hypothesised rate versus temporal encoding
of sound are, in many cases, complementing. This section deals with temporal
properties of auditory nerve fibres.

Post-stimulus time histograms show the detailed time course of the response
to a given stimulus (c.f. Figure 4.7). The time resolution is usually in the sub
millisecond range. The temporal relationship between the stimulus waveform
and the response waveform is crucial. A measure of this relationships is the
synchronisation index as proposed by Johnson [1980]. The measure is also known
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as the vector strength [Goldberg and P., 1969]. This measure corresponds to
the normalised magnitude of the Fourier component at stimulus frequency, i.e.
the magnitude of the Fourier component divided by the total number of spikes.
A convenient way of calculating this is by means of Equation 4.1.

8; = \/(Z cos 0i)2n+ (> sin6;)? (@)

where s; is the synchronisation index for frequency f;, n is the number of spikes
and 6; is the phase lag of the individual spike relative to the period 1/f; (calcu-
lated as 6; = 2xt,,/f;, where t,, is the spike time). The summation is done for
all spikes.

The synchronisation index will be one if all spikes occur at the same phase — if
the spikes are uniformly distributed across the period the synchronisation index
will be zero.

4.4 Modelling the inner hair cell and auditory
nerve complex

This section deals with modelling of the functional aspects of the physiology
discussed earlier in this chapter. Focus will be on the models employed in this
thesis, which is based on Sumner et al. [2002].

A viable alternative for an auditory nerve model was recently proposed in Heinz
et al. [2001b]; Zhang et al. [2001]. This model has a more detailed account of
particularly outer hair cells.

It was considered beyond the scope of this thesis to evaluate and compare the
effectiveness of various models in the literature. Instead the choice of model was
based on accessability and documentation.

The inner hair cell and auditory nerve model consists of three components:

Inner hair cell Model that describes the receptor potential. The input is
stapes velocity — the output is receptor potential.

Synapse Model that describes the probability of firing of a single neuron. The
input is receptor potential — the output is the probability of firing for a
single fibre.
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Spike generation Model that describes the generation of discrete spikes. The
input is the probability of firing for a single fibre — the output is the discrete
spike pattern.

Each of these will be discussed in detail below. The reason for modelling these
particular stages is that physiological data is available for inner hair cell receptor
potential as well as for spike generation. The intermediate step, called “synapse”
above, is the hypothesised, mathematical description linking the two.

4.4.1 Inner hair cell receptor potential

Shamma proposed a model of the inner hair cell receptor potential based on
data from guinea pig hair cells and bullfrog sacculus [Shamma, 1986]. Since
hair cells of vertebrates appear to be very similar the model is assumed to be
generally applicable i.e. also applicable to human hair cells.

Sumner et al. [2002] proposed an improvement to the model incorporating a
more detailed model of the apical conductance based on Corey and Hudspeth
[1983]. The improved model reflects the number of open channels as a three-
state Boltzmann function rather than the two-state version originally proposed
(see text below and Equation 4.3). The improved model reflects the data for
guinea pig better, while giving the same results for the bullfrog.

Briefly, the model of the inner hair cell receptor potential is subdivided into
three submodels:

1. Cilia displacement
2. Transduction conductance of the apical part of the hair cell

3. Transmembrane potential of the basolateral part of the hair cell

More precisely the ciliary deflection as a function of basilar membrane velocity
is expressed in Equation 4.2.

du(t)
dt

Te + u(t) = 7.Clitiav(t) (4.2)
where 7, is a time constant, C.;;, is a coupling gain factor, u(t) is the cilia
displacement as a function of time and v(t) is basilar membrane velocity as a
function of time. Equation 4.2 shows that for low frequencies the cilia move in



94 CHAPTER 4. THE IHC/AN MODELS
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Figure 4.8: Illustration of the electrical and ion processes in a hair cell. The variables are
discussed in the text. Redrawn from [Sumner et al., 2002]

phase with basilar membrane velocity and for high frequencies the cilia move in
phase with displacement.

The apical conductance is defined by Equation 4.3

_u(t)—ug _u(t)—ug -
Gu) = Ga+ G +e =0 J(+e = )7 (4.3)
where G(u) is the apical conductance as a function of cilia displacement, G22*
is the transduction conductance with all channels open, G, is the passive con-
ductance in the apical part of the cell membrane, sg, ug s; and u; are constants
determining the shape of the underlying three state Boltzmann function.

Finally the receptor potential is defined in Equation 4.4.

E.R,

v (t)
R+ R,

Coi——=+Gu)(V(t) — Ey) + G (V (1) = Ex +

- (4.4)

where C,, is the cell capacitance, V (¢) is receptor potential (or intracellular hair
cell potential), G(u) is the conductance as a function of cilia displacement, E}
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is the endocochlear potential, basal potential, R; and R, are resistances (c.f.
Figure 4.8.

Roughly speaking the whole of the inner hair cell receptor potential model acts
like a first-order low-pass filter. The model is not the topic of investigation in
this thesis and will be not discussed in further detail. The parameters used for
the inner hair cell receptor potential throughout this thesis are the parameters
originally proposed in [Sumner et al., 2002]. These parameters are given in
Appendix F Table F.1.

The above updated model has been tested successfully in modelling the effective
role of the inner hair cells on transduction [Sumner et al., 2002, 2003; Shamma,
1986]. An alternative to this model is the inner hair cell model proposed by
Rattay et al. [1998]. It also focuses on the effective role of inner hair cells.

4.4.2 Inner Hair Cell and Auditory Nerve Complex Model

In the previous sections we arrived at a mathematical description of the inner
hair cell receptor potential in response to sound. This section will take this
response one step further so as to provide a mathematical description of the
response in the auditory nerve.

The premise of the model is that the receptor potential opens calcium channels
close to the synapse. The influx of calcium mediates vesicle release hence local
calcium concentration determine discharge probability. From the probability of
release an actual distribution of auditory discharges in time, a spike train, can
be computed. Computing the spike train from the receptor potential requires
the computation of six intermediate steps:

1. Calcium current

2. Fraction of open calcium channels in the vicinity of the synapse
3. Calcium concentration

4. Neurotransmitter levels in reservoirs

5. Probability of vesicle release

6. Spike generation
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Calcium current

The basolateral calcium current is defined in Equation 4.5.

Ica(t) = GErmi,,, ()(V (1) — Eca) (4.5)

where I, is the calcium current, my., is the fraction of open calcium channels
(see Equations 4.6 and 4.7), Gi** is the maximum calcium conductance in the
vicinity of the synapse, V(t) is the receptor potential and E¢, is the reversal
potential for calcium.

Fraction of open calcium channels in the vicinity of the synapse

The fraction of steady-state, open calcium channels and in the vicinity of the
synapse mj.,, « is given by:

1

- 1+ eV®ca /Ba, (4.6)

mICcu 0

where my_,  is the fraction of open calcium channels in steady-state, V (¢) is
the receptor potential, vy, and B¢, are calcium current constants.

The general case of the fraction of open calcium channels (my,,,) and the steady-
state case mj.,, ~ are linked through Equation 4.7.

dmICa (t)

< (4.7)

Mic,, 00 = Mg, (t) + Tica

where 77, is a time constant.

Calcium concentration

The calcium concentration [Ca®T] is calculated as a function of calcium current
I, (t)

d[Ca*](t)

— + [Ca?t] = Iga(t) (4.8)

T[Cal

where T is a time constant.
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The probability of the release of neurotransmitter is proportional to the cube of
the calcium concentration, which in turn is proportional to the neurotransmitter
release rate. The release rate is computed from Equation 4.9

k(t) = max(([Ca® () — [Ca®* ]}, (1)), 0) (4.9)

where k(t) is the neurotransmitter release rate, [Ca?*] is the calcium concentra-
tion, [Ca2+]thr is a calcium concentration threshold constant and z is a scalar
for converting from calcium concentration to release rate.

Neurotransmitter levels in reservoirs

The release rate from Equation 4.9 combined with the number of vesicles ready
for release determines the actual amount of neurotransmitter released into the
synaptic cleft.

In order to compute the number of vesicles ready to be released, a model in-
volving three reservoirs is employed. The three reservoirs are the immediate
store, synaptic cleft and reprocessing store. These are identical to the stores
used in [Meddis, 1986]. The immediate store holds the neurotransmitter ready
for release, the synaptic cleft holds the neurotransmitter already released and
the reprocessing store prepares neurotransmitter for the immediate store. These
reservoirs are interconnected and Equations 4.10, 4.11 and 4.12 describe how.
In addition vesicles containing neurotransmitter are manufactured continuously.

d%(tﬂ = N(w(t),z) + N(M —q(t),y) = N(a(t),k(t))  (4.10)
dfi(tt) = N(q(t),K(t)) —c(t)l — c(t)r (4.11)
dw(t)

T = o= Nw.2 .

where k(t) is the transmitter release rate, ¢(t) is the number of vesicles in the
immediate store, w(t) is the number of vesicles in the reprocessing store, ¢(t) is
the number of vesicles in the cleft, M is the maximum number of vesicles in the
immediate store, y is a replenishment rate scaling factor, ((M — ¢(t))y is the
number of freshly manufactured vesicles), [ designates the fraction of vesicles
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lost from the synaptic cleft, r designates the fraction of vesicles returned to the
reprocessing store from the synaptic cleft, x is the rate at which the reprocessing
store produces vesicles for the immediate store and N(n, p) is a quantal, stochas-
tic probability function yielding the number of released vesicles as a function of
available vesicles n and rate of release p. In practice the probability of release
p dt is computed for each simulation epoch.

This three reservoir models explains the auditory nerve adaptation characteris-
tics shown in Figure 4.7 by means of presynaptic transmitter depletion.

Spike generation

The release of a single neurotransmitter quantum into the synaptic cleft is be-
lieved to be sufficient to produce an action potential, provided the fibre is not in
a refractory state. From Equations 4.2 through 4.12 transmitter release events is
calculated. Equation 4.13 takes into account absolute and relative refractoriness
(c.f. Figure 4.4).

0, fort—t < Ra
b0 ={ 1 pecn o, et S h (113)
where ¢, is 0.55 and determines the maximum contribution of the refractory
period, s, is 0.8 ms and designates the refraction constant, ¢ is time, ¢; is the time
of the previous spike and R4 is 0.75 ms and designates the absolute refractory
period. For each released vesicle an action potential can be elicited in the fibre
if p(t) exceeds a random number between 0 and 1.



Chapter 5

Modifying the Inner Hair
Cell and Auditory Nerve
Complex Model

This chapter describes work carried out in connection with improving the pa-
rameters of the models described in the previous chapter. More specifically, it
concerns modelling chinchilla data for the auditory nerve. Part of this work
was presented at the Baltic-Nordic Acoustical Meeting, August, 2002, Lyngby,
Denmark. The results from that can be found in Appendix B, and will not be
presented here.

The intention was to derive some of the model parameters presented in Chap-
ter 4 and Appendix F. A ubiquitous and convenient assumption is that auditory
nerves in mammals are similar. Hence the derived parameters could be used in
simulating human auditory nerve. This provides the motivation for examination
of chinchilla data in the following.

The first Section 5.1 describes the study from which the chinchilla data was
taken and the modelling efforts hereof. Section 5.2 describes the final model of
the inner hair cell and auditory nerve complex for normal- and impaired hearing
employed in this thesis.

99
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5.1 Auditory Nerve Responses to Trains of Clicks

In Wickesberg and Stevens [1998] auditory nerve fibre spikes were recorded from
anesthetised chinchillas. The purpose of the study was to examine if the decrease
in sensitivity with increasing rate of information presentation in localisation
tasks could be explained in terms of the encoding capacity of the auditory nerve.
For our purposes, however, the focus is simply modelling the data.
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Figure 5.1: Peristimulus histograms of responses to trains of 16 clicks with level 59 and 79
dB peak SPL for two auditory nerve fibres with low (A,B) and high (C,D) spontaneous rate
(1.2 spikes/s and 36 spikes/s respectively). The interclick interval was 5 ms and characteristic
frequency 2500 Hz. Figures show data collected for 100 presentations. N designates the total
number of spikes recorded. Re-plotted from Wickesberg and Stevens [1998]

The stimuli consisted of trains of clicks containing 2, 4, 8, 12 or 16 condensa-
tion clicks with a width of 100 us. The level and the time between the clicks,
interclick interval or ICI, was varied. Three distinct levels were tested: 59, 69
and 79 dB peak SPL, where “peak SPL” means that the amplitude of the click
was equal to the peak amplitude of a 1000 Hz pure tone at the given SPL.
The interclick interval was varied from 1 to 5 ms in steps of 1ms. The sound
was delivered to the chinchilla ears by a calibrated insert telephone with a dis-
tance of “several millimetres” to the tympanic membrane. Spike times were
recorded from the auditory nerve with glass microelectrodes while monitoring
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fibre condition. Fibres were classified according to characteristic frequency and
spontaneous rate.

Figure 5.1 shows an example of the spike train response to click trains. The
high spontaneous rate fibres elicit more spikes than the low spontaneous rate
fibre. An increase from a stimulus level of 59 dB peak SPL to 79 dB peak
SPL provides a bigger increase in the low spontaneous rate fibres than the high
spontaneous rate fibres. The troughs are more visible for the low spontaneous
rate fibres. All of these observations are as expected. Wickesberg and Stevens
[1998] divides auditory nerve fibres into two categories: high spontaneous rate
fibres (> 20 spikes/s) and low spontaneous rate fibres (< 20 spikes/s). This is at
odds with the classical division suggested by Liberman [1978], but similar to the
classifications originally proposed by Kiang [1965]. Wickesberg’s classification
will be adopted in the remainder of this chapter.
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Figure 5.2: The number of driven spikes in the response to 79 dB peak SPL click trains from
the fibres introduced in Figure 5.1. The data is shown on linear (A,C) and log-log (B,D) scales
respectively. The driven rate is calculated as the total number of spikes minus the number
expected from the fibre’s spontaneous rate. Re-plotted from Wickesberg and Stevens [1998]
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Figure 5.2 shows the number of driven spikes as a function of the number of
clicks in the click train. The driven rate is calculated as the total number of
spikes minus the number expected from the fibre’s spontaneous rate. This shows
that the low spontaneous rate fibres show a larger increase in driven spikes with
number of clicks than the high spontaneous rate fibres. Further, the shorter the
interclick interval the lower the number of driven spikes. The straight lines in
plots B and D indicate that the number of driven spikes is a power function of
the number of clicks in the click train.

5.1.1 Modelling the Data

Modelling the data presented in the previous section requires a model of the
chinchilla middle ear and basilar membrane. Since no published parameters for
the DRNL is available for the chinchilla, it was decided to use the guinea pig
filter bank employed in Sumner et al. [2003] as an approximation. The middle
ear was also taken from Sumner et al. [2003].

Reproducing chinchilla data with these approximations introduced some diffi-
culties. The main one being that the basilar membrane compression knee-point
was off by 20 dB. This was resolved by amplifying the stimulus by 20 dB. This
is a very crude approximation and most definitely it would have been better to
derive the parameters for a chinchilla basilar membrane. However, this was not
possible within the given time frame.

The inner hair cell receptor potential model described in Section 4.4.1 and its
parameters from Appendix F were adopted without modifications. Instead ef-
forts was focused on fine-tuning synapse parameters as they are responsible for
individual nerve fibre characteristics such as spontaneous rate and rate/intensity
functions.

Three synapse parameters G2, [Ca?¥]yp,., and M (c.f. Section 4.4.2 and Ap-
pendix F) were selected for manipulation as recommended in the literature [Sum-
ner et al.; 2002]. The parameters represent maximum calcium conductance,

calcium concentration threshold and number of free transmitter quanta.

Calcium plays a significant role in controlling the release of neurotransmitter
into the synaptic cleft and in turn to the generation of spikes. If the maximum
calcium conductance is increased, the number of spikes elicited by the fibre
goes up (c.f. Figure 5.3A). The calcium concentration required to elicit spikes
is coined as calcium concentration threshold. Increasing this threshold makes
the number of elicited spikes go down (c.f. Figure 5.3B). The neurotransmitter
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Table 5.1: Best match inner hair cell and auditory nerve complex parameters

HSR LSR
G Max Calcium Conductance ~ 10~Y Siemens  8.00  4.50
[Ca?T]s,  Ca concentration threshold x10~11 2.48  0.00
M Max free transmitter quanta  Scalar 4 5

is delivered to the nerve fibres in “packets” or vesicles. The number of vesicles
available for transportation of neurotransmitter is here called “number of free
transmitter quanta”. Increasing the number of free transmitter quanta increases
the number of elicited spikes (c.f. Figure 5.3C). A detailed discussion on how to
manipulate synapse parameters in order to match data for individual fibres is
presented in Sumner et al. [2002].

Rate (spikes/s)
o
=1
3

=)
=3

o

0 20 40 0
Sound level (dB SPL) Sound level {dB SPL) Sound level (dB SPL)

Figure 5.3: Effect on rate/intensity functions of increasing synapse parameters, shown for
high spontaneous rate fibres. A: The effect of increasing G&2* is given by the direction of the
arrows. B: The effect of increasing [Ca2¥]s,,. is given by the direction of the arrow. C: The

effect of increasing M is given by the direction of the arrow. Redrawn from Sumner et al.
[2002]

The starting point for fitting the three synapse model parameters to the chin-
chilla data was the parameter values published in Sumner et al. [2002] and shown
in Appendix F. No specific procedure was used since parameter space for the
three parameters is fairly small. The following section presents the results of
the modelling efforts.

5.1.2 Results of simulations

The values of the three varied inner hair cell and auditory nerve complex param-
eters for simulating the high- and low spontaneous rate fibres in Figure 5.1 are
shown in Table 5.1. They provided the best match with the fibres in Figure 5.1.
Also compare with parameters in Appendix F.
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The parameters are within the ranges of the published parameters (c.f. Sumner
et al. [2002] and Appendix F). It is unusual that parameter M has a higher value
for the low spontaneous fibre than for the high spontaneous rate fibre. However,
that is compensated by the higher G2** and lower [Ca®T];p,. It is also worth
noticing that [Ca?*]y, is at the minimum value of 0.

The simulated spontaneous rate of the high spontaneous rate fibre was 36
spikes/s which matches the actual high spontaneous rate fibre exactly. The
simulated spontaneous rate for the low spontaneous rate fibres was 15 spikes/s
compared to the 1.2 spikes/s reported for the actual low spontaneous rate fibre.
So while the modelled fibre is still a low spontaneous rate fibre the exact sponta-
neous rate was not modelled. The calculation of spontaneous rate is based on an
average of 100 runs since the model has stochastic elements. The spontaneous
rate was within +10 percent of the average.

While it might be possible to obtain a better match of the spontaneous rate it
was decided not to pursue the matter further for time reasons.
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Figure 5.4: Simulated peristimulus histograms of responses to trains of 16 clicks with level 59
and 79 dB peak SPL for two auditory nerve fibres with low (A,B) and high (C,D) spontaneous
rate. The interclick interval was 5 ms. The characteristic frequency 2500 Hz for both fibres
and their spontaneous rates were 15 spikes/s and 34 spikes/s respectively. Figures show data
simulated for 100 presentations. N designates the total number of spikes recorded. Compare
with Figure 5.1
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Figure 5.4 shows the simulated results for the fibres presented in Figure 5.1. The
spike count N show similar trends as the measured fibres for all combinations of
fibres. The increase in spike count with level is bigger for the low spontaneous
rate fibre. The high spontaneous rate fibre show a very clear response to the first
click in Figure 5.4D. This is consistent with Figure 5.1D. Comparing Figure 5.4A
and C to Figure 5.1A and C the match does not seem as good. This might be
explained by the possibly inaccurate basilar membrane input/output function
at 59 dB peak SPL. However, care should be taken not reading too much into
the details of the figures.
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Figure 5.5: Simulation of the number of driven spikes in the response to 79 dB peak SPL
click trains from the fibres simulated in Figure 5.4. The data is shown on linear and log-log
scales respectively. The driven rate is calculated as the total number of spikes minus the
number expected from the fibre’s spontaneous rate

Figure 5.5 is the simulated version of Figure 5.2. The most important aspects
of the measured data are simulated correctly in that
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e The number of spikes increases with number of clicks

e The number of driven spikes is greater for the low spontaneous rate fibres
than for the high spontaneous rate fibres

e The number of driven spikes increases with interclick interval.

According to Wickesberg and Stevens [1998] the number of driven spikes should
be a power function of the number of clicks. If the log-log plots in Figure 5.5B
and D are interpreted as being straight lines this is confirmed by the simulation.
The slope should be 0.5.

The model qualitatively matches the measured data as illustrated in the figures
shown in this section. Quantitatively the match is not so convincing. As men-
tioned earlier the fine-tuning of the parameters were stopped for time reasons.

Wickesberg and Stevens [1998] also investigates synchronisation aspects of the
auditory nerve fibre data. While some work has been done in this area no
conclusions have been reached at this stage. Appendix B reports part of this
work.

5.2 Final model for the inner hair cell and au-
ditory nerve complex

The aim of this chapter was to develop a model of the inner hair cell and auditory
nerve complex. However, the results only show partial agreement with the data,
In comparison to the previously published parameters [Sumner et al., 2002,
2003] the new parameters seem unlikely to provide improvements. Therefor it
was decided to proceed with the inner hair cell and auditory nerve parameters
from Sumner et al. [2003]. These parameters are shown in appendix F.

The inner hair cell and auditory nerve complex model for normal hearing is
presented in Section 5.2.1. Section 5.2.2 describes how the model of inner hair
cell loss was developed and presents the end result of this deliberation.

5.2.1 Normal hearing

In order to arrive at a representation of sound stimulus in the auditory nerve a
number of assumption must be made. While these assumptions may be “rea-
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sonable”, many of them do not have direct supporting evidence. This section
describes these assumptions.

The inner hair cells properties are assumed to be independent of place in the
cochlea, i.e. the same inner hair cell receptor potential model is used across
characteristic frequency. This assumption is extended to the synapse model of
probability of vesicle release and to the model of spike generation both described
in Section 4.4.2

The decision was made to model three different auditory nerve fibre types,
namely high, medium and low spontaneous rate fibres. In order to model spread
in fibre thresholds it was decided to model three different thresholds within each
fibre type. Thus, all together nine auditory nerve fibres were modelled. The ex-
act parameters of these nine fibres are derived in the following section.

According to Liberman [1978] 60 percent of the fibres are high spontaneous,
25 percent are medium spontaneous and 15 percent are low spontaneous rate
fibres. It is assumed that this distribution does not change as a function of
frequency [Liberman, 1982a]. Also, it was assumed that the three thresholds
used within each fibre type were equally represented. Finally, it was assumed
that the inner hair cells are equidistantly placed along the basilar membrane.

5.2.2 Impaired hearing

In Section 3.4 a moderately severe hearing loss was introduced. It was argued
that part of such a loss should be explained by loss of inner hair cell function.
The question now is how such a loss is best modelled. Results should, among
other characteristics, show a reduced spike count.

Modelling inner hair cell pathology

From a “strict effective modelling point of view” three ways of modelling a
reduced spike count are possible:

1. The entering of ions at the apex of the malfunctioning inner hair cell
is reduced resulting in a reduction in receptor potential. This could be
simulated by reducing the coupling gain of the hair cell Cy;;q-

2. The synapses are affected in such a way that fewer spikes are generated
in response to stimulus. This can be modelled by manipulating G52,
[Ca?F )i, or M
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3. Part of the inner hair cell population is dead and thus some hair cells do
not provide any stimulus for the attached synapses. This can be modelled
by simply reducing the number of hair cells.

The above methods all provide a reduction in spike count in the auditory nerve.
While not mutually exclusive, evidence supports the later of the three op-
tions [Moore et al., 2000]. It was decided to model hearing loss by simulating
hair cell loss only and thus assuming neither synapse pathology nor reduction
in coupling gain across the hair cell apex.

Conjectured account of absolute threshold

The audiogram in Figure 3.11 on page 76 shows the effective reduction in re-
sponse caused by dead inner hair cells. In order to model this the number of
dead hair cell must be estimated. Models for estimating the partitioning of
hearing loss into loss produced by outer hair cells and loss produced by inner
hair cell has previously been proposed [Moore et al., 1997, 1999]. Moreover, the
concept of dead regions, in which entire frequency sections of the inner ear lacks
hair cell function, has been investigated [Moore et al., 2000; Huss et al., 2000].

Here, an attempt is made to estimate the percentage of dead inner hair cells in
regions of the cochlea, based on the assumption that absolute threshold can be
accounted for by spike count exceeding a given threshold for nerve fibres within
an 0.445 mm distance of the characteristic frequency place on the basilar mem-
brane. This is further assumed to hold for both normal hearing and impaired
hearing listeners.

While this assumption might seem unfounded, it can be justified to a certain
degree by the following arguments.

1. A simple spike count cannot account for loudness in general, however,
this is particularly evident at higher levels [Relkin and Doucet, 1997]. At
lower levels a simple spike count provides a better account of performance
limits for intensity discrimination than other proposed intensity coding
schemes [Heinz et al., 2001a].

2. Calculating loudness is most commonly done by means of excitation pat-
terns (e.g. Zwicker and Fastl [1990]; Moore et al. [1997]). These excitation
patterns are calculated for each critical band or ERB, which in turn are
added to yield loudness. In the model context here it is thus appropriate
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to calculate the excitation pattern as the spike count in one ERB, which
corresponds to approximately 0.89 mm on the basilar membrane [Moore
et al., 1997]).

3. The spike count account of absolute threshold presented here is consis-
tent with the fact that loudness can be estimated at, and below, absolute
threshold [Buus et al., 1998].

4. The hearing loss modelled here is a sensorineural hearing loss and assumed
to originate from dead hair cells. Explicitly, it is assumed not to have a
retro-cochlear component. Hence the “central process of counting spikes”
is the same in normal hearing and impaired hearing.

Calculating the number of dead inner hair cells

In order to account for the loss of sensitivity corresponding to the audiogram
in Figure 3.11 the inner hair cell, the percentages of lost inner hair cells were
estimated for selected frequencies. They are shown in Table 5.2.

The method of calculation was as follows. High spontaneous rate auditory nerve
fibres generally have lower thresholds than their medium- and low spontaneous
rate counterparts [Liberman, 1978, 1982b,a]. So it is assumed that a population
of high spontaneous rate fibres account for absolute threshold. Moreover, the
population should have thresholds enabling them to account for absolute thresh-
old, i.e. they should be sensitive enough. In order to achieve this sensitivity and
in order to be able to use the parameters derived for guinea pig in Sumner et al.
[2003] the inner hair cell coupling gain C.;;, was adjusted.

The adjustment was done in such a way that threshold of a single fibre with best
frequency equal to a given audiogram frequency was at 0 dB HL. Threshold for
a single fibre is defined as the level where the spike count per second is 20 spikes
above spontaneous rate [Evans, 1972; Sumner et al., 2003]. The rate/intensity
function of such a fibre is shown in Figure 5.6. This renders the auditive nerve
fibres sensitive enough to provide the nerve firings enabling threshold detection
based on spike count.

Next step is to calculate a specific loudness correlate, i.e. produce a spike count
for the relevant fibres within 0.445 mm of the characteristic place for the au-
diogram frequencies. Since we have approximately 3,500 inner hair cells and
the length of the basilar membrane is 35.6 mm [Greenwood, 1990; Yost, 2000]
this yields 3,500 x 0.89/35.6 = 88 inner hair cells per ERB, again assuming
that the hair cells are equidistantly positioned. From each of these inner hair
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Figure 5.6: Example of the rate/intensity function used as basis for simulating the absolute
threshold

cells 30,000 x 0.89/35.6/88 = 9 nerve fibres project. Of these 60 percent are
high spontaneous rate fibres. Since not all fibres are sensitive enough to detect
absolute threshold it is assumed that only one fibre is actually capable of this.
The exact number of fibres is not crucial, but the calculation here shows that
the number is small, i.e. 1 to 5 for each hair cell.

Determining the physical threshold of a single fibre is different from determining
the absolute behavioural threshold in that the criterion is different. The phys-
ical threshold of a single nerve fibre was defined as the intensity at which the
firing rate increases by 20 spikes per second. No criterion for directly relating
spike count to absolute behavioural threshold is known to the author, however,
as mentioned earlier, the literature is rich in loudness models which indirectly
address absolute threshold.

One way of modelling absolute threshold in the framework of the model discussed
here, is to adopt the criterion employed in Section 3.1.2 for the simulation of
the forward masking study done by Lopez-Poveda et al. [2002]. The criterion
for this two-interval-forced-choice-procedure was proposed in Plack et al. [2002].
Threshold is defined as the lowest level [ for which Equation 5.1 holds.

f(p) + N
f(O)+N
where p; is a pure tone with level [ and 0 symbolises silence, k is a criterion value,
N is a noise floor, and f is the function relating stimulus to spike count for all
fibres within the ERB of interest. In this sense f is a specific loudness correlate,

>k (5.1)
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which is calculated using the models of the peripheral models described in the
thesis.

Similarly, in Section 3.1.2, the internal variable was calculated as the output of
the temporal window plus “an internal noise floor”. Here, the internal variable
is calculated as the spike count plus “an internal noise floor”. In the forward
masking simulation the noise floor could be determined based on the absolute
threshold of the probe. There is no obvious way of estimating the noise floor
for our purpose here, other than simply matching the data.

Because of the stochastic nature of the spike generation model a 3-down-1-
up, two-intervals-forced-choice procedure was used to determine the absolute
thresholds. If the criterion described above was not met, an interval was chosen
at random. The stop criterion was five reversals or three reversals at the same
level. Step size started at 8 dB and finished at 2 dB. The initial level was
set to 20 dB HL for the simulation of normal hearing and 20 dB SL for the
simulated hearing loss. According to Levitt [1971] this procedure provides the
79.4 percent point on the psychometric function, which in this case is a simulated
psychometric function.

Thresholds corresponding to normal hearing was achieved with a criterion value
k =1 dB and a noise floor corresponding to 5000 spikes per second for the whole
ERB. The spike rate was averaged over a 100 ms period thus ignoring any onset
effects. 100 ms was used as a compromise between a possible onset detection
mechanism and the temporal integration time period. It was found that very
short periods could affect simulated threshold, but for periods between 10 - 150
ms thresholds were fairly constant.

Finally, the percentage of dead inner hair cells was estimated for each of the
audiogram frequencies by gradually reducing the number of inner hair cells until
thresholds shown in Figure 3.11 were reached. The basilar membrane parameters
for impaired hearing from Table 3.11 were used. The resulting percentages of
dead inner hair cells as a function frequency are show in Table 5.2.

It is important to note that the technique for estimating absolute threshold out-
lined above, is not an attempt of accounting for the actual mechanisms underly-
ing absolute threshold detection, but simply a tractable method of relating fibre
threshold to behavioural threshold based on observations from psychophysics
and physiology. In this limited study, it was found that absolute threshold could
be accounted for by this technique.
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Table 5.2: Percentage of lost inner hair cells for the simulated hearing loss

125 Hz 250 Hz 500Hz 1kHz 2kHz 4kHz 8kHz
0 % 10 % 100% 10% 30% 60% 7%




Chapter 6

The Complete Model

The types of synapses were briefly mentioned in Section 5.2.1, but the details
of the distribution employed here was not discussed. This is a very speculative
endeavour, but mandatory in order to conjecture a complete representation of
sound signals in the auditory nerve. Moreover, some model implementation
issues remain. A description of these issues is given in Section 6.1. Following
this is a summary of the models for normal- and impaired hearing in Section 6.2.

6.1 Finalising the model

The ambitious goal of simulating the great variety in auditory nerve fibres is not
going to be reached in this thesis. Instead the basis for types of nerve fibres has
been established. This section tries to bridge the gap between what is known
about how the auditory nerve fibres are distributed along the cochlear partition
and what is required by a “complete” model.

For example, we know that approximately 60 percent of fibres are high spon-
taneous rate fibres. So we could assume that they are distributed evenly along
the length of the cochlear partition, We do not know, however, the exact distri-
bution of thresholds and dynamic ranges of these nerve fibres. So in this case
some assumptions must be made. Similar arguments hold for medium- and low
spontaneous fibres where the variety is apparently even greater. Moreover, little
is known about the inter-subject variability of the these properties. What can

113
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be said, is that the encoding enables fairly uniform psychophysical performance
across normal hearing subjects in a great number of psychoacoustic experiments.

In the following the frequency-position function shown in Equation 6.1, proposed
for humans by Greenwood [1990], is used.

f(z) = 165.4(10%%5% — 1) (6.1)

where f(z) is the characteristic frequency in Hz for the place on the basilar
membrane x millimetres from the apex of the cochlea. This frequency-position
function applies for low level tones. In the following absolute basilar membrane
positions are specified in terms of distance to the apex, adhering to the conven-
tion from Equation 6.1.

As a matter of proposing a tractable distribution it was decided to implement
the complete model as follows. Only the section from 4 mm to 30 mm of the
basilar membrane was modelled. This corresponds to a characteristic frequency
range from 120 Hz to 10 kHz and corresponds to 28 ERB. Within each ERB 36
channels were modelled yielding a total of 1008 channels. This number should
be compared to the number of inner hair cells for the modelled section of the
basilar membrane, 3500 x 26/35.6 = 2556, yielding approximately 2% hair cells
per channel.

In order to simulate the number of fibres correctly each channel was assigned
30,000 x 26/35.6/1008 = 22 nerve fibres. The well-known distribution of 60 per-
cent high spontaneous rate fibres, 25 percent medium spontaneous rate fibres
and 15 percent low spontaneous rate fibres [Liberman, 1978, 1982b] was em-
ployed. The prototype fibres, for which the parameters are shown in Table F .4,
were used. In order to simulate variation three different thresholds for each of
the fibre types were implemented. The three thresholds within each fibre type
were equally represented.

Different thresholds were achieved by adjusting the coupling gain Cy;;;, from
the inner hair cell receptor potential model. This method is an easy way of
implementing the different thresholds, but no claim as to how physiologically
plausible this is, will be attempted here.

This gives a total of nine types of nerve fibres for which the rate/intensity
functions are shown in Figure 6.1.

The loss of inner hair cells was calculated for sections around the audiogram
frequencies. It is assumed that the loss extends to a region of the basilar mem-
brane. Although the absolute thresholds were determined by examining sections
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Figure 6.1: The nine types of auditory nerve fibres employed in the final model

of 0.89 mm on the basilar membrane, there is no reason to believe that hair cell
loss is confined to the audiogram frequencies. It seems reasonable to assume
that each relative loss shown in Table 5.2 extends to the adjacent octave bands.
Therefore interpolation between the loss percentages was implemented in order
to calculate the loss percentage for any given place.

The interpolation was based on a linear position scale on the basilar membrane,
i.e. using Equation 6.1. For example, the loss at 1500 Hz, for the hearing loss
from Table 5.2, is 22 percent.

6.2 Final model summary

This section gives a brief recap of the model employed in this thesis and how
its parameters were derived. The model for normal hearing is described first,
followed by the description of the model for impaired hearing.
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6.2.1 Complete model for normal hearing

The outer- and and middle ear for normal hearing is modelled as a simple linear
phase filter with transfer characteristics as shown in Figure 1.9. It is based on
parameters published in Lopez-Poveda and Meddis [2001] which in turn were
derived from Goode et al. [1994].

Basilar membrane vibration for normal hearing is modelled using the DRNL
[Meddis et al., 2001] with filter bank parameters derived based on forward mask-
ing experiments from Lopez-Poveda et al. [2002]. The parameters are shown in
Table 3.10.

The inner hair cell receptor potential is modelled by the revised version [Sumner
et al., 2002] of the model proposed by Shamma [1986]. The parameters are shown
in Table F.1.

The inner hair cell and synapse for normal hearing is modelled as described
in Sumner et al. [2002]. Parameters of the model were fitted to individual fibres
from a study of chinchilla auditory nerve fibres [Wickesberg and Stevens, 1998].
However, it was decided to use the parameters suggested by Sumner et al. [2003]
in the final version of the model. These parameters are shown in Table F.4 and
Table F.2

The entire auditory nerve fibre population for normal hearing is modelled as
evenly distributed nerve fibres along the cochlear partition. The section mod-
elled has characteristic frequencies ranging from 120 Hz to 10 kHz partitioned
into 1008 channels. Three type of fibres are used: high-, medium- and low
spontaneous rate fibres in the ratios 12:5:3. Further, each of these fibre types
were modelled with three different thresholds as described in Section 6.1. The
rate/intensity function for the nine fibres are shown in Figure 6.1.

6.2.2 Complete model for impaired hearing

The outer- and and middle ear for impaired hearing is modelled exactly as for
normal hearing, i.e. as a simple linear phase filter with transfer characteristics
as shown in Figure 1.9. It is based on parameters published in Lopez-Poveda
and Meddis [2001] which in turn were derived from Goode et al. [1994].

Basilar membrane vibration for impaired hearing is modelled using the DRNL [Med-
dis et al., 2001] with filter bank parameters derived based on forward masking
experiments form Lopez-Poveda et al. [2002], but modified to match forward
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masking study and audiogram for subject JK’s left ear in Oxenham and Plack
[1997]. The parameters are shown in Table 3.11.

The inner hair cell and synapse for impaired hearing is modelled as described
in Sumner et al. [2002]. The same parameters were used for impaired hearing as
were used for normal hearing Sumner et al. [2003]. These parameters are shown
in Tables F.1, F.2 and F 4.

The entire auditory nerve fibre population for normal hearing is modelled as
evenly distributed nerve fibres along the cochlear partition. The section mod-
elled has characteristic frequencies ranging from 120 Hz to 10 kHz partitioned
into 1008 channels. Three type of fibres are used high-, medium- and low
spontaneous rate fibres in the ratios 12:5:3. Further, each of these fibre types
were modelled with three different thresholds as described in Section 6.1. The
rate/intensity function for the nine fibres are shown in Figure 6.1.

The nerve fibres are evenly distributed along the cochlear partition, except for
areas with dead inner hair cells where the number of hair cells is reduced. The
reduction is calculated for frequencies 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz
and 8kHz. It is based on a novel method proposed in Section 5.2.2. The modelled
reduction in inner hair cells is shown in Table 5.2. It is based on the audiogram
for subject JK’s left ear in [Oxenham and Plack, 1997]. The reduction is applied
to a region on the basilar membrane corresponding to Table 5.2. Interpolation
between the percentages are performed according to the frequency-position func-
tion proposed by Greenwood [1990].
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Chapter 7

Representation in the
auditory nerve

The model derived in previous chapters is a very general model of the auditory
periphery and as such capable of describing many psychophysical phenomena.
The possible applications of the model not explored in the previous chapters
include loudness, pitch, suppression, sound quality, speech perception and many
others.

The original intention of the thesis was to elaborate and extend the auditory
nerve representation of stimuli in general, to specifically accommodate features
salient to speech. For time reasons this has not be possible. This chapter does
present “a representation of speech signals in normal and impaired ears” as
indicated by the thesis title, but the representation is not specific to speech.

This chapter has four sections. The first section introduces the basic presenta-
tion form of the auditory nerve discharge patterns used in this thesis. Section 7.2
describes the details of the chosen presentation called the rate diagram. Follow-
ing this, Section 7.3 present rate diagrams for speech in quiet. Rate diagrams for
speech in noise are presented in Section 7.4. Finally, Section 7.5 briefly discusses
speech representation in the auditory nerve in the context of the rate diagram.
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7.1 Representation in the auditory nerve

In the first part of this thesis a model transforming sound in the air to neural
activity patterns was developed. This massive representation forwarded from
the 30,000 nerve fibres carries all the information needed for human hearing. The
challenge is to unveil how the representation is presented to the various parts of
the brain. Similarly, it is a matter of discussion how the neural firing patterns
is best presented graphically in order to supply information about important
features of the stimulus.

One way of presenting auditory nerve firing patterns is simply plotting the
number of spikes as a function of time for each nerve fibre. Since it is impossible
to do this for all nerve fibres a more compact way of representing this is to group
nerve fibres based on their characteristic frequency. A two dimensional plot
could then have time on the abscissa, characteristic frequency as the ordinate
and a colour code denoting spike count. This representation will serve as the
basic representation in the following and will be referred to as the rate diagram.

The representation chosen here does not provide any direct information about
periodicity or other temporal aspect of the nerve firings. For time reasons this
interesting topic is not addressed in the thesis.

7.2 Developing the rate diagram

The rate diagram has time as abscissa, frequency as ordinate and a colour code
as the “third axis”. The time resolution, in terms of sample rate, was chosen to
be 10 kHz, while the underlying simulation were carried out at 64 kHz'. There
is no standard length of the x-axis in the rate diagram — it is allowed to vary
according to the stimulus.

The choice of y-axis is more complicated. Clearly a linear frequency axis is not
a good option. Instead a linear basilar membrane position spacing ranging from
125 Hz to 10 kHz was chosen, as described in Section 6.1. In practice the end-
points constitute centre frequencies for one ERB wide bands. So the frequency
range covered is actually 125 Hz —JERB = 108 Hz to 10 kHz +3ERB = 10645
Hz .

1Even with this fairly low resolution the rate diagrams for 500 ms speech each take up 400
MB of disk space
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Since the loss of inner hair cell is modelled as missing channels, simply plotting
this would leave “holes” in the rate diagram. In order to compare rate diagrams
for normal- and impaired hearing, it was decided to distribute the spikes falling
in one “impaired hearing bin” to the corresponding number of “normal hearing
bins”. Since the number of frequency bands is 30 ERBs by 36 channels pr. ERB
= 1080, and the maximum loss modelled here is 70 percent at high frequencies,
the resolution on the y-axis is acceptable.

The colour coding was chosen to be an inverted version of gray-scale provided
by MatLab. In order to get greater contrast graphically all plots were calculated
as the sum of the response to 300 repetitions of the stimulus. Spike counts were
then normalised, i.e. divided by a factor of 100 in order to obtain a spike count
between 0 and 10 in all time/frequency bins. The standard rate diagram was
then defined as the data plotted on this gray-scale going from 0 to 10 spikes. This
corresponds to a maximum count of 10 (gray-scale) divided by 300 (repetitions)
times 100 (normalising factor) = 30 in each time/frequency bin for one stimulus
presentation.

Some stimuli produce too little activity to be visible in a standard rate diagram.
Rather than changing the standard colour coding between 0 and 10, it was
decided to multiply the spike count by an appropriate factor. This factor is
referred to as the gray-scale factor. All such deviations from the standard rate
diagram are explicitly stated. It is, of course, desirable to adhere to the standard
diagram in order to facilitate comparisons of diagrams.

The rate diagram represents nine fibre types. The standard diagram simply adds
the spikes produced by all these fibres into the appropriate frequency/time bins.
This way the spikes are lumped together across fibre types, something that is
unlikely to occur in the brain. Discerning the contribution in the rate represen-
tation into subpopulation responses (e.g. high- ; medium- and low spontaneous
rate populations) might provide complementary information about encoding in
the auditory nerve. Hence, it is possible, but not standard, to produce subpopu-
lation rate diagrams. Again, all such deviations from the standard rate diagram
are explicitly stated

An example of the rate diagram is shown in Figure 7.1. It shows the response
to a four tone complex. Any tone complex could have been used as an example,
but a tone complex similar to the one employed in Buus et al. [1998] was chosen.
Each of the tones are four Barks apart from the neighbouring tone. The tone
frequencies are 838, 1600, 2915 and 5790 Hz.



122 CHAPTER 7. REPRESENTATION IN THE AUDITORY NERVE

Normal Hearing

10000F" 10
8000

6000

4000

3000

2000F _ —
15001 A 4 5

1000

Frequency (Hz)

LR TR RN \ \\ W\
750 \\\\\\\\\\\\\\\\\\\\\\\ VW \\7
5001
375 1 2

2501

125f, i
0 10

; !
20 30 40
Time (ms)

Figure 7.1: An example of rate diagram as defined in this thesis. The stimulus is a four
tone complex with frequencies 838, 1600 2915 and 5790 Hz. the overall level is 30 dB SPL.
The response is for a normal hearing person. A gray-scale factor of three has been used (see
Section 7.2 for definition)

From the diagram it is clear that the individual tone frequencies are represented
in the response. Also, the onset response is greater than the later responses.
Finally, in addition to the tonotopic classification of frequency, stimulus pe-
riodicity is reflected in the rate diagram, in that ripples occur with a period
corresponding to stimulus for the given place.

7.3 Rate diagrams for speech signals in quiet

This section presents rate diagrams for normal- and impaired hearing in response
to speech under a variety of stimulus configurations. The stimulus used is taken
from the Dantale CD [Elberling et al., 1989]. The speech stimulus is presented in
quiet. Rate diagrams for speech in noise are presented in the following section.

The Danish word “gas” was chosen for the examples below for several reasons.
It is close to the corresponding English word and it has significant energy in the
high frequency region where the hearing loss under examination is the greatest.
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Figure 7.2: Rate diagram for normal hearing in response to the word “gas” at a level of 30
dB SPL with a gray-scale factor of two. The stimulus was taken from Elberling et al. [1989]

Figure 7.2 shows the rate diagram for the normal hearing in response to the
Danish word “gas” at an overall level of 30 dB SPL. The relative low level
means that a gray-scale factor of two was used in order to enhance contrast.

From the diagram it is evident that the speaker is female, in that the spikes
corresponding to the fundamental frequency are in the proximity of 200 Hz,
allowing for the travelling wave to continue slightly beyond the characteristic
frequency.

Moreover, formant frequencies from the vowel are discernible at approximately
400 Hz, 550 Hz and 2 kHz. The initial “g” is represented as a short burst with
most spikes falling between 2 and 3 kHz, followed by a period of silence. Finally,
the “s” is visible as energy around 5 kHz with onset time around 200 ms.

Figure 7.3 shows the rate diagram for normal hearing in response to the Danish
word “gas” at an overall levels of 60. Comparing to Figure 7.2 the formants are
hardly discernible. The majority of the auditory nerve fibres are high sponta-
neous rate fibres, which saturate at this level, or lower. The silence immediately
following the “g” is still present, and the high frequency component representing
the “s” is also Vlsible.
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Figure 7.3: Rate diagram for normal hearing in response to the word “gas” at a level of 60.
Compare with Figure 7.2
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Figure 7.4: Rate diagram for normal hearing in response to the word “gas” at a level of 90.
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Figure 7.4 shows the rate diagram for normal hearing in response to the Danish
word “gas” at an overall level of 90. At this level the silence after the “g” is not
visible from the rate diagram and neither are the formants. A change in pattern
at the onset of the “s” occurs even at this level. Both Figure 7.4 and Figure 7.3
show clear periodicity patterns, but there is no obvious interpretation of these.
However, contrary to what is apparent from the rate diagram, an increases in
level should improve intelligibility.
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Figure 7.5: Rate diagram for normal hearing in response to the word “gas” at a level of 90.
Only the least sensitive low spontaneous rate fibres are shown. A gray-scale factor of 25 was
used

Figure 7.5 shows the rate diagram for normal hearing, least sensitive, low spon-
taneous rate fibres (see Section 6.1, Figure 6.1 for definition), in response to
the Danish word “gas” at an overall levels of 90. The interesting part of this
diagram is that the fundamental frequency and the first two formants are dis-
cernible. Particularly considering the onset responses. This illustrates that even
at this level the rate diagram provides information and it points to a possible role
of low spontaneous rate fibres. Admittedly, these observations are “well hidden”
in the representation and it could be argued that they are over-interpretations,
but this is more a limitation of the rate diagrams than the underlying represen-
tation.

Figure 7.6 shows the rate diagram for the impaired hearing in response to the
Danish word “gas” at an overall levels of 60 and 90 dB SPL respectively. It is
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clear that the overall response is lower for the impaired hearing, not surprisingly,
particularly at high frequencies.

Figure 7.6 top panel shows very little response to the “g”, i.e. the response begins
at approximately 50 ms, whereas response can be seen in the lower panel and
also in Figure 7.3. Moreover, Figure 7.6 lower panel resembles Figure 7.3 more
than Figure 7.6 top panel resembles Figure 7.3, at least for the first 200 ms.
This is consistent with the widely held belief that impaired hearing approaches
normal hearing at higher levels.

7.4 Rate diagrams for speech signals in noise

Speech in noise is presented in different signal-to-noise ratios and at various
overall levels. Only one type of noise is used here. Briefly, this noise has a
speech shaped spectrum, i.e. a flat power spectrum up to 500 Hz and a roll-off
of 12 dB/octave above 500 Hz. Further, the envelope spectrum of the speech
shaped noise matches that of speech. The noise is identical to the speech shaped
noise used by Elberling et al. [1989].

Figure 7.7 shows the response to the word “gas” at signal-to-noise ratio of one
and an overall level of 60 dB SPL. Based on these rate diagrams the most one
can say is that it is remarkable that normal hearing persons are able to perceive
anything under these conditions. .. While some “structured ripples” are present
in the top panel, they do not seem to relate to the speech stimulus in that they
persist after cessation of the speech stimulus. No structure relating to the speech
stimulus appear to be present in the lower panel.

Figure 7.7 shows the response to the word “gas” at signal-to-noise ratio of 30 dB
and an overall level of 60 dB SPL. While it is difficult to interpret the content
of the diagrams, it is obvious that the 30 dB signal-to-noise ratio make the
diagrams very similar to the ones from the “in-quiet” condition (c.f. Figures 7.3
and 7.6 top panel).
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Figure 7.6: Rate diagram for impaired hearing in response to the word “gas” at a level of
60 (top) and 90 dB SPL (bottom)
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Figure 7.7: Rate diagrams for normal hearing (top) and impaired hearing (bottom) in re-
sponse to the word “gas” at signal-to-noise ratio of 0 dB. The overall level is 60 dB SPL
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response to the word “gas” at signal-to-noise ratio of 30 dB. The overall level is 90 dB SPL
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7.5 Discussion of speech representation

For low levels the rate diagrams exhibit a clear rate-place representation of
the stimulus. As levels go up this representation becomes increasingly obscure,
although some features persist in some low spontaneous rate fibres. For the
hearing loss examined very little rate-place encoding was evident from the rate
diagrams.

The speech in noise rate diagrams provided an even more obscure representation
of the stimulus for the 0 dB signal-to-noise condition. In contrast the 30 dB
signal-to-noise ratio showed almost the same rate diagrams as the speech in
quiet condition.

None of the above observation are surprising, but they clearly indicate that the
rate diagram is inadequate as a tool for understanding speech representation in
the auditory nerve. It is important to distinguish the rate diagram presented
here from the underlying representation — the discharge patterns of the auditory
nerve fibres. So while the rate diagrams presented here are inadequate in ac-
counting for the representation of speech, the underlying representation is worth
investigating.

Seen in this light the question: “How is speech encoded in the auditory nerve?”
has a more interesting counterpart “How is speech decoded from the represen-
tation in the auditory nerve?”. While this thesis set out to explore the former of
the questions, and to some extent has, the latter is the more interesting question.

Many answers to the above question have been suggested over the years. Rather,
than answering the question directly it might be better to consider finding some
“persistent” or “robust” features of speech, which are also “persistent” and
“robust” in in the auditory nerve representation. The model presented in this
thesis could serve as the fundamental investigation tool.



Chapter 8

Conclusions and
perspectives

This short chapter is divided into three sections. The first gives a brief descrip-
tion of the most notable results achieved in this thesis. Section 8.2 discusses
possible future projects from these results. Finally, a conclusion to the entire
thesis is drawn.

8.1 Summary of the results

Chapter 3 presented simulation of three forward masking experiments. The data
from the most comprehensive experiment was used as the basis for deriving pa-
rameters for the DRNL filter model of the basilar membrane. Although some
discrepancies from the psychophysical data was observed the errors were for
the most part comparable with one standard deviation of the psychophysically
measured points. It was suggested that the temporal window must be frequency
dependant and that this, at least to some extent, would account for the afore-
mentioned discrepancies. An additional improvement of the results might be
achieved if adaptation is modelled.

Chapter 5 presented a novel method of calculating inner hair cell loss from
absolute thresholds. The method was based on the conjecture that absolute

131
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behavioural threshold can be modelled based on spike count from appropriately
selected auditory nerve fibres.

Based on the results of the basilar membrane model parameters, the calculated
inner hair cell loss and results from literature models for the entire auditory
nerve fibre population for normal hearing and impaired hearing was suggested.

For time reasons this representation was not investigated in detail. A rudi-
mentary diagram showing a graphical representation of the auditory nerve fibre
discharge patterns was developed. It was found that this rate diagram was
incapable of showing basic properties of speech encoding in the auditory nerve.

8.2 Future projects

The previous section pointed to the most important results of work conducted
in connection with this thesis. This section outlines possible continuations and
improvement of these results. First, forward masking is discussed. Next further
ideas for models of impaired hearing are presented. Finally, the topic of speech
decoding from the auditory nerve is considered in Section 8.2.3.

8.2.1 Modelling forward masking

The simulation of forward masking results described in Chapter 3 were originally
carried out in order to derive parameters for the DRNL. However, modelling
forward masking is a research topic in its own right as the comprehensive litera-
ture shows, e.g. Wilson and Carhart [1971]; Relkin and Turner [1988]; Plack and
Moore [1990]; Oxenham and Moore [1994]; Turner et al. [1994]; Oxenham and
Plack [1997]; Plack and Oxenham [1998, 2000b]; Oxenham [2001]; Plack et al.
[2002].

In this thesis forward masking was only modelled in terms of temporal integra-
tion. Adaptation was never considered even though the tools modelling periph-
eral adaptation were described in Chapter 5. Extending the forward masking
model to accommodate adaptation phenomena would only require a minimum of
implementation, whereas parameter tuning, specifically nerve fibre parameters,
would require the bulk of the effort. However, this would also be an interesting
and relatively uncharted research area.
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8.2.2 Models of impaired hearing

Outer hair cell loss was modelled as frequency specific adjustment of a single
DRNL parameter. It was based on psychophysically measured absolute thresh-
olds and a few forward masking data points. In this way, but with more data,
more comprehensive and thus more accurate modelling is possible. In order to
get the relevant data it seems mandatory to design and carry out psychophysical
experiments. Hence, the present thesis does not provide much of a head start
for pursuing this idea.

Calculating inner hair cell loss was done based on the conjecture that abso-
lute threshold can be modelled based on spike count from nerve fibres with the
appropriate characteristics. While quite speculative, this attempt to link psy-
chophysical data to data from physiology deserves attention. At this point in
time, however, it is not clear how to carry this idea forward in that experimental
design providing data appear to be beyond the present day capabilities. Hope-
fully, this conclusion can be falsified by clever experimental design or technical
advances in the near future.

8.2.3 Speech decoding from the auditory nerve

The rate diagram developed in Section 7.2 was an attempt at presenting a simple
summary of auditory nerve fibre discharge patterns. As such it was successful.
However, it tells us little about how these discharge patterns are processed in
the brain stem, let alone the auditory cortex.

As indicated in the discussion of speech representation in Section 7.5 the inter-
esting question is not so much “what the representation in the auditory nerve
looks like”, but more “how is it decoded”. This thesis proposed an answer to
the former question and unfortunately the latter question was not addressed for
time reasons.

An interesting beginning to an answer to how speech is decoded from the au-
ditory nerve could be an examination of the complex modulation spectrum as
described in Greenberg and Arai [2001]. Greenberg argues that preservation
of the complex modulation spectrum is the key to preserving speech intelligi-
bility under various types of degradations, such as reverberation and hearing
impairment. While the basis of this argument is an ill-defined [Atlas, 2002], yet
intuitively well-known, physical property, namely the complex modulation spec-
trum, the challenge would be to identify a similar representation in the auditory
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nerve. The work carried out in connection with this thesis provides the auditory
nerve representation required by such a project.

8.3 Conclusion

The goal of developing a model for the representation of speech signals in normal
and impaired ears has been reached. Although this representation has undergone
no direct tests as to its validity and generality, the intermediate models have
all undergone fairly comprehensive testing. Admittedly, parts of the model of
hearing impairment rely on conjectures. Moreover, the distribution of auditory
nerve fibre types also rely on conjectures. However, at present knowledge in
these areas are incomplete and it is not possible to collect direct evidence.

In this situation, proposing and evaluating models is an important tool for
examining how underlying mechanisms could work. Seen in this perspective,
the present thesis offers “a model for the representation of speech signals in
normal and impaired ears” for which much data has yet to be acquired for a
proper evaluation.
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Appendix A

DRNL parameters

Table A.1: Example of values for the free DRNL parameters for six centre frequencies as
described in Section 2.3.3. The values are taken from Lopez-Poveda and Meddis [2001].

Signal Frequency (Hz) 250 500 1000 2000 4000 8000
Linear- CFyin (Hz) 244 480 965 1925 3900 7750
path- BWyi, (Hz) 100 130 240 400 660 1450
parameters g 1150 850 520 410 320 220

CF,,; (Hz) 250 500 1000 2000 4000 8000
Nonlinear- BW,,; (Hz) 84 103 175 7300 560 1100
path- a 2194 5184 7558 9627 22288 43584
parameters b 0.450 0.28 0.130 0.078 0.045 0.030
Effective CF 258 508 998 2006 3978 7720
DRNL BWsyp o0 68 118 210 415 755
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Table A.2: The linear regression version of the parameters for the human DRNL filter bank
derived from Table A.1

Regression coefficients

Do m

Linear- CFyin (Hz) -6.7620 x10~2  1.01679 x 10°
path- BWy;,, (Hz) 3.7280 x1072  7.85630 x 107!
parameters g 4.2041 x10° -4.7909 x 10!
Nonlinear- BW,; (Hz) -3.1930 x 1072 7.7426 x 10~1
path- a 1.4030 x 10°  8.1916 x 107!
parameters b 1.6191 x 10°  -8.1867 x 10!




Appendix B

BNAM article

This appendix contains a copy of Christiansen [2003]. The page content in the
present version is scaled down from A4, used in the proceedings, to the regular
paper size used throughout the thesis. The original proceedings page numbers
have been omitted while thesis page headings are included.
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Modelling auditory nerve fibre responses to click trains

Thomas Ulrich Christiansen
QOrstedeDTU, Acoustic Technology, Technical University of Denmark,
Orsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark

Email: tuc@oersted.dtu.dk

Abstract: Computer models of the chinchilla outer- and middle ear, basilar membrane, inner hair-cell
and synapse are established and presented. Moreover, combining the models and adjusting parameters
for the auditory nerve fibres only, the response of individual auditory nerve fibres to the click train
stimulus used in [R. E. Wickesberg, and H. E. Stevens, “Responses of auditory nerve fibers to trains of
clicks”, J. Acoust. Soc. Am., 103, (4), 1990-1999 (1998)] was simulated.

The model results are compared to the experimental results from the before mentioned study.
Synchronisation coefficients for individual fibres and fibre populations were examined. A
monotonically increasing function was expected when plotting synchronisation coefficients as a
function of interclick interval. For fibre populations this was modelled. However, more than 40 percent
of the fibres showed non-monotonic behaviour. The model is powerful enough to qualitatively

reproduce the synchronisation results from the before mentioned study.

Keywords: Computer models, auditory nerve, cochlear models

1. INTRODUCTION

As part of the Ph.D.-project with the running title
“A model for the representation of speech signals
in normal and impaired human ears” modelling
of auditory nerve fibres was carried out. In a
study performed by Wickesberg & Stevens [5]
data was recorded from the auditory nerve of
chinchillas in response to trains of clicks. The
present paper describes the efforts involved in
replicating the synchronisation coefficients (SC)
[3] of the auditory nerve fibres of the original
study.

2. THE ORIGINAL STUDY

In the following, data and figures from the
original study are reproduced with permission
from the authors.

The stimulus

The stimuli reported here consisted of trains of
clicks all containing 16 condensation clicks with
a width of 0.1 ms. The level and the time
between the clicks (interclick interval, ICI) were
the parameters varied. Three distinct levels were
tested: 59, 69 and 79 dB peak SPL, where “peak
SPL” means that the amplitude of the click was
equal to the peak amplitude of a 1000 Hz pure

tone at the given SPL. The ICI was varied from 1
to 5 ms in steps of 1ms. For further experimental
details please refer to [5].

The results

Examples of the responses are given in Figure 1
by means of peristimulus time histograms. Note
that increasing the stimulus intensity increases
the number of elicited auditory nerve firings
(spikes) for both fibres, but decreases the
synchronisation for the high spontaneous rate
fibre i.e. the individual peaks are no longer
visible.

Examples of individual fibre synchronisation to
click trains are shown in Figure 2. The SC was
calculated according to [3].

SC is a measure the timing of spikes relative to
the clicks. If all spikes were perfectly timed the
SC would be 1.0. The SC decreases as the timing
of the spikes gets less precise with SC reaching
the value of 0.0 when spikes are evenly
distributed across the stimulus period.

Finally, in Figure 3 the SC as a function of ICI is
shown averaged across fibres. The high
spontaneous rate and low spontaneous rate fibre
populations are shown separately. The responses
from each fibre type are shown for the three
levels 59, 69, and 79 dB pe SPL.
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Figure 1: Peristimulus time histograms of
responses to 16 clicks for two auditory nerve
fibres with (A, B) low (1.2 spikes/s) and (C,
D) high (36 spikes/s) spontaneous activity.
The interval between clicks were 5 ms and the
levels were 59 (A, C) and 79 (B, D) dB peak
SPL. Both auditory nerve fibres had
characteristic frequencies of 2500 Hz. N=total
number of action potentials.

Adopted from [4].
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Figure 2: Peristimulus time (A, C, E, G) and period
(B, D, F, H) histograms for the responses of low and
high spontaneous auditory nerve fibres. The low
spontaneous unit (A-D) had a characteristic frequency
of 3535 Hz and the high spontaneous rate fibre (E-H)
had a characteristic frequency of 3242 Hz. The click
trains were presented in interclick intervals of 2 ms
(A, B, E, F) or 5ms (C, D; G, H) at a level of 69 dB
pe SPL. The synchronisation coefficients (SC) are
displayed for each period histogram.
Adopted from [4].
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Figure 3: Average synchronisation coefficients
determined at the frequency whose period equaled
the interclick interval and calculated from the
responses to the 16 clicks presented. at levels 59
(m), 69 (o) and 79 (A) dB pe SPL for low (A) and
high (B) spontaneous rate units. Both types of
fibres showed a monotonic increase in SC with ICI
and a slight decrease in SC with increase in
intensity.

Adopted from [4].
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3. THE COMPUTER MODEL

The computer model used in this study was
developed as a part of the ongoing Ph.D.-project
with the running title “A model for the
representation of speech signals in normal and
impaired human ears”. Certain parameters of the
model had to be changed in order to reflect
chinchilla hearing rather than human hearing.
The parameters in question pertain to the middle
ear and the basilar membrane.

The middle ear

The sound was delivered to the chinchilla ears by
a calibrated insert telephone with a distance of
“several millimetres” [5] to the tympanic
membrane. In order to simulate the middle ear a
second order linear bandpass Butterworth filter
with an upper cut-off frequency off 22 kHz and a
lower cut-off frequency of 12.5 kHz was
employed. This filter is taken from [1]. The
output of the filter is converted to stapes velocity
and propagated to the basilar membrane model.
The stapedial reflex was ignored in the
experiment as well as in the modelling efforts.

The basilar membrane

No attempt to model cochlear mechanics was
made. Instead the movement of the basilar
membrane (BM) was modelled directly by a
special filter arrangement: the Dual Resonance
Non-Linear filter (DRNL) [2], which shows a
remarkably realistic response for a variety of
stimuli.
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Adopted from [2].

The DRNL has two processing paths: One linear
and one nonlinear (cf. Figure 4). The output is
the sum of the two processing paths. The linear
path consists of a linear gain, a bandpass and a
lowpass filter in cascade. The nonlinear path
consists of a bandpass filter, a compression
function followed by a second bandpass filter.
The bandpass filters themselves are cascaded
gamma tone filters. The low pass filters consists
of four cascaded second order Butterworth filters.
Since the centre frequency (CF) of the linear path
deviates slightly form the CF of the nonlinear
path the filter arrangement shows “dual
resonance” hence the name.

The input to the filter is stapes motion in m/s.
The output of the model was chosen to be BM
vibration velocity for the given place on the BM.
The alternative, BM displacement, could have
been used, but it was found that compression
threshold changed less with respect to frequency
when using the velocity measure [6].

The inner hair cell receptor potential

The BM velocity at the characteristic frequency
was propagated to the inner hair cell (IHC)
model. The model proposed by Shamma et. al.
was used [7]. The IHC receptor potential in volts
was calculated. Only one (generic) IHC was used
in the modelling efforts i.e. no attempt to model
changes in IHC characteristics with characteristic
frequency was made.

The IHC-synapse model

The THC receptor potential was converted into
spikes using the IHC-synapse complex model
proposed by Sumner et. al. [1].

Each IHC is innervated by multiple nerve fibres
each having different “synaptic transmission

characteristics”. In order to model these different
transmission characteristics, parameters of the
model was fine-tuned so as to accurately match
the data. The bulk of the work pertaining to the
present paper lay in the fine-tuning of these
synapse parameters.

In the literature fibres are normally characterised
by 1) characteristic frequency, 2) spontaneous
rate, 3) absolute threshold, 4) saturation level and
sometimes also 5) “saturation type” (e.g. sloping
saturation). Characteristics 2 through 5 are
conveniently displayed as rate/intensity functions
(cf. Figure 5).

In the present paper three synapse parameters
were selected for manipulation. They were G/

2+
th

(maximum Calcium conductance), Ca

(Calcium conductance threshold), and M
(number of free transmitter quanta).

Calcium plays a significant role in controlling the
release of neurotransmitter into the synaptic cleft
and in turn to the generation of spikes. If the
maximum Calcium conductance is increased, the
number of spikes elicited by the fibre goes up (cf.
Figure 5 a). The Calcium concentration required
to elicit spikes is coined as Calcium
concentration threshold. Increasing this threshold
makes the number of elicited spikes go down (cf.
Figure 5b). The neurotransmitter is delivered to
the nerve fibres in “packets” or vesicles. The
number of vesicles available for transportation of
neurotransmitter is here called “number of free
transmitter quanta”. Increasing the number of
free transmitter quanta increases the number of
elicited spikes (cf. Figure 5c).
A detailed discussion on how to manipulate
synapse parameters in order to match data for
individual fibres is presented in [1].
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3. MODELLING THE DATA

The preliminary results of modelling the average
SC as a function of ICI for a population of fibres
are shown in Figure 6 (original data shown in
Figure 3). For convenience the simulations
performed and shown here only consist of one
single HSR and one single LSR fibre with best
frequency 2500 Hz. Thus, the average response
of a population is modelled by means of a single
fibre,

Qualitatively the results are in good agreement
with the results from Figure 3, albeit the SCs for
high spontaneous rate fibres are very close for
the three levels. Moreover, the low spontaneous
rate fibre shows a slight decline in SC from ICI
from 2 ms ICI to 3 ms ICI for 79 dB pe SPL.
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Figure 6: Synchronisation coefficient as function of
interclick interval modelled for high spontaneous rate
fibres and low spontaneous rate fibres. The results are
preliminary.

4. DISCUSSION

In the process of modelling average fibre
response it was noticed that some fibres deviate
considerably from the average response. An
example of such a deviation (taken from the
original study) is shown in Figure 7.

The SC/ICI-function for this one fibre is non-
monotonic in contrast to the average response of
the fibres. Examining the individual fibres from
the original study it turns out that more than 40
percent of the fibres show non-monotonic
behaviour. It has neither been possible to explain
the non-monotonic behaviour nor has it been



possible to find any systematic distribution of
local minima for the individual fibres albeit
individual fibre responses to click stimuli should
be strongly dependant on the characteristic
frequency of the fibre [4].

High Spontaneous (single fibre)

07

06

A pd
N

Sync. Coefficient

03

02

01 . . .
1

2 3 4

Interclick Interval (ms)

Figure7: Synchronisation coefficients as a function of
interclick interval for a single fibre as recorded in [4].
Note the non-monotonic function. Although this fibre
represents atypical behaviour the results cannot be
readily discarded as erroneous since many fibres show
a similar atypical behaviour.

Unpublished data from [4]. Shown with permission
from the authors.

5. FUTURE WORK

The modelling results presented here are
preliminary in nature. An obvious improvement
of the modelling efforts will involve a variety of
fibres rather than just the two types (HSR and
LSR) applied here. Moreover, a distribution of
best frequencies of the fibres would be desirable.
The original study [5] only provides some details
with respect to fibre characteristics all of which
have been applied in the simulations.

The goal of future analysis of the individual fibre
data will be to find 1) an explanation of the non-
monotonic behaviour SC/ICI-functions and 2) a
systematic relation between fibre characteristics
and the local minima of the SC/ICI-function.
Although there is no guarantee that answers to
the above questions exist it seems reasonable to
at least investigate the possibility.
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Appendix C

Danavox article

This appendix contains a copy of Christiansen [2002]. The page content in the
present version is scaled from A5, used in the proceedings, to the regular paper
size used throughout the thesis. The original proceedings page numbers have
been omitted while thesis page headings are included.
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Introduction

Models of the auditory periphery have been proposed addressing either selected parts of the
physiology e.g. (Meddis, 1986) or psychoacoustic phenomena e.g. (Kollmeier et. al., 1993).

Today the availability of such models makes it possible, in principle at least, to model the auditory
signal processing from the outer ear to the auditory nerve (AN) for normal listeners as well as for
impaired listeners.

This paper is part of a Ph.D.-project with the running title “A Model for the Representation of
Speech Signals in Normal and Impaired Ears”. The aim of the project is to gain a more detailed
understanding of the way speech signals are encoded in the AN, and to comprehend the relevance
of the encoded signal to speech cues. Moreover, consider a normal hearing person and a person
with a sensorineural hearing loss. How does the perception of sound diverge for these two persons?
The answers to this fundamental question is sought in the representation of sound in the AN.

This paper examines one of many possible Basilar membrane (BM) models. It is based on results
from pulsation threshold experiments performed by Plack and Oxenham (Plack and Oxenham,
2000). The results of this psychoacoustic experiment are used in the design of a Dual-Resonance-
Non-Linear filter (DRNL), which mimics the response of the BM in some detail (Meddis et. al.,
2001). In particular the DRNL reproduces the nonlinearity with respect to stimulus level, much in
line with recent signal processing models e.g. the gamma chirp filter (Irino and Patterson, 1997).



The work previously done (Oxenham and Plack,1997, Plack and Oxenham 2000, Meddis et. al.,
2001, Lopez-Poveda and Meddis, 2001), involved simple stimuli i.e., pure tones or clicks. This
paper presents tentative results of DRNL-filtering of speech signals. Moreover, the DRNL
modeling of BM is enhanced to simulate a sensorineural hearing loss.

Cochlear models: A quick walkthrough
The term cochlear model is most frequently used for models describing the micro- and/or

macromechanics of the inner ear. Table I presents an attempt of grouping the various types of
cochlear models.

Mechanical Conceptual
Macro- Micro- Other Signal processing
191 2% | 37 | Passive | Active | Multi | Other Parallel Filters in Other
modal filter paths series
Table I:

An attempt at categorising cochlear models. For details please refer to the text.

Macromechanical models

The macromechanical models focus on the fluids in the cochlear encasement and their interaction
with the organ of Corti. Hence they are also known as hydromechanical models. The BM itself is
reduced to a single mass with very simple viscoelastic properties.
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Figure 1:
Schematised drawing of the cross section of one cochlear turn.
Top panel shows the fluid filled scalae and the organ of Corti.
Lower panel shows a magnified view of the Organ of Corti.
Reprinted with permission (Hawkins et al., 1996).
Copyright Springer-Verlag.
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One-dimensional models, 1¢ in Table I, provide response along the base-to-apex dimension. Two-
dimensional models also incorporate displacement in height across the cochlear partition. Three-
dimensional models include a description of the radial movement across the BM (cf. Figure 1).
Frequently, one-dimensional models are expressed in terms of the pressure difference between the
upper- and lower- scalae at the same place on the BM.

As the cochlea narrows from base to apex the scalae-fluid-to-BM-mass ratio decreases. The two-
dimensional models take this into account yielding a more accurate description. In particular the
steepness of high frequency fall-off is better modeled. Arcuate and pectinate zones along the radial
dimension of the BM (cf. Figure 1, lower pane) show differences in compliance. Three-
dimensional models have been proposed to take this fact into account. Historically, the success of
three-dimensional models has been hindered by the considerable analytical complexity involved.
Furthermore, computer power has been a limiting factor.

The discovery of evoked otoacoustic emissions (Kemp,1978) has lead to the emergence of active
macromechanical models — models that mimic the active production of kinetic energy in the
cochlea. This subdivision of the macromechanical models is not shown in Table 1.

Alone the macromechanical models fail to explain significant experimental results (Hawkins et. al.,
1996), and today macromechanical models primarily serve a complementary role to the
micromechanical models.

Micromechanical models

Turning now to the micromechanical models the focus changes from the fluids in the cochlea to the
mechanical properties of the various components constituting the organ of Corti. The complex
anatomy of the organ of Corti makes modeling of the mechanical properties an intricate matter
subject to ubiquitous speculation.

Micromechanical models are categorised in terms of their “degrees of freedom” rather than their
dimensionality. The degrees of freedom are, in turn, determined by the level of detail at which the
mechanics of the physiology is modeled. The degrees of freedom are not shown in Table I. As the
macromechanical models the micromechanical models can be either passive or active.
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Multimodal models allow more than one wave propagation mode. They are either
macromechanical or micrmechanical. Multimodal, micromechanical models are “state-of-the-art”
in cochlear modeling eg. (Sen and Allen, 1999).

Extensive and detailed experimental animal- as well as human data is necessary for further progress
in the area is to occur. Thus progress hinges on improved measuring techniques. Particularly mid-
frequency human cochlear responses are in demand, but also simultaneous measurements of
pressure and volume velocities would be valuable for shedding light on the active cochlear
mechanisms (Hawkins et. al., 1996).

Other mechanical models haven been realised e.g. physical replica of the BM mounted inside a
duct as performed at the IBM Zurich, Research Laboratory.

Filter models

Modelling BM response can also be performed at a “conceptual” level i.e., signal processing
schemes can be applied in order to produce the desired response irrespective of the intrinsic
physiology and mechanics. An approach similar to the one-dimensional model described above is
an arrangement of cascaded filters each tuned to a lower frequency than the preceding filter. The
travelling wave of the cochlea is modeled as the signal travels along the cascaded filters.

An alternative approach is to present the signal to a filter bank i.e., filters in parallel where each
filter represents one place on the BM. The DRNL filterbank presented here falls in this latter
category of cochlear models.

The Pulsation Threshold Experiment

The foundation of the DRNL is the pulsation threshold experiment. The pulsation threshold
technique first introduced by Houtgast (Houtgast, 1972), can be described as follows:

An interrupted sound is perceived as continuous if another sound fills the interruption period with
sufficient energy. Take the example of a pure tone signal (T) and a lower frequency pure tone
masker (M). T is alternated with M. Consider the place at the BM with best frequency (BF) equal to
that of T. If the BM response to M at this place is equal to or greater than the response to T, the
stimulus will be perceived as continuous. For a given frequency and level of T, the pulsating
threshold is determined as the level of M at which the perception changes from pulsating to
continuous. Frequently a 0.6 T-to-M frequency ratio is used (Plack and Oxenham, 2000).



163

If T and M are sufficiently far apart in frequency it can be assumed that the BM at the BF of T
responds compressive nonlinearly to any increase in the level of T e.g. an increase of 20 dB in the
level of T results in (much) less than 20 dB increase in BM response. Moreover, the BM responds
liniearly to any increase of the level of M at this place e.g. a 20 dB increase in the level of M yields
a 20 dB increase in response. Hence BM compression can be estimated as follows:

For a given level the pulsation threshold is determined. An increase in the level of T is applied and
the pulsation threshold is determined for this level. The compression ratio is simply the T-to-M
level ratio. By reiterating the method for multiple levels and frequencies the shape of the masking
function can be estimated.

The method is remarkable in that it gives an estimate of BM compression from a psychoacoustic
experiment. This is particularly interesting since direct measurements are only possible at the apical
and basal turns of in vivo animal cochlea at present (Plack and Oxenham, 2000). The accuracy of
the compression ratio determined using pulsation threshold is quite good, although care must be
taken in order to avoid the caveats inherently associated with psychoacoustic experiments.

The DRNL filter

The DRNL models BM response for a given place along the BM. It is based on the same premise as
that of the pulsation threshold experiment: At a given place on the BM, the response to a tone, with
frequency equal to BF for this place, is compressively nonlinear. In contrast, the BM response to a
tone of (much) lower frequency is linear at the same place on the BM.
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Figure 2:

The DRNL construction. Top row shows the linear processing path.
The lower row shows the nonlinear path.
CFjip = Center frequency of the linear path
GT filters = Gamma tone filters
g = linear gain
CF,, - Center frequency of the nonlinear path
a,b,c = broken stick nonlinearity parameters (see text)
From (Meddis et.al., 2001).

The DRNL has two processing paths: One linear and one nonlinear (cf. Figure 2). The output is the
sum of the two processing paths. The linear path consists of a linear gain, a bandpass and a lowpass
filter in cascade. The nonlinear path consists of a bandpass filter, a compression function followed
by a second bandpass filter. The bandpass filters themselves are cascaded gamma tone filters. The
low pass filters consists of four cascaded second order Butterworth filters. Since the center

frequency (CF) of the linear path deviates slightly form the CF of the nonlinear path the filter
shows “dual resonance” hence the name.
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The broken-stick nonlinear function used:
(t) = sign(x(1)) - min(alx(0)], b}x(1)] ) Q)

where x(?) is the input,
¥y(1)is the output,
a,b and c are parameters of the model.

The input to the filter is stapes motion hence a middle-ear transfer function is applied. The output
of the model was chosen to be BM vibration velocity for the given place on the BM. The
alternative, BM displacement, could have been used, but it was found that compression threshold
changed less with respect to frequency when using the velocity measure (Meddis et. al., 2001).

Animal data evaluation

In (Meddis et. al., 2001) DRNLs were fitted to chinchilla and guinea pig data. In order to evaluate
the quality of the model a number of comparisons to measurements in animals were performed. The
comparisons were done for:

1. Basic BM input/output function
The results for the 800 Hz BF for the chinchilla, 10 kHz and 18 Hz BF for the guinea pig
where modeled successfully. Remarkably, the notches in BM response reported in animal
data at 100 dB SPL was also modeled, at least for the 10 kHz BF.

2. BM phase response
The phase lag is greater in the model than in the animal data for high intensities and
frequencies just above BF. Improvement might be achieved by means of broader filters in
the nonlinear path.

3. Two tone suppression (2TS)
2TS where not found at the apical site (800 Hz) as expected. Strong 2TS were successfully
modeled for the basal sites (10 kHz and 18 kHz).

4. BM impulse response
There are some discrepancies between animal data and model impulse response. The culprit
is speculated to be the imperfection of clicks produced by loudspeakers in the animal
studies. A simulation of DRNL response to “imperfect clicks” supports the speculation.
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5. Distortion products
The distortion products 2f1-f2 and 3f1-2f2 were tested for f1=12.5 kHz and 2=14 kHz for
50 dB SPL stimulus at BF=10 kHz. The results were comparable to the measurements
available.

For more details please refer to (Meddis et. al., 2001).

From animal data to a human filterbank

The basic construction of the DRNL was based on animal data. This section presents a description
of how the human DRNL filterbank was developed.

DRNL parameter Description
CFiin The center frequency of the linear filter path
BWi, The filter bandwidth for the linear filter path
g The gain factor of the linear path
CFn The center frequency of the nonlinear filter path
BWqu The filter bandwidth for the nonlinear filter path
a Broken-stick nonlinearity sensitivity parameter
(see equation (1))
b Broken-stick nonlinearity parameter
(see equation (1))
c Broken-stick nonlinearity compression parameter
(see equation (1))
Table I1:

The DRNL parameters fitted to human data separately for each of the six BFs.

Pulsation threshold data for BFs at 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz were
measured (Plack and Oxenham, 2000). The data were collected for signal levels ranging from 25
dB SPL to 85 dB SPL in steps of 5 dB. From this, six DRNLs corresponding to the BFs of the
pulsation threshold data were constructed. The DRNL parameters in Table II were calculated so as
to fit the experimental data.
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Figure 3

DRNL response for two input levels.
Notice the change in shape and BF.
From (Lopez-Poveda and Meddis., 2001)

At low signal levels the nonlinear path dominates the output, at higher levels the linear path
dominates the output.

On the basis of the six DRNLs and the assumption in equation (2) a human filterbank is
established. The set of regression coefficients are fitted to match the six filters.
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log,,(Ppry, ) = Py +mlog,,(B) )]

where Ppgyy is a given DRNL-parameter from Table II,
po and m are regression coefficients pertaining to Ppgyy
B is the BF at the point of the BM which the filter is calculated for.

Discussion

The DRNL filterbank described here falls in the category of a signal processing model with filters
arranged in parallel (cf. Table I).

The advantage of the approach is its ability to reproduce a range of experimental data while
maintaining fast computation (Meddis et. al., 2001). The motivation for developing DRNL filters is
the necessity to have a processing stage preceding the AN/Inner hair-cell (IHC) complex the
eventual goal being AN response to complex stimuli.

The good agreement with experimental data is encouraging and widens the scope for further
application of DRNLs. Obvious candidates for future research are hearing impairment modeling
and BM response to complex stimuli.
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Figure 4:
Spectrogram for the steady-state part of the vowel ‘a’
in the English word ‘jar’ spoken by a male speaker.
Two formants can be seen F;=600 Hz, F,=1300 Hz.
The spectrogram was created using the software package ‘Praat’.

Figure 4 shows a part of the spectrogram for the vowel ‘a’ as in the English word ‘jar’. The selected

part of the spectrogram corresponds to the lower frequencies of the steady-state part of the vowel.
This stimulus is used throughout this section.
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Figure 5:
Simulated BM response for a normal hearing person.
The stimulus is the English vowel ‘a’ as in the word ‘jar’ spoken by a male speaker.
Presentation level is 60 dB SPL Only the steady-state part of the response is shown.
Note that the response shown includes contributions from the outer- and middle ear.

The DRNL filterbank modeling human BM response described in this paper was implemented in
MatLab. The simulations shown in this section have been performed using this implementation.
The DRNL parameters used are adopted from (Lopez-Poveda and Meddis, 2001).

Figure 5 shows the BM response to the steady-state part of the vowel shown in Figure 4. The first
formant F; at 600 Hz gives a maximum excitation at BF around 500-600 Hz in Figure 5. The
response to the second formant F, at 1300 Hz is not visible in Figure 5. It is difficult to interpret the
results in greater detail at this stage. Note that transfer functions of the outer- and middle ear are
incorporated in the response shown in Figure 5.
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Figure 6:
Simulated BM response for a person with a mild hearing loss.
The stimulus is the English vowel ‘a’ as in the word ‘jar’ spoken by a male speaker.
Presentation level is 60 dB SPL. Only the steady-state part of the response is shown.
Note that the response shown includes contributions from the outer- and middle ear.

Modelling sensorineural hearing loss can be achieved by modifying the broken-stick nonlinearity
parameters a, b and ¢ of the DRNL (cf. Table II and equation (1)). Indeed this has been successfully
demonstrated in (Lopez-Poveda and Meddis, 2001).

Figure 6 shows the simulated BM response for a person with a mild, flat hearing loss to the steady-
state part of the vowel shown in Figure 4. The first formant F; at 500 Hz has a clear correspondence
in Figure 6. The extent of the maximum excitation of the BM, however, is greater than for the
normal hearing person (cf. Figure 5). This can be interpreted as the well-known ‘broader auditory
filters’ associated with sensorineural hearing loss. The repsonse to the second formant F; at 1300
Hz is not visible in Figure 6.
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The simulations presented in this section are based on BM models previously published. They
show that it is possible to model BM response to complex stimuli for normal hearing as well as for
people with a sensorineural hearing loss. The results are tentative and the accuracy of the model in
the context of sensorineural hearing loss and complex stimuli is hard to ascertain. In the course of
the Ph.D.-project from which this paper originates, the accuracy will be examined both
qualitatively and quantitavely.

Conclusions and future work

This paper presented the DRNL — a signal processing scheme modeling BM response as
implemented in (Meddis et. al. 2001, Lopez-Poveda and Meddis, 2001). A DRNL filterbank was
developed and fitted to human data. Further, speech stimulus was presented to this human DRNL
filterbank. The filterbank parameters were manipulated to mimic a mild sensorineural hearing loss
and the response to speech stimulus was simulated. The tentative results are promising although
only responses to vowels were considered.

This paper only examines the steady-state part of vowels. The reason is that the transient nature of
speech requires a realistic response from the human DRNL filterbank. While DRNLs have proven
their effectiveness in response to non-transient stimulus the accuracy of the DRNLs in response to
transient stimulus is unclear.

The discrepancies from measurements in phase response combined with the inaccuracies of the
impulse response of the DRNLSs support the speculation that DRNLs may not be well suited for
modeling BM response to speech — at least not in the specific form the DRNLs were presented
here.

The DRNL filterbank was applied for modeling sensorineural hearing loss. Arguably this modeling
effort was quite crude, but if the hearing loss is characterised only by means of an audiogram,
which is quite common, surely the model cannot be expected to provide more detailed results. A
more detailed description of the nature of the sensorineural hearing loss viz. in terms of dead zones
(Moore et. al., 2000) will pose yet a new challenge for DRNL models.



This paper is part of a Ph.D.-project which seeks to provide a model of the auditory periphery
going from the outer ear to the AN. The ambition is to build a model which is realistic in terms of
response to complex stimuli i.e. realistic in the frequency domain and in the time domain. A
significant part of the model is the response of the BM as presented in this paper. In the near future
work on the temporal aspects of the DRNL filter response will be performed in order to ensure
realistic response to speech, in particular the transient parts of speech. Subsequent work related to
the IHC/AN complex is planned. Sensorineural hearing loss is an integral part of all the modeling
efforts pertaining to the project.

The DRNL was proposed as a component in a larger scale model modeling response to complex
stimuli in the auditory periphery (Meddis et. al., 2001). Although some problems with phase
response and to some extent impulse response remain open, the DRNL provides a valuable and
directly applicable contribution to future models of the auditory periphery or even higher levels of
the auditory pathway.
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Appendix D

Guided trial-and-error
method

This appendix describes the method employed when trying to optimise the
DRNL parameters to account for the forward data experiment Lopez-Poveda
et al. [2002].

Vibration at a given place on the basilar membrane at a time At after offset
is of a given signal is a function of probe level [, probe frequency f, and time
interval At;

V = E(f,1,At) (D.1)

where V' is basilar membrane velocity and F is a “general excitation function”.
Since the temporal window is essentially a temporal window V can be expressed
as

V = Ey(f,1)e A0/7 (D.2)
where F; is excitation function, and 7 is a time constant related to the temporal
window.

Since the probe level is fixed at 14 dB SL, we assume that the excitation pro-
duced by the probe is linearly related to the sound level [ in Equation D.2 with
At =0 . We can thus express the level of the probe:
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E(f,14dBSPL) = yP (D.3)

where P is the sound pressure level an y is the proportionality factor converting
to excitation.

Assuming that forward masking thresholds occur when masker and probe pro-
duce a “comparable level of excitation” Equations D.2 and D.3 can be combined:

Ey(f,14dBSPL) = yPe”t)/™ (D.4)

The value of 7 can be estimated from the data as in Lopez-Poveda et al. [2002].
The proportionality factor y can be estimated based on physiological obser-
vations close to the absolute threshold. The values used in the thesis were
7 =0.036 and y = 10~

With these assumption we can plot an input/output function based on Equa-
tion D.4 and the forward masking threshold data form Lopez-Poveda et al.
[2002]. An example of this is shown in Figure D.1.

The modelled forward masking thresholds is now compared to the calculated I/O-
function. This is simply done by calculating the basilar membrane velocity in
response to pure tones at the level of the measured forward masking thresholds.
Such a comparison is shown in Figure D.1

In this manner the original task of manipulating DRNL parameters to simulate
forward masking thresholds has been transformed into a task of matching input
output functions. This makes the task considerably easier in that the effects of
manipulating the DRNL parameters are more readily understood. For instance
increasing the parameter g (linear gain) will move the red line upward. This
way of visualising the effects of changing DRNL parameters enables a much
faster fitting process. The computations involved are all straightforward and
the effects of new DRNL parameters can be estimated very quickly. However,
to precisely check and compare forward masking thresholds the time consuming
method described in Section 3.2.3 has to be followed.

As indicated above the method provides a visual representation of an approx-
imation to the forward masking threshold (sometimes called the “chi-by-eye”
approach [Press et al., 2002]). The way the method was employed throughout
the thesis was to get a good fit from a visual point view i.e. no data points were
considered more important than others.
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Figure D.1: Comparisons of input/output functions for measure data (points) and simu-
lated data (lines). The colours designate the different probe-to-masker frequency ratios. The
abscissa values designate the measured forward masker levels. The ordinate is the excitation
level form the model (lines) and the calculated values (points). The example above is for the
test subject ELP, centre frequency 4kHz
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Appendix E

Forward masking simulation
results

This appendix presents the result of the simulations for the three forward mask-
ing studies examined in the thesis. While the details of the most important
simulations are presented and discussed in the text this appendix shows the
“second-best” results.
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E.1 Forward masking with varying masker
frequencies

This section presents complementary simulation results for the experiment pre-
sented in Section 3.2.1.
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Figure E.1: Forward masking study with varying masker frequencies. The RMS errors was
4.17. The criterion value k was 1.5
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Figure E.2: Forward masking study with varying masker frequencies. The RMS errors was
4.05. The criterion value k was 1.3
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E.2 Forward masking with varying probe and
gap durations

This section presents complementary simulation results for the experiment pre-
sented in Section 3.2.2.
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Figure E.3: Forward masking study with varying probe and gap durations. The RMS errors
was 2.61. The criterion value k was 1.30
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Figure E.4: Forward masking study with varying masker frequencies. The RMS errors was
3.38. The criterion value k£ was 2.00
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E.3 Forward masking with varying frequencies
and gap durations

This section presents complementary simulation results for the experiment pre-

sented in Section 3.2.3.
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Figure E.5: Comparison of forward masking results for the on frequency results. The criterion
value k was varied across frequency. This plot is shows the best fit with the TW 1 temporal
window.
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Figure E.6: Comparison of forward masking results for the on frequency results. The criterion
value k was varied across frequency. This plot is shows the best fit with the TW 2 temporal

window
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Appendix F

Inner hair cell and auditory
nerve complex parameters

Table F.1: Inner Hair Cell Receptor Potential parameters as used in the model. From Sumner
et al. [2002] and Shamma [1986]

B, Endocochlear potential Volt 1.00 x 1073
Ey Potassium reversal potential ~ Volt —7.045 x 1074
GO Resting conductance Siemens 1.974 x 107°
Gk Potassium conductance Siemens 1.8 x 1078
B/ Correcttion, R,/(R: + R)) Scalar 0.04
GI% Max mechanical conductance Siemens 8 x 1078
S0 Displacement sensitivity meter ! 8.5 x 1078
U Displacement offset meter 7% 1079
S1 Displacement sensitivity meter ! 5x 1077
Uy Displacement offset meter 7x107°
Cm Total capacitance Farad 6 x 10712
Te Cilia/BM time constant Seconds 2.13 x 1073
Cliia  Cilia/BM Coupling gain dB 16
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Table F.2: The Inner Hair Cell and Auditory Nerve Complex Parameters shared for all fibre

types. From Sumner et al. [2002]

P Scalar (seconds[Ca?T]?) 1 2 x 10%2
FEc. Reversal Potential Volt 6.6 x 1072
Bea Scalar 400
YCa Scalar 130
Tm Calcium current time constant seconds 1x107*
Tco  Calcium diffusion time constant seconds 1x107*
y Replenishment rate seconds ! 10
l Loss rate seconds ™! 2.58 x 103
x Reprocessing rate seconds ™! 6.63 x 10
r Recovery rate seconds ™! 6.58 x 103

Table F.3: The Inner Hair Cell and Auditory Nerve Complex Parameters distinguishing fibre

types. From Sumner et al. [2002]

HSR MSR LSR
G Max Calcium Conductance 1072 Siemens 8 4.5 2.75
[Ca?T]4n,  Ca concentration threshold x10~11 4.48 3.2 4
M Max free transmitter quanta  Scalar 10 10 6

Table F.4: The Inner Hair Cell and Auditory Nerve Complex Parameters distinguishing fibre

types. From Sumner et al. [2003]

HSR
G Max Calcium Conductance 1072 Siemens 7.2
[Ca?T]4n,  Ca concentration threshold ~— x10~!4 0

M Max free transmitter quanta Scalar 10

MSR LSR
2.4 1.6
3.35 1400
10 10
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