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The high energy demands in our society pose great challenges if

we are to avoid adverse environmental effects. Increasing energy

efficiency and the reduction and/or prevention of the emission

of environmentally harmful substances are principal areas of focus

when striving to attain a sustainable development. These are the

key issues of the CHEC (Combustion and Harmful Emission Control)

Research Centre at the Department of Chemical Engineering of the

Technical University of Denmark. CHEC carries out research in

fields related to chemical reaction engineering and combustion,

with a focus on high-temperature processes, the formation and

control of harmful emissions, and particle technology. 

In CHEC, fundamental and applied research,  education and know-

ledge transfer are closely linked, providing good conditions for the

application of research results. In addition, the close collabora-

tion with industry and authorities ensures that the research activ-

ities address important issues for society and industry.

CHEC was started in 1987 with a primary objective: linking funda-

mental research, education and industrial application in an inter-

nationally orientated research centre. Its research activities are

funded by national and international organizations, e.g. the Tech-

nical University of Denmark.
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Summary 
 
 

In this work, the key physical properties of non-ionic and ionic surfactant solutions, 

such as the critical micelle concentration (CMC) and the octanol-water partition coefficient 

(Kow), are studied by molecular thermodynamic methods based on UNIFAC. The mean 

activity coefficients of the aqueous electrolyte and organic electrolyte solutions are modelled 

by a modified Achard’s UNIFAC model proposed in this work. Some of important properties 

in the surfactant solutions, such as the hydrophilic-lipophilic balance (HLB), the Krafft point 

(KP), the cloud point (CP), the aggregation number (ng), the toxicity (EC50) and the bio-

concentration factor (BCF) are also investigated. And suitable correlations have been 

developed.  

Surfactant solutions are unique systems because the surfactant molecules form micelles 

in aqueous and non-aqueous solvents by self-assembly under the hydrophobic interaction 

with solvent molecules. Surfactant solutions have attracted much attention from academia 

and industry because they play important role in different industrial areas, e.g. chemical and 

oil industry, pharmaceutical and bio-industries, paper, food and film industries. 

In this work, different thermodynamic frameworks for the micelle formation of 

surfactant molecules in aqueous solution are systematically reviewed and compared. The 

method proposed by Chen et al. (Chen, C.-C., AIChE J., 42, 3231, 1996; Chen, C.-C., C. P. 

Bokis, and P. Mathias, AIChE J., 47, 2593, 2001) is selected for studying the micelle 

formation of surfactant molecules in aqueous solutions. 

Based on the method of Chen (1996), the CMC of non-ionic surfactant solutions is 

correlated and predicted successfully with the UNIFAC method. In this step, a new UNIFAC 

functional group is introduced. The necessary interaction parameters for the new group are 

obtained from vapour-liquid equilibrium data. 

In order to correlate the CMC of ionic surfactant solutions, an electrolyte UNIFAC 

model proposed by Achard et al. (Achard C., C. G. Dussap, and J. B. Gros, AIChE J., 40, 

1210 , 1994a; Achard C., C. G. Dussap, and J. B. Gros, Fluid Phase Equilibria, 98, 71, 

1994b) is modified and used to correlate the mean ionic activity coefficient of aqueous 

electrolyte and organic electrolyte solutions. It was found that the structural parameters (Q, 
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R) of ions used in the work of Achard and others do not follow Flory-Huggins assumption 

(Q/R 1). Thus, a new method is developed to calculate the Q, R of ions from ionic radii 

using the condition Q/R<1. The mean activity coefficients of some aqueous electrolyte 

solutions are correlated with the modified Achard method and compared with the electrolyte 

NRTL and the extended UNIQUAC models. The mean activity coefficients of five sodium 

carboxylate systems are correlated simultaneously with the modified Achard model. The 

correlation results show a good agreement with the experimental values. 

Based on the work of Chen et al. (2001), the CMC of sodium alkyl sulphates, sodium 

alkyl sulfonates and potassium carboxylates are successfully correlated using the modified 

Achard model. 

Furthermore, the Kow of phthalates and non-ionic surfactants are predicted with 

different UNIFAC methods and commercial software. The prediction results are compared 

with the few experimental data available. 

Finally, some correlations for properties of surfactant solutions, i.e. HLB, KP, CP, ng, 

EC50 and BCF are presented. 
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Summary in Danish – Resume på dansk 

         I Ph.D arbejdet er de vigtige fysiske egenskaber af ikke-ioniske og ioniske 

surfaktantopløsninger, så som kritisk micelle koncentration (CMC) og oktanol-vand 

fordelingskoefficient (Kow), undersøgt ved molekylære termodynamiske metoder baseret på 

UNIFAC. Middel-ion-aktivitetskoefficienter for vandige elektrolytopløsninger og organiske 

elektrolytopløsninger er modelleret vha. en modificeret Achard’s UNIFAC model foreslået i 

denne afhandling. Nogle vigtige egenskaber for surfaktantopløsninger, som hydrofil-lipofil 

balance (HLB), Krafft punkt (KP), ”cloud”-punkt (CP), aggregationstal (ng), toksisitet 

(EC50) og bio-koncentrationsfaktor (BCF) er ligeledes bestemt og passende korrelationer er 

udviklet. 

        Surfaktantopløsninger er unikke systemer, fordi surfaktantmolekyler i vandige og ikke-

vandige opløsningsmidler danner miceller ved selvorganisening ved hydrofob vekselvirkning 

med solventmolekyler. Surfaktantopløsninger har fået megen akademisk og industriel 

opmærksomhed, fordi de spiller en vigtig rolle på forskellige industrielle områder, f.eks. olie- 

og kemisk-industri, farmaceutisk- og bio-industri, papir, fødevare og film industri. 

     I Ph.D. arbejdet, er forskellige termodynamiske metoder for micelledannelse af 

surfaktantmolekyler i vandig opløsning systematisk undersøgt og sammenlignet. Metoden 

foreslået af Chen et al. (Chen, C.-C., AIChE J., 42, 3231, 1996; Chen, C.-C., C. P. Bokis, and 

P. Mathias, AIChE J., 47, 2593, 2001) er udvalgt for yderligere at undersøge micelledannelse 

af surfaktantmolekyler i vandige opløsninger. 

   Baseret på Chens metode (1996), er CMC af ikke-ioniske sufaktantopløsninger korreleret 

og forudsagt med succes ved anvendelse af UNIFAC metoden. I dette trin er en ny funktionel 

gruppe introduceret i UNIFAC. De nødvendige interaktionsparametre for denne nye gruppe 

er hentet fra damp-væske ligevægtsdata. 

    For at korrelere CMC for ioniske surfaktantopløsninger, er en elektrolyt UNIFAC model, 

foreslået af Archard et al. (Achard C., C. G. Dussap, and J. B. Gros, AIChE J., 40, 1210 , 

1994a; Achard C., C. G. Dussap, and J. B. Gros, Fluid Phase Equilibria, 98, 71, 1994b), 

blevet modificeret og anvendt til at korrelere middel-ion-aktivetetskoefficienten af vandige 

elektrolyt- og organiske elektrolytopløsninger. Det viste sig, at ion strukturparametrene (Q,R) 

brugt i Achards og andres arbejde ikke følger Flory-Hugggins antagelse (Q/R 1). Derfor er 
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en ny metode udviklet til at beregne Q, R ud fra ionradiier ved brug af antagelsen (Q/R<1). 

Middel-ion-aktivitetskoefficienterne for nogle vandige elektrolytopløsninger er korreleret 

med den modificerede Achard metode og sammenlignet med elektrolyt NRTL og Extended 

UNIQUAC modellen. Middel-ion-aktivitetskoefficienterne for fem natriumcarboxylat-

systemer er korreleret samtidig med den modificerede Achard model. 

Korrelationsresultaterne viser god overensstemmelse med eksperimentelle data. 

     Baseret på Chen et al.’s arbejde (2001), er CMC af natriumalkylsulfater, 

natriumalkylsulfonater og kaliumcarboxylater, korreleret med succes ved brug af den 

modificerede Achard model. 

     Ydermere, er Kow for phthalater og ikke-ioniske surfaktanter forudsagt ved anvendelse af 

forskellige UNIFAC metoder og kommercielt software. De forudsagte resultater er 

sammenlignet med de få eksperimentelle data, der er til rådighed. 

     Sluttelig er nogle korrelationer for surfaktantopløsningers egenskaber, f.eks. HLB, KP, 

CP, ng, EC50 and BCF, præsenteret. 
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Chapter 1 Introduction 
 

Surfactants  

Surface-active compounds (surfactants) are chemicals that show ability to adsorb at 

interfaces. The surfaces (interfaces), at which surfactants adsorb, can be between two 

immiscible liquids, the liquid-gas (air) surface or between a solid and a liquid. The 

surfactants are also often called amphiphiles, surface-active agents or “soft-matter”. 

Surfactant molecules have two parts: a hydrophilic (polar) part which likes water, and a 

hydrophobic (non-polar) part which does not. The hydrophobic part of a surfactant molecule 

is soluble in oil (non-polar solvents) but is not very soluble in water and other polar solvents. 

The hydrophilic part, on the other hand, has a great affinity to water but is not very 

compatible with non-polar solvents. The amphiphilic nature of these molecules results in 

many unique phenomena when surfactants are dissolved in aqueous or non-aqueous 

solutions. Although surfactants are often present in very small amounts in solution, they do 

affect the overall properties of the system greatly, such as surface tension, osmotic pressure, 

solubility, etc., because of their ability to adsorb at surfaces and to form micelles in the 

solutions. The characteristics of solutions containing surfactants, such as detergency, wetting, 

emulsification, dispersion and foaming, have been known for a long time and have many 

practical applications in daily life and industry. Many industrial products, like soap, 

shampoo, washing powders, etc. contain surfactants. The characteristics of surfactants have 

attracted huge attention from the scientific community. For example, in 1991, de Gennes’s 

Nobel Lecture was on “Soft Matter”, i.e. polymers, surfactants and liquid crystals.   

When surfactants are dissolved in aqueous solutions, the surfactant solution has a 

completely different behaviour. In the aqueous surfactant solution, at fairly well defined 

concentration, abrupt changes occur in several physical properties, such as osmotic pressure, 

electrical conductance and surface tension. This anomalous behaviour could be explained in 

terms of formation of organised aggregates of the surfactant molecules (the micelles) in 

which the hydrophobic hydrocarbon chains are orientated towards the interior of the micelle, 

leaving the hydrophilic groups in contact with the aqueous medium. The concentration above 



2                                                                                                              Chapter 1 Introduction  

 

which micelle formation becomes appreciable is termed critical micelle concentration 

(CMC).  

 

Thermodynamic Modelling of the Surfactant Solutions 

Understanding and modelling the surfactant solutions are focused on some suitable 

properties. These are, for surfactant solutions, the surface tension, the aggregation number, 

the CMC, the Krafft temperature, the cloud point, etc., all of which have been studied by both 

experimental and theoretical methods. In surfactant solutions, the micelle formation (also 

called self-association or self-assembly) is a unique phenomenon. All properties in surfactant 

solutions are related to the micelle formation of surfactant molecules. Among these 

properties, the CMC and the aggregation number are possibly the most important properties 

for surfactant solutions. The CMC gives the condition of micelle formation. The aggregation 

number, which is the number of surfactant molecules making up a micelle, describes the 

initial ‘size’ of a micelle, the growth of the micelle and the phase separation of the surfactant 

solution.  

Many experimental and theoretical publications about micelle formation in surfactant 

solutions are presented in the literature. Although great progress has been made in 

experimental and theoretical aspects of surfactant solutions, there are still gaps between 

understanding of surfactant solutions and practical applications. Research work on surfactant 

solutions is somewhat limited to experimental study and documentation of the observed 

behaviour (Hines, 2001). The theoretical understanding is still rather poor. A complete 

thermodynamic or physical framework has not been established. 

Several thermodynamic treatments or frameworks have been proposed for the micelle 

formation in aqueous surfactant solutions. In these frameworks, the micelle formation is 

treated as a pseudo-phase formation, a mass-action process, etc. in solution. These treatments 

capture at least partly the phenomena of the micelle formation.  

 

Working Strategy 

The main purpose of this research project is not to set up a completely new 

thermodynamic theory for micelle formation. Rather, the objective of this work is to develop 
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a thermodynamic method for the micelle formation and use it to correlate or predict the 

important properties of surfactant solutions. The CMC of surfactant solutions is the main 

property studied by molecular thermodynamic methods.  

Recently, a thermodynamic framework was proposed by Chen et al. (1996, 2001) to 

describe the micelle formation of non-ionic and ionic surfactant solutions. In Chen’s work, 

the activities of components or ionic species are combined with a thermodynamic expression 

for the micelle formation. A local composition based activity coefficient model, the NRTL 

(nonrandom, two-liquid) equation, is used to calculate the activities.  

From an industrial application viewpoint, it would be convenient to develop structure 

activity models possibly based on group contributions, which can predict the important 

properties of surfactant solutions. The universal functional activity coefficient (UNIFAC) 

model is such a group contribution method for the estimation of activity coefficients. 

Comprehensive studies of UNIFAC have been presented by several researchers (see 

Appendix A), but not for the surfactant solutions until very recently (Cheng, et al. 2002, 

Flores, et al. 2001). Several versions of UNIFAC with different group interaction parameters 

are readily available in the literature. Due to the extensive use of UNIFAC in the chemical 

industry and its large amount of group parameters, it is interesting to explore its applicability 

to surfactant solutions. Therefore, the UNIFAC model will be used in this work to study the 

CMC with the thermodynamic treatment of Chen et al. (1996, 2001). 

Another property studied in this work is the octanol-water partition coefficient (Kow). 

The Kow is a widely used property for assessing the hydrophobic and hydrophilic tendencies 

of molecules in environmental and pharmaceutical applications. However, it is difficult to 

measure for surfactants. Alternatively, Kow can be predicted from thermodynamic methods 

such as UNIFAC and empirical correlations for these difficult chemicals.  

Some special properties are often applied to surfactant solutions, e.g. the cloud point, 

the Krafft point, the hydrophilic-lipophilic balance (HLB), the aggregation number (ng), 

phase inversion temperature (PIT). Some of them, e.g. HLB, are not strictly defined, but are 

convenient for certain practical applications and are widely used in practice to describe the 

specific surfactant characteristics, such as emulsification, solubility, wetting, dispersing, 

foaming, and detergency. These properties often provide a fast way to classify the abilities of 
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surfactants. For example, many producers report the HLB values for surfactant-based 

products.  

Some of these empirically-based properties, e.g. HLB and ng can be correlated with 

CMC and Kow which can be measured and/or calculated from thermodynamic models. Such 

correlations are useful in surfactant development and choice of new materials. Some relevant 

correlations of this type are collected from the literature, and others are developed in this 

work. 

As part of cleaning products (detergents), Europe consumes more than 1 million tons 

surfactants in 1997 (Morse, 1999). Most of these consumed surfactants will finally enter the 

natural ecosystem. The environmental effects of surfactants have been brodly discussed. In 

this work, correlations between Kow and environmental effects are also developed. Figure 

1.1 summarizes the working strategy followed in this research project. 

 

Figure 1.1 Working strategy of this research project 
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Priority Surfactants 

Following the guidelines of the Danish environmental research programme (AMI 

report, 2000, Madsen, et al. 2001, Danish EPA web page: www.mst.dk), the priority 

surfactant families which were chosen for further studying in this work are sodium alkyl 

sulphates, sodium alkyl ether sulphates and alcohol ethoxylates. Meanwhile, the octanol-

water partition coefficient of phthalates has been also studied as part of this environmental 

program. 
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Chapter 2 Surfactant Solutions 

In this chapter, some basic characteristics of surfactant molecules and solutions are 

briefly described. The environmental and health assessment of surfactants is discussed. The 

micelle formation and phase diagrams of surfactant solution are outlined.   

 

 

2.1 Surfactants and Classification 
 
Surfactant Molecules 

Surfactant molecules have a dual nature. One part of the molecule is soluble in water (the 

hydrophilic part or “head”), while the other part is not water-soluble (the hydrophobic part or 

“tail”), as shown in Figure 2.1. The hydrophobic part is commonly a hydrocarbon chain 

(branched or linear) that may contain aromatic structures. This part of the surfactant is 

soluble in oil (non-polar solvents) but only sparingly soluble in water and other polar 

solvents. The hydrophilic part on the other hand has a great affinity to water but is not very 

soluble in non-polar solvents (oil). The hydrophilic part can be an ionic or strongly polar 

group (such as ethylene oxide).  

 

 

 

Figure 2.1 Structure of surfactant molecules 

 

Despite being called the head-group, the hydrophilic part is not necessarily placed at the 

end of the hydrocarbon chain. More than one hydrophilic or hydrophobic group can be 

present in a surfactant molecule. A surfactant molecule is not fully compatible with either a 

non-polar or a polar medium. There is always a conflict between the affinity of the head-

Hydrophilic head 

Hydrophobic tail 
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group and the tail. Their amphiphilic nature forces the surfactant molecules to adopt unique 

orientations in an aqueous medium and to form suitably organized aggregates.  

   

Classification of Surfactant Molecules 

 Surfactants are typically classified according to the nature (charge) of their head-

group. Four main types of surfactants exist: anionic, cationic, non-ionic and zwitterionic (or 

amphoteric) surfactants, as shown in Figure 2.2 (Porter, 1994). The ionic surfactants carry a 

net charge (positive or negative) located on the head-group, whereas the non-ionic surfactants 

are neutral, but have polar head-groups e.g. ethylene oxide (EO). Zwitterionic surfactants can 

be either anionic or cationic depending on the pH value of the solution.  

 

 

Figure 2.2 The four different main types of surfactants 
 
 
 
Examples and Chemical Structures of Surfactant Molecules 

Anionic Surfactants 

Anionic surfactants are the most common surfactants in cleaning products with 0.6 

million tons consumed in the U.S. in 1997. Anionics are the least expensive surfactants, at 

0.6 cents to $2.00 per kg, and prices are generally stable (Morse, 1999). The hydrophilic part 

of the molecules can be a carboxylate, sulphate, sulfonate or phosphate. Some examples are 

given in Table 2.1 (de Guertechin, 1999, Huibers et al. 1997).  

+ 

+  

Non-ionic 

Anionic 

Cationic 

Zwitterionic 
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Table 2.1 Examples and chemical structures of anionic surfactants 
Carboxylates  
CH3CH2…CH2-COO- 

C O
-

O  

Phosphates 
CH3CH2…CH2-PO4

- 

O
P O

-

O

O
-

 
Alkylsulfates 
CH3CH2…CH2-OSO3

- 

O S

O

O

O
-

 

Alkyl sulfonates 
CH3CH2…CH2-SO3

- 

S O
-

O

O

 
Alkylbenzenesulfonates 
CH3CH2…CH2-C6H4-SO3

-  

SO3
-

 

Alkylethersulfonates 
CH3CH2…CH2-CHO-SO3

- 

O O SO3
-

 

Alkylethersulfates 
CH3CH2…CH2 CHO-OSO3

- 

O OSO3
-

 

Others 

OH
SO3

-

 

SO3
-

N
R R

 

 

  

Cationic Surfactants 

Typical cationic surfactants are alkyl amines, alkylimidazolines, quaternary 

ammonium compounds, ethoxylated alkyl amines and esterified quaternaries, as shown in 

Table 2.2. The alkyl amines are not strictly cationic surfactant because they are uncharged in 

solution (de Guertechin, 1999). Only a small amount of cationic surfactants are consumed per 

year compared to anionic and non-ionic surfactants. Cationics are remain a small, specialized 

part of cleaning product market (Morse, 1999).   
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Table 2.2 Examples and chemical structures of cationic surfactants 
Alkyl amine 
CH3CH2…CH2-NH2 

NH2  

Alkylimidazolines 
CH3CH2…CH2=CH2CH2N2CH2..CH2CH3 

C

N
CH2

N

CH2

 
Quaternary ammonium compounds 
CH3CH2…CH2(CH3)-
N+(CH3)CH2…CH2CH3 

N
+

CH3

CH3  

Ethoxylated alkyl amines 
CH3CH2…CH2N[(CH2CH2O)3H]2 

N

(CH2CH2O)3H

(CH2CH2O)3H
 

 

 

Non-ionic Surfactants 

Typical non-ionic surfactants are alkyl ethoxylates, alkylphenyl ethoxylates, 

alkanediols, alkyl mon- and disacchardes, ethoxylated alkylamines, ethoxylated alkylamides, 

fluorinated linear alkyl ethoxylates, fluorinated ethoxylated amides, as shown in Table 2.3 

(Huibers et al. 1996). Anionics are gradually replaced by milder non-ionic surfactants in 

detergent products (milder to environment). As the large laundry products change from 

powders to liquids, nonionic surfactants offer greater stability and formulation flexibility than 

many anionics. 

 

Zwitterionic (or Amphoteric) Surfactants 

Zwitterionic surfactants carry a positive charge on a cationic site and a negative 

charge on an anionic site. The charge of the molecule changes with the pH value of the 

solution and show a zwitterionic form around the isoelectric point. Normal zwitterionic 

surfactants are acyl ethylenediamines, alkyl amino acids or imino diacides, as shown in Table 

2.4 (de Guertechin, 1999). Zwitterionic surfactants are growing the most rapidly in using for 

all cleaning products, but from a very small base, benefiting from a trend toward milder 

surfactants. 
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Table 2.3. Examples and chemical structures of non-ionic surfactants 
Alky ethoxylayes 
CH3CH2…CH2(OCH2CH2)nOH 

(OCH2CH2)n OH
 

Alkylphenyl ethoxylates 
CH3CH2…CH2C6H4(OCH2CH2)nOH 

O
O

OH

 
Alkanediols 
CH3CH2…CH2OHOH 

OH
OH  

Alkyl mono-and disaccharides 
CH3CH2…CH2O2(OH)4  

O
O OH

OHOH
OH

 
Ethoxylated alkylamines 

N
O

O
OH

O  

Ethoxylated alkylamides 

N

O
O

O
O

O
O O

 
Fluorinated linear alkyl ethoxylates 

S

F F

F
F F

F F

F F

F F

F F
O

O
OH

 

Fluorinated ethoxylated amides 

N
F

F

F
FF

F F

F F

F FF

F F

F
O

O
O

O

O
O O

 
 

 

Table 2.4. Examples and chemical structures of zwitterionic surfactants 
Acyl ethylenediamines 

C

O

NH CH2CH2 N CH2CH2OH

CH2COONa

 

Alkyl amino acids 

N

CH2CH2COONa

CH2CH2COONa
 

 

 

2.2 Consumption, Application, Environmental and Health 
Assessment of Surfactants 
 

Consumption 

The high volume consumption of surfactant is mostly due to their use in detergents 

and other cleaning products. In Europe, around 2 million tons surfactants are consumed in 

1997 (Morse, 1999). The content and type of surfactants may differ in various detergents and 

other products. A liquid product may contain about 50% surfactant compared to less than 
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25% in powders. The consumption of various household detergents is given in Table 2.5 

(Madsen et al., 2001). 

Although new types of surfactants and products appear often, the mildness (mild to 

enviroment) is an important role to use surfactants in the product. Today, anionic surfactants 

are used in the largest amount in the household products. However, the growth of anionic 

surfactants is expected to be slow in the future because they are gradually replaced by milder 

non-ionic and zwitterionic surfactants. The trend towards milder surfactant has already 

favoured the use of specific surfactant types, such as the zwitterionic surfactants: alkyl 

betaines and alkylelamido betaines; the anionic surfactant: -olefin surfonates (AOS). The 

consumption of different surfactant types is given in Table 2.6 and figure 2.3 (Madsen, et al., 

2001).  

 

Table 2.5 Estimated annual consumption of household detergents (Madsen et al., 2001) 
Annual consumption (tons) Product 
Denmark (1997) Europe (1998) 

Laundry detergents, powders 28,700 3,100,000 
Laundry detergents, liquids 4,900 560,000 
Laundry detergents, special  3,200 -- 
Fabric softeners 9,100 1,000,000 
All-purpose cleaning agents 5,100 950,000 
Toilet cleaning agents 2,300 400,00 
Hand dishwashing agents 6,000 800,000 
Machine dishwashing agents 3,800 500,000 
Personal care products 14,200 1,900,000 
Total 77,300 3,200,000 
 
 
Table 2.6 Estimated annual consumption of surfactants in 1998 (tons) (Madsen et al., 2001) 
Surfactant Denmark Europe 
Anionic  10,100 908,000 
Nonionic  7,100 626,000 
Cationic  1,400 115,000 
Zwitterionic 540 47,000 
Total 19,140 1,696,000 
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Annual Consumption of Surfactant
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Figure 2.3 Annual consumption of anionic, non-ionic, cationic and zwitterionic surfactants in 
Denmark, 1998 (Madsen et al., 2001). 
 

Application in Household Detergents 

The main types of surfactants in household detergents are given in Table 2.7. The 

exact amount used depends on specific products.  

 

Environmental and Health Assessment 

The commonly used surfactants in household detergents and cosmetics, such as those 

listed in Table 2.7, have been assessed by The Danish Environmental Protection Agency 

(Miljøstyrelsen) in the Environmental Project No. 615, 2001 (Madsen et al., 2001). In this 

assessment, the environmental factors include biodegradation pathways, aerobic 

biodegradability, anaerobic biodegradability, effects on algae, invertebrates, fish, etc. The 

evaluations of human health hazard effects are toxicity effects, skin and eye irritation, 

reproductive toxicity, etc. More than 50 different surfactants are ranked by the environmental 

and human health hazard factors. The ranking of surfactants can be used to indicate cases for 

a more detailed risk assessment or potentially hazardous chemicals that may be considered 

for substitution. The assessment report (Madsen et al., 2001) can also be found in The Danish 

Environmental Protection Agency webpage: www.mst.dk. 
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              Table 2.7 Overview the contents of household detergents (Morse, 1999) 
Household detergent Surfactant contents* 
Heavy-duty laundry powders Linear alkylbenzene sulfonates 

- Sulfomethyl esters 
Alkyl polyglucosides 
Alcohol sulfates 
Linear alcohol ethoxylates 

Heavy-duty laundry liquids Linear alkylbenzene sulfonates 
Linear alcohol ethoxylates 

Light-duty liquid detergents Linear alkylbenzene sulfonates 
Light-duty liquid dish detergents Secondary alkane sulfonates 

-Olefin sulfonates 
Fatty amine oxides 
Fatty alkanolamides 
Alkyl polyglucosides 
Linear alcohol ethoxylates 

Liquid hand soaps -Olefin sulfonates,  
Shampoos -Olefin sulfonates 

Fatty amine oxides 
Fatty alkanolamides 
Alcohol sulfates 
Linear alcohol ethoxylates 

Toilet soaps Alkyl glyceryl ether sulfonates 
Specialty cleansers Linear alkylbenzene sulfonates 

Fatty amine oxides 
             *It is not necessary to have all the contents in one product.  

 

 

2.3 Micelle Formation 

When surfactants are dissolved in water, they are forced to adopt unique orientations 

in the water medium because of their dual nature. The surfactant molecules become adsorbed 

at an air-water or oil-water interface. They are able to locate their hydrophilic head groups in 

the aqueous phase and allow the hydrophobic hydrocarbon chains to escape into the vapour 

or oil phases, as shown in Figure 2.4. This situation is energetically more favourable than 

complete solubilization in either phase. The strong adsorption of such molecules results in 

the formation of an orientated mono-molecule layer at surface or interface. This surface 

activity is a dynamic phenomenon, since the final state of a surface or interface represents a 
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balance between the tendency towards adsorption and the tendency towards complete mixing 

due to the thermal motion of the molecules.  

 

Figure 2.4 Surface adsorption and micelle formation 

 

The tendency of surfactants to pack into an interface favours an expansion of the 

interface. Therefore, this must be balanced against the tendency for the interface to contract 

under normal surface tension forces. The surface tension is thus lowered. If the interfacial 

tension between two liquids is reduced to a sufficiently low value with the addition of a 

surfactant, emulsification will readily take place, because only a relatively small increase in 

the surface free energy of the system is involved (Shaw, 1992). 

At fairly well defined concentrations, several physical properties (e.g. osmotic pressure, 

electrical conductivity, surface tension, etc.) abruptly change their values in aqueous 

surfactant solutions, as schematically shown in Figure 2.5. McBain and Swain (1936) 

suggested that this seemingly anomalous behaviour could be explained in terms of the 

formation of organised aggregates of the surfactant molecules, the micelles. The 

concentration above which micelle formation becomes appreciable is termed “critical micelle 

concentration (CMC)”. However, the CMC is a narrow concentration range, not a fixed value 

as shown in figure 2.5. When the hydrophobic part of the surfactant is a hydrocarbon chain, 

the micelle will consist of a hydrocarbon core, with hydrophilic groups at the surface serving 

Surfactants 

Micelle 

Free surfactant molecule 

Surface layer 
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to maintain solubility in water. In such micelles, the hydrophobic core is, in effect, a small 

volume of liquid hydrocarbon because the hydrocarbon chains are generally regarded as 

disordered (Tanford, 1980).  
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Figure 2.5 Variation of various properties with surfactant concentration 

 

 

2.4 Phase Behaviour of Surfactant Solutions 

 The phase behaviour of surfactant solutions is a basis to understand the properties of 

these systems and is important for the numerous industrial applications of surfactants. 

However, the phase diagram of surfactant solution is very complex because the surfactant 

molecules undergo many different metastable states with changing temperature and 

concentration. The metastable phases are characterized as irreversible colloid particles. Many 

research aspects in phase studies of surfactant systems are summarized in book of Laughlin 

(1994) and in some reviews (Chernik, 2000, Khan, 1996). 

The basic phase behaviour of surfactant solutions and the commonly encountered 

phase regions are shown in Figure 2.6 (Holland and Rubingh, 1992). In the temperature vs. 
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concentration phase diagram, there is a plateau line between the two-phase region and the 

homogenous solution. This flat line is the crystal solubility boundary of some surfactants and 

is called “Krafft boundary” (Laughlin, 1994). Below the Krafft boundary is the solid + liquid 

region in which surfactants precipitate from solution. Above the Krafft boundary, there is a 

dashed line dividing the solution into a monomer (free surfactants) and a micelle solution. 

This line is not a real phase boundary and terminates at the Krafft point. 
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Figure 2.6 Schematic phase diagram for surfactant solutions 
 

If the phase rule was truly obeyed for micelles, i.e. micellization could be treated as 

the formation of a separate phase, the Krafft boundary above the Krafft point should occur at 

constant temperature. The Krafft boundary is indeed relatively flat for most surfactants 

(figure 2.6). Krafft temperatures of surfactants are sometimes considered to be a unique 

characteristic of each surfactant, although in reality they slowly change with the surfactant 

concentration. 

In the two-liquid phase region (as shown in figure 2.6), generally, one of the two 

phases is a surfactant rich region, while the other is a surfactant poor region. For example, the 

alkyl ethoxylate non-ionic and semi-polar surfactants exhibit phase separation upon heating 

around the lower consolute boundary. In addition, certain zwitterionic surfactants yield two 

phases upon cooling.  
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Figure 2.7 Phase diagram for C10E6+H2O mixture (Nibu et al., 1998, Laughlin, 1994).  is 
experimental data. “Liquid” and “L” represent surfactant solution. “H1”, “L ” and “V1” 
represent the hexagonal phase, lamellar phase and bi-continuous cubic phases, respectively. 
“C10E6” and “Sc” represent the solid of pure C10E6 and hydrated compound formed in a solid 
phase. “ice” is the solid water. 
 

In the hexagonal and lamellar regions, these are two liquid crystal phases. They are 

commonly found in the middle composition range of the phase diagram and for practically all 

surfactant-water systems. The hexagonal phase consists of rod-shaped micelles packed in a 

hexagonal array. The lamellar phase consists of infinite continuous bilayers separated by 

water layers. In some systems a variety of phases have been reported to exist between the 

hexagonal and lamellar phases (Fontell, 1992), such as bi-continuous cubic and the so-called 
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intermediate phases (Holmes, 1998). An example of phase diagram for hexaethylene glycol 

decyl ether is given in figure 2.7. 

Figure 2.7 shows a phase diagram for hexaethylene glycol decyl ether (C10E6) and 

water system (Nibu, et al., 1998, Laughlin, 1994). In figure 2.7, “2-liquid phase” represents a 

two liquid phase region. H1 and L  represent the hexagonal and the lamellar phases, 

respectively. C10E6 and Sc represent the solid of pure C10E6 and the hydrated compound 

formed in a solid phase, respectively. V1 represents a bi-continuous cubic phase. Ice 

represents the solid water. Liquid and L represent the C10E6+H2O solution. 
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Chapter 3 Thermodynamics of Surfactant Solutions 

  
In this chapter, different thermodynamic treatments for micelle formation in 

surfactant solutions are discussed. Although many efforts have been made towards 

theoretical understanding of surfactant solutions, capturing the nature of such solutions is 

still considered rather difficult. In contrast to the rigorous universal thermodynamic 

treatment of fluid phase equilibrium, many thermodynamic formulations have been 

proposed for micelle formation.  

In this study, two types of thermodynamic methods are discussed: i) 

phenomenological models, such as the pseudo-phase separation model and the mass-action 

model and ii) molecular thermodynamic methods, such as those proposed by Tanford 

(1980), Israelachvili (1992), Nagarajan (1991, 1997a), Blankschtein (1986), and Chen et al. 

(1996, 2001).  

 

3.1 Outline  

The majority of research in the area of surfactant science focuses on experimental 

studies and documentation of behaviour. The theoretical understanding is rather limited 

(Hines, 2001). Blandamer et al. (1995), Blankschtein et al. (1997), Hines, (2001), 

Nagarajan (1997b), and Zana (1995) have reviewed the theories for surfactant solutions. 

Laughlin (1994) reviewed phase behaviours of surfactant solution and the history of 

surfactant science. These reviews include many different theories and models for surfactant 

solutions. However, only few of them have been applied to practice.  

Theoretical approaches for surfactant solutions may be classified into molecular 

thermodynamic and phenomenological methods (empirical, semi-empirical methods). The 

molecular thermodynamic methods describe the physical properties of surfactant solutions 

using molecular thermodynamic principles and molecular structure characteristics. 

Empirical relations correlate experimental results via statistical methods. The semi-

empirical methods follow an intermediate road, employing empirical rules and combining 

databases of physical properties with quantum chemical or topological descriptors. An 
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important limitation of the semi-empirical and empirical approaches is that their 

implementation relies exclusively on the availability of experimental data. In 

phenomenological methods, the pseudo-phase separation models consider the micelle 

formation is a new macroscopic phase formation and use concepts and method of phase 

equilibrium calculation. The mass-action models treat the micelle formation as a chemical 

equilibrium and calculate the chemical equilibrium constant. An overview of these methods 

is given in figure 3.1.  

 

 

Figure 3.1 An overview of different methods for micelle formation  
 

An application of pseudo-phase separation model can be found in the work of 

Flores et al. (2001) and Voutsas et al. (2001). In their work, the micelle formation is 

assumed to result in a second liquid phase. Micelle formation is calculated as liquid-liquid 

equilibrium.  
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Desnoyers and co-workers (1997) applied the mass-action approach to non-ionic 

surfactants and extended it to ionic systems by correlating the data for the monomers with 

the Debye-Hückel limiting law. 

Two different methods are used in the molecular thermodynamic models: one is 

based on detailed molecule structure information to calculate the properties of micelle 

formation; the other depends on activity coefficient models. 

The objective of molecular thermodynamic theories is to relate the chemical 

potential of surfactant molecules in the micelle state to the chemical potential of the free 

surfactant molecules in solution. These theories provide a way of relating the molecular 

geometry, size and chemical nature of the hydrophilic and hydrophobic groups in surfactant 

molecules to both macroscopic properties of the solutions and the size of the aggregated 

micelles. Fundamental contributions in this area are the work by Tanford (1980) and 

Israelachvili (1992).  

Nagarajan (1991, 1997a), and Blankschtein (1997, 1998) developed two similar 

molecular thermodynamic methods for surfactant solution (“molecular structure” branch in 

figure 3.1). Detailed molecular and micelle structures descriptions are used to build up the 

properties of micelle formation and surfactant solution. They have used their methods to 

calculate CMC and other properties for nonionic, anionic, pure and binary surfactant 

mixtures (Zoller, 1996).   

Recently, Chen et al. (1996, 2001) proposed a thermodynamic framework for the 

micelle formation combined with conventional local composition activity coefficient 

models, such as NRTL (“activity coefficient” branch in figure 3.1). This method has been 

applied to calculate CMC of non-ionic and ionic surfactant solutions. Based on Chen’s 

proposal, Li et al. (1998, 2000) used UNIQUAC and SAFT equations to calculate CMC of 

non-ionic and ionic surfactant solutions.  

Some of these methods are briefly presented in following sections. 
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3.2 The Pseudo-phase Separation Model  

The pseudo-phase separation model suggests that the micelles form an independent 

phase, and can be treated as a phase-separation phenomenon similar to vapour-liquid phase 

equilibrium of air-water system or to liquid-liquid phase equilibrium of aqueous-organic 

mixtures. The process of forming micelles as surfactant concentration reaches CMC is 

treated similarly to the formation of liquid droplets as the dew point pressure of a vapour is 

reached, as illustrated in figures 3.2 and 3.3.  
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Figure 3.2 Illustration of the liquid droplets formation 
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Figure 3.3 Illustration of the micelle formation 

 
As water molecules are added to an empty volume at constant temperature, the 

density of vapour phase (water molecules) increases steadily until the dew point pressure is 
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reached. At the dew point, any added molecules would not contribute to the vapour density. 

The sharp transition at the dew point, as shown in figure 3.2, is very similar to the transition 

at the CMC for surfactant solutions forming large micelles, as shown in figure 3.3. Due to 

the near-constancy of the free surfactant concentration above CMC, the surfactant solutions 

can be compared to a phase transition. Several methods have been proposed to give the 

expressions of the pseudo-phase separation model, as discussed following. 

 
The Analogy Method (Cox and Benson, 1986) 

Using the similarity of micelle formation to vapour-liquid equilibrium, an analogy 

method is used to an equation of micelle formation. For a multi-component system at low 

pressures, the vapour-liquid equilibrium is described as 

liquidiiivapouri PxPy 0         (3.1) 

where subscripts ‘vapour’, ‘liquid’ represent the vapour phase and the liquid phase, 

respectively, i is the activity coefficient of component i in the liquid phase, 0
iP  and P are 

the vapour pressure of pure component i and the total system pressure, respectively, xi and 

yi denote to the mole fraction of the liquid and vapour phase, respectively. 

For a micelle-forming surfactant system, the analogy to equation (3.1) is 

micelleiiiaqi xy 0CMCCMC        (3.2) 

where subscripts ‘aq’ and ‘micelle’ represent the aqueous phase and the micelle pseudo-

phase, respectively, i is the activity coefficient of component i in the micelle pseudo-phase,  

0CMC i  is the critical micelle concentration of pure component i, CMC is the concentration 

of free surfactants (monomer) in the equilibrium with the micelles, i.e. the CMC of the 

mixed surfactant system, in analogy to the total pressure of vapour-liquid equilibrium 

system, xi and yi denote to the surfactant mole fraction in the micelle pseudo-phase and the 

bulk aqueous phase, respectively.  

Equation (3.2) uses a molecular density (CMC in moles per liter) while equation 

(3.1) uses pressure (pure component vapour pressure or system pressure). The key 

assumption of this approach is that CMC has the same effects as the total pressure in a 

vapour-liquid equilibrium system, since the pressures in equation (3.1) are directly 
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proportional to densities under ideal gas conditions (low pressures), where equation (3.1) is 

valid. 

  
The Flores and Voutsas Approach (Flores et al., 2001, Voutsas et al., 2001) 

In this approach, micelles are assumed to form a new macroscopic phase, i.e. a 

second liquid phase. Liquid-liquid equilibrium is assumed between water and micelle. Two 

phases coexist: one solvent (water)-rich phase where the surfactant concentration is the 

CMC, and one surfactant-rich phase approximated by the micelle phase. At CMC 

(equilibrium) the activities of both solvent and surfactant are the same in the two phases. 

Flores et al., (2001) and Voutsas et al., (2001) used the UNIFAC method for 

describing liquid-liquid equilibrium. The CMC of non-ionic surfactants in aqueous and 

non-aqueous solvent is predicted. The reported average deviation between predicted and 

experimental values was about 0.1 log units.  

Many researchers have used the “pseudo-phase separation” approach to calculate 

CMC in different surfactant solutions, such as non-ionic, ionic, anionic and cationic 

surfactant solutions (Cox and Benson, 1986; Hall, 1987; Holland and Rubingh, 1992; 

Ogino and Abe, 1993). 

From a thermodynamic point of view, however, the formation of micelles is not a 

true phase transition, because the micelle formation does not create a new macroscopic 

phase in solution. The sharp changes in properties occur over a range of concentration. The 

“pseudo-phase separation” approach represents the case when the aggregation number in 

the micelles is assumed to approach infinity. In practical, the aggregation number falls 

down in the range of 20 to 2000 in surfactant solutions. Thus, the pseudo-phase model 

cannot describe the size of micelles (aggregation number).  

 

 

3.3 The Mass-action Model 

In the mass-action model, the micelle formation is considered as a chemical 

equilibrium between free surfactant and micelle. At low concentrations, the micelle 

solution is the formation of aggregates from free surfactant, as shown in equation (3.3).  
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nS Sn          (3.3) 
where n free surfactant molecules (S) form a micelle (Sn) having an aggregation number of 

ng. Both micelles and free surfactants are treated as solutes in an aqueous solution. In the 

mass-action model, the thermodynamic formulations are slightly different for nonionic and 

ionic surfactant solutions. One of the formulations (nonionic surfactant) is described as 

follows (Blandamer et al. 1995): 

For nonionic (neutral) surfactant solutions, at chemical equilibrium, we have: 

micelleimonign ,,           (3.4) 
where i,mon is the chemical potential of monomeric (free) surfactant i, i,micelle is the 

chemical potential of surfactant i in the micelle form, ng is the aggregation number. The 

chemical potentials of monomeric surfactant and surfactant in micelle are given as: 

monimonimonimoni xRT ,,
0
,, ln        (3.5) 

micelleimicelleimicelleimicellei xRT ,,
0
,, ln         (3.6) 

Using equation (3.4), we have 

micelleimicellei

g

monimonimonimicellei

g

imic xRT
n

xRT
n

G ,,,,
0
,

0
,

0 ln
1

ln
1

  (3.7) 

where xi,mon and xi,micelle are the mole fraction of monomeric surfactant and surfactant in 

micelle, respectively, i,mon and i,micelle are the activity coefficient of monomeric surfactant 

and surfactant in micelle, respectively, 0
,moni  and 0

,micellei  are the standard state chemical 

potential for monomeric surfactant and surfactant in micelle, respectively, and 0
imicG  is the 

difference of Gibbs energy. 

For a dilute solution, the activity coefficients of monomeric surfactant and 

surfactant in micelle are set equal to 1.0. Then equation (3.7) becomes 

micellei

g

moniimic xRT
n

xRTG ,,
0 ln

1
ln       (3.8) 

In surfactant solution, CMC is the total concentration of surfactant (xtot), which is a 

sum of free surfactant (xi,mon) and surfactants in micelles (xi,micelle). Assuming a sufficiently 

high value for ng, the second term in the above equation become very small and can be 

neglected. Then xi,mon can be approximated to CMC.  
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Based on the mass-action model, Amos et al. (1998) proposed a model for the 

distribution of micelle sizes. The model of Amos et al. includes micelle-micelle interactions 

as a function of the size for a multi-component solution consisting of micelle aggregates, 

monomer, counterions, and added electrolytes. Surfactant solutions of sodium dodecyl 

sulphate and cetylpridinum chloride with 0.01M NaCl are studied in their work. 

 

 

3.4 Molecular Thermodynamic Models  

3.4.1 Tanford’s Approach 

The work of Tanford (1980) systematically investigated the micelle formation using 

molecule thermodynamic method. In Tanford’s theory, the hydrophobic effect of molecules 

in aqueous solutions provides the driving force for aggregation, whereas the repulsion 

between head (hydrophilic) groups limits the size that a micelle can attain. However, both 

factors vary with the micelle size. It is therefore evident that a theoretical treatment without 

containing the size dependence may account for the occurrence of surfactant aggregation, 

but it cannot explain why micelles are the statistical aggregates with a broad size 

distribution. 

Since at equilibrium, a mixture will normally contain micelles with a range of 

different aggregation numbers ng, it is necessary for a rigorous approach to account for the 

size dependent contributions in the chemical potential. The simplest procedure is to 

consider micelles of different size as distinct components of the solution, each 

characterized by the number ng of constituent monomer molecules and by a distinct value 

of the standard potential. The dependence of the standard potential on the value of ng arises 

from the dependence of surface area with micelle size.  

A chemical potential expression, equation (3.9), is often expressed as a sum of a 

standard state chemical potential, 0
i , and the part including the mole fraction xi and the 

activity coefficient i : 

iiii xRT ln0          (3.9) 
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Tanford suggests that the second part ( iixRT ln ) contribution to the chemical 

potential per mole of micelle of size ng is RTln(mole fraction of micelles of size ng), 

assuming a sufficiently dilute solution in micelles, thus neglecting nonideality. Thus, the 

second part of equation (3.9) becomes gn nxRT
g

/ln , and the contribution per mole of 

surfactants is 1/ng. Based on this analysis, Tanford formulated the conditions for micelle 

formation with the chemical potential of free monomeric surfactants and the surfactants in 

the micelle state.  

 

Thermodynamic Formulation of Micelle Formation 

In a solution of a single surfactant, the chemical potential of a surfactant in a micelle 

of size ng, 
gnmic, , is given by 

g

n

g

nmicnmic
n

x

n

RT g

gg
ln0

,,         (3.10) 

where 0

gmic,n is the standard state chemical potential of a surfactant in the micelle state, 
gnx  

is the mole fraction of surfactant inside the micelle of size ng.  

The chemical potential of free monomeric surfactant in aqueous solutions, mon, is: 

nxRT momon
0
monmon ln         (3.11) 

where 0
mon is the standard state chemical potential of the free monomeric surfactants in 

aqueous solutions, xmon is the mole fraction of free monomeric surfactants in aqueous 

solutions, and mon is the activity coefficient of free monomeric surfactants in aqueous 

solutions. 

At equilibrium: 

monnmic g,           (3.12) 

then 

monmonmon

g

n

g

nmic xRT
n

x

n

RT g

g
lnln 00

,       (3.13) 
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We assume that all micelles have the same size ng in the surfactant solutions, and introduce 

a new standard state chemical potential 0
mic  (without subscript ng) for surfactant in any 

micelle. Thus, equation (3.13) becomes 

gmonmong
monmic

gn nxn
RT

nx
g

lnlnln
00

     (3.14) 

 

Critical Micelle Concentration (CMC) 

Tanford says that the concept of a “critical concentration” for the formation of 

micelles from free surfactant is, rigorously speaking, inexact but convenient. It would be 

exact if micelle formation could be regarded as separation of a distinct phase, and free 

surfactant in solution could coexist with the micelle phase at only a fixed concentration. An 

important feature of micelle formation is that the free monomeric surfactant concentration 

in equilibrium with micelles changes only slowly with the concentration of micelles.  

By defining a parameter CMC/
gnx , then 

CMC)1(monx          (3.15) 

Here the CMC is the total concentration in the micelle solution as follow:  

gnmontotal xxx CMC         (3.16) 

Thus, at CMC, equation (3.14) gives: 

g

g

mon

g

gmonmic
n

nn

n

RT
ln

1
1lnlnCMCln

100

   (3.17) 

The exact choice of  varies from 0.01 to 0.10. 

The Tanford’s method and analysis for the hydrophobic effect in aqueous solutions 

have been widely used in research related to biological lipids, proteins, serum lipoproteins, 

and biological membranes. This method has been extended to large lipid aggregates such as 

bilayers, vesicles, other micelle phases and microemulsion droplets by Nagarajan and 

Rukenstein (1991), Israellachivili (1992), Blanckstein (1986), Puvvada and Blankschtein 

(1990).  
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3.4.2 Israelachvili’s Method  

Israelachvili (1992) developed a thermodynamic framework for micelle formation 

and then investigated the relationship between intermolecular interaction and different 

micelle shapes. Different intermolecular interactions determine the formed micelles with 

varied structures. Molecular geometry has a crucial role in determining the structures of 

formed micelles. From the molecular geometry, many of the physical properties of 

surfactant solutions can be quantitatively understood without requiring a detailed 

knowledge of the complex molecular forces.  

 

Thermodynamic Equations of Micelle Formation 

The micelle formation is expressed as a formation of surfactant aggregates with 

different sizes: 

S + S S2   dimers                       (3.18) 

S + S +S S3  trimers         

…….. 

S + S + S +… Sn n-mers         

Equilibrium thermodynamics requires that when molecules form aggregated 

structures in solution, the chemical potentials of all identical molecules in different 

aggregates are the same. This is expressed as: 

...
3

1
log

3

1

2

1
log

2

1
log 3

0
32

0
21

0
1 xTkxTkxTk BBB   (3.19) 

               monomers                     dimers                        trimers 

or 

g

n

g

B
nn

n

x

n

Tk g

gg
log0 constant,       ng=1, 2, 3,….    (3.20) 

where 
gn  is the mean chemical potential of a molecule in a micelle of aggregation number 

ng, 
0

gn  is the standard state of the chemical potential (the mean interaction free energy per 

molecule) in an micelle of aggregation number ng, 
gnx is the concentration (more strictly the 
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activity) of molecules in aggregates of number ng (ng=1, 0
1 and x1 correspond to isolated 

molecules, or monomers, in solution), and kB is the Boltzmann constant. Using the law of 

mass action, equation (3.19) can be derived as follows: 

Rate of association = gn
xk 11         (3.21) 

Rate of dissociation = 
g

n

n
n

x
k

g

g
       (3.22) 

where 

Tk

n

k

k
K

B

ng

n

g

g

0
1

0

1 exp        (3.23) 

This is the ratio of the two ‘reaction’ rates (equilibrium constants), k1 and 
gnk . 

Equation (3.23) assumes ideal mixing and is restricted to dilute systems where inter-

aggregate interactions can be ignored. 

Combining equations (3.19)-(3.23), we obtain: 

Mn

B

nMM

g

n

g
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Tk

M

M

x

n

x
/

00

exp        (3.24) 

If M=1, we have 

g
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n

B

n

g

n

Tk
x

n

x 00
1

1 exp         (3.25) 

where M is any arbitrary reference state of aggregates (or monomers) with aggregation 

number M (or 1). The total solute concentration C is given by 

1
321 ...

g

g

n

nxxxxC         (3.26) 

Depending on how the standard state chemical potentials 0
1 and 0

gn  are defined, 

the dimensionless concentrations C and 
gnx can be expressed in volume fraction or mole 

fraction. The C and 
gnx  can never exceed unity. Equations (3.24)-(3.26) completely define 

the system. 
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Based on the thermodynamic formulation for micelle formation, Israelachvili 

discussed the relationship between the geometric shapes of micelle and the standard state 

chemical potentials. For a shape like ‘rod’ micelles (shown in figure 3.4), the standard state 

chemical potential is given by 

gBn nTk
g

/00          (3.27) 

where kBT is the monomer-monomer ‘bond’ energy in the micelle relative to isolated 

monomers in solution. As ng increases the mean free energy 0

gn  decreases asymptotically 

towards 0  that is the ‘bulk’ energy of a molecule in an infinite aggregate.  

 

 

Figure 3.4 One dimensional structure formed by the association of identical monomer units 
in solution 
 

Similarly, for two-dimensional micelles (disc, sheets) 

2/100 / gBn nTk
g

        (3.28) 

For three-dimensional micelles (spheres) 

3/100 / gBn nTk
g

        (3.29) 

For the simplest shaped structures-rods, sheets and spheres, the standard state 

chemical potential of the molecules can be expressed as 

p

g

B
n

n

Tk
g

00   p=1, 1/2, 1/3     (3.30) 

where  is a positive constant dependent on the strength of intermolecular interaction. 

Generally, p is a number that depends on the shape of the micelles.  

When ng is a large number, incorporating equation (3.30) into the equations (3.24)-

(3.26) leads to  

Bond energy 
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1 /11expexp   (3.31) 

In equation (3.31), the limitation of x1 is 
RT

gn

00
1

exp  or e . At this condition, the 

monomer concentration x1 is the critical micelle concentration (CMC). Thus, in general  

RT
x

gn

00
1

crit1 expCMC)(        (3.32) 

or  

ex CMC)( crit1   for all p      (3.33) 

where p is a number depended on the shape of the micelles. Equations (3.32) and (3.33) 

define the CMC. 

 

Critical Packing Parameter 

Israelachvili (1992) proposed a critical packing parameter (cpp) to describe the 

surfactant molecule structures as:  

cla

v

0

cpp           (3.34) 

where v denotes to the tail chain (or chains) volume, lc is the critical tail chain length, a0 is 

the headgroup area at the head-tail interface, as shown in figure 3.5. The v and lc can be 

calculated by empirical equations (Tanford, 1980). a0 can be measured by experimental 

method (Lantzsch et al., 1996). 

 

                                      Figure 3.5 The cpp of a surfactant molecule  

chain length lc 

 headgroup area a0 tail volume v 
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Table 3.1 shows the relationship of cpp values and micelle structures. Different cpp 

values correspond to different micelles, as shown in Table 3.1. The cpp value of surfactants 

can also indicate which phase exists in solution: lamellar, cubic or hexagonal phases.  

 

Table 3.1 Relationship between cpp value and micelle structure 
cpp value Micelle structure Example* 

<1/3 Spherical micelles SDS in low salt 

1/3~1/2 Cylindrical micelles SDS and CTAB in high salt 

1/2~1 Flexible bilayers Phosphatidyl choline 

~1 Planar bilayers Phosphatidyl ethanolamine 

>1 Reversed micelle Cardiolipin+Ca2+ 

*SDS: sodium dodecyl sulphate, CTAB: hexadecyl trimethylammonium bromide 
 

Based on the thermodynamic framework, Israelachvili studied the relationships 

between micelle size distribution, micelle structures and CMC, the aggregation of 

surfactant molecules into micelles, bilayers, vesicles and biological membranes.  

 

3.4.3 Nagarajan’s Method  

Nagarajan and co-workers (1991, 1997a) developed a thermodynamic model to 

calculate CMC, aggregation number and phase separation for non-ionic, anionic, cationic 

and zwitterionic single and mixed surfactant solutions depending on information of 

structures and interactions. The method, in details, described the relations between 

chemical potential (Gibbs free energy) of surfactant solutions and different micelle 

structures.   

Using the condition of ideal mixing in dilute solutions, the chemical potential of 

micelles with size ng is given by 

gBgg xTk ln0          (3.35) 
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where 0
g  is the standard state of the species g (micelle with aggregation number ng), xg is 

the mole fraction of micelles in solution. The chemical potential of monomer surfactant, 1, 

is given by setting ng=1 in equation (3.35): 

1
0
11 ln xTkB          (3.36) 

where 0
1  is the standard state of free (monomeric) surfactant in solution and x1 is the mole 

fraction of free (monomeric) surfactant in solution.  

At equilibrium, the chemical potentials: 

1

g

g

n
          (3.37) 

where ng is the aggregation number. 

The micelles size distribution equation is derived from equation (3.37) 
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gg

0

1

0
1

0

1 expexp     (3.38) 

where 0
g is the difference in the standard state chemical potentials between a surfactant 

molecule present in a micelle of size ng  and a monomeric surfactant in solution. 

If an expression for 0
g is available, then the micelle size distribution can be 

calculated from equation (3.38). 

 Based on different contributions, Nagarajan developed an equation to calculate 0
g  

as:  

ionicgdipolegstericggdefgtrgg

000

int

0000   (3.39) 

where 
trg

0 is the contribution from surfactant tail, 
defg

0  is the contribution of the tail 

local deformation, 
int

0
g  is the contribution of the formation of micelle core–water 

interface, 
stericg

0  describes how polar head groups of surfactant molecules are brought to 

the surface of the micelle and generate steric repulsion among the head groups, 
dipoleg

0  

is the contribution of the head group dipole interactions and 
ionicg

0  is the head group 

ionic interactions. 
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The calculation methods for these terms in equation (3.39) can be found in reference 

of Nagarajan (1997a).  

 

3.4.4 Blankschtein’s Method 

Puvvada and Blankschtein (1990) proposed an approach that is a blending of a 

molecular model of micellization with a thermodynamic theory.  

Using the principle of multiple chemical equilibria between micelles with different 

size and monomers, we have 

1gn n           (3.40) 

where n is the chemical potential of micelle with aggregation number ng and 1 is the 

chemical potential of free monomeric surfactant in solution. 

The micelle size distribution is given by 

gmicg

n

n ngnxx g exp1         (3.41) 

where 
TkB

1
, x1 is the mole fraction of monomeric surfactant in the solution.  

Using the surfactant mass balance relation, equation (3.41) is re-formulated to 

represent the CMC of the surfactant solution, xcmc, as follows:  

1)(exp * shgx miccmc         (3.42) 

where *
micg  is the free energy of micellization correlated to different micelle structures (sh), 

sh is the shape variable of surfactant solution, such as sphere, cylinder and disk.  

The free energy of micellization, *
micg , represents the free energy change (per 

monomer) required to form an n-mer, having core radius lc, and shape sh, from n individual 

monomers in water. Its magnitude reflects many complex physical chemical factors such as 

the hydrophobic effect, hydrogen bonding, conformation free energy changes associated 

with hydrocarbon chain packing, and steric and electrostatic interactions between the 

hydrophilic surfactant (head groups). 

In the method of Blankschtein, the expression of CMC is similar to that of 

Nagarajan, but with some variations in the free energy expressions. In this method, the 



 38                                                          Chapter 3 Thermodynamics of Surfactant Solutions  

molecular model incorporates the effects of solvent properties and surfactant molecular 

architecture on physical factors which control micelle formation and growth. The method 

has been utilized to predict a broad spectrum of micelle solution equilibrium properties as a 

function of surfactant concentration and temperature. These properties include (1) the 

critical micelle concentration, (2) the micelle size distribution, (3) the critical surfactant 

concentration for the onset of phase separation (Puvvada and Blankschtein, 1990, 

Blankschtein et al., 1997). 

 

3.4.5 Chen’s Method 

Chen et al. (1996, 2001) proposed a thermodynamic framework for describing the 

micelle formation of aqueous surfactant solutions. The conventional NRTL activity 

coefficient model is combined with the framework to correlate and predict the CMC of 

non-ionic and ionic surfactant solutions. The thermodynamic treatments are slightly 

different for non-ionic surfactant and ionic surfactant solutions.  

 

Thermodynamic Framework for Non-ionic Surfactant Solutions 

As shown in figure 3.6, when the surfactant molecules are dissolved in excess water 

as free monomeric molecules, both head and tail parts are exposed to or surrounded by 

water molecules. The physical interactions of the surfactant solution are characterized by 

the hydrophilic part-water and hydrophobic part-water interactions. The hydrophilic part-

water interaction is attractive in nature, and the hydrophobic part-water interaction is 

repulsive in nature.  

When surfactant molecules form micelles, aggregated surfactant molecules can be 

approximated as effectively removed from the aqueous environment. Only the surfactant 

molecules stay inside the micelle with a specific orientation. Both head and tail groups are 

now placed in an “idealized state” where head groups are surrounded by head groups and 

tail groups are surrounded by tail groups. In such “idealized state” or specific orientation 

state, the physical interactions of micellar surfactants are characterized by the head group-

head group and the tail group-tail group interactions. The “idealized state” is not a pure 



Chapter 3 Thermodynamics of Surfactant Solutions                                                            39 

liquid surfactant state (a random mixing state), but a single surfactant system. In this 

thermodynamic treatment, the “idealized state” corresponds to the reference state chosen 

for the aggregated surfactant molecules. 

 

                         Figure 3.6 Micelle formation and surfactant molecules 

 

At CMC, the monomeric surfactant concentration is at the onset of micelle 

formation, thus the chemical potential of monomeric surfactants ( s ) equals that 

surfactants in micelles ( m ).  

ms   (at CMC)         (3.43) 

sss aRT ln0          (3.44) 

mmm aRT ln0          (3.45) 

where 0
s  is the reference state of monomeric surfactants, 0

m  is the reference state of 

surfactants in micelles, as is the activity of free surfactants (not in micelles) and am is the 

activity of surfactant molecules in the “idealized state”. The “idealized state”, which is a 

single surfactant system, is chosen as the reference state for free surfactants and surfactants 

in micelles. Then we have 00
ms . 

At the micelle formation, the aggregated surfactant molecules (micelles) are 

considered to be a single surfactant excluding solvent (water) from their interiors. For the 
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single surfactant system, the activities of the two states of surfactants, inside the micelles 

(am) and in solvent (as), should be the same and their activities should be unity: 

0.1cmc
s maa          (3.46) 

cmc
s

cmc
s

cmc
s xa          (3.47) 

0.1cmc
s

cmc
sx           (3.48) 

where cmc
sx  is the mole fraction of free surfactants at the CMC and cmc

s  is the activity 

coefficient of a free surfactant at CMC. Activity coefficient of free surfactant is a function 

of free surfactant and solvent composition.  

For mixed surfactant systems: 

s

cmc

Ts aa 1          (3.49) 

cmc

T

cmc

T

cmc

T xa          (3.50) 

where subscript T represents the total surfactant mixture and s represents the individual 

surfactant. 

In Chen’s work, the polymer NRTL model is applied to calculate the activity 

coefficients of free surfactants (Chen, 1996).  

Li et al. (1998) used the thermodynamic formulation of Chen (1996) with 

UNIQUAC and SAFT model instead of the NRTL model to correlate the CMC of non-

ionic surfactant solutions.  

 

Thermodynamic Framework for Ionic Surfactant Solution 

In ionic surfactant solutions, below CMC, the solution consists of free surfactant 

ions and their counterions. Above the CMC, ions merge into the formed micelles. Three 

types of charged species may be then considered in the solution: the free surfactant, the 

counterions not bound to the micellar particles, and the micelles, as shown in figure 3.7.  
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Figure 3.7 Illustration of micelle formation in aqueous ionic surfactant solution 
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Figure 3.8 Electrical conductivity of a SDS (sodium n-dodecyl sulphate) aqueous solution 
at 298.15 K. The CMC is 8.21 10-3 mol/L.  : Experimental data from Pérez-Rodriguez et 
al., (1999). 

 

Figure 3.8 shows a conductivity experiment for SDS solution. In figure 3.8, the 

electrical conductivity of SDS solution continuously increases with surfactant concentration 

and suddenly changes the slope versus surfactant concentration at CMC. The changed slope 

(from steep to smooth,) for electrical conductivity indicates that the solution losses ionic 

charges. However, electrical conductivity of the solution still increases with increasing 

surfactant concentration after CMC (micelle formation). Because the additional surfactants 
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are considered to form micelles, the increased electrical conductivity suggests that micelles 

are charged particles (aggregates).  

For nonionic surfactants, the activities of two forms of surfactants (monomer and 

micelle) should be the same at and above the CMC and their activities should be unity, 

since the micelle form is essentially the reference state, as shown in equation (3.46) –(3.48). 

Similarly to non-ionic surfactant solution, for ionic surfactants, the asymmetrical 

activity coefficients are used at and above CMC as follows:  

*
micelle,micelle

*
, xx aq

cmc

aq         (3.51) 

where cmc

aqx  is the CMC of the free monomeric surfactant in the aqueous solution (mole 

fraction), micellex is the mole fraction of the surfactants in the micelle state, *
,aq  and *

,micelle  

are the conventional asymmetrical mean activity coefficients of the free monomeric 

surfactants in the aqueous solution and the aggregated surfactants in the micelle particles, 

respectively.  

 The state of aggregated surfactants (micelles) is not the reference state for free 

surfactant molecules and surfactants in micelles. Essentially, the ionic surfactant solution is 

an electrolyte solution. The reference state (standard state) for the cation is a hypothetical 

ideal dilute solution in water when xC=1, at system temperature and pressure. Similarly, the 

standard state for the anion is a hypothetical ideal dilute solution when xA=1. In the 

hypothetical ideal dilute solution, C= A=1 for all x. For an ionic species (cation and anion), 

it is a pseudo-pure component. 

In the charged micelle particles, the surfactant molecules are self-arranged in a 

specific orientation, as shown in figure 3.7. The ionic headgroups of surfactant molecules 

are still dissociated in water solvent at the micelle-aqueous solution interface. At and above 

the critical micelle concentration, the micelle particles are only composed of surfactant 

molecules. The mole fraction of surfactant molecules in the micelle is unity.  

Therefore, the equilibrium between free monomeric surfactant in the aqueous 

solution and the aggregated surfactants in the micelle particles can be given as: 

*
micelle,

*
,aq

cmc

aqx  (at xmicelle=1.0)       (3.52) 
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 Based on equation (3.52), the CMC ( cmc

aqx ) can be calculated with a suitable activity 

coefficient model. In the work of Chen et al. (2001), a modified NRTL model containing a 

Pitzer-Debye-Hückel term for long-range contributions, a NRTL term for short-range 

contributions and a Flory-Huggins term is used to determine the activity coefficient.  

Appendix B gives further explanations for equation (3.52) with emphasizing the 

basic equations of electrolyte solutions. 

Li et al. (2000) proposed a similar thermodynamic treatment for the micelle 

formation of ionic surfactant solution.  

The thermodynamic treatment of Chen et al. (1996, 2001) uses activity coefficient 

models to describe the non-ideality of surfactant solutions and the micelle formation in the 

solution. Indeed, the non-ideality of surfactant solution was originally formulated in the 

work of Tanford (1980) and then neglected due to the assumption of ideal mixing. This 

ideal mixing assumption is correct for non-electrolytes in the limit of very large dilution. 

The method of Chen et al. (1996, 2001) provides a framework for CMC calculation 

using widely accepted activity coefficient models. Such models have been well developed 

and used in the chemical industry. However, the method of Chen et al. cannot describe the 

size or size distribution of micelles in surfactant solution.  

 

 

3.5 Mixed Surfactant Systems 

Mixed surfactant solutions are often used in pharmaceutical and medicinal 

formulation, oil recovery process, but most commonly in cleaning and detergent products. 

Surfactants are usually prepared commercially as mixtures rather than pure forms. This is 

more efficient and economic. The mixed surfactants save on separation costs because the 

product is generally not required in a pure form for cleaning work. It is thus important to 

better understand and hence to make better use of such systems.  

 The regular solution approach proposed by Rubingh has been widely used for 

mixed surfactant systems due to its simplicity (Hines, 2001). Many binary mixtures have 

been studied by this method and extended to the general multi-component case (Holland, 
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1986). In calculating mixed CMC, the regular solution approach requires that the CMC of 

both pure components (in the binary case) and one measured CMC for the mixed surfactant 

system. A single adjustable parameter can, then, be obtained and used to calculate CMC of 

wide composition range. In this method, regular solution assumption is used for micelles 

other than the surfactant solution. Section 7.4 gives an example for the mixed CMC 

calculation by this method.  

Reviews for the theories of mixed surfactants can be found in the references of 

Hines (2001) and Ogino et al (1993).  

 

The Rubingh’s approach (Rubingh, 1979) 

In Rubingh’s method, the chemical potential of monomeric surfactant 1, 1, in a 

mixed surfactant solution can be written as: 

monxRT 1
0
11 ln          (3.53) 

where the activity coefficient of free monomer is assumed to be unity, 0
1 is a standard state 

chemical potential of surfactant 1, monx1  is the monomer concentration of surfactant 1 (mol 

fraction).  

The chemical potential of surfactant 1 in the mixed micelle, M

1 , (two surfactant 

components in the micelle) is given by 

11
0

11 ln xRTMM         (3.54) 

where 0
1
M is the chemical potential of surfactant 1 in pure micelle state, 1 and x1 are the 

activity coefficient and mole fraction (solvent free) of surfactant 1 in the mixed micelle, 

respectively.  

For surfactant 1 in the pure micelle state, we have 

1
0
1

0
1 CMClnRTM         (3.55) 

where CMC1 is the CMC of pure surfactant 1, 0
1  is a standard chemical potential of 

monomeric surfactant 1.  

At equilibrium, we have  

M

11           (3.56) 
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From equations (3.53) (3.55), we obtain that 

1111 CMCxxmon          (3.57) 

Similar arguments can be used for surfactant 2 to derive the relation 

2212 CMC1 xxmon         (3.58) 

At concentration below the concentration of mixed micelle formation, the concentration of 

surfactant 1, monx1 , is simply given by  

T

mon xx 11           (3.59) 

where xT is the total concentration of surfactant 1 and 2, 1 is a fraction of surfactant 1 in 

total mixed solute. 

Similarly to component 2,  

T

mon xx 12 1          (3.60) 

At the mixed micelle formation, by continuity, equations (3.59)-(3.60) become 

mix11 CMCmonx          (3.61) 

mix12 CMC1monx         (3.62) 

Combining equations (3.57), (3.58), (3.61), (3.62), we obtain 

22

1

11

1

mix CMC

1

CMCCMC

1
       (3.63) 

Using the regular solution approximation, the activity coefficients in the mixed micelle are 

given as: 

2

11 1exp x          (3.64) 

2
12 exp x           (3.65) 

where  is an adjustable interaction parameter, x1 is the mole fraction of surfactant 1 in the 

mixed micelle.  

Holland (1986) used this approach to correlate the interaction parameter  for 

different mixed surfactant solutions. Murphy et al. (2002) reported the interaction 

parameter  for several cationic surfactant solutions. 
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3.6 Thermodynamic Functions of Surfactant Solutions 

 

In previous sections of this chapter, some theoretical models of micelle formation 

have been discussed. However, the thermodynamic functions, G, H and S, of 

surfactant solutions are also very important for a quantitative understanding of the micelle 

solution. Although one have acquired considerable knowledge of the surfactant solutions, 

the thermodynamics of the solution is far from being completely understood. In this section, 

some general considerations of the thermodynamic functions for surfactant solutions are 

presented based on the work of Tanford (1980), Hoffmann et al. (1986) and Yaminsky et al. 

(2001).   

The thermodynamic functions, G, H and S, of surfactant solutions are the key 

to quantitatively understand the behaviour of surfactant solutions. A large amount of 

reliable experimental work has been carried out to measure these thermodynamic 

parameters (van Os et al., 1993). Based on phenomenological rules, one may correlate and 

predict some thermodynamic parameters. Different molecular interpretations of the 

thermodynamic parameters have been proposed (Yaminsky et al., 2001).  

In experimental techniques, G of micelle formation is measured through the 

determination of the activity of the solute or of the solvent. H is determined by 

microcalorimeters or precision solution calorimeters (Hoffmann et al., 1986). The S can 

be obtained from thermodynamic relation: STHG . 

In practice, H is the most commonly measured property for micelle solution by 

microcalorimeters. Many commercial microcalorimeters are available. The CMC and 

enthalpy can be determined directly from the same experiment. Using mass-action model or 

pseudo-phase model, G can be calculated through measured H (Paula et al., 1995, 

Garidel et al., 2000). 

Using mass-action model, the enthalpy can be related to CMC through van’t Hoff 

equation (Garidel et al., 2000) as follows: 

van’t Hoff equation 

2

ln

RT

H

dT

Kd
          (3.66) 
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From thermodynamic relation: KRTG ln0 , the van’t Hoff equation can be 

transformed to:   

2

00

T

H

T

G

dT

d
         (3.67) 

As discussed in section 3.3, assuming a sufficiently high value for aggregation number ng, 

the second term of mass-action equation (3.8) becomes very small and can be neglected. 

Thus, we have 

CMCln0 RTGmic          (3.68) 

For a single surfactant system, combining equation (3.67) and (3.68), we obtain 

2

0CMCln

RT

H

dT

d mic          (3.69) 

The first derivative of H with respect to temperature yields the change in heat capacity 

Cp:  

p

p
T

H
C          (3.70) 

The change in entropy S can be obtained by the Gibbs-Helmholtz equation: 

TGHS /          (3.71) 

Based on equations (3.68)-(3.71), the relations between CMC and thermodynamic 

functions can be obtained. In these equations, the Gibbs free energy model is a key factor to 

give the relation of CMC and thermodynamic functions. As discussed in previous sections, 

different theories have been proposed to calculate the G, such as pseudo-phase separation 

model, mass-action model, molecular thermodynamic models, etc. However, in the 

calorimetric experimental work the pseudo-phase separation model and mass-action model 

are often used to get Gibbs free energy and entropy of micelle formation (Garidel et al., 

2000). 

The effect of temperature on the micelle formation is small. For ionic surfactants, 

the CMC increases with increasing temperature, for non-ionic surfactants, it decreases with 

increasing temperature. It has been observed that CMC has a minimum value in 

investigated temperature range for some surfactant systems, such as SDS, octyl glucoside, 
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etc. (Garidel et al., 2000). However, the reason of the CMC minimum in a certain 

temperature range is not clear at present.  

In the micelle formation of surfactant solutions, the enthalpy values are often 

positive at low temperatures and become negative at higher temperatures, while it is the 

opposite for entropy. Thus, micelle formation is a entropy-controlled (or entropy-driven) 

process at low temperatures. For high temperatures, the micelle formation is no longer 

entropy but enthalpy controlled. Whether enthalpy or entropy dominates the hydrophobic 

effect, the net is unfavourable dissolution. The aqueous environment remains hostile to 

hydrocarbons.  

The molecular interpretation of thermodynamic functions depends on the 

understanding of ‘hydrophobic effect’ that controls hydrocarbon solubility in water. The 

science of hydrophobic effect possible starts with the like-likes-like principle in explanation 

of solubility that is a traditional part of chemistry. In the early part of 20th century, 

Langmuir attributed the relatively low solubility of hydrocarbons in water to the strong 

mutual interaction between hydrocarbon moieties. By contrast, Harkins suggested that the 

slight solubility of hydrocarbons in water is due to the fact that water is strongly self-

associated. In 1960s, Hildebrand, Tanford in 1970s, and van Oss et al. in 1980s essentially 

reclaimed Harkins’ analysis. Although the energy of water-water cohesion is substantially 

greater than that of water-hydrocarbon adhesion, hydrocarbon-hydrocarbon interaction 

energies are about the same as that between water and hydrocarbon (Yaminsky et al., 2001).  

 

 

3.7 Summary  

In this chapter, different thermodynamic treatments for the micelle formation in 

surfactant solutions are briefly reviewed. Since the concept of micelle or aggregation was 

first reported by McBain and Swain (1936), it has been widely accepted in research for 

surfactant solutions. Many experimental results have proved the existence of self-organized 

aggregates, and many different thermodynamic frameworks have been proposed to explain 

the micelle formation in surfactant solution. The discussed methods in this chapter are those 

often used in practice.  
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In the pseudo-phase theory, the micelles or aggregates are assumed as a 

macroscopic phase in surfactant solution. The calculation methods of vapour-liquid 

equilibrium or liquid-liquid equilibrium are used to describe the micelle formation. Because 

the assumed macroscopic phase (micelles) is corresponded to infinite aggregation number 

in surfactant solution, this method cannot describe the aggregation number of surfactants. 

The mass-action theory treats the micelle formation as the product of a chemical 

reaction. The chemical equilibrium constants are studied by thermodynamic method. 

However, this method cannot calculate the phase separation in the surfactant solution.  

The molecular thermodynamic framework for micelle formation has two different 

branches: one relays on detailed molecule descriptions to build up the properties of 

surfactant solution, the other uses activity coefficient. Figure 3.7 shows the basic 

characteristics of the two branches. 

The thermodynamic frameworks of Tanford, Israelachvili, Blankschtein and 

Nagarajan are based on molecular structure description (molecular structure method). Two 

different formulation factors are employed in these methods: 

1) The chemical potential of micelle is related to the size of micelle, or aggregation 

number (the number of surfactant molecules making up a micelle). In the chemical 

potential expression, the ideal mixing assumption is introduced because micelle formation 

normally occurs in very dilute solutions. 

2) The standard state chemical potential is related to the detailed structural 

description of surfactant molecules or micelles, such as tail length, headgroup area, tail 

volume, etc. Different molecular structures give different contributions to the changes of 

chemical potential. Such changes result in the micelle formation in surfactant solutions. In 

the approaches of Blankschtein and Nagarajan, the detailed molecule geometry calculation 

methods have been proposed to estimate the free energy of different surfactants. 



 50                                                          Chapter 3 Thermodynamics of Surfactant Solutions  

 
 
Figure 3.7 Two branches in molecular thermodynamic methods for surfactant solution 

 

As discussed previously, the ideal mixing assumption is correct for nonelectrolytes 

at a very large dilution, but not for electrolyte solutions. Moreover, the dependence of the 

chemical potential on the aggregation number, such as equation (3.37), (3.40), gives the 

possibility of following the aggregation process in detail. But the equations (3.37) and (3.40) 

cannot be used to calculate phase separation in surfactant system, because the aggregation 
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number tends to infinite in a new surfactant phase formed. Therefore, a complete new set of 

equations were used to calculate phase separation of surfactant solutions in the molecular 

structure methods (Puvvada et al., 1990, Nagarajan 1997a).  

It can be seen that the molecular structure methods do not take advantage of the 

extensive work on activity coefficient models carried out in the past decades for solutions 

of non-electrolytes, electrolytes and polymers in academic and chemical industry, 

especially for the phase separation calculation.  

 Chen et al. (1996, 2001) and Li et al. (1998, 2000) proposed slightly 

different thermodynamic treatments for the micelle formation in surfactant solutions using 

activity coefficient models, e.g. NRTL and UNIQUAC, to calculate CMC of surfactant 

solutions. Some typical surfactant solutions, such as alcohol ethoxylates, sodium alkyl 

sulphates, etc., have been studied by their methods. 
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Chapter 4 Octanol-water Partition Coefficients for Non-
ionic Surfactant Solutions 
 

In this chapter, the octanol-water partition coefficient (Kow) for non-ionic surfactant 

molecules (alcohol ethoxylates) and phthalates are investigated with the UNIFAC method 

and commercial software. The calculations are compared with a few experimental Kow data 

for these compounds. In Chapter 8, the Kow results will be used to establish correlations of 

toxicity and bio-concentration factor for alcohol ethoxylates.    

    

4.1 Introduction 

The n-octanol-water partition coefficient (Kow) is a widely used property in 

environmental and biological applications, because it measures the hydrophobic and 

hydrophilic nature of organic compounds. Kow has been used successfully in Quantitative 

Structure Activity Relationships (QSAR) in various fields (Leo et al., 2003): drug and 

pesticide design, pharmacokinetics, anaesthesiology, environmental transport and soil 

binding, toxicology, bioaccumulation, protein folding, enzyme binding, enzymic reactions in 

non-aqueous solvents, and host-guest complexation.  

Many experimental methods have been developed to measure Kow for different 

chemicals (Sangster, 1997). Experimental Kow data for more than 20,000 organic 

compounds have been compiled (Sangster, 2001). However, these measurements are carried 

out in a very dilute solute concentration region, i.e. in the ranges of part per million (ppm) or 

parts per billion (ppb). Thus, such measurement can be of considerable uncertainty in some 

cases and may reach errors up to a few orders of magnitude. At the same time, for many 

newly released chemicals, Kow values have not been measured. Thus, methods for predicting 

Kow are of interest. 

Various Kow calculation methods have been systematically compiled and compared by 

several researchers (Sangster, 1997, Buchwald et al., 1998, Derawi et al., 2001). A number of 



54                Chapter 4 Octanol-water Partition Coefficient for Non-ionic Surfactant Solutions  

commercial tools are also available for Kow prediction, such as ACD/LogP, KowWin and 

ClogP.  

ACD/LogP (ACD/LogP, 2003, www.acdlabs.com) is a method developed by Advanced 

Chemistry Development, Inc. The method used in ACD has not been described in the 

scientific literature (Sangster, 1997). The calculation in ACD/LogP is based on an algorithm 

that uses the experimental Kow values for over 12,400 structures with more than 1,200 

different functional groups. ACD/LogP's internal database contains over 18,400 compounds 

with experimental Kow values collected from different sources.   

KowWin (KowWin, 2003, esc.syrres.com) is a software developed by Syracuse Research 

Corporation using the Meylan and Howard approach (Meylan et al., 1995). The program 

estimates the octanol-water partition coefficient of organic chemicals using an atom/fragment 

contribution method. Using a training set of 2,410 chemicals with 175 groups and 280 

correction factors, a correlation coefficient of 0.98 was found between the experimental and 

estimated logKow values. The method has been evaluated using a validation set of 

experimental values for 10,550 chemicals other than those included in the training set with a 

resulting correlation coefficient of 0.94 and a mean error of 0.35 in logKow. The complete 

database in KowWin has experimental Kow values for 13,058 compounds. 

Clog (ClogP, 2003, www.daylight.com) is developed by Daylight Chemical Information 

Systems Inc. with the Hansch and Leo’s fragment approach (Hansch et al., 1995). The 

method adds together contribution values for structural parts (fragments) of a solute molecule 

and correction factors dependent upon the particular way the parts are put together. With the 

use of a large database of reliable experimental Kow data, the contribution values of different 

structural parts (fragments) to the total Kow of molecules have been obtained. 

Surfactants, such as alcohol ethoxylates (or polyoxyethylene alcohol) R(CH2CH2O)nOH, 

are amphiphilic molecules that include both a hydrophilic and a hydrophobic part. The 

surfactant molecules are adsorbed at the interface between the two different fluids, e.g. in the 

water-air, water-octanol interface. Thus, they can significantly change the surface or 

interfacial tension. This property of surfactant molecules is useful for many different 

industrial products, e.g. detergents, washing powders, etc. However, exactly because of this 

surface adsorption, the Kow measurements are difficult for surfactants. In the Kow 
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measurements, the surfactant molecules accumulate at the octanol-water interface, which 

results in lower surfactant concentration in the bulk solvent. At the same time, the surfactants 

may also form emulsions and enhance the mutual solubility of octanol and water by strong 

interaction with octanol even below their critical micelle concentration (Müller et al., 1999). 

Thus, it is very useful to develop a predictive method to evaluate the Kow of surfactants since 

the experimental data are often not available. This study is an effort towards this direction. 

The UNIFAC method (Fredenslund et al., 1975) is a group contribution method based on 

the local composition concept. This method has been successfully used to predict many 

physical properties especially in chemical engineering applications, e.g. vapour-liquid 

equilibrium (Fredenslund et al., 1975), liquid-liquid equilibrium (Magnussen et al., 1981), etc. 

Kow has also been studied with the UNIFAC model by several researchers. (Chen et al., 

1993, Wienke et al., 1998, Derawi et al., 2001). UNIFAC has been proven in some cases to 

be a good model for predicting Kow in the case of lack of experimental data. However there 

has been no systematic attempt so far to estimate Kow for surfactants using UNIFAC.  

In this work, the Kow of phthalates are first studied as a test because phthalates are often 

used in different chemical products (plastics, paints, etc.) and are important in many 

environmental studies (AMI report, 2000). Although phthalates are not surfactant molecules, 

they have similar functional groups, e.g. –COO, as surfactants. Figure 4.1 illustrates the basic 

chemical structure of phthalates, where the R1 and R2 may be alkyl or aryl groups, etc.  

Then, the Kow values for alcohol ethoxylates (R(CH2CH2O)nOH) are evaluated using 

UNIFAC model and the 3 commercial tools described previously (ClogP, ACD, KowWin) as 

well as a recently developed group contribution solvation model (Lin et al., 1999). The 

prediction results of the various models are compared to the limited experimental Kow data 

for alcohol ethoxylates.  

 

O

O

O

O

R1
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Figure 4.1 Structure of phthalates. R1 and R2 may be alkyl or aryl groups, etc. 
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4.2 Octanol-water Partition Coefficient and its Calculation 

The partition coefficient of a single compound i between octanol (O) and water (W) 

phases can be defined for dilute solutions (Sandler, 1999) at 25°C: 

,

,

ow
O

i

W

W

i

O

C

C
K          (4.1) 

where CO and CW represent the total molar concentrations of the octanol-rich and water-rich 

phases at 25°C, respectively. Because only a small amount of solute is added to the octanol-

water mixture, the solute concentration is very small in both phases. Thus the activity 

coefficients at infinite dilution, ,W

i , ,O

i  are used. Using the solubility data of water and 

octanol in water-rich phase and octanol-rich phase from the Handbook of Chemical Property 

Estimation Methods (Lyman, 1982), the Kow expression in equation (4.1) becomes: 

,

,

151.0ow
O

i

W

iK          (4.2) 

The solubility of water and octanol in the water-rich phase and octanol-rich phase at 25°C is, 

respectively, 55.3 mol/liter for water, and 4.5×10-3 mol/liter for octanol in the water-rich 

phase; 2.30 mol/liter for water, and 6.07mol/liter for octanol in the octanol-rich phase.  

The activity coefficients at infinite dilution can be calculated from different activity 

coefficient models, e.g. NRTL, UNIQUAC and UNIFAC. In this study the UNIFAC method 

is chosen to calculate the activity coefficients because it is a predictive tool based on the 

group contribution principle. Using UNIFAC method, Kow can be predicted from the 

chemical structure information of a compound. The UNIFAC model is presented in 

Appendix A.  

Based on a comprehensive review of these different UNIFAC methods for Kow in 

several chemical families (Derawi et al., 2001, Thomsen et al., 1999), the UNIFAC LLE1 

and water-UNIFAC were recommended for predicting the Kow. A new UNIFAC model 

(Micelle) has been also recently developed for predicting the critical micelle concentration 

for non-ionic surfactants (Cheng et al., 2002). This model is presented in Chapter 5 of this 

thesis. In “Micelle UNIFAC”, a new functional group (CH2CH2O) was introduced into 
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UNIFAC VLE1; the interaction parameters were obtained from vapor-liquid equilibrium data. 

These different UNIFAC methods are used to calculate Kow in this work. 

 

 

4.3 Experimental Kow Data for Alcohol Ethoxylates and 
Phthalates  

 

Very few experimental octanol-water partition coefficient data have been reported for 

alcohol ethoxylates (Morral, et al., 1996) due to the experimental difficulties discussed above. 

For the same reason, existing Kow data for alcohol ethoxylates surfactants may not be very 

reliable. Thus, Kow data for compounds with similar structures are helpful for testing the 

UNIFAC group interaction parameters.  

The alcohol ethoxylates (R(CH2CH2O)nOH) are often abbreviated as CiEj. Here i is the 

number of alkyl carbon (CH3-, CH2-) in the R group and j is the number of oxyethylene 

groups (CH2CH2O-) in the molecule. The alcohol ethoxylates also have an alcohol group       

(-OH). Therefore, the Kow data from the same alcohol ethoxylate family, such as 2-

methoxyethanol (C1E1), 2-ethoxyethanol (C2E1), etc., are very useful in this work even 

though the C1E1 and C2E1 are not actual surfactant molecules.  

In this work, all Kow data for surfactants and phthalates are taken from the LOGKOW 

databank (Sangster, 2001).  

 

 

4.4 Results and Discussions 

The various methods used in this work are summarized in Table 4.1. Using these 

different methods, the Kow prediction results for phthalates are shown in Table 4.2, while the 

Kow results for alcohol ethoxylates are presented in Tables 4.3 and 4.4. Based on these 

results, the following points summarize our observations: 
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Table 4.1 Methods used for Kow calculations 
Method  Abbreviation Reference 
Original UNIFAC VLE 1 VLE1 Hansen et al. 1991 
UNIFAC LLE 1 LLE1 Magnussen et al., 1981 
UNIFAC VLE 2 VLE2 Hansen et al., 1992 
Modified UNIFAC VLE 3 VLE3 Larsen et al., 1987 
Water-UNIFAC  H2O Chen et al., 1993 
UNIFAC for surfactants Micelle Cheng et al., 2002 
ClogP ClogP www.daylight.com 
ACD/LogP ACD www.acdlabs.com 
KowWin Kwin esc.syrres.com 
Solvation model GCS Lin et al., 1999 
 

 

 

Table 4.2 logKow prediction results for phthalates with UNIFAC VLE 1, GCS and 3 
commercial software methods. All names for phthalates are given as substitute groups. 
Phthalate Exp.* VLE1 ACD ClogP KowWin GCS 
Dimethyl 1.6 1.74 1.62 1.56 1.66 -0.08 
Diethyl 2.42 2.64 2.69 2.62 2.65 0.97 
Dipropyl 3.64 3.53 3.75 3.68 3.63 2.03 
di-iso-propyl 2.83 3.53 3.38 3.24 3.48 1.73 
Dibutyl 4.50 4.43 4.81 4.73 4.61 3.09 
di-iso-butyl 4.48 4.43 4.44 4.47 4.46 2.79 
Dipentyl 5.62 5.32 5.87 5.79 5.59 4.15 
Dihexyl 6.82 6.21 6.94 6.85 6.57 5.21 
Dioctyl 8.18 8.00 9.06 8.97 8.54 7.34 
Didecyl 8.83 9.79 11.19 11.08 10.5 9.46 
di-sec-octyl 7.06 8.00 8.69 8.71 8.39 7.03 
Ditridecyl 8.4 12.47 14.38 14.26 13.45 12.6 
Diallyl 2.98 3.39 3.28 3.11 3.36 0.93 
dutylbenzyl 4.73 4.79 4.99 4.98 4.84 2.37 
dicyclohexyl 4.9 6.02 5.74 5.62 6.20 5.0 
Mean Dev. %  12 14 13 13 37 

* Exp.: Experimental data from Sangster (2001).  
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Table 4.3 logKow prediction results for alcohol ethoxylates with UNIFAC VLE 1, GCS and 
3 commercial software methods 
Compound  Exp.* ClogP Kwin ACD GCS Micelle VLE1 
2-methoxethanol (C1E1) -0.77 -0.75 -0.91 -0.80 -1.56 -0.31 -0.83 
2-ethoxyethanol (C2E1) -0.28 -0.22 -0.42 -0.27 -1.02 0.14 -0.38 
3,6-dioxa-1-octanol (C2E2) -0.54 -0.15 -0.69 -0.26 -1.89 0.28 -0.75 
iso-propoxyethanol (C3E1) 0.05 0.09 0.00 0.08 -0.65 0.58 0.07 
2-butoxyethanol (C4E1) 0.8 0.84 0.57 0.80 0.03 1.03 0.51 
3,6-dioxadecanol (C4E2) 0.56 0.91 0.29 0.81 -0.83 1.18 0.15 
2-(hexyloxy) ethanol (C6E1) 1.86 1.90 1.55 1.86 1.09 1.92 1.41 
3,6-dioxa-1-dodecanol (C6E2) 1.7 1.96 1.28 1.87 0.22 2.07 1.04 
Mean Dev. %  33 39 22 311 199 36 

* Exp.: Experimental data from Sangster (2001) 

 

Table 4.4 logKow prediction results for alcohol ethoxylates with various UNIFAC methods 
Compound Exp.*  VLE1 LLE1 H2O Micelle VLE2 VLE3 
C1E1 -0.77 -0.83 -1.51 -0.96 -0.31 -0.78 -0.60 
C2E1 -0.28 -0.38 -1.02 -0.52 0.14 -0.31 -0.06 
C2E2 -0.54 -0.75 -1.93 -0.88 0.28 -0.72 -0.30 
C3E1 0.05 0.07 -0.53 -0.07 0.58 0.15 0.47 
C4E1 0.8 0.51 -0.04 0.38 1.03 0.62 1.01 
C4E2 0.56 0.15 -0.95 0.01 1.18 1.55 2.08 
C6E1 1.86 1.41 0.94 1.27 1.92 0.21 0.77 
C6E2 1.7 1.04 0.03 0.90 2.07 1.14 1.84 
Mean Dev.%  36 287 80 199 48 135 

* Exp.: Experimental data from Sangster (2001) 

 

In Table 4.2, 4.3 and 4.4,  

%
owlog

owlogowlog1
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, n is the total number of data. 

 

 (1) Kow Prediction for Phthalates From Table 4.2, it can be seen that the VLE1, ACD, 

ClogP and KowWin methods perform similarly, with VLE1 being slightly more accurate. 

The GCS method employed here has been originally developed for mono-functional 

chemicals and yields large deviations for phthalates. Phthalate molecules have structures 

containing alkyl carbon, aromatic and COO groups, which are multi-functional compounds 
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(similar to alcohol ethoxylates). It is not surprising that the GCS method cannot satisfactorily 

predict the Kow values for phthalates. Based on these calculations, UNIFAC VLE 1 is 

recommended for predicting Kow for phthalates. 

 

(2) Kow Prediction for Alcohol Ethoxylates  

It is useful to identify the surfactant molecules from the alcohol ethoxylates shown in 

Table 4.3. D’Arrigo et al. (1991) suggested that the C4E1 molecule is the shortest alcohol 

ethoxylate surfactant. Following D’Arrigo et al., four compounds of Table 4.3 (C4E1, C4E2, 

C6E1 and C6E2) can be classified as surfactants. It will be of interest to investigate whether a 

UNIFAC model can calculate the values of Kow for both non-surfactants (C1E1 ~ C3E1) and 

surfactant molecules (C4E1 ~ C6E1) including both short chain and longer chain surfactants 

(C4E1, C4E2 to C6E1, C6E2).  

The Kow value can assist in interpreting the distribution trend of chemicals. 

Hydrophilic chemicals with low Kow values will be largely partitioned into the water-rich 

phase. Thus, the longer hydrophilic group chain a chemical has, the lower Kow value is 

expected. In Table 4.3, it means that the C4E2 should have lower Kow value than C4E1 

because the C4E2 has two hydrophilic oxyethylene groups. Similarly, longer hydrophobic 

chains of a chemical indicate a larger Kow value, i.e. Kow must increase from C1E1 to 

C6E1. All Kow data shown in Table 4.3 agree with these general considerations.   

As shown in Table 4.3, the three commercial tools (ACD, ClogP, KowWin) and 

UNIFAC VLE 1 perform similarly in the Kow prediction for the investigated compounds 

with ACD showing the lowest deviation. UNIFAC VLE 1 is the best among the various 

UNIFAC methods for Kow calculations, as shown in Table 4.4. 

The GCS method for mono-functional chemicals and the UNIFAC micelle method 

yield larger deviations. The plots of Kow prediction results with chain lengths are useful for 

analysing the general behaviour of the models. Such plots are shown in Figures 4.2-4.4 for 

three types of alcohol ethoxylate surfactants. 
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Figure 4.2 Experimental and predicted Kow values for CnE1 

 

 

Fig 4.3 Experimental and predicted Kow values for C4En 
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Figure 4.4 Experimental and predicted Kow values for C6En. 
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methods exhibit different trends from the VLE1, KowWin and GCS models. It seems that 

only VLE1, KowWin and GCS follow the experimental trend, i.e. decreasing Kow with 

increasing oxyethylene group number n in C4En and C6En based on the few data available. 

Based on these comparisons, it can be concluded that UNIFAC VLE 1 provides, 

qualitatively, very good Kow prediction results for the investigated systems. This method 

only uses group parameters based on vapour-liquid equilibrium data. 

 

(3) Kow Prediction for alcohol ethoxylates in case no experimental data is available 

The Kow values for alcohol ethoxylates, for which no reported experimental Kow 

data is available, are calculated, as shown in Figures 4.5-4.10, using UNIFAC VLE 1, 

commercial tools and the GCS solvation model. However, the Kow calculations of ACD, 

ClogP and KowWin software produce unreliable results when the alkyl carbon number of 
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selected surfactants in the Kow prediction are currently used in industry.  
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Figure 4.5 Predicted Kow values for CnE4 

 

 

 

Figure 4.6 Predicted Kow values for CnE6 
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Figure 4.7 Predicted Kow values for CnE8 

 

 

Figure 4.8 Predicted Kow values for C8En 
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Figure 4.9 Predicted Kow values for C12En 

 

 

Figure 4.10 Predicted Kow values for C16En 
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4.5 Conclusions 

The original UNIFAC VLE 1 model (VLE1) can, at least qualitatively, satisfactorily 

predict the octanol-water partition coefficients (Kow) of phthalates and yields similar results 

to commercial methods like ACD, ClogP and KowWin that are specifically designed for 

Kow.  

Moreover, the VLE1 method can predict reasonably well Kow values of alcohol 

ethoxylates, compared to the limited experimental data available. Again, the performance of 

VLE1 is similar to the commercial methods. The mono-functional group contribution 

solvation model (GCS) has the correct tendency with increasing numbers of oxyethylene 

group (CH2CH2O) and alkyl group (CH2) in alcohol ethoxylates (R(CH2CH2O)nOH) but it 

cannot be used for these complex compounds. The ACD and ClogP methods have slightly 

lower deviations for small alcohol ethoxylates molecules but unlike VLE1, they do not yield 

the correct trend with increasing oxyethylene group numbers for these compounds. The 

UNIFAC for surfactant solution method (Micelle) is very similar to ACD and ClogP but has 

larger deviation in Kow prediction for the alcohol ethoxylates. The KowWin can 

satisfactorily follow the trend with increasing numbers of oxyethylene group and alkyl group 

in alcohol ethoxylates and has similar deviations as UNIFAC VLE1. Extension of UNIFAC 

VLE1 method to other classes of non-ionic surfactants is straightforward because the 

interaction parameters of necessary groups, which may not available, can be estimated from 

phase equilibrium data for the UNIFAC VLE 1 method. Overall, it can be concluded that the 

UNIFAC VLE 1 method seems to be the best one among the investigated methods in Kow 

prediction for non-ionic surfactants. 
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Chapter 5 Critical Micelle Concentration of Nonionic 
Surfactant Solutions 
 

In this chapter, UNIFAC is combined with a thermodynamic treatment proposed by 

Chen (1996) to investigate the correlation and prediction of CMC for nonionic surfactant 

solutions. First, existing UNIFAC models are employed in the prediction of CMC. Second, 

interaction parameters of UNIFAC groups necessary for modelling alcohol ethoxylate non-

ionic surfactants are estimated from experimental CMC data. Alternatively, vapour-liquid 

equilibrium (VLE) data are used to obtain the interaction parameters for these selected 

groups. Finally, using these VLE-based parameters, CMC for different aqueous alcohol 

ethoxylates (R(CH2CH2O)nOH) solutions are predicted with the UNIFAC VLE 1 model.  

 

  

5.1 Recent Progress 

Different thermodynamic methods (pseudo-phase, mass action and thermodynamic 

models) have been proposed to describe the CMC, as discussed in Chapter 3. Among these 

approaches, the molecular thermodynamic methods are attractive since they can be often 

used for predictive calculations using limited data.  

In chemical engineering, different activity coefficient models are used for describing 

liquid phase properties, e.g. Wilson, NRTL, UNIQUAC and UNIFAC. These methods have 

been successfully used for a variety of fluids, e.g. hydrocarbons, polymers, aqueous solutions 

including aqueous electrolytes. Such activity coefficient models have been widely accepted 

in chemical industrial applications. Many reliable model parameters are available. However, 

such models have not been systematically applied to surfactant solutions. Recently, some few 

applications of such liquid solution models in surfactant solutions have been published, and 

they are reviewed in this section. These methods can often calculate and/or predict, with 

reasonable accuracy, the CMC of surfactant solutions. 

Chen (1996) proposed a molecular thermodynamic method for the micelle formation 

using a segment-based NRTL model to correlate the CMC of alcohol ethoxylate + water 
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systems. In his work, the temperature dependent interaction parameters of the NRTL model 

are obtained from the correlation of binary VLE of water-polyethylene glycol systems and 

LLE of water + hydrocarbons. CMC of some aqueous alcohol ethoxylate solutions are 

successfully predicted by this method.  

Li et al. (1998) used Chen’s thermodynamic treatment and employed the segment-

based UNIQUAC model and the statistical associating fluid theory (SAFT) to obtain the 

activity coefficients of aqueous nonionic surfactant solutions. CMC of single aqueous 

surfactant system was correlated and predicted for polyoxyethylene surfactant solutions. The 

interaction parameters of segmented-based UNIQUAC are obtained from experimental CMC 

data. Temperature dependent interaction parameters are employed in their work. To obtain 

the SAFT parameters of water, the liquid densities and saturated vapour pressure of pure 

water between 0-100ºC were correlated in their work. The segment parameters for surfactants 

in SAFT are regressed by fitting the experimental CMC data at 25ºC. 

Flores et al. (2001) and Voutsas, et al. (2001) used a phase separation thermodynamic 

framework approach to describe the micelle formation of surfactant solutions, in which the 

micelle phase is approximated as a second liquid phase resulting from the liquid-liquid 

equilibrium between the solvent and surfactant. The necessary activity coefficients are 

predicted by UNIFAC.  The most promising UNIFAC model in their purpose was found to 

be the UNIFAC-Lyngby (Larsen, et al. 1987). To improve the results for surfactants 

containing oxyethylene chains, a new set of parameters was evaluated for a new group 

(CH2CH2O), leading to better CMC prediction for both water and organic solvents, as well as 

binary solvent systems.  

From an application viewpoint, it would be convenient to use structure activity 

models, possibly based on group contributions, in a thermodynamic treatment for micelle 

formation, which can correlate and predict the important properties of surfactants, such as the 

critical micelle concentration and the partition coefficients. The UNIFAC model 

(Fredenslund et al., 1977) is such a group contribution method for the estimation of activity 

coefficients. Based on UNIFAC, the CMC data of different surfactant molecules can be used 

to estimate the interaction parameters of the necessary functional groups.  
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5.2 Prediction of CMC with Existing UNIFAC Models 

Chen (1996) used the original UNIFAC VLE1 (Hansen et al., 1991) to predict the 

CMC for alcohol ethoxylate surfactant solutions. According to Chen, the predicted CMC 

values using UNIFAC follow qualitatively the observed trend as the hydrophobic alkyl chain 

part of surfactants increases. However, UNIFAC cannot (not even qualitatively) yield the 

observed trend with respect to the hydrophilic chain. In this work, various existing UNIFAC 

models (see Appendix A) will be evaluated for several aqueous nonionic surfactant systems.    

The nonionic surfactants having a polyoxyethylene chain are among the most 

extensively investigated systems in the literature. The alcohol ethoxylate surfactants are often 

abbreviated as CiEj, where i is the number of alkyl carbon and j is the number of oxyethylene 

group (OCH2CH2). Due to the fact that existing UNIFAC parameter tables do not contain a 

separate oxyethylene group, it is necessary to investigate first how well the combination of an 

ether group (CH2O) and an alkyl group (CH2) can represent the oxyethylene group 

(CH2CH2O) for surfactant systems. In such combination, the values of group parameters Q 

and R for the oxyethylene group (CH2CH2O) are estimated as follows: 

OCHCH 22
Q = OCH 2

Q +
2CHQ =1.320             OCHCH 22

R = OCH2
R +

2CHR =1.5927 

Q and R values of group CH2O and CH2 are taken from the work of Hansen et al. 

(1991). The ether main group (CH2O) interaction parameters are used in these calculations. 

The values of the interaction parameters for different UNIFAC models are taken from the 

references given in Appendix A and are listed in Table 5.1.  

  

Table 5.1 UNIFAC interaction parameters for ether-alcohol and ether-water groups (in K) 
 CH2(1)~CH2O(2) CH2O(1)~H2O(2) 
 a1-2 a2-1 a1-2 a2-1 
UNIFAC VLE 1 251.5 83.36 -314.7 540.5
UNIFAC LLE 1 662.1001 1571. 212.8 64.42
UNIFAC VLE 2 164.2

    1.627
251.2

   -2.197
82.42 
  5.0 

-90.87
  -2.218

UNIFAC VLE 3 230.5
   -1.328
   -2.476

369.8999
   -1.542
   -3.228

183.1 
   -2.507 

    0.0 

19.54
  1.293
 -8.85

Water-UNIFAC 251.5 83.36 -314.7 540.5
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Figure 5.1 CMC prediction results with various UNIFAC models at 25ºC for CnE6 surfactants 
with different hydrophobic alkyl chains. 
 

Using equation (3.48) in Chapter 3, the CMC values of different aqueous nonionic 

surfactant solutions are predicted with the five different versions of UNIFAC (Table 5.1). 

The prediction results are shown graphically in figures 5.1 to 5.4. It can be seen that all five 

UNIFAC models have qualitatively similar behaviour in aqueous surfactant solutions. The 

predicted trends for both the hydrophobic and hydrophilic chains are in agreement with 

Chen’s results (1996). However, these results also show that UNIFAC may be in position to 

describe properties for surfactant systems and that it may have a potential for describing the 

micelle formation of aqueous surfactant solutions if appropriate improvements are introduced. 

In these calculations, experimental CMC data are taken from the following references: 

Mukerjee and Mysels (1971), Schick (1987), Hinz (1986), van Os et al. (1993). 
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Figure 5.2 CMC prediction results with various UNIFAC models at 25ºC for CnE8 surfactants 
with different hydrophobic alkyl chains.  

 

 
Figure 5.3 CMC prediction results with various UNIFAC models at 25ºC for C10En 
surfactants with different hydrophilic groups. 
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Figure 5.4 CMC prediction results with various UNIFAC models at 25ºC for C12En 
surfactants with different hydrophilic groups.   
 

 

5.3 Towards a UNIFAC Model for Surfactant Solutions 

As shown in figures 5.1-5.4, UNIFAC has the correct CMC tendency with varying 
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oxyethylene group (CH2CH2O) is introduced and evaluated. New interaction parameters for 

this group are first directly correlated from experimental CMC data. If results from this step 
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from vapor-liquid phase equilibrium data. These interaction parameters from the second step 

will give the possibility for direct CMC prediction through UNIFAC. 
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5.3.1 The New Oxyethylene Group (OCH2CH2) for UNIFAC 

Surfactant molecules have a wide range of structural features. For nonionic 

surfactants alone, several typical structure families are among branched alkyl ethoxylates, 

linear alkyl ethoxylates, octylphenol ethoxylates, alkanediols, alkyl mono- and disaccharides 

ethers and esters, ethoxylated alkyl amines and amides, fluorinated linear ethoxylates and 

amides (Huibers et al. 1996). 

Most of these nonionic surfactants contain the oxyethylene group (ethylene oxide 

oligomers) in the hydrophilic part of the molecule. These surfactants often contain a 

distribution of polyethylene oxide chain lengths rather than a constant number of units. In 

this work, two families are studied: the branched alkyl ethoxylates and the linear alkyl 

ethoxylates, which are widely used in the chemical industry and are among the most 

extensively investigated nonionic surfactants. They are also considered to be environmental 

friendly chemicals (AMI report, 2000). These two classes can be represented as the sum of 

oxyethylene groups, CH2CH2O and alkyl groups along with one alcohol group OH. Thus, 

only one new main UNIFAC group, CH2CH2O, needs to be introduced in order to describe 

these two classes of surfactants. 

 

5.3.2 Existing Interaction Parameters for the Oxyethylene Group 

In their study of phase equilibrium of aqueous polymer solutions, Rasmussen et al. 

(1989) have introduced a special CH2CH2O (polyethylene oxide) group in the UNIFAC 

model and successfully predicted the phase behaviour of aqueous polymer solutions with its 

group interaction parameters. These group interaction parameters (shown in Table 5.2) have 

been also used for investigating the applicability of UNIFAC model for predicting CMC 

values of surfactant solutions. Some prediction results are shown in figure 5.5 (denoted as 

“Rasmussen”). The calculation is the same as the various UNIFAC methods discussed in 

section 5.2. As shown in figure 5.5, using the parameters from Rasmussen et al. (1989) , the 

UNIFAC cannot satisfactorily predict the CMC trends of nonionic surfactants with both 

increasing hydrophobic and hydrophilic chain-length.  
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Figure 5.5 Prediction and correlation results of CMC of two CiEj surfactants (CnE6 and C10En) 
at 25ºC with different methods. 
 

Another group selection for surfactant molecules could be the special glycolether 

group, which has been published by Hansen et al. 1991. However, the glycolether-ether 

interaction parameters are not available in this UNIFAC model. Thus, this special group was 

not studied further.  

 

5.3.3 Summary 

This discussion and the previous calculations in section 5.2 indicate that the possible 

way for applying UNIFAC to surfactant systems would be to estimate special group 

interaction parameters. In figure 5.5, the prediction results of the UNIFAC from Rasmussen 

show that the UNIFAC model with a new oxyethylene group may have the capability for 

predicting satisfactorily the CMC values for different hydrocarbon chain length in aqueous 

surfactant solutions. It is thus very valuable to further investigate the potential of the use of a 
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necessary to verify that the UNIFAC model has indeed the potential of getting ‘both trends’ 

for surfactant solutions (i.e. increasing hydrophobic and hydrophilic chains). One of the ways 

to do so is an estimation of CH2CH2O parameter values directly from CMC data. 

 

 

5.4 Correlation of CMC Using UNIFAC 

The interaction parameters of CH2CH2O group are obtained by directly regressing 

CMC data. In order to obtain the UNIFAC interaction parameter values of the oxyethylene 

group, the thermodynamic condition, equation (3.48), is used for converting the experimental 

CMC values to activity coefficients. The logarithm of activity coefficients is used as the 

objective function (F) in the interaction parameter estimation with CMC data: 

j
jiExpiF
2

UNIFAC,, lnln        (5.1) 

where j is the jth data point of a data set.  

The UNIFAC interaction parameters between the oxyethylene group CH2CH2O and 

CH2 and H2O groups are regressed using the CMC data by minimizing this objective function, 

equation (5.1). The existing interaction parameters for CH2O-OH pair (Hansen, et al., 1991) 

are used. The interaction parameters of the remaining groups are also taken from Hansen, et 

al. (1991). The details of the regression method can be found in the reference (Fredenslund et 

al., 1977). Typical regression results are shown in figure 5.5, denoted as “Correlation”. The 

obtained parameter values are shown in Table 5.2, denoted as “Correlation”. For comparison 

the prediction results from NRTL model (Chen, 1996) are also presented in figure 5.5. 

These results indicate that UNIFAC with the new group has the potential of 

representing the CMC values of different types of aqueous surfactant solutions. Other local 

composition model, e.g. NRTL and UNIQUAC, may behave in a similar way. 

 
 

5.5 Prediction of CMC Using UNIFAC 

As a second step, the interaction parameters of CH2CH2O group will be obtained 

from VLE data. The UNIFAC interaction parameter pairs are the same as in the correlation 
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procedure described in the previous section (5.4). Two interaction parameter pairs, 

CH2CH2O-CH2 and CH2CH2O-H2O are estimated from VLE data. Due to the fact that 

CH2CH2O group can be treated as the combination of group CH2O and CH2, the CH2CH2O 

main group should include several subgroups, such as CH3CH2O, CH3CHO, CH2CH2O, 

CH2CHO, CHCHO, CH2CO, CH3CO. Moreover, proximity effects cannot be neglected for 

this group. Considering the proximity effects, the agreement between UNIFAC and phase 

equilibrium data is not very satisfactory for mixtures containing glycol ethers, 1,4-dioxane, 

1,3 -dioxolane, etc. (Kehiaian et al., 1989, Wu et al., 1989). For non-ionic surfactants, only 

the linear oxyethylene group is involved in branched alkyl ethoxylates and linear alkyl 

ethoxylates. Thus, only those systems including linear ether components are selected for the 

parameter estimation to avoid further complexity in the parameter estimation. 

The existing VLE phase equilibrium data of important ethers with non-polar solvents 

have been reviewed and published by IUPAC (Marsh et al., 1999). However, VLE data for 

ether + water systems are scarce. Considering previous investigations for ether-water 

interaction parameters (Skjold-Jørgensen, 1980, Larsen, 1986), we have only selected the 

water +1,4-dioxane system (Kortuem et al., 1977) for regressing the CH2CH2O-H2O 

interaction parameters. The following experimental VLE data have been used for the 

parameter estimation of CH2CH2O-CH2: n-hexane+dibutyl ether (Marsh et al., 1980) and 

butylmethyl ether + heptane (Treszczanowicz, 1986). No LLE data have been used. The 

estimation is based on the same objective function as before (equation 5.1). The interaction 

parameters regressed from VLE data are listed in Table 5.2. 

 

Table 5.2 UNIFAC interaction parameters (in K) 
 CH2(1)-CH2CH2O(2) CH2CH2O(1)-H2O(2) 
 a1-2 a2-1 a1-2 a2-1 
Rasmussen et al. 
(1989) 

106.60 63.55 546.0 -120.4 

Correlation from CMC 
(this work) 

22.24 -66.99 25.14 -18.24 

Estimation from VLE 
(this work) 

-31.87 84.75 134.95 -67.77 
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Using the UNIFAC interaction parameters from vapour-liquid equilibrium data 

(Table 5.2), CMC has been predicted using equation (3.48). The predicted results are shown 

in the figures 5.6-5.10, and are also compared with the correlation results (section 5.4).  

 
Figure 5.6 Predicted and correlated CMC values with UNIFAC VLE 1 model at 25ºC for two 
CiEj surfactants (CnE3 and CnE4) with different hydrophobic alkyl chains.  

 
Figure 5.7 Predicted and correlated CMC values with UNIFAC VLE 1 model at 25ºC for two 
CiEj surfactants (CnE6 and CnE8) with different hydrophobic alkyl chains.  
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Figure 5.8 Predicted and calculated CMC values with UNIFAC VLE 1 model at 25ºC for two 
CiEj surfactants (CnE9 and C13En) with different hydrophobic or hydrophilic groups.  
 
 

 
Figure 5.9 Predicted and correlated CMC values with UNIFAC VLE 1 model at 25ºC for 
three CiEj surfactants (C6En, C8En and C10En) with different hydrophilic groups.  
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Figure 5.10 Predicted and correlated CMC values with UNIFAC VLE 1 model at 25ºC for 
two CiEj surfactants (C12En and C16En) with different hydrophilic groups.  
 

From these results, it can be seen that the UNIFAC model, with the interaction 

parameter from VLE data, can quantitatively represent CMC for different aqueous non-ionic 

surfactant solutions. Specifically, the UNIFAC model predicts well the observed trends of 

hydrophobic alkyl and hydrophilic chain for these nonionic surfactant solutions. Slight 

deviations in the hydrophilic tendencies could be attributed to the fact that interaction 

parameters are estimated only from water+1,4-dioxane VLE data. The values of oxyethylene 

group interaction parameters could be different in the linear and cyclical states. On the other 

hand, the obtained CMC data are from different data sources; only part of them being from 

the collection of Mukerjee et al. (1971) in which CMC data have been carefully reviewed. 

Experimental CMC data may be subject to errors, which can be difficult to assess due to lack 

of a method for testing the consistency of CMC data.  

 

 

5.6 Discussion and Conclusions  

Different UNIFAC methods have been systematically investigated for water + alcohol 

ethoxylate systems. The results show that the original UNIFAC VLE 1, modified UNIFAC 
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VLE 3, UNIFAC LLE 1, the linear temperature dependent UNIFAC VLE 2 and water 

UNIFAC methods predict qualitatively correct the observed trend of the CMC with 

hydrophobic chain for aqueous nonionic surfactant solutions, but fail to predict the CMC 

trend with the hydrophilic chain. By introducing a new group, the oxyethylene group 

(CH2CH2O), and estimating its interaction parameters from vapour-liquid equilibrium data, 

the original UNIFAC VLE 1 method can provide good prediction for micelle formation in 

water + alcohol ethoxylate systems with both the hydrophobic and hydrophilic trends. 

Because the UNIFAC model has a large amount of interaction parameters readily available in 

reference (Hansen et al., 1991), it should be in principle applicable to other nonionic 

surfactant solutions, e.g. alkyl phenol-oxyethylene, if (when required) new functional group 

parameters are introduced and estimated from available phase equilibrium data. 

Besides the phase equilibrium data, osmotic coefficient and enthalpy data can also be 

applied to estimate the interaction parameters of the CH2CH2O group in the UNIFAC model. 

Dearden et al. (1996), Sato et al. (1988), van Os et al. (1993), McGinnis et al. (1997) have 

published these types of data. Because the osmotic coefficients are directly obtained from 

vapour pressure measurement of aqueous surfactant solutions, the osmotic coefficient data 

could be used to get the group interaction parameters in surfactant molecules, e.g. CH2CH2O 

group. In this way, UNIFAC may give better prediction results. However, interaction 

parameter estimation using osmotic coefficient data cannot completely overcome certain 

limitations of UNIFAC, such as the proximity effects.  

Modelling of micelle formation in mixed surfactant systems is at the beginning. 

However, mixed surfactant systems are very important in industrial applications. In the 

mixed aqueous surfactant solutions, more than one nonionic surfactant may exist in micelles. 

In many cases, these solutions also contain salts and ionic surfactants as additives. Chen 

(1996) has proposed a thermodynamic framework for mixed surfactant systems, but this has 

not been applied to a specific mixed surfactant solution.  
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Chapter 6 The UNIFAC Model for Aqueous Electrolyte 
Solutions 
 

The purpose of this chapter is to select and evaluate a model to describe the mean 

activity coefficients of electrolyte solutions, which will be applied to ionic surfactant 

solution.    

The ionic (cationic or anionic) surfactant molecules dissociate into cations and anions 

in aqueous solutions. Such solutions exhibit typical electrolytic properties. The electrical 

conductivity of the solution can be measured, and can be used experimentally to determine 

the critical micelle concentrations (CMC) of ionic surfactant solutions (Mukerjee et al., 

1971); as shown in figure 2.5 (Chapter 2) and figure 3.8 (Chapter 3). Thus, a model for 

organic electrolyte solutions is required to calculate the properties of ionic surfactant 

solutions, such as mean activity coefficients. 

In this chapter, the modelling of aqueous electrolyte solutions is first briefly 

reviewed, emphasizing the efforts of extending the UNIQUAC or UNIFAC model to aqueous 

electrolyte solutions. Achard’s electrolyte UNIFAC method (Achard et al. 1994a, b) is then 

described and modified. It has been found that the structural parameter (Q, R) of ions used in 

this model and other UNIQUAC based models did not follow Flory-Huggins assumption 

(Q/R 1). Thus, structural parameters (Q, R) of ions for the UNIFAC model are estimated 

from ionic radii based on the condition Q/R<1. Mean activity coefficients of some aqueous 

and organic electrolyte solutions are studied with the modified Achard electrolyte UNIFAC 

model using the new set of structural parameters.  

 

 

6.1 Modelling of Aqueous Electrolyte Solutions 

6.1.1 Definitions of Electrolyte Solutions 

When dissolved in a high-dielectric-constant solvent like water, an electrically neutral 

electrolyte Mv+Xv- is dissociated into v+ positive ions (cations) each with a charge z+, and v- 
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negative ions (anion) of charge z-. Charges are given in normalized units where z+=1 for a 

proton. Electrolyte dissociation is represented by 

Mv+Xv-    v+Mz+  + v-X
z-       (6.1) 

Electroneutrality requires that 

v+z+ + v-z-=0          (6.2) 

Equation (6.2) expresses a chemical equilibrium. The criterion for chemical equilibrium is 

that the chemical potentials follow the equation: 

-ZZ
-vv X-MXM  vv         (6.3) 

Using the molality scale for activity coefficients, the chemical potential of the electrolyte is: 

 )ln(  )ln( -
*

XMXM -vv-vv mm mRTvmRTv     (6.4) 

where 

*
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*

M

*
XM -ZZ

-vv
 vv         (6.5) 

In equation (6.5), *

MZ is the chemical potential of ion M (with charge z+) in a hypothetical 

ideal solution. A similar definition is used for *

X -Z . 

Equation (6.4) can also be written in another form: 

)ln(  )ln(    )ln(  *
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m

vv aaRTRTmmRT   (6.6) 

where the subscripts on MX have been dropped for convenience. 

The mean (ionic) molality (m±) and the mean (ionic) activity coefficient ( ±m) are defined by 

vvv mmm
/1

         (6.7) 

vv

m

v

mm

/1
         (6.8) 

where v=v+ + v-. With equation (6.6), we have 

m

vvv maaa
/1

)()(        (6.9) 

where a  is the mean (ionic) activity. 

A thermodynamic model is needed for the mean activity coefficient ±m. 
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6.1.2 Activity Coefficient Models 

The work of Debye and Hückel in 1923 is one of the first theoretical attempts in 

modelling electrolytes (Laidler, 1999). In Debye-Hückel theory, the water or solvent is 

regarded as a dielectric continuum, the solvent molecules are not explicitly taken into 

account. The ions are regarded as individual spheres. This is a simplified representation of a 

very dilute solution. The Debye-Hückel theory only considers the energy of charging-up a 

system. That implies the existence of an uncharged system of molecules that needs to be 

charged. If the Debye-Hückel theory is used without any additional terms, it only represents 

the behaviour of very dilute solutions. Starting with the Debye-Hückel theory, many 

researchers have proposed their methods to represent concentrated electrolyte solutions.  

Loehe and Donohue (1997) have reviewed modelling approaches for thermodynamic 

properties of aqueous electrolyte solutions. Theoretical and engineering models for the 

thermodynamic properties of strong electrolyte solutions have advanced significantly since 

the 80’s. Significant progress has been made in the ability to calculate various properties of 

single and mixed strong electrolyte solutions over a wide range of temperature and 

composition, including effects of various non-electrolytes, solvents and supercritical 

components. Engineering models for thermodynamic properties of electrolyte solutions may 

be divided into three catalogues: (1) local composition and hydration models; (2) empirical 

and semi-empirical equations of state for strong electrolytes; and (3) equations for mixed 

solvents, mixed electrolytes, and mixtures of supercritical gases and electrolytes. In this 

work, we focus on local composition models. 

Many such semi-empirical local composition models have been proposed using a 

Debye-Hückel type term for the long-range contribution, but different expressions for the 

short-range contribution, e.g. UNIQUAC, NRTL, Wilson, van Laar and Margules equations 

(Prausnitz et al., 1999). The models of Cruz and Renon (1978) and Chen et al. (1982, 1986), 

use NRTL; the model of Zerres and Prausnitz (1994) uses an extended van Laar equation. In 

Pitzer’s model (1973, 1980), a virial series is used for the short-range contribution.  

The electrolyte NRTL model of Chen et al. is based on two important assumptions: 

(1) the local composition of cations around cations is zero, and similarly for anions, which is 

equivalent to assuming that repulsive forces between ions of like charge are extremely large 
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(like-ion repulsion assumption); (2) the distribution of cations and anions around a central 

solvent molecule is such that the net local ionic charge is zero (local electroneutrality 

assumption). Based on these assumptions, Chen derived an expression for the short-range 

contribution to the excess Gibbs energy that includes two adjustable parameters. Chen’s 

model reproduces well the mean ionic activity coefficients of aqueous single electrolytes up 

to a molality of six. For multi-salt systems, this model requires binary parameters obtained 

from data of the corresponding binary systems. Recently, Chen et al. (2001) modified their 

electrolyte NRTL model and extended it to aqueous organic electrolytes. The proposed 

extension has three terms: the Pitzer-Debye-Hückel term, the local composition term from an 

NRTL-type expression, and the Flory-Huggins term. This NRTL version for aqueous organic 

electrolytes was then applied to micelle formation of aqueous sodium carboxylate solutions. 

 

 

6.2 Efforts in Extending the UNIQUAC/UNIFAC Methods to 
Electrolyte Solutions 

 

Many efforts have been reported for extending the UNIQUAC or UNIFAC models 

(as short-range term) for electrolyte solutions. Only some of the efforts are discussed here.  

 

Christensen et al. (1983 a, b) 

Christensen et al. investigated aqueous electrolyte solutions with the UNIQUAC 

model. In their work, the excess Gibbs energy of solution includes three terms: (1) a Debye-

Hückel term from Robinson and Stokes (1965); (2) a term of the Brøndsted-Guggenheim 

type, which is an empirical expression given by Guggenheim referring to the interaction 

between cations and anions; (3) a UNIQUAC term. It is assumed that the local composition 

of cations around cations and anions around anions is very small, due to the strong repulsive 

electrostatic interaction between charges of the same sign. This corresponds to a high 

positive value for the interaction parameter between two cations or two anions. This 

assumption is equivalent to the “like-ion repulsion assumption” of Chen et al. (1982). 

Another assumption is to arbitrarily set the value of interaction parameters of water-water 
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and cation-anion to zero. For ions, the structural parameters are calculated using the ionic 

radii in crystals. The ionic radii in crystals can be found in CRC handbook (Lide, 2002). For 

a single electrolyte system, three estimated parameters, i.e. ucation-H2O, uanion-H2O in the 

UNIQUAC term and one cation-anion in the Brøndsted-Guggenheim term, are used to correlate 

the activity coefficients of electrolyte solutions. 

 

Sander et al. (1984, 1986) 

To correlate and predict salt effects in vapour-liquid equilibria for water and 

cosolvent mixtures, Sander et al. (1984, 1986) combined the Debye-Hückel term and a 

modified UNIQUAC equation with concentration-dependent interaction parameters. The 

model parameters are ion-specific, and no ternary parameters are required. In Sander’s 

model, some of the interaction parameters between cations and anions are set to be zero. 

Instead of using the “like-ion repulsion assumption” of Chen et al. (1982), the interaction 

parameters between like ions are also set to zero. The volume (R) and surface area (Q) 

parameters of cations were modified. This is because the very small values of the ionic radii 

of the cations lead to Q-values of the order of 0.1 to 0.5. Q values of this magnitude reduce 

the fitting capabilities of the UNIQUAC equation. For the anions, the R and Q are calculated 

from ionic radii in crystals. However, a large number of parameters are needed: 7 for a 

salt/solvent system and 14 for a salt/co-solvent system. Sander’s model suffers from 

improper combination of Lewis-Randall and McMillan-Mayer formalisms. This deficiency 

was later corrected by Macedo et al. (1990). 

 

Kikic et al. (1991) 

Kikic et al. developed a UNIFAC model for correlation of vapour liquid equilibria in 

mixed solvent-salt systems. The model of Kikic et al. used the same thermodynamic 

framework as Sander’s. UNIFAC is used for the short-range contribution term instead of 

UNIQUAC. The Debye-Hückel expression is used for long-range interactions. The 

assumptions for interaction parameters are the same as in Sander’s method. The volume and 

surface area parameters of ions are taken from Sander’s work. 
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Thomsen et al. (1996, 1997, 1999) 

Thomsen et al. modified Sander’s model (1986) with a linear temperature dependence 

of the binary interaction parameters and extended the UNIQUAC model to correlate and 

predict the thermal properties and phase behaviours of aqueous electrolyte systems. The 

interaction parameters are estimated from Gibbs energy of formation, enthalpy of formation 

and heat capacities for electrolytes. Thomsen’s model sets the water-water and the like cation 

interaction parameters to zero. The volume and surface area parameters of ions are regressed 

from experimental data. 

 

Li et al. (1994) 

Li et al. proposed an excess Gibbs energy (GE) model for electrolyte systems based on 

the results from statistical thermodynamics and took into account the interactions between all 

species present in the electrolyte solution. In this model, the electrolyte solution is treated as 

a non-electrolyte solution plus charge interactions. It is assumed that the charge interactions 

are both direct and indirect: direct interactions between charges, indirect effects under the 

influence of the electric field created by the charges. Both direct and indirect effects depend 

on the ionic strength of the solution. The expression of excess Gibbs energy for electrolyte 

solutions is: 

E
SR

E
MR

E
LR

E GGGG         (6.10) 

where the E
LRG  represents the long-range (LR) interaction due to the electrostatic forces, and 

mainly describes the direct effects of charge interactions. E
LRG  is calculated with the Debye-

Hückel theory modified by Fowler and Guggenheim. E
MRG  represents the indirect effects 

from the noncharge short-range interactions of the non-electrolyte solutions, and is called the 

middle-range (MR) interaction contribution. E
MRG  is computed by an expression proposed by 

Li et al. (1994), E
SRG  expresses the short-range interaction, and is calculated by the 

UNIQUAC model. The volume and surface area parameters are fixed to 1.0 for ions. For a 

single electrolyte solution, four parameters are required to describe the cation-anion 

interactions; eight parameters are needed for ion-solvent interactions. Based on the 

thermodynamic framework of Li et al. (1994), Yan et al. (1999) used the UNIFAC model, 
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instead of UNIQUAC, to describe the short-range interaction contribution and introduced 

group interaction parameters to the middle-range term. The volume and surface area 

parameters of ions in the UNIFAC model are treated as adjustable parameters. 

 

Lu and Maurer (1993) 

Lu and Maurer combined ionic solvation equilibria and physical interaction forces for 

mixed electrolyte solutions. In this model, the Debye-Hückel model is used for the long-

range term, and the UNIQUAC model is used for the short-range term to represent the excess 

Gibbs energy. The UNIQUAC structural parameters of charged species are approximated by 

the ionic radii of ions. Furthermore, for all ionic species the UNIQUAC size R and surface Q 

parameters are set equal to each other. For the interaction parameters, it is assumed that: (1) 

the interaction parameters are equal to 2000 K for ions carrying same sign charges, (2) the 

interaction parameters between cation-anion are equal to that of anion-cation, (3) the 

interaction parameters between any ion and a water molecule are zero since these interactions 

are taken into account by the solvation reaction, and (4) the interaction parameter between 

water molecules is set to zero. For the ions of a strong electrolyte, there remain only 3 “pure 

component” parameters, which are, the unsolvated ionic radius, solvation number and 

solvation equilibrium constant. There are two binary parameters for interactions between a 

cation and an anion, that is, one size correction parameter and one energy parameter. Lu et al. 

(1996) further extended this method to various temperatures. 

 

Achard et al. (1994a, b) 

Achard et al. (1994a, b) proposed a modified UNIFAC method to correlate and 

predict salt effects on vapour-liquid equilibria of mixed solvent systems and extend the 

method for weak electrolytes in aqueous solutions. The model of Achard et al. combined a 

term of the Debye-Hückel type with a modified UNIFAC equation based on solvation 

phenomena. In Achard’s method, the volume and surface area parameters of ions are 

computed by combining the ionic radii in crystals with hydration numbers. The method has 

been used to represent salt effects on vapour-liquid equilibrium of mixed solvent systems, the 

pH in complex aqueous solutions, especially the water activity and osmotic pressure of 
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organic electrolyte solutions, i.e. amino acids, carboxylic acids, phosphates and carbonates 

(Achard et al. 1993, 1994a, b). This model was chosen for further study in this work.  

 

 

6.3 Achard’s Electrolyte UNIFAC Model and its Modifications 

6.3.1 Achard’s Electrolyte UNIFAC Model 

In the electrolyte UNIFAC method proposed by Achard et al. (1994a, b), the excess 

Gibbs energy (gE) is divided into two terms, one resulting from short-range (SR) interactions 

(physical forces, solvation phenomena between water and ionic species), and the other from 

long-range (LR) electrostatic interactions: 

RT

g

RT

g

RT

g LRESREE ,,

         (6.11) 

or similarly for activity coefficients: 

LR

i

SR

ii lnlnln          (6.12) 

The activity coefficient models used in equation (6.12) are the modified UNIFAC 

method (Larsen et al., 1987) for the short-range interaction term and the extended form of the 

Debye-Hückel expression given by Pitzer (1973, 1980) for the long-range interaction term. In 

addition a set of solvation equations is also proposed to account for the hydration of ions by 

water molecules (formation of clusters) in the activity coefficient calculations. 

In UNIFAC, the interaction parameter is expressed as jjijij uua with jiij uu  

following the work of Christensen et al. (1983). The uij interaction energies are used instead 

of aij, as they are proportional to the interaction forces between species i and j. The 

assumptions for the interaction parameters (energies) are: 

(i) The repulsion forces between ions of like charge are very large and the resulting 

interaction energies (ucc and uaa) are set equal to 2500K. The subscripts c, a 

represent cations and anions, respectively.  

(ii) The attractive forces between a cation and an anion (uca) are set to zero to 

preserve the predictive capabilities of the model, so that it is not necessary to have 

experimental data for every water-electrolyte system. 
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(iii) The interaction energy between two water molecules is equal to 700K. This 

value is calculated from the enthalpy of vaporization of water at 25ºC. 

The alkyl group energy parameter ukk is calculated as follows: 

wwwkkwkk uaau          (6.13) 

where w represents the water and k represents the hydrocarbon solvent group. 

These assumptions for the interaction parameters are summarized in Table 6.1. 

 

Table 6.1 Interaction parameters for a solution of a single electrolyte in Achard’s method (in 
K)* 

 Cation(c) Anion(a) H2O(w) 
Cation(c) ucc-ucc=0 uca-uaa=-2500 ucw-uww= ucw +700 
Anion(a) uac-ucc=-2500 uaa-uaa=0 uaw-uww= uaw +700 
H2O(w) uwc-ucc= uwc –2500 uwa-uaa= uwa-2500 uww-uww=0 

* uwc=ucw, uaw=uwa, uca=uac 

 

The unknown interaction parameters for a single electrolyte solution are ucw, uaw . In some 

cases, the cation-anion interaction parameter, uca, is also used as an adjustable parameter to 

improve model behaviours. 

The solvation phenomena are considered in the model as chemical association 

between water and ionic species. It is this behaviour that causes the non-ideality of 

electrolyte solutions. To account for the solvation phenomena of aqueous electrolyte 

solutions, two different standard states are proposed: one is the non-hydrated standard state, 

which corresponds to the classical standard state; the other is the hydrated standard state.  

In the hydrated standard state, water molecules are chemically bound to ionic species and to 

form clusters. This is taken into account in the calculation of ionic structural parameters and 

mole fractions of water and cluster with a set of solvation equations to get structural 

parameters for hydrated species and mole fraction as follows.  

 

Structural Parameters for Hydrated Species 

1
' RNhRR kkk          (6.14) 

1
' QNhQQ kkk          (6.15) 
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where '
kR  and '

kQ  are the structural parameters of hydrated species k, Rk and Qk are the 

structure parameter calculated by ionic radii in crystals, Nhk is the hydration number, and is 

fitted simultaneously with interaction parameters, R1 and Q1 are the volume and surface area 

parameters of water. For a single electrolyte system, there are two Nhk parameters: one for 

cations, the other for anions. There are four unknown parameters for a single aqueous 

electrolyte solution: two parameters for the interaction energy and two parameters for the 

hydration number. 

  

Mole Fractions Corresponding to the Hydrated Standard State (H) 

The mole fraction of water, Hx1 , is given by: 

N
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         (6.16) 

The mole fraction of ionic species, H

ix , is given by 

N

j

jj

iH

i

xNh

x
x

2

1

         (6.17) 

The structural parameters and mole fraction in the hydrated state are used in the 

UNIFAC model. The activity coefficients in the hydrated standard state, HSR

i

, , and classical 

standard state, SR

i , are related as follows: 

1

1,
11

x

xH
HSRSR          (6.18) 
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11

,  (i 1)       (6.19) 

where subscript 1 is the water, the notation ‘H’ refers to the hydrated reference state, 

HSR,
1 and HSR

i

,  are calculated with Larsen’s UNIFAC model (Larsen et al., 1987) using the 

mole fractions and structural parameters of hydrated species. The SR

1 and SR

i  are used as the 
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short-range term activity coefficients. A complete activity coefficient expression can now be 

obtained by combining the short-range and long-range terms. 

 

 

6.3.2 Modifications of Achard’s Method 

In aqueous electrolyte solutions, solvation phenomena have been studied 

experimentally by mobility investigations (Robinson and Stokes, 1959). When an electrolyte, 

Mv+Xv-, is dissolved into water, it completely (or partially) dissociates and attains ionic 

solvation equilibria in the solution: 

Mz+ + h+H2O  MZ+·h+H2O       (6.20) 

Xz-  + h-H2O   Xz-·h-H2O       (6.21) 

Where h+ and h- are the number of water molecules in a solvation complex with cation and 

anion, respectively. In the aqueous electrolyte solution, the polar solvent (water) can shield 

the electric field originating from the point charge of an ion by forming a shell around it. In 

solution, these ions permanently carry water molecules with them that are regarded as part of 

the ion. The ions and water molecules are chemically associated. The solvation phenomena 

determine the effective size of ions. As can be seen from the above equations, the solvation 

equilibria depend on the concentration and temperature of the system. In Achard’s method, 

the solvation phenomena are considered to be independent to concentration and temperature. 

The hydration numbers are obtained by a regression of mean activity coefficient data for 

electrolyte solutions.    

To account for the hydration phenomena, different methods have been proposed by 

Robinson and Stokes (1959), Lu and Maurer (1993), Chen et al. (1999) and the Achard’s 

work. These methods can partly capture the complex hydration phenomena for electrolyte 

solutions. However, in this research work, we focus on the micelle formation in ionic 

surfactant solutions. Hydration equations may lead to additional complexity, thus they are not 

used. Instead, we use ionic radii to calculate the structural parameters R and Q. All other 

assumptions for group interaction parameters in the Achard’s model remain unchanged. 
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Activity Coefficient for the Modified Achard Model 

The asymmetrical convention activity coefficient ( *
i ) is expressed: 

UNIFAC*,PDH*,* lnlnln iii         (6.22) 

where the asymmetrical Pitzer-Debye-Hückel (PDH) (1973, 1980) expression is used to 

account for the long-range ion-ion interaction term, UNIFAC is used for the short-range 

interaction term for the completely dissociated electrolyte in aqueous solutions. Without 

using the hydration number, the solvation equations for structural parameters and mole 

fractions are not valid. The interaction parameters reported in Achard’s work cannot be used 

in equation (6.22) because the hydration number variable is not used. In equation (6.22), the 

reference state is the pure liquid for the solvent at the temperature and pressure of the 

mixture. For a solute species, the reference sate is at infinite dilution in water at the system 

temperature and pressure. Appendix B gives detailed descriptions for the reference state. 

Because original UNIFAC is a symmetric expression, it is normalized using terms with 

“infinite-dilution activity coefficient in water” for each ion, in order to obtain an expression 

based on the asymmetric convention.  

 

Long-range Interaction Term 

The Pitzer-Debye-Hückel equation for any species is 
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where Ix is the ionic strength on a mole fraction basis, Ms is the molecular weight of the 

solvent, A  is the usual Debye-Hückel parameter and  is the ‘closest approach’ parameter. 

The value of depends on the electrolyte as well as the expression used to represent the 

short-range interactions. The value of 14.9 from Pitzer’s work (1980) is used for . The 

Debye-Hückel parameter A  is from Chen’s correlation (1982): 
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00      (6.25) 
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where 0TTT , T0=273.15 K, A= 61.4453, B=2.864468, C=183.5379, D= 0.6820223, 

E=7.875695×10-4, F=58.95788. 

 

Short-range Interaction Term 

For the UNIFAC model, the linear temperature-dependent UNIFAC method (Hansen 

et al., 1992) is used instead of the UNIFAC model of Larsen et al. (1987) in Achard’s work. 

The assumptions for the interaction parameters of UNIFAC are taken from Achard’s work 

(Table 6.1). The interaction parameters of Hansen et al., (1992) are given by the temperature 

dependent equation:  

02,1, TTaaa ijijij , (T0=298.15 K)      (6.26) 

By using 1,1,1, jjijij uua , 2,2,2, jjijij uua , the linear temperature dependent parameter is 

reformulated to: 

02,1,02,1, TTuuTTuua jjjjijijij      (6.27) 

If the ujj can be treated as temperature independent, we have  

jjijijij uTTuua 02,1,         (6.28) 

For a solution of single electrolyte, the interaction parameters between ions (i) and water (w) 

(or other groups) are  

wwiwiwwwiwiw uTTuuuua 02,1,       (6.29) 

where K 700wwu  at 298.15 K from Achard’s work, uiw,1 and uiw,2 are two unknown 

interaction parameters.  

The interaction parameters between cation (c) and anion (a) are 

K 2500aacaca uua , K 2500ccacac uua     (6.30) 

The interaction parameters are summarized in Table 6.2. The unknown interaction 

parameters for a single electrolyte aqueous solution are ucw,1, ucw,2, uaw,1 and uaw,2.  

The modified Achard model can be used to organic electrolyte. For organic 

electrolytes, the cation or anion may contain alkyl groups, e.g. sodium butanoate. By using 

the UNIFAC method, the anion C4H7O2
- of sodium butanoate (C4H7O2

-Na+) can be divided 

as one CH3, two CH2, and one COO- group. The interaction parameters between the alkyl 
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group and water can be taken from Hansen’s results (1992), as shown in Table 6.2. The 

interaction parameters between alkyl group (CH2) and ionic group or ions can be calculated 

as: 

jjijijjjijij uTTuuuua 02,1,        (6.31) 

For an alkyl group, ujj is calculated as: 

wwwjjwjj uaau          (6.32) 

where w refers to the water, uww= 700 K, ajw and awj are the interaction parameters of 

Hansen (1992) at 25ºC because the value of uww is taken at 25ºC, without using the 

temperature dependent relation.  

  

Table 6.2 Linear temperature dependent parameters aij= uij,1+ uij,2(T T0)  ujj for single 
electrolyte solutions for the modified Achard model in this work (in K)* 

 Cation(c) Anion(a) H2O(w) CH2 
Cation(c) 0 uca=0 

uaa=2500 
ucw,1 
ucw,2 
uww= 700 

ucCH2,1 
ucCH2,2 
uCH2CH2 

Anion(a) uac=0 
ucc=2500 

0 uaw,1 
uaw,2 
uww= 700 

uaCH2,1 
uaCH2,2 
uCH2CH2  

H2O(w) uwc,1 
uwc,2 
ucc=2500 

uwa,1 
uwa,2 
uaa=2500 

0 335.00** 
0.0106 

CH2 uCH2c,1 
uCH2c,2 
ucc=2500 

uCH2a,1 
uCH2a,2 
ucc=2500 

905.60** 
0.8618 

0 

* uwc,1=ucw,1, uwc,2=ucw,2, uaw,1=uwa,1, uaw,2=uwa,2, uaCH2,1=uCH2a,1, uaCH2,2=uCH2a,2, 
   uCH2c,1=ucCH2,1, uCH2c,2=ucCH2,2 
** using the equation of Hansen et al. (1992) to calculate aCH2,H2O. 
 

For alkyl groups, the structural parameters R and Q are taken from existing UNIFAC 

parameter table. The R and Q parameters for ionic species will be approximated by a new 

method other than fitting (together with interaction parameters of ions) to experimental data 

of aqueous electrolyte solutions. This new approximation method and results are presented in 

the next section.  
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6.4 Structural Parameter Calculation for Ions 

6.4.1 Structural Parameter Calculation  

Abrams and Prausnitz‘s Approach  

Abrams and Prausnitz (1975) proposed the structural parameter calculation method 

for the UNIQUAC model. The effects of molecular size and shape are evaluated by structural 

parameters obtained from pure-component data. The structural parameters are, respectively, 

the van der Waals volume and surface area of the molecule relative to those of a standard 

segment: 

ws

wk
k

V

V
R           (6.33) 

ws

wk
k

A

A
Q           (6.34) 

where Vwk and Awk are the van der Waals volume and area of the molecule given by Bondi 

(1968), Vws and Aws are the van der Waals volume and area of a standard segment. The 

methylene segment (-CH2-) was arbitrarily chosen as the standard segment. The volume of 

the standard sphere in terms of its radius rws is given by 

3 
3

4
wsws rV           (6.35) 

and the area by 

2 4 wsws rA           (6.36) 

Based on these equations, Abrams and Prausnitz (1975) derived the following equations:  

17.15/wkk VR          (6.37) 

)105.2/( 9
wkk AQ          (6.38) 

where Rk and Qk are, respectively, the dimensionless volume and surface area parameters for 

the UNIQUAC model, and 15.17 and 2.5 109 are normalization factors derived from CH2 

group. The derivation of these equations is reproduced in Appendix C based on the work of 

Abrams and Prausnitz (1975). In UNIFAC, the same method is used for the structural 

parameters.  

 



96                                      Chapter 6 The UNIFAC Model for Aqueous Electrolyte Solutions 

 

Structural Parameter of Ions 

Christensen et al. (1983b) employed the ionic radii in crystal data to calculate the R 

and Q parameters of charged ions in their work of UNIQUAC for electrolyte solutions. Based 

on the work of Christensen et al., Sander (1984) found that the Q parameters for cations are 

too small for practical applications. The small Q values are of the order of 0.1 to 0.5 and 

reduce the fitting capabilities of the UNIQUAC model. Sander then used arbitrary fixed 

larger values for the Q parameters of cations. Macedo et al. (1990) and Kikic et al. (1991) 

used the same values as Sander’s in their work for UNIQUAC and UNIFAC models. 

Thomsen et al. (1999) further treated the R and Q as adjustable parameters in their extended 

UNIQUAC model. Achard et al. (1994) considered hydration effects for ions and used the 

hydration number with ionic radii in crystal to obtain the R and Q parameters. Li et al. (1994) 

used fixed R and Q parameters for all different ions. R and Q values from different 

researchers are listed in Table 6.3. 

 

        Table 6.3 R and Q values of ions from different researchers 
  User 
Ion 

Christensen 
(1983b) 

Sander (1984) Achard et al. 
(1994a,b) 

Thomsen et al. 
(1999) 

 R Q R Q R* Q* R Q 
Na+ 0.1426 0.2732 3.0 3.0 2.54922 3.9331 1.4034 1.1990
K+ 0.3912 0.5354 3.0 3.0 3.11144 4.6748 2.2304 2.4306

Ca2+ 0.1614 0.2967 1.0 1.0 2.99214 4.6045 4.4440 1.444 
Cl- 0.9861 0.9917 0.9861 0.9917 0.9860 0.9917 10.386 10.197
Br- 1.2331 1.1510 1.2331 1.1510 NA NA NA NA 

H2O 0.92 1.4 0.92 1.4 0.92 1.4 0.92 1.4 
*Results of hydrated R and Q 
NA: no values available  

 

 

6.4.2 Effects of Structural Parameters on UNIQUAC/UNIFAC 

For UNIQUAC equation, structural parameters R and Q were introduced to account 

for the effects of molecular size and shape through use of Staverman’s combinatorial entropy 

as a boundary condition for athermal mixtures (Abrams and Prausnitz, 1975). In UNIQUAC 

(or UNIFAC) model, the combinatorial term measures the athermal mixing; the residual term 
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is determined by differences in intermolecular forces and in free volume. The combinatorial 

term is often the dominant term in solution of non-electrolytes (Prausnitz, 1999, p422).  

As discussed above, Sander (1984) suggested that the Q values for cations are too 

small for practical applications, larger Q values are needed. Oppositely, Anderson and 

Prausnitz (1978) found that using smaller Q values for some molecules, such as alcohols etc., 

can improve fitting results in some strong non-ideal systems, such as hydrogen-bonding 

alcohol systems.  

In order to study the influence of the R and Q parameters on Achard’s electrolyte 

UNIFAC model, the experimental mean activity coefficient data of NaCl+H2O system (at 

25°C) are correlated with the modified Achard model proposed in this work (without using 

the hydration number). In this correlation, the R and Q parameters are taken from Table 6.3 

based on the work of Christensen et al. (1983b), and Sander (1984), respectively. The 

correlation results are presented in figure 6.1. The obtained interaction parameters are given 

in Table 6.4. For this single electrolyte solution, UNIFAC is identical to UNIQUAC. 

  

Table 6.4 Interaction parameters of the modified Achard model for the NaCl+H2O solution at 
25°C with R and Q parameters from Table 6.3 (in K)  

 Using R and Q of Christensen et al. 
(1983b) 

Using R and Q of Sander (1984) 

Ion Na+ Cl- H2O Na+ Cl- H2O 
Na+ 0.0 0 

2500 
-1279.0 
-700 

0 0 
2500 

-727.6 
-700 

Cl- 0.0 
2500 

0.0 -1088.0 
-700 

0 
2500 

0 -889.1 
-700 

H2O -1279.0 
2500 

-1088.0 
2500 

0.0 -727.6 
2500 

-889.1 
2500 

0 

 

In figure 6.1, “Comb.” and “Resid.” represent, respectively, the combinatorial term 

and the residual term contributions of UNIFAC (short-range interaction part) to mean activity 

coefficient, using the R and Q values of Christensen et al. (1983b) in Table 6.3, and “Fit” is 

the correlation results. Similarly, “Comb., Sander” and “Resid., Sander” are, respectively, the 

contributions of the combinatorial and residual term of UNIFAC (short-range interaction 

part) using R and Q values from Sander (1984) in Table 6.3, and “Fit, Sander” is the 
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correlation results. In the figure 6.1, “PDH” is the contribution of Pitzer-Debye-Hückel term 

to mean activity coefficient. Figure 6.1 shows that the correlation results of “Fit, Sander” are 

better than that of “Fit”.  
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Figure 6.1 Comparison of the combinatorial (Comb.) and residual (Resid.) term contributions 
using the modified Achard’s model for the NaCl+H2O system at 25ºC with different R and Q 
values. “Comb.” and “Resid.”: R and Q values from Christensen (1983b) (Table 6.3). 
“Comb., Sander” and “Resid., Sander”: R and Q values from Sander (1984) (Table 6.3). PDH 
is the contribution of Pitzer-Debye-Hückel term to mean activity coefficient. 

 
 As can be seen in figure 6.1, the combinatorial term contribution decreases linearly 

as salt concentration increases, while the residual term contribution increases rapidly as salt 

concentration increases. The combinatorial term does not contribute significantly to the 

activity coefficient of the UNIFAC while the residual term dominates the UNIFAC. 
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However, the combinatorial term of UNIFAC (or UNIQUAC) equation is often the dominant 

term in non-electrolytes solutions (Prausnitz, 1999, p422). The PDH term dominates the 

mean activity coefficient at dilute concentration range and has an almost constant 

contribution at high concentrations.  

Compare to the experimental curve in figure 6.1, the PDH term has a large negative 

contribution to the mean activity coefficient, and cannot capture the mean activity coefficient 

behaviour at high concentrations in which the short-range interaction has to be account for. 

The UNIFAC is used to account for the short-range interaction and correct the large negative 

contribution of PDH term to mean activity coefficient. At high concentration, the residual 

term of UNIFAC corrects the negative contribution of PDH, but the combinatorial term of 

UNIFAC increases the negative contribution of PDH. If the combinatorial term has lager 

contribution than that of PDH term at high concentrations, the residual term will compete 

with combinatorial term other than PDH term with increasing concentration. Because the 

PDH term contribution is almost a constant, it does not reflect the changing of molecular 

forces with increasing concentration of electrolytes. At high concentrations, the short-range 

term should dominate the behaviour of activity coefficient model. Figure 6.1 shows that 

using larger Q values in UNIFAC (Sander’s method) modifies the combinatorial term 

contribution, then, improves the correlation results in this system. The Q parameter has a key 

role in the model.  

In UNIQUAC and UNIFAC models, the Q and R parameters are calculated from pure 

component property and are used to describe molecule size and shape. Based on Sander’s 

work, the Q parameter is very important to UNIQUAC fro electrolytes. However, the ratio 

Q/R is the measure of the shape of molecules, not Q or R. Thus, it is necessary to further 

investigate the limitations of these parameters from the physical derivation of UNIQUAC 

(Abrams and Prausnitz, 1975, Maurer and Prausnitz, 1978).  

 

Physical Interpretation of the Q/R ratio of ions 

As can be seen from Table 6.3, the ratio Q/R as reported by several researchers 

(Christensen, 1983b, Achard et al., 1994a, b) is greater than 1 for most R and Q values. The 

work of Thomsen et al. (1999) represented an exception. However, based on the physical 
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derivation of UNIQUAC model (Abrams and Prausnitz, 1975, Maurer and Prausnitz, 1978), 

the Q/R>1.0 cannot be valid for UNIQUAC, because it does not follow the ‘physical’ upper 

limit of Q/R=1 for the combinatorial entropy of mixing (and therefore Gibbs energy) in 

UNQUAC.  

The ratio Q/R is a measure of the shape of long-chain molecules, and was originally 

applied to flexible chain molecules that differ significantly in size by Flory and Huggins. 

Several researchers have investigated the effects of the ratio Q/R (Prausnitz et al., 1999, 

p423, Donohue and Prausnitz, 1975). For a monomer, Q/R= 1. As R becomes very large for a 

linear chain, Q/R 2/3 and for a sphere (or cube), Q/R 0. For globular molecules, the ratio 

Q/R lies between zero and unity. Flory-Huggins assumed that Q/R=1.0, it gives an upper 

limit for the combinatorial entropy of mixing, the Q/R=1 is the highest value of Q/R. The 

combinatorial term (Staverman’s formula) of UNIQUAC (UNIFAC) is not exact but similar 

to that of Flory-Huggins (Kikic et al., 1990). When Q/R>1 is used in UNQUAC (or 

UNIFAC), the combinatorial term of the model is not physically correct.  

Current R and Q parameters of UNIFAC and UNIQUAC follow Q/R<1 except for the 

groups H2O, OH, HCOOH and FCH2O which are adjusted empirically to obtain better 

agreement. In aqueous solutions, simple ions with hydrated water molecules can be 

approximated as globular particles, and thus we would expect Q/R<1.  

As mentioned above, Anderson et al. (1978) modified the Q parameter in UNIQUAC 

to get better fitting results for systems containing hydrogen-bonding components, such as 

water or lower alcohols. However, in this work, the Q/R is less than 1.0 for alcohols. Strong 

molecular interactions do not change the Q/R ratio.  

In order to keep the ‘physical’ upper limit, Q/R=1, for the combinatorial term in 

UNIQUAC (UNIFAC), a new method is proposed to calculate the R and Q parameters for 

ions.  

 

6.4.3 A New Estimation Method for the Structural Parameters of Ions 

Following the R and Q parameter calculation method for UNIQUAC model (Abrams 

and Prausnitz, 1975, reproduced in Appendix C), the volume (Vi) and surface area (Ai) of an 

ion i can be approximated by its radius (ri) as follows: 
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3 
3

4
ii rV           (6.39) 

2 4 ii rA           (6.40) 

The Ri and Qi of the ion are calculated as following: 

s

i
i

V

V
R           (6.41) 

s

i
i

A

A
Q           (6.42) 

where Vs and As are, respectively, the volume and surface area of a standard segment, which 

are computed based on the radius (rs) of the standard segment. Applying the condition Q/R< 

1.0, we have 

0.1
/

/

i

s

si

si

i

i

r

r

VV

AA

R

Q
        (6.43) 

This equation suggests that the radius of a standard segment should be smaller than that of a 

charged ion, rs< ri. For hydrocarbon fluids, the standard segment methylene group (-CH2-) is 

indeed the smallest of all hydrocarbon groups, and has a radius of 1.818Å (Abrams and 

Prausnitz, 1975).  

However, if we compare the radius of this standard segment, 1.818Å, with the radii of 

charged ions in crystals, as shown in Table 6.5, we see that the radius of the standard 

segment (-CH2-) is larger than those of most ions, especially of the cations. In the work of 

Christensen (1983b) and Sander (1984), the R and Q parameters are based on the value 

1.818Å as the radius of a standard segment. Therefore, in the work of Christensen (1983b) 

and etc., the obtained R and Q yield a Q/R ratio greater than 1, as shown in Table 6.3. 

 

Table 6.5 Comparison of the ionic radii in crystal with the radius of -CH2-* 

Ion/group -CH2- Na+ K+ Ca2+ Cl- Br- 

Radius, Å 1.818 1.02 1.38 1.00 1.81 1.96 

*Ionic radii are from CRC Handbook (Lide, 2002) 
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If we follow the ‘physical’ limit for the R and Q parameters, a smaller radius for the 

standard segment should be used in the R and Q calculation for ions, assuming that the R and 

Q parameters of ions in aqueous solution could be approximated by the ionic radii in crystal. 

Using the same method as Abrams and Prausnitz (1975), the radius of a standard 

segment can be derived using a specific reference fluid. 

The standard segment is defined as a sphere such that for a linear poly-segment 

molecule of infinite length the identity 

1
2

RQR
Z

         (6.44) 

is satisfied. The coordination number Z is set equal to 10. The volume of the standard sphere 

in terms of its radius rs is given by 

3 
3

4
ss rV           (6.45) 

and the area by 

2 4 ss rA           (6.46) 

 The volume and area of an n-mer poly-segment molecule are n times the volume and 

area of a reference molecule (ref);  

refi nVV           (6.47) 

refi nAA           (6.48) 

Substitution of equations (6.41)-(6.42), (6.45)-(6.48) into (6.44) as n tends to infinity yields 

the following equations: 

1
2

10

s

ref

s

ref

s

ref

V

nV

A

nA

V

nV
       (6.49) 

or 

nV

V

A

A

V

V

s

ref

s

ref

s

ref 1
5         (6.50) 

As n , 0
1

n
 and we obtain 
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s

ref

s
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A

A

V

V
54           (6.51) 

The volume and surface area of a reference molecule are calculated from the sphere equation. 

Thus we obtain: 
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         (6.52) 

refs rr
5

4
          (6.53) 

where rs is the radius of the standard segment and rref  is the radius of the reference molecule.  

Arbitrarily choosing the rref value to be 1.25 Å/molecule, the radius of the standard 

segment can be obtained as rs=1.0Å /molecule. Substituting rs into equation (6.45)-(6.46) 

yields a standard segment volume and a standard segment area, Vs and As per mole. 

Vs=2.5229 cm3/mol         (6.54) 

As=7.5687 108 cm2/mol        (6.55) 

With the new normalization factors, the R and Q are calculated as: 

5229.2/kk VR          (6.56) 

)105687.7/( 8
kk AQ         (6.57) 

where Vk and Ak are the molar volume and molar surface area of ion k, respectively.  

 There is no universally accepted method for obtaining the ionic radii in aqueous 

solutions. Recently, Marcus (1988, 1997) collected approximate values of ionic radii in 

aqueous solutions. In Marcus’ work, the ionic radius is the mean ion-water distance, i.e. the 

mean inter-nuclear distances between the mono-atomic ions or the central atoms of 

polyatomic ions and the oxygen atoms of the water molecules in their first hydration shells. 

These ionic radii values are in good agreement with the Pauling-type crystal ionic radii for 

the mono-atomic ions for coordination number 6 (Marcus, 1988), as shown in Table 6.6. In 

the CRC handbook (Lide, 2002), ionic radii values are reported for only 9 anions: F-, Cl-, I-, 

OH-, O2-, S2-, Se2- and Te2-. These anions do not include typical anions in ionic surfactant 

molecules, e.g. COO-, OSO3
-, etc. However, from the work of Marcus, the ionic radii of 
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COO-, OSO3
- can be estimated through the data of ions HSO4

-, HCO3
-. Thus, in this work, the 

Marcus’ ionic radii are used to estimate the volume and surface area of cations and anions 

using the equations (6.56)-(6.57).  

 

Table 6.6 Ionic radii and R and Q parameters for some ions. R and Q are calculated from 
equations (6.56) and (6.57) using Marcus radii (1997) 

Ion Radius, Å 
(Marcus)* 

Radius, Å 
(CRC)** 

R Q 

Na+ 1.02 1.02 1.0612 1.0404 
K+ 1.38 1.38 2.6281 1.9044 
Ca2+ 1.00 1.00 1.000 1.000 
Cs+ 1.70 1.67 4.9130 2.8900 
Ag+ 1.15 1.15 1.5209 1.3225 
NH4

+ 1.48 n.a. 3.2418 2.1904 
Al3+ 0.53 0.54 0.1489 0.2809 
Cl- 1.81 1.81 5.9298 3.2761 
Br- 1.96 1.96 7.5296 3.8416 
NO3

- 1.79 n.a. 4.2623 2.6291 
SO4

2- 2.30 n.a. 7.1817 3.7227 
COO-(1) 1.56 n.a. 3.7964 2.4336 
OSO3

-(2) 1.90 n.a. 6.8590 3.6100 
SO3

-(3) 1.70 n.a. 4.9130 2.8900 
H2O 1.38 n.a. 0.92 1.4 

(1), (2), (3) ionic radii are the values of ions HCO3
-, HSO4

-, and HSO3
-, respectively 

* Ionic radii from Marcus (1997) 
**Ionic radii from the CRC Handbook (Lide, 2002) with coordination number 6 
n.a.: values not available 

 

Table 6.6 provides values of R and Q for some ions, while more values are listed in 

Appendix D. In most cases, the Q<R in Table 6.6, but the R and Q parameters of Al3+ do not 

follow this requirement. This is because the radius of Al3+ is smaller than that of the standard 

segment (rs=1.0 Å/molecule), the same cases for Ca2+ and some other cations, as shown in 

Appendix D. 

These R and Q values in Table 6.6 are used in the modified Achard method for 

aqueous electrolyte solutions. In the modified Achard model, the R and Q parameter for the 

hydrocarbon and water (H2O) groups are directly taken from the existing UNFAC parameter 

table. However, the R and Q parameters of ions are based on the new normalization factors. 
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These new normalization factors are not the same as that for the hydrocarbon groups. Since 

two sets of normalization factors, one for ions and one for hydrocarbon groups, are used, the 

R and Q parameters of ions should be considered as semi-empirical values. 

 

6.4.4 Effects of New Structural Parameters  

Using the modified Achard model, the effects of new structural parameters on the 

contributions of combinatorial and residual term are investigated. The mean activity 

coefficient data of NaCl+H2O system at 25ºC is correlated in this investigation. 

As was shown in Figure 6.1, the residual term dominates the UNIFAC model using 

structural parameters from Christensen, et al. (1983b). Using larger Q values from Sander 

(1984), the distribution of combinatorial and residual term contributions has been modified, 

correlation results are improved  

Using the new structural parameters from Table 6.6, the mean activity coefficient data 

of NaCl+H2O system at 25ºC are correlated to compare the combinatorial and residual term 

contributions. The correlation results using two different sets of R and Q parameters, ‘Old’, 

‘New’, are presented in figures 6.2-6.3. The ‘Old’ R and Q parameters are calculated using 

the original method of Abrams and Prausnitz (1975), and the ‘New’ one is calculated with 

equations (6.56)-(6.57). With the new set of R and Q parameters, the modified Achard model 

gives better correlation results for the NaCl+H2O system, as shown in Table 6.7 and figure 

6.3. For comparison, the correlation results using the Q and R parameters of Sander (1984) 

(see also Table 6.3) are also given in Table 6.7 and figure 6.3. As can be seen, the correlation 

results with ‘New’ Q and R parameters are very similar to that of using Q and R of Sander’s. 

Comparing the term contributions in figure 6.2, using “new” R and Q values, the 

combinatorial term together with PDH term dominate the mean activity coefficient in this 

system. The combinatorial term has a larger negative contribution than that of PDH. The 

residual term has a large positive contribution for this system as the electrolyte solution is 

characterised by large heats of mixing. The short-range term, which corresponds to short-

range forces, dominates the model behaviour in the region of high electrolyte concentrations.  

In Table 6.7, %AAD m is the average absolute deviation for mean activity coefficient 

(molality scale) and is calculated by equation (6.58). 
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where n is the number of data points. 
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Figure 6.2 Comparison of combinatorial (Comb.) and residual (Resid.) term contributions of 
UNIFAC using the modified Achard’s model for NaCl+H2O system at 25ºC. “New R & Q” 
and “Old R & Q”: see Table 6.7. : Experimental data. “Fit”: fitting results. PDH is the 
contribution of Pitzer-Debye-Hückel term to mean activity coefficient. 
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Figure 6.3 Mean activity coefficient correlation results with different structural parameters 
using the modified Achard’s model for NaCl+H2O at 25ºC. “New R & Q” and “Old R & Q”: 
see Table 6.7. Sander: using Q and R parameter from Sander (1984) in Table 6.3.   
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Figure 6.4 Comparison of short-range (UNIFAC) and long-range (PDH) term contributions 
using the modified Achard model for NaCl+H2O system at 25ºC. “New R & Q” and “Old R 
& Q”: see Table 6.7.  
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Table 6.7 Regression results for the NaCl+H2O solution at 25°C using different R and Q 
parameters  
 New R & Q from 

Table 6.6 
Old R & Q from 

Christensen in Table 6.3 
R & Q from Sander in 
Table 6.3 

Ion R Q R Q R Q 
Na+ 1.0612 1.0404 0.1426 0.2732 3.0 3.0 
Cl- 5.9298 3.2761 0.9861 0.9917 0.9861 0.9917 
Interaction 
parameter 

uNa+,H2O= 1145.8 
uCl-,H2O= 975.9 

uNa+,H2O= 1279 
uCl-,H2O= 1088 

uNa+,H2O= 727.6 
uCl-,H2O= 889.1 

%AAD m 1.08 3.22 1.65 
 

 

Short-range and Long-range Contributions  

The excess Gibbs energy of electrolyte solutions consists of both short-range and 

long-range contributions. The long-range contribution dominates in the dilute concentration 

region. The short-range contribution becomes important at high concentrations. In figure 6.4, 

a comparison of the short-range (UNIFAC) contribution and long-range (PDH) contribution 

is shown using the modified Achard’s model for the NaCl+H2O system at 25ºC. The short-

range contribution increases almost linearly as ionic strength increases, while the long-range 

contribution decreases rapidly in the very dilute region and then tends to a constant value at 

high ionic strength.  

In the short-range (UNIFAC) contribution calculation, the “new” and “old” R and Q 

parameters are, respectively, used. As can be seen in figure 6.4, different R and Q parameters 

do not significant change the short-range contribution, but the distribution of the 

combinatorial and residual term contributions (shown in figure 6.2). 

 

 

6.5 Application of the Modified Achard Method to Solutions of 
Single Electrolytes 
 
6.5.1 Correlation of Mean Activity Coefficient Data 

The modified Achard method as described previously is used to correlate the mean 

activity coefficient data of single electrolyte systems. The objective function used is: 
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2exp*,
,

cal*,
, lnln

i

imimF              (6.59) 

Mean activity coefficients in molality scale are used, as typically they are reported in 

molality basis. The mean activity coefficient ( *
m ) in molality scale is obtained from the 

mole-fraction based activity coefficient ( * ) as follows: 

1000/1lnlnln ** mvvM acsm       (6.60) 

*** lnln
1

ln aacc

ac

vv
vv

       (6.61) 

where the subscripts c and a denote to the cations and anions, respectively, m is the molality 

of electrolyte, Ms is the molecule weight of solvent, and c  and a  are the stoichiometric 

coefficients of cation and anion, respectively. The asymmetrical convention activity 

coefficient of the short-range contribution (UNIFAC) is transferred by (Prausnitz et al., 1999, 

p225): 

UNIFAC,UNIFACUNIFAC*, lnlnln iii        (6.62) 

The experimental mean activity coefficient data at 25 C are taken from the work of 

Robinson and Stokes (1959) and Hamer and Wu (1972). At first, the interaction parameter 

estimation is based only on the mean activity coefficient data for the systems investigated. 

Then, osmotic coefficients are calculated using the interaction parameters obtained.  

In order to investigate the model’s capability and compare the correlation results to 

those of the electrolyte NRTL model by Chen et al. (1982), salt-dependent interaction 

parameters are estimated. Mean activity coefficients at 25ºC for different types of electrolyte 

solutions are correlated with the modified Achard model. The correlation results are given in 

Table 6.8 and compared with those of the electrolyte NRTL and extended UNIQUAC 

(Thomsen et al., 1999) models. Like the proposed electrolyte UNIFAC model, the electrolyte 

NRTL model also applies a local composition expression to account for the short-range 

contribution term with two adjustable interaction parameters. The extended UNIQUAC 

model uses UNIQUAC equation as the short-range contribution term. Except two interaction 

parameters, the extended UNIQUAC used also R and Q of ions as adjustable parameters.  
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In Table 6.8, %AAD m is the average absolute deviation for mean activity coefficient 

(molality scale), and is calculated by equation (6.58), %AAD øi is the average absolute 

deviation for osmotic coefficients and is calculated as follow: 

100
1

 AAD%
1

exp

exp
n

i
t

i

t

i

cal

i

i
ø

øø

n
       (6.64) 

where n is the number of data points. 

In Table 6.8, Max. m represents the maximum molality used in the parameter 

estimation. The results (mean activity coefficient and osmotic coefficient) of modified 

Achard’s method for the NaCl+H2O system at 25ºC are shown in figures 6.5-6.6 and 

compared with extended UNIQUAC method. The mean activity coefficient and osmotic 

coefficient of extended UNIQUAC for the NaCl+H2O system at 25ºC are obtained from 

SPECS software (SPECS, 2003). As can be seen from figures 6.5-6.6, the maximum 

deviations appeared around the highest concentration that is very close to the saturation point 

of the NaCl+H2O system. The %AAD m values of the electrolyte NRTL model presented in 

Table 6.8 are taken directly from Chen et al. (1999). 

 

Table 6.8 Correlation results with salt-dependent interaction parameters*  
Salt uc,w, K 

 
ua,w, K 
 

%AAD 
m 

%AAD 
øi 

%AAD 
m 

NRTL 

%AAD m 
UNIQUAC 

Max. 
m  

NaCl -1145.8 -975.9 1.08 1.17 1.37 2.21 6.0 

KCl 335.67 -1173.4 0.13 0.11 0.23 1.55 4.5 
CsBr -1327.0 279.7 1.38 1.25 0.52 n.a. 5.0 
AgNO3 -1391.9 692.1 1.13 1.77 0.77 n.a. 6.0 
NH4NO3 -1329.7 629.6 1.83 2.09 0.93 n.a. 6.0 

NaNO3 -1437.1 436.7 0.24 0.25 0.12 1.0 6.0 

CaCl2 -1817.8 11.25 10.01 5.22 14.0 14.4 6.0 

Na2SO4 -1298.5 430.2 0.63 0.76 1.43 1.25 4.0 

*subscript c, a and w represent the cation, anion and water, respectively. 
n.a.: no interaction parameters available for cations or anions. 
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Figure 6.5 Mean activity coefficient for NaCl+H2O at 25ºC. Expt.: experimental data. Fit, 
this work: correlation results of modified Achard’s model. UNIQUAC: calculation results 
with extended UNIQUAC using the SEPCS software (SPECS, 2003).  
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Figure 6.6 Osmotic coefficient for NaCl+H2O at 25ºC. Expt.: experimental data. Calculated, 
this work: Calculation results using parameters obtained from NaCl+H2O at 25ºC by 
modified Achard’s model. UNIQUAC: calculation results with extended UNIQUAC using 
the SEPCS software (SPECS, 2003).   
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The correlation results of Table 6.8 show that the mean activity coefficients of single 

aqueous electrolyte solutions are successfully correlated with the modified Achard model 

using two salt-dependent interaction parameters. The deviations of the correlation have the 

same order as electrolyte NRTL model and smaller than that of extended UNIQUAC. 

However, the extended UNIQUAC gives better results around saturation points, as shown in 

figures 6.5 and 6.6. It was the purpose of the extended UNIQUAC to simulate electrolyte 

solutions around saturation points (Thomsen et al., 1996, 1997, 1999). 

The salt-dependent interaction parameters have some patterns, as shown in Table 6.8 the 

highlight parts. The interaction parameters between Na+ and H2O (uNaH2O) have similar 

values in different electrolyte solutions, i.e. NaCl+H2O, NaNO3+H2O and Na2SO4+H2O 

where these values are -1145.82, -1437.08 and -1298.46 K, respectively. The interaction 

parameters between NO3
- and H2O are also close each other in the solutions AgNO3+H2O, 

NH4NO3+H2O and NaNO3+H2O. However, the interaction parameter between Cl- and H2O in 

CaCl2+H2O system is very different from other systems containing H2O and Cl- (NaCl+H2O, 

KCl+H2O). In fact, the model cannot successfully correlate the mean activity coefficient of 

the CaCl2+H2O system in which a particularly large non-ideality appears at the high 

concentration range. Electrolyte NRTL and extended UNIQUAC exhibit the same as the 

modified Achard model for CaCl2+H2O system. From these parameter similarities, it seems 

that it is possible to use the assumption of group independence (group contribution concept) 

for the ions interaction. Following the group contribution concept of the UNIFAC method, it 

can be assumed that the interaction parameters between the ionic groups and the water group 

do not depend on the electrolyte solutions. This means the interaction parameter between Na+ 

and H2O does not depend on the system NaCl+H2O or NaNO3+H2O system, but is merely 

ion-dependent. The ions can be treated as separate UNIFAC functional groups. Based on the 

group contribution concept, the Na+ H2O, Cl- H2O group interaction parameters obtained 

from the NaCl+H2O solution are employed to the other electrolyte solutions.  

Starting from the NaCl+H2O solution, the interaction parameters of different ions-water 

are estimated. The mean activity coefficient data (25°C) of single electrolyte solutions are 

used in the interaction parameter estimation with the modified Achard model. The results are 

presented in Table 6.9.  
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Table 6.9 shows that when the functional group interaction parameter between Cl- and 

H2O is used, good correlation is obtained for the KCl + H2O system, but not for the CsCl and 

CaCl2 aqueous solutions. When using the functional group interaction parameter between 

Na+ and H2O, the model can successfully correlate the mean activity coefficients of NaNO3 

and NaBr solutions, but not of the Na2SO4 solution. Similarly, the model cannot successfully 

correlate the mean activity coefficients of AgNO3 and NH4NO3 solutions with the functional 

group interaction parameter between NO3
- and H2O. 

 

Table 6.9 Correlation results using the proposed modified Achard model and salt-
independent parameters (group contribution concept)* 
Salt ucw,1, K uaw,1, K uca, K %AAD, 

m 
Max. 
m 

Notes 

NaCl -1145.82 -975.9 0.0 1.08 6.0  
KCl -1041.74 -975.9 0.0 3.37 4.5  
 -1099.57 -975.9 -1002.68 0.09 4.5 use uca 
CsCl -1053.2 -975.9 0.0 11.0 6.0  
CaCl2 -1375.35 -975.9 0.0 14.7 6.0  
 -1433.31 -975.9 -1187.81 5.93 6.0 use uca 
NaNO3 -1145.82 -872.81 0.0 5.68 6.0  
NaBr -1145.82 -1038.85 0.0 0.96 4.0  
Na2SO4 -1145.82 -785.80 0.0 13.4 4.0  
 -1145.82 -975.9 -2100.13 1.34 4.0 use uca 
AgNO3 -922.15 -872.81 0.0 7.7 6.0  
NH4NO3 -1059.51 -872.81 0.0 12.0 6.0  
CsBr -1053.2 -1038.85 0.0 12.3 5.0 Prediction 
*subscript c, a, and w represent cation, anion and water, respectively. 

 

With the functional group interaction parameter obtained from different systems, the 

mean activity coefficients of CsBr solution are predicted with the modified Achard’s model, 

and as shown in Table 6.9, the prediction result is rather poor. 

As shown in Table 6.9, interaction parameters between cations and anions are used in 

some cases for improving the correlation for KCl, CaCl2 and Na2SO2 systems. Better 

correlation results for the systems are obtained. However, using the cation-anion interaction 

parameter, the model is not as predictive one.  
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6.5.2 Temperature Effects  

It is important for a model to represent the mean activity coefficients at different 

temperatures. The modified Achard model is used to correlate the mean activity coefficients 

at different temperatures for aqueous NaCl and KCl solutions. In this investigation, linear 

temperature-dependent interaction parameters are used in the modified Achard method, as 

discussed above (see Table 6.2). The mean activity coefficient data at different temperatures 

are fitted simultaneously. The experimental data at different temperatures are obtained from 

the IVC-SEP databank for electrolyte solutions (IVC-SEP, 2003). For the NaCl solution, the 

mean activity coefficient data in the temperature range from 273.15 to 373.15 K are used in 

the regression. For the KCl solution, the temperature range of the experimental data is from 

273.15 to 343.15K. 

The correlation results are shown in Table 6.10 and in figures 6.7-6.8 for some 

temperatures. Figures 6.9-6.10 show the calculations for the osmotic coefficients using the 

interaction parameters obtained from regression of the mean activity coefficient data.  

For comparison, the mean activity coefficient data of the KCl+H2O system at 

different temperatures are first correlated with four interaction parameters, as shown in Table 

6.10 (labelled ‘Set2’). Then, we employ the interaction parameters from the NaCl+H2O 

system, and estimate only the K+-H2O parameter (group contribution). The interaction 

parameter results using the group contribution concept are also given in Table 6.10 (labelled 

‘Set 1’). The correlations results with the two different cases are similar, as shown in Figure 

6.8. For these solutions, the modified Achard method can successfully correlate the mean 

activity coefficient behaviours at different temperatures. 

 

Table 6.10 Correlation results with the temperature dependent parameters for the modified 
Achard model* 

Salt ucw,1, K ucw,2, K uaw,1, K uaw,2, K %AAD m Notes 
NaCl -1154.39 -1.439 -974.422 -0.834 1.8  
KCl -1040.23 -1.423 -974.422 -0.834 1.6 Set 1 

 654.555 7.831 -1209.17 -2.499 0.47 Set 2 
*subscript c, a, and w represent the cation, anion and water, respectively. 
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Figure 6.7 Mean activity coefficient (experimental and modified Achard model) for 
NaCl+H2O at 25 and 100ºC.  
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Figure 6.8 Mean activity coefficient (experimental and modified Achard model) for 
KCl+H2O at 0 and 45ºC. ‘Set 2’ represents the four parameter estimation results. ‘Set 1’ 
represents the two parameter estimation results. 
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Figure 6.9 Osmotic coefficient (experimental and modified Achard model)  using parameters 
obtained from mean activity coefficient data correlation for NaCl+H2O at different 
temperatures. 
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Figure 6.10 Osmotic coefficient (experimental and modified Achard model) using parameters 
obtained from mean activity coefficient correlation for KCl+H2O at different temperatures. 
 

 

6.5.3 Correlation for Organic Electrolytes 

As discussed before, ionic surfactant solutions are considered as organic electrolyte 

solutions. In order to investigate the capability of the proposed modified Achard model, 

sodium carboxylate aqueous solutions are studied with this model.  
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Mean activity coefficient of sodium carboxylate aqueous solutions are correlated with 

modified Achard model using the new structural parameters in Table 6.6. The investigated 

sodium carboxylates are aqueous solutions of CHO2Na (C1), C2H3O2Na (C2), C3H5O2Na 

(C3), C4H7O2Na (C4), and C5H9O2Na (C5). The UNIFAC functional groups are CH2, COO- 

and Na+. The mean activity coefficient data of the five sodium carboxylate solutions at 25ºC 

(Robinson and Stokes, 1959) are simultaneously correlated with the model.  

Table 6.11 shows the correlation results by two different cases. In case B, interaction 

parameters between CH2 and H2O are taken from UNIFAC (Hansen et al. 1992), uNaH2O is 

from the results of NaCl+H2O solution in Table 6.10. Three interaction parameters are 

estimated simultaneously in case B. However, uCH2Na was given a fixed value in the 

parameter estimation because it reaches a large value in the estimation process. The absolute 

average deviation of mean activity coefficient (%AAD m) is 15.6 in this case. 

To improve the correlation, one of the interaction parameters between CH2 and H2O 

is re-estimated. Thus, four interaction parameters are estimated simultaneously in case A. 

The %AAD m is 1.09 in this case. The correlation results of case A are shown in figure 6.11. 

With the interaction parameters obtained in case A, osmotic coefficients of the five sodium 

carboxylate solutions at 25ºC (Robinson and Stokes, 1959) are calculated and shown in 

figure 6.12.  

Figures 6.11-6.12 show that the model captures the mean activity coefficients and 

osmotic coefficients behaviour with a regression of 4 interaction parameters. The Pitzer’s 

electrolyte solution model needs 2 or 3 parameters for a single sodium carboxylate solution 

(Pitzer, 1991). In the work of Chen et al. (2001), modified NRTL model needs 6 interaction 

parameters to correlate mean activity coefficients of the five sodium carboxylate solutions.  
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Figure 6.11 Mean activity coefficient (experimental and modified Achard model) for five 
sodium carboxylate solutions at 25ºC. Correlation results of case A of Table 6.11. 
 

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 1 2 3 4

Molality of sodium carboxylates

o
s
m

o
ti

c
 c

o
e
ff

ic
ie

n
t

Expt. C1

Cal. C1

Expt. C2

Cal. C2

Expt. C3

Cal. C3

Expt. C4

Cal. C4

Expt. C5

Cal. C5

 
Figure 6.12 Osmotic coefficient (experimental and modified Achard model) for five sodium 
carboxylate solutions at 25ºC. Calculation results of case A of Table 6.11  
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Table 6.11 Interaction parameter results of modified Achard model for sodium carboxylate 
aqueous solutions (in K) 
uij* Case A Comments Case B Comments 
CH2/COO- 4632.1 Fit 5000.0 Fit 
COO-/ H2O 845.77 Fit 996.73 Fit 
CH2/Na+ 4500.0  Fit 4500.0 Fit 
CH2/H2O -227.86 Fit 905.6 Hansen et al. 1992 
H2O/CH2 335.0  Hansen et al. 1992 335.0 Hansen et al. 1992 
Na+/H2O 1154.82 Table 6.10 1154.82 Table 6.10 

%AAD m 1.09  15.6  

*uH2O,H2O= 700 K, uCH2,CH2= 129.4 K 

 

 

6.6 Summary 

 

In this chapter, Achard’s electrolyte UNIFAC method (Achard et al. 1994a, b) is used 

to investigate the mean activity coefficient of aqueous solutions of single electrolytes. 

Previously reported R and Q values of ions, including these by Achard et al. (1994a, b), do 

not follow the condition Q/R<1 suggested by the Flory-Huggins theory. According to the 

Flory-Huggins theory, Q/R=1 is the upper ‘physical’ limit for the ratio Q/R in the 

combinatorial entropy of mixing for non-electrolyte fluids. The physical derivation of 

UNIQUAC and UNIFAC cannot be valid with Q/R>1. 

Three modifications in Achard’s method were made. 

1) First, the hydration numbers and solvation equations are not used. 

2) Second, the R and Q parameters are re-estimated based on ionic radii. Following 

the structural parameter calculation method of Abrams and Prausnitz (1975), it is found that 

the radius of a standard segment should be smaller than that of ionic radii of ions in order to 

maintain the Q/R<1 condition. Thus, a new, smaller standard segment radius than that of       

–CH2- is selected to calculate the volume and surface area of ions based on ionic radii from 

Marcus (1997). Then, new structural parameters R and Q for ions are obtained and used in 

the modified Achard model. The new R and Q parameters change the distribution of the 

contributions to mean activity coefficient from combinatorial and residual terms of UNIFAC. 
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3) The third modification concerns the interaction parameters. Instead of using the 

modified UNIFAC method of Larsen et al. (1987), the linear T-dependent UNIFAC method 

of Hansen et al. (1992) is adopted in this work. All other assumptions on interaction 

parameters from Achard’s model remain unchanged.   

Using the proposed modified Achard model, mean activity coefficients of single 

electrolyte solutions are calculated for several systems. Using two salt-dependent interaction 

parameters, the model shows similar deviation to those of the electrolyte NRTL model, and 

give better results than that of extended UNIQUAC model for the mean activity coefficients.  

Using the UNIFAC group contribution concept, ions are treated as functional groups. 

With the ionic functional groups, the mean activity coefficient data for some single 

electrolyte solutions are correlated with the modified Achard model. For some systems, the 

model can successfully correlate the mean activity coefficient data with the ions treated as 

functional groups. Problems occur for other systems.  

In addition, the model can capture the mean activity coefficient of some aqueous 

solutions of single electrolytes at different temperatures. 

The modified Achard model can simultaneously and successfully correlate the mean 

activity coefficient data of five sodium carboxylate solutions at 25ºC using four interaction 

parameters.  
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Chapter 7 Critical Micelle Concentration of Ionic 
Surfactant Solutions  
 

In this chapter, recent progress in modelling the micelle formation of ionic surfactant 

solutions is first outlined. The modified Achard model is applied to study the CMC of ionic 

surfactant solutions based on the thermodynamic framework of Chen et al. (2001) for micelle 

formation. The CMC of four surfactant families, i.e. sodium alkyl sulphates, sodium alkyl 

sulfonates, sodium carboxylates and potassium carboxylates, is investigated. CMC values of 

sodium alkyl sulphates (AS) and alkyl trimethylammonium bromides (TAB) ternary 

surfactant mixtures are calculated by regular solution method. 

     

 

7.1 Recent Progress for Modelling Ionic Surfactant Solutions 

Recently, Hines (2001) reviewed the progress for modelling surfactant solutions. The 

understanding for such solution at a theoretical level is still poor. Douheret and Viallard 

(1982) proposed a mass action law model with a two-parameter expression for the activity 

coefficients of ionic species to represent the micelle formation in ionic surfactant solutions. 

Based on a mass-action model with a single micellar aggregate species, Burchfield and 

Woolley (1984) suggested an activity coefficient model for aqueous ionic surfactant 

solutions. The micellar solution is treated as mixed electrolytes by using the Guggenheim 

equation. Huibers et al. (1997) investigated the relationship between the molecular structure 

and the CMC of anionic surfactants using a quantitative structure-property relationship 

approach. A linear regression model is constructed for 119 anionic surfactants. Amos et al. 

(1998) proposed a model incorporating the distribution of micellar size. The model of Amos 

et al. is based on a mass-action equilibrium approach that includes micelle-micelle 

interactions as a function of size for multi-component surfactant solutions consisting of 

micellar aggregates, monomer, counterions, and electrolytes.  

Li et al. (2000) use SAFT (statistical associating fluid theory), together with the mean 

spherical approximation (MSA), to calculate the activity coefficients of aqueous ionic 

surfactant solutions. In Li’s method, the monomeric surfactant ions are assumed to be in a 
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state of physical equilibrium with the surfactant ions in the micelle at CMC. Their chemical 

potentials are equal at CMC. The method of Li et al. describes molecules as chains of hard 

sphere segments and includes the contributions from hard sphere-hard sphere and dipole-

dipole interactions, the chain formation, the Lennard-Jones and charge-charge interactions.  

Recently, as discussed in chapter 3, Chen et al. (2001) proposed a thermodynamic 

framework to represent CMC of ionic surfactants in aqueous solutions using activity 

coefficient model. In their framework, the activity coefficients of surfactant are correlated by 

an extended NRTL model for organic electrolyte solutions.  

 In this study, the thermodynamic framework of Chen et al. (2001) is used to represent 

the micelle formation of ionic surfactant solutions. Instead of using the extended electrolyte 

NRTL model, the modified Achard model as developed in the previous Chapter will be used 

to calculate the activity coefficients in ionic surfactant solutions. 

 

 

7.2 Equations for the CMC Correlation 

7.2.1 Activity Coefficient Calculations 

Based on Chen’s framework, experimental CMC data from different surfactant 

solutions are correlated using the modified Achard model. The activity coefficient is the 

product of a long-range asymmetrical Pitzer-Debye-Hückel (PDH) term and a short-range 

UNIFAC model as follow:  

UNIFAC*,
,

PDH*,
,

*
, lnlnln aqaqaq        (7.1) 

The expressions of the Pitzer-Debye-Hückel (PDH) term and the UNIFAC model term were 

presented in Chapter 6.  

The activity coefficients of cations and anions in the aqueous solution (aq) and the 

micelle aggregates (micelle) are calculated as follows: 

UNIFAC*,
,

PDH*,
,

*
, lnlnln aqiaqiaqi        (7.2) 

UNIFAC,*
micelle,

PDH*,
micelle,

*
micelle, lnlnln iii         (7.3) 

PDH*,
micelle,ln i = 0.9571         (7.4) 
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UNIFAC,UNIFAC*,
micelle, lnln ii          (7.5) 

where PDH*,
micelle,ln i  is set to 0.9571, which is the limiting value of the PDH term for univalent 

ions as the electrolyte concentration approaches unity and UNIFAC,ln i  is the infinite dilute 

activity coefficient calculated by the UNIFAC model. The molality scale mean activity 

coefficient ( *
m ) is obtained from the mole fraction mean activity coefficient ( * ) by 

equations (6.60)-(6.61) in Chapter 6. The asymmetrical activity coefficient of UNIFAC 

model is calculated by equation (6.62) in Chapter 6.  

 
 
7.2.2 Interaction Parameters 

As discussed in Chapter 6, the interaction parameters (aij) between ions and other 

groups of the modified Achard model depend on temperature as follows (Hansen et al., 

1992): 

jjijijij uTTuua 02,1,         (7.6) 

For non-ionic groups, the interaction parameters are calculated by the original equation of 

Hansen et al. (1992), i.e. equation (6.26) in Chapter 6.  

For alkyl groups (CH3, CH2), ujj in equation (7.6) is calculated as: 

wwwjjwjj uaau , T0=298.15 K        (7.7) 

where w refers to the water, uww= 700 K, ajw and awj are the interaction parameters between 

water and hydrocarbon groups from Hansen et al. (1992). uww is computed only at 25ºC by 

Achard et al. (1994b). The uCH2,CH2 interaction parameter at 25ºC is calculated from equation 

(7.7) as follow:   

K 4.129)700(0.3356.905H2OH2O,CH2H2O,H2OCH2,CH2CH2, uaau   (7.8) 

In the aqueous solution of sodium alkyl sulphates (CnH2n+1OSO3
-Na+), for example, 

there are groups H2O, CH3, CH2, and ions OSO3
-, Na+. The interaction parameters between 

these groups are summarized in Table 7.1. The groups CH3 and CH2 belong to the same 

UNIFAC main functional group “CH2”.   
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In Table 7.1, the interaction parameters between CH2 and H2O are taken from Hansen 

et al. (1992). The interaction parameters estimated results from aqueous NaCl solutions can 

be used for the parameters between Na+ and H2O, i.e. ucw,1, ucw,2 in Table 6.10 (Chapter 6). 

Hence, there are 6 unknown interaction parameters for the sodium alkyl sulphate solution, i.e. 

uCH2a,1, uCH2a,2, uCH2c,1, uCH2c,2, uaw,1, uaw,2.  

The structural parameters of cation and anion used in the modified Achard model are 

taken from Table 6.6 (Chapter 6). Those of CH3, CH2 and H2O are from the UNIFAC 

structural parameter table (Fredenslund et al. 1977). 

 

Table 7.1 Summary of interaction parameters for sodium alkyl sulphate solutions (in K) * 
Group CH2 OSO3

-(a) Na+(c) H2O(w) 
CH2 0 uCH2a,1 

uCH2a,2 
uaa=2500 

uCH2c,1 
uCH2c,2 
ucc=2500 

905.6** 
0.8618 

OSO3
-(a) uaCH2,1 

uaCH2,2 
uCH2CH2=129.4 

0 uac,1=0 
uac,2=0 
ucc=2500 

uaw,1 
uaw,2 
uww= 700 

Na+(c) ucCH2,1 
ucCH2,2 
uCH2CH2= 129.4

uca,1=0 
uca,2=0 
uaa=2500 

0 ucw,1= 1154.39 
ucw,2= 1.439 
uww= 700 

H2O(w) 335.0** 
0.0106 

uwa,1 
uwa,2 
uaa=2500 

uwc,1= 1154.39 
uwc,2= 1.439 
ucc=2500 

0 

* uwc,1=ucw,1, uwc,2=ucw,2, uaw,1=uwa,1, uaw,2=uwa,2, uaCH2,1=uCH2a,1, uaCH2,1=uCH2a,1, 
   uCH2c,1=ucCH2,1, uCH2c,2=ucCH2,2 
** from Hansen et al. (1992) 
 
 

7.2.3 Objective Function 

The objective function (F) is used as: 

2exp,, lnln
ii

cmc

aq

calcmc

aq xxF        (7.9) 

where exp,cmc

aqx represents the experimental value of CMC in mole fraction scale and calcmc

aqx ,  

represents the calculated value of CMC also in mole fraction scale. A least-square method, 

Levenberg-Marquard algorithm (Fletcher, 1980), is used to minimize the objective function.  
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The reported molality scale CMC values are converted to mole fractions. The critical 

micelle concentration (CMC) data of Mukerjee et al. (1971) and Brandrup et al. (1975) are 

used in the interaction parameter estimation. 

 

 

7.3 CMC Correlation  

7.3.1 CMC Correlation with the Modified Achard Model 

The CMC of three surfactant families, sodium alkyl sulphates, sodium alkyl 

sulfonates and potassium carboxylates, are studied with the modified Acahrd model. The 

sodium alkyl sulphates, sodium alkyl sulfonates and potassium (sodium) carboxylates are, 

respectively, abbreviated as CnOSO3Na, CnSO3Na and CnCOOK(Na), where Cn refers to 

the carbon number of the alkyl chain. These surfactant solutions are widely used in practice 

and extensively investigated in various applications. The group assignments for these 

surfactant molecules are presented in Table 7.2. The structural parameters of the groups are 

given in Table 7.3. 

 

Table 7.2 Group assignments for surfactant molecules  
Surfactant family Abbreviation Group Assignment* 
Sodium alkyl sulphates CnOSO3Na CH3, CH2, Na+(c), OSO3

-(a) 
Sodium alkyl sulfonates CnSO3Na CH3, CH2, Na+(c), SO3

-(a) 
Potassium carboxylates CnCOOK CH3, CH2, K

+(c), COO-(a) 
Sodium carboxylates CnCOONa CH3, CH2, Na+(c), COO-(a) 
* c: cation, a: anion 
 

Table 7.3 Structural parameter values 
Group R Q Comments 
CH3 0.9011 0.848  
CH2 0.6744 0.540  
Na+ 1.0612 1.0404  
K+ 2.6281 1.9044  
OSO3

- 6.8590 3.6100 From HSO4
- data 

SO3
- 4.9130 2.8900 From HSO3

- data 
COO- 3.7964 2.4336 From HCO3

- data 
H2O 0.92 1.40  
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(i) Sodium Alkyl Sulphates (CnH2n+1OSO3
-Na+) 

In order to evaluate the thermodynamic framework for micelle formation by Chen et 

al. (2001), and the capability of the modified Achard model, the CMC data of sodium alkyl 

sulphates in aqueous solution are correlated in two approaches using this model. In the first 

approach, all CMC data of different surfactants within the same family are put into the same 

data set and simultaneously fitted with the model. In the second approach, the CMC data of 

two or three surfactant components are simultaneously fitted. With the interaction parameters 

obtained by these CMC data, the CMC of other surfactants in the same chemical family is 

calculated. 

 

First Approach  

The CMC data of surfactants with various alkyl chain lengths at different 

temperatures are simultaneously fitted with the model. The interaction parameters between 

CH2 and H2O are taken from Hansen et al. (1992). The interaction parameters between Na+ 

and H2O are taken from parameter estimation results of NaCl + H2O system (Tables 6.9 in 

Chapter 6). The unknown interaction parameters are: uCH2OSO3,1, uCH2OSO3,2, uCH2Na,1, uCH2Na,2, 

uOSO3H2O,1, uOSO3H2O,2. 

In correlating the CMC data, it was noted that uCH2Na,1 reaches a very large value. In 

order to reduce the number of simultaneously estimated parameters, this and another two 

parameters were set as follows: 

uCH2Na,1=4500, uCH2Na,2=0.0, uOSO3H2O,2=0.0      (7.10) 

With this large value for interaction parameter uCH2Na,1, the relevant term ( CH2Na ) in residual 

part of UNIFAC equation (see Appendix A) is small and can be neglected, because  

T

aCH2Na
CH2Na exp         (7.11) 

where CH2Naa  is calculated by equation (7.6). The reason for setting uOSO3H2O,2=0.0 is that the 

CMC values do not change significantly with temperature for sodium alkyl sulphate solutions 

in the experimental temperature range (280-350K), as shown in figure 7.1. Using these 

assumptions, the number of unknown interaction parameters is reduced to 3 for sodium alkyl 

sulphate systems.  
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All reported CMC data for sodium alkyl sulphates are simultaneously fitted. The solid 

lines in Figure 7.1 and 7.2 show the fitting results. The parameter estimation results are given 

Table 7.4. The results show that the thermodynamic expression of micelle formation 

combined with the modified Achard method can describe satisfactorily both temperature and 

chain length effects of CMC.  

 

Table 7.4 Parameter estimation results (bold numbers) of two approaches for sodium alkyl 
sulphates (in K). All other parameters can be found in Table 7.1 
 CH2 OSO3

-(a) H2O OSO3
-(a) CH2 Na+(c) Na+ H2O(w) 

First  
approach 

uaCH2,1= 46.29 
uaCH2,2=1.449 

uwa,1=556.19 
uwa,2=0 

uCH2c,1=4500* 
uCH2c,2=0 

ucw,1= 1145.8 
ucw,2=0 

Second 
approach 

uaCH2,1= 7.162 
uaCH2,2=0.718 

uwa,1=668.13 
uwa,2=0 

uCH2c,1=4500* 
uCH2c,2=0 

ucw,1= 1154.39 
ucw,2= 1.439 

* fixed value 
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Figure 7.1 Results for C8OSO3Na (C8 fit), C10OSO3Na (C10), C12OSO3Na (C12), and 
C14OSO3Na(C14 fit) at different temperatures. Points: experimental CMC values. Solid lines: 
fitting results of first approach, dotted lines: fitting results of second approach, dashed lines: 
calculation results. 



128                             Chapter 7 Critical Micelle Concentration of Ionic Surfactant Solutions 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

5 7 9 11 13 15 17 19

n in CnOSO3Na, 313.15K

C
M

C
, 

M
o

la
li

ty
Expt.

Calculation

Fit

 
Figure 7.2 Results for CnOSO3Na (n=8-18) with different carbon numbers in alkyl chain at 
313.15K. Points: experimental CMC values. Solid line: fitting results of first approach, 
dashed line: calculation results.  
 

Second Approach  

In order to investigate the predictive capability of the modified Achard model, two 

binary systems: C8OSO3Na+H2O and C14OSO3Na+H2O are selected to obtain the group 

interaction parameters. That means that the interaction parameters uCH2OSO3,1, uCH2OSO3,2 and 

uOSO3H2O,1 are re-estimated using the CMC data of only these two systems. The obtained 

interaction parameters can be then applied to other surfactant systems in same surfactant 

family. The correlation results are shown in figures 7.1 with dotted lines labelled ‘C8 fit’ and 

‘C14 fit’. The obtained interaction parameters in the second approach are given in Table 7.4.  

Using the interaction parameters obtained, the CMC values of C10OSO3Na, 

C12OSO3Na, and CnOSO3Na (n=8-18) are calculated with the modified Achard model. The 

calculation results are shown in figures 7.1-7.2 with dashed lines.  

Figures 7.1-7.2 show that the modified Achard model can successfully calculate the 

CMC values of sodium alkyl sulphates. Both temperature and chain length effects can be 

captured. However, the model underestimates the CMC values at lower temperatures for the 

surfactants C10OSO3Na and C12OSO3Na. The model gives good estimates for the CMC 

values of CnOSO3Na (n=8-18) with different carbon numbers in the alkyl chain at 313.15 K.  
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The surfactant+H2O binary systems used in these two approaches are summarized in 
Table 7.5.  

 

Table 7.5 Surfactant+H2O binary systems used for interaction parameter estimation in two 
approaches 

Second approach First approach Surfactant 
family Component Data Component Data 

C8OSO3Na CMC vs. T C8OSO3Na CMC vs. T 
C14OSO3Na CMC vs. T C10OSO3Na CMC vs. T 
  C12OSO3Na CMC vs. T 
  C14OSO3Na CMC vs. T 

Sodium alkyl 
sulphates 

  CnOSO3Na (n=8-18) CMC vs. n 
C8SO3Na CMC vs. T C8SO3Na CMC vs. T 
C10SO3Na CMC vs. T C10SO3Na CMC vs. T 
C12SO3Na CMC vs. T C12SO3Na CMC vs. T 
  C14SO3Na CMC vs. T 

Sodium alkyl 
sulfonates 

  CnSO3Na (n=5-18) CMC vs. n 
C8COOK CMC vs. T C8COOK CMC vs. T 
C14COOK CMC vs. T C10COOK CMC vs. T 
  C12COOK CMC vs. T 
  C14COOK CMC vs. T 

Potassium 
carboxylates 

  CnCOOK (n=5-17) CMC vs. n 
 

 

(ii) Sodium Alkyl Sulfonates (CnH2n+1SO3
-Na+) 

The two approaches used for sodium alkyl sulphates can also be applied to the 

sodium alkyl sulphonates (CnSO3Na). The same assumptions on uCH2Na,1 and uCH2Na,2 for 

sodium alkyl sulphates are adopted for sodium alkyl sulfonates. 

 

First Approach 

All available CMC values for sodium alkyl sulfonates, as shown in Table 7.5, are 

fitted to 4 interaction parameters uCH2SO3,1, uCH2SO3,2, uSO3H2O,1, uSO3H2O,2 (uNaH2O,2=0.0).  

The correlation results are presented in figures 7.3-7.4 with solid lines. The obtained 

interaction parameters are given in Table 7.6. Both temperature and chain length effects are 

described satisfactorily.  
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Second Approach  

The CMC data of three surfactants (C8SO3Na, C10SO3Na, and C12SO3Na) (Table 7.5) 

are used to re-estimate the 4 unknown interaction parameters: uCH2SO3,1, uCH2SO3,2, uSO3H2O,1, 

uSO3H2O,2. The parameter estimation results are presented in figures 7.3-7.4 with dotted lines 

and in Table 7.6.  

The CMC values of C14SO3Na and CnSO3Na (n=5-12) are calculated using these 

parameters. Figures 7.3-7.4 show the calculations with dashed lines. As can be seen, the 

model can extrapolate well the CMC values, except for the short alkyl chain surfactant 

solutions.  

 

Table 7.6 Parameter estimation results (bold numbers) of two approaches for sodium alkyl 
sulfonates (in K). All other parameters can be found in Table 7.1  
 CH2 SO3

-(a) H2O SO3
-(a) CH2 Na+(c) Na+ H2O(w) 

First  
approach 

uaCH2,1=249.4 
uaCH2,2=1.321 

uwa,1=384.6 
uwa,2=0.0 

uCH2c,1=4500* 
uCH2c,2=0 

ucw,1= 1145.8 
ucw,2=0 

Second 
approach 

uaCH2,1= 369.03 
uaCH2,2=1.247 

uwa,1=499.81 
uwa,2=1.467 

uCH2c,1=4500* 
uCH2c,2=0 

ucw,1= 1154.39 
ucw,2= 1.439 

* fixed value  
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Figure 7.3 Results for C8SO3Na (C8 fit), C10SO3Na (C10 fit) and C12SO3Na (C12 fit) and 
C14SO3Na (C14) at different temperatures. Points: experimental CMC values. Solid lines: 
fitting results with the first approach, dotted lines: fitting results with the second approach, 
dashed lines: calculation results. 
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Figure 7.4 Results for sodium alkyl sulfonates with different carbon numbers in alkyl chain. 
Points: experimental CMC values for CnSO3Na, n=5 to 18 at different temperatures. Solid 
line: fitting results with the first approach, dashed line: calculation results. 
 

 

 (iii) Potassium Carboxylates (CnH2n-1OO-K+) 

All CMC data of selected potassium carboxylates (Table 7.5, first approach) are 

simultaneously fitted. The interaction parameters between K+ and H2O obtained by the mean 

activity coefficient data correlation for KCl+H2O solution (Table 6.10, Chapter 6) are used. 

The fitting results are presented in figures 7.5-7.6 with solid lines. The obtained interaction 

parameters are given in Table 7.7. The model overestimates the CMC values for potassium 

carboxylates with short alkyl chains (figure 7.5) using five adjustable parameters (shown in 

Table 7.7).  

As observed from the parameter estimation results in Table 7.7, the interaction 

parameter between K+ and CH2 has a large value. Thus, this interaction parameter was set as: 

uCH2K,1=4500, uCH2K,2=0.0. 

Then, CMC data of C7COOK and C13COOK systems (Table 7.5, second approach) 

are fitted to four unknown interaction parameters: uCH2COO,1, uCH2COO,2, uCOOH2O,1, uCOOH2O,2. 

The parameter estimation results are presented in figure 7.5 with dotted lines, and Table 7.7.  
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Using the obtained interaction parameters, the CMC of C9COOK, C11COOK, 

C15COOK, and CnCOOK (n=5-17) are calculated with the modified Achard method. The 

calculations are shown in figures 7.5-7.6 with dashed lines. The model overestimates the 

CMC of short alkyl chain potassium carboxylates.  

 

Table 7.7 Parameter estimation results (bold numbers) of potassium carboxylates (in K). All 
other parameters can be found in Table 7.1  
 CH2  COO-(a) H2O  COO-(a) CH2  K+(c) K+ H2O(w) 
First approach uaCH2,1= 176.47 

uaCH2,2=15.35 
uwa,1=289.56 
uwa,2=8.962 

uCH2c,1=3220 
uCH2c,2=0 

ucw,1= 654.555 
ucw,2=7.831 

Second 
approach 

uaCH2,1= 91.75 
uaCH2,2=5.846 

uwa,1=420.83 
uwa,2= 1.962 

uCH2c,1=4500* 
uCH2c,2=0 

ucw,1= 654.555 
ucw,2=7.831 

* fixed value 
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Figure 7.5 Results for C7COOK, C9COOK, C11COOK, C13COOK and C15COOK at different 
temperatures. Points: experimental CMC values. Solid lines: fitting results with the first 
approach, dotted lines: fitting results with the second approach, dashed lines: calculation 
results. 
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Figure 7.6 Results for potassium carboxylates with different carbon numbers in alkyl chain. 
Points: experimental CMC values at 298.15 K. Solid line: fitting results with the first 
approach, dashed line: calculation results 
 

 

7.3.2 Prediction of CMC for Sodium Carboxylates  

With the interaction parameters obtained from the CMC data for potassium 

carboxylates (CnCOOK) systems (Table 7.7) and the mean activity coefficient data 

correlation for NaCl+H2O system (Table 6.10, Chapter 6), the CMC values of sodium 

carboxylate (CnH2n-1COO-Na+, abbr. CnCOONa) solutions are predicted with the modified 

Achard model, as shown in figure 7.7. As can be seen, the prediction results are rather poor. 

But the prediction shows CMC increases with increasing temperature. The interaction 

parameters used in the prediction are summarized in Table 7.8 labelled with ‘Pred.’. For 

comparison, the CMC data of sodium carboxylates are also fitted with the modified Achard 

model and presented in figure 7.7 and Table 7.8 labelled with ‘Fitting’. 

As discussed in Chapter 6, the modified Achard method can simultaneously correlate 

the mean activity coefficients of five short chain sodium carboxylate (CnCOONa, n=1-5) 

solutions. The interaction parameters obtained for these sodium carboxylates can be used to 

predict the CMC of long chain sodium carboxylates (CnCOONa, n=7-18) with the modified 



134                             Chapter 7 Critical Micelle Concentration of Ionic Surfactant Solutions 

Achard model. However, the calculation in the CMC prediction is diverged with those 

interaction parameters in Table 6.11, Chapter 6. Some negative CMC values are obtained.   

For non-electrolyte solutions, UNIFAC method can give satisfied prediction results 

for similar systems. However, sodium carboxylate aqueous solution is an electrolyte solution. 

The strong hydrogen bonding and hydration effects may be the reasons for the poor 

prediction with the modified Achard model.   

 

Table 7.8 Interaction parameters for sodium carboxylates (in K)* 
Surfactant uCH2a,1 uCH2a,2 uCH2c,1 uaw,1 uaw,2 ucw,1 ucw,2 Note 
CnCOONa -91.75 5.846 4500** 420.83 -1.962 -1154.4 -1.439 Pred. 
 -434.86 74.83 4500** 764.45 96.54 -1154.4 -1.439 Fitting
*subscripts: w: water; c: Na+, a: COO-; CH2: CH2 main group, uww= 700 K, 
 uCH2CH2= 129.4 K.  
** fixed value  
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Figure 7.7 CMC prediction results for sodium carboxylates CnCOONa (n=7-17) with 
different hydrocarbon chain length at several temperatures. The prediction shows CMC 
increases with increasing temperature. 
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7.4 CMC Calculation of Surfactant Mixtures 

As an example to use and evaluate regular solution method (Rubingh, 1979, Holland, 

1986) discussed in Chapter 3, CMC of sodium alkyl sulphates (AS) and alkyl 

trimethylammonium bromides (TAB) ternary surfactant mixtures were calculated in this 

method based on the work of Murphy et al. (2002). This method is often applied to mixed 

surfactant systems and treats the micelles or aggregates as a separated pseudo-phase. The 

pseudo micelle phase is considered as non-ideal liquid mixtures. Regular solution method is 

used to describe activity coefficient of surfactants in the non-ideal liquid mixtures (pseudo 

micelle phase).   

Extending equation (3.63) to ternary mixture of surfactants, CMC can be calculated 

as: 

33

3

22

2

11

1

mix CMCCMCCMCCMC

1
      (7.12) 

where CMCmix, CMC1, CMC2, CMC3 are the CMC values of the mixed surfactants, 

surfactant 1, surfactant 2 and surfactant 3, respectively; 1, 2 and 3 are the mole fractions 

of the respective surfactants in aqueous solution (aqueous phase) and 1, 2 and 3 are the 

activity coefficients of surfactants 1, 2 and 3 in pseudo micelle phase. The activity 

coefficients are calculated by: 

RTxxxx /ln 32231312
2
313

2
2121      (7.13) 

RTxxxx /ln 31132312
2
323

2
1122      (7.14) 

RTxxxx /ln 21121323
2
223

2
1133      (7.15) 

where 12, 13 and 23 are the interaction parameters between surfactants 1 and 2, 1 and 3, 

and 2 and 3, respectively, and they are obtained by fitting CMC of binary surfactant systems; 

x1, x2 and x3 are the compositions of surfactants 1, 2 and 3 in pseudo micelle phase.  

Based on these equations, CMC values of ternary surfactant mixtures are calculated 

for cationic surfactants: octyl- (C8), decyl- (C10), dodecyl- (C12), tetradecyl- (C14) and 

hexadecyl- (C16) trimethylammonium bromide (TAB), and anionc surfactants: sodium octyl- 

(C8), decyl- (C10), dodecyl- (C12), tetradecyl- (C14) and hexadecyl- (C16) sulphates. The 

interaction parameters between these surfactants are taken from Murphy et al. (2002). Based 
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on the work of Murphy et al., compositions of surfactants 1, 2 and 3 in aqueous phase ( 1, 2 

and 3) and pseudo micelle phase (x1, x2 and x3) are approximated as: 

Aqueous phase composition: 3/1321  

Pseudo micelle phase: 3/1321 xxx  

because the three components in an experimental sample are very similar, as shown in Tables 

7.9-7.10. If the compositions of surfactant in micelle phase are not available, a method 

proposed by Holland (1986) can be used to calculate them.   

 By equations (7.12)-(7.15), CMC of ternary surfactant mixtures are calculated and 

presented in Tables 7.9-7.10, and figure 7.8. In these tables, experimental CMC are from 

conductivity measurements (Murphy et al. 2002). These results show that the regular solution 

method can predict well the CMC of ternary surfactant mixture using experimental binary 

interaction parameters. However, these calculations only show an ideal case because the 

surfactant compositions in aqueous and micelle phase are equal for these ternary surfactant 

systems through the special designed experiments in the work of Murphy et al. (2002).  

 

Table 7.9 CMC calculation results using the regular solution method for alkyl 
trimethylammonium bromides at 303 K (Molality, 10-3)* 
Surfactants 
1/2/3 

CMC1 CMC2 CMC3 12 13 23 CMC, 
exp. 

CMC, 
cal. 

Dev.%

C12/C10/C8 16.03 48 290 -0.7 -1.4 -0.7 27.00 34.65 28.3 
C14/C10/C8 3.08 48 290 -1.6 -2.4 -0.7 7.00 8.60 22.9 
C16/C10C8 0.8 48 290 -3.1 -3.9 -0.7 1.90 2.36 24.0 
C14/C12/C8 3.08 16.03 290 -0.8 -2.1 -2.7 6.77 7.69 13.6 
C16/C12/C8 0.8 16.03 290 -3.3 -3.9 -2.9 1.89 2.28 20.7 
C16/C14/C8 0.8 3.08 290 -1.0 -3.8 -2.4 1.83 1.90 4.0 
C14/C12/C10 3.08 16.03 48 -0.9 -2.5 -0.8 6.80 7.36 8.2 
C16/C12/C10 0.8 16.03 48 -3.2 -3.7 -0.6 1.70 2.25 32.4 
C16/C14/C10 0.8 3.08 48 -0.9 -2.9 -2.1 1.90 1.88 1.0 
Average Dev.         17.2 
* experimental CMC, 12, 13 and 23: from Murphy et al. (2002) 
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Table 7.10 CMC calculation results using the regular solution method for sodium alkyl 
sulphates at 318 K (Molality, 10-3)*  
Surfactants 
1/2/3 

CMC1 CMC2 CMC3 12 13 23 CMC, 
exp. 

CMC, 
cal. 

Dev.%

C12/C10/C8 7.8 25 150 -1.4 -2.4 -1.1 14.20 17.17 20.9 
C14/C10/C8 1.61 25 150 -2.2 -2.3 -2.0 4.30 4.50 4.6 
C16/C10/C8 0.4 25 150 -3.1 -3.6 -1.0 1.49 1.18 20.9 
C14/C12/C8 1.61 7.8 150 -0.6 -2.7 -1.4 3.60 3.97 10.3 
C16/C12/C8 0.4 7.8 150 -2.6 -3.4 -1.7 1.60 1.14 28.8 
C16/C14/C8 0.4 1.61 150 -0.9 -3.3 -2.8 1.30 0.96 26.2 
C14/C12/C10 1.61 7.8 25 -1.9 -2.4 -1.3 3.50 3.80 8.7 
C16/C12/C10 0.4 7.8 25 -1.9 -4.7 -0.6 0.96 1.12 17.2 
C16/C14/C10 0.4 1.61 25 -2.1 -4.8 -1.8 1.40 0.95 32.2 
C16/C14/C12 0.4 1.61 7.8 -0.5 -0.9 -1.4 1.10 0.92 16.0 
Average Dev.         18.6 
* experimental CMC, 12, 13 and 23: from Murphy et al. (2002) 
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Figure 7.8 Calculated vs. experimental CMC for the ternary surfactant systems shown in 
Tables 7.9-7.10. Experimental CMC are from Murphy et al. (2002). 
 

 As can be seen from equations (7.12)-(7.15) and section 3.5, the regular solution 

method focused on activity coefficient of surfactants inside micelle (pseudo micelle phase). 

Micelles are considered as non-ideal liquid mixtures. The cationic and anionic surfactants in 

micelle phase are treated as non-dissociation components. The electrostatic properties of 
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ionic surfactants in aqueous and micelle phase are not taken into account, even the CMC of 

mixed surfactants are obtained by conductive measurement (Murphy et al., 2002). In aqueous 

phase, activity coefficients of surfactant are set to unity.  

In sections 7.2 and 7.3, activity coefficients of surfactant in aqueous phase were 

studied using modified Achard model. This model could be used to calculate the activity 

coefficient in equation (7.12). However, in the framework of regular solution method for 

mixed surfactants, ionic surfactants are treated as non-dissociated component. The necessary 

interaction parameters of non-dissociated cations and anions are not available for the 

modified Achard model. Therefore, the CMC of mixed surfactants are not calculated by the 

modified Achard model. In aqueous phase, activity coefficient is set to 1.0 in the regular 

solution method for mixed surfactants.   

Using the modified Achard model, however, CMC of pure surfactants in aqueous 

solution, such as sodium alkyl sulphates, can be extrapolate to different temperatures. Based 

on the CMC of pure surfactants, the CMC of mixed surfactants at different temperatures can 

be calculated using equation (7.12) if the binary interaction parameters of surfactants can be 

used at different temperatures.    

In principle, other activity coefficient model, such as UNQUAC and UNIFAC can be 

used to calculate the activity coefficients of surfactant in micelle phase. But the necessary 

interaction parameters of non-dissociated ionic surfactants or groups are not available for 

these models. 

 

 

7.5 Summary  
 

Based on Chen’s thermodynamic treatment (Chen et al., 2001) for the micelle 

formation of ionic surfactant solution, the modified Achard method can successfully correlate 

the CMC values of three surfactant families. Using the CMC data of a few surfactant + H2O 

systems (two or three systems), the group interaction parameters of the modified Achard 

model are determined. Using these group interaction parameters, the modified Achard model 

can calculate the CMC values of other ionic surfactants in the same surfactant family. The 
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modified Achard model has some potential in predicting the CMC of ionic surfactant 

solutions. However, the CMC prediction results for sodium carboxylates + H2O systems are 

poor using the interaction parameters determined from potassium carboxylates+H2O systems 

and NaCl+H2O system.  

Using regular solution method (Rubingh, 1979, Holland, 1986), CMC values of alkyl 

trimethylammonium bromides (at 303 K) and sodium alkyl sulphates (at 318 K) are predicted 

successfully based on experimental binary interaction parameters reported by Murphy et al. 

(2002).   
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Chapter 8 Correlations of Important Properties of 
Surfactant Solutions 
 

In this chapter, some correlations of important properties of surfactants and surfactant 

solutions, e.g. the hydrophilic lipophilic balance (HLB), the Krafft point, the cloud point and 

detergency are presented. Some new correlations for the aggregation number, the toxicity, the 

bio-concentration factor and the HLB of specific surfactant families are developed in this 

work. A calculation map of these properties is also presented.  

 

 

8.1 Introduction 

A number of properties are of interest to certain applications of surfactant solutions, 

e.g. the cloud point, the Krafft point, the hydrophilic-lipophilic balance (HLB), the 

aggregation number (ng), and the phase inversion temperature (PIT). They are often related to 

emulsification and solubility, wetting, dispersing, foaming and detergency. Some of them, e.g. 

HLB, have no solid thermo-physical origin, but are widely used in industrial applications. 

These properties give a fast, less expensive and perhaps unique way to classify the abilities of 

surfactants. 

A lot of experimental investigations have been carried out for these important 

properties. However, such data are scattered in many different journals and books and are 

somewhat difficult to retrieve. van Os and co-workers (1993) have compiled many types of 

physico-chemical properties for non-ionic, cationic and anionic surfactants during the period 

1970-1991. Mukerjee and Mysels (1971) published a CMC data collection, and evaluated the 

CMC values for hundreds of surfactants. Grieser and Drummond (1988) collected data on 

micelle aggregation numbers. Hinz (1986) edited a thermodynamic data collection for 

biochemistry and biotechnology which include a chapter on experimental data of surfactant 

solutions. 
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Laughlin (1994) summarized the research history of surfactant solutions since the end 

of the 19th century. In this book, different theoretical concepts are comprehensively 

described and compared. The journal ‘Current Opinion in Colloid & Interface Science’ 

(Current Chemistry Ltd, London, UK) is now publishing review papers on different aspects 

of surfactant solutions, including thermodynamic theories.  

Empirical correlations are often of interest to engineers so that many important 

properties of surfactant solutions can be estimated using one or two key properties (e.g. CMC, 

Kow). The investigated properties in this chapter are HLB, Krafft point, cloud point, 

aggregation number, detergency and toxicity. 

In this study, many of the correlation results are directly collected from the literature. 

Some new correlations have been also developed for certain surfactant families. 

 

 

8.2 The Hydrophilic-Lipophilic Balance (HLB) 

In 1949, Griffin introduced the parameter HLB (hydrophilic - lipopholic balance) to 

characterise the effectiveness of polyoxyethylene surfactants as emulsifiers based on their 

molecular structures (Laughlin, 1994). As a consequence, the HLB number is nowadays 

mostly used as a parameter to compare one surfactant with others and to classify surfactants 

in a scale that varies from 1 to 40. The lower numbers indicate high solubility in oil 

(hydrophobic), while the higher numbers indicate high solubility in water (hydrophilic). The 

HLB should be considered as an empirical selection method that provides some general 

trends, but cannot be used for fine-tuning formulation. HLB value is often reported for the 

various surfactant products. 

The surfactant HLB number is calculated directly from the relative weight of the 

hydrophilic and lipophilic parts of the surfactant. For instance, the HLB number of 

polyethoxylate non-ionic surfactants is linearly related to the percent of ethylene oxide group, 

EO (CH2CH2O), in the molecule. Using the Griffin’s equation (Schick, 1987), HLB of 

polyethoxylate can be calculated as following. 

5/%EOHLB          (8.1) 
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Such a HLB number cannot take into account the formulation effects that are known to be 

relevant, such as the nature, structure or branching of the hydrophobic group, the temperature 

effect, etc. Moreover, surfactants with the same HLB number can sometimes exhibit quite 

different behaviours. 

The great importance of HLB is due to two practical uses (Bergen et al. 1998): first, 

the numerical value of HLB permits one to predict the kind of emulsion that can be formed, 

such as oil/water (O/W) if HLB>8 or water/oil (W/O) if HLB<8; second, the HLB values in 

surfactant mixtures are additive as follows: 

i

iiw HLBHLB          (8.2) 

where wi is the weight fraction of surfactant i, (HLB)i is the HLB value of surfactant i. The 

HLB in a surfactant mixture is an average of all pure surfactant HLB numbers with a 

numerical weight factor identical to the weight fraction wi. This is a useful equation in the 

design of emulsions. 

An alternative method for characterizing emulsifying agents is the phase inversion 

temperature (PIT). With nonionic surfactants, below this temperature range the surfactant is 

soluble in water and above this range it is soluble in oil (Marszall, 1987). Thus, the PIT is the 

temperature at which the surfactant shifts its preferential solubility from water to oil, as the 

temperature is increased. 

Different methods have been developed to relate HLB to the properties of surfactants 

or surfactant solutions. Most of them are empirical correlations. However, Bergen et al. 

(1998) made an effort to examine the possible relation between HLB and the parameters of 

equation of state of a lattice fluid. In our work, the relation between HLB and CMC is of 

interest since CMC can be obtained from thermodynamic considerations. Some estimation 

methods for HLB are presented here.   

 

(1) Davies’s Method for Estimating HLB 

Davies et al. (1963) suggested a group-contribution method for estimating HLB of 

surfactants directly from their structure. The HLB is calculated from the following equation: 
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HLB=7 + (hydrophilic group numbers) + (lipophilic group numbers)   (8.3) 

where the summations are over all (hydrophobic and lipophilic) groups. Group numbers (i.e. 

group contribution parameters) are estimated for various groups of surfactant molecules, e.g., 

CH3, -CH2, -COO-, -CH2CH2O-, etc., as listed in Table 8.1. For many cases, Davies has 

shown that the HLB numbers calculated from this equation are in satisfactory agreement to 

the experimental data. However, this equation is based on the assumption that each individual 

group has the same hydrophilic or hydrophobic contribution in all situations, thus the 

equation fails in some cases.  

For a given structure, the HLB is calculated by substituting the group number (listed 

Table 8.1) into equation (8.3). For example, the HLB of C12H25OSO3Na (SDS) is  

0.400.475-1238.77HLB  

The literature HLB number is also 40 for SDS (Becher, 1987).  

  

Table 8.1 HLB group values (Davies et al., 1963) 
Hydrophilic group Group number Lipophilic group Group number 
-SO4Na+ 38.7 -CH- 0.475 
-COO-H+ 21.1 -CH2- 0.475 
-COO-Na+ 19.1 CH3- 0.475 
N(tertiary amine) 9.4 =CH- 0.475 
Ester (sorbitan ring) 6.8 -CF2- 0.870 
Ester (free) 2.4 -CF3- 0.870 
-COOH 2.1 Derived groups  
OH (free) 1.9 -(CH2-CH-O)- 0.33 
-O- 1.3 -(CH2-CH-(CH3)-O)- 0.15 
OH (sorbititan ring) 0.5   
 
 
(2) General Correlations Between CMC and HLB 

By regressing experimental data for ionic and nonionic surfactant solutions at 25ºC, 

some researchers (Lin and Marszall, 1976, 1977, Wang, 1986) derived a series of 

relationships for CMC and HLB or effective number of carbon atoms in chain (neff), as 

shown in Table 8.2.  
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Table 8.2 Correlations of CMC (molality) and HLB or effective number of carbon atoms in 
chain (neff) at 25ºC 
No Correlation Surfactant Ref. 
1 logCMC= 37.14 + 0.866HLB Sodium alkyl sulfates Ref. 1 
2 logCMC=1.665 – 0.314 neff 

(1) neff=12.32+0.3635x  
(2) neff=15.98+1.11x –0.15x2 
(3) neff=17.6+0.44x  
x=number of group OCH2CH2 

 
(1)C12H25(OCH2CH2)xOSO3Na 
(2)C16H33(OCH2CH2)xOSO3Na 
(3)C18H37(OCH2CH2)xOSO3Na 

Ref. 1 

3 logCMC=1.775 – 0.291 neff 
(1) neff=10.15+0.85x  
(2) neff=12.18+0.95x 
x=number of group OCH2CH2 

 
(1)C10H21(OCH2CH2)xN(CH3)3Cl 
(2)C12H25(OCH2CH2)xN(CH3)3Cl 

Ref. 1 

4 logCMC=1.855 – 0.305 neff 
(1) neff=10.15+0.85x  
(2) neff=12.18+0.95x 
(3) neff=16.17+1.2x 
x=number of group OCH2CH2  

 
(1)C10H21(OCH2CH2)xNC5H5Cl 
(2)C12H25(OCH2CH2)xNC5H5Cl 
(3)C16H33(OCH2CH2)xNC5H5Cl 

Ref. 1 

5 logCMC= –16.287 + 0.734 HLB 
logCMC = 3.109 – 0.647n 
n=carbon number 

CnF2n+1COONa Ref. 2 

Ref. 1: Lin and Marszall (1976, 1977) 
Ref. 2: Wang, 1986 
 

 

(3) Correlation Between HLB and Partition Coefficient 

Davies et al. (1963) have shown that the distribution constant (K=Cw/C0) of alcohol 

ethoxylates is related to HLB as: 

HLB=7 + 0.36 ln(Cw/C0)        (8.4) 

where Cw and C0 are the concentrations of the surfactant in water and oil (heptane) phases, 

respectively. If the oil is n-octanol, then K is equal to octanol-water partition coefficient 

(Kow) (Birdi, 1999). However, only very few experimental Kow data of surfactants are 

available. There is no further investigations in the literature for the relationship of HLB with 

Kow.  
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8.3 Correlations of the Krafft Point 

Surfactants have unusual solubility behaviour as their solubilities exhibit a rapid increase 

above a certain temperature, known as the Krafft point or Krafft temperature, as shown 

schematically in Figure 8.1. This solubility behaviour is mostly observed for ionic surfactants. 

This behaviour is explained due to the fact that non-associated surfactants have a limited 

solubility, whereas micelles are able to solubilize non-polar materials in aqueous solutions. 

Below the Krafft point the surfactant molecules are non-associated and thus solubility is limited. 

When the temperature is raised, the solubility increases very slowly until the Krafft point is 

reached. At the Krafft point, micelles are formed and a large increase in solubility is therefore 

observed. It is desirable to make a formulation above the Krafft temperature if complete 

solubilization is required. For example, many wash powders, which contain mixed 

surfactants, have good detergency at higher temperatures. 
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Figure 8.1 Schematic diagram of the Krafft point of surfactant solution 

 

 The Krafft point depends on complex three-phase equilibrium and the counter ion of 

the surfactant. The chain length of the hydrophobic part and the presence of electrolytes do 
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also influence the Krafft point of ionic surfactants. The addition of electrolytes increases the 

Krafft point.  

 Surfactants with a high Krafft temperature have ionic head groups or have compact 

highly polar head-groups and long straight alkyl chains. Lower Krafft point temperature can 

be obtained with branched alkyl chains or bulkier hydrophobic groups (e.g. two alkyl chains). 

If the surfactant solution exhibits surface-activity based characteristics, such as wetting, the 

solution would be used below or near its Krafft point, whereas if high solubility is required, 

the solution need to be used at temperatures above the Krafft point. 

Several estimation methods have been proposed for Krafft point. Huibers (1996a) 

used quantitative structure-property relationships (QSPR) to correlate the Krafft point with 

molecule structure information and obtain a predictive relation for the Krafft points of 44 

surfactants. In our study, correlations between Krafft point and molecular structure or CMC 

are presented.  

 

(1) Correlation of Gu et al. (1992) 

In the work of Gu et al., (1992), the Krafft points (KP, ºC) are correlated with the 

structure of different surfactant molecules. In the case of ionic ethoxylated surfactants of type 

CnH2n+1(OCH2CH2)mSO4
-Na+, the dependence between the KP and the molecular structure 

units can be expressed as 

iEOcc kmnk 9KP         (8.5) 

where nc is the number of hydrocarbon groups in alkyl chain, nc = 16, 18, mEO is the number 

of ethylene oxide unit (OCH2CH2) in CnH2n+1(OCH2CH2)mSO4
-Na+ molecule, mEO=1~4. In 

the equation kc and ki are constants depending on the ionic headgroup, which are given in 

Table 8.3. 

For surfactants with a single straight hydrocarbon chain, the KP can also be related to 

the number of hydrocarbon groups, nc (nc = 10~18) by 

icc knkKP          (8.6) 

where ki and kc are the values listed in Table 8.3. 

   



148                             Chapter 8 Correlations for Important Properties of Surfactant Solutions 

 

Table 8.3 Constants kc and ki of ionic surfactants for equations (8.5)–(8.6) 
No Type of surfactant kc ki 
1 CnH2n+1SO4

-Na+ 5.5 44 
2 2-MeCnH2nSO4

-Na+ 5.5 61 
3 CnH2n+1[OCH2CH(CH3)]2SO4

-Na+ 5.5 69 
4 CnH2n+1OCH2CH(SO4

-Na+)CH3 5.5 60 
5 CnH2n+1(OC2H4)mSO4

-Na+ 5.5 44 
6 Na+O4

-S(CH2)nSO4
-Na+ 5.5 52 

7 Li+O4
-S(CH2)nSO4

-Li+ 5.5 45 
8 K+O4

-S(CH2)nSO4
-K+ 5.5 43 

9 CnH2n+1SO3
-Na+ (even n) 5.5 29 

10 CnH2n+1SO3
-Na+ (odd n) 5.5 34 

11 CnH2n+1COO(CH2)2SO3
-Na+ 5.5 44 

12 CnH2n+1OOC(CH2)2SO3
-Na+ 5.5 41 

13 CnH2n+1CHCH3C6H4SO3
-Na+ 5.5 24 

14 CnH2n+1CH(SO3
-Na+)CH2OH 5.5 -6 

15 CnH2n+1CH(SO3
-Na+)COOH 5.5 -3 

16 CnH2n+1CH(SO3
-Na+)COONa 5.5 -1 

17 CnH2n+1CH(Py+)COO- (Py+=pyridinium) 5.5 41 
18 (CnH2n+1SO4

-)2Ca2+ 11 85 
19 (CnH2n+1SO4

-)2Mg2+ 11 115 
20 (CnH2n+1SO4

-)2Mn2+ 11 121 
21 (CnH2n+1SO4

-)2Cu2+ 11 113 
22 (CnH2n+1SO4

-)2Zn2+ 11 121 
 

 

8.4 Correlations of the Cloud Point 

Surfactants in aqueous solution show miscibility gab with a lower and/or an upper 

critical solution temperature. When heating (or cooling) a non-ionic aqueous solution, a 

separation into two phases occurs at a certain temperature as the surfactant “drop out of” the 

solution indicated by the cloud boundary as shown in Figure 8.2. This temperature is called 

the cloud point, as this mixture becomes cloudy when the separation process starts. The cloud 

point is also sometimes called a lower (or upper) consolute temperature (point).  
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Figure 8.2 Schematic diagram of cloud points (upper or lower critical solution temperature) 
for surfactant solutions 
 

The phase behaviour (cloud boundary) of surfactant solutions has been widely 

investigated. Chernik (2000) reviewed the phase studies of surfactant + water systems for 

typically used non-ionic and ionic surfactants. Garcia-Lisbona et al. (1998) used a simplified 

version of the statistical associating fluid theory (SAFT) to examine the liquid-liquid 

immiscibility of aqueous alkyl polyoxyethylene surfactant solutions. Rudolph et al. (2000) 

investigated the phase behaviour of the water + alkyl polyoxyethylene system. Based on 

Rudolph’s measurements at pressures up to 100MPa and over a temperature range 315 – 355 

K, the Peng-Robinson equation of state with the Wong-Sandler mixing rules and the 

UNIQUAC model were used to model the system. Lai et al. (1999) used UNIQUAC model 

to correlate the liquid-liquid equilibrium data for three binary systems (water + alcohol 

ethoxylates), ranging from their lower consolute solution temperature to 70ºC at atmospheric 

pressure. Huibers et al. (1997b) developed a quantitative structure-property relationship 

(QSPR) to estimate the cloud point of pure nonionic surfactant of alkyl ethoxylates. Below, 

some correlations are presented. 
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(1) Correlation by Gu and Sjöblom (1992) 

Gu and Sjöblom (1992) developed a linear relationship between the cloud point (CP) 

and the logarithm of the ethylene oxide number for nonionic surfactants:  

CBnnA CEO )log(CP         (8.7) 

where CP is the cloud point with unit in K, nEO is the ethylene oxide unit for alkyl 

ethoxylates, alkylpenyl ethoxylates and methyl capped alkyl ethoxylate esters (nEO=5-8) and 

nC is the alkyl carbon number for linear alkyl ethoxylates (nC=6-16). In the equation, A, B and 

C are empirical constants depending on the surfactants as shown in Table 8.4. 

 

Table 8.4 Constants A, B, C for equation (8.7)* 

No Type of surfactant A B C 

1 CnH2n+1(OC2H4)mOH 220 5.5 55 

2 CnH2n+1C6H4(OC2H4)mOH 278 5.5 171 

3 CnH2n+1COO(C2H4O)mCH3, n=9, 11 152 0.0 87 

* subscript m: ethylene oxide unit nEO, subscript n: alkyl carbon number nC 

 

 

(2) Correlation of Huibers et al. (1997b)  

Huibers et al. (1997b) re-calculated the empirical relationship of equation (8.7) (Gu 

and Sjöblom, 1992) with a larger data set and obtained a new set of coefficients for the linear 

alkyl ethoxylates: 

7.4078.5log1.87CP CEO nn        (8.8) 

Based on the correlation, it is found that the carbon number (nc) is an inadequate descriptor 

for modelling the cloud point except for linear alkyl ethoxylates. Huibers et al. (1997b), thus 

further developed a correlation using several topological descriptors from connectivity or 

topology of molecules to get better regression results for the cloud point. The correlations of 

topological method can be found in the work of Huibers et al. (1997b).  
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8.5 Correlations of the Detergency  

The detergency is described as (Zimoch et al., 2000): 

%
CA

CY
D           (8.9) 

where D is the detergency, Y and C are the average whiteness degree of the investigated test 

fabric after and before washing, respectively, and A is the average whiteness of the 

investigated fabric, not soiled.  

Detergency is a complex physicochemical process, which occurs at the interface 

between fabrics contaminated with soil and surfactant aqueous solutions. Many parameters 

affect the detergency during a washing process. The efficiency of washing depends on the 

properties of washed fabrics, type and composition of soil, composition of washing bath and 

washing conditions. The wetting of the hydrophilic fabrics and emulsifications of soil 

deposited on the fabrics play a crucial role in the effectiveness of washing.  

In practice, the washing ability is measured using the standard, tedious and time-

consuming experiments in which swatches of standard soiled fabrics are washed in specially 

designed washing device. Carroll (1993) investigated the physical characteristics of 

detergency. Miller et al. (1993) studied the solubilization mechanism of detergency. But, 

their investigations and theories cannot be generalized for complex washing system. 

 Correlation methods are often used to shorten the period of time to determine the 

optimal formulations of washing agents. Zimoch et al. (2000) and Lindgren et al. (1994) 

modelled the detergency with physical properties of surfactants. Some of their results are 

presented here. 

 

(1) Correlations of Zimoch et al. (2000) 

Zimoch et al. investigated the relations of detergency with surface tension and HLB 

using three standard test swatches: Krefeld 10C (cotton fabric), Krefeld 20C (65% polyester 

and 35% cotton mixed cloth) and Krefeld 30C (polyester) for alcohol ethoxylate surfactants. 

Correlation results are presented as follows: 

Krefeld 10C: 
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TDPDPD CMC 0176.00501.055.5ln72.1ln 2     (8.10) 

Krefeld 20C: 

TDPDPCPD CMC 0186.0135.01087.776.10352.0ln 23   (8.11) 

Krefeld 30C: 

THLBDPD 0204.0554.0144.0ln       (8.12) 

where D is the detergency, DP is the distribution of the polyoxyethylene chain in the 

products, CP is the cloud point, CMC is the surface tension at the critical micelle 

concentration (CMC), HLB is the hydrophilic lipophilic balance, T is the temperature (°C). 

CP and CMC were measured for the mixed alcohol ethoxylate surfactants. 

The DP is calculated as 

n

i

EOi nw
n

DP
1

2 100
1

        (8.13) 

where n is the number of surfactants in mixture, wi is the weight per cent of surfactant i, nEO 

is the oxyethylene unit.  

 These correlations are in agreement with the washing theory. The positive 

coefficients for temperature in equations (8.10)-(8.12) reflect the positive effect of 

temperature on detergency of ethoxylates, i.e. increasing washing temperature results in 

better washing effect (larger detergency (D) value in equations (8.10)-(8.13)). The negative 

coefficients with the surface tension related to the positive effect of surfactant surface activity 

on detergency. The presence of two terms containing DP (or HLB) with positive and 

negative coefficients reflects the existence of maximum detergency.  

 

 

8.6 New Developed Correlations 

In this section some new developed correlations are presented. These new 

correlations focused on general and environmental properties of the priority surfactant 

families in the guidelines of the Danish environmental research programme (mentioned in 

Chapter 1).  
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8.6.1 Correlation of HLB with CMC 

(1) Correlations for Polyoxyethylene Sodium Alkyl Sulfates 

The polyoxyethylene sodium alkyl sulfates (CnH2n+1(OC2H4)mSO4
-Na+) are nontoxic, 

biodegradeable, and industrial useful surfactants. However, no correlation between HLB and 

CMC could be found in the literature. Such a correlation was developed in our work using 

the experimental data presented in Table 8.5. An excellent linear relationship is obtained as 

shown in equation (8.14) and figure 8.3. 

HLB 666072628CMClog ..- , r2=0.999      (8.14) 

where r2 is the correlation coefficient. 
 
Table 8.5 HLB and CMC data (Lin et al.,1976) 
 CnH2n+1(OC2H4)mSO4

-Na+ CMC, 25ºC HLB 
No. n m Molality  
1 12 0 8.10E-03 40 
2 12 1 4.20E-03 39.57 
3 12 2 3.10E-03 39.38 
4 12 3 2.80E-03 39.24 
5 12 5 1.90E-03 39.05 
6 14 0 2.10E-03 39.05 
7 16 0 4.00E-04 38.1 
8 16 1 2.20E-04 37.62 
9 16 2 1.40E-04 37.34 
10 16 3 1.00E-04 37.15 
11 16 4 1.00E-04 37.15 
12 18 0 1.10E-04 37.15 
13 18 1 1.10E-04 37.15 
14 18 2 7.00E-05 36.91 
15 18 3 5.00E-05 36.63 
16 18 4 4.00E-05 36.53 
* HLB and CMC data are from Lin et al. (1976) 
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Figure 8.3 CMC of the polyoxyethylene sodium alkyl sulfates as a function of HLB   
  

 

8.6.2 Correlation of CMC with the Krafft Point 

In the correlations of Gu et al. (1992), i.e. equations (8.5)-(8.6), the KP is correlated 

with the hydrocarbon groups in the alkyl chain and the number of ethylene oxide unit. 

However, the KP can also be correlated to CMC. Taking advantage of the correlation results 

of Gu et al. (1992), the Krafft point is correlated to CMC by  

icc kAkBk CMClog)/(KP ,  r2=0.988     (8.15) 

where kc and ki are given in Table 8.3., CMC is the critical micelle concentration in molality 

scale (25ºC), r2 is the average correlation coefficient of these correlations, and the constants 

A and B are given in Table 8.6. The experimental data of Krafft point and CMC from 

Brandrup et al. (1975) and van Os et al. (1993) were used. The results for two surfactant 

families are given in Figure 8.4.  
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Figure 8.4 Relationship between CMC and Krafft points (equation 8.15). White and black 
squares: experimental data of sodium alkyl sulfonates and sodium alkyl sulfates, respectively. 
 

Table 8.6 Constants A, B of ionic surfactants 
No Surfactant A B 

1 CnH2n-1OO-Na+, n=12-18 1.96 0.296 
2 CnH2n-1OO-K+, , n=12-18 1.96 0.296 
3 CnH2n+1SO4

-Na+, n=10-18 1.43 0.290 
4 CnH2n+1SO3

-Na+ n=10-18 1.53 0.290 
5 CnH2n+1CHCH3C6H4SO3

-Na+, n=10-16 -0.456 0.215 
6 CnH2n+1CH(SO3

-Na+)CH2OH 2.529 0.364 
7 CnH2n+1CH(SO3

-Na+)COONa 1.514 0.240 
8 CnH2n+1OOC(CH2)2SO3

-Na+ 1.108 0.30 
 

 

8.6.3 Correlation of Aggregation Number with CMC 

In surfactant solutions, the micelle formation process is a gradual self-association of 

surfactant molecules. Around the critical micelle concentration, the amount of the associated 

surfactant group (aggregates) in solution is so high that the properties of the solution are 

rapidly changed. Around the CMC, the average number (aggregation number) of surfactant 

molecules in each aggregate can be measured by light scattering method. After CMC, the 

micelles (aggregates) continue to grow with increasing concentration of the surfactant. 

Finally, phase separation occurs. Grieser and Drummond (1988) have collected experimental 
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aggregation number data. In our study, empirical relationships between aggregation number 

and CMC are regressed for several surfactant families, as shown in Table 8.7 using the data 

from van Os et al. (1993). The correlation results are also given in figures 8.5 and 8.6. In 

figure 8.5, the regression line is extended to low CMC values reported by van Os et al. (1993) 

to observe the extrapolated aggregation number. But no aggregation number data have been 

reported for the low CMC values.  

 

Table 8.7 Correlations for aggregation number (ng) vs. CMC (in molality, 25ºC) 

No Surfactant Correlation r
2 

1 CnH2n+1SO4Na ng=8.333 21.92logCMC, n=8 18 0.986 

2 C12H25(OCH2CH2)mOH logng=  3.2604 – 1.24597logCMC, m=4 12 0.96 

3 C16H33(OCH2CH2)mOH logng=  9.25699 – 2.05724logCMC, m=7 21 0.975 

4 C9H19C6H4(OCH2CH2)mOH logng=  4.160 – 1.553logCMC, m=10 50 0.98 

* r2 is the correlation coefficient 
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Figure 8.5 Correlation results for CnH2n+1SO4Na (CnOSO3Na). Points: experimental data 
from van Os et al. (1993) at 25°C. Line: regression result. 
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Figure 8.6 Correlation results for C12H25(OCH2CH2)mOH (C12En), C16H33(OCH2CH2)mOH 
(C16En), C9H19C6H4(OCH2CH2)mOH (C9ØEOn). Points: experimental data from van Os et 
al. (1993) at 25°C. Lines: regression results. 
 

 

8.6.4 Correlation of Kow with HLB 

The relationship of Kow and HLB is investigated in this section. Davies et al. (1963) 

proposed a linear correlation for HLB and partition coefficient, i.e. equation (8.4). Birdi 

(1999) suggested that this partition coefficient could be replaced by the octanol-water 

partition coefficient (Kow). In chapter 4, the Kow has been investigated by UNIFAC and 

commercial software. Because HLB can be easily obtained or calculated for surfactants, a 

correlation for HLB and Kow is very helpful for practical applications even if Kow cannot be 

easily measured for surfactants.  

Both HLB and Kow are parameters to describe the hydrophobic and hydrophilic 

properties of a chemical. HLB is an approximated parameter and often used for surfactants, 

and Kow is a strict thermodynamic parameter. The HLB value is a summation of the 

contributions from the hydrophobic and the hydrophilic groups. As can be seen from Table 

8.1, hydrophilic groups have a positive contribution to HLB, and hydrophobic groups give a 

negative contribution. The chemicals with longer hydrophilic chain will have larger HLB. 

Oppositely, the longer hydrophilic group chain a chemical has, the lower Kow value a 

chemical will have.     
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All HLB values for alcohol ethoxylates (R(CH2CH2O)nOH, CmEn) are directly 

calculated by group contribution method using equation (8.3). Kow values are taken from the 

prediction results in Chapter 4. Using the HLB and the predicted Kow values from ClogP 

software and UNIFAC VLE 1 (see Appendix A) for alcohol ethoxylates, linear relations are 

developed, as shown in Table 8.8. Figures 8.7 and 8.8 show the comparisons of model 

calculations and predicted Kow from ClogP and UNIFAC VLE 1. As can be seen from 

figures 8.7-8.8, equations A, B, C and D are in good agreement with predicted Kow values 

from ClogP and UNIFAC VLE 1. 

 

Table 8.8 Correlations between logKow and HLB for alcohol ethyoxylates * 
No Source of logKow values Correlation equation r

2** 
A ClogP software HLB1940.061999.005751.3log CnKow  0.999 

B ClogP software HLB1130.143264.05624.8log EOnKow  0.998 

C UNIFAC VLE 1 HLB11858.108492.005947.9log CnKow  0.999 

D UNIFAC VLE 1 HLB94101.005685.046141.7log EOnKow  0.997 

* nC: number of alkyl group (CH2), nC=4-16, nEO: the number of oxyethylene group 
(OCH2CH2), nEO=1-30  
** r2 is the correlation coefficient 
 

The correlations of Table 8.8 show that the effect of equation D is in agreement with 

the above analysis, i.e. increasing hydrophilic chain (nEO number in equation D) will give 

larger HLB but smaller Kow. However, the coefficients for HLB in equation B indicates 

different effects, i.e. increasing nEO number in equation does not give smaller Kow. In 

Chapter 4, figures 4.3-4.4, 4.8-4.10 show that ClogP and UNIFAC VLE 1 have opposite 

trends with increasing hydrophilic group number. The coefficients of nEO in equations B and 

D have opposite signs and reflect the different trends. It further demonstrates that UNIFAC 

VLE 1 is a good method to predict the Kow for surfactants, as discussed in Chapter 4. 
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Figure 8.7 Scatter plot of the equation A and B (model) vs. ClogP for logKow values of 
alcohol ethoxylates 
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Figure 8.8 Scatter plot of the equation C and D (model) vs. UNIFAC VLE 1 for logKow 
values of alcohol ethoxylates 
 

Table 8.9 gives logKow calculation results for alcohol ethoxylates using the equations 

in Table 8.8 and compares with few experimental Kow data. As can be seen, the equations C 

and D produce very stable Kow values and are in good agreement with UNIFAC VLE 1. 

Equations A and B match well ClogP values except for C3E1.  
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 Based on these correlations, the logKow value can be easily calculated from HLB and 

one structural parameter nC or nEO. These correlations provide the basis to set up correlation 

for Kow and environmental properties which is given in the next section. 

 
Table 8.9 logKow calculation results for alcohol ethoxylates using equations in Table 8.8  
Compound Exp.* ClogP Eq. A Eq. B VLE1* Eq. C Eq. D 
C1E1 -0.77 -0.75 -0.74 -0.75 -0.83 -0.82 -0.83 
C2E1 -0.28 -0.22 -0.21 -0.22 -0.38 -0.37 -0.39 
C2E2 -0.54 -0.15 -0.15 -0.16 -0.75 -0.74 -0.75 
C3E1 0.05 0.09 0.32 0.31 0.07 0.07 0.06 
C4E1 0.8 0.84 0.84 0.84 0.51 0.52 0.51 
C4E2 0.56 0.91 0.91 0.90 0.15 0.15 0.14 
C6E1 1.86 1.90 1.90 1.89 1.41 1.41 1.40 
C6E2 1.7 1.96 1.96 1.96 1.04 1.04 1.03 
Mean Dev.%  33 91 87 36 36 35 
*Exp.: experimental data from Sangster (2001), VLE1: original UNIFAC VLE 1 (Hansen et 
al., 1991). 
 

In Table 8.9,  

%
owlog

owlogowlog1
Dev.%Mean 

1
Exp

CalExp
n

K

KK

n
, n is the total number of data. 

 

8.6.5 Correlation of Kow with Environmental Properties 

As presented in Table 2.6 (Chapter 2), Denmark consumes about 20,000 tons 

surfactants as cleaning products in 1998; Europe markets need 1.7 million tons surfactants 

annually. All these consumed surfactants will finally enter our nature. Therefore, the 

environmental effects of surfactants have been heavily debated in public. The Danish 

Environmental Protection Agency (EPA) has systematically investigated and published 

reports about the environmental effects of surfactants. Modelling work for the environmental 

effects of surfactants will help EPA to evaluate the newly released surfactants. In our work, 

the correlations of Kow and environmental effects are developed. 

 

 

 



Chapter 8 Correlations for Important Properties of Surfactant Solutions                             161 

 

(1) Correlation of Kow with Bio-concentration Factor (BCF) 

The bio-concentration factor (BCF) is a description of bioaccumulation of chemical in 

aquatic organisms, normally fish, and calculated as:   

in waterion concentrat measuredmean 

fishin ion concentrat measuredmean 
BCF  

BCF shows the accumulation of chemicals in aquatic organisms, and indicates the 

amount of chemical concentrated in organisms during 54-72 hours. For example, BCF is 799 

for C14E7 at 26 C (Madsen et al., 2001). It means the concentration of C14E7 in aquatic 

organisms is around 800 times higher than in water.  

For alcohol ethoxylates, a relation of BCF and Kow is obtained as: 

2logKow0.01912Kow0.38957log0.97209BCFlog ,  r2=0.8  (8.16) 

where r
2 is the correlation coefficient. The correlation results of equation (8.16) are also 

given in Table 8.10 and figure 8.9. In Table 8.10, logKow values are calculated by equation 

D in Table 8.8. Using equations A, B and C in Table 8.8 can obtain similar results. But 

equations C and D are reliable for alcohol ethyoxylates based on the analysis in section 8.6.4.  

As can be seen, correlation equation (8.16) is in good agreement with the 

experimental BCF values and gives correct BCF trend, i.e. the BCF value in fish will 

decrease with increasing hydrophilic group (OCH2CH2) number of alcohol ethoxylates. 

 

Table 8.10 Experimental and model calculation results for whole body BCF of alcohol 
ethyoxylates in fish. Experimental BCF values are from Madsen et al., (2001) 
Surfactant/species logBCF, exp. logBCF, cal. logKow 
C12E4, Carp (Cyrinus carpio) 2.49 2.30 2.98 
C12E8, Carp 2.35 1.60 1.51 
C12E16, Carp 0.63 0.45 -1.441 
C13E4, Fathead minnow 2.37 2.53 3.43 
C13E8, Fathead minnow 1.62 1.81 1.96 
C14E4, Fathead minnow 2.37 2.77 3.877 
C14E7, Bluegill subfish 2.90 2.20 2.77 
C14E8, Fathead minnow 1.98 2.02 2.402 
C14E11, Fathead minnow 1.20 1.51 1.296 
C14E14, Fathead minnow 0.70 1.05 0.19 
C16E8, Fathead minnow 2.59 2.46 3.296 
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Figure 8.9 Equation (8.16) calculation results for whole body BCF of alcohol ethoxylates in 
fish using the logKow as correlation parameter. Experimental BCF values are from Madsen 
et al. (2001).  
 

 

(2) Correlation of Kow with Toxicity 

Toxicity is a very important property and often used to establish regulations in 

chemical management. Using Kow to correlate and predict toxicity has a long history 

(Schultz, 2003). Kow is one of the standard parameters for EPA to evaluate the toxicity of 

chemicals. In our work, a new correlation model for toxicity and Kow of alcohol ethoxylates 

is developed.   

Toxicity to algae, invertebrates, fish and rat data are taken from the collection of 

Madsen et al. (2001) for alcohol ethoxylates which includes CiEj, i=9~18, j=1~30. Kow data 

are calculated by UNIFAC VLE 1 (see Appendix A) and compared with correlation equation 

D in Table 8.8. The comparison between UNIFAC VLE 1 and equation D is given in figure 

8.10. Figure 8.10 shows the simple equation D can be used to replace UNIFAC VLE 1 in the 

Kow calculation for alcohol ethoxylates. Based on the toxicity and Kow data, linear 

correlations are obtained and given in Table 8.11 and figures 8.11-8.14. 
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Figure 8.10 Scatter plot of logKow values from the equation D in Table 8.8 and UNIFAC 
VLE 1 for alcohol ethoxylates used in toxicity correlations. 
 

Table 8.11 Correlations of Kow and toxicity (EC50: mg/l, LD50: g/kg) 
Species Correlation equation Figures r

2 
Algae ow0.4507logK1.13599EC50/1log  8.11 0.67 

Invertebrates Kow0.18504log.719050EC50/1log  8.12 0.52 

Fish ow0.1776logK.555710EC50/1log  8.13 0.76 

Rat Kow0.18631log.043560LD50log  8.14 0.88 

 

In the equations of Table 8.11, EC50 is the concentration of a chemical causing a 

defined effect to 50% of a group of test organisms (e.g. immobilization or growth inhibition), 

LD50 is the dosage causing death to 50% of the exposed animals after a single administration. 

 As can be seen in figures 8.11-8.14, experimental toxicity data are rather scattered 

with plot against Kow. However, Kow does capture qualitatively the trend of the 

experimental toxicity data. The scattered experimental data indicate this toxicity cannot be 

correlated alone with Kow. 
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Figure 8.11 Correlation results of Kow and toxicity (EC50) of alcohol ethoxylates to algae. 
Experimental EC50 data are from Madsen et al. (2001) 
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Figure 8.12 Correlation results of Kow and toxicity EC50 of alcohol ethoxylates to 
invertebrates. Experimental EC50 data are from Madsen et al. (2001) 
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Figure 8.13 Correlation results of Kow and toxicity EC50 of alcohol ethoxylates to fish. 
Experimental EC50 data are from Madsen et al. (2001).  
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Figure 8.14 Correlation results of Kow and toxicity LD50 of alcohol ethoxylates to rat. 
Experimental EC50 data are from Madsen et al. (2001). 
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8.7 Conclusions 

Correlation equations are obtained for the estimation of the HLB, the Krafft point, the 

cloud point, and the detergency of surfactants. Some new correlations for the aggregation 

number, the toxicity, the bio-accumulation factor and the HLB of specific surfactant families 

have been developed. 

Based on the correlations, many important properties for practical applications can be 

easily calculated using only the information of surfactant molecular structures. The 

calculation methods for these properties are summarized in figure 8.15. 

 

 
 
Figure 8.15 Map of calculation methods of thermodynamic and related properties. 
 

 

Thermodynamic Properties 

Kow 

CMC 

Related Properties 

HLB  Eqs. (8.2)-(8.4), (8.14), 
Eqs. in Table 8.2 & Table 8.8  

Toxicity  Eqs. in Table 8.11, Eq. 
(8.16)

Detergency  Eqs. (8.10)-(8.12) 

Cloud Point  Eqs. (8.7)-(8.8) 

Krafft Point  Eqs. (8.5)-(8.6), 
(8.15) 

Aggregation Number  Eq. (8.15), 
Eqs. in Table 8.7 

Molecular 
Structures 

UNIFAC model 

UNIFAC model 
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Chapter 9 Conclusions and Future Work 
 

9.1 Conclusions 

This thesis has addressed the modelling of surfactant solutions. The main conclusions 

are summarised here: 

(1) The thermodynamic framework of Chen et al. (1996, 2001) for non-ionic and ionic 

surfactant solutions is adopted. Based on this, the CMC of non-ionic and ionic surfactant 

solutions is investigated with the UNIFAC model.  

(2) The CMC of a specific family of non-ionic surfactant solutions (alcohol 

ethoxylates) is first correlated and then predicted with the UNIFAC model. A new UNIFAC 

functional group (OCH2CH2) is introduced and the necessary interaction parameters are 

obtained directly from the CMC data (correlation) or from vapour-liquid equilibrium data 

(prediction). The trends of CMC against both the hydrophobic and hydrophilic chain length 

are well represented.  

(3) The octanol-water partition coefficients of phthalates and non-ionic surfactant 

(alcohol ethoxylates) are predicted with different UNIFAC models and three commercial 

tools, known with the abbreviations ACD, ClogP and KowWin. UNIFAC VLE1 is the best 

among the methods investigated and very close to some of these commercial tools. 

(4) In order to describe the CMC of ionic surfactant solutions, an electrolyte UNIFAC 

model proposed by Achard et al. (1994 a, b) is used and modified to correlate the mean ionic 

activity coefficients of organic electrolyte solutions. The structural parameters of ions are 

directly calculated with the ionic radii of Marcus’s without using hydration number. 

(5) It has been found that the ratio of structural parameters (R and Q) for ions in the 

Achard’s method (and other) is Q/R>1 and does not follow the physically correct limitation 

Q/R 1 in the Flory-Huggins theory. The physical derivation of UNIQUAC/UNIFAC is not 

correct with the ratio Q/R>1. The effects of Q/R for electrolyte UNIQUAC/UNIFAC have 

been studied through comparing combinatorial and residual terms of UNIQUAC model. A 

new set of normalization factors is derived to yield a ratio Q/R 1 for ions.  
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(6) Using the new structural parameters of ions, the mean activity coefficients of 

electrolyte solutions and organic electrolyte solutions are successfully correlated with the 

modified Achard model. Similar behaviour as the electrolyte NRTL model is observed. For 

investigated systems, the model has better correlation results than that of the extended 

UNIQUAC. For organic electrolyte solutions, the model simultaneously captures the mean 

activity coefficients of five sodium carboxylate systems with four interaction parameters and 

is in good agreement with experimental values. 

(7) The modified Achard model was used for calculating the CMC of sodium alkyl 

sulphates, sodium alkyl sulfonates and potassium carboxylates surfactant solutions. The 

model can successfully capture the effects of different alkyl chain lengths and temperatures. 

However, the CMC prediction results for sodium carboxylates are poor.  

(8) Semi-empirical relationships for the hydrophilic-lipophilc balance (HLB), the Krafft 

point, the cloud point and the detergency are presented.  

(9) New correlations for the aggregation number, the HLB, the toxicity and bio-

concentration factor of some specific surfactants are developed.  

 

 

9.2 Future Work 

As described in Chapter 3, thermodynamic understanding of surfactant solutions is 

rather limited. The work described so far is an effort toward such understanding. Based on 

the work presented in previous chapters, it seems appropriate to suggest some directions for 

future efforts as following.  

As shown in chapters 5 and 7, CMC of alcohol ethoxylates, sodium alkyl sulphates, 

sodium alkyl sulfonates and sodium (potassium) carboxylates can be correlated and predicted 

by UNIFAC or modified Achard model. Thus, it is very interesting to extend the UNIFAC 

and modified Achard model developed in this work to different single surfactant solutions, 

especially for sodium alky ether sulphates and sodium alky benzene sulphates. In practical 

applications, CMC of mixed surfactant solutions are very important. The correlation results 
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for different single surfactant solutions will help to establish a basis to extend these models to 

mixed surfactant solutions. 

As described in Chapter 6, the structural parameters (Q, R) of ions used by many 

UNIQUAC or UNIFAC based electrolyte models do not follow Flory-Huggins theory, which 

results in UNIQUAC and UNIFAC having no physical meanings. Based on this point, a new 

method was proposed to calculate Q and R parameters of ions from ionic radii. The new Q 

and R calculation method can be further investigated in several directions: (1) optimization of 

standard segment for structural parameter estimation; (2) investigation of the effects of 

different Q and R ratios in mean activity coefficient correlation of electrolyte solutions. From 

these investigations, a new UNIQUAC or UNIFAC-based electrolyte model could be 

developed for electrolytes, especially for organic electrolyte solutions or ionic liquids. 

Based on the UNIFAC and modified Achard model for non-ionic and ionic surfactant 

solutions, CMC of mixed surfactants could be investigated. In order to carry out this work, 

mixing rule for mixed surfactant solutions should be first selected or developed based on 

existing methods. Meanwhile, an electrolyte model for mixed solvents and multiple ions 

should be found or developed.  

In Chapter 7, environmental properties of surfactant, such as BCF, EC50 and LD50, 

were correlated with Kow for alcohol ethoxylates. This correlation method can be extended 

to other surfactant families, such as sodium alkyl sulphates, etc. As a necessary step, the 

octanol-water partition coefficient of ionic surfactants should be first investigated using 

modified Achard method proposed in this work. 
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Appendix A The UNIFAC Method 
 

A.1 Basic Equations 

The activity coefficient of component i, γi, is expressed in terms of the UNIFAC 

model as follows: 

R
i

C
ii γγγ lnlnln +=   

where C
iγln and R

iγln  are, respectively, the combinatorial part and the residual part of the 

model.  

The following formula of the UNIFAC model is useful for computer implementation 

(Fredenslund, et al. 1980). 

Combinatorial Part: 

+−−+−=
i

i

i

i
iiii QI

RI

QI

RIz
qRIRI ln1

2
ln1ln Cγ      (A1) 

Residual Part:  

( ) −−−=
k k
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k
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S
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QIq

ηη
θγ lnln1ln k

R      (A2) 

where the sum over k are over all main groups in the system. 

=

j
jj

i
i rx

r
RI                    =

j
jj

i
i qx

q
QI             (A3) 

where the sums over j are over all components in system, ri and qi are the molecular volumes 

and surface areas calculated from the group values (Rk and Qk) provided by Bondi (1968) 

using equation (A4). 

=
k

k
i

ki Rr )(υ ,               =
k

k
i

ki Qq )(υ       (A4) 

where )(i
kυ is the number of groups of type k in molecule i, the sums over k are over all main 

groups in the system. 

)(i
kkki QG υ= , =

i
ikik xGθ         (A5) 
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=
m

mkmiki GS τ , =
i

ikik xSη        (A6) 

−=
T

amk
mk expτ          (A7) 

where the sum m is over all main groups in the system. In equation (A6), the unit of group 

interaction parameter amk is in K. The coordination number z is set equal to 10. 

    

A.2 Existing UNIFAC Models 

Since the UNIFAC method has been introduced (Fredenslund et al., 1977), several 

different versions (group interaction parameter tables and changing in the combinatorial and 

residual part) have been proposed. Among these, the following five versions are used in this 

work: the original UNIFAC VLE 1 (Hansen et al., 1991), UNIFAC LLE 1 (Magnussen et al., 

1981), UNIFAC VLE 2 (Hansen et al., 1992), Modified UNIFAC VLE 3 (Larsen et al., 1987) 

and water-UNIFAC (Chen et al., 1993). They are summarised in Table A.1. 

 

Table A.1 The five UNIFAC models considered in this work 
Model Volume fraction RIi 

calculation in 
combinatorial part 

Temperature dependency 
of the interaction 
parameters  

Data used in 
parameter 
estimation 

Refs. 

Original UNIFAC 
VLE 1 =

j
jj

i
i rx

r
RI  

a ≠ f(T) VLE a 

UNIFAC LLE 1 
=

j
jj

i
i rx

r
RI  

a ≠ f(T) LLE b 

UNIFAC VLE 2 
=

j
jj

i
i rx

r
RI  

)( 02,1, TTaaa jijiji −+=  VLE c 

Modified 
UNIFAC VLE 3 =

j
jj

i
i rx

r
RI

3/2

3/2

 

)ln(    

)(

0
0

3,

02,1,

TT
T

T
Ta

TTaaa

ji

jijiji

−+

+−+=

 

VLE & HE d 

Water- UNIFAC 
=

j
jj

i
i rx

r
RI  

a ≠ f(T) VLE & γ∞,aq e 
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In Table A.1, VLE indicates Vapor-Liquid Equilibrium, LLE denotes Liquid-Liquid 

Equilibrium, HE is the Excess enthalpy, and γ∞,aq is the activity coefficient at infinite dilute 

for aqueous solutions. 

  

References for Table A. 1 
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Chem. Res., 30, 2352 (1991). 
 
b). Magnussen, T., P. Rasmussen, and A. Fredenslund, “UNIFAC Parameters Table for 
Prediction of Liquid – Liquid Equilibria,” Ind. Eng. Chem. Process Des. Dev., 20, 133 (1981). 
 
c). Hansen, H. K., B. Coto, and B. Kuhlmann, UNIFAC with Linearly Temperature-
dependent Group Interaction Parameters. SEP 9212 (Internal Report); Department of 
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Res., 26, 2274 (1987). 
 
e). Chen, F., J. H. Andersen, and H. Tyle, “New Developments of the UNIFAC Model for 
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Appendix B Micelle Formation Equation in Ionic 
Surfactant Solutions 
 

In this appendix, some basic equations in electrolyte solutions are given by following 

the work of Zerres and Prausnitz (1994). From these basic equations, a further explanation is 

given for the thermodynamic treatment of micelle formation in ionic surfactant solutions.  

In solutions with strong electrolytes, we can assume complete dissociation of an 

electrolyte E into cations C and anions A: 

ACE AC          (B.1) 

where C and A are the stoichiometric coefficients and 

AC           (B.2) 

For any species k, the mole fraction xk, based on the assumption of complete 

dissociation, is related to the mole numbers n by: 

l

l

k
k

n

n
x           (B.3) 

The sum includes all ionic and molecular species. 

The chemical potential E of the electrolyte is related to those of the ions by: 

AACCE          (B.4) 

Based on the complete-dissociation mole fractions, the activity coefficient of cations ( C) and 

anions ( A) are introduced as: 

AAAACCCCE xRTxRT lnln 00      (B.5) 

where superscript 0 denotes the standard (or reference) state.  

Regardless of the solvent, the standard state for the cation is a hypothetical ideal 

dilute solution in water when xC=1, at system temperature and pressure. Similarly, the 

standard state for the anion is a hypothetical ideal dilute solution when xA=1. In the 

hypothetical ideal dilute solution, C= A=1 for all x. For an ionic species, it is a pseudo-pure 

component.  
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In the equations above, cations and anions appear as separate species. However, only 

the chemical potential of the electrically neutral salt is experimentally accessible. This 

follows from the condition of electroneutrality for every phase.  

If we use the mean ionic activity coefficient, denoted by subscript ±, for the chemical 

potential of salt, we write: 

AACCE         (B.6) 

xRT ln0         (B.7) 

where ± and x± are defined by: 

/1
AC

AC          (B.8) 

/1
AC

AC xxx          (B.9) 

For the chemical potential in the standard state 

000
AACC          (B.10) 

For liquid-liquid equilibrium, the condition for the phase equilibrium in aqueous 

single electrolyte system is given by: 

'''
ww           (B.11) 

'''
EE           (B.12) 

where superscript ´ and ´´ denote the two liquid phases; subscript w and E denote the water 

and electrolyte. 

With the definition of the mean ionic properties (equations (B.6)-(B.10)), equation 

(B.12) can be replaced by: 

'''           (B.13) 

Using equation (B.7), the equations for liquid-liquid phase equilibrium are: 

''0'0 lnln wwwwww xRTxRT       (B.14) 

''0'0 lnln xRTxRT       (B.15) 

In equation (B.14), the chemical potential of water in the standard state is at pure liquid 

water at system temperature and pressure. 
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Using the defined standard-state chemical potentials, the equations of liquid-liquid 

equilibrium simplify to: 

'''

wwww xx          (B.16) 

'''
xx          (B.17) 

For convenience, we define xI as the sum of the mole fractions of cation and anion as: 

ACI xxx           (B.18) 

Based on equation (B.9) and (B.18), we can obtain: 

/IAC xx AC          (B.19) 

Using equation (B.19), equation (B.17) can be re-written as: 

'''

II xx          (B.20) 

Using the equilibrium relation for the micelle solution system, the equilibrium 

between free monomeric surfactant in the aqueous solution and the aggregated surfactants in 

the micelle particles can be given as: 

micelleIaqI xx          (B.21) 

where the subscripts “aq” and “micelle” represent the aqueous solution and the micelle 

particles, respectively. In the micelle particles, the ionic headgroups of the surfactant 

molecules, together with their counter ions, remain immersed in the aqueous solution at the 

micelle-aqueous solution interface.  

At and above the critical micelle concentration, we can assume that the micelle 

particles have only surfactant molecules. The mole fraction of surfactant molecules in the 

micelle is unity.  

 

 

 

 

 

 

 



178                             Appendix B Micelle Formation Equation in Ionic Surfactant Solutions 

 

 

 

 

 

 

 



Appendix C Evaluation of Pure Component Structural Parameters R and Q                     179 

Appendix C Van der Waals Parameters of Local 
Composition Models 
 

This appendix is largely reported by the work of Abrams and Prausnitz (1975). 

The structural parameters R and Q of UNIQUAC model are, respectively, the van der Waals 

volume and area of the molecule relative to those of a standard segment. 

ws

wk
k

V

V
R           (C.1) 

ws

wk
k

A

A
Q           (C.2) 

where Vwk and Awk are the van der Waals volume and area of the molecule given by Bondi 

(1968), Vws and Aws are the van der Waals volume and area of a standard segment. The choice 

of a standard segment is somewhat arbitrary. However, it is defined as a sphere such that for 

a linear poly-methylene molecule of infinite length, the identity  

1
2

RQR
Z

         (C.3) 

is satisfied because Q/R=1.0 for the standard segment (monomer). The coordination number 

Z is set equal to 10. The volume of the standard sphere in terms of its radius Rws is given by 

3 
3

4
wsws RV           (C.4) 

and the area by 

2 4 wsws RA           (C.5) 

The van der Waals volume and area of an n-mer of poly-methylene are n times the 

volume and area of a methylene group as given by Bondi; that is 

mole/cm10.23n 3
wkV         (C.6) 

mole/cm101.35n 29
wkA        (C.7) 

Substitution of equations (C.1), (C.2), and (C.4) to (C.7) into (C.3) yields: 

1
2

10
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ws

wk

ws

wk

V
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A

A

V

V
        (C.8) 
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154
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As n , 0
1

n
 and we obtain 

2

9

3 4

1035.1
5

3

4
23.10

4
ws

ws

R
R

        (C.12) 

ecm/molecul1081867.1 8
wsR  

or cm/mole1010.95106.0231081867.1 15238
wsR  

Substitution the Rws value into equations (C.4) and (C.5) yields a standard segment volume 

and area. 

mole/cm 17.1510023.610818.1
3

4 32338
wsV     (C.13) 

mole/cm10 50.210023.610818.14 292328
wsA    (C.14) 

Equations (C.1) and (C.2) then become 

17.15/wkk VR          (C.15) 

)105.2/( 9
wkk AQ          (C.16) 

Equations (C.15) and (C.16) are the ones typically used in UNIQUAC and UNIFAC models.  
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Appendix D Structural Parameters of Ions 
 
 
The structural parameters of ions are calculated from the ionic radii from Marcus (1997) 
using equations (6.56) and (6.57) of Chapter 6. 
 
 Table D 1. Structural parameters of ions 

Ion, k Ionic radii, Å Rk Qk

Li+ 0.69 0.3285 0.4761 
Na+ 1.02 1.0612 1.0404 
K+ 1.38 2.6281 1.9044 

Rb+ 1.49 3.3080 2.2201 
Cs+ 1.70 4.9130 2.8900 
Cu+ 0.96 0.8847 0.9216 
Ag+ 1.15 1.5209 1.3225 
Au+ 1.37 2.5714 1.8769 
Tl+ 1.50 3.3750 2.2500 

H3O
+ 1.30 2.1970 1.6900 

NH4
+ 1.48 3.2418 2.1904 

Be2+ 0.35 0.0429 0.1225 
Mg2+ 0.72 0.3732 0.5184 
Ca2+ 1.00 1.0000 1.0000 
Sr2+ 1.13 1.4429 1.2769 
Ba2+ 1.36 2.5155 1.8496 
Ra2+ 1.43 2.9242 2.0449 
V2+ 0.79 0.4930 0.6241 

Cr2+ 0.82 0.5514 0.6724 
Mn2+ 0.83 0.5718 0.6889 
Fe2+ 0.78 0.4746 0.6084 
Co2+ 0.75 0.4219 0.5625 
Ni2+ 0.69 0.3285 0.4761 
Cu2+ 0.73 0.3890 0.5329 
Zn2+ 0.75 0.4219 0.5625 
Pd2+ 0.86 0.6361 0.7396 
Ag2+ 0.89 0.7050 0.7921 
Cd2+ 0.95 0.8574 0.9025 
Sn2+ 0.93 0.8044 0.8649 

Sm2+ 1.19 1.6852 1.4161 
Eu2+ 1.17 1.6016 1.3689 
Yb2+ 1.05 1.1576 1.1025 
Pt2+ 0.80 0.5120 0.6400 

Hg2+ 1.02 1.0612 1.0404 
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       Table D 1. Continued  
Ion, k Ionic radii, Å Rk Qk

Pb2+ 1.18 1.6430 1.3924 
Al3+ 0.53 0.1489 0.2809 
Sc3+ 0.75 0.4219 0.5625 
Ti3+ 0.67 0.3008 0.4489 
V3+ 0.64 0.2621 0.4096 

Cr3+ 0.62 0.2383 0.3844 
Mn3+ 0.65 0.2746 0.4225 
Fe3+ 0.65 0.2746 0.4225 
Co3+ 0.61 0.2270 0.3721 
Ga3+ 0.62 0.2383 0.3844 
Y3+ 0.90 0.7290 0.8100 

Rh3+ 0.67 0.3008 0.4489 
In3+ 0.79 0.4930 0.6241 
Sb3+ 0.77 0.4565 0.5929 
La3+ 1.05 1.1576 1.1025 
Ce3+ 1.01 1.0303 1.0201 
Pr3+ 1.00 1.0000 1.0000 

Nd3+ 0.99 0.9703 0.9801 
Pm3+ 0.97 0.9127 0.9409 
Sm3+ 0.96 0.8847 0.9216 
Eu3+ 0.95 0.8574 0.9025 
Gd3+ 0.94 0.8306 0.8836 
Tb3+ 0.93 0.8044 0.8649 
Dy3+ 0.91 0.7536 0.8281 
Ho3+ 0.90 0.7290 0.8100 
Er3+ 0.89 0.7050 0.7921 

Tm3+ 0.88 0.6815 0.7744 
Yb3+ 0.87 0.6585 0.7569 
Lu3+ 0.86 0.6361 0.7396 
Au3+ 0.79 0.4930 0.6241 
Tl3+ 0.88 0.6815 0.7744 
Bi3+ 1.02 1.0612 1.0404 
Ac3+ 1.18 1.6430 1.3924 
U3+ 1.04 1.1249 1.0816 

Np3+ 1.02 1.0612 1.0404 
Pu3+ 1.01 1.0303 1.0201 

Am3+ 1.00 1.0000 1.0000 
Cm3+ 0.98 0.9412 0.9604 
Bk3+ 0.96 0.8847 0.9216 
Cf3+ 0.95 0.8574 0.9025 
Zr4+ 0.72 0.3732 0.5184 
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Table D 1. Continued 
Ion, k Ionic radii, Å Rk Qk

Sn4+ 0.69 0.3285 0.4761 
Ce4+ 0.80 0.5120 0.6400 
Hf4+ 0.71 0.3579 0.5041 
Th4+ 1.00 1.0000 1.0000 
Pa4+ 0.96 0.8847 0.9216 
U4+ 0.97 0.9127 0.9409 

Np4+ 0.95 0.8574 0.9025 
Pu4+ 0.93 0.8044 0.8649 

F- 1.33 2.3526 1.7689 
Cl- 1.81 5.9298 3.2761 
Br- 1.96 7.5296 3.8416 

I- 2.20 10.6480 4.8400 
At- 2.28 11.8524 5.1984 

OH- 1.33 2.3526 1.7689 
HS- 2.07 8.8698 4.2849 

HSe- 2.05 8.6152 4.2025 
O2

- 1.58 3.9443 2.4964 
ClO- 2.10 9.2610 4.4100 
BrO- 2.30 12.1670 5.2900 

IO- 2.50 15.6251 6.2500 
CN- 1.91 6.9679 3.6481 

NCO- 2.03 8.3655 4.1209 
SCN- 2.13 9.6636 4.5369 

SeCN- 2.25 11.3907 5.0625 
N3

- 1.95 7.4149 3.8025 
HF2

- 1.72 5.0885 2.9584 
HO2

- 1.80 5.8320 3.2400 
BO2

- 2.40 13.8240 5.7600 
AlO2

- 2.60 17.5761 6.7600 
ClO2

- 2.50 15.6251 6.2500 
NO2

- 1.92 7.0779 3.6864 
AsO2

- 2.90 24.3891 8.4100 
NO3

- 1.79 5.7354 3.2041 
ClO3

- 2.00 8.0000 4.0000 
BrO3

- 1.91 6.9679 3.6481 
IO3

- 1.81 5.9298 3.2761 
VO3

- 1.82 6.0286 3.3124 
ClO4

- 2.40 13.8240 5.7600 
BrO4

- 2.50 15.6251 6.2500 
IO4

- 2.49 15.4383 6.2001 
MnO4

- 2.40 13.8240 5.7600 
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Table D 1. Continued 
Ion, k Ionic radii, Å Rk Qk

TcO4
- 2.50 15.6251 6.2500 

ReO4
- 2.60 17.5761 6.7600 

BH4
- 1.93 7.1891 3.7249 

BF4
- 2.30 12.1670 5.2900 

B(OH)4
- 2.30 12.1670 5.2900 

Al(OH)4 
- 2.90 24.3891 8.4100 

HCO2
- 2.04 8.4897 4.1616 

HCO3
- 1.56 3.7964 2.4336 

HSO3
- 1.70 4.9130 2.8900 

HseO3
- 2.10 9.2610 4.4100 

HSO4
- 1.90 6.8590 3.6100 

HseO4
- 2.10 9.2610 4.4100 

H2PO4
- 2.00 8.0000 4.0000 

O2- 1.40 2.7440 1.9600 
S2- 1.84 6.2295 3.3856 

Se2- 1.98 7.7624 3.9204 
Te2- 2.21 10.7939 4.8841 
O2

2- 1.73 5.1777 2.9929 
S2

2- 2.80 21.9521 7.8400 
CO3

2- 1.78 5.6398 3.1684 
C2O4

2- 2.10 9.2610 4.4100 
SiO3

2- 2.14 9.8004 4.5796 
SO3

2- 2.00 8.0000 4.0000 
SeO3

2- 2.39 13.6520 5.7121 
TeO3

2- 2.50 15.6251 6.2500 
SO4

2- 2.30 12.1670 5.2900 
SeO4

2- 2.43 14.3490 5.9049 
TeO4

2- 2.60 17.5761 6.7600 
CrO4

2- 2.40 13.8240 5.7600 
MoO4

2- 2.54 16.3871 6.4516 
WO4

2- 2.70 19.6831 7.2900 
MnO4

2- 2.50 15.6251 6.2500 
S2O3

2- 2.50 15.6251 6.2500 
S2O4

2- 2.60 17.5761 6.7600 
S2O6

2- 2.80 21.9521 7.8400 
S4O6

2- 3.10 29.7911 9.6100 
S2O8

2- 2.90 24.3891 8.4100 
HPO4

2- 2.00 8.0000 4.0000 
SiF6

2- 2.59 17.3740 6.7081 
PO4

3- 2.38 13.4813 5.6644 
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List of Symbols 

 

a Activity 

a0 Head group area at the head-tail interface 

aij Energy parameter in UNIFAC 

A Average whiteness of the investigated fabric, not soiled 

Aws van der Waals surface area 

Aø Debye-Hückel parameter 

BCF Bio-concentration factor 

C Concentration; average whiteness degree, before washing 

Ci  Critical micelle concentration of pure surfactant i, in equation (3.6), (3.7) 

C* Critical micelle concentration of mixed micelle solution 

CCP Critical packing parameter 

CMC Critical micelle concentration 

0CMC  Critical micelle concentration of pure component 

CP Cloud point 

CP Constant-pressure heat capacity 

EC50 Concentration of a chemical causing a defined effect to 50% of a group of test 

organisms (e.g. immobilization or growth inhibition) 

D Detergency 

DP Distribution of the polyoxyethylene chain in a product 

ng Aggregation number 

*
micg  Free energy of micellization 

g
E Molar excess Gibbs energy 

G Gibbs energy 

G
E Molar excess Gibbs energy 

h Hydration number 

H Enthalpy 

HLB Hydrophilic-lipophilic balance 
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I Ionic strength 

k Chemical reaction equilibrium constant 

kB Boltzmann’s constant 

K Chemical reaction equilibrium constant 

Kow n-Octanol-water partition coefficient 

KP Krafft point 

lc Critical tail chain kength 

LD50 Dosage causing death to 50% of the exposed animals after a single 

administration 

m Molality 

M Cation 

n Carbon number; group number 

NRTL Nonrandom, two-liquid equation 

Nhk Hydration number of ions k 

P Pressure 

P A number depends on the shape of micelles 

PIT Phase inversion temperature 

0P  Vapour pressure of pure component 

Qk Surface area parameter in UNIQUAC 

'
kQ  Surface area parameter of hydrated species 

r Radius 

R Gas constant  

Rk Volume parameter in UNIQUAC 

'
kR  Volume parameter of hydrated species  

Rws Radius standard sphere  

T Absolute temperature 

S Entropy; Free surfactant molecules  

Sn Surfactant molecules in a micelle, having an aggregation number n 

SATF Statistical association fluid theory 
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sh Shape variable of surfactant solution 

uij Energy parameter in UNIQUAC  

UNIFAC Universal functional activity coefficient model 

UNIQUAC Universal quasi-chemical equation 

Vws van der Waals volume 

v Tail chain volume 

x  Liquid phase mole fraction  

X Anion 

y Vapour phase mole fraction  

Y Average whiteness degree, after washing 

w Weight fraction 

Z Ionic valence; coordination number 

 

Greek Symbols 
 

  System dependent (adjustable) parameter; mole fraction of surfactant in 

aqueous solution  

 Molecular interaction parameter; system parameter 

 Osmotic coefficient 

 Activity coefficient 

* Unsymmetrically normalized activity coefficient 

 Chemical potential 

0
1
M  Chemical potential of surfactant 1 in pure micelles 

M

1  Chemical potential of surfactant 1 in mixed micelle 

 Ionic charge 

 ‘Closet approach’ parameter in Pitzer-Debye-Hückel theory  

 Adjustable parameter 

 

Superscripts  
0 Standard state 
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cmc Critical micelle concentration 

H Hydrated standard state 

mon Monomer  

LR Long-range interaction 

MR  Middle range interaction 

o Octanol 

p Structure parameter of micelle 

PDH Pitzer-Debye-Hückel equation 

SR Short-range interaction 

w Water 

 Infinite dilution 

 

Subscripts 

aq Aqueous solution 

cmc Critical micelle concentration 

crit Critical micelle concentration 

g Aggregates 

i Component i 

liquid Liquid phase 

m Surfactant molecule inside micelle 

mic Micelle 

micelle Micelle phase 

mon Monomer 

s Free surfactant molecule 

T Total surfactant mixture 

t Overall concentration  

vapour Vapour phase  

w Water 

ws van der Waals 

 Infinite dilution 
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