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Synopsis

In this thesis we perform Brownian dynamics simulations of a full-chain
reptation model to gain insight in how various microscopic dynamics, of
importance for the flow of linear entangled polymer melts, affect each
other and the macroscopic rheological properties.

First, we consider linear viscoelasticity. A relaxation spectrum is found
for the test fluid, which is a concentrated solution of nearly monodis-
perse polystyrene in tricresyl phosphate, that serves as a model system
for polymer melts of entangled linear chains. The relaxation spectrum is
found from both small-amplitude oscillatory shear flow and from stress
relaxation following small-step shear strain flow. The spectrum exhibits
a plateau at moderate time constants, and a downturn at large time con-
stants, whereas the classical reptation picture exhibits the opposite trend.
Using the full-chain reptation model we study the qualitative impact on
the relaxation spectrum, of including chain-length fluctuations and con-
straint release in the theory. We find that chain-length fluctuations are
important to describe the plateau, and that incorporation of constraint re-
lease leads to the observed downturn. Constraint release is already known
to be important in nonlinear flows and for polydisperse systems, but is
clearly shown here to be necessary to describe the linear viscoelasticity of
monodisperse systems.

Next, predictions of the full-chain reptation model in transient and
steady shearing flows are studied. We discuss the effects of chain tumbling,
molecular chain stretching and constraint release and their influence on
the macroscopic stress as well as the extinction angle under various flow
conditions. The anticipated strong correlation between normal stress and
molecular stretching is confirmed, and it is found that chain tumbling
causes the undershoot in extinction angle during inception of shear. Fur-
thermore, we find that chain tumbling is itself suppressed by the presence
of molecular stretching. Also investigated is the monomer density along
the chain contour which reveals information about the local chain stretch-
ing and orientation. Here, it is found that the distribution of monomers
along the contour becomes non-uniform when the shear rate exceeds the
inverse Rouse relaxation time. In the final part of this chapter, we discuss
a possible violation of the stress-optic rule during start up of steady shear
flow at high shear rates.

We proceed to look at exponential shear. Here, the full-chain reptation
model is used to interpret data obtained from exponential shear flow of
the same entangled polystyrene solution as mentioned above. Guided by
the model, which contains well known dynamics, we are able to explain all
trends seen in the data, and a novel analysis of the data is suggested. This
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analysis demonstrates that exponential shearing flow is no more capable of
stretching polymer chains than is inception of steady shear at comparable
instantaneous shear rates. In fact, we show that all exponential shear flow
stresses are bounded quantitatively by stresses exhibited during inception
of steady shear.

In the last chapter of this work, a new full-chain, temporary network
model is proposed for nonlinear flows of linear, entangled polymeric li-
quids. The model is inspired by the full-chain reptation model and its
properties as observed in the previous chapters of the thesis. However,
the new model contains no tubes and uses a different smaller set of dy-
namic variables: the location of each entanglement, and the number of
Kuhn steps in chain strands between entanglements. In the language of
reptation, the model exhibits chain connectivity, chain-length fluctuations,
chain stretching, and tube dilation.

We describe a simulation algorithm in detail, and using this algorithm we
look at some predictions of the model, first in the linear viscoelastic regime
and then for start up of steady shear at both low and high shear rates.
Finally, we discuss options for future work and possible generalizations of
the proposed theory.



Dansk Resumé

I denne afhandling udfgres Brownian dynamics simuleringer af en fuld-
kaede reptation model. Formalet er at opna gget indsigt i, hvordan forskel-
lige dynamiske effekter, som er af betydning for linesere, sammenfiltrede
(“entangled”) polymer smelters flydning, pavirker hinanden samt de ma-
kroskopiske reologiske egenskaber.

Vi ser fgrst pa linezer viskoelasticitet. Et relaksationsspektrum findes
for test vaesken, der er en koncentreret oplgsning af nasten monodispers
polystyren i tricresyl fosfat og benyttes som et model system for polymer-
smelter bestaende af lineaere, ssmmenfiltrede kaeder. Relaksationsspektret
findes bade via lav-amplitude oscillerende forskydningsstrgmning og fra
spendingsrelaksation efterfglgende en lille trin forskydning. Spektret ud-
viser et plateau for moderate tidskonstanter og aftager for store tidskon-
stanter, hvorimod den klassiske reptation teori forudsiger den modsatte
tendens. Via fuld-kaede modellen studerer vi den kvalitative pavirkning
af relaksationsspektret ved inkludering af keaede-leengde fluktuationer og
“constraint release” i teorien. Herved findes det, at kaede-leengde fluk-
tuationer er vigtige for beskrivelsen af plateauet, og at hensyntagen til
“constraint release” fgrer til det observerede fald for store tidskonstanter.
Det er allerede kendt, at “constraint release” har betydning for ikke-lineger
strgmning og for polydisperse systemer, men her vises det, at denne effekt
ogsa er ngdvendig for at kunne beskrive monodisperse systemers linesere
viskoelasticitet.

Herefter studeres fuld-kaede reptation modellens forudsigelser i transient
og konstant forskydningstrgmning. Vi diskuterer effekterne af kaedeom-
drejning (“tumbling”), molekylzer keedestraek og “constraint release” pa mo-
lekylaert niveau, samt deres indflydelse pa de makroskopiske spaendinger
og udslukningsvinklen under forskellige strgmningsbetingelser. Den for-
ventede stezerke korrelation mellem normal speending og molekyleert straek
bekreeftes, og vi finder, at udslukningsvinklens undersving under opstart
af forskydningsstrémning skyldes kaedeomdrejning. Endvidere finder vi,
at keedeomdrejning undertrykkes af tilstedevaerelsen af molekyleert straek.
Monomer densiteten langs kaedens kontur, som giver information om lokalt
kaedestrak og orientering, undersgges ogsa. Her finder vi, at fordelingen af
monomerer langs konturen bliver uensartet, nar forskydningshastigheden
overstiger den reciprokke Rouse relaksationstid. Som det sidste i denne del
af athandlingen diskuteres en mulig afvigelse fra den stress-optiske lov un-
der opstart af forskydningsstrgmning ved store forskydningshastigheder.

Vi betragter dernaest eksponentiel forskydning. Her anvendes fuld-kaede
reptation modellen til at fortolke data fra malinger i eksponentiel forskyd-
ningsstrgmning af den samme sammenfiltrede polystyren oplgsning, som
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navnt ovenfor. Vi er i stand til at forklare alle tendenser i malingerne ved
hjelp af modellen, hvis dynamik er fuldstendig kendt, og pa baggrund
heraf foreslas en ny metode til analyse af malingerne. Denne analyse
viser, at eksponentiel forskydningsstgmning ikke er i stand til at straekke
polymerkaeder mere, end det er tilfeeldet under opstart af konstant for-
skydningsstrgmning. Det vises tilmed, at alle speendinger i forbindelse
med eksponentiel forskydning er kvantitativt afgransede af de spaendinger,
der opnas under opstart af konstant forskydningsstrgmning med samme
gjeblikkelige forskydningshastighed.

I athandlingens sidste kapitel foreslas en ny fuld-kaede, midlertidig net-
vaerksmodel for ikke-linezer strgmning af lineaere, sammenfiltrede poly-
mervasker. Modellen er inspireret af fuld-keede reptation modellen og
dennes egenskaber, som er blevet undersggt i de forrige kapitler af af-
handlingen. Men til forskel fra fuld-kade reptation modellen er der i
den nye model ingen rgr, og de faerre dynamiske variable er anderledes:
positionen af hvert knudepunkt (“entanglement”), samt antallet af Kuhn
skridt i hvert kadestykke mellem knudepunkterne. Indenfor begreberne
af reptation er der i modellen taget hensyn til sammenhaeng mellem kaede-
segmenter, kaede-lengde fluktuationer, kaedestraek og dynamisk rgrud-
videlse. Vi beskriver en detaljeret simuleringsalgoritme, og ved hjeelp af
denne algoritme undersgger vi nogle af modellens egenskaber, fgrst i det
linezert viskoelastiske regime og derefter under opstart af konstant forskyd-
ningsstrgmning ved bade lave og hgje forskydningshastigheder. Endelig
diskuteres fremtidsperspektiver og muligheder for generalisering af den
foreslaede teori.
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Introduction

Prediction of the flow behavior of polymeric materials at process condi-
tions is of great interest to the plastics manufacturing industry for design
purposes of processing equipment. Traditionally, conservative designs have
been made, based on empirical relations providing rough estimates of the
rheological properties. However, due to the continued research and the
development of increasing computational power, it has become possible
to perform numerical simulations of the complex flows taking place in the
processing equipment. Such simulations provide much more accurate in-
formation about the involved material behavior, which in turn result in
more efficient process designs.

The research efforts concerning flow simulations involving polymeric ma-
terials may be divided into two major thrusts. The first of these thrusts
deals with the task of accurately simulating flows in complex geometries,
whereas the other deals with the relationship between material deforma-
tions and the stresses induced by flow. The latter constitutive relationship
is nontrivial due to the viscoelastic nature of polymeric materials.

While the contents of the present thesis focuses on constitutive model-
ing of linear entangled polymers, some flow calculations have also been
considered within the course of this Ph.D. work. Here, an algorithm was
developed to simulate inflation of a circular polymeric film, which is an
inhomogeneous shear-free deformation ranging from equi-biaxial to planar
elongation; two types of deformation, which are of importance in polymer
processing applications such as blow molding and thermoforming. The
simulations provide an easy comparison of the rheological properties in
these deformations as predicted by various constitutive models, since in
the algorithm the constitutive equation is easily exchanged. Details of the
simulation algorithm and obtained results may be found in Hassager et al.
(1999), and are also given without further comments in Appendix B.

1.1 Constitutive Modeling Based on the Mole-
cular Level

Employing kinetic theory, several closed form constitutive models with
molecular origin have been developed for entangled polymer melts. The
early models are almost all based on network theories extending the theory
of rubber elasticity (Bird et al., 1987) with the reptation model by Doi
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and Edwards (1986) being an important exception (see Section 1.2).

Commonly, these models describe only some types of flow well while
failing to capture important rheological behavior in other deformations,
at least within a fixed set of parameters. However, the flows in industrial
processing equipment are typically inhomogeneous, involving elements of
both shearing and extensional deformations. Thus, with the development
of simulators for these complex flows, the demand for more complete con-
stitutive models, capable of describing in detail more types of deforma-
tions, is increasing.

A new class of constitutive relations with molecular origin emerged with
the introduction of the CONNFFESSIT (Calculation Of Non-Newtonian
Flow: Finite Elements and Stochastic SImulation Techniques) idea (Laso
and Ottinger, 1993), which suggests implementing the constitutive beha-
vior in flow simulators by means of stochastic simulations. This approach
is particularly beneficial for kinetic theory models based on reptation the-
ory, since many of these, while being unavailable in closed form, are suit-
able for numerical solution in terms of Brownian dynamics simulations.
Hence, over the past two decades, improvement of the reptation theory
has been subject to much research, due to its potential of describing the
rheological behavior of linear entangled polymer melts combined with the
immediate applicability in flow simulations utilizing the CONNFFESSIT
approach. The concept of reptation and the evolution of the theory within
this concept are outlined in the next section.

1.2 Overview of Reptation Theory

Constitutive modeling of entangled linear polymer melts based on the
molecular level entered a new era when Doi and Edwards presented their
reptation model (Doi and Edwards, 1978a,b,c, 1979) to describe the vis-
coelastic behavior of linear entangled polymer chains. Their model was a
generalization of the tube concept introduced earlier by de Gennes (1971),
who argued that the motion of each chain in a polymer melt is equivalent
to a chain restricted to one dimensional motion inside a confining tube.
The tube represents obstacles imposed by other chains in the melt, and
since the motion of the chain inside the tube is restricted to be along its
own contour, de Gennes named this idea “reptation”. The tube concept
greatly reduces the complex many-body problem of treating entanglement
interactions between chains in a polymer melt.

However, Doi and Edwards left out several important dynamics on the
molecular level and made additional assumptions for mathematical conve-
nience in order to obtain analytic results. Consequently, despite its success
at predicting certain rheological properties, the Doi-Edwards model (DE)
fails to describe several experimentally observed characteristics in vari-
ous deformations even qualitatively. Therefore, it has been the subject
of much research to study the influence of systematically removing the
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approximations originally made and to incorporate the microscopic dy-
namics missing in the DE model. Below we first outline the DE model
including the assumption of independent alignment (IA). Then in the fol-
lowing we summarize the considered modifications of the DE model and
the development of reptation theory since the introduction of the original
DE model.

1.2.1 The Doi-Edwards model with independent align-
ment

Doi and Edwards (1978a,b,c) assume the dynamics of a single tube seg-
ment to be
= (0 —uu) K- u, (1.1)

where u is the unit vector describing the orientation of the tube segment,
k = (Vv)' is the transpose of the velocity gradient, and & is the unit
tensor. It is seen that the tube segment first deforms affinely with the
imposed flow, and then the projection operator in the parentheses returns
the length of the vector back to unity providing instantaneous retraction
of the chain. Hence, both the length of each tube segment and the distance
between entanglements stay constant.

Neglecting inertia a force balance on the chain prescribes the dynamics
of the chain within the tube. The only two forces on the chain are the
friction of the chain with the tube, and the Brownian forces. If s is the
distance along the contour to a point on the chain that occupies the tube
segment, measured from an arbitrarily chosen point on the tube, then the
dynamics are described by the stochastic differential equation

0= _gsegmentst + V 2kBzjzchsegmentdVVta (12)

where, (segment i the friction coefficient between a segment in the primitive
chain and the tube, Z is the number of tube segments, kg is Boltzmann’s
constant, 71" is the absolute temperature, and W; is a Wiener process. It
is noted that the total friction coefficient of the chain is Z(segment-
Finally, these two motions are coupled through the boundary condition

u takes random orientation when s = 0, Za, (1.3)

where a is the equilibrium length between entanglement points. This
boundary condition specifies that the chain is given a random orientation
when it reptates out of the tube.

It should be noted that Curtiss and Bird, developing a systematic kinetic
theory for polymer melts, arrived at a very similar model although by a
different approach (Bird et al., 1987). In their derivation of a diffusion
equation for the polymer dynamics, they used anisotropic friction tensors
to describe the hindrance of sideways motions of the polymers in concen-
trated systems, which essentially expresses the same physical idea as the
tube in reptation.
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1.2.2 Avoiding independent alignment (IA)

The assumption of independent alignment (TA), which implies uniform de-
formation regardless of the position along the chain contour, allowed Doi
and Edwards to formulate their model as a single-segment theory as op-
posed to considering simultaneously the entire test chain in its surrounding
tube. The TA assumption is valid for the case of single-step strain defor-
mations, which the DE model describes extremely well, but it fails for
other types of flows and in particular if the deformation includes revers-
ing flows. Recognizing this, Doi (1980a,b) and Doi and Edwards (1986)
derived a constitutive equation for double-step strain deformations with
flow reversal while avoiding the TA assumption and still assuming instan-
taneous chain retraction. It was shown that this equation could predict
reversing double-step strain deformations as long as the time between the
two steps is much larger than the retraction time.

Later, Marrucci (1986) and Marrucci and Grizzuti (1986) derived the
DE model without IA and showed that this leads to a correct prediction
of the Weissenberg effect. The equation for double-step strain flows de-
rived by Doi was confirmed by a full-chain model with constant contour
length (Hua et al., 1997). By considering the entire chain at all times, as-
sumptions of IA and consistent averaging are avoided in this model, which
also recovers the results of the DE model without TA for single-step shear
strain deformations.

1.2.3 Additional chain-tube interactions

In their “rigorous” model, Doi and Edwards (1986) derived another consti-
tutive equation taking into account that the friction between a test chain
and its confining tube depends on the chain velocity relative to the tube
velocity rather than the chain velocity alone, as assumed in the original DE
model. Few calculations have been made with the “rigorous” model, which
still contains mathematically convenient approximations for the purpose
of keeping the model a single-segment theory.

Geurts and Jongschaap (1988) considered additional chain-tube interac-
tions, and looked at the increased chain tension due to friction between
the chain and the tube by means of the “reptating rope” model. More de-
tails on the physics of the reptating rope model can be found in Ottinger
(1996).

1.2.4 Chain-length fluctuations

Doi realized that the failure of the DE model in predicting the correct
scaling law for dependence of the longest relaxation time on molecular
weight could be corrected by including chain-length fluctuations (Doi,
1983). This was later confirmed by Ketzmerick and Ottinger (1989), who
performed equilibrium Brownian dynamics simulations of the DE model
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with chain-length fluctuations and recovered the experimentally observed
scaling exponent of 3.4.

Milner and McLeish (1998) arrived at the same result although using a
different approach. They applied a theory developed for arm retraction
in star-molecules (Milner and McLeish, 1997) to reptating linear chains
based on the idea that motion of star arms retracting is nearly the same
as the fluctuating motion of an end of a linear chain.

1.2.5 Chain stretching

Removing the assumption of instantaneous chain retraction, Marrucci
and Grizzuti (1988) modified the DE model to allow for molecular chain
stretching. They made predictions for steady state shear, but found no
improvement over the original model for the shear viscosity power law
exponent of —%. The reason for the too high power law exponent, which
implies a maximum in the shear stress versus shear rate curve at steady
state, is that the model predicts too much orientation at high shear rates.
Hence, the chains become too aligned in the flow direction, and the flow
loses its ability to stretch the chains. This situation is not improved by
including segmental stretching in the model.

Studying the same type of model, Pearson et al. (1991) extended the
calculations to transient flows and observed overshoot in both shear stress
and first normal stress difference upon start up of steady shear. Onset
of the overshoot is predicted to occur at a higher shear rate for the first
normal stress difference than for the shear stress consistent with experi-
mental data, and the predicted strains, at which the stress maxima occur,
also agree with experiments.

The DE model including segmental stretch and finite extensibility has
been further considered by Mead and Leal (1995) and Mead et al. (1995),
who has made calculations for steady two-dimensional flows of both shear
and extensional character. Their predictions reveal increasing molecular
stretching as the extensional flow components become increasingly impor-
tant.

1.2.6 Double reptation

In the DE model the tube surrounding the test chain is assumed a static
object. However, the tube consists of other reptating chains making it a
dynamic object, which provides additional relaxation removing some of the
obstacles felt by the test chain. Based on this idea of “double reptation”
or constraint release (CR), Tsenoglou (1987) and des Cloizeaux (1988)
derived a successful polydispersity mixing rule for the linear viscoelastic
regime, which has been further considered by Mead (1996). Double rep-
tation has also proved to play a crucial role in the recent successes of
predicting molecular weight distributions from linear viscoelastic experi-
ments (Tuminello, 1986; Mead, 1994; Wasserman, 1995; Liu et al., 1998).
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Ottinger (1994) incorporated the constraint release mechanism in the
DE model by means of a noise term in the time-evolution equation for
orientation. Using this model he recovered the correct mixing rule in the
linear regime and found an improved value of the shear viscosity power

4

law exponent of —3. However, the shear stress versus shear rate curve

still exhibits a maximum, despite the improved power law exponent.

1.2.7 Convective constraint release

A different constraint release mechanism important only under flow con-
ditions was proposed by Marrucci (1996) and Ianniruberto and Marrucci
(1996). They argued that another mechanism contributes to relaxation
of chain orientation during flow in addition to ordinary diffusion due to
thermal motion (reptation and double reptation), which also occurs in the
absence of flow. The additional relaxation mechanism is constraint re-
lease induced by the flow through chain stretching followed by retraction.
As the chains surrounding the test chain retract, some of them cease to
create topological obstacles for the test chain, which consequently feels
the presence of less constraints. Since this mechanism is induced by flow
Ianniruberto and Marrucci named it convective constraint release (CCR).

Based on the idea of CCR Mead et al. (1998) further modified the DE
model including chain stretching (Marrucci and Grizzuti, 1988; Pearson
et al., 1991; Mead and Leal, 1995; Mead et al., 1995) to obtain a rep-
tation model with segmental stretch, chain-length fluctuations and CCR
but without the effect of double reptation and without avoiding the IA
assumption. Nevertheless, the model captures many experimentally ob-
served trends and the authors thus concluded that stretching and CCR are
responsible for most discrepancies between predictions of the DE model
and experimental data in nonlinear shearing flows.

1.2.8 Thermodynamic modeling approach

Ottinger and Beris (1999) recently reformulated the DE model without
IA to obtain a thermodynamically admissible reptation model by means
of thermodynamic modeling (Ottinger, 1999b). Using the same approach
Ottinger (1999a) then derived a reptation model which includes all of the
dynamic effects discussed above, except for chain-length fluctuations and
connectivity between different chain segments, while avoiding the IA as-
sumption. The predictions of the resulting single-segment model compare
well with experiments capturing most trends observed in nonlinear shear-
ing flows upon appropriate choice of the adjustable model parameters, ¢,
and dy (Fang et al., 2000).
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1.2.9 Full-chain theory

All of the microscopic physical effects discussed above have been incor-
porated in a full-chain model in a self-consistent manner by Hua and
Schieber (1998). Their full-chain theory is formulated in terms of a set
of stochastic differential equations suitable for numerical simulations uti-
lizing Brownian dynamics, without making any approximations such as
IA or consistent averaging. A detailed description of the model and the
simulation algorithm used to obtain numerical results can be found in
Appendix A.

The model, whose lone adjustable parameter is fixed by linear visco-
elasticity, is able to predict quantitatively the stresses and to capture all
experimental trends of the flows considered so far, with two exceptions: At
high shear rates the steady state extinction angle approaches zero rather
than a non-zero plateau, and the magnitude of shear and normal stress
overshoots during inception of steady shear is overpredicted.

The model has been thoroughly tested in several shearing flows inclu-
ding single-step shear strain (Hua and Schieber, 1998), double-step shear
strain (Hua et al., 1998), inception and cessation of steady shear, steady
shear (Hua et al., 1999) and exponential shear (Neergaard et al., 2000).
In fact, the predictions of the model in exponential shear were conducted
as part of the present thesis work (see Chapter 4).

1.3 Thesis Outline

An object of the present thesis work is to gain insight in, by means of
stochastic simulations, how the various microscopic dynamics within the
reptation picture affect each other and the macroscopic rheological proper-
ties. For this purpose it is essential to use a model, which contains all the
dynamical features of interest, while providing results without introducing
mathematical approximations that might obscure the outcome.

Therefore, more simulations are made with the full-chain model men-
tioned above (see Section 1.2.9), which appears to be among the most
complete of existing reptation models. Except for some equilibrium cases,
the simulations all involve shear flows, which from a theoretical point of
view are the most challenging due to the implicated vorticity effects.

By developing an improved physical understanding of the polymer chain
motion on the molecular level, the goal is to identify shortcomings in the
existing reptation theory, and to possibly overcome such shortcomings by
refining the theory for linear entangled polymers.

In Chapter 2 we consider linear viscoelasticity. A relaxation spec-
trum is found for the test fluid, which is a concentrated solution of nearly
monodisperse polystyrene in tricresyl phosphate, that serves as a model
system for polymer melts of entangled linear chains. The relaxation spec-
trum is found from both small-amplitude oscillatory shear flow and from
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stress relaxation following small-step shear strain flow. The spectrum ex-
hibits a plateau at moderate time constants, and a downturn at large time
constants, whereas the Doi-Edwards model exhibits the opposite trend.
Using the full-chain model we study the qualitative impact on the re-
laxation spectrum, of including chain-length fluctuations and constraint
release in the theory, and find that both effects are necessary to describe
the linear viscoelasticity even for monodisperse systems.

Chapter 3 deals with steady shear flows; inception of steady shear,
steady state shear and relaxation following cessation of steady shear are
the specific cases considered. Here, we look into the relationships be-
tween macroscopically observed rheological properties and dynamics on
the molecular level within the picture of the full-chain reptation model.
The effects of chain tumbling, molecular chain stretching and constraint
release are discussed, and the distribution of monomers along the chain
contour is investigated. Finally, we consider a possible violation of the
stress-optic rule during start up of steady shear flow at high shear rates.

The topic of Chapter 4 is exponential shear. Here, the full-chain model
is used to interpret data obtained from exponential shear flow of the same
entangled polystyrene solution as mentioned above. Guided by the model,
which contains well known dynamics, we are able to explain all trends
seen in the data, and a novel analysis of the data is suggested. This
analysis demonstrates that exponential shearing flow is no more capable of
stretching polymer chains than is inception of steady shear at comparable
instantaneous shear rates.

In Chapter 5 a new full-chain, temporary network model is proposed
for nonlinear flows of linear, entangled polymeric liquids. The model is
inspired by the full-chain reptation model and its properties as observed in
the previous chapters of the thesis. However, the new model contains no
tubes and uses a different smaller set of dynamic variables: the location
of each entanglement, and the number of Kuhn steps in chain strands
between entanglements. In the language of reptation, the model exhibits
chain connectivity, chain-length fluctuations, chain stretching, and tube
dilation. We describe a simulation algorithm in detail and present some
linear viscoelastic predictions of the model. A problem with the free e-
nergy expressions, when performing flow calculations, is discussed, and an
alternative expression for the free energy is suggested, before some shear
flow simulations are made. Finally, we discuss options for future work and
possible generalizations of the proposed theory.

Chapters 2 — 5 have been written in the format of scientific articles con-
taining separate abstracts, conclusions and bibliographies to rationalize
the process of subsequent publishing in scientific journals.
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2

Linear Viscoelastic Predictions

of a Full-Chain Reptation Model
with Chain-Length Fluctuations
and Constraint Release

A recently proposed self-consistent reptation model—already suc-
cessful at describing highly nonlinear shearing flows of many types
using one adjustable parameter—is used here to interpret the linear
viscoelasticity of the same entangled polystyrene solution. Using
standard techniques, a relaxation spectrum is found for the entan-
gled solution from both small-amplitude oscillatory shear flow and
from stress relazation following small step shear strain flow. The
spectrum exhibits a plateau at moderate time constants, and a down-
turn at large time constants. The classical reptation picture, how-
ever, erhibits the opposite trend. Using the newly proposed model,
we can switch on (or off) dynamics not included in the classical Doi-
Edwards model: chain-length fluctuations and constraint release.
We find that chain-length fluctuations are important to describe the
plateau, and that incorporation of constraint release leads to the ob-
served downturn. Constraint release has already been shown to be
important in nonlinear flows and for polydisperse systems, but is
clearly shown here to be necessary to describe the linear viscoelas-
ticity of monodisperse systems. !

2.1 Introduction

Apparently, it is not widely known that the classical Doi-Edwards rep-
tation model (Doi and Edwards, 1986) for polymer melts is incapable
of describing the relaxation spectrum of polymer melts. It is, however,
recognized that the width of the relaxation modulus is too narrow; it is
often assumed that a proper account of polydispersity in the model will
broaden the width sufficiently, and provide quantitative agreement with
experiments. However, we show here that it is not only a quantitative

LThis part of the work has been submitted for publication in Macromolecules (2001).
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problem in the width of the distribution, but also a qualitative problem
with the trend of the relaxation spectrum.

It is common to fit the relaxation modulus G(t) of a polymer liquid to
a sum of exponentials

G(t) = 3 giexp(—t/X), (2.1)

where t is time, {g;} is a set of weighting factors, and {);} are the corre-
sponding time constants. The fit may be performed either directly on G(t)
data obtained from step-strain measurements, or on data of its Fourier
transform G*(w) = G'(w) + i G"(w) obtained from small-amplitude oscil-
latory shear measurements. Here,

gi()\iw)Q gi)\iw
G'(w) = ———— G"(w) = — 2.2
2 2
are the storage and loss moduli, respectively, and w is the frequency of
oscillation. Alternatively, one may fit the relaxation modulus to a con-
tinuous weighting function of the relaxation times, h(\), in which case

Egs. (2.1) and (2.2) become

G(t) = / B exp(—t/N)dIn \ (2.3)
and
vy [T h() Qw)? w7 h(A) dw
G(a})—/O Wdln)\, G (w)—/o mdln)\, (2.4)

respectively. Performing these fits has been the subject of much re-
search (Honerkamp and Weese, 1993; Mead, 1994a), but we are not in-
terested in that question here; we will assume that such a fit is readily
available. For our purposes, only trends are important, not actual values,
so our results are not sensitive to the particular fitting method.

The Doi-Edwards reptation model predicts a specific form for the relax-
ation modulus in Eq. (2.1)

Gt)=Gn ) kf; exp (—E) , (2.5)

-
k, odd d

where 74 is the “reptation time” of the polymer, and Gy is the plateau
modulus. Thus, we see that the Doi-Edwards model predicts that, as
the time constant \;, = 74/k? goes up (k ), the weight factor g, =
8G y/(m?k?) also rises.

However, experimental data show the opposite trend. As we show below
(see Figure 2.3), it is typical for the weight factors to show a decrease with
time constant at small values for );, a plateau in the middle, followed by a
strong drop at large values. Polydispersity is unlikely to fix this problem.
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Recent theoretical work has shown the importance of dynamical relax-
ation mechanisms not included in the Doi-Edwards model (Ketzmerick
and Ottinger, 1989; Pearson et al., 1991; Ianniruberto and Marrucci, 1996;
Hua and Schieber, 1998: Mead et al., 1998; Hua et al., 1998, 1999; Ot-
tinger, 1999). For example, chain stretching is important to predict the
overshoots observed in first normal stresses during inception of steady
shear (Pearson et al., 1991; Hua et al., 1999). Or, convective constraint
release was found to be important in predicting the power-law region in
shear stresses during steady shearing flow (Ianniruberto and Marrucci,
1996; Hua et al., 1999). However, these effects are important only during
fast deformation flows, and not at equilibrium.

Two other relaxation mechanisms are known to be important at equili-
brium. First, chain-length fluctuations have been understood as important
to predict the proper scaling relationship between zero-shear-rate viscosity
and molecular weight (Doi and Edwards, 1986; Ketzmerick and Ottinger,
1989). Therefore, this physical effect might also be important to pre-
dict the proper relaxation modulus—another “zero-shear-rate” property.
Secondly, recent successes in using linear viscoelasticity experiments to
predict molecular weight distributions have relied heavily on the idea of
“double reptation” or constraint release (Tuminello, 1986; Mead, 1994b;
Wasserman, 1995; Liu et al., 1998).

Therefore, it would be important to check if these effects can explain
the current discrepancy between the reptation picture and experimental
results in linear viscoelasticity.

In order to perform this check, it is necessary to use a generalized rep-
tation model. Currently, there are several different thrusts to advance
reptation models to include these effects. One such thrust, exploited by
several different groups (Pearson et al., 1991; Mead et al., 1998), uses cou-
pled deterministic equations to describe nonlinear flows. These works add
no new adjustable parameters, but have not been checked for thermody-
namic consistency. Unfortunately for our concerns here, these works put
several of the effects in by hand, including the relaxation modulus—albeit
without adding new parameters. Hence, they may not be used for our
proposed check.

The most recent work, by Ottinger (1999), uses a stochastic dynamics
(Fokker-Planck Equation) for a single segment. The model does use ad-
justable parameters, but these are bound by checks on thermodynamic
consistency. Unfortunately here, chain-length fluctuations are not in-
cluded in the theory, and no binary chain-chain interactions are used to
account for constraint release; rather, a heuristic noise term is added to
the entanglement dynamics to mimic the effect. Hence, this work is also
not useful for such a check.

Therefore, the approach we use is a full-chain stochastic model that
has been shown to make very good quantitative comparison with stresses
in double-step shear strains (Hua et al., 1998), inception and relaxation
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of steady shearing flows, steady shearing flows (Hua et al., 1999), and
exponential shear flows (Neergaard et al., 2000). The model includes both
chain-length fluctuations, and constraint release—the latter may also be
switched off.

The full-chain reptation model contains one phenomenological parameter
important at equilibrium: the friction coefficient of a group of monomers.
This parameter influences the longest relaxation time; however, for the
trends that we are considering here, this parameter is unimportant. Hence,
the model provides a good tool to test the assumption of chain-length
fluctuations and constraint release in reptation models.

2.2 Experimental System and Model Descrip-
tion

The test fluid is a solution in tricresyl phosphate of nearly monodisperse
polystyrene with a molecular weight M, of 1.9 x 10° (polydispersity index
of 1.2) at a polymer concentration n of 0.135 g/cm?® corresponding to a
polymer volume fraction ¢ of approximately 0.13. Extensive data sets
in single- and double-step strain flows, inception of steady shear, steady
shear, and cessation of steady shear for this fluid have been reported and
were found to be in excellent agreement with predictions from the model
considered in this study (Venerus and Kahvand, 1994; Hua and Schieber,
1998; Hua et al., 1998, 1999).

All linear viscoelastic data used in this work have been previously re-
ported (Venerus and Kahvand, 1994). Rheological experiments were made
using the parallel plate geometry on an RMS-800 at 23°C. Small-amplitude
oscillatory shear tests were carried out over five decades of frequency from
which the shear storage G'(w) and loss G (w) moduli could be obtained
using standard methods. The shear stress relaxation modulus G(t) was
obtained by monitoring the shear stress following a “step” strain imposed
in less than 0.05 s. For both flows, the shear strain amplitude was 0.25,
which was sufficiently small to obtain a linear response from the fluid. All
reported data are the average of at least two repeat experiments.

The model consists of N + 1 beads attached by N finitely extendible
entropic springs in a constraining tube with Z segments. Therefore, there
are N + 1 dynamic variables describing the monomer density in the tube,
and 37 dynamic variables describing the length and orientation of each
tube segment. The beads experience frictional forces with the affinely de-
forming tube, entropic spring forces, and Brownian forces. Dynamics of
the chain ends determine death and creation of the tube segments accord-
ing to the standard reptation picture. In addition, a mean-field constraint
release (CR) mechanism similar to that pictured by Tsenoglou (1987) and
des Cloizeaux (1988) weakly couples the chains. A Kramers-type expres-
sion is used to relate chain dynamics and macroscopic stress. The resulting
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expression is closely related to that derived for networks. The reader is
referred to earlier papers (Hua and Schieber, 1998; Hua et al., 1998) for
more details of the model.

Before simulations begin it is necessary to specify three parameters in
the model: (Z),, the average number of entangled chain segments at
equilibrium; N + 1, the number of beads; and b, the finite extensibility
parameter. The first depends upon the chemistry of the chain, and may
be found in standard texts (Ferry, 1980; Fetters et al., 1996), based upon
molecular weight A, and entanglement molecular weight M, of the system
studied. The second parameter is found from the first as N = 3(Z)eq, as
before (Hua et al., 1999). b may also be found from standard references,
and depends upon entanglement molecular weight M., and stiffness of the
chain as expressed by the characteristic ratio C, (Flory, 1988).

To estimate (Z)eq we use M, = 18000 (Ferry, 1980). To account for the
dilution of the entanglements due to the solvent for the polystyrene solu-
tion discussed above, we use an empirical result (Graessley and Edwards,

1981) so that
M
_ 1.3Mw
<Z>eq - d) Me

An alternative estimate of (Z)e, may be obtained from the scaling rela-
tionship by Doi and Edwards (1986)

~ T.4. (2.6)

(L) = 2 6T, (2.7)
where 7 = 0.75s is the Rouse relaxation time found from the non-
factorable part of the relaxation modulus G(v,t) in large-strain step ex-
periments (Venerus and Kahvand, 1994) and 74 = 15s is obtained as
discussed in the following section. Hence, in this work, we use (Z),, =T.
The finite extensibility parameter, b, is picked to be 150 in all simulations.
For N/ (Z)eq = 3, this value corresponds to 150 Kuhn steps per entangle-
ment molecular weight M., or 17 monomers per Kuhn step. This value
of b is consistent with the experimental system considered, but it actually
plays no role in the results here (Flory, 1988).

Extracting simulation results for small-amplitude oscillatory shear flow is
difficult because of the very large ensemble sizes needed to avoid excessive
statistical noise. Instead, the relaxation modulus is found directly from an
equilibrium simulation that exploits linear response theory (Résibois and
Leener, 1977). Namely, we find G(t) from the autocorrelation function of
the shear stress at equilibrium

_gTR

1
Glt) = — (7a(0) e (1)) 28)
where (.. .)eq indicates taking an average over a large ensemble of chains
at equilibrium. As pointed out by Hiitter and Ottinger (1996), mean-field

models may require modification of this equation. However, a comparison
with step-strain simulations confirms the results using Eq. (2.8).
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2.3 Results

We want to make comparisons between the data available from small-
amplitude oscillatory shear and small step strain shear flow experiments,
and compare these results to simulations of shear stress relaxation. In
order to do so, however, we need to normalize the results in a way suitable
for both kind of experiments and the simulations.

A reasonable estimate for 74 is the mean relaxation time, 7,, which
can be estimated from the zero-shear-rate viscosity 7y and the zero-shear-
rate first normal stress coefficient W, as 7, = Uy9/2ny. From steady
shear experiments for the polystyrene solution (Venerus and Kahvand,
1994) we have n, = 6800 Pas, W1, = 200000 Pas® which yields a mean
relaxation time 7, of 15 s. Therefore, for all experimental results 7y =
15s, which we will use subsequently for normalization of all time scales.
The zero-shear-rate properties may also be estimated from the spectrum
fit to linear viscoelastic data as o = Y, ;i\ , W10 = 2>, ;A7 which
provides a consistency-check between linear viscoelastic and steady shear
experiments. The latter approach also allows us to relate the time scales
of the test fluid to those of the simulations. For the spectrum fit to the
simulation with constraint release (Table 2.3) we obtain 1y = Y. g;\; &~
0.298 nkT(Z)eqra , W10 = 2>, i)} ~ 0.637nkT(Z)eqrs which gives an
estimated mean relaxation time of 7, &~ 1.068 73.

The plateau modulus Gy is a natural choice for normalization of stresses
and moduli. However, the definition of this quantity is somewhat arbitrary
because Gy is not easy to assess neither experimentally nor by means
of the simulations made in this work. The arbitrariness is due to the
very fast initial relaxation mechanisms which occur on time scales much
shorter than the Rouse time of the fluid. With our experimental setup, it
is not possible to measure this initial fluid response because of the finite
duration of the applied shear step strain, and the fast dynamics, which
may be associated with lateral chain motion within the confining tube,
are not accounted for in the full chain reptation model. Nevertheless,
neglecting the very fast relaxation mechanisms, the shear stress relaxation
modulus G(t) initially takes the value of the plateau modulus G . Hence,
we estimate the plateau modulus as Gy = G(0) = >, 9; = 2480 Pa,
where {g;} is the set of weights from the fit to the shear stress relaxation
experiment. Similarly, for the simulations we fix the plateau modulus as

GN = nkT(Z)eq Zz g;-

2.3.1 Experimental

Measured values of the shear storage and loss moduli (Venerus and Kah-
vand, 1994) are shown in Figure 2.1. Using a modified CONTIN algorithm
(Provencher, 1982; Mead, 1994a), these data points are fit to Eq. (2.2),
and the results are shown in Table 2.1. Using this set of {g;, \;}, the sto-
rage and loss moduli are recalculated, and the results are shown as the
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Figure 2.1. Measured storage (squares) and loss (circles) moduli versus fre-
quency. The solid lines are calculated from the relaxation spectrum in Table
2.1, which was fit to the measured G'(w), G"(w) values (the inset shows
the residuals for this fit, [G},,,(w) — G};(w)]/Gn). The dashed lines are
calculated from the relaxation spectrum in Table 2.2, which was fit to the
measured G(t) data shown in Figure 2.2.

solid lines in Figure 2.1. The fit is excellent, as seen in the inset resi-
duals plot, except perhaps at the highest frequencies. From the spectrum
in Table 2.1 fit to oscillatory shear data we obtain an estimated mean
relaxation time 7, &~ 15s which compares well with the above 7, value
based on steady shear data. Note, that due to improvement of the fitting
algorithm utilized in the present work the spectrum in Table 2.1 differs
slightly from the one previously reported on the same data set (Venerus
and Kahvand, 1994).

Time const, A\;/74 Weight, ¢;/Gn Standard error
0.00066667 0.45263 0.019348
0.0021082 0.081475 0.015721
0.0066667 0.097847 0.012093
0.021082 0.146124 0.012093
0.066667 0.138292 0.012496
0.21082 0.112929 0.011690
0.66667 0.162938 0.007256
2.1082 0.015436 0.002177
6.6667 0.0006678 0.0002177

Table 2.1. Discrete relaxation spectrum fit to the G*(w) data in Figure 2.1.
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Figure 2.2. Measured relaxation modulus versus time. The solid line is calcu-
lated from the relaxation spectrum in Table 2.2, which was fit to the measured
G(t) values (the inset are the residuals for this fit, [Ggata(t) — Gt (t)]/Gn)-
The dashed line is calculated from the relaxation spectrum in Table 2.1,
which was fit to the measured G*(w) data shown in Figure 2.1.

Shear stress relaxation modulus data (Venerus and Kahvand, 1994) are
shown in Figure 2.2. Results of a fit of Eq. (2.1) to these data using
the CONTIN algorithm (Provencher, 1982; Mead, 1994a) are shown in
Table 2.2. Using this relaxation spectrum, the relaxation modulus is re-
calculated, and the result is plotted as the solid line in Figure 2.2. Again,
the inset residuals plot indicates a satisfactory fit. Considering the num-
ber of available data points, it is not surprising that the residuals for the
fit to stress relaxation data (Figure 2.2) are much smaller than those for
the fit to the oscillatory shear results (Figure 2.1). Calculating the mean
relaxation time from the spectrum in Table 2.2 fit we get 7, &~ 11s which
is comparable with the steady shear data value found above.

Time const, A;/7q Standard error Weight, ¢;/Gn Standard error

0.0030992 0.00017794 0.25475 0.02337
0.0095747 0.0002509 0.165860 0.003676
0.030281 0.0006211 0.152276 0.0016091
0.086320 0.002480 0.132895 0.002123
0.22456 0.006986 0.128126 0.0019663
0.62580 0.02808 0.093904 0.003302
1.10906 0.02038 0.072194 0.006482

Table 2.2. Discrete relaxation spectrum fit to the G(¢) experimental data
shown in Figure 2.2.
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As a consistency-check on these experiments, the spectrum from G(t)
data is used to predict G*(w), and vice-versa. The results are also shown
in Figures 2.1 and 2.2 as dashed lines. We find that the storage and
loss moduli are described rather well by the fit to the relaxation modulus
data, except at the highest frequencies. The reverse comparision is not as
good, but is still satisfactory. However, these small discrepancies are not
important for our study, as we see in the next figure (Figure 2.3) that the
relaxation spectra measured from these two methods show similar trends.

o
[

0.01

CONTIN fit to G*(w) - -© -
i CONTIN fit to G(t) 5 1
0.001  Regularized continuous fit to G*(w) — =

- 1
| 1 1 | 1 1 | 1 1 | 1

Welghtsa gZ/GN7 h/GN

0.001 0.01 0.1 1
Time constants, X; /74, A\/7q

Figure 2.3. Discrete and continuous relaxation spectra for the G*(w) experi-
ment and discrete relaxation spectrum for the G(t) experiment. The included
errorbars are almost all smaller than the size of the symbols.

We compare the discrete relaxation spectrum (unfilled symbols) for the
G*(w) and G(t) experiment in Figure 2.3 which shows the weights, g;/G ,
plotted versus the time constants, \;/7q. The spectra are fit to the data
using the CONTIN algorithm (Provencher, 1982; Mead, 1994a) and we
note that the included error bars (also listed in Table 2.1 - 2.2) are about
the same size or smaller than the symbols in the figure. It is seen, that
there is good agreement between the spectra obtained from the different
experiments although the decrease for large ); is not as pronounced for
the G(t) spectrum.

Also shown in Figure 2.3 (solid line) is a fit of the G*(w) data to Eq. (2.4),
the continuous relaxation spectrum, h/Gy, which is obtained by means
of a nonlinear regularization method (Honerkamp and Weese, 1993). The
error bars for this fit are almost everywhere comparable to the thickness
of the line and are therefore hardly visible in the figure. We see that
the continuous and discrete spectrum for the G*(w) data compare very
well except at the smallest time scales. This leads us to conclude that
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the spectra considered in the remainder of this paper are independent of
the particular fitting method used, at least for our purposes where only
qualitative trends are important.

2.3.2 Theory

G(t)/Gn
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Dimensionless time, ¢/74

Figure 2.4. Relaxation modulus as a function of time predicted by the full-
chain reptation model with constraint release (points). The solid line is the
fit to these data — the relaxation spectrum given in Table 2.3. The inset
shows the residuals for this fit, [Gsim(t) — Gat(t)]/Gn. The dashed line is the
prediction of G(t) by the Doi-Edwards model (DE).

The relaxation modulus extracted from the linear response simulation
including constraint release is shown in Figure 2.4. These results are fit
to Eq. (2.1) and the relaxation spectrum using the CONTIN algorithm
(Provencher, 1982; Mead, 1994a) is given in Table 2.3. Recalculating the
relaxation modulus from this spectrum results in the solid line shown in
Figure 2.4. The fit is excellent, as shown in the inset residuals plot. We
may also switch off the constraint-release mechanism in the simulations

Time const, A;/7q Standard error Weight, ¢;/Gn Standard error

0.0030954 0.0004732 0.087126 0.008159
0.047955 0.0010604 0.20860 0.002518
0.51891 0.003926 0.63049 0.003144
2.2252 0.09639 0.073777 0.004112

Table 2.3. Discrete relaxation spectrum fit to the G(¢) simulation results with
constraint release.
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Figure 2.5. Relaxation modulus as a function of time predicted by the full-
chain reptation model without constraint release (points). The solid line is
the fit to these data — the relaxation spectrum given in Table 2.4. The inset
are the residuals for this fit, [Ggim(t) — Gat(t)]/Gn. The dashed line is the
prediction of G(t) by the Doi-Edwards model (DE).

and repeat the procedure: simulate G(t), find the relaxation spectrum,
and compare the results. These are shown in Figure 2.5 and Table 2.4;
again, the agreement is excellent, so we have confidence in the fit.

The dashed lines in Figures 2.4 and 2.5 are the prediction of G(t) by
the Doi-Edwards reptation model as given in Eq. (2.5). In Figure 2.5 it
is found that the full chain reptation model without constraint release
broadens the relaxation modulus compared to that of the Doi-Edwards
model. Simulation of stress relaxation following a shear step strain using
a full chain reptation model without chain-length fluctuations (Hua et al.,
1997) resulted in a relaxation modulus identical to G(t) predicted by the
Doi-Edwards model. Thus, the observed broadening, which brings G(¢)
in closer agreement with the experimental data, can be attributed to the
chain-length fluctuations included in the present model. Using the pre-

Time const, A\;/7q Standard error Weight, ¢;/Gn Standard error

0.0024638 0.0004443 0.091114 0.009587
0.031609 0.0016057 0.161300 0.004157
0.165158 0.009607 0.083541 0.003928
0.98174 0.0015276 0.66404 0.0014454

Table 2.4. Discrete relaxation spectrum fit to the G(t) simulation results
without constraint release.
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diction of G(t) by the Doi-Edwards model as a reference, comparison
between the simulations in Figures 2.4 and 2.5 shows that incorporation
of constraint release causes further broadening of the relaxation modulus,
bringing it even closer to the experimental data.

2.3.3 Comparison Between Theory and Experiment

A comparison is made of the storage and loss moduli predicted by the the-
ory (using the fit to the relaxation modulus) to experiments in Figure 2.6.
However, it is not possible to make a direct, fair comparison between the-
oretical and experimental results in terms of the normalization of moduli
utilized to this point, because of the arbitrariness of G discussed above.
Instead we employ in this particular plot an empirical relationship for
the plateau modulus, Gy = 3.56G", (w), which is valid for concentrated
systems of monodisperse, linear polymers (Raju et al., 1981). GI .. (w) is
estimated to be at the crossover for G'(w) and G"(w). By normalizing all
dynamic moduli using G n rather than Gy, we effectively ensure vertical
alignment of G ._(w) for both experimental and theoretical results.

We find that the reptation model both with and without constraint
release is not able to predict the data at high frequencies. This is not
surprising, since the model is a coarse-grained object. Namely, the model
is an elastic chain confined to the contours of a tube. Hence, fluctuations in

i T
1 oo ood oo o
. P BT
S
~ 01k L Ee A TR
3
O
-~ 0.01 -
Q? G'(w) data O
= G"(w) data © |
:§/ 0.001 Fit to simulation with CR —— -
O Fit to simulation without CR -~ .
Doi-Edwards ----- .
0.0001 | | | | -

0.01 0.1 1 10 100 1000
Dimensionless frequency, wy

Figure 2.6. A comparison between the experimentally measured storage
(squares) and loss (circles) moduli and the same quantities predicted by
the model with (solid lines) and without (dotted lines) constraint release.
Also shown is the prediction by the Doi-Edwards model (dashed lines). In
this figure, all plateau moduli are estimated from the empirical relation
Gn =~ 3.56 G, (w) (Raju et al., 1981).
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the conformation of the chain perpendicular to the tube centerline are not
accounted for in the theory. Such fluctuations presumably occur on time
scales more rapid than reptation, chain-length fluctuations or constraint
release. Secondly, however, we note that switching on constraint release
improves the model’s ability to describe the data at low to intermediate
frequencies.

In Figure 2.7 we compare the relaxation spectrum predicted by the model
(filled symbols) with that found for the test fluid (unfilled symbols). We
only show the spectrum for the G*(w) experiment as we have already
shown (see Figure 2.3) that the trends in the relaxation spectrum for the
G*(w) and the G(t) experiments are the same. We have also found (see
Figure 2.3) that the shape of the spectrum is independent of the particular
fitting algorithm used. Hence, for the comparison in Figure 2.7 we consider
only the discrete relaxation spectra computed by the CONTIN algorithm.
We have not included error bars in this figure, since they are all within
the size of the symbols for the spectra predicted by the model. However,
the standard deviation of all weights, ¢;/Gy, and time constants, \;/7q,
fit by the CONTIN algorithm are listed in Tables 2.1 - 2.4.

Also shown in Figure 2.7 is the prediction of the Doi-Edwards model
(dashed lines), which does not include chain-length fluctuations or con-
straint release. As mentioned above, the prediction of the Doi-Edwards
model is qualitatively different from the experimental results. One might
argue that the infinite number of closely spaced modes at short times
could be grouped into fewer modes with larger weights, and that such a
procedure would be expected to bring the Doi-Edwards spectrum in closer

Weights, ¢;/G n

0.1 i
0.01 ; .
- el {G*(w) experiment O 1
7 i Sim. with CR @

[ { Sim. without CR T
0.001 -~ Doi-Edwards ----- -
-7 Doi-Edwards with finite (Z)eq J

L I L L L I L L L I L L L L L

0.001 0.01 0.1 1

Time constants, \;/7q

Figure 2.7. The discrete relaxation spectrum for the G*(w) experiment and
all models discussed in this paper.
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agreement with experiment. However, these modes are actually an arti-
fact of a mathematical approximation used in the Doi-Edwards model,
and do not arise from the physics. Namely, the derivation of the Doi-
Edwards model assumes that the finite number of entanglements may be
approximated by a continuous count along the chain. If this assumption is
removed, the predictions actually become worse (dotted line in Figure 2.7)
(Schieber, 1990).

On the other hand, the model without constraint release can be seen
as allowing chain-length fluctuations to the Doi-Edwards model (filled
squares). Here we see that these fluctuations give rise to a plateau in the
spectrum—in closer agreement with data. Finally, when we also switch on
constraint release (filled circles), we see that the model now also captures
the downturn in the relaxation spectrum of the fluid that is observed in
experiments. It appears that constraint release introduces a relaxation
mechanism with a time scale greater than the reptation time, 74.

Finally, in Figure 2.8 we also compare the prediction of the model with
the empirical Cox-Merz rule, n(¥) = |n*(w)|, where n(¥) is the steady
shear and |n*(w)| the complex viscosity. We find that, although the
model overpredicts the amount of shear thinning relative to the experi-
ments, it does show consistency with the Cox-Merz rule. For the complex
viscosity, the data yields an asymptotic power-law exponent of -0.80 at
high frequencies whereas a value of lim,,_,, [9*(w)| = —0.94 is obtained
from the model with constraint release. The Doi-Edwards model predicts
asymptotic power-law exponents of —1.5 and —1.0 for lim;_,., (%) and
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Figure 2.8. A check of the Cox-Merz rule for the full-chain reptation model
with constraint release (CR). Experimental data are normalized using 79 =
6800 Pas and simulations by 7o = Y, gi\i & 0.298 nkT(Z)eq7q -
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lim,,_, o [7*(w)| respectively, and thus fails to predict the Cox-Merz rule.

The failure of the Doi-Edwards model to give the Cox-Merz rule can
be attributed to the excessive shear thinning which causes a power-law
exponent smaller than -1.0. Ianniruberto and Marrucci (1996) showed,
however, that by extending the Doi-Edwards model to include convective
constraint release, which is important only at high deformation rates, the
asymptotic power-law exponent for 7(¥) is improved to —1.0. Still, they
got the asymptotic prediction of the Cox-Merz rule right only within a
factor of 2.

The model with constraint release provides good agreement between
n(%) and |n*(w)| at low and at the highest frequencies/shear rates, whereas
small deviations are observed for intermediate frequencies/shear rates. In-
terestingly, the small deviation of the complex viscosity is in the direction
of the experimental data, which also show minor differences between 7(7)
and |n*(w)| at intermediate frequencies/shear rates.
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3

Dynamics of Linear, Entangled
Polymeric Liquids in Shear
Flows

We study predictions in transient and steady shearing flows of a
previously proposed self-consistent reptation model, which includes
chain stretching, chain-length fluctuations, segment connectivity and
constraint release. In an earlier paper it was established that the
model is able to capture all trends observed experimentally for visco-
metric flows allowing focus of the present work on the model. That
is, we study in detail the physics and underlying dynamics of the
model to explain the macroscopically observed rheological properties
in terms of chain behavior and dynamics on the molecular level.
More specifically, we discuss the effects of chain tumbling, molecu-
lar chain stretching and constraint release and their influence on
the macroscopic stress as well as the extinction angle under various
flow conditions. In particular, we find that chain tumbling causes
the undershoot in extinction angle during inception of shear; chain
tumbling is itself suppressed by the presence of molecular stretching;
and the anticipated strong correlation between normal stress and
molecular stretching is confirmed. Also investigated is the monomer
density along the chain contour which reveals information about the
local chain stretching and orientation. Here, it is found that the
distribution of monomers along the contour becomes non-uniform
when the shear rate exceeds the inverse Rouse relaxation time. Fi-
nally, we discuss a possible violation of the stress-optic rule during
start up of steady shear flow at high shear rates. !

3.1 Introduction

When Doi and Edwards presented their reptation model (Doi and Ed-
wards, 1978a,b,c, 1979, 1986) to describe the viscoelastic behavior of lin-
ear, entangled polymer chains, it was a major breakthrough for constitu-
tive modeling based on the molecular level. However, Doi and Edwards

!This part of the work has been submitted for publication in J. Non-Newtonian
Fluid Mech. (2001).
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left out several important dynamics on the molecular level, and made
additional assumptions for mathematical convenience in order to obtain
analytic results. Consequently, despite its success at predicting certain
rheological properties, the Doi-Edwards model (DE) fails to describe even
qualitatively several experimentally observed characteristics in various de-
formations such as shear flows, which are considered in the present work.

Recognizing the limitations of the DE model, it has since been the sub-
ject of much research to avoid the approximations originally made and
to incorporate the missing microscopic dynamics to improve constitutive
modeling within the reptation picture. We give in the following a brief
summary of the most important refinements of the DE model considered
in order to develop a reptation model that is able to capture as many as
possible of the rheological properties in shearing flows.

In the linear viscoelastic limit two effects have been found to be par-
ticularly important in improving the predictions of the DE model. Doi
(1983) realized that including chain-length fluctuations in the theory was
important for the reptation model to predict the correct scaling law for
dependence of the longest relaxation time on molecular weight. This was
later confirmed by means of equilibrium Brownian dynamics simulations
by Ketzmerick and Ottinger (1989). Milner and McLeish (1998) arrived
at the same result applying a theory developed for arm retraction in star-
molecules (Milner and McLeish, 1997) to reptating linear chains.

The other missing effect in the DE model of importance in the linear
viscoelastic limit is to recognize that the tube consists of other reptating
chains making it a dynamic object which provides additional relaxation
by removing some of the obstacles felt by the test chain. Based on this
idea of “double reptation” or constraint release (CR) Tsenoglou (1987)
and des Cloizeaux (1988) derived a successful polydispersity mixing rule
for the linear viscoelastic regime. The mixing rule was recovered by Ot-
tinger (1994), who incorporated the constraint release mechanism in the
DE model by means of a noise term in the time-evolution equation for
orientation and, using this model, found an improved value of the shear
viscosity power law index.

The assumption of instantaneous chain retraction was first removed by
Marrucci and Grizzuti (1988), who modified the DE model to allow for
molecular chain stretching and made predictions for steady state shear
without finding any improvements. Studying the same type of model,
Pearson et al. (1991) extended the calculations to transient flows and
observed overshoot in both shear stress and first normal stress difference
upon start up of steady shear. Onset of the overshoot is predicted to
occur at a higher shear rate for the first normal stress difference than for
the shear stress in consistency with experimental data, and the predicted
strains, at which the stress maxima occur, also agree with experiments.

The convective constraint release mechanism (CCR) was proposed by
Marrucci (1996) and Ianniruberto and Marrucci (1996). They argued that
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another mechanism contributes to relaxation of chain orientation during
flow in addition to ordinary diffusion due to thermal motion (reptation
and double reptation). The additional relaxation mechanism is constraint
release induced by flow through chain stretching followed by retraction of
the chains surrounding the test chain.

Based on the idea of CCR Mead et al. (1998) further modified the DE
model including chain stretching (Marrucci and Grizzuti, 1988; Pearson
et al., 1991; Mead and Leal, 1995; Mead et al., 1995) to obtain a rep-
tation model with segmental stretch, chain-length fluctuations and CCR
but without the effect of double reptation and without avoiding the as-
sumption of independent alignment (IA). Nevertheless, the model captures
many experimentally observed trends and the authors thus concluded that
stretching and CCR, are responsible for most discrepancies between pre-
dictions of the DE model and experimental data in nonlinear shearing
flows.

Ottinger and Beris (1999) recently reformulated the DE model without
IA to obtain a thermodynamically admissible reptation model by means of
thermodynamic modeling. Using the same approach Ottinger (1999) then
derived a reptation model which includes all of the dynamic effects dis-
cussed above, except for chain-length fluctuations, while avoiding the TA
assumption. The predictions of the resulting single-segment model com-
pare well with experiments capturing most trends observed in nonlinear
shearing flows upon appropriate choice of the adjustable model parame-
ters, 6; and 0, (Fang et al., 2000).

The effect of segment connectivity and all of the microscopic physical ef-
fects discussed above have been incorporated in a full-chain model in a self-
consistent manner by Hua and Schieber (1998). Their full-chain theory
is formulated in terms of a set of stochastic differential equations suitable
for numerical simulations utilizing Brownian dynamics, without making
any approximations such as IA or consistent averaging. The model, whose
lone adjustable parameter is fixed by linear viscoelasticity, is able to pre-
dict quantitatively the stresses and to capture all experimental trends of
the flows considered with two exceptions: At high shear rates the steady
state extinction angle approaches zero rather than a non-zero plateau,
and the magnitude of shear and normal stress overshoot during incep-
tion of steady shear is overpredicted. The model has been thoroughly
tested in several shearing flows including single-step shear strain (Hua
and Schieber, 1998), double-step shear strain (Hua et al., 1998), incep-
tion and cessation of steady shear, steady shear (Hua et al., 1999) and
exponential shear (Neergaard et al., 2000).

The success of the recent reptation models in capturing nearly all rhe-
ological properties observed experimentally is very encouraging for future
constitutive modeling based on reptation theory. In the current work we
revisit the predictions of the full-chain model just mentioned and break
down in detail the results in start up of steady shear, steady shear and
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following cessation of steady shear. Focus here is solely on the model,
since very good comparison of the model predictions with experimental
data for the flows under consideration has already been established (Hua
et al., 1999). The physics and underlying dynamics of the model are to be
studied to explain the macroscopically observed rheological properties in
terms of chain behavior and dynamics on the molecular level. While one
may have an intuitive feeling for the relationships between microscopic
and macroscopic properties, we here offer explicit evidence, within the
model picture, of how stress is related to molecular stretching and chain
orientation.

In Section 3.2 we present the full-chain model followed by a descrip-
tion of the microscopic effects considered. These include chain tumbling,
molecular stretching and the distribution of monomers along the chain
contour. Results are given in Section 3.3 along with a discussion of these,
and finally we summarize the conclusions made in Section 3.4.

3.2 Theory

3.2.1 The model and its parameters

The model consists of N + 1 beads attached by N finitely extendible en-
tropic springs in a constraining tube with Z segments. Therefore, there
are N + 1 dynamic variables describing the monomer density in the tube,
and 37 dynamic variables describing the length and orientation of each
tube segment. The beads experience frictional forces with the affinely de-
forming tube, entropic spring forces, and Brownian forces. Dynamics of
the chain ends determine creation and destruction of the tube segments
according to the standard reptation picture. Thus, the effects of segment
connectivity, segmental stretch and chain-length fluctuations are incorpo-
rated in the model in a self-consistent manner, since they are all implied by
the mechanical model. In addition, a self-consistent, mean-field constraint
release mechanism similar to that pictured by Tsenoglou (1987) and des
Cloizeaux (1988) weakly couples the chains. The constraint release mecha-
nism (CR) is switched on for most of the cases, otherwise to be mentioned.
To relate chain dynamics and macroscopic stress a Kramers-type expres-
sion is used, which is closely related to that derived for networks (Bird
et al., 1987). The reader is referred to earlier papers (Hua and Schieber,
1998; Hua et al., 1999) for more details on the model.

Before simulations begin it is necessary to specify three parameters in
the model: (Z),, the average number of entangled chain segments at
equilibrium; N + 1, the number of beads; and b, the finite extensibility
parameter. The first depends upon the chemistry of the chain, and may be
found in standard texts (Ferry, 1980; Fetters et al., 1996), based upon mo-
lecular weight M, and entanglement molecular weight M, of the system
studied. The second parameter is found from the first as N = 3(Z)eq, as
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before (Hua et al., 1999). The finite extensibility parameter b may also be
found from standard references, and depends upon entanglement molecu-
lar weight M., and stiffness of the chain as expressed by the characteristic
ratio C, (Flory, 1988).

In this work, we use (Z )eq = 7, which is the same value as previously
used when studying shear flow predictions of the model (Hua et al., 1999).
This is also reasonably consistent with the value estimated for the entan-
gled polystyrene solution (Venerus and Kahvand, 1994) which has been
used to quantitatively validate the model (Hua et al., 1998, 1999; Neer-
gaard et al., 2000). The finite extensibility parameter, b, is picked to be
150 in all simulations. For N/(Z),, = 3, this value corresponds to 150
Kuhn steps per entanglement molecular weight M., or 17 monomers per
Kuhn step. This value of b is consistent with the experimental system con-
sidered (Flory, 1988, p.39). Too small of a value was used by Hua et al.
(1999); however, the results given previously and in the present work are
not sensitive to finite extensibility, as comparison with b = oo results has
shown.

From an equilibrium simulation, the single adjustable parameter can
be found: the disengagement time, 74. Therefore, for all nonlinear flow
calculations, the model contains no adjustable parameters.

3.2.2 Microscopic dynamics considered

The dynamic features on the molecular level, to which we pay special
attention in this work, are described in the following.

A reasonable measure of the average chain orientation is the extinction
angle, y, which in fact is a macroscopic quantity that can be measured
directly from birefringence experiments. In terms of the model the extinc-
tion angle is obtained from the simulated stresses as

1 2Ty
X = §tan71 (L> ) (3.1)

Tex — Tyy

in which 7, and 7; are the shear and normal stress components of the
stress tensor. Eq. (3.1) is equivalent to x measured directly from birefrin-
gence under conditions where the stress-optic rule applies. The extinction
angle gives us an idea of how closely the chain segments are aligned with
the flow direction. Such an angle is important, among other reasons, be-
cause the force to stretch the chains is proportional to how closely the
chains are aligned at 45°. As the chains align more strongly with the flow
(x — 0), they are stretched less strongly by the flow. However, for any
given orientation they are pulled more strongly by increasing shear rate.
Hence, a shear flow field causes competing effects: stretching by shear
rate, and vorticity tending to align the chains in the flow direction.

We look further into the vorticity effect by keeping track of the tumbling
of the chains. For this purpose, we define a tumble-rate, €2,, as the average
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Figure 3.1. Sketch of chain tumble counting. Top: The origin of the count
is the initial position of Ry, the projection of the end-to-end vector on the
zy-plane. A tumble is counted when the tumble angle, 6, reaches 360°.
Bottom: If R,y turns in the negative direction (6 < 0), the new position of
R,y becomes the initial one, and the count starts over.

number of tumbles per chain per disengagement time, 7q. Obviously, this
requires a definition of a chain tumble which is illustrated in Figure 3.1.
That is, we define a chain tumble as a full, positive revolution of R,,, the
projection of the chain end-to-end vector on the plane perpendicular to
the neutral z-direction. Here, a shear flow with flow-direction z and shear-
direction y is assumed. Hence, for each chain in the simulated ensemble
we simply keep track of the initial orientation of R,,, and count a tumble
when R, has made a full revolution in the positive direction (the clockwise
direction in the figure). However, if R,, turns in the negative direction
and passes the initial position for the tumble count, we reset the count
and make this position the initial one for the tumble revolution. This
situation is shown in the bottom part of Figure 3.1.

The above definition provides a good measure of our physical picture
of chain tumbling in entangled polymer systems. Within this picture,
tumbling is a “rope-over-a-pulley” kind of motion initiated by a chain
end being grabbed by the flow after attaining an orientation in the shear
direction. We expect €2, to be of order unity at equilibrium, since chain
tumbling is governed by reptation in this case. This is confirmed by an
equilibrium simulation.

The other main subject of this work, besides looking at chain orientation,
is to study the amount of molecular stretching during and following a
shear deformation. This is done by introducing an overall stretch ratio, A,
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which we define as the ratio of the present average chain contour length
to the average contour length of a chain at equilibrium. In addition to the
average overall chain stretching, we look into how the molecular stretch is
distributed along the chain contour. We do this in terms of the monomer
density, Pmono, rather than a local stretch ratio, Ajoca;, which is the inverse
quantity. Thus, we define the local monomer density along the chain
contour as
(Qi)

-1
mono — )\_1 =\ 7" 5 3.2
P local ((Qi>eq )\) ( )

where (Q;) is the average length of the chain segment between beads
i and 7 + 1, and (Q;)eq is the corresponding equilibrium length. The
presence of A in Eq. (3.2) serves to decouple the local stretching from the
overall extension of the chain. Hence, pyon = 1 results everywhere if the
monomers are distributed uniformly along the contour length, whereas
Pmono > 1 denotes a segment, which is less stretched relative to A.

For both the monomer density and the chain contour length it should be
kept in mind that these quantities can vary only on the level of description
resolved by the model, whereas both the monomer density along the chain
contour and the total contour length are always fixed on a sufficiently
detailed level of description.

3.3 Results and discussion
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Figure 3.2. Start up of steady shear flow with De = 1.5. The transient shear
viscosity, 77, and first normal stress coefficient, \I!f', normalized by their
steady state values are plotted against the shear strain, y. Also shown are
the extinction angle, x, the overall chain stretching, A, and the tumble-rate,
Q,, normalized by its equilibrium value.



3.3. Results and discussion

37

3.3.1 Inception of steady shear and steady shear

Figure 3.2 shows the transient shear viscosity, ", and first normal stress
coefficient, ¥}, normalized by their steady state values, as functions of
the shear strain, v, following inception of steady shear for a slow defor-
mation. The Deborah number for the flow, which is the shear-rate made
dimensionless by the disengagement time, is De = 1.5. Similar curves
for several shear rates are given in the previous work (Hua et al., 1999,
Figures 1-3 and 10), which also contain experimental data that validates
the model predictions.

Also shown in Figure 3.2 is the extinction angle, x, which confirms that
the flow is indeed weak in this case. The steady state value of xy = 28.5°
does not differ dramatically from 45°, the isotropic value, which shows
that the chains are only weakly aligned with the flow. Furthermore, we
show in Figure 3.2 the overall chain stretching, A, and the tumble-rate,
),, normalized by its equilibrium value. It is seen that there is no signi-
ficant chain stretching, and that the tumble-rate stays at its equilibrium
value, which is expected because of the slow deformation rate. The rather
noisy tumble-rate signal is due to the fact that chain tumbling is a very
infrequently occurring event.

Figure 3.3 shows the same plots as in Figure 3.2 but for an intermediate
shear rate of De = 30. At the intermediate shear rate the chains align
much more with the flow as is seen in the extinction angle, which decreases
to a steady state value of 9.3°. A calculation of a Deborah number based
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Figure 3.3. Start up of steady shear flow with De = 30. The transient shear
viscosity, 7+, and first normal stress coefficient, U], normalized by their
steady state values are plotted against the shear strain, . Also shown are
the extinction angle, x, the overall chain stretching, A, and the tumble-rate,
Q,, normalized by its equilibrium value.
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on the Rouse relaxation time, 7g, rather than the disengagement time,
Ta, gives Degouse = De/3(Z)eq = 30/21 & 1.43 with (Z)eq = 7. Hence,
for De = 30 we expect the flow to be strong enough to induce molecular
stretching, not only in the transient phase but also at steady state, and
this is indeed seen from the A-curve in Figure 3.3.

Following the initially induced stresses the competing effects of orienta-
tion and stretching also become evident in Figure 3.3. Chain stretching,
A, tends to enhance both the shear stress and the first normal stress differ-
ence whereas the increasing orientation, as seen by the decreasing y-value,
decreases n* but increases ¥;. In the strain interval 1 < 7 < 2.5 stretch-
ing dominates orientation causing both n* and ¥ to grow. However, at
a strain of about 2.5, where ™ attains its maximum value, orientation
takes over, and the shear viscosity begins to drop. Soon thereafter, at
v & 3, the stretching reaches its maximum and starts decreasing because
of the growing inability of the flow to stretch the chains, which in turn
is due to the increased chain alignment with the flow. The first normal
stress coefficient continues to rise, though, despite the decreasing A, since
X is still decreasing, but as the change in  levels off, ¥} also peaks and
begins approaching its steady state value from above.

The above trends are consistent with the stress developments depicted
in Figure 3.2, where the shear rate is low. In that case we observe no
molecular stretching, and as a consequence there is no overshoot in the
first normal stress coefficient, which attains its steady state as the steady
state orientation is reached. The decreasing effect of orientation on the
shear stress does not kick in, however, until y differs sufficiently from the
isotropic value of 45°, which explains the overshoot in nt.

A somewhat surprising observation in Figure 3.3 is, that the tumble-
rate, €),, decreases significantly from a level around its equilibrium value
before rising again to a steady state level also below the equilibrium value.
The suppression of 2, by the flow may be attributed to an effect of chain
retraction following molecular chain stretching. As a chain retracts to
relax stretching, the chain ends are pulled into tube segments of greater
orientation, which, as a first effect, enhances the overall orientation to
further decrease the stretching ability of the flow.

Continuous chain stretching by the flow followed by chain retraction
causes relatively more destruction than creation of tube segments, which
decreases the ability of the chain ends to explore new configurations. The
reduced ability of the ends to explore new orientations is what slows down
the tumble-rate, since tumbles are initiated by chain ends being grabbed
by the flow after attaining an orientation in the shear-direction. This ex-
planation of the suppression of €2, also accounts for the increasing tumble-
rate later on when the stretching and retraction processes slow down to
their steady state values, and it is consistent with the fact that no change
in €, is observed at low shear rates, where chain stretching does not occur
(see Figure 3.2).



3.3. Results and discussion

39

77+/77’ \IJ;F/\IJI’ )\a Qz/Qz,eq

Strain,

Figure 3.4. Start up of steady shear flow with De = 300. The transient shear
viscosity, 7+, and first normal stress coefficient, U], normalized by their
steady state values are plotted against the shear strain, . Also shown are
the extinction angle, x, the overall chain stretching, A, and the tumble-rate,
Q,, normalized by its equilibrium value.

In Figure 3.4, we repeat the plots from the two previous figures, but for
a high shear rate of De = 300. It is immediately evident that the effect
of molecular stretching is much more pronounced at the high shear rate,
which makes all the trends observed in Figure 3.3 appear more clearly. The
effects of orientation and stretching are competing as previously described,
but in Figure 3.4, where the maxima of U] and A occur at the same
strain, it becomes evident, that the first normal stress difference is largely
governed by chain stretching as recognized by Pearson et al. (1991). For
the shear viscosity we observe an undershoot at the end of the transient
that may be attributed to the extinction angle, which also undershoots
and approaches its steady state value from below. A similar undershoot
in x, although of substantially smaller magnitude, is observed for the
intermediate shear rate in Figure 3.3.

The simultaneous occurrences of the minima in y and 2, revealed in
Figure 3.4 strongly suggest that the undershoot in the extinction angle is
caused by the undershoot in tumble-rate. As €2, decreases due to the sup-
pression mechanism described above, relaxation of orientation also slows
down which causes greater orientation of the average chain and is ma-
nifested in a smaller extinction angle. Conversely, x grows with the in-
creasing orientational relaxation as suppression of the tumble-rate ceases,
and consequently, the extinction angle follows the trend of the tumble-rate
until steady state is reached.

The extinction angle undershoot, which is observed experimentally only
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at shear rates where chain stretching occurs (Oberhauser et al., 1997,
Hua et al., 1999), is not captured by other advanced reptation theories
of the single-segment type, presumably because of an insufficient level of
description. One such theory (Mead et al., 1998) does not get the effect
at all, while another (Fang et al., 2000) shows some undershoot in Yy,
although it is too small and too abrupt.

In the latter theory, considered by Fang et al. (2000), the effect of con-
straint release is mimicked by a noise term added to the governing equation
for the tube dynamics, and undershoot in the extinction angle is observed
only if the CR mechanism is switched on. This is because the noise added
to the tube motion enables the chain segment to attain orientations in the
shear direction, which in turn allows the chain to be grabbed by the flow
and initiates tumbling in the same fashion the chain ends trigger tumbling
for the full-chain model. However, since the model is a single-segment
theory, the induced tumbling occurs on a too fast time scale because it
involves revolution of one tube segment only as opposed to the full-chain
model, where tumbling is a coordinated motion of the entire chain. This
fundamental difference explains why the undershoot in extinction angle
observed by Fang et al. is too small and too abrupt. Thus, it appears
that a full-chain description, in which segment connectivity is taken into
account, and which therefore allows for chain tumbling on the correct time
scale, may be necessary in order to capture the subtle effect of undershoot
in x quantitatively.
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Figure 3.5. Start up of steady shear flow. Strain magnitude, 7;, as a function
of shear rate for the occurrences of extrema in the transient shear viscos-
ity, nt, the transient first normal stress coefficient, ¥}, the overall chain
stretching, A, the extinction angle, x, and the tumble-rate, €2,.
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In order to further support the proposed relationship between the un-
dershoots in extinction angle and tumble-rate, we show in Figure 3.5 the
strain, 7,, at which these minima occur for several shear rates. The agree-
ment between the resulting curves for xmin and €2, min is remarkable con-
sidering the generally rather noisy tumble-rate signal in the simulations.
The occurrences of the maxima in the shear viscosity, the first normal
stress coefficient and the overall chain stretching are also shown in Fi-
gure 3.5. It is seen that the curves for \Iftmax and Apay coincide for De > 70
which verifies the recognition by Pearson et al. (1991), that for sufficiently
high shear rates, the first normal stress difference is governed by and is a
good measure of the overall chain stretching.
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Figure 3.6. Steady state shear. Overall chain stretching as a function of shear
rate.

The onset of chain stretching at steady state is expected to occur at a
shear rate equal to the inverse Rouse relaxation time, 7. Hence, keeping
in mind that for the model 74/mq = 3(Z)eq, We expect to observe chain
stretching when De > 21 (for (Z)eq = 7). This is confirmed by Figure 3.6,
in which we have plotted the steady state stretch ratio, A, against the
shear rate.

We obtain a more detailed view of the chain stretching at steady state in
Figure 3.7, which depicts the steady state distribution of monomers, pyono,
along the chain contour, s, for several shear rates. The figure shows that
for low shear rates (De < 15) the monomer density is uniform along the
contour. However, as the shear rate is increased and chain stretching be-
comes increasingly important, the monomers become more and more non-
uniformly distributed along the chain contour with the lowest monomer
density at the middle of the chain and the highest density at the ends.
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Figure 3.7. Steady state shear. Monomer density plotted against the position
along the chain contour, s, for several shear rates. Location of the chain
ends: s = 0,1. Location of the middle of the chain: s = 0.5.

The resulting non-uniform distribution of monomers may be attributed
to relaxation of the segmental orientation rather than the competing pro-
cesses of molecular stretching and chain retraction. We will later show that
retraction occurs simultaneously for all chain segments (see Figure 3.11),
and since the source of stretching is affine deformation of the confining
tube, inhomogeneous stretching on the molecular level is possible only if
the segmental orientation is non-uniform along the chain contour. Brow-
nian forces may also contribute to molecular stretching, but this effect is
zero on average. Hence, the non-uniform monomer density seen in Fi-
gure 3.7 not only expresses non-uniform stretching but also reveals a non-
uniform orientational distribution of segments along the chain contour
which in turn is explicable in terms of relaxation of segmental orientation.

The relative high monomer density at the ends confirms the common
reptation picture, that orientation relaxes from the ends towards the mid-
dle of the chain. The chain ends are readily relaxed due to reptation,
retraction and chain-length fluctuations and are thus never far removed
from the equilibrium configuration. This is in contrast to the chain middle,
which exhibits the largest molecular stretch (the lowest monomer density)
that can be relaxed only by the propagating relaxation from the ends or
by rarely occurring constraint releases.

The non-uniform distribution of monomers along the chain contour is
even more pronounced during the transient prior to reaching steady state
flow, which could be expected because of the large overall chain stretching
in that phase of the flow. This is seen in Figure 3.8, which shows the de-
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Figure 3.8. Start up of steady shear flow with De = 300. Monomer density
as a function of shear strain for different chain segments. “Segment 1” is the
end segment. “Segment 117 is located at the middle of the chain.

velopment of the monomer density in different chain segments for start up
of steady shear with a shear rate of De = 300. For (Z)eq = 7 discretiza-
tion of the chain implies NV = 21 chain segments. Hence, the evolution of
Pmono at the chain end is denoted by “segment 1” in the figure, whereas
“segment 11”7 shows the transient monomer density at the middle of the
chain. It is noted that pgon, for segment number 5 is close to unity at all
times during the flow.

The figure provides a detailed view of how the non-uniform distribution
of monomers along the contour is developed. Upon start up, all chain
segments are uniformly deformed, but soon thereafter the outermost seg-
ment begins to exhibit relaxation competing with the flow, and pmono
increases indicating relative less stretching at the ends, whereas the other
segments continue to be deformed in a uniform manner. As the flow pro-
ceeds, the relaxation processes competing with deformation reach more
segments from the chain end causing these to be stretched less relative to
the mid segments where p,0no continues to decrease, and the non-uniform
monomer density is established.

Switching off the constraint release mechanism alters the simulation re-
sults quantitatively but not qualitatively. That is, the magnitude of over-
all chain stretching and stresses is affected by enabling or disabling CR,
whereas the strain magnitude, at which the extrema for these quantities
occur, is not significantly influenced. Contrary to the model considered
by Fang et al. (2000) and discussed above, we still observe tumbling and
undershoot in the extinction angle when CR is switched off, since the
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ability of the chain ends to attain orientations in the shear direction is
not governed by the CR mechanism. However, as will be shown later (see
Figure 3.12) CR not only provides relaxation of orientation, but also aids
the process of chain retraction and consequently influences suppression
of the tumble-rate too. When CR is absent, tumble-rate suppression is
limited until the overall chain stretching peaks, and the undershoot in
), therefore occurs at a higher strain magnitude than in the presence of
CR. The shifted occurrence of the tumble-rate minimum in absence of CR
causes the minimum in extinction angle to shift accordingly in agreement
with the above discussions on the relationship between x and 2,. Hence,
all conclusions made to this point concerning the relationships between
microscopic dynamics and macroscopic properties are valid regardless of
the presence of CR.

At low to moderate shear rates switching off CR results in larger stresses
and increases the overall chain stretching both during the initial transient
and at steady state. This is expected, since constraint release offers an
extra relaxation mechanism in addition to reptation, chain retraction and
chain-length fluctuations. The trend is the same during the transient
following inception of flow at high shear rates. At steady state and suffi-
ciently high shear rates, however, we observe more chain stretching and
higher stresses when CR is enabled (also see Figure 8 of Hua et al. (1999)).

That may seem contradictory, since CR provides additional relaxation,
but here it must be kept in mind that the orientational relaxation due to
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Figure 3.9. Steady state shear flow with De = 150. Monomer density di-
vided by overall chain stretching for simulations with and without CR plot-
ted against the position along the chain contour, s. Location of the chain
ends: s = 0,1. Location of the middle of the chain: s = 0.5.
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constraint release, which may occur all along the chain contour, affects
the chain in more ways. When taking place at the chain ends, CR simply
adds to the rate at which the ends explore new configurations, just like the
other relaxation mechanisms. However, a constraint release on an interior
tube segment not only partially relaxes the orientation and stretching of
the chain fraction in this tube segment, it also enhances the ability of
the flow to subsequently stretch the chain even more. Furthermore, the
rate, at which CR occurs, grows with increasing shear rate because of
the CCR effect (for details of the CR mechanism see Hua and Schieber
(1998); Hua et al. (1999)). Thus, at high shear rates and steady state,
readily occurring constraint releases prevent the chains from aligning too
much with the flow, which sustains its ability to stretch the chains. The
CR effect therefore leads to an altered distribution of stretching and ori-
entation along the chain contour, which can be seen in Figure 3.9. Here
we plot the steady state monomer distribution against the position along
the chain contour for simulations with and without CR and a shear rate
of De = 150. The results are divided by the overall chain stretching for
easier comparison.

3.3.2 Cessation of steady shear

In Figure 3.10 we show the transient shear viscosity, n~, and first normal
stress coefficient, U7, normalized by their steady state values, as functions
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Figure 3.10. Cessation of steady shear flow with De = 300. The transient
shear viscosity, n~, and first normal stress coefficient, ¥;, normalized by
their steady state values, are plotted as functions of the time following ces-
sation of flow. Also shown are the extinction angle, , the overall chain
stretching, A, and the tumble-rate, €),, normalized by its equilibrium value.



3.3. Results and discussion

46

of the time, ¢, following cessation of steady shear flow with De = 300.
Furthermore, we plot the extinction angle, x, the overall chain stretching,
A, and the tumble-rate, 2,, normalized by its equilibrium value, to make
the analogy with Figure 3.4 complete. The shear rate of the flow preceding
the depicted stress relaxation is of less importance though, as analogous
plots for other shear rates show exactly the same trends and differ only
quantitatively.

In the figure, we first note that while chain retraction occurs (while A
decreases), the stresses relax in a manner such that the extinction angle
decreases. This behavior of xy was already observed in the previous paper
and is consistent with experimental data (Hua et al., 1999, Figure 16).
The decreasing extinction angle upon cessation of steady shear flow can
be explained by means of the non-uniform distribution of stretching and
orientation along the chain contour at steady state discussed in Figure 3.7
in terms of the non-uniform monomer density. As chain retraction takes
place, the outermost, least oriented tube segments are destroyed first,
while the chain retracts into tube segments of greater orientation causing
x to drop.

Following completion of chain retraction, suppression of tumbling ceases,
and the tumble-rate slowly approaches its equilibrium value. Meanwhile,
the extinction angle first levels off before the signal becomes noisy and
finally undefined due to the stresses approaching zero (also see Eq. (3.1)).

We proceed to look at the chain retraction process itself in more detail.
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Figure 3.11. Cessation of steady shear flow with De = 300. Monomer density
for different chain segments as a function of time following cessation of flow.
“Segment 1” is the end segment. “Segment 11” is located at the middle of the
chain.
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Figure 3.11 shows the development of the monomer density in different
chain segments following cessation of steady shear with a shear rate of
De = 300. Like in Figure 3.8, pmono at the chain end is denoted by
“segment 17, and “segment 11”7 denotes the transient monomer density
at the middle of the chain. Figure 3.11 provides evidence that chain
retraction occurs simultaneously for all chain segments despite the non-
uniform distribution of stretching along the chain contour prior to the
relaxation.

A closer look at the A-curve in Figure 3.10 reveals an undershoot in the
overall chain stretching before the equilibrium value, A = 1, is reached.
The undershoot is seen in Figure 3.12, where we plot the overall chain
stretching from Figure 3.10 again, but for simulations both with and with-
out CR. Since no undershoot is observed when constraint release is dis-
abled, the undershoot may be attributed to CR and can be explained
as follows. Upon termination of flow there are no processes left to keep
the chains stretched. Thus, the chains retract rapidly causing lots of de-
struction of tube segments by abandonment, which in turn triggers a lot
of constraint release. It is this combination of the fast retraction pro-
cess and additional relaxation provided by CR, which makes the chains
shrink excessively and produces the undershoot in A\. The effect, although
less pronounced, is also observed for moderate shear rates, where chain
stretching is still important.

Presumably, the observed undershoot in chain stretching following ces-
sation of steady shear and the explanation thereof will be encountered

1-8 v LI """I LI LI ""lll T T IIIIIII T
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15
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11+

i+ NN
09 1 Lol 1 Lo sl 1 Lo sl 1
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Figure 3.12. Cessation of steady shear flow with De = 300. Overall chain
stretching, for simulations with and without constraint release (CR), plotted
against the time following cessation of flow.
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for any implementation of constraint release involving binary chain-chain
interactions. It remains an open question, however, whether a different
implementation of CR, such as the one utilized by Fang et al. (2000), will
yield an undershoot in A\ as observed here.

In the previous paper it was pointed out that stress relaxation following
cessation of steady shear flow exhibits “time-strain-rate” separability, after
chain retraction has ceased, by means of a generalized damping function,
he(%). The separability resembles the time-strain separability for stress
relaxation following a nonlinear step strain, which utilizes the traditional
damping function h(y). Furthermore, it was suggested that an estimate
of the amount of chain stretching in steady shear could be obtained by
comparing h.(¥) and h(7), since for the latter, A can be calculated ana-
lytically. We make such a comparison in Figure 3.13, which depicts the
overall chain stretching at steady shear or immediately after imposing a
step shear strain as functions of the generalized and traditional damping
functions respectively. In the figure we have used two versions of h.(%):
one based on relaxation of shear stress, 7,,, and another based on the
principal stress, 7, = (472, + (Tax — Tyy)?)"/%. Unfortunately, neither of
the generalized damping functions exhibit the same functionality of A as
the analytic one for h(7y), which renders the proposed method of estimat-
ing the amount of chain stretching in steady shear impossible.

The reason why the proposed method fails, despite analogies between

6 — T T T T T T} T I
¥ h() \
5 --¢-- he(¥) (shear stress) ! -
--©-- h(¥) (principal stress) *
4 L -
& (0]
~< \
3+ \ 3 —
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1h 0O 0-0--cocll
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Figure 3.13. Relaxation of stress. Overall chain stretching as a function of
various damping functions. h(y) is the damping function obtained from step
strain simulations. h.() is the generalized damping function obtained from
cessation of steady shear simulations and based on either 7,;, the shear stress
(0), or 7 = [472; + (Tae — Tyy)?]1/?, the principal stress (o).
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the two cases of relaxation, is the difference in chain configurations im-
mediately after the two types of deformation are terminated. In case of
steady shear, we have already shown that the distribution of stretching and
orientation is non-uniform along the chain contour (see Figure 3.7). The
physical picture is quite different for the case of step strain, however, since
the configuration distribution prior to the step is isotropic. Consequently,
after applying the step strain, all segments have the same distribution re-
gardless of their position along the chain, and the distribution of stretching
and orientation is therefore uniform along the contour. The development
of the extinction angle during relaxation reveals the difference between
the two cases. Following cessation of steady shear, x decreases as shown
in Figure 3.10, whereas the Lodge-Meissner consistency relation (Lodge
and Meissner, 1972), which is satisfied by the model (Hua and Schieber,
1998), implies a constant x value during relaxation after a step strain.

3.3.3 The stress-optic rule

The empirical stress-optic rule, which constitutes a linear relationship be-
tween the stress and refractive index tensors, is generally assumed to
be obeyed by entangled systems of linear polymers in shear deforma-
tions (Janeschitz-Kriegl, 1983). Violation of the rule may be expected only
under conditions involving excessive molecular chain stretching, where fi-
nite extensibility becomes important. The model considered here seems
suitable for providing an independent check of the validity of the stress-
optic rule in shearing flows, because of its ability to predict quantitatively
stresses and to capture nearly all viscometric flows while avoiding assump-
tions such as independent alignment or consistent averaging.

Hence, we perform a check to see whether the model predicts the stress-
optic rule during inception of steady shear flow with a high shear rate,
which is the case where we have observed the largest amount of chain
stretching in this study (see Figure 3.4), and thus the situation where a
deviation from the stress-optic rule is most likely to occur. The Kramers
type stress tensor for the model reads

o[ HR  u(uls)
L </ T (kD) Q60 ()P > (33)

which is to be compared with the refractive index tensor

= A

Here, u(s) is the orientation vector of a tube segment, n is the number
density of polymer, H is the Hookean spring constant, kg is Boltzmann’s
constant and 7T is temperature.

The model does indeed predict a violation of the stress-optic rule in the
transient start up phase of the flow as seen in Figure 3.14. Here, we plot




3.3. Results and discussion

a0

T T T T
1.2 (7'11 - 7'22)/(7111 - n22) -
To1 /M1 ——---
1.15 _
§
= 1.1 -
105 T T =
1t | | | | | n
0 50 100 150 200 250 300

Strain,

Figure 3.14. Start up of steady shear flow with De = 300. Ratios of corre-
sponding components of the stress tensor, 7, and refractive index tensor, n,
are plotted against the shear strain as a check of the stress-optic rule.

the ratio of corresponding components of the stress and refractive index
tensors during start up of steady shear with a shear rate of De = 300,
which reveals a deviation of about 22% for both the shear and first normal
difference components during the transient. In the figure we also note
that a deviation from the stress-optic rule of 5.5% is predicted even at
steady state, where violations of the stress-optic rule are not reported
experimentally. However, for all shear rates the predicted deviation at
steady state is less than the experimentally achievable standard error, and
a violation of the stress-optic rule may therefore not be observed in this
case. The predicted deviation during inception of steady shear is strongly
dependent on shear rate ranging from only 8.5% for De = 150 to as much
as 60% for De = 600.

The observed error could be explained, at least partially, in terms of
one of the few quantitative limitations of the model, which is evident in
Figures 1 and 3 of Hua et al. (1999). Here, it is seen that while the model
captures perfectly the occurrences of transients following inception of flow,
the magnitude of the stress transients is somewhat overpredicted. The too
large stresses may be attributed to the fact that the chain is modeled as
a constant number of beads and springs implying a constant number of
friction points between the test chain and the confining tube under all
circumstances. Conversely, the physical picture of convective constraint
release suggests that the number of contact points between the test chain
and its tube decreases with increasing shear rate.

On the other hand, to the best of our knowledge experimental data
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has yet to be reported in literature that confirms either the validity or
a violation of the stress-optic rule during inception of steady shear flow
at high shear rates. Despite the stress overprediction by the model, the
predicted deviation from the stress-optic rule seems severe enough that
it should be detectable at experimentally accessible shear rates and we
encourage such experiments to be made.

3.4 Conclusions

We have studied a previously proposed self-consistent reptation model
that includes chain stretching, chain-length fluctuations, segment connec-
tivity and constraint release, and which requires no further assumptions
or approximations in order to obtain results. While it was made clear
in an earlier paper (Hua et al.,, 1999) that the model is able to capture
nearly all trends observed experimentally in transient and steady shearing
flows, the focus of the present work has been entirely on the model. That
is, we have studied in detail the physics and underlying dynamics of the
model to explain the macroscopically observed rheological properties in
terms of chain behavior and dynamics on the molecular level. The main
conclusions made during this study can be summarized as follows:

1. The model confirms the idea (Pearson et al., 1991), that the first nor-
mal stress difference overshoot following inception of steady shear at
moderate and high shear rates is caused by molecular chain stretch-
ing (Figures 3.3 — 3.5). No overshoot is observed at low shear rates
where chain stretching is unimportant (Figure 3.2).

2. Chain retraction induced by molecular stretching reduces the ability
of the chain ends to explore new configurations. Therefore, the pre-
sence of chain stretching suppresses the rate at which chains tumble
during flow (Figures 3.3, 3.4 and 3.10).

3. The transient undershoot in the extinction angle during start up of
steady shear flow at high shear rates may be attributed to chain
tumbling (Figures 3.4 and 3.5). The success of the considered model
in predicting this undershoot suggests that a full-chain description
may be necessary in order to capture this subtle feature quantita-
tively.

4. Except for low shear rates at steady state, we observe a non-uniform
distribution of monomers along the chain contour in steady shear as
well as during start up of and following cessation of steady shear
(Figures 3.7, 3.8 and 3.11).

The non-uniform monomer distribution along the chain contour makes
stress relaxation following cessation of steady shear fundamentally
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different from stress relaxation following a step shear strain (Fi-
gure 3.13).

5. During relaxation following cessation of steady shear the overall
chain stretching exhibits an undershoot when approaching the equi-
librium value (Figure 3.12). The effect is caused by the constraint
release mechanism (CR) which does otherwise not influence any of
the trends discussed in this work.

Finally, we notice that the model predicts a violation of the stress-optic
rule during start up of steady shear with high shear rates. Since we have
been unable to find experimental data to either verify or reject this pre-
diction, it remains unclear though, if this violation of the stress-optic rule
is real or merely an artifact of the model which overpredicts stresses some-
what under these conditions.

All of the above observations and discussions of microscopic dynamics
and their influence on the macroscopic rheological properties are thought
of as inspirational guidelines for future modeling based on dynamics on
the molecular level.
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4

Exponential Shear Flow of
Linear, Entangled Polymeric
Liquids

A previously proposed reptation model is used to interpret expo-
nential shear flow data taken on an entangled polystyrene solution.
Both shear and normal stress measurements are made during ez-
ponential shear using mechanical means. The model is capable of
explaining all trends seen in the data, and suggests a novel analysis
of the data. This analysis demonstrates that exponential shearing
flow is no more capable of stretching polymer chains than is incep-
tion of steady shear at comparable instantaneous shear rates. In
fact, all exponential shear flow stresses measured are bounded quan-
titatively by stress measurements taken during inception of steady
shear. Information taken from the model about chain stretching
suggests that normal stress measurements are strong indications of
stretching, whereas shear stress measurements are indicative of both
chain stretching and segment orientation. '

4.1 Introduction

There has been considerable interest in the exponential shearing flow of
viscoelastic liquids during the past fifteen years (Doshi and Dealy, 1987,
Ziille et al., 1987; Demarquette and Dealy, 1992; Venerus, 2000). Most
interest centers around the desire to stretch chains in a manner similar
to that accomplished in elongational flows, which are rather difficult to
perform. On the contrary, many shear rheometers can be programmed to
accomplish exponential shearing flow.

Arguments supporting the expectation of a similarity between the two
flows rely on the same time dependence of the two invariants of the Cauchy
strain tensor in the two flows (the third invariant being constant for an
incompressible fluid). However, such observations do not take into account
the vorticity arising in shearing flows—an effect that has not escaped most
researchers, but is difficult to assess quantitatively (Astarita, 1979).

L This part of the work has been published in J. Rheol., 44(5), 1043-1054 (2000).
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We argue here that exponential shearing flow does indeed stretch chains.
However, chains are equally stretched during inception of steady shear. To
support this argument, we demonstrate the following.

1. Using a successful reptation model with a single adjustable parame-
ter fit using linear viscoelasticity (LVE) (Hua and Schieber, 1998;
Hua et al., 1998, 1999), we are able to obtain good agreement with
exponential shear flow data.

2. When plotted as a function of the instantaneous shear rate, model
predictions show that the segment orientations, as seen in the extinc-
tion angle, rapidly approach the steady-state orientations observed
in steady shear flow.

3. Model predictions show that chain stretching grows monotonically
with time, and follows along a master curve when plotted as a func-
tion of shear rate. The master curve is exactly that seen in steady
shear flow. Similar results are seen for both the simulated and mea-
sured extinction angle.

4. The previous two observations suggest plotting the shear stress and
first normal stress difference as functions of instantaneous shear rate
in exponential shearing flow. When this is done, we see that both
the shear stress and the normal stress follow the steady shear flow
stresses, and do not exceed the stresses observed during inception of
steady shear.

5. Based on these observations, we conclude that exponential shearing
flow stretches entangled, linear polymer chains no more than does
inception of steady shear.

These are our conclusions. We describe the experimental details and the
simulation methods in Sections 4.2 and 4.3. The results of Sections 4.2
and 4.3 are presented in Section 4.4, and finally, an analysis is given in
Section 4.5.

4.2 Experiment

The test fluid is a solution in tricresyl phosphate of nearly monodisperse
polystyrene with a molecular weight M,, of 1.9 x 10® (polydispersity in-
dex of 1.2) at a polymer concentration n of 0.135 g/cm®. Extensive data
sets in single- and double-step strain flows, inception of steady shear,
steady shear, and cessation of steady shear for this fluid have been re-
ported (Venerus and Kahvand, 1994a,b) and were found to be in excellent
agreement with predictions from the model considered in this study (Hua
and Schieber, 1998; Hua et al., 1998, 1999).
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Rheological experiments were made on a Rheometrics Mechanical Spec-
trometer (RMS-800). Torque and axial thrust data from tests conducted
in the cone and plate geometry were converted to values of shear stress
0° and first normal stress difference Ny using established relations. The
effects of transducer compliance on transient normal stress measurements
were effectively eliminated by appropriate selection of the cone diameter
and cone angle (Venerus and Kahvand, 1994b; Kahvand, 1995), although
this limited somewhat the range of available shear strains. All tests were
conducted at 23°C and reported data are averages of at least three runs.

For an exponential shear flow, the strain is given by

v(t) = exp (at) — exp (—at), (4.1)
where « is a parameter governing the shear acceleration.

The exponential shear history given in Eq. (4.1) was generated by con-
trolling the angular position (dynamic mode) of the actuator in the RMS-
800. In this mode, the range of angular rotation of the plate is 0.5 rad.
The full range of angular rotation was exploited by first rotating the plate
to one extreme (-0.5 rad) and holding the strain constant for a period of
time (600 s) long enough for the fluid to relax (Venerus, 2000). This angu-
lar position established a new zero from which the plate could be rotated
(in the positive direction) one full radian.
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Figure 4.1. Measured strain for two exponential shear experiments.

For shear stress measurements a cone angle of 0.04 rad was used, allowing
a maximum strain of 25; for normal stress measurements a cone angle of
0.1 rad was used, making the maximum strain 10. Figure 4.1 shows the
measured exponential strain history for two values of o compared to the
ideal history given in Eq. (4.1). From this figure it appears that deviations
from the ideal strain history are small.
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4.3 Theory

The model consists of N + 1 beads attached by N finitely extendible en-
tropic springs in a constraining tube. Therefore, there are N + 1 dynamic
variables describing the monomer density in the tube, and 3Z dynamic
variables describing the length and orientation of each tube segment. The
beads experience frictional forces with the affinely deforming tube, en-
tropic spring forces, and Brownian forces. Dynamics of the chain ends
determine death and creation of the tube segments according to the stan-
dard reptation picture. In addition, a mean-field constraint release (CR)
mechanism similar to that pictured by Tsenoglou (1987) and des Cloizeaux
(1988) weakly couples the chains. A Kramers-type expression is used to
relate chain dynamics and macroscopic stress. The resulting expression
is closely related to that derived for networks. The reader is referred to
articles by Hua and Schieber (1998) and by Hua et al. (1998) for more
details of the model.

Before simulations begin it is necessary to specify three parameters in
the model: (Z),, the average number of entangled chain segments at
equilibrium; N 4 1, the number of beads; and b, the finite extensibility
parameter. The first depends upon the chemistry of the chain, and may
be found in standard texts (Ferry, 1980), based upon molecular weight
M and entanglement molecular weight M, of the system studied. The
second parameter is found from the first as N = 3(Z)eq, as before. The
third parameter may also be found from standard references, and depends
upon molecular weight and stiffness of the chain.

In this work, we use (Z),, = 7, which is reasonably consistent with the
value estimated for the entangled polystyrene solution discussed above.
The finite extensibility parameter, b, is picked to be 150 in all simula-
tions. For N/(Z),, = 3, this value corresponds to 150 Kuhn steps per
entanglement molecular weight M., or 17 monomers per Kuhn step. This
value of b is consistent with the experimental system considered (Flory,
1988, p.39). Too small of a value was used by Hua et al. (1999); however,
the results given previously were not sensitive to finite extensibility, as a
comparison with b = oo results showed.

From a single equilibrium simulation, the final adjustable parameter can
be found: the disengagement time, 74. Therefore, for all nonlinear flow
comparisons (previously, or in this article), no adjustable parameters have
been used.

The simulated flow field is v, = v, = 0, and v, = ¥(t)y, where the dot
indicates a time derivative. Because the shear rate can change rather dra-
matically during exponential shear, an adaptive time-step-size algorithm
was adopted during the simulation. The time-step size was chosen to al-
ways be the minimum of two criteria. The first criterion was a constant
size ranging from 0.4\y for the lowest o value to 0.05Ay for the highest
(Mg = 7274/2N? is the Hookean time constant associated with a single
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elastic chain segment). The choice was found to show convergent stress
calculations during inception of steady shearing flow for low to mode-
rate Deborah numbers, respectively. The second criterion prevented the
total strain increment during a time step from exceeding 0.02. Simula-
tion results showed no discernible sensitivity to further restrictions in the
time-step-size criterion.

4.4 Results

Time const, A;/74 Weight, ¢;/Gn Standard error
0.00066667 0.39876 0.017037
0.0021082 0.047667 0.015275
0.0066667 0.088504 0.011750
0.021082 0.113591 0.011750
0.066667 0.109303 0.011750
0.21082 0.088596 0.010869
0.66667 0.130553 0.006756
2.1082 0.022917 0.002144
6.6667 0.0001034 0.0002232

Table 4.1. Discrete relaxation spectrum fit to G*(w) experiments.

To characterize the linear viscoelastic properties of the polystyrene solu-
tion, small-amplitude oscillatory shear flow measurements were performed,
and these data were used to fit the relaxation modulus to a discrete spec-
trum of relaxation times (Venerus and Kahvand, 1994a). The resulting
spectrum is given in Table 4.1, in which the weights, g;, are normalized
by the plateau modulus, Gy = ), ¢; ~ 3400Pa. To find the linear vi-
scoelastic predictions of the model, an equilibrium Brownian dynamics
simulation exploiting linear response theory (Résibois and Leener, 1977,
p-302) was used to calculate the relaxation modulus directly. The results
are shown in Figure 4.2. These results were used to fit the discrete spec-
trum shown in Table 4.2. Also shown in the figure is the result of this
fit, and the resulting residuals. All linear viscoelastic (LVE) results shown

Time const, A;/7q Standard error Weight, g;/nkTN  Standard error

0.0030954 0.0004732 0.01726 0.00162
0.047955 0.0010604 0.04132 0.00050
0.51891 0.003926 0.12490 0.00063
2.2252 0.09639 0.01461 0.00082

Table 4.2. Discrete relaxation spectrum fit to the G(¢) simulation results
shown in Figure 4.2.
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Figure 4.2. Relaxation modulus simulated using linear response theory for the
reptation model. Shown in the inset are the residuals for the fit, [Ggim (t) —
Gt (t)]/nkTN.

below are taken from the experimental and simulated spectra in Tables 4.1
and 4.2 respectively.

From the simulated spectrum in Table 4.2 we obtain 7y = ), g\ =~
0.09947gnkTN and U;5 = 2. giX? =~ 0.21273nkTN. This provides an
estimate for the mean relaxation time 7, = Uy ¢/2n ~ 1.06874, which can
be compared with the corresponding experimental value. The weighted
averages of the relaxation time constants found for the polystyrene solu-
tion yield ny = 8400 Pas, ¥y o = 260000 Pas? and 7, = W19/27 ~ 15s.
Therefore, from linear viscoelastic measurements alone we fit the only
adjustable parameter in the model: 74 &~ 15s. It is noticed that the
experimental results found here are slightly different from previously re-
ported values (Venerus and Kahvand, 1994a), probably because of slight
evaporation of solvent.

4.4.1 Shear stress

At least three different exponential-shear-flow viscosities have been pro-
posed to date. Each of these material functions is intended to test for
strain hardening in a material. The most demanding criterion for strain
hardening of these three material functions, suggested by Doshi and Dealy
(1987),

o®(a, t)

ETON 2
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Figure 4.3. Viscosity function suggested by Doshi and Dealy (1987) for expo-
nential shearing flow. Simulation results are shown as solid lines and data as
symbols. The bold line is viscosity during inception of steady shear for zero
shear rate.

is shown in Figure 4.3. The figure shows why this material function is so
demanding: the shear stress must grow faster than the ever-accelerating
shear rate to exhibit an upturn in the curves. Similar results were seen
by Demarquette and Dealy (1992). For normalization of the theoretical
predictions, the zero-shear-rate viscosity is estimated from inception of
steady shear flow to be approximately 0.1292 7qnkT N.

We first note that the model is able to capture this material function
reasonably well, although the shapes of the curves are not particularly de-
manding. We also note that the simulations are able to obtain arbitrarily
large shear rates and strains, whereas the experimental data are limited
by the capabilities of the rheometer.

The ability of the model to extend beyond the data to longer times is
more important in the second material function, ¢®/2a, which was first
considered by Ziille et al. (1987), and is shown in Figure 4.4.

Here we find that the model captures several subtle features of the data,
such as the dependence of the position of the local maximum on a. In-
terestingly, the model shows a further increase in shear stress at strains
currently inaccessible experimentally. These results will be made clear in
Section 4.5.

4.4.2 Normal stress

The first normal stress difference N¥ normalized by 4a? is shown in Fi-
gure 4.5. Using birefringence Demarquette and Dealy (1992) measured
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The simulations are on the top, and the data are on the bottom.



4.4. Results

64

100 pF————rm———

10 ;_ /'//. _;

= 1 - ;

It I ]

s OlF E

o i .

< 0.01 a3 3

0.001 F -

0.0001 [ 1 Lol 1 Lol 1 Lol 1 1 ||||||-
0.01 0.1 1 10 100

Dimensionless time, t/74

100 =

:

=3 1 u ]

5 - + ]

T 01 X

< i X

= : a

0.01 F o :

i = 0.045 i

0.001 f s

P 1LVE .

0.0001 - H Lol 1 Lol 1 Lol 1 L1 1 1111

0.01 0.1 1 10 100

Dimensionless time, /74

Figure 4.5. Dimensionless first normal stress as a function of dimensionless
time. The simulations are on the top, and the data are on the bottom.



4.4. Results

65

the third normal stress difference. The normal stress data shown here
appear to be the first of their kind in exponential shear for an entangled
polymer solution. To normalize the theoretical curves, the zero-shear-rate
first normal stress coefficient was estimated from steady shear flow results
to be approximately 0.403 73nkTN.

Except at the lowest values for a, the data show little deviation from
the LVE curve, whereas the model predicts rather large upturns at the
experimentally inaccessible longer times. These upturns are important
indications of chain stretching, as is shown below.

For the time being we may conclude that the reptation model is able to
capture the measured stresses well. However, in Section 4.5 we show that
the model captures important connections to steady shear flow.
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4.5 Analysis

The key to understanding the data shown in Section 4.4 lies in understand-
ing how vorticity affects chain-segment orientation and chain stretching.
A reasonable measure of the average orientation of chains is the extinction
angle, x, as estimated from stresses

1
X=3 tan™'(20°/N}). (4.3)

The angle x, which could also be measured from birefringence, gives us
an idea of how closely the chain segments are aligned with the flow di-
rection. Such an angle is important, among other reasons, because the
ability of shear flow to stretch the chains is proportional to how closely
the chains are aligned at 45°. As the chains align more strongly with the
flow (x — 0), they are stretched less strongly by the flow. However, for
any given orientation they are pulled more strongly by increasing shear
rate. Hence, the flow field causes competing effects: stretching by shear
rate, and vorticity tending to align the chains in the flow direction.
Figure 4.6 shows the extinction angle as a function of instantaneous shear
rate for several values of a. Since the chains begin at equilibrium, their
initial extinction angle must be isotropic: 45°. Hence, every curve begins
at (¥ = 2a, x = 45°) in this plot. We see that the model captures the
shapes of these curves nicely. But most interesting is the observation that
the extinction angle approaches the steady-state extinction angle found

45 T X T T I T T T I T T T
IS | E ag =150 —— -
‘ i 4.5 —%—
- i -
3 t 1.5 —%—
2 30 + 0.45 —&— N
E 95 i 0.15 ——  _
o0
o + Xss, data ----[3--
< 20 + Xss, sim —-©- - T
=< 15 ]
10 - -
o .
0 1 Ll 1 = 1
0.1 1 10 100 1000 10000

Dimensionless shear rate, De = 747y

Figure 4.6. Extinction angle as a function of shear rate for several values of
the shear acceleration a. As before, simulations are shown as solid lines and
data as symbols. Also shown is the steady-state extinction angle xss found
in steady shearing flow (simulation: circles; data: squares).
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Figure 4.7. Normalized average chain stretching as a function of shear rate
for several values of the shear acceleration as predicted by the model. Also
shown are the predictions for chain stretching in steady shear (o), and the
maximum stretching seen during inception of steady shear (e).

from steady shear in an overdamped fashion. This approach is not too
surprising, since the extinction angle during inception of steady shear is
only slightly underdamped (Hua et al., 1999), and here the shear rate
keeps accelerating.

Unfortunately, there are insufficient normal stress data to test the model’s
predictions completely. However, the lower values of « are clearly in agree-
ment with the model, and the higher values are at least consistent.

Since the chains’ orientations are well described by the steady shear ob-
servations, we might expect the stretching of the chains to exhibit similar
behavior. Indeed, Figure 4.7 shows the model’s predictions of average
chain stretching (relative to equilibrium) as a function of instantaneous
shear rate for several values of o. Again, we find that the simulation re-
sults follow along a master curve determined by steady shear flow results.
However, just as during inception of steady shear, the largest a exhibits an
overshoot in stretching, relative to the stretching at steady shear. Unfor-
tunately, no experimental measure of stretching is available to test these
results.

On the other hand, this physical picture does suggest a simple com-
parison of the stresses to test our hypothesis: plot both unadulterated
shear stress and first normal stress difference as functions of shear rate
(aside from a possible time scale factor and a stress factor), and include
the steady shear stress data. These comparisons are made in Figures 4.8
and 4.9.
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eration. Also shown are the curves for steady shear stress oy and maximum
shear stress omax during inception of steady shearing flow. The simulation
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Figure 4.9. Normal stress (made dimensionless by LVE properties) as a func-
tion of dimensionless shear rate for several values of the shear acceleration.
Also shown are the curves for steady normal stress Ni g, and maximum nor-
mal stress N1 max during inception of steady shearing flow. The simulation
results are on the top, and the data are on the bottom.
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The model shows that the shear stress rises very quickly to follow the
master curve determined by the steady shear curve. It also shows that
large values of o exhibit an overshoot. However, the magnitude of the
overshoot is enveloped by the overshoot that is exhibited during inception
of steady shear. The simulations are again in good agreement with the
experimental data. Similar behavior is seen in the normal stress, although
there is somewhat less experimental data to confirm the model.

We therefore conclude that exponential shearing flow stretches chains no
greater than does inception of steady shear. Neither does it give rise to
any greater stresses.
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Figure 4.10. Simulated normal stress as a function of dimensionless time for
several values of the shear acceleration. Also shown is the corresponding
average chain stretching normalized by the equilibrium chain length.

It may also be of practical importance to experimentalists to be able to
estimate when chain stretching is important. It is clear from the above
figures that shear stress is not a reasonable measure. However, Figure 4.10
shows that the model exhibits a strong correlation between normal stress
and stretch for exponential shear. Also, note that the rapid upturn in
stretch, and hence also N7, occurs when the instantaneous shear rate
becomes large compared to the Rouse relaxation time: 4y = y74/N > 1.
Similar observations were made for inception of steady shear (Hua et al.,
1999).

Finally, we consider the viscosity proposed by Doshi and Dealy (1987) for
exponential shearing flow, which is the difference in the principal stresses
over the instantaneous shear rate,

V40 (a,1)? + NE(a, 1)?

ni(a,t) = (D) : (4.4)
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Figure 4.11. Viscosity based on the principal stress difference as predicted by
the model for several values of the shear acceleration parameter a.

The normal stress data do not extend far enough in strain to examine
whether this material function ever grows larger than the LVE curve.
However, the model may be simulated for much greater times. Figure 4.11
shows the model predictions for n$(c,t) versus time. Although the vis-
cosity does begin to rise again, it never reaches the LVE predictions, even
for strains up to 2900 for 7yo¢ = 1.5! In fact, at these large strains, the
material function appears to reach a plateau or downturn. This lack of
“strain-rate hardening” occurs despite the fact that the chains are stretch-
ing very dramatically.

The model therefore predicts that the proposed viscosity will never ex-
hibit strain-rate hardening behavior in any practicable experiment for lin-
ear, entangled polymer chains in shear flow.
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D

A Full-Chain, Temporary
Network Model with Shiplinks,
Chain-length Fluctuations,
Chain Connectivity and Chain
Stretching

A full-chain, temporary network model is proposed for nonlinear
flows of linear, entangled polymeric liquids. The model is inspired
by the success of a recent reptation model, but contains no tubes.
Instead, each chain uses a different (and smaller) set of dynamic
variables: the location of each entanglement, and the number of
Kuhn steps in chain strands between entanglements. However, the
model requires only a single phenomenological parameter that is fit
by linear viscoelasticity. The entanglements are assumed to move
affinely, whereas the number of Kuhn steps wvaries stochastically
from tension imbalances and Brownian forces. In the language of
reptation, the model exhibits chain connectivity, chain-length fluctu-
ations, chain stretching, and tube dilation. Constraint release is not
considered in this version of the model, but it is straight forward to
subsequently include this concept in the theory. A simulation algo-
rithm is described in detail, and some linear viscoelastic predictions
of the model are made. Finally, we make a few flow simulations
and consider possible future generalizations of the proposed model.

5.1 Introduction

A recently proposed reptation model (Hua and Schieber, 1998) has been
shown to make good quantitative comparison with stresses in double-step
strains (Hua et al., 1998), inception and relaxation of steady shearing
flows, steady shearing flows (Hua et al., 1999), and exponential shear flows
(Neergaard et al., 2000). In fact, the model was essential in guiding our
understanding of exponential shear flows and their connection to steady
shearing flows (see Chapter 4 of this thesis).



5.2. Model Description

74

This previous model incorporates chain connectivity, chain-length fluc-
tuations, chain stretching and constraint release; this last effect is incor-
porated in a self-consistent, mean-field way, but the other effects follow in
a self-consistent manner from the mechanical model proposed. The model
uses one phenomenological parameter: a monomeric friction coefficient
that is fixed from equilibrium data. All nonlinear viscoelastic predictions
are then made without adjustable parameters.

Despite the good agreement with experiments on an entangled poly-
styrene solution, some drawbacks remain. First, the model is somewhat
expensive computationally, prohibiting its use in most complex geometry
calculations. Secondly, there are still some discrepancies with data: the
steady-state extinction angle approaches zero with increasing shear rate
instead of reaching a plateau, and the magnitude of the overshoots in vi-
scosity and normal stress during inception of steady shear is overpredicted.

The physical implications of these discrepancies with experiment are
not yet clear. The discrepancy in overshoot magnitude may be related
to excessive stretching of the chain during the transient flow. This ex-
tra stretching may be related to the existence in the model of artificial
Brownian particles, or beads in the chain. Surprisingly, models contain-
ing very similar physics, but on a lower level of description do not show
this problem (Mead et al., 1998; Ottinger, 1999; Fang et al., 2000).

In this work, we propose a new mean-field model which incorporates
the useful features of the earlier tube model, but avoids these drawbacks.
In the following section we describe the dynamical model proposed. The
evolution equation for the model is found, and in Section 5.3 explicit
expressions for the chain free energies are considered. We describe a si-
mulation algorithm in Section 5.4, and using this algorithm we investigate
some linear viscoelastic properties of the model in Section 5.5. A problem
with the free energy expressions is discussed in Section 5.6. An alternative
expression for the free energy is suggested, and some shear flow simulations
are made. Finally, in Section 5.7 we discuss options for future work and
possible generalizations of the proposed theory.

5.2 Model Description

The model uses the following dynamical variables for a single mean-field
chain.

e There are Z(t) entanglements in the chain. Hence, there exist Z —1
entangled strands, and a total of Z 41 strands in the network. This
value can fluctuate, but has an equilibrium value Zeq = (Z)eq given
by the molecular weight M divided by the entanglement molecular
weight M,. Usually it is more convenient to use the labels for the
front and back strands, i¢(¢) and i, (¢), which are allowed to fluctuate
among integer values such that s > 7, and Z = if — 4y,.
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Figure 5.1. Schematic of the dynamic variables in the model. The curves
indicate the positions of each of the Kuhn steps in the strands, but such
information is averaged out in the model. Instead, only the positions of the
entanglements and the number of Kuhn steps in each strand are known, and
the strands are assumed to sample available configurations on the time scale
N, T, the time scale of a single strand at equilibrium conditions.

e Strand ¢ has N;(¢t) Kuhn steps.

e Each entanglement point on the chain has position R;(t) , i =
ib, - - -, it — 1, and the ends of the chain have positions R;, ; and R;,.
However, it is typically more convenient to keep track of the vectors
connecting these entanglements along the chain Q,(t) := R; — R;_1,
T =1p,y...,1%.

The physical picture described by the model is shown in Figure 5.1.

5.2.1 Statics

We wish the chain to have an equilibrium distribution given by

=3l

p°4(Q) = J exp [— (5.1)

where the chain configuration is given by the shorthand notation  :=

{Q;, Nz}:i =Q,,, - Q;,Ni,--., Ny, J is a normalization constant, kp

is Boltzmann’s constant, 7" is temperature, and F' is the chain free energy
ig—1

F= Z FS(QzaNz)+FE(QZb1NZb)+FE(Q”’NZ£)’ (52)

1=tp+1

where the free energies of an entangled strand Fs5 and end strand Fg must
be specified. Examples for these are given in Section 5.3, but for the
time being we may assume that they are Gaussian strands derived from a
coarse-grained random walk (see Eq. (5.38)).
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We now show that this static, equilibrium requirement greatly restricts
the possible dynamics of the model. In other words, if we generalize
the classical network picture in order to allow the chain to slide through
the entanglements, we necessarily obtain the equilibrium model below
(without constraint release). Generalization of the equilibrium model to
affine motion is possible.

5.2.2 Dynamics

As in classical network theory, the entanglement points are assumed to
move affinely. Therefore, we write the deterministic evolution of the en-
tangled strand conformations as

d . .
%Qi:n-Qi, i=dp+1,...,0—1, (5.3)
where k := (Vo) is the transpose of the velocity gradient.

The free ends of the chain are assumed to diffuse from Brownian motion,
and are not significantly oriented by the flow field. Hence, we write the
stochastic differential equation (SDE) for the free ends as

dQZb -

i 9 :

- dt +
kBTTe aQZb > T;Nib Te

where W, () is a three dimensional vector of independent Wiener pro-
cesses (Gardiner, 1982), and a is the length of a Kuhn step. This form of
the SDE satisfies the fluctuation-dissipation theorem, and is necessary to
guarantee satisfaction of Eq. (5.1). In Eq. (5.4), we have also introduced
the single phenomenological parameter in the model, a characteristic time
Te, which is the time scale associated with the motion of a single Kuhn step
of a chain strand. This time scale, or rather N, 7, (N, being the number
of Kuhn steps corresponding to the entanglement molecular weight M,),
is already implied by the coarse-grained information used. Namely, when
we assume that the free energy of the chain is given by Q := {Q),, Ni}ZZ,
we assume that the strands can sample most of the configuration space
available to them on the time interval N, 7., which becomes the smallest
time scale resolved by the model.

Entanglements are created and destroyed only at the ends of the chains.
During the periods of no entanglement creation or destruction, Kuhn steps
may pass through the entanglement points (similar to sliplinks in the tube
picture) because of Brownian forces or tension imbalances in the strands.
These processes are assumed to be jump processes, instantaneous on the
time scales resolved by the model.

Jump processes may be described using a differential Chapman-Kolmogo-
rov equation (Gardiner, 1982). Incorporating these jump dynamics with
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the diffusion and deterministic dynamics described above, we can com-
pletely specify the dynamics of the model in the following equation:

o) _ fz [ - Q) p()

ot et Q
+acazib | {ka;r [(aFE(a% Nib)) p() + kBTaac(z?} }
k(2452 o]
= [ W @2p(@) - W @I0p@) . (5.5)

where p(€2;t) = p(Q,,,---, Qi Niy, - - -, Nip;t) is the probability density
for a chain to have configuration (2. We also use the vector notation, IV,
for the number of Kuhn steps and the shorthand notation

i+1

[lar= ¥ S Z/// AqQy 6o

Zb—’Lb 1 zf—z

The first term on the right side of Eq. (5.5) is the affine entanglement
deformation consistent with Eq. (5.3). The second and third terms are the
Fokker-Planck-like terms equivalent to the SDEs, Eq. (5.4). The remain-
ing terms are associated with the chain-end “boundary conditions” and
“Kuhn step shuffling” between strands. Roughly speaking, the transition
probability iW(Q|Q’ ) is the probability per unit time that a chain with
configuration ' jumps to configuration §2.

To specify the transition probability W (Q[Q'), it is useful to intro-
duce the matrix B, whose elements are defined by (Bird et al., 1987a,
Eq. (11.6-5))

Bij = 51'4_1,]' — 52’]’1 (57)
where 4;; is the Kronecker delta. We also introduce the vector n of Z + 2
elements, whose ith element is the number of Kuhn steps that move from
strand ¢ to strand ¢ + 1. This vector also includes elements n; _; and n;,,
which are the number of Kuhn steps that can move into a newly created
entanglement at the end. In a jump, only one Kuhn step is allowed to
pass through an entanglement

~1,0 =iy — 1

) =1,0,41 i=dp,. i1

"= 0,41 i =i (5.8)
0, , otherwise.

From the current configuration, it is possible to find the end labels 7}, and
i¢ from the definitions

’Lb = ZZH 50 JNi_1s ’Lf = Z’LH 50 JNiy1) (59)

€7 1€Z
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where H() is the Heaviside step function. Finally, we introduce the nota-
tion _
if
S(N,N') =[] oo (5.10)
=1
With these definitions, it is possible to write the transition probabilities
in compact form

W) = SN, N - Bm) [[ 5@ - @) x

1=1p

(5.11)

o) @)

P [_ %psT | 2kpT

The first delta function above guarantees conservation of Kuhn steps in
the chain by shuffling n; Kuhn steps from strand ¢ to strand 7 + 1. The
product of Dirac delta functions ensures that the strand conformations
are unchanged by the shuffling of Kuhn steps. The exponential term is
very important for two reasons. First, it guarantees detailed balance, so
that Eq. (5.1) is satisfied. Secondly, it yields the physically reasonable
mechanism of shuffling Kuhn steps from strands of low tension to strands
of high tension on average. This point is made clearer in Section 5.2.3.

5.2.3 The continuous limit

In typical cases, the number of Kuhn steps in a chain is very large. Hence,
we can approximate such a chain in the limit of a continuous number of
N;. To consider this limit, we focus on the master-equation-like portion of
the differential Chapman-Kolmogorov equation, Eq. (5.5), which accounts
for the shuffling of Kuhn steps between adjacent strands, and which may
be written

Op
ot

= %Z{Wn(N|N— B -n)p(N —B-n)

~ Wn(N - B-n|N)p(N)}, (5.12)

where we have suppressed dependence on the strand orientation vectors
{Q,}. We momentarily neglect the terms for entanglement creation and
destruction. In the above, the transition probabilities are then written

exp [—F(N)/2kgT)

Wn(N|N - B:-n)= exp [-F(N — B -n)/2ksT]’

(5.13)

We can expand this probability in a Taylor’s series around nn = 0 to obtain

Wn(N|N-B-n) = 1+2kLT [—(B-n)- (S—JFV)

+ L(B-m)(B-m): (al‘ng) —..}(5.14)
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to second order. Similarly, the expansion for the jump in the opposite
direction is

2ksT ON

+ %(B.n)(g.n); (61(2:§N) —..}(5.15)

We can also expand the distribution function in IN to obtain, to second
order

Wn(N-B-nN) = 1- [_(B.n).<a_F>

N =B = o= (800 ()

n %(B-n)(B-n):( Fp )— (5.16)

ONON

If we insert these expansions into the master equation, Eq. (5.12), and
keep terms only to second order, we obtain the approximate expression

a2 ar e () e me - (5w)|
e (55) [aer® - (5) 1]+
%(B-n)(B-n) : (a]32;’N)}, (5.17)

Keeping in mind that element n; in n is the number of Kuhn steps moving
from strand j to j + 1, conservation of the total number of Kuhn steps in
the chain yields Zj n; = 0, and since n; can take values of —1,0, or +1
only, > e T = 20 Hence, the sums occurring in the expansion above
are

n ijkm k,m

where A is a tensorial form of the Rouse matrix (Bird et al., 1987a),
defined as

+2 ,i=7
Aj={ -1 ji=j+1 (5.20)
0 ,otherwise.

Therefore, we find, in the continuous limit that the master-equation
(5.12) can be approximated by the Fokker-Planck equation

op _

at kBTTe Z 8N (5.21)

oF op
- +k 7P
<8NJ>T,{Q}p > oN;
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which has an equivalent stochastic differential equation given by Eq. (5.51).
In this form, the presence of the Brownian forces and the nature of the drift
terms are made clear as differences in chemical potentials {y,} between

the strands, since
oF
i/ r{Q;}

Hence, the evolution equation for the continuous model can be written

5p(

Z% k- Q;]p(%)

o e [(Faa = ) ror w3 )

2 [ OFu(@s. Ny) op(9)
aQ,-f {kBTTe [( 2Q, )p(m*kﬂ aQif]}

9 Op
T ZJ o, 1 [“Jp * kBTaW}

[ wep@) - W@, (623)

where the transition probability is now just the sum of the creation and
destruction probabilities

W (QI) = WE(QIQ) + WE(QQ) + WE(QIQ) + WA(QIQY).  (5.24)

In Eq. (5.24), superscript “c” denotes creation and superscript “d” destruc-
tion, whereas subscripts “b” and “f” refer to the back and front ends of the
chain respectively. These transition probabilities are further described in
Section 5.2.4 below.

The stochastic process described by the governing Eq. (5.5) is Markovian.
Thus, it can be solved numerically in a straightforward way by simulat-
ing an ensemble of identically prepared chains. However, in Sections 5.4
and 5.5, we show a simulation method and results for the model in the
limit of a large number of Kuhn steps based on the evolution equation
Eq. (5.23). This approximate model may be simulated using standard,
higher-order Brownian dynamics algorithms.

5.2.4 Entanglement creation and destruction

The transition probabilities governing creation and destruction of entan-
glements in Eq. (5.5) are determined merely by differences in free energies
according to Eq. (5.11). However, entanglement creation and destruction
must be handled differently in the continuous limit. This is accomplished
by treating entanglement destruction as a boundary condition in Ny .
Namely, if the number of Kuhn steps in the end strand decreases to zero,



5.2. Model Description

81

we destroy the entanglement (shown here for destruction at the back end
of the chain)
W (QIQ) = (Nj )iy i1 iy 6(Nig 11 — Ny — N

5 zb+1) X
0@, — Q) [T oV — N)3(Q, — Q). (5.25)

1=tp+1

In Eq. (5.25) the first delta function provides destruction when there are
zero Kuhn steps left in the end strand, the two Kronecker deltas increase
the strand index by one at the back end while keeping the index for the
front end (decreasing Z by one overall), and the next delta function puts
the Kuhn steps of the previous end and last entangled strands into the
new end strand. The terms in the second line ensure that the orientation
of the new end strand and the (@, N) configurations of the other strands
remain unchanged.

The transition probability for entanglement creation at the chain back
end WY is determined by detailed balance

Wy(QIQ) = Wy(Q[Q)p™(Q) /p*(2)
5(Nz - 1)51',0,%,1 6if,i’f 5(Nib+1 + Nib - Nz'lb—|—1) X

8 Qi — Q) [ (Vi — NDS(Q: — Q) x

=iy +2
wg(QQbH, Nz{b+1)7 (5.26)

where the terms in the two middle lines are analogous to the terms in
Eq. (5.25) explained above, and in which wg(Q, N) is the probability that
a dangling end with N Kuhn steps and conformation ) becomes entan-
gled. Similar expressions exist for entanglement creation and destruction
at the front end of the chain.

To simplify the notation, we suppress in the following all orientation
arguments, Q. The creation probability wy may be found from detailed
balance

shens [ 0] _ oy [ BODER]

where wi(Q, N) denotes the probability that the last entanglement is de-
stroyed turning the last entangled strand with orientation @ and N Kuhn
steps into a dangling end. The destruction probability can be determined
by extrapolation to zero Kuhn steps for the dangling end in Eq. (5.11)

d_ Fs(N —1) — Fs(N) + Fg(1) — Fr(0)
“b P 2kgT ’

(5.28)

which upon insertion in Eq. (5.27) yields

o = o [FLB =2 B0 £ B0+ F0) 22N (5




5.2. Model Description

82

Introducing the Taylor expansions

Fs(N —1) + Fs(N) ~ 2FS(N—1/2)+%8%NS(N—1/2)+...
Fo(0) + Fo(1) ~ 2F(1/2)+ 22 im(1/2) + ... (5.30)

40N

to first order in Eq. (5.29), we arrive at

Fs(N—=1/2) Fg(1/2) Fg(N)
kT kT ksT |’

wy & exp |— (5.31)
which is valid for any choice of the free energies Fg and Fgr. Recalling
the relationships ps ~ exp [—Fs/kgT] and pg ~ exp [—Fgr/kgT] between
the probability densities and free energies for entangled and end strands
respectively (see Section 5.2.1), it is easily seen that the expression for
wy, above provides the correct distribution for newly created entangled
strands, since from Eq. (5.31) it follows that
c ~ Ps (Qv N )

wp(Q, N) (@ N) (5.32)
assuming N > 1/2, which is almost always the case for a dangling end
about to become entangled.

A specific relationship between the distribution of Kuhn steps in the
dangling end and the number in the entangled strands has been suggested
by Ottinger (2000), who argued that the end strand distribution at equi-
librium should be the distribution created by entanglements at the end.
Such an argument leads to the relation

Pe(Q,N) ~1-1Ps(Q, N), (5-33)

where PPs(Q, N) is the cumulative of ps(Q, N). Employing this relation-
ship, which we shall do later (see Section 5.3), Eq. (5.32) yields

w(Q, N) ~ kT (5.34)

5.2.5 Stress tensor

The polymer contribution to the stress tensor is assumed to be that for
rubber elasticity

ig—1
™ ="—n Z Z///QJ <%> p({Q;, Ni}ii;1)dQ;, (5.35)
j=ivtl N i/ TN}
where n is the number density of polymer chains. Thus, for a given ex-
pression of the free energy, stress predictions of the model are completely
specified. In Eq. (5.35) it is noted that the unentangled end strands of a
chain do not contribute to the stress.
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5.3 Free Energy of a Chain

With the derivation in Section 5.2.2 of the evolution equation Eq. (5.5)
(or for the continuous limit Eq. (5.23) found in Section 5.2.3, combined
with the entanglement creation and destruction probabilities discussed in
Section 5.2.4), the dynamical framework of the model is now complete.
Since a relation between chain configurations and the macroscopic stress
has also been derived in Section 5.2.5, the only task remaining, in order to
complete the model formulation, is to specify the free energies, F5(Q, N)
and Fg(Q, N).

We determine the free energy of the chain by specifying the equilibrium
probability density. This distribution may be constructed from separate
distributions for the entangled strands, ps, and the dangling ends, pg,

ig—1

PR = 5N — > Nope(@u, No)pn(@io No) [ (@ N0, (5.36)

=i} i=1p+1

where Ny is the total number of Kuhn steps in the chain.

First, we consider the distribution for an entangled strand which is sim-
plest to construct as the product of two densities: a conditional density,
pq(Q|N), providing the distribution of the strand orientation @ for a given
number of Kuhn steps, and a distribution for the Kuhn steps, px(N),

ps(Q, N) = J 'pa(QIN)pn(N), (5.37)

where J is a normalization constant. For flows that are not sufficiently
strong to violate the stress-optic rule (e.g., all shear flows except for very
high shear rate deformations), it should be sufficient to assume that the
chain strands are Gaussian and entropic (derived from a coarse-grained
random walk), in which case we may write the orientation distribution for
a strand as (for example, see Treloar (1958))

3Q? ]
2NaZ |

palQIN) = exp |- (5.38)
On the other hand, strongly aligning and stretching flows (e.g., simple
elongation) may require a free energy that does not permit the number of
Kuhn steps in a strand to decrease below the physically meaningful limit
|Q|/Nax. Such an expression is given shortly (see Section 5.3.1).

The distribution of Kuhn steps in the entangled strands must be equal,
and evenly distributed for long chains, which is ensured by making the
distribution pyx(/V) binomial with moments

(N) =N, := Ng/Zey, (N?)—(N)>=N, (1 - Z1q> : (5.39)

Forcing the average number of Kuhn steps to be N, in the free energy is
similar to the tube concept in reptation.
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When Ny is large, we may well approximate the binomial distribution

by a Poissonian
NY exp (=N
pN(N) ~ N = . (540)
Because the Poisson distribution is for a semi-infinite domain in N, the
normalization factor here is incorrect. However, the errors are less than
one part in 10° for a typical value of Nx ~ 1000.
To obtain the distribution for the end strand, we now make use of

Eq. (5.33), which gives

_ al 3Q \ NM
re(Q,N) = JE1 ll - MZZIeXp <_2Ma%(> i exp (—Ne)] , (5.41)

where Jg is a normalization factor. We have used the Poisson distribution
Eq. (5.40) for the entangled strands to obtain Eq. (5.41). Putting together
the results Egs. (5.36)—(5.41), and taking the negative logarithm of each
side of Eq. (5.36) yields the strand and end free energies

F@QN) _ 3Q°

3
T = ong TleW) - (N-Dlog(Ne) -5 (542)
2 M
Fi(Q,N) e (-2%) %% exp (—N) .
FB(QN) _ |
kT 8 1— N.exp (—Ne — g)

The constants at the end of Eq. (5.42) and in the denominator of Eq. (5.43)
are to guarantee that the entropies are zero when a strand has only one
available conformation: F5(Q = ax, N =1) = Fg(Q =ax, N =1) =0.

5.3.1 Finite extensibility

If we wish to include “minimum monomer density” (similar to finite ex-
tensibility), the obvious choice for the orientation distribution would be
the Langevin distribution (Treloar, 1958). However, this distribution is
not analytic, and therefore difficult to work with. Instead, we may use
Cohen’s Padé approximation to the inverse Langevin distribution (Cohen,
1991). In this case Eq. (5.38) is replaced by

Pq(QIN) = [1 - (A%{)Q]NeXp [—%} : (5.44)
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and the free energy expressions become

F5(Q, N @ Q°
Si:BT b - N[QNQa%{_log (1_N2 2)}

+1og(N) — (N — 1) log (N,) — g (5.45)

M
N 2 NM
s 1 ()] e (et )

1— N.e p(N—%)

kgT

—log

5.3.2 Free energy in the continuous limit

For the continuous model, expressions for the free energy must be mo-
dified. The orientation distribution for an entangled (Gaussian) strand is
still given by the Gaussian in Eq. (5.38), while in the continuous limit,
the binomial distribution, px(NV), also becomes a Gaussian with the same
moments as in Eq. (5.39). It was found necessary, however, to slightly
modify the moments of px(N) in order to make the entangled strand
distribution ps(Q, N) yield the desired moments

(N)=Ne, (N°)—(N)*~N, (Q)v=N., (5.46)

where (Q?)y denotes the second moment of @ for a given N. Hence, the
free energy for an entangled strand becomes

RGN 3 (&), (V=N - G=N)
keT 2 \Naj 2(Ne+3) (14 4)

This leads to a chemical potential in the entangled strand of

IU’S(Q:N)__ 3Q2 + N_Ne+%
kgT 2N2a% (Ne"f_%) (1“'2%1)

(5.48)

Similarly, an end strand still has an equilibrium distribution given by one
minus the cumulative probability of an entangled strand, as suggested in
Eq. (5.33). Thus, the dangling end has free energy

Fe(Q, N) /NK ( -3Q? ) — (W =N+ ) |
—— = —log exp , exp dN
kT P \2Na2 2(Ne+3) (1- %)
+ log /NK exp ( =5 ) exp | — o ) dN' (5.49)
e @) e o)
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which results in a chemical potential for the end strand of

wan ity
BT e () eo | (N; )(;% Jav

e

o [2(Ne+3)(1—

T 3 — 1) erfe [ N_Netj -|
\/2 (Ne+ 2) ( Zeq) fi [\/Q(NeJrg)(lf—)J

Zeq

Zeq

. (5.50)

Q

A simulation with the full expression in the first line of Eq. (5.50) has
confirmed the validity of the approximate expression in the second line for
the entire range of (Q, N) values exploited by the simulations.

The complete evolution of the continuous model is described by Eqgs. (5.23)

— (5.26), (5.34), (5.48), and (5.50). In the following section, a simulation
algorithm for this model is derived.

5.4 Simulation Algorithm

The dynamics prescribed by Eq. (5.23) is equivalent to Z + 1 SDEs for
the number of Kuhn steps in each strand; two three-dimensional SDEs
for the conformations of the dangling ends; Z — 1 deterministic equations
for the affine deformation of the interior strands; a boundary condition
for the destruction of entanglements; and a probabilistic jump process for
the creation of entanglements. We handle the simulation of each of these
processes in turn.

The SDEs equivalent to the Fokker-Planck-like portion of Eq. (5.23),
namely Eq. (5.21), for the Kuhn steps are

1
AN; = ——— (pip1 — 203 + pin) dt
kBTTe (:u’+1 :u’ +/~1’ 1)

/2

We integrate these equations over a small time-step At, and approximate
the drift terms for the entangled strands semi-implicitly over the time
interval

At
QkBTTe

+ /'L][Q ]}

+ V T_EZBZ]AW]’ i:ib—}—l,--.,if,l, (552)

J

Ni(t+ At) = N;(t) — ZAU {1;1Q; (t + At), N;(t + At)]
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where AW;(t) is a Wiener increment with zero mean, and variance At.
The formulation in Eq. (5.52) guarantees conservation of Kuhn steps, and
helps ensure that the algorithm is stable, since the number of Kuhn steps
cannot become negative. However, this expression represents Z—1 coupled
nonlinear algebraic equations in the unknown {N;(t+ At)}, which cannot
be solved analytically. Hence, we solve these by an iterative technique
at every time step. Inserting the chemical potential (Eq. (5.48)) and
rearranging Eq. (5.52) yields

N;—N.+3)A
Ni—ﬁQf(t+At) + ( +3) A
i (Ve 3) (1- )

At

=ﬁ@+7mh+@ﬂ, (5.53)

where N; = N;(t+ At), 5, is the chemical potential of strand i+ 1 found
from the last iteration, and

O = N0 S A0, Q012 3 Byaw;. 5.5)

J

The initial value of x4 is that from the beginning of the time step. At
each iteration, the above equation is cubic in the unknown N;, which has
a well-known analytic solution.

The above technique is used for the interior strands, whereas the end
strands are integrated simply as explicit Euler forward. The algorithm is
second order in time-step size for the interior strands, but more impor-
tantly, it is stable. It is also found to converge very quickly, for even a
small tolerance in the iteration steps.

The SDEs for the conformation of the dangling ends is just like a dumb-
bell, Eq. (5.4). For a Gaussian free energy, this expression is identical to
that for a Hookean dumbbell, which has an analytic solution. However,
in our case, the number of Kuhn steps during the time step is fluctuating.
Therefore, we combine the analytic expression for the Hookean dumbbell
with a semi-implicit approximation for the number of Kuhn steps

6AL
Q; ,(t+At) = Q; (t)exp [_ Te[Ney, (D) + Ny, ( + At)]] *

[ e ()} 69

where 77 is a three dimensional vector of Gaussian-distributed, independent
random numbers. Such an expression is high order in time-step size, and
stable.

Affine deformation of the interior strands is expressed by evolution equa-
tion (5.3), which has the exact solution

Q,(t+At) = B(t + At 1) - Qy(t), i =1ir1,.. i1, (5.56)
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in which E(t,t') is the finite strain tensor (Bird et al., 1987a).
Destruction of the entanglements at the end of the chain is determined by
the boundary condition, Eq. (5.25). In other words, whenever the number
of Kuhn steps in the dangling end becomes less than or equal to one, the
entanglement is destroyed. However, such an algorithm is only order 1/2
in At. The situation may be improved by considering the probability of
a hidden absorption in NV; .. To include this in the simulation algorithm,
we adopt an analogous technique recently used by Ottinger (1996), which
yields the probability of encountering a hidden reflection, Pyjqgen, as

(Nib,f — ].) (]_ - Nib,f) Te
At ’

Piidden = €xp (5-57)

where NV; is the number of Kuhn steps in the end strand at the end of the
time step, and N; is the same quantity but without the contribution from
the Brownian forces. If a hidden absorption is observed, the orientation
of the end strand is simply renewed according to Eq. (5.38).

Entanglement creation is accomplished by drawing a random number
from a uniform distribution [0, 1]. If this number is less than w(Q, N)
for a dangling strand, an entanglement at the end is imposed, creating a
new dangling end with a single Kuhn step.

The above algorithm is performed on an ensemble of chains and averages
are taken over this ensemble. Such an algorithm provides a numerical es-
timate of averages taken over a probability density whose evolution is
described by Eq. (5.23). This evolution equation should provide an excel-
lent approximation to the discrete model, Eq. (5.5) when the number of
Kuhn steps in the chain is large.

5.5 Linear Viscoelastic Results

Using the simulation algorithm just described, we look into some predic-
tions of the model in the linear viscoelastic regime. However, extracting
simulation results for small-amplitude oscillatory shear flow is difficult be-
cause of the very large ensemble sizes needed to avoid excessive statistical
noise. Instead, we utilize linear response theory (Résibois and Leener,
1977) which allow us to find the relaxation modulus directly from an
equilibrium simulation. Namely, G(t) is found from the autocorrelation
function of the shear stress at equilibrium

G(t) = —= (7 0) 70 (5.59)

where (...) oq indicates taking an average over a large ensemble of chains
at equilibrium. Using this technique, ensemble sizes of 1000 — 5000 chains
are sufficient to provide the needed signal to noise ratio, which would
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otherwise require an ensemble size on the order of 10000 chains if G(¢)
was to be simulated as the stress relaxation following a small-strain shear
step. Comparison with step strain simulations confirms the results using
Eq. (5.58) though.

In the model it is necessary to specify two parameters describing the
chain chemistry before simulations begin: Z,, the average number of
chain strands at equilibrium; and Nk, the total number of Kuhn steps in
the chain. The first of these is found from the molecular weight, M,,, and
the entanglement molecular weight, M., while the latter can be estimated
from M, and static properties of the chain under theta conditions (Rault,
1987; Fetters et al., 1999). First, we use Zeq = 7 and Nk = 1000 in the
simulations, which correspond to the parameter values for the entangled,
nearly monodisperse polystyrene/TCP system with which the previous
reptation model has been thoroughly compared in a variety of shearing
deformations (Hua et al., 1998, 1999; Neergaard et al., 2000). In particu-
lar, comparisons have been made in the linear viscoelastic regime (Chap-
ter 2 of this thesis), and the reader is referred to this part of the thesis
and references therein for more details on estimation of parameters, and
on the fluid, which has a mean relaxation time of 7, = 15 s.

In order to determine the phenomenological parameter 7, for the system
considered, we relate it to the reptation time, 74, by means of Eq. (6.19)
of Doi and Edwards (1986)

(NEak N
=C e
N ksT  m2N,

(5.59)

Td =

in which we have substituted ( = ¢; I?TTTE, the friction coefficient when
the test chain slips through an entanglei{nent, and where c; is a numerical
coefficient of order unity. It remains to determine ¢; which is obtained
by comparing the simulated relaxation modulus with linear viscoelastic
experiments. The comparison is made by following the same procedure
as outlined for the earlier model (Chapter 2 of this thesis): A discrete
relaxation spectrum {g;, \;} is fit to the simulated G(¢), and the zero-
shear-rate properties are extracted as o = Y, g;A; and ¥y = >, giN?
respectively. 74 is then estimated as 7y = %, and c; is fixed by equating
Tq with 7, for the fluid. Using this approach, we obtain ¢; & 0.6906, which
completely specifies the time scales of the model. The simulated relaxation
modulus was found to converge using a time step size of At = 0.3N,7,. as
simulations with smaller time steps showed no discernible differences in
G(t).

We notice that the expression in Eq. (5.59) predicts a dependence of 74
on molecular weight (given by the number of Kuhn steps in the chain Nk)
of M2, whereas a power law exponent of 3.3 — 3.5 for the same scaling
relationship is commonly found for experiments on polymer melts (for ex-
ample see Figure 3.6-4 of Bird et al. (1987b)). This discrepancy can be
explained by means of contour-length fluctuations (Doi, 1983; Ketzmerick
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and Ottinger, 1989), which are not accounted for in the model by Doi and
Edwards leading to Eq. (5.59) but are included in the new model con-
sidered here. Hence, the scaling relationship for the present model is not
exactly that of the Doi-Edwards model, and therefore we may expect some
weak dependence on M, of the numerical coefficient ¢; upon comparison
of the model with a series of polymer systems with identical chemistry but
varying molecular weight.

Next, we look at how the model predicts the scaling with molecular
weight of the zero-shear-rate viscosity, 79. This is done by repeating
the equilibrium simulation described above for several different molecu-
lar weights or equivalently different values of Z,, while maintaining the
same chain architecture as in the original system considered. That is, we
change Z., and Nk simultaneously in such a way that N, the number of
Kuhn steps equivalent with the entanglement molecular weight, is kept
constant, N, = JZV—:l ~ 142.86. Figure 5.2 shows the zero-shear-rate visco-
sity normalized by the value for Z., = 7, and plotted as a function of the
molecular weight (expressed in terms of the equilibrium number of entan-
glements). A fit to the simulations, which are performed over an entire
decade of Z., values, reveals a power law exponent of o, = 3.18 & 0.03,
which is slightly lower than the expected value of 3.3 — 3.5.

A closer look at the results in Figure 5.2 is obtained by plotting ver-
sus Zeq the quantity /qu rather than the viscosity alone. This plot is
made in Figure 5.3, where 79/Z2, has been normalized by its value for
Zeq = 7. The figure suggests that the dependence on molecular weight of

1000
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—_
e}

770/770,Zeq=7

1 Simulations
Fit

0.1

Figure 5.2. Scaling of ny with molecular weight (expressed as the equilibrium
number of entanglements, Zq). The viscosity is normalized by its value for
Zeq = 7. The power law exponent of the fit is o, = 3.18 & 0.03.
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Figure 5.3. Scaling of 79 with molecular weight (expressed as the equilibrium
number of entanglements, Zeq). The viscosity is divided by Zg’q in order to
emphasize the deviation of the power law exponent from the value of 3. The
plotted quantity ng /qu is normalized by the value for Zey = 7.

the simulated zero-shear-rate viscosity is part of a transition to a power
law behavior with a scaling exponent of 3 for large molecular weights
(revealed as a zero slope in Figure 5.3). Indeed, linear viscoelastic sim-
ulations by Milner and McLeish (1998) confirm that for n(M,,) such a
transition from the experimentally observed power law exponent of 3.3 —
3.5 to an asymptotic value of 3 does occur, which could be expected since
the importance of contour-length fluctuations decreases as the chains be-
come longer. However, Milner and McLeish found that the onset of the
transition does not occur until the chains become very long (Ze, > 100),
whereas the present simulations predict the occurrence of the transition
at much lower molecular weights, where it has never been observed ex-
perimentally. This discrepancy might be due to the fact that the chain
architecture in all simulations in Figures 5.2 and 5.3 originates from the
polystyrene solution discussed above, which implies a rather large entan-
glement spacing (N, ~ 142.86). For an undiluted melt N, is much lower,
and the predicted occurrence of the transition to a M2 dependence of
the viscosity might be rather different. Also, it should be mentioned that
including the concept of constraint release in the model could possibly
influence the scaling relationship between 7y and M,, too.
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5.6 Flow simulations

Surprisingly, inception of steady shear simulations with the continuous
limit model considered in Sections 5.4 and 5.5 do not yield results any-
where close to those observed experimentally. For both low and high shear
rates, the stresses increase upon inception of flow, but they rise to a too
high steady state value, and neither the shear stress nor the first normal
stress difference exhibit overshoot in the transient.

These observations suggest that only little chain retraction (if any at
all) is taking place in the presence of flow. We can show that this is
indeed the case using a simple thermodynamic argument, where we con-
sider Eq. (5.47), the free energy expression for an interior strand. The
drift terms of the evolution equation (third line of Eq. (5.23)) will tend to
drive the interior strands towards the (Q, N) configuration providing the
minimum of the free energy, which can be found as ugs(Q, N) = 0 using
Eq. (5.48). During flow Q is affinely deformed by means of Eq. (5.3), and
from ps(Q, N) = 0 we can therefore calculate the number of Kuhn steps,
which will provide the minimum free energy of a strand.

The result of such a calculation, based on Eq. (5.47), is shown in Fi-
gure 5.4 (solid line), where we have normalized @ and N by \/N.ax and
N, respectively. Hence, in absence of flow the equilibrium condition would
be in the neighborhood of (1,1) in the figure, and as @ is increased by
affine deformation, we would expect N to rise accordingly (for example
as seen in the dashed line in the figure). When looking at Figure 5.4 it

35F  Eq. (5.47) — s

2.5 - i

N/N,
[\
]
|

1.5 o7 -

0kl 1 1 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5

|QI/v/Neax

Figure 5.4. The number of Kuhn steps N in an entangled strand, which
provides the minimum free energy as a function of the strand length |Q|
imposed by affine deformation. Two different free energy expressions are
considered in the figure.
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should be kept in mind that the depicted equilibrium condition may never
be reached due to the dynamic processes continuously taking place. When
the free energy is given by Eq. (5.47), the expected increase of N with in-
creasing @ does clearly not occur. If a strand is stretched to four times
its equilibrium length, the “equilibrium condition” would still only yield
1.15N, Kuhn steps in the strand, which implies significant stretching.
Therefore, a different free energy expression for the interior strands is re-
quired. Fortunately, exchanging the free energy within the model is easily
done, since all the model equations in Section 5.2 are valid for any expres-
sion of the free energy. A wide variety of free energy expressions are pos-
sible, although certain restrictions do apply. The first term of Eq. (5.47)
originates from classic network theory assuming the strands to be Gaus-
sian and entropic. Hence, it seems unwise to change this term unless one
wants to account for finite extensibility as outlined in Section 5.3.1.
Furthermore, it is noted that anything but a quadratic dependence of
the free energy on @ will lead to a complicated stress tensor expression
(see Section 5.2.5) and imply a violation of the stress-optic rule. Thus,
still specifying the free energy in terms of the distribution ps(Q, N) as
given by Eq. (5.37), we maintain the orientation distribution Eq. (5.38).
This leaves the probability density pn(IN), or equivalently the second
term of Eq. (5.47), as the only option for making changes of the free
energy expression. We still want to specify the distribution py(N), which
represents the tube effect in the model, such that ps(Q, N) satisfies the
first and last moment criteria given in Eq. (5.46), whereas the second one
of those criteria is probably less important. Even, with these requirements
there are many possibilities for px(/NV). We choose one, which leads to a
term in the free energy that is linear in N. This implies complete retraction
of the chain to its equilibrium length, which is also assumed in the Doi-
Edwards model and leads to the correct damping function in step strain
deformations. The free energy for an interior strand then reads

R(QN) 3 (@ 5(N — 1)
A% 2 VA 1)+ .
kgT 2 \ Na} * 2N, (5.60)
which leads to a chemical potential in the entangled strand of
N 3Q? )

kT 2N?a% 2N,

and yields the dashed line in Figure 5.4, confirming that chain retraction
will take place with this expression for F5(Q, N).

Before doing simulations with the modified free energy expression, we
introduce another change in the model that concerns destruction and cre-
ation of entanglements. That is, instead of determining creation of new
entanglements by a creation probability, we treat creation as a simple
boundary condition, creating a new entanglement when the number of
Kuhn steps in the end strand exceeds N.. The new entangled strand
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is given a random orientation vector of length /N, and gets exactly N,
Kuhn steps, while the remaining Kuhn steps go into the new end strand.
This boundary condition for entanglement creation closely resembles that
of the full-chain reptation model.

The boundary condition for destruction is the same as before, such
that the entanglement is destroyed when the chain slips out of it (when
the number of Kuhn steps reaches zero). However, we abandon the re-
lationship between the free energies in the entangled and end strands
(Eq. (5.33)), and specify the free energy of an end strand to be

Fs(Q,N) _ 5(N —1)

T T AN (5.62)

which is merely the tube part of the entangled strand free energy.

Equilibrium simulations with the modified model confirm that yet an-
other simplifying change of the model can be made, while still satisfying
the fundamental equilibrium distribution Eq. (5.1). With this change we
switch off the dynamics of the end strands, implying that the ends become
dangling and are able to explore all available orientations. Since the ends
no longer have any specific orientation, the number of dynamic variables
for a chain is reduced, and the evolution equation for the continuous limit
simplifies to

ig—1

op(st) 3 %-[n-Qi]p(Q)

at 1=1p+1

1 0 op
T, 2; oN; s {’“‘ i kBTa—Nj]
1 ! ! ! !
+7_— / (W(QIQ)p() — W(Q[Q)p()]dQ.  (5.63)

Note, that with the latest modifications, it is now possible to eliminate
N, from the equation set by means of suitable dimensionless variables.
However, we choose to keep the dimensional equations in this work.

In the shear simulations that are to follow, we use Z, = 7 and N =
1000, the same parameter set as used in the study of linear viscoelasti-
city with the unmodified model (see Section 5.5). The same parameter
values were also used for shear simulations with the full-chain reptation
model (Hua et al., 1999), with which we want to compare the predictions
of the new model in addition to experiments. The ensemble size is in all
cases 10000 chains, and all simulations are found to converge for a time
step size of At = 0.15N,7,.

An equilibrium simulation is made to fix the lone adjustable parame-
ter as outlined in Section 5.5. This gives ¢; ~ 0.239, which is somewhat
lower than the value found for the unmodified model (¢; ~ 0.6906). Using
c1 = 0.239, simulations of transient shear flow show that the zero-shear
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viscosity 7y, as predicted by the equilibrium simulation, provides the ex-
pected upper bound for all steady state shear viscosities 7(%). However,
some of the results for the steady state first normal stress differences ¥ ()
in flow exceed significantly the value of ¥, ; extracted from the equilibrium
simulation, which is inconsistent. This suggests that the equilibrium sim-
ulation estimate of ¥, o and consequently also the value of ¢; = 0.239 are
incorrect.

To circumvent the inconsistency we use instead the steady state predic-
tions of a shear flow simulation with a very low shear rate (De = 0.07) to
obtain better estimates of 79, ¥y and the adjustable parameter ¢;. This
gives c¢; ~ 0.18525 which is used in all shear flow simulations considered
below.

Figure 5.5 shows n*, the shear viscosity, as a function of time during
inception of steady shear for several shear rates (expressed by the Deborah
number for the flow, De := 474). The curves, which are normalized by 7y,
appear very similar to the corresponding curves for the full-chain reptation
model (see Figure 2 of Hua et al. (1999)), although they seem to be more
underdamped. The same trend is seen in Figure 5.6, where we repeat the
plots in Figure 5.5, but for ¥, the first normal stress difference. It is seen
that the onset of overshoot for the normal stress occurs at a higher shear
rate than for the viscosity in agreement with experiments.

In Figures 5.7 and 5.8 we again plot the viscosity and first normal stress
difference respectively versus time for start up of steady shear at three
different shear rates. The plots are normalized by the steady state values
in order to focus on the magnitude of the overshoots in the transient phase.

1__IIII| T T LI R | T T LI R LN | T T |
+ 0.1fF , -
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- / .
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0.01 0.1 1

Dimensionless time, t/74

Figure 5.5. Transient viscosities as functions of dimensionless time under start
up of steady shear flow for several shear rates. The Deborah numbers used
are De = 414 = 0.3,0.7,1.5, 3,7, 15, 30, 70, 150, 300.
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Figure 5.6. Transient normal first differences as functions of dimensionless
time under start up of steady shear flow for several values of the Deborah
number. (De = 4714 = 0.3,0.7,1.5,3,7,15, 30, 70, 150, 300).

The predictions of the new model (solid lines) are denoted “sliplink model”
in the figures, which also contain the experimental results (symbols) and
the predictions of the full-chain reptation model (shown as dashed lines
and denoted “tube model”) for comparison.

It is seen that at low shear rates, where no overshoots occur, the re-
sults of the two models are almost identical and describe the experimental
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Ak \ Tube model — --——-- ]
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P Experiment, De =15 ¢

3 _l,'_ \ Experiment, De = 150 % —
I

nt/n

0.2 0.4 0.6 0.8 1
Dimensionless time, t/74

Figure 5.7. Transient viscosities normalized by their steady state values as
functions of dimensionless time under start up of steady shear.
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Figure 5.8. Transient normal first differences normalized by their steady state
values as functions of dimensionless time under start up of steady shear.

data very well, whereas at higher shear rates we recall that the full-chain
reptation model overpredicts the magnitude of the stress overshoots. On
the contrary, it is evident that the new model predicts overshoots of too
small a magnitude, and that it predicts a too underdamped evolution of
the stresses at high shear rates.
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Dimensionless shear rate, De = y74

Figure 5.9. Steady state viscosity normalized by the zero-shear viscosity as
function of dimensionless shear rate. A fit to the power law region predicted
by the sliplink model yields an exponent of —0.683 + 0.008.
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Figure 5.10. Steady state normal first differences, as functions of dimension-
less shear rate. A fit to the power law region predicted by the sliplink model
yields an exponent of —1.365 + 0.008.

The steady state viscosity is shown as a function of shear rate in Fi-
gure 5.9. A fit of the power law behavior as predicted by the new model
yields a power law exponent of —0.683 £ 0.008, which is surprising, yet
encouraging, since it implies a monotonic dependence of shear stress on
shear rate. In the theory of reptation it is generally believed that the
mechanism of convective constraint release (CCR) is necessary to obtain
a monotonic shear rate dependence of the shear stress, but CCR has not
been incorporated in the new model in its present form. A comparison
with the experimental data shows that the full-chain reptation model pre-
dicts too steep a slope of the power law region, whereas the new model
predicts a power law region with a slope that appears to be too weak.

The analogous plot for the first normal stress difference is seen in Fi-
gure 5.10. Here, the power law regime of the curve resulting from the new
model gives a power law exponent of —1.365 & 0.008, and it appears that
both models describe the experimental data very well.

We move on to consider the transient extinction angle during start up
of steady shear. Figure 5.11 depicts x, the extinction angle for inception
of steady shear at two different shear rates. It is seen that the x curves
exhibit an undershoot except at low shear rates (not shown), which is
consistent with experimental observations. However, at high shear rates
it appears that the undershoot is too abrupt and that y approaches its
steady state value in a too underdamped fashion, like it was observed for
the transient stress curves in Figures 5.5 — 5.8. It is noted that the tube
model exhibits an undershoot only at the highest shear rate.
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Figure 5.11. Transient extinction angle as function of dimensionless time
under start up of steady shear for a moderate and a high shear rate.

Finally, in Figure 5.12 we plot the steady state extinction angle as a
function of shear rate. With a steady state extinction angle of 4.26° for a
very high shear rate of De = 1000, it is evident that the model predicts a
non-zero value of x at steady state for all experimentally accessible shear
rates and provides a good description of the experimental data. This is
an improvement over the full-chain reptation model, which predicts the
steady state value of x to approach zero for high shear rates.
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Figure 5.12. Steady state extinction angle as function of dimensionless shear
rate.
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Overall we can summarize this qualitative evaluation of the model in in-
ception of steady shear and steady state shear, by noting that the steady
state predictions are very encouraging. The shear stress is a monotonic
function of shear rate, and at high shear rates the extinction angle is pre-
dicted to approach a non-zero plateau. Both of these results are improve-
ments over the full-chain reptation model. The transient results reveal too
much underdamping for both the extinction angle and the stresses. Also,
the magnitude of the stress overshoots during start up of steady shear is
too small as opposed to the full-chain reptation model, which overpredicts
these overshoots.

5.7 Outlook

The study presented in this chapter has been focused on the derivation of
the new full-chain temporary network model. Although the potential of
the model has been demonstrated by consideration of its linear viscoelastic
behavior in Section 5.5 and some nonlinear properties in Section 5.6, some
questions of immediate interest remain.

First of all, it would be interesting to repeat the flow simulations from
the previous section while assigning the end strands an orientation and
letting these strands be deformed with the flow like the interior strands.
This treatment of the ends closely resembles that of the full-chain rep-
tation model and could possibly affect the transient behavior of the new
model in a desirable way. As discussed in Chapter 3, too abrupt stress
transients may be attributed to tumbling on a too small time scale, and
since tumbling is largely governed by the dynamics of the chain ends, it
is likely that different treatment of the chain ends in the new model may
alter the transient predictions significantly.

It has already been demonstrated in Section 5.6 that alternative expres-
sions for the free energy are possible within the framework of the model.
It is possible that the small stress undershoots, which are observed during
inception of steady shear in the above simulations, are an indication of
too little chain stretching or rather too much chain retraction. If that is
the case, it may be possible to introduce a new expression for F5(Q, N)
as some kind of hybrid of Eq. (5.47) and Eq. (5.60), since the former
expression allows only little chain retraction as seen in Figure 5.4.

Generalizations of advanced reptation models, such as those proposed
by Mead et al. (1998); Hua and Schieber (1998); Ottinger (1999), are hard
to make because of the tube confining the test chain. However, the model
proposed here involves no tubes, and a number of generalizations might
therefore be considered.

An obvious extension of the theory is to include constraint release, which
is also part of the reptation models just mentioned. For the implementa-
tion of constraint release in the model, more options could be considered.
An earlier proposed implement could be adopted, such as the one con-
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sidered by Hua and Schieber (1998) (a random constraint on a random
chain is released whenever the test chain abandons an entanglement) or by
Ottinger (1999) (a noise term is added to the governing equation for ori-
entation, which mimics continuous release and imposition of constraints).
The latter mechanism could be implemented more rigorously in the new
model in terms of probabilities of constraint release and imposition based
on differences in free energy.

Generalization of the model to describe polymers with branched archi-
tecture could be obtained in the same manner. Namely, free energy dif-
ferences could be used to determine the probability of moving a branch
point through an entanglement point, the physical event equivalent with
branch point withdrawal in the Pom-Pom model (McLeish and Larson,
1998).

Finally, extension of the theory to account for non-affine deformation
should be considered. This could be incorporated in the model by means
of force balances on the entanglements as recently suggested by Marrucci
et al. (2000, 2001).
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A

Review of the Full-Chain
Reptation Model

An essential part of this thesis is the full-chain reptation model recently
proposed by Hua and Schieber (1998). Therefore, for the sake of com-
pleteness, we provide here a detailed description of the model and the
simulation algorithm used to obtain numerical results as it appears in the
original literature (Hua and Schieber, 1998; Hua et al., 1999).

A.1 Model Description

Construction of the model consists of two parts: the first part describes
the chain motion, which is governed by a set of stochastic differential
equations; the second part prescribes the tube motion, which consists of
two superimposed motions: a simple, deterministic, convection process,
and a random, instantaneous constraint release process. The tube, which
confines the motions of the polymer chain, is assumed to be convected
with flow and be deformed affinely by the flow field. In addition, the tube
can undergo a constraint release process anywhere along its contour. Its
orientation is described by a finite set of connector vectors {uy}, whose
number is stochastic. The chain is described by N+1 position scalars {s;},
which describe the location of all beads within the tube. These scalars
indicate the distance of each bead along the contour length measured along
the path of the tube from an arbitrarily chosen origin.

The orientation of a polymer chain, which is modeled as a FENE bead-
and-spring chain, is defined by the orientation of its confining tube. The
only way a chain can escape from its confining tube is by random motion,
or reptation, at the two ends. The length of the chain is determined by
a stochastic differential equation. Note that, whereas the tube deforms
affinely, the chains are not convected affinely with the flow because of
the assumed frictional force with the tube. Thus, to find the length and
orientation of a chain, one must solve the equations of motion for both
the chain and the tube simultaneously.

First, we write the stochastic equation of motion (Langevin equation)



A.1. Model Description

106

for the N 4+ 1 elastic chain beads:

0 = —C[so—vr(s0)] + FY + F¢" + Fy,
0 = _C[éV_UT(su)]'i'FUS_H_ FVS+FEV+F113, l/:].,N—]_
= —(lsn —vr(sy)] — Fy + Fy¥ + Fy, (A.1)

where s, is the position of the vth bead measured along the contour length
of the tube from an arbitrarily chosen origin on the tube; v(s,) is the tube
velocity in the tangential direction along the tube relative to the chosen
origin at the location of bead v; ( is the friction coefficient between an
elastic-chain bead and the tube;

7S H (s, — sy-1)
v 1 _ L(su Sy 1)2
kpT b

is the FENE spring force connecting the (v—1)th and the vth beads, where
H denotes the Hookean spring constant, kg7 is the Boltzmann constant
times the absolute temperature, and b is the square of the maximum di-
mensionless length that a chain segment can be stretched, or three times
the number of Kuhn steps in the chain segment;

FB = \/2kgTC dW, /dt

is the Brownian force acting on bead v; W, describes the Wiener process
for bead v and satisfies (W,) = 0 and (W, ()W, (t')) = min(¢,t')d,,; FEY
is the excluded volume force that prevents the beads from passing through
one another in the tube, and N 4 1 is the number of beads in the elastic
chain. Here we assume that the excluded-volume potential is a hard-sphere
well, and treat it with a reflecting boundary condition.

We subtract the v = (n—1)th equation from the » = nth one to construct

another set of equations:

0 = —C[SO—UT(SO)] + Y+ FyY + By,
0 = —(C|@ —(vr(s )—UT(SO))}+(F2S—2F18)+(F1B—F53)7
0 = —C[Qu— (vr(sn) = orlsnn)| + (FS — 2B + F5.))

+(F3§ E), n=2..,N-1,
0 = —¢[Qn = (orlsn) = vrlsw1)] + (—2F% + F3_)

+(Fy— Fy_1), (A.2)
where (); := s; — s;_1 is the connecting scalar for the ith spring. Concep-

tually, Eq. (A.2) can be divided into two parts: the first equation describes
the chain motion relative to the tube at one end, and the remaining equa-
tions describe the motion of the springs connecting two adjacent beads.
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Figure A.1. Illustrative sketch where a chain segment is distributed over three
tube segments.

The relative tube-stretching velocity at two beads, vr(s;) —vr(s;_1), can
be determined analytically from the imposed flow field and the instanta-
neous orientation of the tube where the beads are located. For conve-
nience, we give here the general formula for the velocity for a continuous
chain (N — oo) relative to the chosen origin, even though the chain is
actually discrete,

vr (s) = ./0 L ds'. (A.3)

For example, for the case sketched in Figure A.1, the relative tube velocity
of the two beads is given by

N _ _ | Yk—1Uk—1 g1 ukuk k
n () —vn(sia) = w5 |MEIELQE Wiy
Uk 1U
n k+1 k—;leH] (A.4)
[Upt1 |

where uy, is the orientation vector of the kth tube segment; and QF is the
part of Q; confined in the kth tube segment.

The orientation of the tube segment during deformation from time #' to
time ¢ can be found by the deterministic time evolution described by

ui(t) = E(t, 1) - ug(t), (A.5)

where E(t,t') is the deformation gradient tensor (for a definition see
Eq. (8.1-4) of Bird et al. (1987)).

To be consistent with the original picture, we assume a Kramers-type ex-
pression for the polymer contribution to the stress (again for a continuous

chain), L N";“BTJ . </ HQ(S)wd% 7 (A.6)
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where § is the unit tensor, n is the number density of polymer, and the
integral is over the entire length of the chain. For example, the integral
evaluated over the length of the chain occupied by chain segment ¢ of the
discrete chain shown in Figure A.1 is given by

P QF k+1
HQz <‘ukz 1|2'U/lc—1'uzk—1 + ‘u1:|2ulc’U/k + muk+1uk+1> . (A?)
- +

We have obtained a complete set of equations for the chain and tube
dynamics, Eqgs. (A.2), (A.3) and (A.5). In the simulation, one can first
find the tube orientation via Eq. (A.5), and then solve Egs. (A.2) and
(A.3) to obtain the new chain lengths and bead locations.

A.2 Simulation Algorithm

In this section, we describe the stochastic simulations used to obtain rhe-
ological properties. We first introduce the stochastic algorithm for finding
the chain length and orientation, followed by a discussion of how constraint
release is accomplished in the simulation.

A.2.1 Stochastic Algorithm

The discretized equations corresponding to Eq. (A.2) employing first or-
der, Eulerian forward schemes are (shown for the case of a Hookean spring
force):

A5y = ?Ql (t) At + \/2ksT/C VALE,,

Q1 (t+At) = Q1 (t) + [vr(s1) —vr(so)] At + ?[Qz (t) —2Q: (V)] At
+v/2ksT /¢ VAL (&1 — &),
Qn(t+At) = Qn(t) + [vr(sn) —vr(sn_1)] At
Qo (9= 200 () + Quor (0] A
+/2ksT/C VAL (&, — Enr) n=2..,N—-1,
Qn (t+At) = Qn(t) + [vr(sn) —vr(sn-1)] At
+§ [—2Qn () + @n-1 (¢)] Al

+v/2kpT /¢ VAL (Ex — En-1) (A.8)

where A3y := [s) — v7(s9)] At, and &; is a random number whose distribu-
tion satisfies zero mean and unit variance. Note that Asj is the movement
of the chain in the confining tube relative to one end. This quantity can
be used to determine the chain reptation at that end of the tube. For
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example, when A3y < 0, the chain reptates out of the tube by an amount
of —As, at that end.

Since the governing equation for a chain segment length, Q);, is stocha-
stic, the total chain length will also fluctuate with time. Such a situation
is different from most earlier works that assume constant contour length
by neglecting the Brownian forces on the beads. Also note that the infor-
mation concerning chain connectivity, chain retraction, reptation, and the
chain-length fluctuations are all consistently incorporated into Eq. (A.8).
These processes follow from the mechanical model and are not put in by
hand. Also note that no Maxwell demons are employed to prevent the
chain from collapsing to a point in the tube. Finally, predictions can be
made for general flow fields, unlike most previous modifications, which are
either limited to equilibrium state or only a few types of flow fields.

The algorithm is simulated in the following way:

(i) First, we make the length and time dimensionless by the cha-
racteristic length /kgT/H and the characteristic time Ay :=
(/4H, respectively. Since the equilibrium chain length is sto-
chastic, we first average the chain length over the whole en-
semble of chains, and then divide the average chain length by
(Z)eq to obtain the average equilibrium tube segment length.
For the same reason, the number of tube segments for each
chain is stochastic and can be slightly different from the spe-
cified value of (Z)eq, even at equilibrium. During flow, the
average number of entanglements can decrease dramatically.

(ii) The dimensionless time step size is chosen to be 0.2 for most
of the simulations. Smaller values of the time step size have
been tested, and the differences in predictions are found to
be insignificant. During each time step, N + 1 uniform ran-
dom numbers that satisfy the distribution of &; are created by
a pseudo-random number generator, and the equation set in
Eq. (A.8) is solved to find ASy and @); for a new time step for
each polymer chain. Note that during each time step, bead
overlap can occur, and these beads are relocated according to
the hard-sphere, excluded-volume potential by a simple reflec-
tion algorithm which takes into account multiple bead over-

lappings.

(iii) The length and orientation of each tube segment at a new time
step is determined by Eq. (A.5).

(iv) If A5y found from step (i) is less than zero, that end of the
chain will reptate out the tube by an amount —A3,, in a ran-
dom direction, and a new tube segment at that end should
be created; otherwise, the chain segment on that end retracts
and the tube segment at that end should be cut by an amount
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A3y. Note that in order not to introduce artificial effects from
the chosen time step size, when a new tube segment is created,
we will first fill out the tube segment to its full length before
another new tube segment is created.

(v) After step (iv), if the new chain length turns out to be greater
than the new tube length, then the chain segment on the other
end will reptate out of the tube in a random direction, and
a new tube segment should be created by an amount such
that the total tube length equals the chain length. All beads
are relocated hereafter using a redistribution subroutine such
that the stochastic differential equation is solved, and no bead
overlap occurs. Each bead could reside in a different tube
segment at the new time step.

(vi) Having information of both the bead locations and the tube
segment orientations, we can finally evaluate the polymer con-
tribution to stress by Eq. (A.6).

A.2.2 Constraint Release

Consistent with our mean-field picture and the time discretization of our
simulation algorithm, we assume that whenever a tube segment is de-
stroyed by reptation, constraint release for some other chain segment might
result. To add the constraint release mechanism to the stochastic algo-
rithm described above, we first note that the entanglements are continu-
ously renewed and destroyed because of chain reptation. Thus, we must
find a criterion determining whether or not the constraint on a certain
chain segment should be released when another tube segment reptates.
In order to do that, we first recognize that a newly created tube segment
presumably will not impose any new constraint on those tube segments
already existing. Based on this idea, we can implement the constraint
release mechanism in our simulation algorithm by adding one extra step
between steps (v) and (vi); whenever an end tube segment u/ is destroyed
by reptation, we randomly pick a kink formed by two tube segments, u}
and u} +1, Where 7 and j denote two different polymer chains. If the time
of creation of the chosen tube segments by reptation is prior to that of
the destroyed end segment, then a constraint release will result; otherwise,
there will be no constraint release. Once the constraint release occurs, we
specify a new tube segment o’ Z according to

Wy = up + upy,. (A.9)

We expect the results to be independent of ensemble size, since the number
of tube segments being destroyed by reptation increases linearly with the
ensemble size, whereas the probability of a tube being selected at random
from a single destruction decreases inversely with ensemble size. Hence,
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the probability for a single tube segment to be selected for constraint
release, which is the product of these two probabilities, is independent of
ensemble size.

Note that during flow, the slip links, or entanglement points, in a sin-
gle chain are destroyed by more mechanisms: chain retraction, chain-
length fluctuations, reptation and constraint release. However, the entan-
glement points are simultaneously created by both chain reptation and
chain-length fluctuations. The number of entanglements for a single chain
fluctuates, and the average number results from a competition of these
processes. During rapid deformations, the rate of destruction processes
grows, whereas the creation processes are relatively unaffected by flow.
Hence, the number of entanglements can decrease somewhat at high shear
rates, for example.
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B

Inflation and Instability of a
Polymeric Membrane

We consider an azisymmetric polymeric membrane inflated by a
uniform pressure difference acting across the membrane. The poly-
meric material is described by an arbitrary combination of a viscoe-
lastic and a purely viscous component to the stress. Some viscoela-
stic materials described by a Mooney-Rivlin model show a monotone
increasing pressure during inflation of a spherical membrane. These
materials develop a homogeneous membrane thickness in agreement
with the Considére-Pearson condition. Molecularly based models
such as the neo-Hookean, Doi-Edwards or Tom-Pom model show
a pressure mazimum when inflated. Membranes described by these
models develop a local thinning of the membrane which may lead to
bursting in finite time. !

B.1 Introduction

The inflation of a membrane may be used to investigate the rheological
properties of polymers (Wineman, 1978). However the deformation in in-
flating membranes is not homogeneous. In the axisymmetric inflation of a
circular membrane the local material deformation ranges from equal biax-
ial stretching at the pole to planar elongation at the rim. Thus in order to
obtain maximum rheological information from an inflation experiment it
is necessary to have a simulation method for the inflation process. More-
over since the rheological modeling of polymer melts in biaxial and planar
stretching is still in the developing stages, it is convenient for explorative
purposes to have a formulation in which the constitutive equation may
easily be exchanged. This was recognized in the pioneering developments
by Wineman (1976, 1978, 1979). An elegant high order finite element
method for the numerical analysis of viscoelastic inflation was introduced
by Warby and Whiteman (1988). We here demonstrate that it is possible
alternatively to construct a finite element method where the element co-
ordinates converge to second order in the element size based on a locally

I This part of the work has been published in J. Non-Newtonian Fluid Mech., 88,
185-204 (1999).
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zeroth order discontinuous stress description.

The mathematical treatment of membrane inflation was initially devel-
oped for elastic membranes. The developments were based on the theories
for large strain elasticity with particular application to rubber materials
(Mooney, 1940; Rivlin, 1948; Adkins and Rivlin, 1952; Green and Ad-
kins, 1970). Thus Green and Adkins (1970) formulated a system of seven
nonlinear ordinary differential equations for the description of the mate-
rial motion in axisymmetrical membrane inflation. The unknowns are the
radial position after deformation, the principal stretch ratios, the stress
resultants and the principal curvatures. In later developments Yang and
Feng (1970) and Wineman (1976, 1978) reformulated this description into
systems of three first order nonlinear differential equations.

In what seems to have been the first application of the finite element
method to the membrane inflation process, Oden and Sato (1967) replaced
the continuum membrane by a set of triangular elements at the onset. A
similar method was used by Charrier et al. (1987, 1989), who consid-
ered free and constrained inflation of elastic membranes and compared
with carefully observed profiles of thin natural latex rubber membranes
in axisymmetric as well as nonaxisymmetric geometries. In fact, the dis-
cretization of a membrane into triangular elements produces very flexible
simulation methods and seems to form the basis for most commercial
thermoforming simulation programs (see e.g. Novotny et al. (1998)). By
contrast finite element methods based on a discretization of continuum
equations (Cook, 1982; Fried, 1982) have been limited to axisymmetric
inflation probably due to the lack of a mathematical formulation of the
balance equations for a general 2D membrane surface embedded in a 3D
space.

Simulations of thermoforming operations is frequently based on the as-
sumption of large elastic strain with negligible relaxation (Khayat et al.,
1993). Indeed we have found the elastic deformation description to be
a good prerequisite to the understanding of viscoelastic behavior. We
therefore base our investigations on a general type of viscoelastic beha-
vior that has the possibility for special choices of parameters to describe
elastic response to fast deformations. Special consideration will be given
to some molecular models for uncrosslinked linear and branched polymer
melts. The fast deformation and instability of such materials is discussed
in a companion paper (McKinley and Hassager, 1999). Finally it will be
shown, that the addition of a small amount of viscosity will stabilize the
deformation process.

B.2 Model equations

We consider the axisymmetric, unconstrained inflation of a thin polymeric
membrane described in a cylindrical coordinate system (r, z) as shown in
Figure 1. At time ¢t = 0 the membrane is located at positions z = 0,
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Az

(r01 O) RO r

Figure B.1. Cross-section through membrane described in a cylindrical coor-
dinate system showing the displacement of a particle from (rg,0) to (r,z).
Also shown is the arclength s from the pole measured along the membrane.

r € [0,Rp]. The inflation for ¢ > 0 is the result of a transmembrane
pressure difference Ap which may be a function of time. The membrane
is assumed to be so thin that inertia and stress gradients perpendicular
to the plane of the membrane can be neglected. The membrane is fixed
at the edge (Rp,0) so the material undergoes an inhomogeneous shearfree
deformation (Bird et al., 1987). A given material particle initially located
at the position (7o, 0) is displaced at time ¢ to a position (r, z). We use a
Lagrangian description so the object becomes to determine the functions
r(ro,t) and z(rg,t) for 1o € [0, Ry] and ¢ > 0 subject to the conditions
that:

T(O,t) - 0, T’(Ro,t) = Ro, Z(Ro,t) =0. (Bl)

At each particle the principal directions of stretch are the meridional
direction (1), the circumferential direction (2) and the direction normal
to the membrane (3). The principal stretch ratios in these directions are
(Wagner, 1994):

dr \? dz \? r )
—_ _ —_— = — = — B.2
. \/<d7'0) * (dT0> 2 ro’ As do ( )

Here 4y is the uniform initial thickness of the membrane and 6(rg, t) is the
local thickness at time t. Incompressibility of the material is expressed by

Atz =1 (B.3)

We also introduce the notation ¢; for the traction (force pr. unit length
in the 2-direction) transmitted in the 1-direction and ¢, for the traction
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transmitted in the 2-direction. These are related to the membrane thick-
ness and the principal stresses (711, 722, 733) as follows:
ty — (1 —7133) =0 (B.4)
ty — (1o — 133) =0 (B.5)

Two force balances are needed to describe the quasistatic equilibrium at
each particle (Green and Adkins, 1970):

dtl dr
K1 tl —+ Ko tz — Ap =0 (B?)

Here s is the arclength along the membrane as shown in Figure 1. Also x;
and ko are the principal curvatures in the meridional and circumferential
directions:

d?r
PO R (B.8)
1= (&)
_ W J1 = (dr)?
) »

It remains to relate the principal stresses to the deformation history by
means of constitutive equations for the material. We wish to describe a
material with relaxation in slow deformations and rubbery elastic behavior
in fast deformations. Moreover we want to include the option of describing
a glassy behavior in the limit of very fast deformations. We do this by
splitting the extra stress 7, into a viscoelastic part 7, intended to model
the rubbery behavior with relaxation and a viscous part 7, to model the
glassy reaction as follows:

T(t) = 7o (t) + Te(t) (B.10)

The viscous and the viscoelastic parts are described respectively by a
Newtonian fluid model and a Rivlin-Sawyers integral model as follows:

To(t) = —Bno¥ (1) (B.11)

ro(l) = / M(t— ) [61 (I, L)y + bl I)A] dfF (B12)

Here 7y is the zero shear-rate viscosity composed of a contribution Sng
from 7, and contribution [;° M(s)sds = (1 — B)no from 7.. The notation
for the tensors is that of Bird et al. (1987) and the two damping functions
are constrained by

$1(3,3) + ¢2(3,3) =1 (B.13)
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The principal stresses for the viscous contribution to the stress may be
expressed in a form convenient for the Lagrangian specification as follows:

d
Tis — —Zﬁn()&ln)\z, 1= 1,2, 3. (B14)

The resistance to fast deformations is recognized in the time derivatives,
which make instantaneous deformations impossible for materials when g >
0. Conversely when 8 = 0 the model may describe a rubbery elastic
material in the limit of fast deformations. Thus provided f = 0 and the
integral G = [ M(s)ds exists, the fast deformation limit is given by

T =G [¢1(11, b)) + do(T1, I)7] (B.15)

where G is the plateau modulus. For illustrative purposes we investigate
here the fast behavior of several materials with a molecular origin.

The neo-Hookean model (Rivlin, 1948) for permanently crosslinked elas-
tomers (Treloar, 1958) is obtained with the combination:

(61, ¢2) = (1,0)

The Mooney-Rivlin model (Mooney, 1940) model is obtained with the
combination:

(61, 02) = (6,1 = ¢)
for constant values of ¢ € [0,1]. The molecular origin of the ¢, term has
been discussed by Wagner (1994).
The fast deformation limit (McKinley and Hassager, 1999) of the Doi-
Edwards model (Doi and Edwards, 1978) for uncrosslinked linear polymer
chains is obtained in the Currie approximation (Currie, 1982) with:

(61, d2) = 5(1, (I + 13/4)7Y2)/(J — 1), where J = I, + 2(I, + 13/4)*/?

The fast deformation limit (McKinley and Hassager, 1999) of the Tom-
Pom model (McLeish and Larson, 1998) for uncrosslinked linear(¢ = 1)
and branched(q > 2) polymer chains. is obtained with:

(]-a 0): Il S 3(]2
(1, ¢2) = (B.16)
3(1,0)¢*/ I, I, > 3¢*

Here ¢ € N is the number of branches. For ¢ = 1 the model describes
linear chains and can be recognized as as an even simpler approximation
to the Doi-Edwards model than the Currie approximation.

B.3 Finite element equations

In the numerical algorithm it is possible to discretize just r(rg,t) and
z(ro, t). However, as noted by Warby and Whiteman (1988), an algorithm
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in which it is easy to change the constitutive equation is obtained if the
tractions t1(ro,t) and t5(ro,t) are also discretized. We follow their proce-
dure in this respect, so our model equations are Eqgs. (B.4) — (B.7). The
boundary conditions for the problem are:

r(0,t) =0, r(Ro,t) = Ro, 2z(ro,t) =0. (B.17)

There are no boundary conditions for the tractions. As a consequence of
this asymmetry in the variables we have found it natural to interpolate
the tractions with lower order polynomials than the coordinates. Let the
interval 7y € [0, Ry] be divided into a total of N elements connected by
N + 1 nodes. Then the coordinates and tractions are interpolated by the
following functions:

N+1 N+1

TO; ZT wn TO TO, Zz wn ’I"() (B18)

1(ro, t Ztl Yn (7o), t (ro,t Ztn Yn (1) (B.19)

The (7, z) are linear within each element, continuous at the nodes. The
(f1,15) are constant within each element and discontinuous at the coor-
dinate nodes. The essential boundary conditions for the problem imply
that

rt(t) =0, TNT(t) = Ry, 2V (t) =0 (B.20)

We use the following Galerkin weak form of the model:

§ df § o . dF
F1,m=/0 Tgwmds—i-/o (tl—tg)awmds:o, m=2,---N (B.21)

§ dr\?\ & d
Fm: 1_ m - m
2, / ( ( ) tlw ds /0 d2rw ds +
A
/ =4 \/1- 32 Fwpds=0, m=1,---N (B.22)

S
F3,m:/ (tA1—5(7'11—7'33)) Yy ds=0, m=1,---N (B.23)
0

Ty

S
F4,m:/ (t;_6(722_T33)) 1ﬁm dSIO, m=1,N (B24)
0

We have found it more convenient to formulate the derivatives in these
equations in terms of the arclength s rather than the independent variable
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ro. The two formulations are related of course through ds = (ds/dry) dry.
Egs. (B.21) and (B.22) are reformulated as follows:

s
Fm=—/ fi % s —/ B Y ds=0, m=2,-N (B.25)
’ 0 ds 0 ds

S 7 sr 7 .
i t1 — 1 d
FQ,m:/ 2 o ds + / L (—T) wm ds +
i
dr dwm Ap dr
- m ’/ m ds =0, =1,---N
/Ords ds / ds P m ds m

(B.26)
Egs. (B.23) — (B.26) together with Eq. (B.20) represent a total of 4N + 2
equations for the determination of the (r"(t),2"(t)), n=1,---N +1 and
(t7(¢),t5(t)), n = 1,---N. The variables are further discretized in the
time variable and solved at each time step with a Newton iteration.

The convergence of the method was investigated by systematically in-
creasing the number of elements to a maximum of 320. The height of the
pole obtained with 320 elements was then defined as the "exact" value and
an estimate of the error introduced by using a coarser element discretiza-
tion calculated as € = |23%° — zV|. Typical results for ¢ as function of the
length of the elements Arg = Ry/N are shown in Figure 2. It appears that
to a good approximation e o< Ar? indicating that the method converges
to second order with the element size.

slope=2

-4

I
/

-6 -4 -2 0
In(h)

>

In (g)

Figure B.2. Illustration of the second order convergence in the element length
A’I‘().
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B.4 Elastic inflation

We consider in some detail the purely elastic inflation based on the con-
stitutive equation (Eq. (B.15)) for several reasons. Many thermoforming
operations are in fact modeled as elastic deformations. This is sometimes
referred to as a hyperelastic description (Khayat et al., 1993). It has been
used recently for the identification of material constants of acrylonitrile-
butadiene-styrene (Derdouri et al., 1998). Moreover the fast elastic re-
sponse gives important information about the tensorial character of the
constitutive equations also for viscoelastic materials.

B.4.1 Homogeneous spherical shell model

It is useful to have some a priori estimate of the magnitude of the de-
formations that can be expected for a given pressure difference. For this
purpose we consider the rough homogeneous spherical shell model shown
in Figure 3. The relation between pressure and deformation is based on
the following two assumptions:

1. The membrane is inflated into the shape of a spherical shell of uni-
form thickness ¢ and radius of curvature R.

2. The principal stresses in the membrane can be computed from a
homogeneous biaxial deformation of the same increase in area as
that of the membrane.

We realize that these assumptions are not kinematically possible due to
the stick condition at the rim. However the simple model still provides

R(®)

Figure B.3. The spherical shell model with radius of curvature R, height h
and area A = 2whR.
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useful guidance for the finite element simulations. The radius of curvature
of the sphere is related to the radius of the undeformed membrane Ry and
the height of the membrane A as follows:

R+ R

R=—0"" (B.27)

Then for small values of h/ Ry the relation between pressure and deforma-
tion becomes approximately,

G (h)®
Ap ~ 12 — B.2
P Ry (Ro) (B.28)

This relation may be used to provide initial values for the Newton iteration
for small deformations. It is also of interest to note the following relation
between the stretch ratio A of the material and the height:

— =V — 1 (B.29)

For biaxial inflation of a homogeneous spherical shell of a given material
a critical situation occurs when the pressure vs. volume exhibits a max-
imum. The significance of this pressure maximum in terms of a possible
instability seems to have been first pointed out by Cogswell and Moore
(1974) based on a suggestion by Pearson. We denote the criterion for pres-
sure maximum the Considére-Pearson criterion to distinguish it from the
Considére criterion that applies to maximum force in uniaxial extension.
The critical stretch ratios A, for pressure maximum in homogeneous biax-
ial extension derived recently (McKinley and Hassager, 1999) for a number
of molecularly based models are given in Table 1. It is not immediately ob-
vious how the \. should be interpreted in the membrane inflation problem
under consideration since it involves an inhomogeneous mixture of biaxial
and planar deformations. We have chosen to translate the exact values
of ). into expected critical values for the height of the membranes h, by

Model Ratio \, he/ Ry
Neo-Hookean 1.3831 0.96
Mooney (¢ = 0.8234) 1.8407 1.54
Mooney(¢ < 0.8234) (no maximum) (no maximum)
Doi-Edwards-Currie 1.3022 0.83
Tom-Pom(q = 1) 1.2400 0.73
Tom-Pom(q > 2) 1.3831 0.96

Table B.1. Critical conditions for the inflation of membranes: A.: Stretch
ratio for pressure maximum in biaxial inflation. h.: Predicted corresponding
height of polymer membrane.
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means of the homogeneous spherical shell model in Eq. (B.29). Thus the
h. in Table 1 are the estimated critical heights of inflation for the poly-
mer membrane as predicted from the Considére-Pearson criterion and the
homogeneous spherical shell model.

Note that the Mooney model would predict instability for ¢ > 0.8234
and no instability for ¢ < 0.8234. The second entry in the table gives the
stretch ratio at the limiting value of the parameter ¢ = 0.8234 for which
the maximum in the Considére-Pearson function becomes an inflection
point. Also note, that the critical stretch ratio for the Tom-Pom model
for branched polymer melts (¢ > 2) is identical to that of the neo-Hookean
material inasmuch as Considére-Pearson instability occurs before I, = 3¢

B.4.2 Numerical results

Due to the occurence of a Considére-Pearson instability in the homoge-
neous spherical shell model as well as in previous observations (Green and
Adkins, 1970), we can expect the occurence of a pressure maximum in the
full finite element simulations of membrane inflation. Consequently we let
the pressure be a dependent variable. In practice this is done by introdu-
cing the membrane height at the pole h as a new independent variable and
augmenting the system of equations with z; — h = 0. We present our re-
sults in terms of the nondimensional height h/ Ry and the nondimensional
pressure:

Ap Ry

0 G

The membrane shapes for the neo-Hookean model and the Mooney model

pP=

(B.30)

P =0.00011
P =1.83507
P =1.59220
P =1.21289
P =0.96309
P =0.79752

O x O+ 4 <

Figure B.4. Inflation profiles for elastic deformation of a neo-Hookean mate-
rial.
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P =0.00011
P =1.97630
P =2.17842
P =2.17768
P =2.22806
P =2.31789

O x o+ 4O

Figure B.5. Inflation profiles for elastic deformation of a Mooney-Rivlin ma-
terial (¢ = 0.95).

(¢ = 0.95 and ¢ = 0.00) are shown in Figures 4, 5 and 6 respectively. The
result of the Considére-Pearson instability in the neo-Hookean profile is
seen in the very large stretch ratio in the element near the z-axis. This
results in a strong thinning in the membrane thickness near the pole. By
contrast for ¢ = 0.95 in Figure 5 the stretch ratio and membrane thickness
is stabilized near the pole. Finally in Figure 6 we observe a large value of Ay

P =0.00011
P =3.61585
P =7.91085
P =11.89476
P =15.82906
P =19.73714

O xO+4<C

Figure B.6. Inflation profiles for elastic deformation of a Mooney-Rivlin ma-
terial (¢ = 0.00).
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Figure B.7. Thickness distribution for elastic inflation of three membranes to
a total height of h/Ry = 3.

near the rim. Thus although the profiles in Figures 4, 5 and 6 may appear
similar, that similarity hides large differences in the distribution of the
thickness of the material such as would be important in thermoforming
operations. This is illustrated in Figure 7 where the thickness §/dy is
plotted as function of ro/Ry. The Mooney-Rivlin material with ¢ = 0
has practically uniform thickness, while the strong thinning of the neo-
Hookean material is evident near the pole.

The pressures corresponding to a set of ¢-values are shown in Figure 8.
The instability for the neo-Hookean material is visible as a pressure maxi-
mum in the simulations. The corresponding critical nondimensional height
is h/ Ry = 1.18 which is to be compared with the approximate value of 0.96
from Table 1. Apparently the shell model provides a conservative estimate
of the magnitude of the critical deformation. Moreover note from Table 1
that the Considére-Pearson condition suggests that stability of inflation is
guaranteed with a weighting of about 18% of the «[%-tensor relative to the
sum of the two strain tensors. The full numerical simulations in Figure 8
clearly show that stability is certainly obtained with 10% weighting of the
~[%_tensor. The simulations are consistent with the suggestion that the
Considére-Pearson criterion is a sufficient but not necessary condition for
stability of inflation.

It is seen, that the behavior in fast elastic membrane inflation is very
sensitive to the ¢-parameter in the Mooney model. This fact can be
understood in terms of the dependence of the corresponding strain energy
function (w = [¢l; + (1 — ¢)I5]/2) in the available invariant space (e.g.
Figure 8.3-1 of Bird et al. (1987)). When ¢ = 1 the strain energy increases
very slowly along the curve for biaxial stretching. It is interesting to
note, that while the relative weighting of the two strain tensors is of of



B.4. Elastic inflation 124

Figure B.8. Relation between the membrane height and pressure for a range of
constant values of the ¢-parameter in the Mooney-Rivlin model. The critical
point for the neo-Hookean material is located at (1.88,1.18).

key importance in thermoforming operations, the weighting is in shear
related to the second normal stress difference, a quantity that is not easily
measured and often considered to be of minor industrial interest.

In Figure 9 the corresponding plot for the Tom-Pom model (¢ = 1,2, 3)
and the Doi-Edwards-Currie model is contrasted with the neo-Hookean
model and the Mooney model for ¢ = 0. It is seen that the Tom-Pom
model for ¢ = 1 becomes unstable at even lower strains than the neo-
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Figure B.9. Relation between the membrane height and pressure for the Tom-
Pom model (¢ = 1,2,3) and the Doi-Edwards-Currie model contrasted with
the neo-Hookean model and the Mooney-Rivlin model(¢ = 0). The Tom-
Pom model for g = 2,3 follows the neo-Hookean model exactly.
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Hookean model. The simulation shows a critical height of h/Ry = 0.72
which compares very well with the approximate value of 0.73 from Table 1.
The curve terminates at h/Ry = 84. As explained in more detail in
Section B.6 this reflects a failure of the material. This is in contrast
to the behavior of the neo-Hookean material which continues to large
values of h/ Ry albeit with a stong local thinning of the material near the
pole. For ¢ > 2 the Tom-Pom model follows the behavior of the neo-
Hookean model until the strain becomes sufficient to induce branch-point
withdrawal (I; > 3¢?) (McKinley and Hassager, 1999). This happens after
the position of maximum pressure.

The numerical simulations for the Doi-Edwards-Currie model terminate
at a critical height of h/Ry = 0.80 which likewise compares well with Ta-
ble 1. Keep in mind, that the neo-Hookean model was derived for a poly-
meric network, while the Tom-Pom model for ¢ =1 and the Doi-Edwards
model were derived for uncrosslinked linear polymer chains. Thus it is not
surprising that the neo-Hookean model is more stable in membrane infla-
tion than the Tom-Pom(¢ = 1) and Doi-Edwards models (which should
be more or less identical).

B.5 Viscoelastic inflation (constant pressure)

We consider here a step change in pressure from zero to a constant value.
We wish to model the transient inflation that results when 5 > 0. In rhe-
ological terms this may be described as an inhomogenoues creep test for a
mixture of biaxial and planar elongation. In order to get an accurate de-
scription of the transient inflation of a given material it would be necessary
to determine the memory function M(s) as well as 8 from measurements
of the linear viscoelastic properties. However in order to explore the types
of response possible we assume that the viscoelastic stress is dominated
by just one relaxation time so that

"o
M(s) = (1= 5) 1% exp(—s/3) (B.31)
where ) is the dominant time constant. Furthermore we restrict the sim-
ulations at constant pressure to the combination ¢ = 1,¢o = 0. Thus
in effect we consider an Oldroyd-B model with a relaxation time A and a
"retardation" time S\.

B.5.1 Approximate viscous response

When S > 0 the initial response is dominated by the viscous (retardation)
term. In fact the homogeneous spherical shell model may be used to get
an idea of the time scale for the viscous response to a step change in
pressure. Imagine a flat membrane at rest which is at time ¢ = 0 suddenly
subjected to a step change in the pressure of magnitude Ap. The initial
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response will then be determined only by the viscosity of the material
Bno- According to the homogeneous spherical shell model, the height of
the membrane can be shown to develop according to:

Ap = 2483 5R2’———}i——gﬁ (B.32)
p = M09 0(R%+h2)3 dt .
When h(t) < Ry the solution with A(0) = 0 is:
h(t 1,/1 0
( ) ~ _ 3/ _ ﬂ"?O 0 (B33)

Ry 2V7n T ApR,

It is seen that the response although not instantaneous is very fast for
small times. The solution above is useful for providing initial values for
the Newton iteration in the numerical solution. The addition of a small
amount of viscous response in itself may be used as a numerical stabilizer
for discontinuous changes in pressure.

B.5.2 Numerical results

To illustrate the control of the initial response to a step change in pressure
obtained with a viscous component we show in Figure 10 the membrane
height as function of time scaled with the viscous time scale 7, introduced
in Eq. (B.33). We have used the fixed value of § = 0.05. Also shown in
the figure is the numerical result for the completely Newtonian membrane
(8 =1). It is seen that for sufficiently high values of the nondimensional
pressure, the development in the membrane height is given just by the
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Figure B.10. Membrane height as function of time for the Oldroyd-B model
with a fixed value of 8 = 0.05 shown for a variety of pressures. Time t is
scaled with a time constant based on the instantaneous or solvent viscosity.
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viscous contribution to the stress. That is to be expected since for large
P the instantaneous equilibrium deformation would be very large, and so
the deformation becomes controlled by the viscous response. In fact for
P =5 there would be no equilibrium position in fast elastic deformation
of a membrane with 8 = 0.00, as seen in Figures 8 and 9. Nevertheless the
transient response is well defined and controlled due to the small viscous
component included (8 = 0.05). Conversely for small pressures (P = 0.05)
the viscoelastic stresses start to limit the deformation at an early stage.
Also we may illustrate the effect of changing the amount of viscous
vs. viscoelastic stress at fixed values of the pressure difference. For this
purpose we introduce a time scale based on the zero shear-rate viscosity:

_ 1000
7o

- B.34
Ap R (B.34)

Based on this time scale we show in Figure 11 the development of the
membrane height for a fixed value of P = 0.1 and a sequence of S-values.
The value of 5 = 1 is a Newtonian fluid while the value 8 = 0 (not shown)
would correspond to an upper convected Maxwell model. The latter model
would give an instantaneous jump to h/Ry &~ 0.2 according to Figure 9.
This tendency can be seen in the graph for g = 0.05. The relaxation of
the material can also be seen in the slope of the lines. To get a feeling for
the relaxation note that t/\ = t/(7P). Hence t/m = 0.1 corresponds to
t/A =1 so it is reasonable that the material relaxation can be seen.
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Figure B.11. Membrane height as function of time for the Oldroyd-B model
for a fixed pressure P = 0.1 shown for a variety of relative amounts of solvent
viscosity 8. Time t is scaled with a time constant based on the total viscosity.
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B.6 Viscoelastic inflation (constant volume flow)

Finally we illustrate the inflation of a membrane due to a constant flow
rate of an incompressible fluid. Thus given a constant volume rate of flow
(@ the volume bounded by the inflated membrane becomes @t at time
t. In this situation the pressure difference becomes a dependent variable
whereas time is now the independent variable. In practice this is done by
augmenting the system of equations with a volume balance. Furthermore
we assume that the inflation is so rapid that there is no relaxation of
the viscoelastic term. That is to say we use the rapid deformation limit
in Eq. (B.15) for the Rivlin-Sawyers model. When § = 0 this solution
procedure traces through exactly the same membrane profiles and pressure
values shown in Figures 4 — 9 where the height is the independent variable.
However we now investigate the consequences of adding a small retardation
term. It follows from Eq. (B.32) that for 5 > 0 the resulting pressure is
given approximately by:

_192800Q (60 [ Qt )\’
s () () .

This approximate relation that applies for small values of Qt/mR3 is used
to obtain initial estimates for the Newton iteration in the first time step
of the numerical algorithm. We show then in Figure 12 traces of height
vs. pressure for a number of materials with the fixed value of § = 0.01.
In Figure 12 both h/Ry and P are computed quantities the independent
variable being time which is not shown. The traces depend on the rate of

neo—-Hookean (K=0.01)
neo-Hookean (K=0.10)
neo—Hookean (K=1.00)
neo—Hookean (K=10.0)
Doi-Edwards—Currie

Tom-Pom (g =1)

<4 x 0+ 0
<4 x 0+ 0

h/ROl_S

0.5

Figure B.12. Relation between the membrane height and pressure for a fixed
value of 8 = 0.01. Results are shown for K = 0.01 for the modified Tom-Pom
(¢ = 1) and Doi-Edwards-Currie models and for various values of K for the
neo-Hookean model.



B.6. Viscoelastic inflation (constant volume flow)

129

inflation given in terms of the parameter

_ @A
K =%

(B.36)
which is recognized to be a kind of Deborah number based on the retarda-
tion time SA. Results are shown for the neo-Hookean model, and the fast
deformation limit of the Doi-Edwards-Currie and Tom-Pom models. The
trace for the neo-Hookean model with K = 0.01 is indistinquishable from
the ideally elastic trace in Figure 9 (corresponding to K = 0). As the flow
rate is increased, the material generates increasingly high stresses. This
is the result of the excitation of the relaxation times associated with the
small retardation term. For K = 10.0 it is evident that very high pres-
sures are indeed generated and it is in this sense that the response can be
interpreted as being glassy.

We turn now to the behavior of the modified Doi-Edwards-Currie and
Tom-Pom (¢ = 1) models for linear polymer melts in Figure 12. The
traces are shown for K = 0.01 so by analogy with the situation for the
neo-Hookean model one would expect the traces to follow the trace for the
unmodified fast deformation limits in Figure 9. Indeed this is correct up
to the termination points for the ideally elastic computations in Figure 9,
but the traces can be extended beyond the termination points due to the
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Figure B.13. Thickness of the membrane at the pole as function of time shown
for a number of materials all with 8 = 0.01 and K = 0.01. The Tom-Pom
(¢ = 1) and Doi-Edwards-Currie models exhibit catastrophic thinning near
the pole whereas the Mooney-Rivlin (¢ = 0.00) and neo-Hookean materials
show asymptotic behavior with slopes of —2/3 and —3/2 respectively. A
membrane of uniform thickness corresponds to a straight line with slope
—2/3.
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stabilization by the small retardation term. This enables us to investigate
further the behavior near the termination points. In Figure 13 we show
the thickness of the membrane at the pole as function of time for a neo-
Hookean model (¢ = 1.00), a Mooney-Rivlin model (¢ = 0.00), the Doi-
Edwards-Currie model and the Tom-Pom (¢ = 1) model all modified with
a retardation term § = 0.01 and K = 0.01. It should be noted that
a membrane of uniform thickness will correspond to a straight line with
a slope of —2/3 in this plot. Indeed the Mooney-Rivlin material does
show an asymptotic behavior with a slope —2/3. This is in agreement
with the Considére-Pearson criterion since the pressure vs. inflation is a
monotone increasing function for this material. The membrane thickness
at the pole of the neo-Hookean material by contrast decreases faster and
has a limiting slope of —3/2. Hence the membrane becomes very thin
near the pole, but it does not "burst". Finally the membranes composed
of the Doi-Edwards-Currie and the Tom-Pom (¢ = 1) materials show a
catastrophic thinning near the pole. Clearly the thickness goes to zero in
finite time, so the membrane bursts.

The traces for the Tom-Pom model of branched polymer melts (not
shown) follow the neo-Hookean trace until branch-point withdrawal. This
happens when I; = 3¢? or at a thickness 6/ ~ 2/3¢%. At this instant
we expect the membrane to show catastrophic thinning similar to the
situation for ¢ = 1. The interrelation of polymer architecture and stability
boundaries for several strong stretching processes is discussed further in a
companion paper (McKinley and Hassager, 1999).

B.7 Conclusions

We have presented a finite element method for the simulation of inflation
of axisymmetric viscoelastic membranes. The method uses a stress repre-
sentation that is constant in each element and discontinuous at the element
boundaries. The method converges to second order with the element size.

The simulations show that fast behavior may be controlled by viscous
components to the stress. Effectively the limitation in deformation rates
due to the onset of glassy behavior can be described in this way.

A qualitative understanding of the behavior of inflated membranes may
be obtained from the Considére-Pearson criterion which we formulate as
follows:

Uniform inflation of an elastic membrane is guaranteed pro-
vided the pressure is a monotone increasing function of the
volume.

A wide range of Mooney-Rivlin materials satisfy this condition and do
indeed develop a uniform membrane thickness. The simulations indicate
that the criterion is a sufficient but not necessary condition for stability
of inflation.
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Several molecularly based models such as the neo-Hookean, Doi-Edwards
or Tom-Pom model cease to satisfy the Considére-Pearson criterion at
a critical inflation. We have simulated two types of behavior in these
situations. The neo-Hookean model develops a strong local thinning of the
membrane but do not burst in finite time. The Doi-Edwards-Currie model
and the Tom-Pom model for linear polymer melts exhibit a catastrophic
local thinning of the membrane and burst.
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