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Summary

This thesis examines efficient solution procedures for the structural analysis problem within
topology optimization. The research is motivated by the observation that when the nested
approach to structural optimization is applied, most of the computational effort is invested
in repeated solutions of the analysis equations. For demonstrative purposes, the discussion is
limited to topology optimization problems within the field of structural mechanics. Nevertheless,
the results can be relevant for a wide range of problems in structural and topology optimization.

The main focus of the thesis is on the utilization of various approximations to the solution of
the analysis problem, where the underlying model corresponds to linear elasticity. For computa-
tional environments that enable the direct solution of large linear equation systems using matrix
factorization, we propose efficient procedures based on approximate reanalysis. For cases where
memory limitations require the utilization of iterative equation solvers, we suggest efficient pro-
cedures based on alternative termination criteria for such solvers. These approaches are tested
on two- and three-dimensional topology optimization problems including minimum compliance
design and compliant mechanism design. The topologies generated by the approximate proce-
dures are practically identical to those obtained by the standard approach. At the same time,
it is shown that the computational cost can be reduced by up to one order of magnitude. The
main observation in the context of optimal design of linear structures is that relatively rough
approximations are acceptable, in particular in early stages of the optimization process.

The thesis also addresses topology optimization of structures exhibiting nonlinear response.
In such cases, the computational effort invested in the solution of the nested problem is even
more dominant since nonlinear equation systems are to be solved repeatedly. Efficient proce-
dures for nonlinear structural analysis are proposed, based on transferring solutions and factor-
ized tangent stiffnesses from one design cycle to the following one. This approach is demon-
strated on several design problems involving either geometric or material nonlinearities. The
suggested procedures are shown to be effective mainly for problems that do not involve path-
dependent solutions.
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Resumé (in Danish)

I denne afhandling undersøges effektive løsningsprocedurer for strukturalanalyse i topologiop-
timering. Forskningen motiveres af følgende: når den indlejrede fremgangsmåde til konstruk-
tionsoptimering anvendes, bliver storstedelen af den investerede beregningsindsats brugt til gen-
tagne løsninger af analyseligningerne. For illustrationens skyld, er diskussionen begrænset til
topologioptimering inden for konstruktionsmekanik. Resultaterne kan dog alligevel være rele-
vante for flere problemer i konstruktionsoptimering og topologioptimering.

Hovedvægten i afhandlingen ligger på anvendelsen af forskellige approksimationer til løsning
af analyseproblemet, hvor den underliggende model svarer til lineær elasticitet. For beregn-
ingsmiljøer, der gør det muligt at løse store lineære ligningssystemer ved matrixdekomposi-
tion, foreslår vi effektive procedurer baseret på approksimativ genanalyse. I tilfælde af hukom-
melsesbegrænsninger der kræver udnyttelse af iterative metoder, foreslår vi effektive procedurer
baseret på alternative afslutningskriterier for disse løsningsmetoder. Approksimative procedurer
er testet på topologioptimering af konstruktioner i to og tre dimensioner, nemlig minimum com-
pliance design og compliant mecahnism design. Konstruktionerne genererede af de approksima-
tive procedurer er næsten identiske med dem, der opnås med standardmetoden. Samtidig er det
påvist, at beregningsomkostningen kan reduceres med op til en hel størrelsesorden. Den vigtig-
ste bemærkning i forbindelse med topologioptimering af lineære konstruktioner er, at relativt
grove tilnærmelser er acceptable, især i tidlige faser af optimeringsprocessen.

Afhandlingen omhandler også topologioptimering af konstruktioner der udviser ikke-lineær
respons. I sådanne tilfælde er den beregningsindsats, der investeres i gentagne løsninger af
de indlejrede problemer endnu mere dominerende, da ikke-lineære ligningssystemer skal løses
gentagne gange. Effektive procedurer for ikke-lineær strukturalanalyse er foreslået. Frem-
gangsmåden er baseret på overførsel af information fra en optimeringsfase til den efterfølgende.
Denne fremgangsmåde er påvist for flere problemer i topologioptimering med geometriske eller
materielle ikke-lineæritet. De foreslåede procedurer viste sig at være effektive især for konstruk-
tioner, som ikke indeholder vej-afhængige løsninger.
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Introduction

The presented thesis deals with efficient solution procedures for the structural analysis prob-
lem within topology optimization. In topology optimization, the nested approach is frequently
applied, meaning optimization is performed in the design variables only while the equilibrium
equations are solved separately. In such cases, the computational effort involved in repeated
solutions of the structural analysis equations dominates the computational cost of the whole
process. This motivates the search for efficient approaches aimed at reducing the computational
effort invested in the analysis. Ultimately, applying efficient procedures can enable the solution
of larger and more complex models compared to standard procedures.

The thesis addresses structural topology optimization problems in which the underlying anal-
ysis model is either linear or nonlinear. For linear problems, the proposed procedures are based
on utilizing various approximations to the solution of the analysis equations. For nonlinear
problems, the discussion is restricted to re-using information when performing sequences of
nonlinear analyses, thus the obtained solutions are accurate.

The thesis is organized as follows. Part I gives a general background to the topic. In Chapter
1, structural analysis procedures are briefly reviewed, with particular reference to methods and
formulations employed in the thesis. Chapter 2 introduces structural topology optimization.
The emphasis is put on the problem formulations, objective functions and sensitivity analysis
procedures considered in the various test cases that are examined. Finally, Chapter 3 includes
a summary of the results; an assessment of the contribution of the work; and a discussion
regarding ideas for future work. Part II includes 5 research articles. Chapters 4, 5 and 6 discuss
various approximate procedures for linear structural analysis in topology optimization. Chapter
8 deals with efficient computational schemes for nonlinear structural analysis based on re-using
information. Chapter 7 is given as a background for Chapter 8, where one of the considered
problems involving material nonlinearities is presented.
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Chapter 1

Structural Analysis Procedures

The main objective of this thesis is to investigate efficient solution procedures for the structural
analysis problem in structural optimization. In particular, the focus is on topology optimization
where the general layout of the structure is determined.

One approach to structural optimization is to formulate the problem in the design variables
space only. Then the aim is to find optimal values of the design variables such that the objective
function is minimized and the constraints are satisfied. The corresponding optimization problem
has the form (Kirsch, 1993)

min
x

f(x)

s.t.: gi(x) ≤ 0 i = 1, ...,m

where f is the objective function and gi (i = 1, ...,m) are general inequality constraints. Follow-
ing this approach, the response of the structure (which can be formulated as a set of equality
constraints) is computed separately for any value of the design variables by solving the anal-
ysis equations. The result of the analysis can then be used to evaluate the objective and the
constraints. This results in a two-level procedure, where the first level consists of solving the
structural analysis problem and in the second level the design is modified by mathematical pro-
gramming. This is also known as the nested approach (Kirsch, 1993), since the analysis is nested
in the optimization procedure and repeatedly solved for a sequence of trial designs. In topology
optimization, typically only a few constraints are considered. This means that the optimization
problem can be solved efficiently even if the number of design variables is large, using methods
such as the one described in Section 2.3.2. Consequently, the main computational burden is in
the structural analysis.

In this thesis, various approaches aimed at reducing the computational cost associated with
solving the structural analysis problem are presented. This chapter provides the reader with
the necessary background regarding structural analysis of both linear and nonlinear systems. A
brief review of common methods and procedures for structural analysis is given. Furthermore,
the concept of structural reanalysis, referring to multiple repeated analyses is presented. The
main purpose is to establish a connection between standard analysis procedures, approximate
reanalysis and the efficient procedures discussed in Chapters 4, 5, 6 and 8.

The main purpose of structural analysis is to determine the displacements, internal forces
and stresses of a structure under a set of applied loads. The resulting internal forces in the
structure must satisfy equilibrium conditions and the displacements should be compatible with
the continuity of the structure and with its boundary conditions. In practice, the most common
numerical method used for structural analysis is the finite element method (FEM). Using FEM,
two-dimensional and three-dimensional continuum structures such as plates, shells and solids,
as well as trusses and frames, can be modeled and analyzed. The main feature of FEM is the

5



6 Structural Analysis Procedures

assumption of the displacement field within a small element as a combination of a few simple
functions, known as shape functions. The actual structure is replaced by a discrete model,
divided into small elements, also known as finite elements, which are connected together at
their boundaries. According to the shape functions used, the stiffness matrix of each element in
the model is calculated and then the stiffness matrix of the whole structure can be assembled.
Equilibrium at every node of the discrete structure is satisfied by solving a set of simultaneous
algebraic equations and obtaining the nodal displacements. The results are then post-processed
to determine the stresses and internal forces at each element. Various textbooks on FEM-based
structural analysis are available. For the purpose of this thesis, the books by Bathe (1996),
Zienkiewicz and Taylor (2000), Crisfield (1991) and Cook (1981) are followed.

Generally speaking, structural analysis can be divided into three types: linear static analysis,
nonlinear static analysis and dynamic analysis, which itself can also be divided into linear and
nonlinear cases. In linear static analysis, we assume linear relations between the applied loads
and the displacements of the structure. This assumption is based on linear material laws (e.g.
Hooke’s law) and linear kinematics (small displacements, rotations and strains). A linear finite
element linear analysis ends up in solving a set of linear algebraic equations. In nonlinear
analysis, one or more of these assumptions may not be suitable: the material law could be
nonlinear; the kinematics could be nonlinear (e.g. large displacements and rotations); or the
boundary conditions might change (e.g. contact problems). In order to perform a nonlinear
finite element analysis, a set of nonlinear algebraic equations should be solved. The solution is
usually found by employing an incremental-iterative linearization technique.

1.1 Linear structural analysis

In any linear static finite element analysis (FEA), the system of algebraic equations to be solved
is

Ku = f (1.1)

where K is the global stiffness matrix, u is the unknown displacements vector and f is the
external load vector. K has the following properties: It is symmetric; it is positive definite;
and it is sparse. Exploiting symmetry and sparsity, the stiffness matrix is stored in memory in
a very compact manner. The solution of (1.1) is obtained by employing either a direct or an
iterative equation solver. In general, direct solvers are more robust and are preferred when the
factorized form of K can be stored in memory. This is the case for small and medium scale 2-D
FE problems. For 3-D models, K usually has a relatively large bandwidth so that iterative solvers
are more appropriate due to their low memory requirements. Iterative schemes are also easier
to parallelize and therefore are more suitable for high performance computing (Saad, 2003).

Direct solution methods Direct solution methods are algorithms based on Gauss elimination.
Due to its symmetry and positive definiteness, the stiffness matrix can be decomposed using the
Cholesky factorization

K = UTU (1.2)

where U is an upper triangular matrix. Then, the vector of displacements u is obtained in two
steps, involving only forward and backward substitutions

UTv = f

Uu = v

When the matrix’s half-bandwidth b is much smaller than the number of degrees of freedom
n, the number of flops required for a Cholesky factorization is roughly nb2

2 (Golub and Van Loan,
1983). The decomposed matrix can then be stored in a n× (b+ 1) array. In various applications,



1.1 Linear structural analysis 7

such as structural optimization, a sequence of analysis equations of the form (1.1) is generated
and should be solved. In the nested approach to topology optimization, the overall computa-
tional effort is typically dominated by the cost of solving the analysis equations. The relatively
high cost of matrix factorization in large-scale problems, in particular in three-dimensional FEA,
motivates the development of efficient procedures that avoid repeated factorizations. The idea
of re-using the Cholesky factors from Eq. (1.2) is the underlying principal of the reanalysis
approach described in Section 1.3. Investigations regarding re-using Cholesky factors, in the
context of solving sequences of linear systems arising in topology optimization, are reported in
Chapters 4 and 6.

Iterative solution methods Iterative methods for solving large sparse linear systems have
been gaining popularity over direct methods. In earlier times, iterative methods were usually
developed for particular applications and their performance depended on the actual problem
parameters. Nowadays, various general-purpose iterative solvers are available, among which
the family of Krylov subspace solvers is applied most extensively. For 3-D models and paral-
lel high performance computers, Krylov iterative solvers are much more efficient than direct
solvers (Saad, 2003). Therefore in the context of reducing computational effort in topology
optimization, it is essential to address the use of such solvers for solving the structural analysis
equations.

Among the family of Krylov subspace solvers, the most appropriate method for solving sym-
metric positive definite systems such as (1.1) is the conjugate gradient (CG) method (Hestenes
and Stiefel, 1952). Since it was introduced by Hestenes and Stiefel as an alternative to Gauss
elimination, many studies were dedicated to the method’s convergence properties and error
analysis, (see for example Golub and Van Loan (1983); Kelley (1995); Saad (2003)). The rate
of convergence depends on the condition number of the system matrix K, therefore it is neces-
sary to use effective preconditioning in order to achieve fast convergence. Demonstrated with
symmetric preconditioning, this means that in practice CG will be applied to solve

K̃ũ = f̃

where

K̃ = M−TKM−1

ũ = Mu

f̃ = M−T f

The preconditioner M can be, for example, an incomplete factor of K so that the eigenvalue
distribution of K̃ is much better than that of K. The resulting preconditioned conjugate gradient
(PCG) procedure aimed at solving the linear system can be outlined as follows:

1. Set the initial guess u1.

2. Compute the initial residual r1 and direction vector p1: r1 = f − Ku1, y = M−T r1,
z1 = M−1y, p1 = z1.

3. For i = 1:maxiter do

(a) αi =
rTi zi

(Kpi)Tpi

(b) ui+1 = ui + αipi

(c) ri+1 = ri − αiKpi

(d) If ‖ri+1‖2 < ε ‖f‖2 break.
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(e) y = M−T ri+1, zi+1 = M−1y.

(f) βi =
rTi+1zi+1

rTi zi

(g) pi+1 = zi+1 + βipi

Solving the system of equilibrium equations (1.1) is equivalent to the minimization of the
quadratic functional φ which represents the potential energy in the structure

φ(u) =
1

2
uTKu− fTu

The fundamental principal behind the derivation of CG is that it successively minimizes φ along
a set of directions {p1,p2, ...}. This can also be seen as successively minimizing the following
norm (Kelley, 1995)

‖uk − u∗‖K =
√

(uk − u∗)TK(uk − u∗) (1.3)

where uk is the k-th iterate of CG and u∗ is the exact solution. The iterative process is typically
terminated when the relative residual is small, as stated in the procedure outlined above. It can
be shown that the norm of the error given in Eq. (1.3) reduces faster than the relative norm of
the residuals (Kelley, 1995)

‖rk‖2
‖r1‖2

≤
√
λ1

λN

‖uk − u∗‖K
‖u1 − u∗‖K

where λ1 and λN are the largest and the smallest eigenvalues of K respectively. It is important
to note that in the context of compliance minimization in topology optimization, the norm (1.3)
is related to the error in compliance. This is useful when seeking early termination criteria for
PCG. Efficient use of PCG for solving the linear analysis equations in topology optimization,
based on such early termination criteria, is the topic of Chapter 5.

1.2 Nonlinear structural analysis

Linear static analysis is based on the assumptions that the displacements of the structure are
infinitesimally small, the material is linearly elastic and the boundary conditions remain un-
changed under loading. When one of these assumptions is inappropriate, a nonlinear static
analysis is required (Bathe, 1996). Since this thesis focuses on efficient procedures for structural
analysis for the purpose of topology optimization, the discussion regarding structural nonlinear-
ities is limited to the following demonstrative classes of problems:

• Geometric nonlinearity (GNL) - large displacements and rotations but small strains. In
particular, the total Lagrangian formulation is employed and material linearity is assumed.

• Material nonlinearity (MNL) - the stress-strain relationship is nonlinear. In particular,
various elasto-plastic formulations are utilized.

When examining computational procedures, it is important to emphasize one major differ-
ence between large deformations analysis and elasto-plasticity. Elasto-plastic response is path-
dependent by nature, meaning that the evolution of plastic strains under a certain load intensity
depends on the history of plastic straining and cannot be computed correctly in one load stage.
Therefore an incremental solution scheme is mandatory for problems in elasto-plasticity and this
implies that also sensitivity analysis must be performed in increments. For large deformations
this is not the case and in principal the response can be computed in a single load step.
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Figure 1.1: Optimized design of a clamped beam considering large defor-
mations. The deflection at the loaded point is 1/10 of the beam height and
1/50 of the beam length.

1.2.1 Large deformations

In large deformation continuum mechanics, equilibrium should be satisfied in the deformed
geometry which is unknown beforehand. One approach to large deformation analysis is the
so-called total Lagrangian formulation, where all finite element computations are performed
with respect to the original configuration. For this purpose, the Green-Lagrange strain tensor is
defined as

n
0 εij =

1

2
(n0ui,j + n

0uj,i + n
0uk,i

n
0uk,j) (1.4)

where u is the displacement field; i, j and k represent the cartesian axes; ul,m = ∂ul
∂m ; and

Einstein summation convention is applied. The n
0 notation means evaluation at “time” n in the

initial coordinate system corresponding to “time” 0. The term “time” is used here to represent
the incrementation of loads or displacements. The third term in (1.4) is neglected in linear
structural analysis since it is assumed that the displacements are small.

In the following, the derivation of the finite element equations is briefly outlined following
the complete derivation by Bathe (1996). Applying the principal of virtual work with respect to
an unknown deformed configuration at “time” n results in the basic equation∫

0V

n
0Sijδ

n
0 εijd

0V = n
0R (1.5)

where n
0Sij is the second Piola-Kirchoff stress tensor and n

0R is the external virtual work. For
simplicity it is assumed that loading is deformation-independent. The stresses and strains are
decomposed into their known parts (from a previous configuration) and unknown parts (corre-
sponding to the current increment)

n
0Sij = n−1

0 Sij + 0Sij
n
0 εij = n−1

0 εij + 0εij

Furthermore, the incremental strains are decomposed into linear and nonlinear terms, denoted
0eij and 0ηij respectively

0εij = 0eij + 0ηij

0eij =
1

2
(0ui,j + 0uj,i + n−1

0 uk,i0uk,j + 0uk,i
n−1
0 uk,j)

0ηij =
1

2
0uk,i0uk,j

Inserting the incremental decompositions into (1.5) and using δn0 εij = δ0εij leads to∫
0V

0Sijδ0εijd
0V +

∫
0V

n−1
0 Sijδ0ηijd

0V = n
0R −

∫
0V

n−1
0 Sijδ0eijd

0V (1.6)
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The only nonlinear term with respect to incremental strains in (1.6) is 0Sijδ0εijd
0V . Using the

approximations 0Sij = 0Dijrs0ers and δ0εij = δ0eij , the linearized equation is obtained∫
0V

0Dijrs0ersδ0eijd
0V +

∫
0V

n−1
0 Sijδ0ηijd

0V = n
0R −

∫
0V

n−1
0 Sijδ0eijd

0V (1.7)

where 0Dijrs is the constitutive tensor in the original configuration.
Obtaining the discretized FE equations from (1.7) follows standard FE procedures. The

corresponding linearized algebraic equation system can be written as

n−1
0 KL∆u + n−1

0 KNL∆u = nfext − n−1
0 fint (1.8)

where n−1
0 KL and n−1

0 KNL are the linear and nonlinear parts of the stiffness matrix, based on
the known configuration at “time” n − 1; ∆u is the displacements increment at “time” step
n; nfext is the external load vector at “time” step n; and n−1

0 fint is the internal forces vector
corresponding to the known configuration at “time” n − 1. Eq. (1.8) constitutes the starting
point for an iterative solution, where the stiffness and internal forces from step n − 1 are used
as initial approximations for the solution at step n. These are then corrected iteratively until the
external and internal forces are balanced. At any iteration within step n, the tangent stiffness
matrix and the internal forces are computed as follows

n
0K = n

0KL + n
0KNL =

∫
0V
{n0BT

L}{0D}{n0BL}d0V +∫
0V
{n0BT

NL}{n0S}{n0BNL}d0V

n
0 fint =

∫
0V
{n0BT

L}{n0 Ŝ}d0V

where n
0BL is the strain-displacement transformation matrix, corresponding to linear terms of

incremental strains; n
0BNL is the strain-displacement transformation matrix, corresponding to

nonlinear terms of incremental strains; 0D is the constitutive tensor; n0S represents the second
Piola-Kirchoff stresses in matrix format; and n

0 Ŝ represents the same stresses in vector format.
As mentioned above, the complete derivation of n0BL and n

0BNL follows standard FE procedures
and is omitted for brevity.

For evaluating the second Piola-Kirchoff stresses, it is necessary to compute the Green-
Lagrange strain tensor. This can be conveniently performed using the deformation gradient
n
0X (Bathe, 1996)

n
0ε =

1

2
(n0X

T n
0X− I)

where

n
0X =


∂nx1
∂0x1

∂nx1
∂0x2

∂nx1
∂0x3

∂nx2
∂0x1

∂nx2
∂0x2

∂nx2
∂0x3

∂nx3
∂0x1

∂nx3
∂0x2

∂nx3
∂0x3

 (1.9)

The partial derivatives in (1.9) are evaluated using derivatives of the shape functions at “time”
0.

1.2.2 Elasto-plasticity

For the purpose of studying topology optimization procedures involving nonlinear structural
analysis, elasto-plasticity is examined as a representative case of material nonlinearity. In partic-
ular, design problems involving classical rate-independent plasticity are addressed. The under-
lying principal of elasto-plastic behavior is that the material has a yield limit in terms of strain
and stress. Up to the yield limit, the response is linear elastic (though it could also be nonlinear
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Figure 1.2: Uniaxial stress-strain relationship of elasto-plastic materials

elastic in general). Once yielding occurs, the material loses much of its stiffness in an irreversible
manner. In some cases, ideal elasto-plastic behavior is assumed, meaning no stiffness remains
after yielding. Many models consider a more general case where the material exhibits hardening
or softening beyond the limit stress. This is demonstrated using uniaxial stress-strain curves in
Figure 1.2.

1.2.2.1 Classical rate-independent plasticity

In rate-independent plasticity, it is assumed that the stress-strain relationship is independent of
the rate of loading but does depend on the loading sequence (path-dependency). The process
is conveniently represented as a flow evolving in time, where each “time” step corresponds to
an incremental load or displacement. The formulation of the governing equations in continuum
stress-space (assuming stresses as the independent variables) is hereby presented, based on the
textbooks by Simo and Hughes (1998) and Zienkiewicz and Taylor (2000).

The governing equations are essentially composed of the following assumptions and rules:
elastic stress-strain relationships; a yield condition, defining the elastic domain; a flow rule and
hardening law; Kuhn-Tucker complementarity conditions; and a consistency condition. We first
assume that the total strain tensor can be split into its elastic and plastic parts

ε = εel + εpl

Furthermore, we relate the stress tensor to the elastic strains using the elastic constitutive tensor

σ = Dεel (1.10)

The yield criterion is a function that defines the admissible stress states

f(σ,q) ≤ 0

where q are internal variables related to the plastic strains and to the hardening parameters.
The elastic domain is defined by the interior of the yield criterion where f < 0; the yield surface
is defined by f = 0; and the stress state corresponding to f > 0 is considered non-admissible.

The irreversible plastic flow is governed by the evolution of plastic strains and internal vari-
ables

ε̇pl = λ̇r(σ,q) (1.11)

q̇ = −λ̇h(σ,q) (1.12)
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where r and h are functions defining the direction of plastic flow and the hardening of the
material. The parameter λ is typically called the consistency parameter or plastic multiplier.
Together with the yield criterion, λ̇ must satisfy the Kuhn-Tucker complementarity conditions

λ̇ ≥ 0

f(σ,q) ≤ 0

λ̇f(σ,q) = 0 (1.13)

as well as the consistency requirement

λ̇ḟ(σ,q) = 0

The consistency requirement means that during plastic loading, the stress state must remain on
the yield surface, meaning ḟ = 0 if λ̇ > 0.

All possible loading or unloading situations at a certain time can be represented by the Kuhn-
Tucker and consistency conditions as follows:

1. Elastic loading, meaning f < 0 so necessarily λ̇ = 0. This means there is no plastic flow,
i.e. ε̇pl = 0 and q̇ = 0.

2. Neutral loading, where f = 0, ḟ = 0 and λ̇ = 0.

3. Plastic loading, where f = 0, ḟ = 0 and λ̇ > 0.

4. Elastic unloading just after yielding, meaning f = 0 but ḟ < 0 so λ̇ = 0.

J2 flow theory A widely accepted model of plasticity in metals is usually known as J2 flow
theory or simply J2-plasticity. It is based on the von Mises yield criterion (von Mises, 1928) that
relates the yielding of the material to the deviatoric stresses, measured by the second deviatoric
stress invariant J2. In this thesis, topology optimization of structures exhibiting elasto-plastic
response governed by J2-plasticity is considered in Chapter 8 for the purpose of studying ef-
ficient computational procedures. The model is hereby presented as a particular case of rate-
independent plasticity.

The yield criterion is the von Mises yield function expressed as

f(σ, κ) =
√

3J2 − σy(κ) ≤ 0 (1.14)

where the expression
√

3J2 is usually named the von Mises stress or equivalent stress. σy is the
yield stress in uniaxial tension, which depends on a single internal parameter κ according to
an isotropic hardening function. Kinematic hardening is not considered in the current work. A
popular choice for the hardening rule is the bi-linear function

σy(κ) = σ0
y +HEκ (1.15)

where σ0
y is the initial yield stress, H is a scalar (usually in the order of 10−2) and E is Young’s

modulus. An associative flow rule is assumed, meaning that the flow of plastic strains is in a
direction normal to the yield surface

ε̇pl = λ̇
∂f

∂σ
(1.16)

Finally, the internal variable governing the hardening is the equivalent plastic strain, evolving
according to the rule

κ̇ =

√
2

3

∥∥∥ε̇pl∥∥∥
2

(1.17)

The factor
√

2
3 is introduced so that for the particular one-dimensional case (involving uniaxial

plastic deformation), the obvious relation will be obtained, i.e. κ̇ = ˙εpl.
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Drucker-Prager elasto-plastic model The Drucker-Prager yield criterion (Drucker and Prager,
1952) is widely used to model the behavior of pressure-dependent materials such as soils, rock
or plain concrete. Moreover, the von Mises yield criterion can be seen as a particular case of the
Drucker-Prager criterion. The Drucker-Prager yield function is expressed as

f(σ, κ) =
√

3J2 + α(κ)I1 − σy(κ) ≤ 0 (1.18)

where I1 is the first invariant (trace) of the stress tensor. α is a material property depending on
the internal hardening parameter κ according to some hardening function. When α = 0, the
von Mises yield criterion is obtained.

The relations (1.15), (1.16) and (1.17) corresponding to the J2 flow model are not necessar-
ily suitable for defining plasticity mechanisms in pressure-dependent materials. Nevertheless,
the framework for deriving the governing equations according to classical rate-independent plas-
ticity is the same as for the J2 model. In the study presented in Chapter 7, a Drucker-Prager
model with simplified flow and hardening rules is utilized for interpolating the nonlinear be-
havior of two candidate materials, whose yielding is defined by the Drucker-Prager and von
Mises criteria. Efficient computational procedures for the corresponding topology optimization
problems are discussed in Chapter 8.

1.2.2.2 Adopted computational approach

Within the finite element framework, elasto-plastic structural analysis is typically performed
using an incremental-iterative scheme. The “time” interval is divided into sufficiently small
increments. The displacements at each step of incremental load (or prescribed displacement)
are computed at the global level and corrected iteratively. These displacements are used to
compute incremental strains according to standard kinematic relations. For a given incremental
strain, the state variables - stresses, plastic strains and internal variables - can be computed by
solving the constitutive equations on the local level. In the context of FEA, this is performed
at every Gauss point in the mesh. The state variables are then used to compute global internal
forces and equilibrium can be tested. This global-local cycle is repeated until force equilibrium
is satisfied.

Assuming that the total strains, plastic strains and internal variables are known at a certain
time t, the local constitutive problem consists of updating these values at time t+ ∆t according
to the flow rules (1.11) and (1.12). The updated values must comply with the Kuhn-Tucker
complementarity conditions (1.13). This continuum problem is transformed into a discrete
constrained optimization problem by applying an implicit backward-Euler difference scheme.
The central feature of this scheme is the introduction of a trial elastic state. For any given
incremental displacement field, it is first assumed that there is no plastic flow between time tn
and the next time step tn+1, meaning the incremental elastic strains are the incremental total
strains. Then, for convex yield functions, it can be shown (Simo and Hughes, 1998)

f trialn+1 ≥ fn+1

Consequently, the trial state can be utilized to determine the loading/unloading situation which
is governed by the Kuhn-Tucker conditions. If f trialn+1 < 0, then necessarily fn+1 < 0. This means
that for this time step there cannot be any plastic flow, i.e. λn+1− λn = 0 and the step is elastic.
If f trialn+1 > 0, then the second Kuhn-Tucker condition is violated. This implies that the elastic
strains are not equal to the total strains and therefore λn+1 − λn > 0. Accordingly, we must
have fn+1 = 0 meaning that the time step is plastic. Once this occurs, the new state variables
can be found by solving a nonlinear equation system resulting from the time discretization of
the governing equations. This is typically performed by a return-mapping algorithm, where the
equation system is reduced to a scalar nonlinear equation that is solved by Newton’s method.
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As mentioned above, two types of elasto-plastic models are considered in this thesis: a J2

flow model and a simplified rate-independent model based on the Drucker-Prager yield criterion.
For solving the local constitutive problem corresponding to J2 plasticity, a return-mapping algo-
rithm by Simo and Taylor (1986) is employed. This procedure is tailored particularly for plane
stress conditions which are the only case considered in this thesis. One obstacle encountered
when utilizing a return-mapping algorithm is the need to differentiate the resulting elasto-plastic
tangent modulus for the purpose of sensitivity analysis in topology optimization. This results
in a tedious sensitivity analysis procedure and apparently some simplifying assumptions must
be made (Maute et al., 1998). Consequently, for the purpose of sensitivity analysis a coupled
approach is followed, according to the framework suggested by Michaleris et al. (1994). In the
coupled approach, the local constitutive problem is again represented in the form of a system of
nonlinear equations aimed at finding the new plastic state once plastic flow is predicted by the
elastic trial state. For the simplified Drucker-Prager model, the coupled approach is followed
for both the analysis and the sensitivity analysis. In the following, the time-discretized govern-
ing equations for the J2 flow model are presented. For the Drucker-Prager model, the coupled
equation system is presented in Chapter 7.

J2 flow theory In the coupled approach, for every increment n in the transient analysis, we
determine the unknowns un and vn that satisfy the residual equations

nR(nu,n−1 u,n v,n−1 v) = 0
nH(nu,n−1 u,n v,n−1 v) = 0

where u is the displacements vector and v are the internal variables

nv =


nεpl
nκ
nσ
nλ


The internal variables considered in this model are as follows: nεpl are the plastic strains, nκ is
the equivalent plastic strain, nσ are the stresses and nλ is the plastic multiplier, all corresponding
to a “time” increment n.

Neglecting body forces, nR is defined as the difference between external and internal forces
and depends explicitly on nv only

nR(nv) = nfext − nfint = nfext −
∫
V
BT nσdV (1.19)

where B is the standard strain-displacement matrix in the context of finite element procedures.
The nonlinear equilibrium equation (1.19) is solved by one of the methods described in Section
1.2.3. The residual nH is defined as the collection of four incremental residuals, resulting from
the time linearization of the governing constitutive equations

nH1 = n−1εpl + (nλ− n−1λ)(
∂f

∂nσ
)T − nεpl

nH2 = n−1κ+ (nλ− n−1λ)

√
2

3
(
∂f

∂nσ
)T (

∂f

∂nσ
)− nκ

nH3 = n−1σ + D
[
Bnu−Bn−1u− (nεpl − n−1εpl)

]
− nσ

nH4 = J2 −
1

3
(σy(κ))2 (1.20)

where the first three equations follow from (1.16), (1.17) and (1.10) respectively; the fourth
equation represents the requirement that once a plastic step is identified, the stress state lies on
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the yield surface. The local nonlinear equations nH = 0 are solved implicitly. An elastic trial
stress is first assumed and then the true stresses and plastic strains are found iteratively using a
Newton-Raphson procedure. Clearly, if an elastic increment is predicted by the elastic trial state,
then this equation system is satisfied trivially: nλ = n−1λ so nεpl = n−1εpl and nκ = n−1κ, and
the stresses are computed using the elastic constitutive tensor and the elastic trial stresses.

Concluding the discussion regarding J2 flow theory, it is noted that the return-mapping
algorithm by Simo and Taylor (1986) and the coupled approach presented above are completely
equivalent (Michaleris et al., 1994). Therefore, it is possible to perform the structural analysis
with the compact formulation of the return-mapping algorithm, and then employ the coupled
approach for a convenient and general formulation of the sensitivity analysis.

1.2.3 Solving nonlinear equation systems

In general, when solving the global nonlinear equilibrium equations, an incremental-iterative
solution scheme is employed. In the case of elasto-plasticity incrementation is mandatory since
the solution is path-dependent so the overall load (or displacement if the solution is controlled
by prescribed displacements) must be divided into sufficiently small increments. In the case of
geometric nonlinearities, one increment may be sufficient but it is sometimes more efficient to
divide the load into several increments that converge relatively fast.

Newton-Raphson schemes The basic equation to be solved is force equilibrium at the “time”
increment n where the unknowns are the nodal displacements u∗

R(u∗) = nfext − nfint(u
∗) = 0

Here, nfext and nfint are the vectors of external and internal nodal forces. For simplicity, it is as-
sumed that only the internal forces depend on the displacements; this dependence is nonlinear.
Assuming we have evaluated an approximation of the displacements at a certain iterate i− 1 to
obtain nui−1, we can expand the Taylor series

R(u∗) = R(nui−1) +
∂R

∂u

∣∣∣∣
nui−1

(u∗ − nui−1) + higher order terms

This leads to the equation

∂fint
∂u

∣∣∣∣
nui−1

(u∗ − nui−1) = nfext − nf i−1
int

Introducing the tangent stiffness matrix we obtain the typical iterative equation system

nKi−1∆u = nfext − nf i−1
int (1.21)

The iterative evaluation of the displacements is then updated

nui = nui−1 + ∆u

Accordingly, also the internal forces and tangent stiffness are evaluated for the next iterative
step.

The resulting iterative procedure is terminated once a certain measure reaches a required
tolerance. Throughout this study, a relative norm of the residual forces is utilized for this purpose∥∥nfext − nf i−1

int

∥∥
2

‖nfext − n−1fext‖2
≤ ε

In words, the value of the iterative unbalanced forces is measured relatively to the external
forces added in the current increment. Once this measure is smaller than ε (typically 10−6 or
smaller), it is said that the incremental solution converged.
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Direct solvers One possibility is to solve (1.21) by a direct solver, utilizing factorizations of
the tangent stiffness matrix. If we choose to factorize K at every iteration, the procedure is
known as Full Newton-Raphson (FNR). Another possibility is to re-use available factorizations.
For example, one may choose to factorize K at the beginning of the increment n and then use this
factorization for all iterations i within this increment. This is referred to as the Modified Newton-
Raphson procedure (MNR). Clearly, convergence will slow down but fewer factorizations will be
performed. It is difficult to know beforehand which of the two procedures will lead to a lower
computational cost, but it is clear that FNR is more likely to converge to the desired solution.

When nonlinear structural analysis is performed for the purpose of topology optimization,
the MNR procedure can be interpreted in a broader manner. Following the nested approach,
nonlinear analysis is performed within every design cycle. This means that it is possible to
re-use factorizations corresponding to previous design cycles in a modified Newton-Raphson
procedure. This is shown to be useful in reducing the overall number of matrix factorizations.
Reducing computational cost in nonlinear analysis within topology optimization procedures by
means of re-using information is discussed in Chapter 8.

In nonlinear structural analysis the stiffness matrix may lose positive definiteness. This hap-
pens, for example, during buckling or when encountering a limit point. In such cases, the
Cholesky decomposition cannot be utilized to solve the linearized equation (1.21). Instead, the
following symmetric decomposition is used

K = LDLT

where L is a lower-triangular matrix and D is a diagonal matrix.

Iterative solvers For large-scale 3-D problems, a direct solution of (1.21) may be impractical
due to the memory requirement and an iterative solver is used instead. These methods are usu-
ally known as Inexact Newton Methods (Kelley, 1995) since the linear systems may not be solved
to full accuracy. If the iterative linear solver is based on the family of Krylov subspace solvers
this is referred to as Newton-Krylov methods, see for example Kelley (2003). The main challenge
when employing these methods is the desire to reduce the number of iterations performed by
the Krylov solver for each linear system. Investigating efficient procedures for nonlinear struc-
tural analysis within topology optimization, based on Newton-Krylov methods, is beyond the
scope of this thesis. Nevertheless, it is a natural extension of Chapter 8 thesis and an interesting
topic for future work.

Displacement control When performing a nonlinear structural analysis for the purpose of
topology optimization, it is sometimes useful to increment a prescribed displacement rather than
a given load. This observation is further discussed in Chapter 2. Controlling the displacement
can also improve the numerical stability, for example when a small additional load corresponds
to a large additional displacement or when limit points are encountered (Crisfield, 1991). When
applying displacement control, the incrementation parameter n represents the magnitude of
the displacement at a particular degree of freedom for which incremental displacements are
prescribed. Replacing Eq. (1.21), the iterative equilibrium equation corresponding to “time” n
then has the form

nKi−1∆u = nθf̂ext − nf i−1
int

where θ is an unknown load factor that multiplies the fixed external load vector f̂ext. The total
number of unknowns remains unchanged since one of the entries in ∆u is prescribed. In order to
maintain symmetry of the resulting linear equation system, a special incremental displacement
algorithm is used. Following Batoz and Dhatt (1979), the procedure within a single increment
can be outlined as follows

1. Set current displacements and load factor u0, θ0.
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2. Set the incremental prescribed displacement at the p-th degree of freedom ∆up.

3. Solve K0∆u1 = f̂ext where K0 corresponds to u0.

4. Compute ∆θ =
∆up
∆u1p

.

5. Set u1 = u0 + ∆θ∆u1, θ1 = θ0 + ∆θ.

6. Repeat:

(a) Compute internal forces f iint and residual R = θif̂ext − f iint.

(b) Check for convergence.

(c) Compute the tangent stiffness matrix Ki.

(d) Solve simultaneously Ki∆u1 = f̂ext, Ki∆u2 = R.

(e) Compute ∆θ = −∆u2p
∆u1p

.

(f) Set ui+1 = ui + ∆u2 + ∆θ∆u1, θi+1 = θi + ∆θ.

(g) i = i + 1.

1.3 Structural reanalysis

In the nested approach to structural optimization, a sequence of linear systems of the form
(1.1) is solved. Typically, the stiffness matrix K depends on the design variables and hence
the displacements u should be evaluated successively within every design cycle. The process of
re-solving such sequences of structural analysis problems is also known as structural reanalysis.
In this section, an approximate reanalysis approach introduced by Kirsch (1991) is briefly de-
scribed. In particular, the connection to the investigations presented in Chapters 4, 6 and 8 is
emphasized.

The main idea is to re-use an available factorization from a previous linear system when
solving the current system. The equation system (1.1) can be rewritten

(K0 + ∆K)u = f (1.22)

where K0 is the stiffness matrix corresponding to a certain previous optimization step and ∆K =
K − K0. K0 is given in its factorized form, meaning the Cholesky factor U0 is known. After
rearranging, a recurrence relation is defined

uk = K−1
0 f −K−1

0 ∆Kuk−1 (1.23)

Therefore the solution can be determined by the following series expansion

u = (I−B + B2 −B3 + ...)u1 (1.24)

where

u1 = K−1
0 f

B ≡ K−1
0 ∆K

In Kirsch’s Combined Approximations (CA) approach, a small number of series terms from (1.24)
is taken. These are then used as basis vectors in a reduced basis solution. For a detailed de-
scription of the solution procedure and a variety of applications, the reader is referred to the
monograph by Kirsch (2008).
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Integrating a reanalysis procedure into topology optimization seems quite natural. First, the
sequence of stiffness matrices share a common structure. Second, when design changes are
small then a reanalysis procedure can yield an accurate solution using only a few recurrence
terms. The integration of CA into standard topology optimization procedures is the subject of
Chapter 4.

Chapter 6 discusses a procedure where only one factorization is utilized throughout the
entire design process. An approximation of the displacements is obtained by simple iterative
corrections inspired by the modified Newton-Raphson procedure for nonlinear equations

uk = uk−1 −K−1
0 (K(ρ)uk−1 − f) (1.25)

where K(ρ) corresponds to the current design cycle and K0 is the stiffness matrix that was fac-
torized. It will now be shown that both recurrences (1.23) and (1.25) are identical. Rearranging
(1.23) leads to

uk = K−1
0 f −K−1

0 (K(ρ)−K0)uk−1 = K−1
0 f + uk−1 −K−1

0 K(ρ)uk−1

while the same expression is obtained when rearranging (1.25)

uk = uk−1 −K−1
0 K(ρ)uk−1 + K−1

0 f = K−1
0 f + uk−1 −K−1

0 K(ρ)uk−1

The equivalence established here between both recurrence formulas is important since (1.25)
is not suitable for practical implementation. The corresponding series of iterates converges
slowly or even diverges, depending on the proximity of K0 to K(ρ). This also holds for the
series expansion used in CA (Kirsch, 2008). In practical CA procedures, the basis vectors origi-
nating from the series expansion (1.24) are orthonormalized with respect to K(ρ). This results
in a stable and more effective numerical procedure. Another possibility is to implement a PCG
procedure, based on the equivalence between CA and PCG shown by Kirsch et al. (2002). This
approach was taken in Chapter 6, where the equation systems of the form (1.1) were solved us-
ing PCG with the Cholesky factor of K0 as a preconditioner. The preconditioner was constructed
once in the beginning of the optimization and re-used for all subsequent equation systems.

Nonlinear analysis as a reanalysis problem As described above, applying Newton’s method
in nonlinear structural analysis leads to the typical iterative equation (1.21). This can also be
rewritten as a reanalysis equation, with equivalence to Eq. (1.22) in the linear case

(K0 + ∆K)∆u = nfext − nf i−1
int (1.26)

The aim is to avoid factorizing the tangent stiffness matrix nKi−1 every Newton iteration. In-
stead, the factorization of K0 is utilized in a reanalysis procedure identical to that performed in
linear reanalysis. As for the choice of K0, it could be for example the tangent stiffness matrix
corresponding to the beginning of a load/displacement increment (same as in MNR). Then the
same factorization is used for all iterations within this particular increment. The application of
CA for solving Eq. (1.26) was investigated by Amir (2007).

When nonlinear structural analysis is performed for the purpose of structural optimization,
K0 could also correspond to a previous design cycle. Then the matrix ∆K corresponds to
differences in stiffness due to design changes as well as due to nonlinear effects. Essentially,
applying CA yields an approximation to the solution of (1.26). Due to the equivalence of CA and
PCG, the resulting procedure can be seen as a particular Newton-Krylov method and theoretical
results derived for such methods can be used. Such procedures, together with other means of
re-using information in topology optimization of nonlinear structures, are explored in Chapter
8.
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Chapter 2

Structural Topology Optimization

Structural optimization is concerned with improving the performance of load-bearing structures
and is nowadays widely applied in various industries. In particular, topology optimization deals
with finding the optimal distribution of material in the design space. Typically, it is applied
at the conceptual design phase to obtain the best layout of material. Once the topology of
the structure is determined, the design can be further refined by shape and sizing optimization
methods. Classical applications of structural optimization are, for example, weight minimization
of structural elements in an airplane and stiffness maximization of an automobile frame.

In this thesis, the discussion is limited to problems concerning topological design in struc-
tural mechanics. The main purpose of this section is to give a brief introduction regarding the
computational approach to the solution of such problems. It is important to note that topology
optimization has been applied successfully in various other fields involving a wide variety of
physical settings. Therefore it is possible that some of the resulting observations are applicable
to problems from other fields that are solved by the same computational approach. Moreover,
the focus of this thesis is on a particular part of the computational procedure in structural topol-
ogy optimization, namely the repeated solution of the state (structural equilibrium) equations.
This means that the conclusions may be relevant also to other classes of structural optimization
that utilize similar computational procedures.

2.1 Problem formulation and objective functions

Throughout this thesis, the material distribution method for topological design is applied. It
was first introduced as a computational tool by Bendsøe and Kikuchi (1988) and was thor-
oughly reviewed in the monograph by Bendsøe and Sigmund (2003). The purpose is to find
the optimal layout of a continuum structure in a given domain. The existence of material in
space is conveniently approximated using a standard FEM mesh. This means that every finite
element represents a material point and could consist of either material or void. The resulting
optimization problem is discrete and is practically impossible to solve on sufficiently fine FE
meshes. Therefore in practice a relaxation of the original problem is solved, where the material
density at each finite element may vary continuously between 0 (void) to 1 (material). In order
to drive the design toward a material-void layout, an interpolation scheme for solid isotropic
material is applied, widely recognized as SIMP - Solid Isotropic Material with Penalization (M.
P. Bendsøe, 1989). Consequently, the problem formulation resembles a sizing problem, where
the material density of each finite element is a size design variable.

When seeking the optimal distribution of material in a continuum domain, considering a set
of applied loads and boundary conditions, we are implicitly interested in two fields: The optimal
density distribution ρ and the corresponding displacement field u. The same FE discretization
is used for both fields with ρ usually set as constant in each element. The displacements are
determined from structural equilibrium and depend on the stiffness distribution, which is a
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function of the density. Finding the structural equilibrium is usually referred to as the analysis
problem. One possibility is to solve for both fields simultaneously following the so-called SAND
approach (Simultaneous ANalysis and Design). A more popular approach in the context of
topology optimization is the nested approach, where the analysis problem is solved separately.
Then the optimization problem is reduced to finding only the density distribution. For any
given density distribution, a finite element analysis is performed to determine the displacements,
which are then used to evaluate the objective and to compute the sensitivity of the objective with
respect to the design variables.

The resulting generic form of the topology optimization problems addressed by this thesis is

min
ρ

c(ρ,u)

s.t.:
Ne∑
e=1

veρe ≤ V

gi(ρ,u) ≤ 0 i = 1, ...,m

0 ≤ ρe ≤ 1 e = 1, ..., Ne

with: R(ρ,u) = 0 (2.1)

where ve is the element volume, Ne is the number of finite elements, V is the total available
volume and gi (i = 1, ...,m) are (optional) additional constraints. The element densities ρe
are collected in the vector ρ and u is the displacements vector. The nested analysis problem
is stated here as a residual problem, R(ρ,u) = 0, and takes different forms according to the
physical model.

2.1.1 Linear elasticity

In linear elasticity the residual problem is a set of linear algebraic equations representing static
equilibrium

R(ρ,u) = f −K(ρ)u = 0 (2.2)

where f is the external load vector, u is the displacements vector, and K(ρ) is the stiffness matrix.
For simplifying the presentation, it is assumed here that f is independent upon the design. Using
a modified SIMP scheme that can accommodate two material phases, the interpolated Young’s
modulus is defined as

E(ρe) = Emin + (Emax − Emin)ρpe (2.3)

In general, Emin and Emax are the values of Young’s modulus of two candidate materials which
should be distributed in the design domain. For the case of distributing a single material and
void, Emin is set to a small positive value and Emax is typically set to 1. p is a penalization
factor required to drive the design toward a 0-1 layout. The stiffness matrix is then assembled
as follows

K(ρ) =

Ne∑
e=1

E(ρe)Ke (2.4)

where Ke is the element stiffness matrix corresponding to the Young’s modulus value of 1.
The equation system (2.2) is solved using methods described in Section 1.1. Topology op-

timization problems typically involve a large number of design variables and only a limited
number of constraints. Consequently, for medium and large scale problems, the computational
cost of the whole optimization process is frequently dominated by the effort involved in repeated
solutions of (2.2). The main objective of this thesis is to examine alternative approaches that
avoid the costly repeated solutions of the equilibrium equations.
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For the purpose of studying efficient solution approaches to the analysis problem, several
example problems in structural topology optimization are examined. For maximizing the stiff-
ness of a linear elastic structure, a widely applied objective is to minimize the compliance which
is defined as c(ρ,u) = fTu. Another design problem achieving much attention is the force in-
verter design (Sigmund, 1997) where the aim is to maximize a certain output displacement in
the direction opposite to the input force. The corresponding objective is defined as c(ρ,u) = lTu
where l is a vector with the value of 1 at the output displacement degree of freedom and zeros
otherwise.

Topology optimization of linear elastic structures is addressed in Chapters 4, 5 and 6. In the
study described in Chapter 4, an approximate reanalysis procedure replaces the exact solution
of the nested analysis equations. This approach is demonstrated on two- and three-dimensional
minimum compliance problems as well as on two-dimensional force inverters. Efficient use of
iterative equation solvers to obtain an approximation to the solution of (2.2) is the topic of
Chapter 5. Three-dimensional minimum compliance and force inverter designs are used there
as test cases. The same test cases are utilized also to demonstrate the performance of another
approximate procedure, based on a single factorization of the stiffness matrix throughout the
entire design process. This is presented in Chapter 6.

2.1.2 Large deformations

In large deformations analysis, the residual problem is a set of nonlinear algebraic equations,
representing static equilibrium corresponding to the final level of the applied load or prescribed
displacement. In a load-controlled analysis, the nested residual problem takes the form

R(ρ,u) = fext − fint(ρ,u) = 0 (2.5)

where fext and fint(ρ,u) are the external and internal force vectors, respectively. In the following
it is assumed that fext does not depend neither on ρ nor on u. In a displacement-controlled
analysis the definition is slightly modified

R(ρ,u, θ) = θf̂ext − fint(ρ,u) = 0 (2.6)

where θ is the load factor multiplying the constant reference external load vector f̂ext. The
nonlinear systems of equations (2.5), (2.6) are typically linearized and solved using a Newton-
Raphson procedure with the necessary modifications for prescribed displacements, see Section
1.2.3.

In linear elastic cases, assembly of the stiffness matrix took a particularly simple form (2.4),
using one standard element stiffness matrix. This cannot be extended to problems with large
deformations since the strain-displacement matrix B depends on the element displacements.
Therefore the stiffness values are collected on a Gauss-point level with the material properties
interpolated using Eq. (2.3).

When the aim of optimization is to find the stiffest design while considering structural non-
linearities, it is in some cases beneficial to keep a measure of the displacements fixed and maxi-
mize the load intensity, rather than fixing the load intensity and minimizing the displacements.
This is possible if the designer has some knowledge regarding the expected deformation, and
can also be seen as a way of imposing a required deflection at a certain point. Moreover, a
fixed load intensity throughout the optimization process may cause difficulties in solving the
nonlinear analysis equations for intermediate designs that are very flexible. This calls for using
displacement control for the nonlinear analysis, meaning keeping the displacement at a selected
degree of freedom (DOF) prescribed for all design cycles.

One challenging aspect of utilizing displacement control is in defining an appropriate objec-
tive function. For the simple case of a single point load at the prescribed DOF, an appropriate
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objective for achieving maximum stiffness is

c(ρ,u, θ) = −θf̂ext,pup (2.7)

where p denotes the prescribed DOF. This means the aim is to maximize the end-compliance,
corresponding to the final level of the prescribed displacement. More intuitively, this can be
seen as maximizing the load intensity that corresponds to a given deflection at a certain DOF.
A similar objective as well as other related measures were studied by Buhl et al. (2000) and
later by Kemmler et al. (2005). However, in these studies the opposite sign was used since the
nonlinear analysis was load-controlled, therefore minimization of the end-compliance was the
proper objective.

If the external forces are applied at other degrees of freedom besides the prescribed one,
generalizing (2.7) is not straightforward. Since the displacement is prescribed at a single DOF
while the same load factor θ multiplies all nodal loads, minimizing −θf̂Textu may result in a
structure that is very stiff with respect to bearing the load at the prescribed DOF but very flexible
with respect to all other loads. One possible remedy is to couple the displacements of all loaded
degrees of freedom to the prescribed displacement (Maute et al., 1998). Maute et al. added a
stiff connection to the design domain in order to achieve such coupling. This practical approach
is applicable when the loads are in close proximity to each other. For example, if a concentrated
load is locally distributed between several adjacent nodes in order to avoid stress concentrations
or local buckling modes, coupling the displacements is sensible. On the other hand, if we
wish to optimize a beam structure subject to a general distributed load, this approach could
not be applied since it interferes with the design process. Another possibility is to keep the
objective (2.7), meaning to optimize a particular contribution to the compliance and not the
global measure. Finally, it is also possible to utilize a prescribed displacement in the analysis,
but to view the optimization problem, and in particular the sensitivity analysis, as if load control
was used. Then the stiffest design is achieved by simply minimizing the end-compliance in a
load-controlled setting fext

Tu. This hybrid problem formulation is further discussed in Section
2.2.4.

Topology optimization of continuum structures exhibiting large deformations is considered
in Chapter 8. Efficient analysis procedures are achieved by re-using information available from
a certain design cycle in the solution of the analysis problem corresponding to the next design
cycle. In the context of re-using information, it is important to note that typically in problems
involving large deformations only the final equilibrium point should be found. Once nonlinear
equilibrium is established for a certain design cycle, the corresponding stiffness matrix and
displacements vector can be stored. Then they can be utilized as approximations of the stiffness
and displacements corresponding to the required final equilibrium in the next design cycle. This
procedure, as well as other variants of re-using information, are discussed in Chapter 8.

2.1.3 Elasto-plasticity

In elasto-plastic analysis, the residual problem can be seen as a set of transient, coupled and
nonlinear algebraic equations corresponding to incremental levels of load or prescribed dis-
placement

nR(nv, nθ) = 0 n = 1, ..., N
nH(nu, n−1u, nv, n−1v,ρ) = 0 n = 1, ..., N (2.8)

where N is the number of increments and the load factor nθ is only used for displacement-
controlled analysis. The first residual in (2.8) denoted by nR is satisfied on a global level and
represents static equilibrium at increment n. For load control this is identical to (1.19), while
for displacement control the expression is slightly modified

nR(nv, nθ) = nθf̂ext − nfint = nθf̂ext −
∫
V
BT nσdV = 0 (2.9)
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The second residual in (2.8) denoted by nH is satisfied on a local (Gauss-point) level and repre-
sents the constitutive elasto-plastic problem. For the J2 flow model the corresponding equations
are given in (1.20). Unlike the global equilibrium equation, the constitutive equations should
be derived for each particular material model.

A rather open topic is the extension of the SIMP interpolation scheme to elasto-plastic ma-
terial properties. Observing the von Mises yield function (1.14) and the bi-linear hardening law
(1.15), we find three material parameters that can potentially vary according to the element
density: E, H and σ0

y . A SIMP approach to the interpolation of the three parameters was origi-
nally suggested by Maute et al. (1998). The resulting interpolating functions can be written as
follows

E(ρe) = Emin + (Emax − Emin)ρpEe (2.10)

H(ρe) = Hmin + (Hmax −Hmin)ρpHe

σ0
y(ρe) = σ0

y,min + (σ0
y,max − σ0

y,min)ρ
pσy
e (2.11)

where pE , pH and pσy are separate penalty factors for each material parameter. In this work, pH
was typically set to zero since the hardening stiffness is already penalized through the value of
E(ρe). As for pσy , from a physical point of view it should be equal to pE . This implies that the
yield strain will be constant regardless of the density ρ, which makes sense for an isotropic mate-
rial. Yuge and Kikuchi (1995) observed similar behavior also for a material with a microstructure
consisting of a square hole. On the other hand, for the purpose of numerical stability, it is ben-
eficial to set pσy to be smaller than pE . This means that for low-density elements, yielding is
somewhat delayed artificially. The overall solution remains unaffected since low-density ele-
ments have little impact on the global response. At the same time, ill-conditioning of the local
equation system for such elements is avoided. In their numerical examples, Maute et al. (1998)
also used a reduced penalty factor for the uniaxial yield stress.

A new extension to the SIMP interpolation scheme is utilized in Chapter 7. The goal is to dis-
tribute two nonlinear materials, whose response can be represented by either the von Mises yield
function or by the Drucker-Prager yield function. This can be achieved by using a Drucker-Prager
function (1.18) with the interpolations (2.10) and (2.11) and adding the following interpolating
function

α(ρe) = αmax − (αmax − αmin)ρpαe

For the choice αmin = 0, the von Mises yield surface is obtained for the material corresponding
to ρ = 1. For ρ = 0 we obtain the Drucker-Prager yield surface with the material parameter α =
αmax. A potential application is conceptual design of reinforced concrete, where the distribution
of concrete and steel is optimized. Further details regarding this class of elasto-plastic problems
can be found in Chapter 7.

When aiming at finding the stiffest structural layout, an appropriate objective function is
again maximization of the end-compliance with a prescribed displacement

c(ρ,u, θ) = −Nθf̂ext,pNup (2.12)

where the superscript N denotes the final increment, corresponding to the total prescribed dis-
placement. As explained in the previous section, some complications arise when f̂ext consists of
loads at non-prescribed DOF. The treatment of such cases is essentially the same as for problems
in large deformations.

Alternatively, the “stiffest” structure can also be interpreted as the one that absorbs the most
energy. Then an appropriate objective would be to maximize the integral of the strain energy
as suggested by Swan and Kosaka (1997) and by Maute et al. (1998). The same outcome is
achieved by minimizing the complementary elastic work as suggested by Buhl et al. (2000).
Using equilibrium in the case of a single load at the prescribed DOF, the objective function can
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be written in terms of external forces and displacements

c(ρ,u, θ) = −
N∑
n=1

1

2
(nθ + n−1θ)f̂ext,p(

nup − n−1up) (2.13)

Another possible goal in engineering design could be to minimize plastic deformation while
maintaining relatively high stiffness. This can be posed as an optimization problem aimed at
minimizing plasticity subject to a constraint on the end-compliance or on the total energy ab-
sorption. Then the measures from (2.12) or (2.13) are constrained to a certain prescribed value
while minimization of plasticity can be defined using the equivalent plastic strain, for example

c(ρ,v) =

Ne∑
e=1

4∑
k=1

Nκe,k

In this case, the optimized quantity is simply the sum of the Gauss-point equivalent plastic
strains. In case a non-uniform mesh is utilized, meaning the element volumes may differ, it is
possible to multiply the Gauss-point value by the corresponding area.

2.2 Sensitivity analysis

The optimization problem (2.1) is typically solved using a first-order nonlinear program. For
each design cycle, an approximate problem is solved based on the sensitivities of the objective
function to a change in the design variables. In practical topology optimization procedures,
where the number of design variables is typically much larger than the number of constraints,
it is beneficial to compute the sensitivities following the adjoint method. In this section, the
expressions for computing design sensitivities are given, with correspondence to the classes of
problems and objectives presented in Section 2.1.

2.2.1 Linear elasticity

The minimum compliance objective is hereby utilized for demonstrating adjoint sensitivity anal-
ysis for problems in linear elasticity. First an augmented objective function is formed, by adding
a zero term to the original objective

ĉ(ρ,u) = fTu− λTR(ρ,u)

where λ is an arbitrary vector containing the adjoint variables and R(ρ,u) is the zero residual
corresponding to the nested analysis equations. Writing the nested equation system explicitly
leads to

ĉ(ρ,u) = fTu− λT (f −K(ρ)u)

Assuming the load is design-independent, differentiation with respect to a certain element den-
sity gives

∂ĉ

∂ρe
= fT

∂u

∂ρe
+ λT

∂K

∂ρe
u + λTK(ρ)

∂u

∂ρe
(2.14)

In order to avoid computing ∂u
∂ρe

explicitly, it is required that all terms involving this derivative
sum to zero

fT
∂u

∂ρe
+ λTK(ρ)

∂u

∂ρe
= 0

Since K(ρ) = K(ρ)T , this leads to the adjoint equation system

K(ρ)λ = −f
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So for the minimum compliance objective, evidently λ = −u. Inserting this result back into
(2.14) gives the required gradient

∂ĉ

∂ρe
= −uT ∂K

∂ρe
u

where the derivative ∂K
∂ρe

takes a particularly simple form using (2.3) and (2.4).
For the second objective function used in this work, c(ρ,u) = lTu, the same procedure is

applied leading to the equation system

K(ρ)λ = −l

and the corresponding design sensitivities are then given by

∂ĉ

∂ρe
= λT

∂K

∂ρe
u

The increase in computational effort associated with the solution of another linear system (in
addition to the analysis equations) depends on the type of linear solver. For direct solvers,
this only requires two more triangular solves since the factors of K(ρ) are available from the
solution of the analysis equations. When using a Krylov subspace solver, in principal every
additional right-hand-side (r.h.s.) requires roughly the same effort as the first, since the search
space is generated according to the r.h.s. vector. Nevertheless, in practice the cost does not rise
proportionally to the number of r.h.s. vectors since a block solver is utilized (O’Leary, 1980).
When solving for many r.h.s. vectors, advanced techniques can be used that significantly reduce
the extra cost related to every additional r.h.s. (Saad et al., 2000).

Remarks about efficient procedures In the context of the current work, it is important to
stress that the adjoint sensitivity analysis presented here is not actually performed in any of the
studies investigating problems in linear elasticity. This is because the nested analysis equations
are not solved accurately. Chapter 4 addresses the use of approximate reanalysis, replacing an
exact solution of the nested problem. Sensitivity analysis is consistent with the actual problem
that is accurately solved, which in this case is a reduced equation system. In Chapters 5 and 6,
iterative solvers are employed for solving the nested problem. In both cases, the convergence
criterion for the iterative solver is relaxed, meaning the residual R from (2.2) is not the zero
vector. Nevertheless, design sensitivities are computed by the same procedure outlined above as
if the analysis equations were solved accurately; this of course means there is some error in the
value of the sensitivities. An important observation arising from these studies is that the errors
in design sensitivities are insignificant for the purpose of optimization: the results obtained
are practically identical to those obtained with accurate gradients. An interesting direction for
future work is to investigate the performance of the optimization program when inaccurate
gradients are supplied to it. Hopefully, such an investigation can provide analytical arguments
that support the experimental observations.

2.2.2 Large deformations

Sensitivity analysis for problems that involve large deformations is in principal the same as for
problems in linear elasticity, in cases that the objective depends on the final equilibrium only and
disregards the solution path. For the minimum end-compliance objective using load-controlled
analysis, the augmented objective is

ĉ(ρ,u) = fTextu− λT (fext − fint(ρ,u))

Differentiation with respect to a certain element density gives

∂ĉ

∂ρe
= fText

∂u

∂ρe
− λT (−∂fint

∂ρe
− ∂fint

∂u

∂u

∂ρe
) (2.15)
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Using the tangent stiffness matrix corresponding to the final equilibrium point K = ∂fint
∂u and

exploiting symmetry, the following equation is obtained

Kλ = −fext

Finally, the solution for λ is inserted back into (2.15) to give the design sensitivities

∂ĉ

∂ρe
= λT

∂fint
∂ρe

Introducing displacement control in the nonlinear analysis leads to a slightly different pro-
cedure. Demonstrating on the maximum end-compliance objective (2.7) and using (2.6), the
augmented objective function is

ĉ(ρ,u, θ) = −θf̂ext,pup − λT (θf̂ext − fint(ρ,u))

Since up is prescribed, it does not depend on the design variables. Adding the subscript f
denoting free non-prescribed DOF, differentiation with respect to a certain element density gives

∂ĉ

∂ρe
= − ∂θ

∂ρe
f̂ext,pup − λpf̂ext,p

∂θ

∂ρe
+ λT

∂fint
∂ρe

+ λT
∂fint
∂uf

∂uf
∂ρe

(2.16)

This means the value of the adjoint variable at the prescribed DOF is simply λp = −up. This is
then used to determine the other adjoint variables by solving the equation system

Kffλf + Kfpλp = 0

Finally, the adjoint vector is inserted back into (2.16) to obtain the design sensitivities

∂ĉ

∂ρe
= λT

∂fint
∂ρe

Applying external loads to non-prescribed DOF leads to a more complicated procedure for
sensitivity analysis. As discussed in the previous section, defining a suitable objective for such
cases is a problem on its own. Therefore the adjoint sensitivity analysis will only be outlined in
the following, without reference to a particular objective function. The augmented objective is

ĉ(ρ,u, θ) = c(ρ,u, θ)− λT (θf̂ext − fint(ρ,u))

Utilizing the subscripts p and f to denote the prescribed and non-prescribed DOF, differentiation
of the augmented objective gives

∂ĉ

∂ρe
=

∂c

∂ρe
+

∂c

∂uf

∂uf
∂ρe

+
∂c

∂θ

∂θ

∂ρe
− λT

∂θ

∂ρe
f̂ext + λT

∂fint
∂ρe

+ λT
∂fint
∂uf

∂uf
∂ρe

This leads to a coupled system of adjoint equations

f̂Textλ =
∂c

∂θ

Kffλf + Kfpλp = − ∂c

∂uf

T

(2.17)

Comparing to the case of a single load at the prescribed DOF, this procedure is less convenient
since de-coupling the equations by isolating λp destroys the symmetry of the stiffness matrix.
This makes it more complicated to re-use the factorization of the stiffness matrix in subsequent
design cycles as suggested in Chapter 8.

Applying a hybrid approach, where the analysis is displacement-controlled but the objective
and sensitivity analysis correspond to a load-controlled setting, may eliminate the difficulties
arising when utilizing displacement control. Such an approach is discussed in Section 2.2.4
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Remarks about efficient procedures Efficient procedures for nonlinear structural analysis
within topology optimization procedures are discussed in Chapter 8. The main idea is to re-use
information from a certain design cycle when solving the analysis problem in the next design
cycle. Such information can be, for example, the converged displacements and the factorized
form of the tangent stiffness matrix. For this purpose, the stiffness matrix that is factorized
for solving the adjoint equations is the best candidate, since it corresponds to R = 0 and not
to an intermediate Newton iteration. Utilizing displacement control in the analysis introduces
some difficulty, since the matrix must be modified for solving the adjoint equations when there
are loads in non-prescribed degrees of freedom. However, if adjoint sensitivity analysis is per-
formed considering a load-controlled setting, this problem can be overcome. The topic is further
discussed in Chapter 8.

2.2.3 Elasto-plasticity

Sensitivity analysis for topology optimization problems involving elasto-plasticity takes a com-
pletely different form due to path-dependency of the nonlinear response. As mentioned earlier,
the framework presented by Michaleris et al. (1994) is followed when deriving the backwards-
incremental adjoint procedure for such problems. Beginning with forming the augmented re-
sponse functional using (2.8) and without reference to a particular objective

ĉ(ρ,u,v, θ) = c(ρ,u,v, θ)−
N∑
n=1

nλT nR(nv, nθ)

−
N∑
n=1

nγT nH(nu, n−1u, nv, n−1v,ρ)

Here, nλ and nγ are the adjoint vectors to be found for all increments n = 1, ..., N . Assuming
the initial responses 0u, 0v do not depend on the design variables, the explicit terms in the
derivative of the response functional with respect to an element density are

∂ĉexp
∂ρe

=
∂c

∂ρe
−

N∑
n=1

nγT
∂nH

∂ρe

The adjoint vectors nγ are related to the adjoint vectors nλ and both sets are chosen so that
the implicit terms of the derivative vanish. The implicit terms of the derivative with respect to a
certain element density ρe are as follows

∂(1ĉimp)

∂ρe
= −

[
1γ

T ∂(1H)

∂(1u)
+ 2γ

T ∂(2H)

∂(1u)
− ∂c

∂(1u)

]
∂(1u)

∂ρe

−
[

1λ
T ∂(1R)

∂(1θ)
− ∂c

∂(1θ)

]
∂(1θ)

∂ρe

−
[

1λ
T ∂(1R)

∂(1v)
+ 1γ

T ∂(1H)

∂(1v)
+ 2γ

T ∂(2H)

∂(1v)
− ∂c

∂(1v)

]
∂(1v)

∂ρe
...

∂(nĉimp)

∂ρe
= −

[
nγT

∂(nH)

∂(nu)
+ n+1γ

T ∂(n+1H)

∂(nu)
− ∂c

∂(nu)

]
∂(nu)

∂ρe

−
[
nλT

∂(nR)

∂(nθ)
− ∂c

∂(nθ)

]
∂(nθ)

∂ρe

−
[
nλT

∂(nR)

∂(nv)
+ nγT

∂(nH)

∂(nv)
+ n+1γ

T ∂(n+1H)

∂(nv)
− ∂c

∂(nv)

]
∂(nv)

∂ρe
...
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∂(N ĉimp)

∂ρe
= −

[
Nγ

T ∂(NH)

∂(Nu)
− ∂c

∂(Nu)

]
∂(Nu)

∂ρe

−
[
Nλ

T ∂(NR)

∂(Nθ)
− ∂c

∂(Nθ)

]
∂(Nθ)

∂ρe

−
[
Nλ

T ∂(NR)

∂(Nv)
+ Nγ

T ∂(NH)

∂(Nv)
− ∂c

∂(Nv)

]
∂(Nv)

∂ρe

The adjoint equations result from the requirement that all the terms involving derivatives of
the type ∂(nu)

∂ρe
, ∂(nθ)

∂ρe
and ∂(nv)

∂ρe
(n = 1, ..., N) will sum up to zeros. The first adjoint equations

to be solved are the ones corresponding to the last load increment denoted by N . We begin by
recognizing

∂(NH)

∂(Nv)

T
Nγ = −∂(NR)

∂(Nv)

T
Nλ +

∂c

∂(Nv)

T

(2.18)

Then a coupled system to be solved for Nλ can be derived

[
−∂(NR)

∂(Nv)

∂(NH)

∂(Nv)

−1
∂(NH)

∂(Nu)

]T
Nλ =

∂c

∂(Nu)

T

−

[
∂c

∂(Nv)

∂(NH)

∂(Nv)

−1
∂(NH)

∂(Nu)

]T
∂(NR)

∂(Nθ)

T
Nλ =

∂c

∂(Nθ)
(2.19)

where
[
∂(NR)
∂(Nv)

∂(NH)
∂(Nv)

−1 ∂(NH)
∂(Nu)

]
is the tangent stiffness matrix corresponding to the converged

state at increment N (Michaleris et al., 1994). The system (2.19) strongly resembles the sys-
tem (2.17) and is solved by the same approach. In a load-controlled procedure, only the first
equation remains since θ is not a variable. Once Nλ is known, Nγ can be determined by solv-
ing (2.18) on a Gauss-point level. Then the next set of adjoint equations corresponding to the
increment N − 1 is addressed. Again we recognize

∂(N−1H)

∂(N−1v)

T
N−1γ = −∂(N−1R)

∂(N−1v)

T
N−1λ− ∂(NH)

∂(N−1v)

T
Nγ +

∂c

∂(N−1v)

T

Then the coupled system to be solved for N−1λ can be derived

[
−∂(N−1R)

∂(N−1v)

∂(N−1H)

∂(N−1v)

−1
∂(N−1H)

∂(N−1u)

]T
N−1λ =

∂c

∂(N−1u)

T

−

[
∂c

∂(N−1v)

∂(N−1H)

∂(N−1v)

−1
∂(N−1H)

∂(N−1u)

]T
−

[
∂(NH)

∂(N−1u)
− ∂(NH)

∂(N−1v)

∂(N−1H)

∂(N−1v)

−1
∂(N−1H)

∂(N−1u)

]T
Nγ

∂(N−1R)

∂(N−1θ)

T
N−1λ =

∂c

∂(N−1θ)
(2.20)

Comparing (2.20) to its equivalent from increment N (2.19), it can be seen that there now is
an extra loading term which is path-dependent, meaning Nγ must be determined prior to the
solution for N−1λ.
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So in general, in the n− th increment we first solve the coupled adjoint equations to deter-
mine nλ[

−∂(nR)

∂(nv)

∂(nH)

∂(nv)

−1∂(nH)

∂(nu)

]T
nλ =

∂c

∂(nu)

T

−

[
∂c

∂(nv)

∂(nH)

∂(nv)

−1∂(nH)

∂(nu)

]T
−

[
∂(n+1H)

∂(nu)
− ∂(n+1H)

∂(nv)

∂(nH)

∂(nv)

−1∂(nH)

∂(nu)

]T
n+1γ

∂(nR)

∂(nθ)

T
nλ =

∂c

∂(nθ)

The global adjoint vector nλ is then used to find the local adjoint vector nγ on a Gauss-point
level

∂(nH)

∂(nv)

T
nγ = −∂(nR)

∂(nv)

T
nλ− ∂(n+1H)

∂(nv)

T
n+1γ +

∂c

∂(nv)

T

Once nγ is determined, its contribution to the design sensitivities nγT ∂
nH
∂ρe

is computed. Then
the procedure continues to the previous increment denoted by n − 1. This is repeated until all
contributions are collected to obtain the required design sensitivities.

For performing the backwards-incremental adjoint procedure, the derivatives of the global
and local residuals with respect to the analysis variables are required. The derivatives ∂(nR)

∂(nv) and
∂(nR)
∂(nθ) can be easily obtained from the general form of the global residual (1.19) or (2.9). On the

other hand, the derivatives ∂(nH)
∂(nu) , ∂(n+1H)

∂(nu) , ∂(nH)
∂(nv) , ∂(n+1H)

∂(nv) and ∂(nH)
∂ρe

are related to the particular
elasto-plastic model and to the choice of the internal variables v. An explicit example of these
derivatives, corresponding to the classical J2 flow theory with the governing equations (1.20),
is given in Chapter 8. Another example, corresponding to a simple Drucker-Prager model, is
presented in Chapter 7 and briefly reviewed in Chapter 8.

When implementing the adjoint procedure, the derivatives of the local residuals nH and
n+1H should maintain consistency with respect to the analysis. In essence, four situations are
possible at a certain sequence of increments n, n+ 1:

1. Both increments are elastic.

2. Increment n is elastic and transition to plasticity occurs at increment n+ 1.

3. Both increments are plastic.

4. Increment n is plastic and transition to elasticity occurs at increment n+ 1 (elastic unload-
ing).

The actual situation encountered affects the computation of the derivatives of the respective
residuals nH and n+1H. For example, in an elastic state only equation nH3 in (1.20) should be
differentiated and the stresses nσ are the only variables considered in nv . So in general, the
derivatives of the local residual are matrices of varying sizes, depending on the situation which
is determined exclusively by the elastic trial state as described in Section 1.2.2.2.

Remark about existence of design sensitivities Several authors addressed the issue of exis-
tence of design sensitivities in elasto-plastic response, e.g. Michaleris et al. (1994) and Kleiber
et al. (1997). At a given material point, it is theoretically possible that a certain design change
will result in plastic behavior while an opposite design change will result in elastic behavior.
This means that design sensitivities may be non-existent at all points which just reach the yield
surface - a situation known as neutral loading, see also the Kuhn-Tucker conditions in Section
1.2.2.1. However, in practice this situation seldom occurs. One reason is because in finite
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element analysis we only monitor Gauss points and not all material points in the continuum
structure, meaning there are much fewer material points where the Kuhn-Tucker conditions are
evaluated. Furthermore, in computer implementation it is unlikely that we will have exactly
f = 0 and λ̇ = 0 at a certain increment. In practice, the transition from elastic to plastic will
usually occur within a certain increment so that small design changes, in any direction, will
still lead to plastic behavior at the same time step. Therefore for practical implementation it is
assumed that design sensitivities exist.

Remarks about efficient procedures As described above for GNL problems, it is suggested in
Chapter 8 to re-use information from a certain design cycle when solving the nonlinear analysis
problem in the next design cycle. Again, the stiffness matrix that is factorized for solving the
adjoint equations is the best candidate since it corresponds to a converged incremental residual.
Unfortunately, path-dependency of the elasto-plastic response poses an obstacle when trying to
formulate such efficient solution procedures. Transferring information between design cycles
requires that displacement vectors and factorized stiffness matrices from all increments will be
stored. This may not be realistic due to memory limitations, especially when concerning 3-D FE
meshes. The topic is further discussed in Chapter 8.

2.2.4 Special treatment of displacement-controlled problems

When addressing optimal design of nonlinear structures within this thesis, a hybrid approach is
applied in several cases. This means a displacement-controlled nonlinear analysis is performed
while the objective is defined according to a load-controlled setting. As a consequence, defin-
ing a proper objective is more straightforward; sensitivity analysis takes a simpler form; and
realizing the re-use of information is easier.

The hybrid approach is hereby demonstrated on a small example that can be solved analyti-
cally. It is shown that in this case, the optimum achieved for a certain prescribed displacement is
identical to the optimum achieved if the corresponding load is applied. The design sensitivities,
however, are of course different - even though they drive the design toward the same optimum.

The example problem consists of two springs whose stiffnesses depend on the amount of
material distributed to each spring. This can be formulated as an optimization problem with one
design variable ρ and a total material volume of 1. One of the spring stiffnesses also depends on
the spring elongation so the equilibrium equations are nonlinear. Both degrees of freedom are
loaded with different load intensities in order to imitate a general loading condition. A sketch
of the model is presented in Figure 2.1.

Figure 2.1: A simple two-spring model

The spring stiffnesses are defined as

k1 = ρ

k2 = (1− ρ)(1 + (u2 − u1))
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Force equilibrium at the two nodes gives

k1u1 − k2(u2 − u1)− f

2
= 0

k2(u2 − u1)− f = 0

This nonlinear equation system can be solved either by prescribing a load intensity, meaning f
is known and the two unknowns are u1 and u2; or by prescribing a displacement, say u2, and
then the two unknowns are f and u1. In both cases explicit expressions for the unknowns as
functions of ρ can be obtained.

We begin by setting the prescribed displacement, u2 = 0.1. Then, the analysis equations
are solved analytically to find f and u1 as functions of ρ. Finally, the objective function for a
displacement-controlled setting, −fu2, corresponding to the end-compliance of the prescribed
DOF, can be expressed as a function of ρ only. This objective is plotted in Figure 2.2(a) for
0.01 ≤ ρ ≤ 0.99. The minimum point is found by differentiation and occurs at ρ = 0.561131.
The minimum objective value is −0.00206025, corresponding to a load intensity f = 0.0206025.
In the second stage, we solve the nonlinear analysis equations using the load intensity at the
achieved optimum. Then u1 and u2 are found as functions of ρ. Finally, the objective function
for a load-controlled setting, fu2, can be expressed as a function of ρ only. This objective is
plotted in Figure 2.2(b) for 0.01 ≤ ρ ≤ 0.99. The minimum point is found by differentiation
and again occurs at ρ = 0.561131, corresponding to the objective value of 0.00206025. Hence an
identical optimal design is obtained by both procedures.

(a) Displacement-controlled setting (b) Load-controlled setting

Figure 2.2: End-compliance as a function of ρ, two-spring example

It can be seen that for this case, the strategy chosen for the nonlinear analysis does not
affect the optimal solution. From observing the plots of the objective functions and of the design
sensitivities (see Figure 2.3), it is clear that the following approach is valid: we can evaluate a
design using one strategy and then update the design using gradients that are computed as if the
other strategy was applied. Attempting to establish the validity of this observation in the general
case is beyond the scope of this work. However, from an intuitive point of view it seems that this
approach can be applied as long as the force-displacement relationship is unique. The results
of this simple example also demonstrate the advantage of using displacement control in early
stages of the design process: when still far from the optimum, the load-controlled objective is
extremely high while the variation in the displacement-controlled objective is small throughout
the entire feasible range.

In conclusion, if displacement control is preferred for the nonlinear analysis, optimization
can still be performed using sensitivities for a load-controlled analysis. The procedure can be
outlined as follows:

1. Set the value of the prescribed displacement (to be kept constant throughout the design
process).
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(a) Displacement-controlled setting (b) Load-controlled setting

Figure 2.3: Design sensitivity as a function of ρ, two-spring example

2. Within every design cycle until convergence:

(a) Perform nonlinear structural analysis using displacement control.

(b) Perform sensitivity analysis assuming a load-controlled solution, using the load inten-
sity resulting from the nonlinear analysis.

(c) Update the design.

In Figure 2.4, this procedure is demonstrated on a compliance objective in a single degree of
freedom space. For comparison, the standard procedures for either load or displacement control
are also sketched. It can be seen that the hybrid approach is equivalent to a load-controlled
approach where the load intensity varies throughout the optimization process. In particular, the
varying load level is determined implicitly by the displacement-controlled analysis.

2.3 Additional computational components

Besides structural analysis and sensitivity analysis, implementing a topology optimization pro-
gram requires two additional components, namely a regularization scheme and a nonlinear
mathematical program. In all numerical experiments conducted for the purpose of this thesis,
density filtering was applied for regularization and the Method of Moving Asymptotes (MMA)
was the nonlinear program employed. Both components are hereby shortly introduced.

2.3.1 Density filtering

Applying a regularization scheme is a crucial component in practical topology optimization pro-
cedures. Without regularization, black and white checkerboard patterns tend to appear in the
resulting layouts. Another problem that must be addressed is the dependency of the results on
the resolution of the finite element mesh. Throughout this work, all topology optimization pro-
cedures included a classical density filter that is easy to implement and successfully eliminates
these problems. The necessary modifications to the overall procedure are shortly presented in
this section.

The main idea behind density filtering is to modify each element’s density according to
the element densities in its surrounding neighborhood. This was initially proposed by Bruns
and Tortorelli (2001) and mathematically analyzed by Bourdin (2001). The presentation here
follows Sigmund (2007). The filtered element density is given by

ρ̃e =

∑
i∈Ne

w(xi)viρi∑
i∈Ne

w(xi)vi
(2.21)
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(a) Load-controlled setting

(b) Displacement-controlled setting

(c) Hybrid approach

Figure 2.4: Comparison of approaches for optimal design considering struc-
tural nonlinearities. In a load-controlled setting (top), the designs are eval-
uated at the same load level and updated accordingly. In a displacement-
controlled setting (middle), the designs are evaluated at the same displace-
ment level and updated accordingly. In the hybrid approach (bottom), each
design is evaluated at the prescribed displacement level, but then updated
according to the corresponding load level.
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where Ne is the element’s neighborhood and w(xi) is a weighting function depending on the dis-
tance between element e and its neighboring element i. In this work, the most simple weighting
functions were used, i.e. a constant and a linear function. Nevertheless, more sophisticated
functions were utilized in other studies.

Applying the density filter means that the original densities ρ have no physical meaning and
are only used as mathematical variables in the optimization program. The material interpola-
tion, structural analysis and sensitivity analysis are all performed with the filtered densities ρ̃.
Then, the design sensitivities with respect to the original densities are computed by the chain
rule

∂c

∂ρe
=
∑
i∈Ne

∂c

∂ρ̃i

∂ρ̃i
∂ρe

with ∂c
∂ρ̃i

obtained using the adjoint procedures presented in Section 2.2. Finally, differentiating
(2.21) gives

∂ρ̃i
∂ρe

=
w(xe)ve∑

j∈Ni
w(xj)vj

where w(xe) is the weight of element e in the neighborhood of element i.

2.3.2 The Method of Moving Asymptotes

MMA was introduced by Svanberg (1987) and is considered an extension of CONLIN (Fleury
and Braibant, 1986), both generating a sequence of separable convex approximate subproblems
based on first-order sensitivities. In this section, the basic idea behind MMA will be briefly
reviewed. The presentation here is based on the monographs by Bendsøe and Sigmund (2003)
and by Christensen and Klarbring (2009), supplementing the original article.

Following the nested approach where the structural analysis problem is solved separately,
any topology optimization problem can be written in the general form

min
x

f0(x)

s.t.: fi(x) ≤ 0 i = 1, ...,m

xminj ≤ xj ≤ xmaxj j = 1, ..., n

In MMA the original objective function and constraints fi (i = 0, 1, ...,m) are approximated
around a given iteration xk by the function

fki (x) = rki +

n∑
j=1

(
pkij

Ukj − xj
+

qkij

xj − Lkj

)

where n is the number of design variables in x. The numbers pkij , q
k
ij and rki are chosen as

if
∂fi
∂xj

(xk) > 0 then pkij = (Ukj − xkj )2 ∂fi
∂xj

(xk) and qkij = 0

if
∂fi
∂xj

(xk) < 0 then pkij = 0 and qkij = −(xkj − Lkj )2 ∂fi
∂xj

(xk)

rki = fi(x
k)−

n∑
j=1

(
pkij

Ukj − xkj
+

qkij

xkj − Lkj

)

Ukj and Lkj are parameters that give vertical asymptotes for the approximating functions and
thus control the range for which the approximation is reasonable. These values are updated in
order to stabilize or accelerate the convergence, depending on the iteration history.

MMA (as well as CONLIN) has some nice features that make it extremely suitable for topol-
ogy optimization:
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1. The functions fki are first-order approximations, i.e. fki (xk) = fi(x
k) and ∂fki

∂xj
(xk) =

∂fi
∂xj

(xk).

2. The functions fki are separable since they are constructed as a sum of functions of one
variable. This means that the optimality conditions of the approximate subproblem can be
established separately for each design variable.

3. The functions fki are convex since ∇2fki is positive semidefinite. This means that a dual
method can be utilized to solve the subproblems.

Topology optimization problems typically have a large number of design variables and a limited
number of constraints. For such cases, separability and convexity both lead to a very efficient
solution of the optimization problem.

In the original implementation (Svanberg, 1987), the MMA subproblem is solved using La-
grangian duality. First, the approximate subproblem at a certain iteration k can be written as
(omitting the k index)

min
x

n∑
j=1

(
p0j

Uj − xj
+

q0j

xj − Lj

)
+ r0

s.t.:
n∑
j=1

(
pij

Uj − xj
+

qij
xj − Lj

)
− bi ≤ 0 i = 1, ...,m

αj ≤ xj ≤ βj j = 1, ..., n (2.22)

where αj and βj are move limits that satisfy Lj < αj ≤ βj < Uj . The Lagrangian function L
corresponding to the MMA subproblem (2.22) is

L(x,λ) = r0 − λTb +
n∑
j=1

(
p0j + λTpj
Uj − xj

+
q0j + λTqj
xj − Lj

)
= r0 − λTb +

n∑
j=1

Lj(xj ,λ)

where λ is the vector ofm non-negative Lagrange multipliers, b = (b1, ..., bm)T , pj = (p1j , ..., pmj)
T

and qj = (q1j , ..., qmj)
T . The dual objective function is

ϕ(λ) = arg min
x

L(x,λ) = r0 − λTb +

n∑
j=1

arg min
xj

Lj(xj ,λ)

The problem of finding the dual objective ϕ(λ) is now reduced to separately finding arg min
xj

Lj(xj ,λ)

for all j = 1, ..., n. Due to convexity, these minimizations have particularly simple solutions de-
pending on the signs of the first derivatives L′j(xj ,λ) at the limits αj and βj . Denoting these
minimum points by xj(λ), the dual objective is now written as

ϕ(λ) = r0 − λTb +

n∑
j=1

(
p0j + λTpj
Uj − xj(λ)

+
q0j + λTqj
xj(λ)− Lj

)

The dual objective is always concave and gives lower bounds on the optimal solution of (2.22)
(Boyd and Vandenberghe, 2004). Therefore the dual problem to be solved is

max
λ

ϕ(λ)

s.t.: λi ≥ 0 i = 1, ...,m

For a limited number of constraints, this is a small and relatively “easy” optimization problem
to solve. Once the dual variables λ are determined, the optimal values xj(λ) can be computed
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to give the optimal solution of (2.22). This constitutes a new iterate xk+1, which is used for
structural analysis and sensitivity analysis. Then the next subproblem is constructed, and the
process continues until a certain convergence measure is satisfied.

In later implementations of MMA, reflected also in the MATLAB code used for numerical
experiments within this work, the subproblem (2.22) is solved using a primal-dual interior point
method. Such methods solve the primal and the dual problems simultaneously. This is achieved
by applying Newton’s method to find a solution that satisfies a modified version of the KKT
(Karush-Kuhn-Tucker) optimality conditions (Wright, 1997).
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Chapter 3

Conclusion

The presented thesis suggests various procedures that can reduce the computational effort in-
volved in repeated solutions of the structural analysis equations. The discussion is focused on
applications of topology optimization in structural mechanics but the results can be relevant for
a wide range of problems in structural optimization. The main contribution is related to the so-
lution of linear systems while the investigation regarding efficient nonlinear structural analysis
only reached a preliminary stage.

This concluding chapter is organized as follows. First, a summary of the articles and the
main results is given in Section 3.1. Then, the contribution of the work and its potential impact
are assessed in Section 3.2. Finally, ideas for future work related to this thesis are discussed in
Section 3.3.

3.1 Summary of the results

The main results from the appended articles are hereby presented. As of the date of submission
of the thesis, Articles 1 and 2 were published in printed form and Article 3 was published online,
all in peer-reveiwed international journals. Articles 4 and 5 are intended for submission in the
near future.

Article 1: Approximate reanalysis in topology optimization (Chapter 4 of the thesis)
In this study, we integrate an approximate reanalysis procedure into the general framework of
topology optimization of continuum structures. The goal is to reduce the number of stiffness
matrix factorizations performed throughout the design process. It is shown that accurate results
can be obtained with one factorization every 10 to 20 design cycles in average.
When reanalysis is performed instead of a standard analysis, the nested optimization problem
is re-formulated accordingly. Design sensitivities are derived in a consistent manner, meaning
that the errors related to the use of an approximation to the displacement vector are taken
into account in the sensitivity analysis. It is shown that as a consequence, relatively rough
approximations are acceptable.
The implementation is tested on several small- and medium-scale problems, including two and
three dimensional minimum compliance problems and two dimensional compliant force inverter
problems. For minimum compliance problems, the approximate procedure yields very accurate
results and offers significant savings in computing time. When dealing with compliant mecha-
nism design, the approximate procedure does not yield exactly the same solution as the standard
procedure. More work is needed in order to improve the applicability of the approximate ap-
proach for this class of problems.

41
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Article 2: Efficient use of iterative solvers in nested topology optimization (Chapter 5 of
the thesis)
In this study, it is suggested to reduce the computational effort associated with solving the
nested analysis equations by using an approximation to the solution of the analysis problem.
The approximation is generated by a Krylov subspace iterative solver and therefore the resulting
procedure is highly suitable for parallel computing. When comparing to a standard approach, it
is shown that the optimized designs are practically identical while the time spent on the analysis
is reduced by roughly 40%.
The key to achieving accurate results efficiently is the early termination criteria for the iterative
solver. By defining criteria that are strongly related to the optimization objective and to the
design sensitivities, it is possible to terminate the iterative solution of the nested equations
earlier compared to traditional convergence measures. The approach is demonstrated on several
large-scale 3-D topology optimization problems. In some cases, such as compliant mechanism
design where many local minima exist, the approximate procedure leads to slightly different
optimized layouts. The accuracy can be further improved by adapting the tolerance of the
suggested termination criteria according to the progress of the optimization.

Article 3: On reducing computational effort in topology optimization: how far can we go?
(Chapter 6 of the thesis)
In this study, an approximate approach to solving the nested analysis equations in topology
optimization is proposed. The procedure consists of one matrix factorization for the whole
design process and a small number of iterative corrections for each design cycle. It is shown
that the computational cost can be reduced by one order of magnitude while the optimized
layouts are practically identical to those generated using standard procedures.
The procedure suggested in this article is in part related to the procedures presented in Articles
1 and 2. We use one matrix factorization in the beginning of the design process, meaning that
the solution of the first nested problem is accurate but all subsequent solutions are approximate.
The iterative correction procedure is equivalent to the reanalysis approach used in Article 1
but it is re-formulated as a PCG method which is utilized in Article 2. Convergence of the
iterative equation solver is not enforced and it is simply terminated after a prescribed number
of iterations. It is observed that the errors in the design sensitivities do not affect the progress
of the optimization. This raises an important question regarding the required accuracy of the
gradients when using a first-order nonlinear program such as MMA.

Article 4: Conceptual design of reinforced concrete using topology optimization with non-
linear material modeling (Chapter 7 of the thesis)
This article gives the background necessary for appreciating one of the demonstrative problems
considered in Article 5. In the article, a computational procedure for optimal conceptual design
of reinforced concrete structures is presented, based on an extension of the SIMP approach to
topology optimization.
The main idea is to consider both concrete and steel as elasto-plastic materials. The different
failure criteria corresponding to the nonlinear response of concrete and steel are taken into
account, using material interpolation rules for post-yielding behavior in addition to the standard
interpolation of elastic properties.
For the case of distributing steel within a full concrete beam, the optimized placement of rein-
forcement resembles traditional design and agrees with common engineering knowledge. When
distributing concrete, steel and void, it is shown that optimized strut-and-tie models can be gen-
erated. However, the modeling should be further improved in order for the procedure to be
applicable for practical design. Considering strain softening in the concrete model and realistic
volume fractions of the steel phase are among the necessary extensions.
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Article 5: Re-using solutions and tangent stiffnesses for efficient nonlinear structural anal-
ysis in topology optimization (Chapter 8 of the thesis)
In this article we propose efficient solution procedures for nonlinear structural analysis within
topology optimization. The suggested computational schemes are based on re-using information
throughout the optimization process. It is shown that the computational effort can be decreased,
either by reducing the number of iterations in a standard Newton-Raphson procedure or by re-
ducing the number of matrix factorizations using a modified Newton-Raphson procedure.
In the proposed schemes, the solution of the nonlinear structural analysis corresponding to a
certain design cycle is used as a starting point for the analysis in the next design cycle. This is
shown to be effective in reducing the number of Newton iterations necessary for convergence.
When the design changes between two subsequent cycles are small, it is suggested to re-use
also the factorization of the tangent stiffness matrix. These procedures are shown to be effective
especially for design problems involving geometric nonlinearities, for which savings of up to
50% are achieved. For problems involving elasto-plasticity, the results are less promising due to
difficulties arising from the path-depenedent nature of the desired solution.

3.2 Contribution and impact

The main contributions of this work are the various approximate procedures suggested for re-
ducing the computational effort in topology optimization involving linear structural analysis.
Even though further studies are necessary for establishing a robust scheme that can be imple-
mented in practice, we believe that this thesis provides a step toward this goal.

Despite the differences between the procedures described in Chapters 4, 5 and 6, one main
conclusion arises from the three studies. As stated in the discussion in Chapter 6, we observe
that in some cases it may be unnecessary to solve the nested problem accurately. Hopefully, the
promising results presented in the thesis can stimulate further research toward the development
of an effective computational procedure that can facilitate the solution of larger problems in
shorter time. Some ideas regarding future work on this topic are discussed in the next section.

On a more detailed level, the main contribution in Chapter 4 is the consistent integration of
an approximate reanalysis approach into topology optimization procedures. To the best of our
knowledge, this is the first study connecting Kirsch’s Combined Approximations with practical
topology optimization procedures. In Chapter 5, the main contributions are the alternative
stopping criteria for iterative equation solvers, which can be effective in the context of nested
structural optimization. Finally, the main contribution in Chapter 6 is the utilization of relatively
rough approximations. The purpose is mainly demonstrative: by showing that acceptable results
are obtained with only one stiffness matrix factorization for the whole design process, we hope
to raise attention to the prospects of utilizing approximations.

Concluding the discussion regarding topology optimization involving linear structural anal-
ysis, it must be stressed that the main drawback of the procedures presented in Chapters 5 and
6 is the lack of theoretical insight. The actual contribution of these studies is in providing ideas
and positive conclusions based on numerical experiments, and hopefully in stimulating more
fundamental investigations into the topic.

The thesis offers additional contributions to the topic of topology optimization of elasto-
plastic structures, as well as in relation to efficient procedures for nonlinear structural analysis
in topology optimization.

Topology optimization of elasto-plastic structures is a relatively immature research topic, if
judging by the number of publications and the developments reported over the last decade.
The challenges arising in the sensitivity analysis constitute one difficulty. The layouts obtained
when considering elasto-plastic response are another “problem”: often they resemble the layouts
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obtained with linear elastic modeling 1. With these obstacles in mind, we see the main contribu-
tion in relation to this topic in the implementation of a general sensitivity analysis procedure for
path-dependent response. Within the work on this thesis, perfectly accurate design sensitivities
were computed for various elasto-plastic models. In several relevant publications, it was stated
that some simplifications were taken into account in the sensitivity analysis. In other articles,
some errors in the design sensitivities are reported. Therefore it is possible that the procedure
implemented here offers a step forward with respect to consistent sensitivity analysis.

With respect to the examination of computational procedures for nonlinear structural analy-
sis in topology optimization, the study presented in Chapter 8 is by all means preliminary. Never-
theless, the contribution is in opening the topic for discussion and suggesting ideas for efficient
treatment of the nonlinear structural analysis. Up to date, investigations regarding topology
optimization of structures exhibiting nonlinear response were focused on various challenging
aspects of the design problem. This thesis is presumably the first to address the computational
challenge arising from the need to perform repeated nonlinear structural analyses. The ideas
expressed in Chapter 8 may provide the basis for further investigation into this topic.

3.3 Future work

Several ideas for future work related to the results of this thesis are hereby presented.

Unified approach for approximate linear structural analysis The results from Chapters 4,
5 and 6 can provide the starting point for developing a unified computational procedure that is
both robust and efficient. Based on the experience gained during the work on the present thesis,
we believe the following components are essential for such a procedure to be realized:

1. Formulation as a Krylov solver. All three procedures discussed in this thesis can be for-
mulated as a Krylov subspace solver with preconditioning. The choice of preconditioner
depends on the computational environment: the more memory is available, the closer it
can be to a factorization. If computer memory is not a limitation, the preconditioner can
be a factorization (as in Chapters 4 and 6).

2. Automatic control over updates of the preconditioner. One of the parameters governing the
accuracy and efficiency of such a Krylov solver is the quality of the preconditioner. In
standard procedures, it is updated every design cycle (as in Chapter 5). Otherwise, it can
be updated once every several design cycles (as in Chapter 4) or in the extreme case, it
can be kept constant throughout the whole design process (as in Chapter 6). The key
point to investigate is how to control the frequency of updates so that sufficient accuracy
is achieved in an efficient manner.

3. Effective stopping criterion. Another parameter affecting the accuracy and efficiency is the
number of iterations performed by the Krylov solver. This is determined by the stopping
criterion and the required tolerance. An effective criterion could be based on the sugges-
tions in Chapter 5, but such a choice must be supported by strong analytical arguments.
A possible direction to explore is relating the stopping criterion and the tolerance to infor-
mation given from the optimization program. When the optimization process is still far
from converging, it is expected that relatively large errors in the analysis can be tolerated.
This means that the convergence tolerance of the Krylov solver can be tightened as we
approach a solution to the optimization problem. By digging a bit deeper into the opti-
mization program, it may also be possible to relate the quality of the approximations there

1This was observed when investigating the problem of maximizing energy absorption with a J2 plasticity material
model, which seems to be the most popular design problem in the relevant literature.
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to the quality of the approximations required in the nested analysis. The question is: do
we really need to solve the analysis accurately, and compute accurate design sensitivities,
knowing that the optimization itself is based on first-order approximations?

Reanalysis applied to robust topology optimization An important extension of the classical
topology optimization method is the consideration of uncertainties related to manufacturing
processes. These are taken into account in the so-called robust topology optimization approach.
The corresponding optimization problem is formulated as a worst case design problem, where
for each design cycle a set of similar designs are evaluated. We expect that a reanalysis approach,
such as the one utilized in Chapters 4 and 6, will be highly effective in this setting. Using a
reanalysis procedure, it may be possible to evaluate accurately only one “base” design within
every design cycle. The other designs, generated according to the considered manufacturing
errors, will then be evaluated using efficient reanalysis.

Comparative study regarding sensitivity analysis for elasto-plasticity As discussed in the
previous section, one of the obstacles encountered during the work was sensitivity analysis for
problems involving elasto-plastic response. In the majority of publications, the so-called varia-
tional adjoint approach is taken while in the current study a different approach was preferred.
As mentioned above, in previous studies that followed the former approach some simplifications
were considered and some errors were reported. We find it interesting to conduct a thorough
study that will compare all suggested approaches, with emphasis on the consistency of the for-
mulation. Furthermore, computational efficiency should also be examined, due to the relatively
high cost of adjoint sensitivity analysis for path-dependent response.

Efficient nonlinear structural analysis in topology optimization using Newton-Krylov meth-
ods The study presented in Chapter 8 is restricted to the use of direct methods for solving lin-
ear systems, based on matrix factorization. However, practical topology optimization procedures
should be suitable for high performance parallel computing so that large-scale 3-D problems
could be tackled. Therefore it is crucial to extend the ideas suggested in Chapter 8 for the case
that an iterative solver is used to solve the linear systems. The nonlinear structural analysis will
then be performed by a Newton-Krylov method. It may be possible to use advanced techniques,
such as deflation and recycling of subspaces, for achieving efficient solution procedures based
on re-using information.
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Chapter 4

Approximate reanalysis in topology
optimization

Amir O, Bendsøe MP and Sigmund O. Approximate reanalysis in topology optimization. Inter-
national Journal for Numerical Methods in Engineering 2009, vol. 78, pp. 1474-1491.

Abstract In the nested approach to structural optimization, most of the computational effort is
invested in the solution of the finite element analysis equations. In this study, the integration of
an approximate reanalysis procedure into the framework of topology optimization of continuum
structures is investigated. The nested optimization problem is re-formulated to accommodate
the use of an approximate displacement vector and the design sensitivities are derived accord-
ingly. It is shown that relatively rough approximations are acceptable since the errors are taken
into account in the sensitivity analysis. The implementation is tested on several small and
medium scale problems, including two and three dimensional minimum compliance problems
and two dimensional compliant force inverter problems. Accurate results are obtained and the
savings in computation time are promising.

Keywords Approximate reanalysis, Topology optimization, Structural reanalysis

4.1 Introduction

Despite rapid improvements in computer performance over the last few decades, there is still
room for advances in computational efficiency for handling structural optimization applications
due to the high computational cost involved in the optimization process. In general, the total
computational cost of the optimization procedure is governed by the complexity of three as-
pects: the model, the analysis and the optimization (Venkataraman and Haftka, 2004). Solving
problems that are characterized by high complexities in all three aspects is presently still lim-
ited, thus motivating the search for methods and procedures that require reduced computational
resources but yield high quality results.

In this paper, the implementation of an approximate reanalysis method in structural topol-
ogy optimization is investigated. We follow the material distribution approach for topological
design (Bendsøe and Kikuchi, 1988) together with the solid isotropic material with penalization
(SIMP) interpolation (Bendsøe, 1989). Furthermore, we apply the so-called nested approach
where optimization is performed in the design variables only and where the equilibrium equa-
tions are treated as function calls. The aim of using approximate reanalysis is to reduce the
computational effort involved in repeated solutions of the equilibrium equations, which for
large problems will dominate the computational cost of the whole process. The approximate
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reanalysis performed here follows the Combined Approximations (CA) approach, originally pro-
posed by Kirsch (1991) for linear static reanalysis. The main feature of CA is the utilization of a
local series expansion in a global reduced basis solution. When using CA for repeated structural
analysis, one can substantially reduce the number of required factorizations of the stiffness ma-
trix, thus removing a significant portion of the computational effort. It has been shown that the
CA method is theoretically equivalent to the preconditioned conjugate gradient method (Kirsch
et al., 2002). Therefore, available results from one method, such as convergence criteria and
error bounds, can be used also in the other method. Accurate results and significant savings
in computational effort have been reported; for further details the reader is referred to (Kirsch,
2002) and (Kirsch, 2008). The approach has also been applied successfully in several classes
of structural reanalysis problems, e.g. vibration reanalysis (Kirsch and Bogomolni, 2004), dy-
namic reanalysis (Kirsch and Bogomolni, 2006) and nonlinear reanalysis (Amir et al., 2008). In
connection with topology optimization, it was shown that CA can be utilized in the reanalysis of
truss structures undergoing topological changes, even when the structural model is altered and
the number of degrees of freedom is changed (Kirsch and Papalambros, 2001).

The main purpose of this study is to examine the integration of linear static reanalysis by
CA into the widely used procedures for topology optimization using a distribution of material
approach. The investigation focuses on the two most important aspects of an approximate
procedure - its accuracy, meaning in this case the possibility to obtain the same topological
designs as would be generated by a standard procedure; and its efficiency, meaning that the
approximate procedure should offer significant savings in computation time when compared to
a standard procedure.

The article is organized as follows. First, the Combined Approximations approach for struc-
tural reanalysis is briefly reviewed for the sake of completeness in Section 4.2. Then, in Section
4.3, formulations of topology optimization problems into which approximate reanalysis is inte-
grated are presented for two different types of problems, including the corresponding sensitivity
analysis. Computational considerations regarding the implementation of the procedure are dis-
cussed in Section 4.4, followed by several numerical examples and efficiency estimates. Finally,
some conclusions are drawn in Section 4.5.

4.2 Reanalysis by combined approximations

In this study, approximate reanalysis is performed following the Combined Approximations (CA)
approach, originally proposed by Kirsch (1991). As mentioned earlier, the formulation of linear
reanalysis by CA is repeated here for the sake of completeness.

Consider the linear system of equilibrium equations resulting from a finite element discretiza-
tion of the computational domain, corresponding to a certain iterative step of the optimization
process

Ku = f (4.1)

where K is the stiffness matrix, u is the unknown displacement vector and f is the external
force vector. We assume here that f does not depend on the optimization and remains constant
throughout the whole process; this does not lead to any loss of generality. Now, instead of
solving the full system of equations, it is possible to efficiently find an approximate solution ũ
that will be sufficiently accurate for the purpose of optimization

ũ ≈ u

Kũ ≈ f

According to the Combined Approximations approach, the approximate solution is obtained
as follows. We denote K0 as the stiffness matrix corresponding to a certain previous optimization
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step and given in its factorized form. The equation system (4.1) can be rewritten

(K0 + ∆K)u = f

and hence
K0u = f −∆Ku

Here, ∆K represents the matrix of changes in stiffness due to changes in the values of the design
variables. Defining the following recurrence relation

K0u
k = f −∆Kuk−1

leads to the so-called binomial series expansion

u = (I−B + B2 −B3 + ...)u1 (4.2)

where

u1 = K−1
0 f

B ≡ K−1
0 ∆K

ui = −Bui−1

It is important to note that the first term u1 is already known from a previous optimization step
and the following terms ui can be easily computed by forward and backward substitutions based
on the factorization of K0. The main feature of CA is the utilization of the series terms from
(4.2) as basis vectors in a reduced basis solution. Considering only the first s series terms, the
approximate solution can now be expressed as

ũ = y1u1 + y2u2 + ...+ ysus = RBy (4.3)

where RB is an n x s matrix containing the basis vectors u1,u2, ...,us and y is a vector of s
unknowns. Replacing u in (4.1) with ũ from (4.3) and premultiplying both sides by RT

B

RT
BKRBy = RT

Bf (4.4)

This ends up in a reduced system of equations, with s equations instead of n

KRy = fR

where

KR = RT
BKRB

fR = RT
Bf

In many cases it is beneficial to orthonormalize the basis vectors, for example by an algorithm
usually known as the modified Gram-Schmidt procedure (for details see Golub and Van Loan
(1983)). Then, an explicit expression for the approximate vector can be obtained

ũ = VBz =
s∑
i=1

vi(v
T
i f)

where the n x s matrix VB contains the set of orthonormal basis vectors.
It is important to point out that the computational benefit of this procedure is due to the fact

that the basis vectors are easily generated by solving a linear system where the stiffness matrix
is already given in its factorized form. The computational cost of the reanalysis procedure is
then dominated by the cost of orthonormalization, and is therefore much smaller than the cost
of a complete new analysis, which is dominated by the cost of a matrix factorization.
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4.3 Topology optimization and sensitivity analysis

The integration of the CA method for approximate reanalysis into a topology optimization proce-
dure is presented in this section. First, for demonstrating the issues to be addressed, we present
the formulation for minimum compliance problems, aimed at finding the optimal distribution
of elastic material in a certain domain so that the stiffest structure is obtained. Second, the
sensitivity analysis for this problem is formulated. Finally, a brief description of the utilization
of CA in another class of topology optimization problems is presented.

4.3.1 Problem formulation: minimum compliance

When applying the so-called nested approach, where optimization is performed in the design
variables only and where the equilibrium equations are treated as function calls, the optimiza-
tion problem is formulated as follows

min
ρ
c(ρ) = fTu

s.t.:
N∑
e=1

veρe ≤ V

0 < ρmin ≤ ρe ≤ 1, e = 1, ..., N

with: K(ρ)u = f

where K(ρ) is the stiffness matrix whose entries depend on the design variables ρ. When using
the SIMP interpolation and element-wise constant densities scheme, K(ρ) can be rewritten as a
sum over all elements

K(ρ) =
N∑
e=1

ρpeKe

where Ke is a standard element stiffness matrix referring to an element density equal to 1.
When applying approximate reanalysis, this formulation accurately represents the problem

only for optimization cycles in which the full equation system is solved to satisfy the structural
equilibrium. For each optimization cycle in which an approximate reanalysis is performed by
CA, an appropriate optimization problem is formulated in terms of the approximate solution of
the equilibrium equations, ũ. The objective function can be expressed as follows

c(ρ) = fTu ≈ ũTK(ρ)ũ

ũ = RBy

c(ρ) = yTRT
BK(ρ)RBy

When performing approximate reanalysis within a certain optimization cycle, a set of s basis vec-
tors is generated and utilized according to the CA procedure. The size of this set is determined
in the reanalysis stage and is then fixed for the sensitivity analysis. In this case the optimization
problem will have the form

min
ρ
c(ρ) = yTRT

BK(ρ)RBy

s.t.:
N∑
e=1

veρe ≤ V

0 < ρmin ≤ ρe ≤ 1, e = 1, ..., N

with: RT
BK(ρ)RBy = RT

Bf

K0(ρ0)u1 = f

K0(ρ0)ui = −∆K(ρ,ρ0)ui−1, i = 2, ..., s (4.5)
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It can be seen that the nested equations are the reduced reanalysis system of Equation (4.4)
and the equation systems governing the generation of the basis vectors, based on the available
factorization of the stiffness matrix K0(ρ0) corresponding to a previous design cycle. In this
nested problem, the matrix RB contains the basis vectors

RB = [u1, ...,us]

and the matrix K(ρ) is split into two parts, the first corresponding to a previous factorization
and the second to the changes in stiffness due to changes in the design

K(ρ) = K0(ρ0) + ∆K(ρ,ρ0)

When using the SIMP interpolation and element-wise constant densities scheme, both matrices
can be rewritten as a sum over all elements

K0(ρ0) =

N∑
e=1

ρpe,[0]Ke

∆K(ρ,ρ0) =

N∑
e=1

(ρpe − ρ
p
e,[0])Ke

In many cases, the approximate displacement vector ũ is obtained by solving the reduced
system of equations resulting from the utilization of the orthonormal set of basis vectors gener-
ated according to the modified Gram-Schmidt procedure. However, the optimization problem is
formulated in terms of the original basis vectors RB and the corresponding reduced solution y
since this simplifies the sensitivity analysis. Therefore, the reduced solution vector y should be
extracted from the reduced solution vector z. This can be achieved by solving a small (s x s)
linear system

Ay = z (4.6)

where the coefficients Aij are computed when performing the modified Gram-Schmidt orthonor-
malization. It is important to pay attention to possible ill-conditioning of this system, an issue
that will be addressed in the next section.

4.3.2 Sensitivity analysis: minimum compliance

Clearly, when a full analysis is performed within a certain optimization cycle, the sensitivity
can be easily obtained using the adjoint method (Bendsøe and Sigmund, 2003), leading to the
well-known expression

∂c

∂ρe
= −uT ∂K

∂ρe
u

Within optimization cycles in which approximate reanalysis is performed, the reduced solu-
tion in terms of the original basis vectors is obtained according to (4.6) and then the correspond-
ing sensitivity analysis can be performed by the adjoint method. Introducing adjoint variables ỹ,
λi (i = 1,...,s, s being the number of basis vectors used in the reanalysis), the following modified
objective function is obtained by adding zero terms

c(ρe) = yTRT
BKRBy − 2ỹT (RT

BKRBy −RT
Bf)−

λT1 (K0u1 − f)−
s∑
i=2

λTi (K0ui + ∆Kui−1)
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When differentiating the objective function with respect to a certain design variable, derivatives
of the adjoint variables are obviously eliminated and the derivative will be

∂c

∂ρe
= 2

∂yT

∂ρe
RT
BKRBy + 2yT

∂RT
B

∂ρe
KRBy + yTRT

B

∂K

∂ρe
RBy + 2ỹT

∂RT
B

∂ρe
f −

2ỹT
∂RT

B

∂ρe
KRBy − 2ỹTRT

B

∂K

∂ρe
RBy − 2ỹTRT

BK
∂RB

∂ρe
y −

2ỹTRT
BKRB

∂y

∂ρe
− λT1

∂K0

∂ρe
u1 − λT1 K0

∂u1

∂ρe
−

s∑
i=2

λTi [
∂K0

∂ρe
ui + K0

∂ui
∂ρe

+
∂∆K

∂ρe
ui−1 + ∆K

∂ui−1

∂ρe
]

As is the case for the standard (full) problem, the adjoint variable vector that should be chosen
such that the derivatives of the solution vector are eliminated, is simply the solution vector itself,
meaning that for the approximate problem

ỹ ≡ y

By defining the vector of residual forces due to approximation errors

∆f = f −KRBy (4.7)

and applying the following equalities

2yT
∂RT

B

∂ρe
∆f =

s∑
i=1

2yi
∂uTi
∂ρe

∆f

∂K0

∂ρe
= 0

∂∆K

∂ρe
=

∂K

∂ρe

the following expression for the sensitivity is obtained as

∂c

∂ρe
= −yTRT

B

∂K

∂ρe
RBy −

s∑
i=2

λTi
∂K

∂ρe
ui−1 −

s−1∑
i=1

∂uTi
∂ρe

[K0λi + ∆Kλi+1 − 2yi∆f ]−

∂uTs
∂ρe

[K0λs − 2ys∆f ]

It can be seen that derivatives of the basis vectors can be eliminated by solving the adjoint
problems, where i = 1, ..., s− 1:

K0λs = 2ys∆f

K0λi = 2yi∆f −∆Kλi+1

Therefore the final expression for the sensitivity is

∂c

∂ρe
= −yTRT

B

∂K

∂ρe
RBy −

s∑
i=2

λTi
∂K

∂ρe
ui−1

Several interesting observations can be made when examining this expression. First, it can
be seen that if there are no approximation errors, then the first term is identical to the sensitivity
in the standard problem and the second term is eliminated. Second, once approximation errors
occur, they are accounted for in the sensitivity analysis, meaning that relatively large inaccura-
cies could be tolerated. Third, the number of adjoint problems to be solved is s−1 since the first
basis vector does not depend on changes in the design; so the additional computational cost is
very low considering the availability of the factorized stiffness matrix. Finally, it should be noted
that the sensitivities computed following this derivation were found to be perfectly compatible
with calculations using finite differences.
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4.3.3 Optimization problem and sensitivity analysis: maximizing output displace-
ments

The utilization of CA reanalysis is not restricted to the class of minimum compliance problems.
As another demonstrative case, the problem of compliant mechanism design (Bendsøe and Sig-
mund, 2003) is examined. At this point, only linear response is considered. This may not be
sufficiently accurate when designing an actual device but will suffice for the purpose of demon-
strating the formulation with approximate reanalysis. Consider the optimization problem of
maximizing a particular output displacement

max
ρ

c(ρ) = lTu

s.t.:
N∑
e=1

veρe ≤ V

0 < ρmin ≤ ρe ≤ 1, e = 1, ..., N

with: K(ρ)u = f (4.8)

where l is a vector with the value of 1 at the output DOF and zeros otherwise.
The formulation (4.8) holds for optimization cycles that include a full structural analysis.

When the approximate problem is solved, the corresponding objective function can be expressed
as follows

c(ρ) = lTu ≈ lT ũ

ũ = RBy

c(ρ) = lTRBy = yTRT
Bl

Then, the appropriate optimization problem will have the form

max
ρ

c(ρ) = yTRT
Bl

s.t.:
N∑
e=1

veρe ≤ V

0 < ρmin ≤ ρe ≤ 1, e = 1, ..., N

with: RT
BK(ρ)RBy = RT

Bf

K0(ρ0)u1 = f

K0(ρ0)ui = −∆K(ρ,ρ0)ui−1, i = 2, ..., s (4.9)

Design sensitivities can be derived in a similar fashion as for the minimum compliance prob-
lem. When the full system is analyzed, the design sensitivities are (Bendsøe and Sigmund,
2003)

∂c

∂ρe
= −λT ∂K

∂ρe
u

where λ is the solution to the adjoint problem

Kλ = l

When the reduced reanalysis problem is solved, the design sensitivities are found by

∂c

∂ρe
= −ỹTRT

B

∂K

∂ρe
RBy −

s∑
i=2

λTi
∂K

∂ρe
ui−1

Here, ỹ is the solution of the reduced adjoint problem

RT
BKRBỹ = RT

Bl (4.10)
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In order to avoid the solution of an ill-conditioned system, the orthonormal basis is utilized
again and the reduced vector ỹ can be obtained as in (4.6). The adjoints for the basis vectors
are found by solving the following linear systems, where i = 1, ..., s− 1:

K0λs = ỹs∆f + ys∆l

K0λi = ỹi∆f + yi∆l−∆Kλi+1

where ∆f and ∆l can be seen as residual vectors due to approximation errors, the former corre-
sponding to the reanalysis (same as in (4.7)) and the latter corresponding to the reduced adjoint
problem (4.10)

∆l = l−KRBỹ

Finally, it should be noted that also for this class of problems the sensitivities computed by
the presented derivation were found to be perfectly compatible with calculations using finite
differences.

4.4 Numerical implementation and examples

4.4.1 Computational considerations

Solving an optimization problem in which the actual stiffness matrix is factorized only once
within a certain number of design iterations can be seen as solving a series of ‘short’ optimization
problems, each one of them a valid optimization problem on its own. Each ‘short’ optimization
problem begins with a matrix factorization and therefore an accurate design iteration; then it
continues with a sequence of approximate design iterations based on an approximate reanalysis
and its corresponding (exact) sensitivities.

The main goal of using approximate reanalysis is to achieve an accurate result efficiently.
When considering the accuracy of the proposed procedure, the somewhat limited scope of the
‘short’ problems should be taken into account. On the one hand, it is clear that an approximate
procedure cannot accommodate extremely large changes in stiffness so these should be bounded
in some way. This results in the use of an outdated physical model, so that in many cases the
approximate problem (4.5) cannot reach the true optimum and will converge to a higher value
(assuming minimization is considered). On the other hand, in certain cases the approximate
solution is not accurate enough and the optimization process leads to unreliable results, some-
times with a better objective value than the final optimum. Due to these shortcomings, a certain
frequency of updating the factorized matrix (and terminating the current ‘short’ problem) should
be defined if we seek a stable convergence leading to the same optimum as found by solving
the full problem. Considering the efficiency of the procedure, matrix factorizations are the most
expensive part so the number of updates should be minimized. Therefore the key for achieving
an accurate result efficiently is choosing the right time to stop a sequence of reanalyses and
perform a new factorization. Possible options for controlling the procedure could be:

1. State a fixed frequency of matrix factorizations, which will be performed regardless of the
convergence of the ‘short’ problem.

2. Perform a new matrix factorization when the current design variable vector ρ[k] is signif-
icantly different from the design variable vector corresponding to the factorized matrix,
ρ[0]. This can be done by examining the angle between the two vectors.

3. Perform a new matrix factorization when the ‘short’ problem reaches a certain convergence
criterion. Such a criterion could be, for example, the relative change in the value of the
objective function within the ‘short’ problem.
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In the current study, only the first two options were investigated.
In addition to the frequency of matrix factorizations, the size of the reduced basis also has a

direct impact on the accuracy and efficiency of the procedure. Adding basis vectors improves the
approximate representation of the problem; however, the computational cost rises significantly
since the cost of orthonormalization is proportional to s2 (s being the number of basis vectors).
Therefore it is important to state a certain criterion that will help us determine the sufficient
number of basis vectors. In this study, it is suggested to examine the relative magnitude of
the residual forces (meaning the error due to approximation, see (4.7)) for this purpose. If
the relative magnitude of this residual (measured by the ratio between the Euclidean norms of
the residual and the external force vector) exceeds a certain permitted tolerance value, another
basis vector is generated, until the residual satisfies the criterion or the predefined maximum
number of basis vectors is reached. The relative magnitude of the force residual for which no
more basis vectors would be generated was set to 1e-2 for minimum compliance problems and
1e-4 for the force inverter problem. The former class of problems is considered more simple
to solve since it is self-adjoint and all sensitivities have the same sign. On the other hand, the
force inverter problems require higher accuracy in the solution of the reanalysis equations and
therefore the tighter tolerance value. 1

All the solutions presented in this section were obtained using a nonlinear optimization
program based on the Method of Moving Asymptotes (Svanberg, 1987). The external move
limit associated with the use of this method in topology optimization had to be treated with
some care in order to obtain convergence to meaningful results. For this purpose, the design
update was bounded by two external move limits: one referring to the previous design cycle (as
defined in most cases) and the other referring to the design corresponding to the last ‘full’ cycle,
in which a full analysis was performed

ρmaxe,[k] = min
{

1,min
{
ρe,[0] + δ, ρe,[k−1] + δ/2

}}
(4.11)

ρmine,[k] = max
{
ρmin,max

{
ρe,[0] − δ, ρe,[k−1] − δ/2

}}
(4.12)

Here, ρmaxe,[k] and ρmine,[k] are the upper and lower external bounds for the MMA update of the ele-
ment density in the k-th design cycle; ρe,[0] is the element density referring to the last factorized
stiffness matrix; ρe,[k−1] is the element density referring to the previous design cycle; and δ is
a user-defined external move limit, usually equal to 0.2 or 0.3. Equations (4.11), (4.12) imply
that the design changes computed by MMA will be limited so that they are not too far away
from the last accurately computed design values, thus imposing an implicit limit on the values
of ∆K. This relates also to the limited scope of an approximate solution as discussed above: in
order to avoid large inaccuracies which may lead to unreliable objective values, we impose an
external limit on the magnitude of changes, knowing that the next factorization will enable us
to further improve the objective without the risk of unreliable results.

Finally, in order to obtain regularized mesh-independent designs and to avoid checkerboard
patterns, a density filter was applied (Bruns and Tortorelli, 2001; Bourdin, 2001). In all the
examples solved, the underlying FE model consisted of square, four-noded, bi-linear plane stress
elements.

4.4.2 Numerical examples

In this section, several numerical results are presented. The problems that are addressed are
minimum compliance problems in two and three dimensions and a force inverter problem in
two dimensions. It is shown that accurate results can be obtained when using the approximate
procedure. Moreover, promising computational savings are achieved due to a significant reduc-
tion in the number of matrix factorizations. A detailed discussion regarding the actual savings
and several CPU time measurements are presented in Section 4.4.3.

1It is well known in the structural optimization community that this is a more complicated class of problems.
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Figure 4.1: MBB beam (symmetric half)

Figure 4.2: Final topology of the MBB beam, 60*20 mesh (symmetric half)

4.4.2.1 Example 1: minimum compliance of a 2-D beam.

As a first demonstrative example, we present the solution for the minimum compliance of a
beam subjected to a concentrated vertical load. This example follows the benchmark problem
from Sigmund (2001), usually known as the MBB-beam, see Figure 4.1. For a qualitative exam-
ination, we focus on the solution obtained with a 60×20 FE mesh, consisting of square elements
with a side length equal to 1. The maximum value of Young’s modulus (corresponding to the
maximum density) was set to 1; Poisson’s ratio was set to 0.3; the allowed volume fraction was
0.5; and the penalization factor used in the SIMP interpolation was set to 3. A linear weighting
density filter was used with the radius of 2.1. The MMA move limit was set to 0.2 when solving
by the standard procedure and 0.3 when solving by the approximate procedure.

When implementing the standard topology optimization procedure, convergence was ob-
tained after 92 iterations (meaning that 92 factorizations were performed) to an objective value
of 221.5535. When implementing approximate reanalysis, the frequency of matrix factoriza-
tions was fixed to once every 10 iterations and the maximum number of basis vectors was set
to 4. Convergence was obtained after 190 iterations (meaning that 19 factorizations were per-
formed) to an objective value of 221.5544. The final topology in terms of filtered densities is
presented in Figure 4.2 and is practically identical for the two solutions.

In Figure 4.3, the number of basis vectors used in the approximate procedure is plotted, as
well as the convergence of the optimization process. In the top figure, it can be seen that as the
optimization proceeds, the required number of basis vectors is reduced since the design changes
are small and fewer vectors are needed in order to obtain a sufficiently accurate representation
of the true stiffness. The differences between the number of vectors used for reanalysis and the
number of vectors used for sensitivity analysis (e.g. during iterations 35-40 and 45-50) is due to
elimination of vectors when ill-conditioning of the linear system in Equation (4.6) is observed.
Elimination is required in order to ensure that the coefficient vector y is calculated accurately. By
examining the bottom of the figure, the concept of ‘short’ optimization problems can be clarified.
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Between two consecutive factorizations, a certain convergence curve can be observed. In some
cases, the value of the objective is lower than the final minimum (e.g. iterations 31-40); this is
corrected after the next factorization, which ‘directs’ the objective back to the desired value, so
that the final optimum is accurate.

Figure 4.3: Number of basis vectors (top) and objective convergence (bot-
tom), 60×20 half MBB beam

Some interesting properties of the approximate procedure are demonstrated in Figure 4.4. In
the upper part of the figure, the approximation errors are documented, in terms of the Euclidean
norm of the force residual relative to the norm of the external forces. It can be observed that
relatively large errors can be tolerated, with some values even exceeding the magnitude of
the external forces. This leads to the conclusion that a relatively rough approximation in the
reanalysis is sufficient for the purpose of optimization, as long as consistent sensitivities are
derived which take the approximation errors into account.

Figure 4.4: Relative force residuals (top) and angles between factorized
and current designs (bottom), 60×20 half MBB beam

Another interesting property to examine is the measure of the design changes, which influ-
ences the magnitude of the values in ∆K and therefore affects the accuracy of the approxima-
tion. In the bottom of Figure 4.4, the cosine of the angle between design variable vectors is
plotted. In principle, the value of the cosine is reduced the further we are from the previous
matrix factorization, since the changes in the design variables grow larger. However, as the
optimization proceeds, these changes become very small (e.g. iterations 81 and further); this
means that it may make sense to adapt the frequency of matrix factorizations according to the
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Figure 4.5: Force inverter (symmetric half)

magnitude of the design changes, as described above in Section 4.4.1. In the beginning of the
optimization process, more frequent factorizations are required; but from a certain stage, the
frequency can be reduced significantly. This control option was tested on the same example
problem, but a minimum frequency of factorizations was set to once every 20 iterations and a
constraint on the cosine between design vectors was introduced. After 200 iterations (the maxi-
mum number of iterations), the objective reached the value of 221.5701 (compared to 221.5535
in the standard solution, 0.007% error) and only 15 factorizations were performed.

4.4.2.2 Example 2: maximum output of a 2-D force inverter.

As a second demonstrative example, we present the solution for the maximum output displace-
ment of a force inverter. This example follows the benchmark problem examined in Sigmund
(2007), see Figure 4.5. The displacement to be maximized is negative in global FE coordinates
so the optimization problems (see (4.8), (4.9)) are automatically modified into minimization
problems. For a qualitative examination, we focus on the solution obtained with a 40×20 FE
mesh consisting of square elements with a side length equal to 1. The maximum value of Young’s
modulus (corresponding to the maximum density) was set to 1; Poisson’s ratio was set to 0.3;
the allowed volume fraction was 0.3; and the penalization factor used in the SIMP interpola-
tion was set to 3. A linear weighting density filter was used with the radius of 2.1. The MMA
move limit was set to 0.2 when solving both by the standard procedure and by the approximate
procedure.

When implementing the standard topology optimization procedure, convergence was ob-
tained after 159 iterations (meaning that 159 factorizations were performed) to an objective
value of -1.7413. When implementing approximate reanalysis, an adaptive control was used:
the minimum frequency of factorizations was set to once every 15 iterations with a constraint
on the cosine between design vectors, and the maximum number of basis vectors to be gener-
ated was set to 6. These values represent a more accurate, but less efficient, adaptive procedure
than the one used for the MBB-beam; this is due to the more complicated nature of the inverter
problem as explained earlier in Section 4.4.1. After 300 iterations (the maximum number of
iterations), the objective reached the value of -1.7281 (an error of 0.76%) but only 24 factoriza-
tions were performed. The final topologies in terms of filtered densities are presented in Figure
4.6. It can be seen that for this case the approximate procedure does not yield exactly the same
solution as the standard procedure. Moreover, numerical experience shows that the results for
this problem are very sensitive to the choice of the solution parameters, mainly: the MMA move
limit; the force residual tolerance; and of course, the frequency of matrix factorizations and
the number of basis vectors. Therefore, when seeking an approximate solution for this class of
problems, these parameters should be treated with care. However, the solution to this problem
is sensitive to the choice of parameters (such as the MMA move limit) also when solving with a
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Figure 4.6: Final topology of the force inverter - approximate solution
(left), standard solution (right), 40×20 mesh (symmetric half)

Figure 4.7: 3-D cantilever beam

full analysis, so the inaccuracies should not be referred only to the use of approximate reanalysis
but also to the difficulties inherent in this class of problems.

4.4.2.3 Example 3: minimum compliance of a 3-D cantilever beam.

In this example, we present the solution for the minimum compliance of a cantilever beam
subjected to a concentrated vertical load at the center of its free face. The parametric sizes and
the shape of the physical domain are presented in Figure 4.7. Clearly, this can be seen as a
direct extension of the MBB-beam problem to three dimensions. For a qualitative examination,
we focus on the solution obtained with a 48×16×16 FE mesh consisting of cubic elements with a
side length equal to 1. The maximum value of Young’s modulus (corresponding to the maximum
density) was set to 1; Poisson’s ratio was set to 0.3; the allowed volume fraction was 0.5; and
the penalization factor used in the SIMP interpolation was set to 3. A linear weighting density
filter was used with the radius of 2.01. The MMA move limit was set to 0.2 when solving by the
standard procedure and 0.3 when solving by the approximate procedure.

As for the 2-D case, very accurate results were obtained for this example problem. When
implementing the standard topology optimization procedure, convergence was obtained after
152 iterations (meaning that 152 factorizations were performed) to an objective value of 13.300.
When implementing approximate reanalysis, the frequency of matrix factorizations was fixed to
once every 10 iterations and the maximum number of basis vectors was set to 4. Convergence
was obtained after 151 iterations (meaning 16 factorizations were performed) to an objective
value of 13.304. The final layout for a 48×16×16 mesh is presented in Figure 4.8, and was
practically identical for both the full and the approximate solution procedures. It can be seen
that the topology indeed changes and a hole is created by the fixed wall. The computational
efficiency of the approximate procedure will be discussed in more detail in the following section.
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Figure 4.8: Final topology of the 3-D cantilever, 48×16×16 mesh

4.4.3 Computational efficiency

4.4.3.1 Estimated efficiency by FLOPS count.

The savings in computational effort that can be achieved when implementing the approximate
procedure can be roughly estimated by examining the FLOPS count. Focusing on the nested
analysis/reanalysis problem and referring to the banded structure of the stiffness matrix, the
cost related to the standard procedure is dominated by factorization where the number of FLOPS
performed is in the order of nb2 (n being the number of DOF and b the half-bandwidth of the
stiffness matrix). In the approximate procedure, the cost of approximate reanalysis is dominated
by the cost of generation and orthonormalization of the basis, where the FLOPS count includes
terms in the order of nbs and nbs2 (s being the number of basis vectors). Therefore we expect
savings in computer run time when s2 < b.

In practice, the FLOPS count can only provide a rough estimate since many other factors
influence the actual efficiency of an implemented algorithm, especially if sparsity of the stiff-
ness matrix is taken into account. Efficient programming and memory usage, which take full
advantage of the matrix’s sparsity, should also be taken into account but are out of the scope of
this work. However, an approximate FLOPS count assuming banded structure of the stiffness
matrix together with several promising CPU time measurements should be sufficient in order to
demonstrate the potential savings offered by the approximate procedure.

4.4.3.2 Actual efficiency by CPU time measurements.

In Table 4.1, some results obtained when solving the 2-D MBB-beam problem (Example 1)
using several mesh resolutions are presented. For all cases the FE mesh consists of square
elements with a side length equal to 1. Other numerical parameters were identical to those
used in Example 1. Both standard and approximate procedures were implemented in Fortran
utilizing sparse solver routines available from the Sun Performance Library (Sun, 2005), and
were executed on a Sun UNIX terminal. For all runs, the frequency of matrix factorizations was
fixed to once every 10 iterations and the maximum number of basis vectors was set to 4. As
demonstrated above, more savings could be achieved if an adaptive control would have been
used.

For each example problem, two measurements of CPU time were taken: one for the solution
of the finite element equations (by standard analysis or approximate reanalysis) and one for the
whole optimization process. It can be observed that approximate reanalysis can save significant
time spent on the solution of the FE analysis equations. However, the total speedups achieved
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Table 4.1: 2-D MBB beam, fixed CA (4/10)

Problem size 90×30 180×60 300×100

Design variables 2,700 7,200 30,000
Degrees of freedom 5,642 22,082 60,802

Final objective, CA 225.187 227.834 230.374
Iterations, CA 200 200 200

Final objective, full solution 224.749 227.111 230.608
Iterations, full solution 200 200 200

Error 0.19% 0.32% 0.10%
FE speedup 2.22 2.37 3.14
Total speedup 0.90 1.36 1.48

for the whole optimization process are not very high since the problem sizes are relatively small,
meaning that the time spent on solving the FE equations is not completely dominant. It is
expected that when dealing with large scale problems the total speedup will be similar to the
speedup achieved for the solution of the FE equations. As for the accuracy of the approximate
procedure, it can be seen that the relative errors are small and the results can be regarded as
accurate for any practical purpose.

More promising speedups are achieved when solving three-dimensional problems. In Table
4.2 some results obtained when solving the minimum compliance problem of a 3-D cantilever
beam (see Example 3) using several mesh resolutions are presented. For all cases the FE mesh
consists of cubic elements with a side length equal to 1. Other numerical parameters were
identical to those used in Example 3. Again, the results are very accurate and the relative errors
when comparing to standard procedures are negligible. When solving with a 24×8×8 and a
36×12×12 mesh, the approximate procedure converged after fewer iterations than the standard
procedure. In these cases, the speedup factors were scaled so that the faster convergence is
not taken into account. Otherwise the results may be misleading, showing too high and not
necessarily realistic speedups.

It can be seen that for 3-D cases, the potential savings are higher than for 2-D cases since
factorization is more costly and also more dominant. For problem sizes of the order of 10e4,
a total speedup factor higher than 5 can be achieved compared to approximately 1.5 for 2-D
problems of the same size. Focusing on the FE speedup factor, it is clear that it rises as the
mesh is finer, as expected from the FLOPS estimation. In theory, for a very large problem the FE
speedup should approach the value of 10 since the cost of the CA iterations will be negligible in
comparison to the full iterations.

4.5 Conclusions

An effective procedure for integrating approximate reanalysis into the topology optimization
framework was proposed. It was shown that accurate optimization results can be obtained even
if the reanalysis problem is not solved very accurately. This is due to the derivation of design
sensitivites which are consistent with the use of an approximate solution. The current study
focuses on applications within the field of topology optimization but the approach could be ex-
tended to other classes of structural optimization. The approximate procedure offers significant
savings in computational effort compared to the standard procedure, especially in 3-dimensional
problems.
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Table 4.2: 3-D cantilever, fixed CA (4/10)

Problem size 24×8×8 36×12×12 48×16×16

Design variables 1,536 5,184 12,288
Degrees of freedom 6,075 18,759 42,483

Final objective, CA 25.649 16.155 13.304
Iterations, CA 100 90 151

Final objective, full solution 25.635 16.136 13.300
Iterations, full solution 125 170 152

Error 0.05% 0.12% 0.03%
FE speedup 4.56 5.28 6.85
Total speedup 3.24 3.84 5.66

More work is needed in order to improve the accuracy of the approximate procedure when
dealing with the compliant mechanism class of problems. Compared to minimum compliance
problems, these are much more challenging from the point of view of utilizing approximations.
Moreover, the efficiency of the approximate procedure can also be improved by introducing
adaptive controls that can reduce the total number of matrix factorizations to be performed
during the whole optimization process. Possible controls were proposed here but their imple-
mentation was not yet investigated thoroughly.

In the future, an effort will be made to extend the application of the Combined Approxima-
tions approach also to topology optimization problems where the structural response is nonlin-
ear and transient.
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Chapter 5

Efficient use of iterative solvers in
nested topology optimization

Amir O, Stolpe M and Sigmund O. Efficient use of iterative solvers in nested topology optimiza-
tion. Structural and Multidisciplinary Optimization 2010, vol. 42, pp. 55-72.

Abstract In the nested approach to structural optimization, most of the computational effort is
invested in the solution of the analysis equations. In this study, it is suggested to reduce this com-
putational cost by using an approximation to the solution of the analysis problem, generated by
a Krylov subspace iterative solver. By choosing convergence criteria for the iterative solver that
are strongly related to the optimization objective and to the design sensitivities, it is possible to
terminate the iterative solution of the nested equations earlier compared to traditional conver-
gence measures. The approximation is computationally shown to be sufficiently accurate for the
purpose of optimization though the nested equation system is not necessarily solved accurately.
The approach is tested on several large-scale topology optimization problems, including mini-
mum compliance problems and compliant mechanism design problems. The optimized designs
are practically identical while the time spent on the analysis is reduced significantly.

Keywords Topology optimization, Nested approach, Iterative equation solvers, PCG, Approxi-
mations

5.1 Introduction

Over the past few years there has been much progress in the application of structural opti-
mization (and topology optimization in particular) to large-scale problems, especially due to
the increasing availability of high performance parallel computers (see e.g. Kim et al. (2004),
Vemaganti and Lawrence (2005), Mahdavi et al. (2006), Wang et al. (2007) and Evgrafov et al.
(2008)). In cases in which the number of inequality constraints is considerably smaller than
the number of design variables, the nested approach is usually applied, meaning that optimiza-
tion is performed in the design variables only and that the equilibrium equations are treated
by function calls and solved separately. When following this approach, the computational cost
of the whole optimization process is frequently dominated by the effort involved in repeated
solutions of large systems of equilibrium equations, obtained after applying the firnite element
method to solve the underlying PDE. For the purpose of solving large-scale linear systems, iter-
ative solvers based on various Krylov subspace methods (for a review of these methods, see for
example (Saad, 2003)) are now gaining popularity over direct methods since they are easier to
parallelize and have modest memory requirements. This study examines the use of such solvers
in the repeated solution of the analysis problem.
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The issue of reducing the computational effort invested in repeated solutions of the nested
analysis problem was recently addressed in several studies. Wang et al. (2007) applied a Krylov
subspace solver with recycling, where parts of the search space corresponding to a certain design
cycle were reused in the solution of the next design cycle. This approach leads to a reduction in
the number of iterations performed in the solution of the nested problem, especially when the
design changes between two optimization steps are small. In (Amir et al., 2009a) an approxi-
mate reanalysis procedure, based on the Combined Approximations method (Kirsch, 1991), was
integrated into nested topology optimization procedures. It was shown that relatively rough
approximations are acceptable since the errors are taken into account in the sensitivity analysis
which is consistent with the approximation utilized. For example, in some design cycles the
residual forces due to inaccurate solution of the equation system were of the same magnitude
as the external forces. The approximation is obtained efficiently so this approach can lead to
significant savings in computer run time, especially for three-dimensional problems.

In the current study, we suggest using an approximation to the solution vector generated
by a Krylov subspace solver. This approximation corresponds to an intermediate stage of the
iterative procedure, meaning that the iterate does not satisfy the common convergence criterion
that measures the relative norm of the residuals. Two different ways of choosing the approxi-
mate solution and ensuring sufficient accuracy of the optimization process are discussed. One
possibility is to obtain the approximation by introducing a relatively slack convergence tolerance
for the iterative equation solver. Then the adjoint method for sensitivity analysis is applied in a
consistent manner, so that the design sensitivities are accurate with respect to the approxima-
tion that is utilized. Throughout this article, this will be referred to as the consistent approach.
Another possibility is to obtain the approximation by disregarding the traditional convergence
criterion for the iterative solver and introducing alternative convergence criteria. These mea-
sures are strongly related to the objective function of the optimization problem we are aiming to
solve and to the corresponding design sensitivities. Following this approach, sensitivity analysis
is approximate since it is performed assuming that the nested equations are solved accurately.
The approximations obtained in this manner are too rough for the purpose of analysis, but are
indeed sufficiently accurate for the practical purpose of optimization. This approach will be
referred to as the approximate approach and is the main focus of this article. It is shown that
the computational effort invested in solving the nested analysis problem can be reduced sig-
nificantly, without affecting the accuracy of the optimization process. Some preliminary results
were recently presented by Amir et al. (2009b). This article gives more insight into the proposed
procedures, including a full derivation of the consistent apporach and new examples.

The concepts presented in this article are demonstrated on, and applied to topology opti-
mization problems within the field of structural mechanics. In this class of problems, the nested
linear equation system has a symmetric positive definite matrix. Therefore we only use the
conjugate gradients (CG) method (Hestenes and Stiefel, 1952) combined with effective precon-
ditioning (PCG) which is the most appropriate choice from the family of Krylov subspace solvers.
However, in some studies other methods are applied (Wang et al., 2007), and we note that the
approach proposed here also can be applied to other Krylov methods and to other physical
models even though it will only be demonstrated for PCG and systems from linear elasticity.

The article is organized as follows. First, the idea of obtaining approximations by forcing
early termination of the iterative solver is presented in section 5.2. Then, in section 5.3, the
consistent approach for sensitivity analysis is described and demonstrated. The approximate
approach is presented and demonstrated in section 5.4, including a detailed discussion regarding
alternative convergence measures for different types of topology optimization problems. Finally,
is section 5.5 we present solutions to several large scale topology optimization problems.
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5.2 Considered optimization problems with approximations based
on early termination of PCG

In this study, an approximation to the solution of the nested problem is utilized instead of the
exact solution. This approximation is obtained by forcing early termination of the iterative equa-
tion solver intended to solve the nested equation system. This means that the nested equation
system is not solved accurately and that its corresponding residual is not negligible.

Throughout this article the approximate procedures will be demonstrated on two types of
topology optimization problems. The first type is minimum compliance design, aimed at finding
the stiffest structural layout given a limited amount of material. This class is chosen since it
represents a very fundamental and well established application of topology optimization (for an
extensive report on topology optimization, see the book by Bendsøe and Sigmund (2003)). The
second type is compliant mechanism design, aimed at maximizing a certain output displace-
ment given a certain input force (Sigmund, 1997). This class is chosen since it is much more
demanding from an optimization point of view: it is not self-adjoint and possibly possesses sev-
eral strong local minima. Therefore it is expected that larger approximation errors could be
tolerated in minimum compliance problems compared to compliant mechanism problems. This
was also observed in the study presented in (Amir et al., 2009a).

In both cases, we follow the material distribution approach for topological design (Bendsøe
and Kikuchi, 1988) together with the SIMP interpolation scheme (Bendsøe, 1989). For the case
of minimizing compliance, the optimization problem will have the following form

min
ρ
c1(ρ) = fTum

s.t.:
N∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ)um ≈ f (5.1)

where f is the external load vector, um is an approximation to the displacements vector, ve is the
element volume, V is the total available volume and K(ρ) is the stiffness matrix corresponding
to the element densities ρ

K(ρ) =

N∑
e=1

(Emin + (Emax − Emin)ρpe)Ke

In general, Emin and Emax are the values of Young’s modulus of two materials which should be
distributed in the design domain. For the case of distributing a single material and void, Emin is
set to a small positive value and Emax is typically set to 1. Ke represents the element stiffness
matrix corresponding to the Young’s modulus value Emax and p is a penalization factor required
to drive the design towards a 0-1 layout. K(ρ) results from a finite element discretization
of the governing PDEs which define equilibrium in linear elasticity. Therefore it is symmetric
and positive-semidefinite. Since the value of Emin is larger than zero, K(ρ) is strictly positive-
definite.

Within the class of optimizing compliant mechanisms, we focus on the design of a force
inverter, where the objective is to maximize a displacement in the negative global direction so
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the problem will have the form

min
ρ
c2(ρ) = lTum

s.t.:
N∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ)um ≈ f (5.2)

where l is a vector with the value of 1 at the output displacement degree of freedom and zeros
otherwise. In both cases, the index m corresponds to an intermediate PCG iteration, for which
the corresponding iterative solution um does not necessarily satisfy equilibrium accurately.

5.3 Consistent sensitivity analysis

In order to maintain consistency even though the analysis problem is not solved accurately,
we derive design sensitivities in a manner that takes the approximation errors into account.
Therefore, when applying the adjoint method for sensitivity analysis, the complete iterative
procedure performed in order to obtain the approximation is taken into account. Then the
design sensitivities are accurate and consistent with respect to the approximate representation
of the problem.

When solving optimization problems such as (5.1) and (5.2), the PCG solver will be called
once every optimization iteration to solve the analysis equations. The PCG procedure aimed at
solving the linear system M−1Ku = M−1f , where M is the preconditioner, can be outlined as
follows

1. Set the initial guess u1.

2. Compute the initial residual r1 and direction vector p1: r1 = f − Ku1, z1 = M−1r1,
p1 = z1.

3. For i = 1:maxiter do

(a) αi =
rTi zi

(Kpi)Tpi

(b) ui+1 = ui + αipi

(c) ri+1 = ri − αiKpi

(d) If ‖ri+1‖2 < ε ‖f‖2 break.

(e) zi+1 = M−1ri+1.

(f) βi =
rTi+1zi+1

rTi zi

(g) pi+1 = zi+1 + βipi

A common criterion for convergence of a PCG procedure (and other Krylov methods) is
based on the norm of the residual ri, measured relatively to the norm of the right hand side f .
It is said that the iterate uk converged if the following condition is satisfied

‖f −Kuk‖2
‖f‖2

=
‖rk‖2
‖f‖2

< ε (5.3)

where a common value for the tolerance ε is 10−6. Now let us assume that after m− 1 iterations
we obtain an iterate um that did not converge to satisfy equilibrium, meaning

‖f −Kum‖2
‖f‖2

=
‖rm‖2
‖f‖2

> ε
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It will be shown later that typically, the relative norm of residuals corresponding to the iterate
um will be several orders of magnitude larger than ε. Despite the inaccuracy in the solution of
the equation system, it will be shown that the approximation um can be sufficiently accurate for
the purpose of optimization.

In order to maintain accuracy of the optimization process, we derive design sensitivities in
a manner that is consistent with the approximation that was introduced. Following the adjoint
method, this means that all the expressions used for computing the PCG variables throughout the
iterative procedure (until the early termination step) should be multiplied by a corresponding
adjoint variable and added to the objective function. Then the augmented objective function for
minimum compliance problems will have the form

ĉ1(ρ) = fTum + r̃1
T (r1 − f + Ku1) + z̃1

T (Mz1 − r1) +

p̃T1 (p1 − z1) +

m−1∑
i=1

α̃i(αi −
rTi zi

(Kpi)Tpi
) +

m∑
i=2

ũTi (ui − ui−1 − αi−1pi−1) +

m∑
i=2

r̃Ti (ri − ri−1 +

αi−1Kpi−1) +

m−1∑
i=2

z̃Ti (Mzi − ri) +

m−2∑
i=1

β̃i(βi −
rTi+1zi+1

rTi zi
) +

m−1∑
i=2

p̃Ti (pi − zi − βi−1pi−1) (5.4)

For the case of the force inverter, we only need to replace f with l in the first term; otherwise
the augmented objective is identical.

When differentiating the augmented objective function we wish to remain with explicit
derivatives of the stiffness matrix and the preconditioner only. For that purpose, we should
solve a set of adjoint equations that will eliminate all other derivatives. The complete set of
adjoint equations to be solved is presented in Appendix A, but we note here that this approach
leads to an iterative CG-like adjoint procedure that should be performed in a reverse manner,
beginning in the m-th cycle and ending in the first cycle. After performing the complete adjoint
procedure, the design sensitivities include only explicit derivatives of the stiffness matrix and of
the preconditioner that can be computed efficiently on an element level

∂ĉ1

∂ρe
= r̃1

T ∂K

∂ρe
u1 +

m−1∑
i=1

α̃ir
T
i zi

((Kpi)Tpi)2
pTi

∂K

∂ρe
pi +

m∑
i=2

αi−1r̃
T
i

∂K

∂ρe
pi−1 +

m−1∑
i=1

z̃Ti
∂M

∂ρe
zi (5.5)

The accuracy of the consistent approach is demonstrated in the following example. We ex-
amine the solution of a 2D minimum compliance problem modeled with a 45×15 mesh. This
example follows the benchmark problem from (Sigmund, 2001), usually known as the MBB-
beam, see Figure 5.1(a). We use an SSOR (Symmetric Successive Over Relaxation) precondi-
tioner (Saad, 2003) which is based on a splitting of the stiffness matrix and therefore can be
easily constructed and differentiated with little extra cost. When solving by the approximate
procedure, the convergence tolerance for PCG was set to 10−1 compared to 10−6 when solving
by the full procedure. Moreover, the initial guesses for PCG were zero vectors when solving by
the approximate procedure, but when solving by the full procedure the solution corresponding
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to the previous design cycle was used as the initial guess for the current cycle. This may re-
duce the number of PCG iterations, especially once the topology is well defined and the design
changes are small. After 50 design iterations, the full procedure reaches an objective value of
228.823 while the approximate procedure reaches a value of 226.343 (approximately 1% er-
ror). Observing Figure 5.1(b), it is evident that both convergence curves are very similar though
not perfectly identical. As for the number of PCG iterations, the approximate procedure requires
nearly 40% fewer iterations: a total of 4,527 compared to 7,436 required by the standard pro-
cedure. The complete history of PCG iterations performed in each design cycle throughout the
optimization process is presented in Figure 5.1(c).

(a) MBB beam (symmetric half)

(b) Convergence curve for 50 design iterations (c) PCG iterations for 50 design iterations

Figure 5.1: Minimum compliance of a 2D MBB-beam: the approximate
procedure with consistent sensitivities vs. the full procedure.

Unfortunately, some difficulties are encountered when implementing this approach. First,
for efficient computation of the design sensitivities one would like to use a preconditioner that
can be differentiated on an element level. Therefore diagonal and SSOR preconditioners are
suitable but incomplete factorizations (Meijerink and van der Vorst, 1977) are less preferable.
Second, from the the authors’ experience it seems to be difficult to find the appropriate tolerance
ε such that the adjoint procedure will be both efficient and robust. In some cases when a slack
ε is used, the adjoint procedure does not reach the correct solution because the number of PCG
iterations is too small. This typically happens when a reasonable initial guess is used. Such a
guess could, for example, consist of the solution to the analysis problem corresponding to the
previous design cycle. When employed, the slack convergence tolerance may be reached after
only a few iterations. Then the adjoint iterates are not sufficiently distributed across the FE
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mesh and the adjoint variables are computed incorrectly. Third and most important, achieving
actual savings in computation time when applying the consistent approach is not guaranteed.
The adjoint procedure itself requires one matrix-vector multiplication per iteration. Another
matrix-vector product per PCG iteration is required for regenerating the vectors ui, ri, pi and
zi while performing the adjoint procedure in reverse. These vectors are required for computing
the adjoint variables and it is assumed that we cannot store in memory the complete history
for all i iterations. This means that the number of matrix-vector products per PCG iteration
will be three, compared to a single product in standard PCG. Therefore the consistent approach
can be competitive only if the number of PCG iterations is reduced to less than one third of the
iterations required by standard PCG. Unfortunately, such a reduction leads to very high residual
norms due to the accelerated convergence rate typically exhibited by PCG (van der Sluis and
van der Vorst, 1986). Therefore in this study the consistent approach was only implemented
and tested for small problems, mainly for the purpose of gaining insight about the behavior of
the adjoint procedure and for comparing to the approximate approach.

5.4 Approximate sensitivity analysis

When following the approximate approach, the design sensitivities are computed again using
the adjoint method but it is assumed that the nested analysis problem is solved accurately. This
is of course not the case when using the approximation um; nevertheless, we use the same
design sensitivity expressions as if the nested problem was solved accurately. This is possible
due to the particular decision of when to terminate the PCG procedure and choose um, which is
the main focus of this section.

The compliance case is self-adjoint, meaning that the adjoint vector is the displacements
vector. Then the element design sensitivity is

∂c1
∂ρe
≈ −uTm

∂K

∂ρe
um (5.6)

For the force inverter case, the element design sensitivity is

∂c2
∂ρe
≈ −λTn

∂K

∂ρe
um (5.7)

where λn is an approximation to the solution of the adjoint problem (m and n are not necessarily
equal)

Kλn ≈ l

This leads to the utilization of approximations in two levels. First, the analysis equations are
not solved accurately; second, the design sensitivities are not computed accurately nor are they
consistent with the use of an approximation in the nested problem. These shortcomings can be
overcome by carefully choosing the termination point of the PCG procedure.

The common convergence criterion for PCG (5.3) is measured in terms of residual forces,
which is a natural choice since the equations to be solved are force equilibrium equations. How-
ever, in order to utilize the approximate sensitivities (5.6) and (5.7) the primary concern should
be the accuracy of the design sensitivities. It will be shown here that the approximations um
and λn can be chosen in a manner that ensures that these sensitivities are indeed sufficiently
accurate. This is due to the observation that their values in practice converge to the accurate
value before the norm of the residuals converges according to the criterion in (5.3).
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5.4.1 Application to minimum compliance problems

When optimizing compliance, instead of examining the residual forces we suggest to determine
convergence of PCG by measuring the change in the K-norm of the iterative solution within the
PCG iterations

uTmKum − uTm−1Kum−1

uTm−1Kum−1
< ε (5.8)

In physical terms, the K-norm is the energy norm of the displacements. This value is extremely
important in compliance problems: When PCG converges, it is the true value of the objective
function; and on an element level, it is simply a scaling of the design sensitivity. Moreover,
the conjugate gradients method is an optimal Krylov method in the sense that it minimizes the
energy norm of the error, which is also the error in compliance, so in theory it is the most suitable
method for this particular convergence measure.

The reasoning behind this particular choice of convergence criterion is first demonstrated on
a small minimum compliance problem. Again, we examine the 2D MBB-beam, modeled with a
60×20 mesh. For preconditioning, an incomplete Cholesky factorization (Meijerink and van der
Vorst, 1977) with zero fill-in is used. We focus on an early design cycle where the optimization
problem (5.1) is far from being solved. Nevertheless, the authors’ experience is that the behavior
presented here is common to all design iterations. In the first case, the initial guess for PCG is the
zero vector and we examine the change in the energy norm of the displacements uTi Kui within
the PCG iterations. In Figure 5.2 this energy norm is plotted, together with the relative norm
of residual forces which is frequently used to determine convergence. It can be seen that the
relative norm of residual forces improves very slowly in the beginning and speeds up toward the
end, converging to a tolerance of 10−6 after 98 iterations. At the same time, the value of uTi Kui
hardly changes after 55 iterations and effectively converges after approximately 60 iterations.

Figure 5.2: Typical behavior of PCG when applied to a nested analysis prob-
lem within a minimum compliance problem. The initial guess is the zero
vector. Top: The relative norm of residual forces vs. PCG iterations; Bot-
tom: Compliance and energy norm of the displacements vs. PCG iterations

A close look at the convergence of the design sensitivities for the same case is presented
in Figure 5.3. We examine the development in the values of the Euclidean and infinity norms
over all element sensitivities and in the values of four element design sensitivities within PCG
iterations for one particular design cycle. Element #1 is located near the loading point and
therefore has a maximum density from an early stage of the optimization process. The other
elements, #415, #805 and #1158 are boundary elements in the connecting areas of the bars
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which will eventually have a high density. However, at this particular optimization iteration
these elements still have intermediate densities and therefore it is crucial to compute their design
sensitivities correctly. It can be seen that for the four elements, as well as for the norms over
all elements, accurate values are obtained after 65-70 PCG iterations. Beyond that, these values
hardly change but the PCG procedure continues since force equilibrium is obtained only after
98 iterations.

Figure 5.3: Norms of the design sensitivities and sensitivities for four par-
ticular finite elements vs. PCG iterations within a minimum compliance
problem. The initial guess for PCG is the zero vector.

In this particular case, if the PCG solution would be terminated after approximately 70 iter-
ations, when the criterion in (5.8) is satisfied, it is most likely that both the objective value and
the design sensitivities will be sufficiently accurate, even though the relative norm of residual
forces is larger than 10−2. Such an error is clearly too large if our aim is to solve the equation
system. However, for the purpose of solving the compliance optimization problem this approx-
imation could be sufficient. This means that determining PCG convergence according to the
relative norm of the residual is somewhat conservative, leading to performing unnecessary PCG
iterations.

The convergence criterion suggested in (5.8) should only be used when the initial guess for
the PCG procedure is a zero vector. It is interesting to see that in such a case fTui = uTi Kui
for all PCG iterations. This means that within PCG, measuring the compliance as it is expressed
in the objective function fTui, is identical to measuring the energy norm of the displacements
uTi Kui, whose error is minimized by PCG. This property of PCG results from the orthogonality
of the residuals ri and the direction vectors pj (∀j < i) and is not affected by preconditioning;
a detailed derivation of this equality can be found in Appendix B.

Within an optimization process, the solution of the nested problem corresponding to the
previous design cycle is often used as an initial guess for the iterative solution of the current
nested problem. In that case, fTui and uTi Kui have different values, and are equal only when
the equilibrium equations are satisfied. Measuring the convergence of uTi Kui is not sufficient,
since when the design changes are small the value corresponding to the initial guess will be
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very close to the value corresponding to the converged PCG solution. However, it is possible to
determine convergence by measuring also the relative difference between the compliance and
the energy norm of the displacements∣∣fTum − uTmKum

∣∣
uTmKum

< ε (5.9)

The reasoning behind this criterion for choosing the termination point is demonstrated in
Figure 5.4. Again, we focus on a certain design cycle of the same 2D MBB-beam minimum com-
pliance problem, where PCG was called to solve the analysis equation system. Since a sensible
initial guess is used, the relative norm of the residual forces improves rapidly in the first PCG
iterations, but then the convergence slows down and speeds up again only after the error is
smaller than 10−2. The final convergence tolerance of 10−6 is satisfied after 95 iterations, while
98 iterations were required when the initial guess was zero. This means that using a reason-
able initial guess does not necessarily reduce the final number of PCG iterations significantly,
especially when the design changes are not very small and the structural topology is not yet
determined. It can be seen that in this case, the values of fTui and uTi Kui are nearly equal after
60 iterations and effectively converge after 65-70 iterations.

Figure 5.4: Typical behavior of PCG when applied to a nested analysis
problem within a minimum compliance problem. The initial guess is the
solution from the analysis in the previous design cycle. Top: The relative
norm of residual forces vs. PCG iterations; Bottom: Compliance and energy
norm of the displacements vs. PCG iterations

The development of the element design sensitivities within PCG iterations is presented in
Figure 5.5, for the case where an initial guess was utilized. Again, we examine the Euclidean
and infinity norms over all element sensitivities and the design sensitivities for the same set of
four elements as in the previous example. As it was already demonstrated for the case of a
zero initial guess, now too we obtain accurate values of the design sensitivities after 65-70 PCG
iterations. Beyond that, these values hardly change but the PCG procedure continues since force
equilibrium is obtained only after 95 iterations.

Concluding this section regarding minimum compliance problems, it is clear that in practice
we can reduce the number of PCG iterations performed on the nested analysis problem. This
is possible by using an approximation to the solution vector um that corresponds to the point
in which at least one of the criteria suggested in (5.8) and (5.9) is satisfied. Even though the
solution is approximate in terms of residual forces, it is sufficiently accurate for the purpose of
optimization. This is because PCG is terminated at a point when the objective value, and most
likely the design sensitivities, are computed accurately.
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Figure 5.5: Norms of the design sensitivities and sensitivities for four par-
ticular finite elements vs. PCG iterations within a minimum compliance
problem. The initial guess is the solution from the analysis in the previous
design cycle.

5.4.2 Application to other classes of problems

The alternative convergence measures proposed above (5.8) and (5.9) are tailored for the par-
ticular case of minimum compliance problems, where the optimality of PCG as a minimizer of
the energy norm of the error plays a major role. For other objective functions, these measures
are less natural and one should search for more suitable ones that are related to the particular
objective function we are trying to optimize. As a demonstrative case we focus on the design of
a force inverter, under the simplifying assumption of small displacements. The corresponding
optimization problem and design sensitivities were given above (5.2), (5.7). This example fol-
lows the benchmark problem originally examined in (Sigmund, 1997), see Figure 5.6. At this
stage, we did not attempt to apply the same concepts to other objectives or physical models, but
this certainly is a challenging topic for future studies.

Figure 5.6: Design of a 2D force inverter: Design domain, boundary condi-
tions and external load
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In order to compute the design sensitivities in the force inverter problem, an adjoint equation
system must be solved in addition to the solution of the nested analysis equations. This is
not necessary in minimum compliance problems which are self-adjoint. The analysis problem
consists of a load vector f (a point load at the input degree of freedom) and the corresponding
displacements u, while the adjoint problem consists of a load vector l (a point load at the output
degree of freedom) and the corresponding displacements λ. Since both equation systems have
the same stiffness matrix and since their right hand side vectors are independent of each other,
it is worthwhile to use a block-PCG procedure (O’Leary, 1980) instead of calling PCG twice
separately. It is important to point out that due to the ground structure’s aspect ratio and the
location of loads and supports (see Figure 5.6), the analysis problem tends to converge faster
than the adjoint problem in terms of residual forces. The horizontal support in the lower left
corner is closer to the input force and therefore the residual in the analysis problem is reduced
earlier in terms of PCG iterations. Eventually this leads to earlier convergence of the analysis
problem compared to the adjoint problem. If this occurs while solving by block-PCG, all further
iterations of the PCG procedure will be performed only on the adjoint problem.

In this class of optimization problems we suggest to focus on the development within PCG of
the quantities lTui, fTλi and λTi Kui. If both the analysis and the adjoint problems are solved
to full accuracy, then these quantities are all equal. Same as for the compliance case, the latter
has an element-wise relation to the design sensitivities. This means that besides measuring the
convergence of the objective value, in an indirect manner we are also measuring the convergence
of the sensitivity values.

We examine a small 2D force inverter modeled with a 40×20 mesh. For preconditioning, an
incomplete Cholesky factorization with zero fill-in is used. We focus on the seventh design cycle,
where the distribution of material begins to become clear but the optimization problem (5.2)
is far from being solved. In the first case the initial guesses for PCG are two zero vectors and
we examine the change in the values lTui, fTλi and λTi Kui within PCG iterations. In Figure
5.7 these quantities are plotted, together with the relative norms of residual forces for both
problems - analysis and adjoint.

Figure 5.7: Typical behavior of PCG when applied to the nested analysis
and adjoint problems within a force inverter design problem. The initial
guesses for the block-PCG procedure are the zero vectors. Top: The relative
norms of residual forces vs. PCG iterations; Bottom: lTui, fTλi and λTi Kui
vs. PCG iterations

As expected, the analysis problem converges faster, mainly due to a significant reduction
in residual forces within the first PCG iterations. It is noted that also for this problem the
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three quantities lTui, fTλi and λTi Kui are equal throughout the PCG procedure. This is again
due to orthogonality of residuals and direction vectors (which is maintained also for block-PCG
iterations, (O’Leary, 1980)) and due to the utilization of a zero vector as an initial guess. A
detailed derivation of this equality can be found in Appendix B. As for the convergence of these
values, it can be seen that they hardly change after 25 iterations and effectively converge after
approximately 30 iterations. At the same time, the analysis problem is close to convergence but
the adjoint problem still has a significant residual, with a relative norm between 10−2 and 10−3.

When examining a few representative design sensitivities we observe similar behavior to that
of compliance problems, see Figure 5.8. We focus on the Euclidean and infinity norms of the
design sensitivities over all elements and on four particular finite elements. Elements #1 and
#200 will eventually be part of high-density regions. On the other hand, elements #495 and
#497 are located in the vicinity of the main joint and in the final design element #495 will be
void while element #497 will have full density. At this particular design cycle, they both have
intermediate densities so it is very important that their design sensitivities will be computed
accurately. It can be seen that for the four elements, as well as for the global measures, accurate
values are obtained after 28-30 PCG iterations. Beyond that, these values hardly change but the
PCG procedure continues since force equilibrium is obtained after 36 iterations.

Figure 5.8: Norms of the design sensitivities and sensitivities for four par-
ticular finite elements vs. PCG iterations within a force inverter design
problem. The initial guesses for the block-PCG procedure are the zero vec-
tors.

As it can be seen in Figure 5.8, the design sensitivities are computed accurately before the
PCG procedure converges in terms of residual forces, and there is a clear correlation between
their point of convergence and the convergence of the global quantities. This means that for
the purpose of optimizing a force inverter, it may be sufficient to determine convergence of PCG
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according to the following criteria∣∣∣∣∣λTmKum − λTm−1Kum−1

λTm−1Kum−1

∣∣∣∣∣ < ε (5.10)∣∣∣∣ lTum − lTum−1

lTum−1

∣∣∣∣ < ε (5.11)∣∣∣∣ fTλm − fTλm−1

fTλm−1

∣∣∣∣ < ε (5.12)

which are equivalent when zero vectors are used as initial guesses. When a non-zero initial
guess is used for PCG, the criteria (5.10)-(5.12) may not be sufficient. However, several different
combinations of convergence criteria are available, based on measuring the absolute differences
between the three values as well as their convergence. For example, we can add the following
measure ∣∣∣∣ lTum − fTλm

fTλm

∣∣∣∣ < ε (5.13)

When examining the same 2D force inverter problem but for the case of non-zero initial
guesses, similar conclusions arise. The convergence of residual forces as well as lTui, fTλi
and λTi Kui are plotted in Figure 5.9. We note that in this case, fTλi and λTi Kui follow a
similar convergence path beginning from the first PCG iteration. This is because the residual
corresponding to the iterative solution of Ku = f is small from the beginning due to a good
initial guess. Therefore the development of these two quantities is governed mainly by the
iterative development of λi. The convergence of the design sensitivities is presented in Figure
5.10. The three quantities we focus on, as well as the design sensitivities, effectively converge
after approximately 30 PCG iterations. At the same time, the relative norm of the residual is
10−5 for the analysis problem but only slightly smaller than 10−2 for the adjoint problem.

Figure 5.9: Typical behavior of PCG when applied to the nested analysis
and adjoint problems within a force inverter design problem. The initial
guesses for the block-PCG procedure are the solutions of the analysis and
adjoint problems from the previous design cycle. Top: The relative norms
of residual forces vs. PCG iterations; Bottom: lTui, fTλi and λTi Kui vs.
PCG iterations

In conclusion, choosing the solution vectors um and λm, corresponding to the point in which
the criteria suggested in (5.10), (5.11), (5.12) and (5.13) are satisfied, can lead to a signifi-
cant reduction in the number of PCG iterations performed on the adjoint problem and a slight
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Figure 5.10: Norms of the design sensitivities and sensitivities for four par-
ticular finite elements vs. PCG iterations within a force inverter design
problem. The initial guesses for the block-PCG procedure are the solutions
of the analysis and adjoint problems from the previous design cycle.

reduction in the number of PCG iterations performed on the analysis problem. Clearly, these al-
ternative convergence criteria are tailored for only one particular class of topology optimization
problems, but it should be possible to define similar criteria for other types. The guideline for
defining such criteria is that the quantity whose convergence is measured should have a corre-
lation to the objective value and to the design sensitivities. Then it should be possible to find
approximations that may not be accurate in terms of residuals in the nested equation system,
but are sufficiently accurate for the evaluation of the objective and the sensitivities.

5.5 3D Examples

In this section, several large-scale three-dimensional examples are presented. The problems
that are addressed are minimum compliance problems and a force inverter problem. It is shown
that accurate results can be obtained efficiently when using approximations generated by PCG
in the analysis and sensitivity analysis. All the results presented in this section were obtained
using an incomplete Cholesky factorization with zero fill-in as preconditioner. The optimization
is performed by a nonlinear optimization program based on the Method of Moving Asymptotes
(Svanberg, 1987). In order to obtain regularized designs and to avoid checkerboard patterns, a
density filter was applied (Bourdin, 2001; Bruns and Tortorelli, 2001).

5.5.1 3D minimum compliance

In this example, we present the solution for the minimum compliance design of a cantilever
beam subjected to a concentrated vertical load at the bottom of its free face, see Figure 5.11(a).
The cantilever has a length of 1 and its width and height are equal to 1/3. It is fixed to the wall
only at the four corners. Exploiting the symmetry of the problem, we solve only one half of the
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structure modeled with a 180×30×60 FE mesh consisting of 8-node cubic elements. The values
of Emin and Emax were set to 10−9 and 1 and Poisson’s ratio was set to 0.3. The allowed volume
fraction was 0.35 and the penalization factor p used in the SIMP interpolation was set to 3. A
linear weighting density filter was used with the radius of 6 times an element length. The MMA
move limit was fixed throughout the optimization process to the value of 0.2.

(a) Design domain, boundary conditions and exter-
nal load

(b) Layout after 50 design iterations, inner part
of symmetric half

(c) Layout after 50 design iterations, outer part
of symmetric half

Figure 5.11: Minimum compliance design of a 3D cantilever beam

In Figures 5.12(a) and 5.12(b) we compare the performance of the approximate approach
against standard procedures. In the approximate scheme, zero vectors are utilized as initial
guesses for the PCG iterations so the criterion suggested in (5.8) is employed, with a tolerance
ε of 10−4. At the final design iteration of the approximate procedure, PCG was driven to full
convergence for the purpose of obtaining an accurate evaluation of the objective. When using
the standard convergence criterion for the PCG iterations, given in (5.3), the tolerance was
set to the common value of 10−6 and the solution corresponding to the current design design
cycle was the initial guess for the following cycle. Using the alternative convergence criterion
leads to approximately 38% reduction in the total number of PCG iterations: 9,898 compared
to 15,864 using the standard criterion. This comes with little compromise on the quality of
the results: after 50 design iterations, the full procedure reaches an objective value of 859.713
and the approximate procedure reaches 859.558 (0.02% error). The final objectives and the
convergence curves of the optimization problems are practically identical (see Figure 5.12(a))
as are also the resulting designs. It can be seen that when supports are available only at the
corners of the wall, the preferred design is a shell with a large inner void. This is opposed to the
I-section design which is frequently the optimal shape when the complete wall area is supported
(see for example Wang et al. (2007); Amir et al. (2009a)).

In order to gain more insight about the accuracy and efficiency of the approximate approach,
we solved the same problem with a coarse mesh (90×15×30) and tighter design convergence
tolerance. The optimization process was terminated when the maximum change in an element
density did not exceed 0.001 or after 500 design iterations. The results are presented in Table
5.1. It should be noted that these results depend strongly on the behavior of the optimization
program (MMA) which also incorporates approximations and therefore direct comparison can
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(a) Convergence curve, 50 design iterations (b) PCG iterations vs. design iterations

Figure 5.12: Results of the 3D cantilever minimum compliance problem,
324,000 elements and 1.03×106 DOF

be misleading. For example, in this particular problem the approximate procedures reached
the stopping criterion earlier than the full procedure, a result that is somewhat unexpected.
This may be related to the use of a physical stopping criterion rather than a mathematical
one. Moreover, when solving by approximate procedures also the final objective values were
computed approximately. When using non-zero initial guesses, this objective is nearly accurate
since the final relative residual norm is smaller than 1 × 10−5 (see Figure 5.13). However,
when using zeros as initial guesses the true objective is expected to be higher, according to the
behavior of PCG as presented earlier. In any case, it is possible to identify some general trends.
The approximate procedures reach accurate objective values, with relative errors of 0.04% and
0.006%. Moreover, the number of PCG iterations (measured per design iteration for a more
reliable comparison, see last column in Table 5.1) can be reduced significantly, especially if
non-zero initial guesses are utilized in the advanced stages of the optimization process.

Table 5.1: Results of the 3D cantilever minimum compliance problem,
40,500 elements and 1.35×105 DOF

Procedure
Design

Objective
Total PCG PCG iterations per

iterations iterations design iteration

Full 500 679.61215 53,691 107.38
Approximate,

389 679.34588 a 40,286 103.56
zero initial guesses
Approximate,

440 679.65369 a 15,855 36.03
non-zero initial guesses
a Final objective values computed by the approximate procedures.

The same coarse mesh was also utilized when investigating the influence of the lower bound
Emin on the behavior of the approximate procedure. It was found that reducing Emin leads to
a very minor increase in computational effort, measured through the total number of matrix-
vector products. When solving by the approximate procedure, the number of matvecs performed
with Emin = 10−6 was 2.6% higher than with Emin = 10−3; when setting Emin = 10−9 the
number of matvecs performed was 3.6% higher than with Emin = 10−3. Moreover, the relative
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error in the objective value obtained by the approximate procedure was roughly 0.01% in all
three cases, while the number of matrix-vector products was reduced by roughly 52% compared
to the full procedure.

Concluding this example, we find it interesting to examine the actual accuracy of the approx-
imations with respect to the solution of the nested equation system. In Figure 5.13, the relative
norms of residuals for the whole design process are plotted for the two types of approximate
procedures. For each design iteration, the value plotted is the relative norm of the residual cor-
responding to the early termination point of PCG, meaning the point when either (5.8) or both
(5.8) and (5.9) were satisfied. When using zeros as initial guesses, the values of this norm are
between 1× 10−2 and 2× 10−2 throughout the whole design process. However, when utilizing a
sensible initial guess in every design iteration (an approximation to the solution corresponding
to the previous design cycle) the relative norm of residuals tends to reduce as the design pro-
cess advances. This means that as we get closer to the optimal design, we also get closer to an
accurate solution of the nested system. This explains the superior accuracy and efficiency of this
procedure compared to a procedure using zeros as initial guesses.

Figure 5.13: The relative norm of residual forces vs. design iterations when
approximate procedures are applied to a minimum compliance design of a
3D cantilever, 40,500 elements and 1.35×105 DOF

5.5.2 3D multiple load case minimum compliance

In this example, we examine the solution for the minimum compliance design of a cantilever
beam subjected to two separate load scenarios. The objective is to minimize the worst case
compliance so the problem has a min-max form which differs slightly from the single load case
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considered above (5.1)

min
ρ,τ

τ

s.t.: f1
Tu1m ≤ τ

f2
Tu2m ≤ τ
N∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ) [u1 u2]m ≈ [f1 f2]

The first load case consists of vertical loads at the four corners of the free face, each with a
magnitude of 0.01. The second load case is the same but with horizontal loads acting in the
transverse direction of the beam. The cantilever has a length of 1, its width is 2/15, its height is
1/5, and it is completely fixed to a wall in one end, see Figure 5.14(a). We model the structure
with a 150×20×30 FE mesh consisting of 8-node cubic elements. The values of Emin and Emax
were set to 10−6 and 1 and Poisson’s ratio was set to 0.3. The allowed volume fraction was 0.5
and the penalization factor p used in the SIMP interpolation was set to 3. A linear weighting
density filter was used with the radius of 5 times an element length. The MMA move limit was
fixed throughout the optimization process to the value of 0.2.

(a) Design domain, boundary conditions and exter-
nal load

(b) Layout after 100 design iterations

Figure 5.14: Two load case worst-case minimum compliance of a 3D can-
tilever beam

This example problem was solved by both standard and approximate procedures, utilizing
non-zero initial guesses for the block-PCG iterations. When using the standard convergence
criterion for the PCG iterations, given in (5.3), the tolerance was set to the common value of
10−6. In the approximate procedure, PCG was terminated when both criteria (5.8) and (5.9)
were satisfied to a tolerance of 10−4. The design process was stopped after 100 iterations in both
cases. Again, using the alternative convergence criteria leads to significant reductions in compu-
tation time: 39,854 matrix-vector products compared to 67,859 when solving by the standard
procedure (approximately 41% reduction). The objective values after 100 design iterations are
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practically the same: 21.0854 and 21.0865 in the approximate and standard procedures, re-
spectively. Finally, as was observed also for the single load minimum compliance problem, the
relative norm of residuals tends to reduce as the design process advances, see Figure 5.15.

Figure 5.15: The relative norm of residual forces vs. design iterations when
an approximate procedure is applied to a two load case minimum compli-
ance design of a 3D cantilever, 90,000 elements and 2.95×105 DOF

5.5.3 3D force inverter

As a third demonstrative example, we present the solution for the maximum output displace-
ment of a three dimensional force inverter. Exploiting symmetry, we model only one quarter
of the structure with a 60×30×30 FE mesh consisting of 8-node cubic elements. The spring
stiffnesses were set to 0.1 for the input spring and 0.01 for the output spring. The values of
Emin and Emax were set to 10−4 and 1 and Poisson’s ratio was set to 0.3. The allowed volume
fraction was 0.15 and the penalization factor p used in the SIMP interpolation was set to 3. A
linear weighting density filter was used with the radius of 3 times an element length and the
MMA move limit was fixed throughout the optimization process to the value of 0.2.

The force inverter problem was solved by both standard and approximate procedures, utiliz-
ing non-zero initial guesses for the block-PCG iterations. When using the standard convergence
criterion for the PCG iterations, given in (5.3), the tolerance was set to the common value of
10−6. In the approximate procedure, PCG was terminated when the criteria (5.10), (5.11),
(5.12) and (5.13) were satisfied to a tolerance of 10−4. The design process was stopped after
200 iterations in both cases. Again, using the alternative convergence criteria leads to signifi-
cant reductions in computation time: 23,484 matrix-vector products compared to 41,668 when
solving by the standard procedure (approximately 44% reduction). The objective values after
200 design iterations are practically the same: -0.52733 and -0.52759 in the approximate and
standard procedures, respectively. However, there are some differences between the two so-
lutions. First, the convergence curves (see Figure 5.17(a)) are not identical - when using the
approximations, the local minimum with the objective value of 0 is overcome faster than when
using the full solutions. This of course is related to the performance of the optimizer (MMA)
and should not be seen as a general observation. Second, the optimized designs obtained after
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(a) Design domain and boundary conditions, upper
left symmetric quarter

(b) Comparison between force inverter designs ob-
tained by both full (black + light grey regions) and
approximate (black + dark grey regions) procedures.
Results are presented on the symmetric quarter only

(c) Layout after 200 design iterations, whole structure

Figure 5.16: Design of a 3D force inverter
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200 iterations are not identical. In Figure 5.16(b) both designs are displayed in one merged
figure. It can be seen that the designs share the same topology but do not have the exact same
shape. Nevertheless, their performance at this stage of the optimization is practically identical -
the relative error in the objective value is 0.05%.

(a) Convergence curve, 200 design iterations (b) PCG matvecs vs. design iterations

Figure 5.17: Results of the 3D force inverter design problem, 54,000 ele-
ments and 1.76×105 DOF

Concluding the examples section, in Table 5.2 we present a summary of the results obtained
for the three example problems. As noted earlier, these results depend strongly on the behavior
of the optimization program and direct comparison of objective values can be misleading. For
example, in the minimum compliance case the approximate procedure reaches a lower objective
than the full procedure - a result that in general is not expected. Moreover, in the force inverter
and the multiple load case problems the final objective values were computed by the approxi-
mate procedures, meaning that they differ slightly from the true values. With these limitations
in mind, it can be observed that for all example problems accurate results are obtained while
computer time, reflected in the number of PCG matrix-vector multiplications, can be reduced
significantly.

Table 5.2: Accuracy and efficiency of the approximate approach

Problem description
PCG convergence Design

Objective
PCG

criteria iterations matvecs

Minimum compliance
Eq. (5.3) 50 859.713 15,864
Eq. (5.8) 50 859.558 a 9,898

Force inverter
Eq. (5.3) 200 -0.52759 41,668
Eqs. (5.10),(5.11),(5.12),(5.13) 200 -0.52733 b 23,484

Multiple load case Eq. (5.3) 100 21.0865 67,859
minimum compliance Eqs. (5.8),(5.9) 100 21.0854 b 39,854
a Final objective value computed accurately.
b Final objective values computed by the approximate procedures.

5.6 Summary and conclusions

An effective approximate approach for solving the nested analysis problem in topology opti-
mization was presented. The approximation is based on a sensible early termination of the

88



iterative equation solver intended to solve the analysis equations. It was shown that accurate
optimization results can be obtained together with significant reduction in the computational ef-
fort invested in repeated solutions of the analysis equations. This is due to the particular choice
of when to terminate the equation solver.

In some cases, such as compliant mechanism design where many local minima exist, the ap-
proximate approach leads to slightly different optimized layouts. Nevertheless, the approximate
approach can be utilized in order to obtain a good initial design efficiently while for the final
design an accurate approach will be used. This can lead to significant savings in computer run
time especially when many design iterations are required in order to converge.

The current study focuses on applications of topology optimization in structural mechanics
but the approach could be applied to other classes of topology and structural optimization.
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Appendix A: Adjoint procedure for consistent sensitivity analysis

When differentiating the augmented objective function (5.4) we wish to remain with explicit
derivatives of the stiffness matrix only. This means we need to eliminate all derivatives of the
iterative residuals ri, displacements ui, scalars αi, direction vectors pi, scalars βi and precondi-
tioned residuals zi. Eliminating a particular derivative is achieved by collecting all the terms in
the augmented objective function which include this derivative and equate them to zero. This
leads to a set of adjoint equations that can be solved iteratively. The unknowns are a set of
adjoint variables r̃i, ũi, α̃i, p̃i, β̃i and z̃i, some of which are explicitly required for computing
the design sensitivities (5.5). The full set of adjoint equations is as follows:

Collecting the derivatives of the residuals ∂rm
∂ρe

:

∂rTm
∂ρe

r̃m = 0

Solving for r̃m:
r̃m = 0

Collecting the derivatives of the residuals ∂rm−1

∂ρe
:

∂rTm−1

∂ρe
r̃m−1 −

∂rTm−1

∂ρe
z̃m−1 −

∂rTm−1

∂ρe
r̃m −

∂rTm−1

∂ρe
zm−1(

α̃m−1

(Kpm−1)Tpm−1
+

β̃m−2

rTm−2zm−2
) = 0

90



Solving for r̃m−1:

r̃m−1 = r̃m + z̃m−1 + (
α̃m−1

(Kpm−1)Tpm−1
+

β̃m−2

rTm−2zm−2
)zm−1 (5.14)

Collecting the derivatives of the residuals ∂ri
∂ρe

, i = 2, ...,m− 2:

∂rTi
∂ρe

r̃i −
∂rTi
∂ρe

z̃i −
∂rTi
∂ρe

r̃i+1 −
∂rTi
∂ρe

zi(
α̃i

(Kpi)Tpi
−
β̃ir

T
i+1zi+1

(rTi zi)
2

+
β̃i−1

rTi−1zi−1
) = 0

Solving for r̃i, i = 2, ...,m− 2:

r̃i = r̃i+1 + z̃i + (
α̃i

(Kpi)Tpi
−
β̃ir

T
i+1zi+1

(rTi zi)
2

+
β̃i−1

rTi−1zi−1
)zi (5.15)

Collecting the derivatives of the residuals ∂r1
∂ρe

:

∂rT1
∂ρe

r̃1 −
∂rT1
∂ρe

z̃1 −
∂rT1
∂ρe

r̃2 −
∂rT1
∂ρe

z1(
α̃1

(Kp1)Tp1
− β̃1r

T
2 z2

(rT1 z1)2
) = 0

Solving for r̃1:

r̃1 = r̃2 + z̃1 + (
α̃1

(Kp1)Tp1
− β̃1r

T
2 z2

(rT1 z1)2
)z1 (5.16)

Collecting the derivatives of the displacements ∂um
∂ρe

:

∂uTm
∂ρe

f +
∂uTm
∂ρe

ũm = 0

Solving for ũm:
ũm = −f (5.17)

Collecting the derivatives of the displacements ∂ui
∂ρe

, i = 2, ...,m− 1:

∂uTi
∂ρe

ũi −
∂uTi
∂ρe

ũi+1 = 0

Solving for ũi, i = 2, ...,m− 1:
ũi = ũi+1 = −f (5.18)

We assume that the starting guess u1 is independent of the design. Collecting the derivatives of
the scalars ∂αi

∂ρe
, i = 1, ...,m− 1:

∂αi
∂ρe

α̃i −
∂αi
∂ρe

ũTi+1pi +
∂αi
∂ρe

r̃Ti+1Kpi = 0

Solving for α̃i, i = 1, ...,m− 1:
α̃i = ũTi+1pi − r̃Ti+1Kpi (5.19)

Collecting the derivatives of the directions ∂pm−1

∂ρe
:

2
∂pTm−1

∂ρe
Kpm−1

α̃m−1r
T
m−1zm−1

((Kpm−1)Tpm−1)2
− αm−1

∂pTm−1

∂ρe
ũm + αm−1

∂pTm−1

∂ρe
Kr̃m +

∂pTm−1

∂ρe
p̃m−1 = 0

Solving for p̃m−1:

p̃m−1 = αm−1(ũm −Kr̃m)− 2
α̃m−1r

T
m−1zm−1

((Kpm−1)Tpm−1)2
Kpm−1 (5.20)
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Collecting the derivatives of the directions ∂pi
∂ρe

, i = 1, ...,m− 2

2
∂pTi
∂ρe

Kpi
α̃ir

T
i zi

((Kpi)Tpi)2
− αi

∂pTi
∂ρe

ũi+1 + αi
∂pTi
∂ρe

Kr̃i+1 +
∂pTi
∂ρe

p̃i −
∂pTi
∂ρe

βip̃i+1 = 0

Solving for p̃i, i = 1, ...,m− 2:

p̃i = αi(ũi+1 −Kr̃i+1)− 2
α̃ir

T
i zi

((Kpi)Tpi)2
Kpi + βip̃i+1 (5.21)

Collecting the derivatives of the scalars ∂βi
∂ρe

, i = 1, ...,m− 2

∂βi
∂ρe

β̃i −
∂βi
∂ρe

p̃Ti+1pi = 0

Solving for β̃i, i = 1, ...,m− 2:
β̃i = p̃Ti+1pi (5.22)

Collecting the derivatives of the residuals ∂zm−1

∂ρe
:

∂zTm−1

∂ρe
Mz̃m−1 −

∂zTm−1

∂ρe
p̃m−1 −

∂zTm−1

∂ρe
rm−1(

α̃m−1

(Kpm−1)Tpm−1
+

β̃m−2

rTm−2zm−2
) = 0

Solving for z̃m−1:

Mz̃m−1 = p̃m−1 + (
α̃m−1

(Kpm−1)Tpm−1
+

β̃m−2

rTm−2zm−2
)rm−1 (5.23)

Collecting the derivatives of the residuals ∂zi
∂ρe

, i = 2, ...,m− 2:

∂zTi
∂ρe

Mz̃i −
∂zTi
∂ρe

p̃i −
∂zTi
∂ρe

ri(
α̃i

(Kpi)Tpi
−
β̃ir

T
i+1zi+1

(rTi zi)
2

+
β̃i−1

rTi−1zi−1
) = 0

Solving for z̃i, i = 2, ...,m− 2:

Mz̃i = p̃i + (
α̃i

(Kpi)Tpi
−
β̃ir

T
i+1zi+1

(rTi zi)
2

+
β̃i−1

rTi−1zi−1
)ri (5.24)

Collecting the derivatives of the residuals ∂z1
∂ρe

:

∂zT1
∂ρe

Mz̃1 −
∂zT1
∂ρe

p̃1 −
∂zT1
∂ρe

r1(
α̃1

(Kp1)Tp1
− β̃1r

T
2 z2

(rT1 z1)2
) = 0

Solving for z̃1:

Mz̃1 = p̃1 + (
α̃1

(Kp1)Tp1
− β̃1r

T
2 z2

(rT1 z1)2
)r1 (5.25)

In summary, the adjoint PCG procedure aimed at finding r̃i(i = 1, ...,m), z̃i(i = 1, ...,m− 1)
and α̃i(i = 1, ...,m − 1) which are required for computing the design sensitivities is performed
as follows

1. First cycle:

(a) Set ũ (Equations 5.17, 5.18).

(b) Compute α̃m−1 (Equation 5.19).
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(c) Compute p̃m−1 (Equation 5.20).

2. For i = (m-2):-1:1 do

(a) Compute β̃i (Equation 5.22).
(b) Compute z̃i+1 (Equations 5.23, 5.24).
(c) Compute r̃i+1 (Equations 5.14, 5.15).
(d) Compute α̃i (Equation 5.19).
(e) Compute p̃i (Equation 5.21).

3. Compute z̃1 (Equation 5.25).

4. Compute r̃1 (Equation 5.16).

Appendix B: Special CG properties

When using CG to solve the linear system Ku = f and setting the starting guess in the CG
procedure to be a zero vector, i.e. u1 = 0, the following equality holds for all CG iterations

fTui = uTi Kui

This property of CG results from the orthogonality of the residuals ri and the direction vectors
pj (∀j 6= i). For i > 1 we can write

fTui − uTi Kui = uTi (f −Kui) = uTi ri = (u1 +
i−1∑
j=1

αjpj)
T ri = uT1 ri

Therefore if u1 = 0 we obtain fTui = uTi Kui, ∀i.
The extension to multiple right hand sides solved by a block-PCG is rather straightforward.

We solve Ku = f and Kλ = l simultanously by a block-PCG procedure. We wish to show that if
u1 = λ1 = 0 the following equalities hold

lTui = λTi Kui

fTλi = λTi Kui

Introducing the block-CG notation

R = [ru rλ]

P = [pu pλ]

Orthogonality of the residuals R and the direction vectors P can be expressed as follows

RT
i Pj = 02×2, ∀i 6= j

Then for i > 1 we can write

lTui − λTi Kui = uTi (l−Kλi) = uTi rλ,i =

(u1 +
i−1∑
j=1

pu,jα11,j +
i−1∑
j=1

pλ,jα21,j)
T rλ,i = uT1 rλ,i

fTλi − λTi Kui = λTi (f −Kui) = λTi ru,i =

(λ1 +

i−1∑
j=1

pu,jα12,j +

i−1∑
j=1

pλ,jα22,j)
T ru,i = λT1 ru,i

Therefore if u1 = λ1 = 0 we obtain lTui = fTλi = λTi Kui, ∀i.
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Chapter 6

On reducing computational effort in
topology optimization: how far can we
go?

Amir O, Sigmund O. On reducing computational effort in topology optimization: how far can
we go? Structural and Multidisciplinary Optimization. Published online.

Abstract An approximate approach to solving the nested analysis equations in topology op-
timization is proposed. The procedure consists of only one matrix factorization for the whole
design process and a small number of iterative corrections for each design cycle. The approach
is tested on 3D topology optimization problems. It is shown that the computational cost can be
reduced by one order of magnitude without affecting the outcome of the optimization process.

Keywords Topology optimization, Nested approach, Approximations

6.1 Introduction

In the nested approach to structural optimization, most of the computational effort is invested
in the solution of the analysis equations. Several recent investigations focused on reducing
the computational cost of repeated solutions of linear equation systems: Wang et al. (2007)
suggested recycling parts of the search space in a Krylov subspace solver; Amir et al. (2009)
integrated an approximate reanalysis procedure into nested topology optimization; and in (Amir
et al., 2010) an alternative stopping criterion for a PCG iterative solver was proposed so that
fewer iterations are performed. This note presents new results that, together with the studies
mentioned, lead to the following observation: There seems to be more room for improving the
efficient treatment of the nested problem in topology optimization. We focus here on direct solution
procedures based on matrix factorization, but expect that similar schemes could be proposed
based on iterative equation solvers.

In the context of direct solvers, the standard approach is to solve the equilibrium equations
within every design cycle. Then the overall cost is governed by the cost of factorization multi-
plied by the number of design cycles. In the current study, it is suggested to perform only one
factorization in the beginning of the design process, and then approximate the solution of all the
nested problems using an iterative procedure. We do not enforce a tight tolerance on the accu-
racy of these iterates, since it is observed that even rough approximations of the displacements
lead to fairly accurate design sensitivities. Consequently, the optimization process is practically
the same even though the nested equations are never solved to full accuracy.
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6.2 Considered optimization problems

The approximate procedure is demonstrated on two well known topology optimization prob-
lems: (1) Minimum compliance design; (2) Force inverting mechanism design. Some details are
omitted in the following for the purpose of brevity, so readers who are not well acquainted with
topology optimization are referred to the book by Bendsøe and Sigmund (2003) and references
therein. The considered optimization problem has the following generic form

min
ρ
c(ρ) = lTu

s.t.:
N∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ)u = f

where K(ρ) is the stiffness matrix, f is the load vector, u is the displacements vector, ve is the
element volume and V is the total available volume. The minimum compliance case is obtained
by setting l ≡ f while for the force inverter problem l is a vector with the value of 1 at the
output degree of freedom and zeros otherwise. Design sensitivities are computed by the adjoint
method. For both cases, the sensitivity of the objective with respect to a particular element
density is given by

∂c

∂ρe
= −λT ∂K

∂ρe
u (6.1)

where Kλ = l, thus for the compliance problem λ ≡ u.

6.3 Efficient approximation to the solution of the nested analysis
equations

6.3.1 Iterative correction approach

In the nested approach, the following system of analysis equations is solved within every opti-
mization cycle

K(ρ)u = f (6.2)

Aiming at reducing the computational effort, we wish to avoid repeatedly factorizing K(ρ) at
every design step. Assuming we have an available factorization of a similar stiffness matrix
denoted by K0, we can define a simple iterative correction inspired by the modified Newton-
Raphson procedure for nonlinear equations

uk = uk−1 −K−1
0 (K(ρ)uk−1 − f) (6.3)

Each corrective step requires only one matrix-vector multiplication (which can be performed on
an element level and easily parallelized) and two triangular solves based on the factors of K0.

In practice, the series of iterates (6.3) converges very slow, depending on the difference
between K0 and K(ρ). Therefore the procedure actually implemented in this study is a Precon-
ditioned Conjugate Gradient (PCG) where the factors of K0 serve as preconditioners. The equiv-
alence between the iterative corrections (1.25) and this particular PCG is based on the following
observations: 1) The recurrence (6.3) is equivalent to the recurrence used in the Combined Ap-
proximations (CA) procedure for structural reanalysis (Kirsch, 1991); and 2) Kirsch et al. (2002)
showed that CA is mathematically equivalent to a PCG with the factors of K0 as preconditioners
in an iterative Krylov subspace solution of (6.2). The computational cost remains roughly the
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same, since each PCG iteration requires one matrix-vector multiplication, two triangular solves
(using the factors of K0) and several vector products.

This study focuses on two key aspects that can enhance the efficiency of such an iterative pro-
cedure, thus considerably reducing the overall computational cost of topology optimization: (1)
Utilizing a single factorization / preconditioner throughout the whole optimization process; and
(2) Performing only a few PCG iterations and computing design sensitivities as if an accurate u
was computed. From a computational point of view, utilizing a factorization as a preconditioner
may seem rather odd, since iterative solvers are mostly used if factorization is ruled out due to
memory requirements. Therefore it is important to stress that PCG is implemented here since it
is a robust and straightforward framework for the iterative corrections, based on minimization
of the potential energy. Nevertheless, a purely iterative procedure with low memory require-
ments can be derived by choosing a different preconditioner instead of the factors of K0. This
challenging aspect will be further discussed in Section 6.5.

6.3.2 Observations based on numerical experiments

As pointed out above, only a single factorization is performed during the whole optimization
process. We choose K0 to be the stiffness matrix corresponding to a design domain that is en-
tirely solid, meaning ρe = 1 for all finite elements in the computational domain. This particular
choice of K0 possesses a nice property: when solid regions appear in the actual design, K0

is identical to the actual stiffness K(ρ) in these local regions. In numerical experiments, the
residual forces reduced rather fast in solid regions. However, in regions of intermediate density,
where K0 differed significantly from the actual K(ρ), the errors remained large even after many
PCG iterations.

An important aspect is the accuracy of the design sensitivities computed with an approxima-
tion of u, and the influence of using inaccurate sensitivities on the overall optimization process.
In Amir et al. (2010) early termination was forced on a standard PCG solver. The design sensi-
tivities were computed as if the analysis problem was solved accurately, using (6.1). This did not
seriously affect the progress of optimization since the early termination criteria for PCG were re-
lated to the objective and to the sensitivities. In the current study, no such measure is taken so it
is evident that there is some error associated to the design sensitivities. Nevertheless, numerical
experiments show that these errors are quite small after only a few PCG iterations. Moreover, it
seems that the nonlinear program (MMA, Svanberg (1987)) is not particularly sensitive to such
errors and the progress of optimization remains unaffected and in some cases even improves.

6.3.3 Computational scheme

The resulting computational scheme is as follows, demonstrated using some standard Matlab
commands:

1. Initialize optimization process and state the maximum number of PCG iterations. One
possible choice:

m = min([nelx,nely,nelz])

2. Compute factors of K0 corresponding to an entirely solid design domain:

rho = ones

K_0 = K(rho)

U_0 = chol(K_0)

3. Repeat design cycle until convergence:
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(a) Compute an approximation um by performing m PCG iterations on Eq. (6.2) with the
current stiffness K(ρ), the factors of K0 as preconditioners and um from the previous
design cycle as an initial guess:

u_m_old = u_m

u_m = pcg(K,f,1e-6,m,U_0’,U_0,u_m_old)

(b) Compute approximate sensitivities using um in (6.1).

(c) Update design variables ρ by MMA.

The overall cost is dominated by stage 3(a), which for every design cycle is m times the cost of
a single PCG iteration. It is not necessary to assemble K(ρ) and the matrix-vector product can
be easily parallelized. In the force inverter case, a block-PCG solver (O’Leary, 1980) is used to
compute um and λm simultaneously. Then the sensitivities (6.1) can be computed.

6.4 Numerical examples

In this section, several examples are presented. Optimization was performed using the Method
of Moving Asymptotes (Svanberg, 1987) and a density filter was applied (Bourdin, 2001; Bruns
and Tortorelli, 2001).

6.4.1 Accuracy of the design sensitivities

Concerning the errors in sensitivity analysis, consider Figures 6.1(a) and 6.1(b). The plots cor-
respond to an intermediate design cycle of a small half-MBB minimum compliance problem, but
the authors observed the same behavior throughout the whole design process. In Figure 6.1(a),
the current (filtered) densities are plotted, while Figure 6.1(b) shows the errors in the element
sensitivities after only 5 PCG iterations. The error is measured relatively to the true design sensi-
tivity, corresponding to an accurate solution of (6.2) for this design cycle. In high density (dark)
regions, the errors as computed after 5 PCG iterations are in the order of 10−2 to 10−5. Large
errors in the order of 10−1 or higher appear only in low density (bright) regions and are there-
fore less important. Numerical experiments show that errors in the order of up to a few percent
do not have significant effect on the design process - meaning that the approximate sensitivities
are sufficient for the purpose of obtaining an effective descent direction for optimization.

(a) Design after 30 cycles: Black = solid, white =
void

(b) Relative errors in sensitivities as computed after 5 PCG iter-
ations, logarithmic scale

Figure 6.1: Errors in design sensitivities, 60×20 half-MBB beam, after 30
design cycles

6.4.2 Computational effort in 3D problems

We present solutions of two 3D topology optimization problems, with particular emphasis on
the computational effort involved in the solution of the analysis equations. Two schemes are
compared: (1) Standard approach using a direct solver; (2) The proposed approach with a
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single factorization and few PCG iterations per design cycle. It is important to note that for 3D
problems of medium or large scale, direct solvers are in general less preferable due to the large
bandwidth of the stiffness matrix. Nevertheless, 3D problems are chosen for demonstrative
purposes and it is evident that also in 2D, where direct solvers are more effective, significant
savings can be achieved.

We consider minimum compliance design of a cantilever beam and force inverter design,
see Amir et al. (2010) for all the technical details involved. The FE meshes consist of 40,500
elements (1.35 × 105 DOF) and 54,000 elements (1.76 × 105 DOF) respectively. The number of
PCG iterations in the approximate scheme was fixed to the number of elements in the shortest
side of the mesh: 15 for the minimum compliance case and 30 for the force inverter case. This
is no more than a good guess and does not guarantee that the approximate scheme is successful.
The resulting layouts are presented in Figures 6.2 and 6.3 and are practically identical for both
procedures.

Figure 6.2: Minimum compliance design of a 3D cantilever beam: Layout
of symmetric half after 200 design iterations, 90×15×30 elements

Figure 6.3: Design of a 3D force inverter: Layout after 200 design itera-
tions, 60×30×30 elements in one symmetric quarter

The computational costs are compared in Table 6.1. Measuring CPU time for 200 design
iterations, the approximate approach was 12 times faster than the standard solution in the
minimum compliance problem and 4 times faster in the inverter problem. Estimated FLOPS
counts based on Golub and Van Loan (1983) predict speedup ratios of 11.5 and 5.9, respectively.
The actual savings for the inverter problem are lower than predicted probably since little effort
was invested in optimizing the Fortran code. The quality of the results remains unaffected:
The differences in objective values are very small and the designs are practically identical. The
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approximate scheme was also compared to a standard iterative scheme (PCG and an incomplete
Cholesky factorization as preconditioner) and was found to be twice as fast in the minimum
compliance problem and slightly faster in the force inverter problem.

Table 6.1: Accuracy and efficiency of the approximate approach

Problem Procedure Objective Relative time Detailed time

Min. compliance
Standard 682.1184 12.339 99.4% direct solve, 0.6% other
Approximate 681.6625a 1.000 6.1% factor, 85.9% PCG, 8% other

Force inverter
Standard -0.5274 3.999 99.1% direct solve, 0.9% other
Approximate -0.5274b 1.000 2.0% factor, 94.7% PCG, 3.3% other

a Objective value resulting from accurate analysis with final design was 681.6563.
b Objective value resulting from accurate analysis with final design was -0.5275.

Finally, we examine the actual accuracy of the approximations with respect to the solution
of the nested equation system. For this purpose we utilize the relative norm of residual forces,
a common measure for iterative solvers. In Figure 6.4 the recorded norms corresponding to the
approximation within each design cycle are plotted. It can be seen that the errors in the solution
of the nested equations tend to reduce as the optimization proceeds. This is due to the use
of each approximate displacement vector as an initial guess for the approximation in the next
design cycle. In other words, as we approach an optimal design, we also approach an accurate
solution of the nested system.

Figure 6.4: The relative norm of residual forces vs. design iterations

6.5 Discussion

An efficient computational scheme for nested topology optimization was presented. The analysis
equation system is solved approximately using an iterative correction procedure, based on only
one matrix factorization for the whole design process. The preliminary results presented here,
together with some observations based on the numerical experience of the authors, challenge
the way the analysis equations are treated in contemporary topology optimization procedures:
It may be unnecessary to solve the nested problem accurately. Nevertheless, several questions and
discussion topics arise regarding the approximate approach:
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• Is it possible to generalize the proposed scheme so that the single preconditioner is not a
factorization, meaning that memory requirements are lower and the overall procedure is
more suitable for parallel computing?

• Can one define an effective stopping criteria for the iterative equation solver, or an upper
bound on the number of iterations, so that it is guaranteed that the design sensitivities
are sufficiently accurate and computational cost is reduced considerably? In some cases, it
seems that the arbitrary maximum number of PCG iterations used in this study could have
been even smaller.

• In the context of nonlinear programming methods: How sensitive are they to inaccurate
gradient information?

• In industrial applications, problems typically involve many load cases. In such cases the
cost of iterative corrections rises proportionally to the number of load cases and it may be
cheaper to perform a new factorization. The actual trade-off depends on the properties
of the stiffness matrix, the number of load cases and the number of iterations used in the
approximate approach. The same applies to problems with multiple constraints, such as
displacement constraints.

• Iterative solvers perform best for solid block FEA models. It has been shown that they
are less effective for solving shell models that are typical for a wide range of industrial
applications. The actual performance is dominated by the quality of the preconditioner.
Therefore it is possible that more costly preconditioners and more frequent updates are
required for shell models compared to solid block models.

• This article focused exclusively on reducing the cost associated with the solution of the
nested analysis equations. Computational efficiency can be improved also by reducing the
size of the FEA models, for example by an adaptive approach. Multilevel procedures can
also contribute to reducing the problem size. Can the various approaches be combined
effectively?

In conclusion, reducing the computational effort is a challenging topic of high importance for
further development of topology optimization - both for academic research and as a standard
design tool in industry. It is the authors’ hope that this brief note will stimulate a discussion
within the research community regarding further improvements of effective solution procedures.
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Chapter 7

Conceptual design of reinforced
concrete using topology optimization
with nonlinear material modeling

Bogomolny M, Amir O. Conceptual design of reinforced concrete using topology optimization
with nonlinear material modeling. To be submitted.

Abstract Design of reinforced concrete structures is governed by the nonlinear behavior of
concrete and by its different strengths in tension and compression. The purpose of this article
is to present a computational procedure for optimal conceptual design of reinforced concrete
structures, based on topology optimization with nonlinear material modeling. Concrete and
steel are both considered as elasto-plastic materials, including the appropriate yield criteria and
post-yielding response. The same approach can be applied also for topology optimization of
other material compositions where nonlinear response must be considered. Optimized distri-
bution of material is achieved by introducing interpolation rules for both elastic and plastic
material properties. Several numerical examples illustrate the capability and potential of the
proposed procedure.

Keywords Topology optimization, Material nonlinearity, Yield surface, Reinforced concrete,
Strut-and-Tie

7.1 Introduction

Structural optimization techniques are now becoming an integral part of the design process and
are widely applied, for example, in the automotive and aerospace industries. So far, optimal
design had less impact on traditional structural engineering as practiced in the construction
industry. One reason might be the difficulty in combining numerical optimization tools with
models that can accurately represent the complex behavior of composite materials used by the
building industry, such as reinforced concrete. The aim of this article is to present a computa-
tional procedure that enables optimal design of reinforced concrete structures. The approach
can easily be generalized to accommodate other combinations of materials besides steel and
concrete. By combining topology optimization with nonlinear material modeling of the candi-
date materials, it is possible to consider not only the different elastic stiffnesses of the candidate
materials, but also their distinct yield limits and yield criteria.

The main challenge in the design of structural elements made of reinforced concrete (RC)
lies in the different strengths of concrete in tension and compression. Typical concrete mixes
have high resistance to compressive stresses but due to the quasi-brittle nature, any appreciable
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tension (e.g. due to bending) will cause fracture and lead to failure of the structural element.
Numerical analysis of RC structures is typically based on the finite element method. Since con-
crete itself is a composition of several materials, developing appropriate computational models
is challenging and both nonlinear stress-strain relationship, as well as deformation localization
effects are important. In practice, traditional plasticity formulations constitute reasonable ap-
proximations to the underlying fracturing process. A key element in plasticity formulations is
the yield or failure criteria. Several yield criteria have been applied in computational models
for concrete. Early studies suggest using the Mohr-Coulomb or Drucker-Prager yield surfaces
(Chen, 1982). Recently, Oliver et al. (2008) proposed more advanced models, that combine the
Drucker-Prager yield criterion in the compression region and the Rankine criterion in the ten-
sion region . Similarly, Pravida and Wunderlich (2002) proposed an advanced analytical surface
which is a combination of several surfaces for compression and tension.

In practical design, RC members are treated as composite structures, where reinforcing steel
bars are located in regions where tension (i.e. failure of plain concrete) is expected. Traditional
methods may be sufficient for effectively distributing steel bars in standard structural elements
such as beams, columns and slabs. However, nowadays advanced concrete technology - resulting
in new and improved material properties - as well as new production methods, allow production
of concrete structures of almost any shape, giving new freedom to the structural designer (Oka-
mura and Ouchi, 2003; Stang and Geiker, 2004). This opens much room for applying structural
optimization techniques, aimed at finding both the optimal shape of the concrete element as
well as the optimal placement of reinforcement.

Up to date, the vast majority of studies in structural topology optimization were restricted
to elastic material models (see Bendsøe and Sigmund (2003) for a comprehensive review of the
field). Elastic modeling is sufficient for determining the distribution of one or more material
phases in a given domain, but only as long as all material points remain in their elastic stress
state. This is clearly not the case in reinforced concrete, where the concrete phase fails under
relatively low tension stresses. Therefore nonlinear material modeling is necessary when aiming
at optimal design of RC structures. Several studies were dedicated to topology optimization of
elasto-plastic structures, for example based on the von Mises yield criterion (Swan and Kosaka,
1997; Maute et al., 1998) or the Drucker-Prager yield criterion (Swan and Kosaka, 1997). How-
ever, to the best of the authors’ knowledge, this is the first study where more than one nonlinear
candidate material is considered. Lately, multiphase material optimization was utilized for im-
proving the performance of fiber reinforced concrete (Kato et al., 2009). Failure behavior of all
candidate materials was considered, but the approach taken is restricted to layered structures
and cannot provide general layouts as obtained using topology optimization.

One approach to visualizing the internal forces in cracked concrete beams is by a simple
truss model introduced by Ritter (1899). The resulting model, widely known as the strut-and-
tie model, has numerous applications in analysis and design of RC structures subjected to shear
forces or torsion moments (e.g. Schlaich et al. (1987), Marti (1985)). Several researchers
proposed to use a truss-like structure resulting from linear elastic topology optimization in order
to predict a strut-and-tie model (Bruggi (2009), Liang et al. (2000) and Kwak and Noh (2006)).
Accordingly, the truss bars under tension forces represent the location of steel reinforcement
while the compressed bars represent concrete. In the current study material nonlinearity of both
concrete and steel is considered , and hence a more realistic model is obtained. An interpolation
scheme is proposed, such that by changing the density (design variable of the optimization
problem), the material properties and the failure criteria vary between concrete and steel. The
result of the optimization process is the optimal distribution of concrete and steel inside a certain
domain. Therefore an efficient strut-and-tie model is directly obtained.

The article is organized as follows: topology optimization is shortly introduced in Section
7.2, with emphasis on reinforcement design. The elasto-plastic models used for concrete and
steel and the nonlinear finite element analysis are discussed in Section 7.3. Section 7.4 is the
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heart of this article, where we present the material interpolation, the optimization problem for-
mulation and the sensitivity analysis. Several demonstrative examples are presented in Section
7.5 and some conclusions are drawn in Section 7.6.

7.2 Design of linear elastic reinforcement using topology optimiza-
tion

In this section, we shortly review topology optimization procedures, with particular emphasis on
optimal layouts consisting of two materials, see Bendsøe and Sigmund (2003) for an extensive
report on topology optimization. We follow the material distribution approach for topological
design (Bendsøe and Kikuchi, 1988) together with the SIMP (Solid Isotropic Material with Pe-
nalization) interpolation scheme (M. P. Bendsøe, 1989). The optimization problem aimed at
finding the stiffest structural layout, usually known as the minimum compliance problem, is
defined as follows

min
ρ
c(ρ) = fTu

s.t.:
Ne∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., Ne

with: K(ρ)u = f (7.1)

where f is the external load vector, u is the displacements vector, ve is the element volume, ρe is
the element density, V is the total available volume and K(ρ) is the stiffness matrix correspond-
ing to the element densities ρ

K(ρ) =

Ne∑
e=1

(Emin + (Emax − Emin)ρpEe )Ke

In general, Emin and Emax are the values of Young’s modulus corresponding to two candidate
materials which should be distributed in the design domain. For the case of distributing a single
material and void, Emin is set to a small positive value and Emax is typically set to 1. Ke

represents the element stiffness matrix corresponding to the Young’s modulus value of 1 and pE
is a penalization factor required to drive the design towards a 0-1 (or black and white) layout.
For the purpose of clarity, filtering is not considered in the above formulation. Nevertheless, in
many cases it is necessary to apply a filter in order to avoid checkerboard patterns and to obtain
mesh-independent results (Bendsøe and Sigmund, 2003).

In Figure 7.1, an optimized design obtained for a single linear elastic material (Emin rep-
resents void) is presented. The design domain is a rectangular simply supported beam; 25%
of the total volume is available; and the load consists of a single point load. The obtained lay-
out is a typical result of single-material topology optimization: the layouts usually resemble a
truss/frame structure formed of several triangles. When Emin and Emax represent two materi-
als (Emin is one order smaller than Emax), a different layout is obtained, see Figure 7.2. Such
designs are typical for sandwich structures, consisting of a soft core and stiff sheets.

The optimized topologies obtained with linear elastic material modeling cannot be used
directly in some design problems involving the composition of two materials. A fundamental
example is the design of reinforced concrete, where the design philosophy is based mainly on
the fact that plain concrete has higher strength in compression than in tension, a property that
is not captured by linear elastic modeling. In traditional reinforced concrete design, steel bars
are positioned where tension stresses are expected. Therefore nonlinear material modeling
is an essential component in optimal design of reinforced concrete and other compositions of
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Figure 7.1: Optimized layout of a simply supported beam. Black: material,
white: void.

Figure 7.2: Optimized layout of a simply supported beam. Black: stiff
material, white: soft material.

materials with different nonlinear properties, taking into account not only the elastic stiffnesses
of the two materials but also their yield limits and post-yielding behavior.

7.3 Nonlinear material model and finite element analysis

In this section, we shortly review the elasto-plastic model utilized in our study and outline the
resulting nonlinear finite element problem to be solved. Later, in Section 7.4, the connection
between the topology optimization problem and the nonlinear material model will be made.

7.3.1 Elasto-plastic material model

The main purpose of this study is to optimize the distribution of two materials in a given domain,
taking the different nonlinear behavior of both materials into account. The main idea is to
represent the elasto-plastic response of both materials using one generic yield function that
varies according to the value of the design variable. For this purpose, we utilize the Drucker-
Prager yield criterion (Drucker and Prager, 1952). For certain choices of material properties,
the Drucker-Prager yield function can model the behavior of materials that are much stronger in
compression than in tension, such as soils, rock or plain concrete. Moreover, the von Mises yield
criterion which is widely used for metals (having equal strength in tension and compression)
can be seen as a particular case of the Drucker-Prager criterion.

As a demonstrative case we focus throughout this article on the distribution of concrete and
steel. In essence, the purpose of utilizing nonlinear modeling is to identify the failure of concrete
when tension stresses appear and then redistribute material so that such failure does not occur.
Other aspects of the elasto-plastic behavior, namely yielding of steel in both stress states or
yielding of concrete in compression, are categorized as less important for the purpose of this
study. Therefore some simplifying assumptions are made in the formulation of the nonlinear
material model, which would not be allowed if the purpose was accurate prediction of failure
and damage in reinforced concrete structures.

In the following, we present the governing equations of the elasto-plastic model, leading
to the local constitutive problem to be solved on a Gauss-point level. We follow classical rate-
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(a) von Mises (b) Drucker-Prager

Figure 7.3: Yield surfaces in 2D principal stress space.

independent plasticity formulations, based on the textbooks by Simo and Hughes (1998) and
Zienkiewicz and Taylor (2000). The Drucker-Prager yield function can be expressed as

f(σ, κ) =
√

3J2 + α(κ)I1 − σy(κ) ≤ 0

where J2 is the second invariant of the deviatoric stress tensor and I1 is the first invariant (trace)
of the stress tensor. α is a material property and σy is the yield stress in uniaxial tension, both
functions of the internal hardening parameter κ according to some hardening functions. The
expression

√
3J2 is usually known as the von Mises stress or equivalent stress. When α = 0, we

obtain the von Mises yield criterion. We assume simple isotropic hardening rules

α(κ) = constant (7.2)

σy(κ) = σ0
y +HEκ (7.3)

where σ0
y is the initial uniaxial yield stress, E is Young’s modulus and H is a constant, typically

in the order of 10−2. The assumptions (7.2) and (7.3) are not necessarily suitable for accu-
rate modeling of concrete but do not affect the ability to capture the most important failure in
concrete, that is failure in tension. We assume an associative flow rule and a simple relation
between the hardening parameter and the rate of the plastic flow

ε̇pl = λ̇
∂f

∂σ

κ̇ = λ̇ (7.4)

where εpl is the plastic strain tensor and the scalar λ is usually referred to as the plastic multiplier.
The relation (7.4) does not accurately represent hardening mechanisms in metals. Nevertheless,
it is accurate enough for the purpose of the current study, since post-yielding response of the
steel phase should not have an effect on the optimal choice of material. Together with the yield
criterion, λ̇ must satisfy the Kuhn-Tucker complementarity conditions

λ̇ ≥ 0

f(σ, κ) ≤ 0

λ̇f(σ, κ) = 0

The continuum problem (in the temporal sense) is transformed into a discrete constrained
optimization problem by applying an implicit backward-Euler difference scheme. The central
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feature of this scheme is the introduction of a trial elastic state. For any given incremental
displacement field, it is first assumed that there is no plastic flow between time tn and the next
time step tn+1, meaning the incremental elastic strains are the incremental total strains. It can
be shown that the loading/unloading situation which is governed by the Kuhn-Tucker conditions
can be identified using the trial elastic state (Simo and Hughes, 1998). Once a plastic increment
occurs, the new state variables can be found by solving a nonlinear equation system resulting
from the time discretization of the governing equations. For the current model, the derivation
of the discrete equation system is as follows. The total strain is split into its elastic and plastic
parts

ε = εel + εpl

The stress rate is related to the elastic strain rate via the elastic constitutive tensor D

σ̇ = Dε̇el

So for a certain “time” increment we can write the linearized equation

∆σ = D(∆ε−∆εpl) = D(∆ε−∆λ
∂f

∂σ
)

Multiplying by D−1 leads to the first set of equations to be solved

∆ε−D−1∆σ − ∂f

∂σ
∆λ = 0 (7.5)

An additional equation results from the requirement that after initial yielding, the stress state
should satisfy the yield condition

f(σ, λ) =
√

3J2 + αI1 − σy(λ) = 0 (7.6)

7.3.2 Nonlinear finite element analysis

Throughout this study, we follow the framework described by Michaleris et al. (1994) for non-
linear finite element analysis and adjoint sensitivity analysis, where the elasto-plastic nonlinear
analysis is seen as a transient, nonlinear coupled problem. In the coupled approach, for every
increment n in the transient analysis, we determine the unknowns un (displacements) and vn
(stresses and plastic multipliers) that satisfy the residual equations

Rn(un,un−1,vn,vn−1) = 0 (7.7)

Hn(un,un−1,vn,vn−1) = 0

where Rn = 0 is satisfied at the global level and Hn = 0 is satisfied at each Gauss point.
The transient, coupled and nonlinear system of equations is uncoupled by treating the response
v as a function of the response u. When solving the residual equations for the n-th “time”
increment, the responses un−1 and vn−1 are known from the previous converged increment.
The independent response un is found by an iterative prediction-correction procedure in the
global level, while for each iterative step the dependent response vn(un) is found by an inner
iterative loop. The responses un and its dependant vn are corrected until Eq. (7.7) is satisfied
to sufficient accuracy. This procedure is repeated for all N increments.

Neglecting body forces, Rn is defined as the difference between external and internal forces
and depends explicitly only on vn

Rn(vn) = fn −
∫
V
BTσndV
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where B is the standard strain-displacement matrix in the context of finite element procedures.
The internal, Gauss-point level variables vn are defined as

vn =

[
σn
λn

]
where σn are the stresses and λn is the plastic multiplier. Furthermore, the residual Hn is
defined as the collection of two incremental residuals, resulting from Eqs. (7.5),(7.6)

Hn(un,un−1,vn,vn−1) =

[
Bun −Bun−1 −D−1(σn − σn−1)− ∂f

∂σn
(λn − λn−1)√

3J2 + αI1 − σy(λn)

]
= 0 (7.8)

Here, the first equation equates total, elastic and plastic strains and the second represents the
requirement that during plastic response the stress state satisfies the yield condition. In case an
elastic step is predicted by the trial state, then no plastic flow occurs and λn = λn−1. Therefore
the first equation is satisfied trivially by the elastic stress-strain relationship and the second
equation can be disregarded.

The elasto-plastic problem is path-dependent by nature, meaning that the evolution of plastic
strains under a certain load intensity depends on the history of plastic straining and cannot be
computed correctly in one load stage. In practice, this means that the FE analysis must be solved
incrementally. The default choice for most nonlinear FE solvers is to use load control, meaning
that the total load is divided into a certain number of increments. Then for each increment, the
current stress and strain states are required for the solution of the local elasto-plastic problem
corresponding to the next load step. In some cases it is beneficial to switch to displacement
control, for example when a small addition to the load causes a large additional displacement
or when limit points are encountered (Crisfield, 1991). In the context of optimal design, a fixed
load intensity throughout the optimization process may cause difficulties in solving the nonlinear
analysis equations for intermediate designs that are very flexible. From this point of view, using
displacement control for the nonlinear analysis is preferable. This means that the displacement
at a selected degree of freedom is prescribed to a certain value for all design cycles. Choosing
an appropriate value is possible if the designer has some knowledge regarding the expected
deformation, and can also be seen as a way of imposing a required deflection at a certain point.
Displacement control was utilized also in previous studies regarding topology optimization of
elasto-plastic structures, e.g. by Swan and Kosaka (1997) and Maute et al. (1998).

For these reasons we mainly use displacement control and corresponding objective functions
in this study. Then the global residual equation (7.7) takes the form

Rn(vn, θn) = θnf̂ −
∫
V
BTσndV

where θn is the (unknown) load factor in the n-th increment and f̂ is a constant reference load
vector with non-zero entries only at loaded degrees of freedom. When solving the coupled
equation system for each increment, a single displacement has a prescribed value and the rest,
as well as the corresponding load factor θn, are determined from equilibrium.

7.4 Problem formulation

7.4.1 Interpolation of material properties

The main idea is to interpolate the nonlinear behavior of the two candidate materials using
the density variables from the topology optimization problem. The interpolation of the elastic
modulus is identical to that used in standard, linear elastic topology optimization

E(ρe) = Emin + (Emax − Emin)ρpEe (7.9)
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where ρe is the density design variable corresponding to a certain finite element e. Interpolation
of the nonlinear response is achieved by adding a dependency on the design variable ρ to the
yield function, so instead of Eq. (7.6) we have

f(σ, λ, ρe) =
√

3J2 + α(ρe)I1 − σy(λ, ρe) = 0 (7.10)

Following a SIMP-type approach, the interpolating functions α(ρe) and σy(ρe) are given by

α(ρe) = αmax − (αmax − αmin)ρpαe (7.11)

σy(λ, ρe) = σ0
y,min + (σ0

y,max − σ0
y,min)ρ

pσy
e +HE(ρe)λ (7.12)

where pα and pσy are penalization factors for α and σy, respectively. These interpolations imply
that the yield surface of one material is obtained by choosing ρe = 0, meaning α = αmax
and σ0

y = σ0
y,min, and the second yield surface is obtained by ρe = 1, meaning α = αmin and

σ0
y = σ0

y,max. As stated above, the particular case αmin = 0 means that the plastic response of the
second material is governed by the von Mises yield criterion. By setting also σ0

y,max = σ0
y,steel an

actual model of steel is obtained for ρe = 1. In Figure 7.4, the interpolation of the yield surfaces
is demonstrated, for two materials resembling steel and concrete.

Figure 7.4: Demonstrative example of the interpolation between two yield
surfaces, presented in 2D principal stress space. The “Hybrid” surface rep-
resents the behavior of an artificial mixture, corresponding to an interme-
diate density in topology optimization.

In order to approach optimal strut-and-tie designs, we extend this interpolation so it accom-
modates also void regions. Following Bendsøe and Sigmund (2003), we add another design
variable x for each finite element. Void regions are represented by x = 0 and solid regions are
represented by x = 1. Within the solid regions, the value of ρ determines the distribution of
the two candidate materials. This leads to the following interpolation functions, replacing Eqs.
(7.9), (7.10), (7.11), (7.12)

E(xe, ρe) = xpExe (Emin + (Emax − Emin)ρpEe ) (7.13)

f(σ, λ, ρe, xe) =
√

3J2 + α(xe, ρe)I1 − σy(λ, xe, ρe) = 0 (7.14)

α(xe, ρe) = xpαxe (αmax − (αmax − αmin)ρpαe ) (7.15)

σy(λ, xe, ρe) = xpσxe (σ0
y,min + (σ0

y,max − σ0
y,min)ρ

pσy
e +HE(xe, ρe)λ) (7.16)

where pEx, pαx and pσx are penalization factors for x. In practice, one may choose to use the
same penalty factors for both design variables, x and ρ.
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7.4.2 Optimization problem and sensitivity analysis

In this article, we focus mainly on one demonstrative class of objective functions. The aim is
to find the stiffest structural layouts given certain amounts of available material. When only
linear elastic response is considered, the corresponding objective is the widely used minimum
compliance problem, presented above (7.1). When nonlinear response is taken into account,
one may define several different objectives that are related to the maximization of the structural
stiffness (see for example Swan and Kosaka (1997), Maute et al. (1998), Buhl et al. (2000)).
Since displacement control is preferred in the nonlinear FE analysis, a possible equivalent to
minimizing compliance in linear elasticity is maximizing the end compliance for a given pre-
scribed displacement. In other words, the objective is to maximize the magnitude of the load
that corresponds to a certain prescribed displacement at a particular degree of freedom.

Assuming the analysis problem is solved in N increments, the optimization problem of dis-
tributing two materials in the design domain can be stated as follows

min
ρ
c(ρ) = −θN f̂TuN

s.t.:
Ne∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1, e = 1, ..., Ne

with the coupled residuals: Rn(vn, θn) = 0 n = 1, ..., N

Hn(un,un−1,vn,vn−1,ρ) = 0 n = 1, ..., N (7.17)

where V is the available volume of the material whose properties correspond to ρe = 1. When
distributing two materials and void, the optimization problem is slightly modified

min
ρ,x

c(ρ,x) = −θN f̂TuN

s.t.:
Ne∑
e=1

vexe ≤ V1

Ne∑
e=1

veρe ≤ V2

0 < xmin ≤ xe ≤ 1, e = 1, ..., Ne

0 ≤ ρe ≤ 1, e = 1, ..., Ne

with the coupled residuals: Rn(vn, θn) = 0 n = 1, ..., N

Hn(un,un−1,vn,vn−1,ρ,x) = 0 n = 1, ..., N (7.18)

where V1 is the total available volume of material, V2 is the available volume of the material
whose properties correspond to ρe = 1 (V2 ≤ V1) and xmin is a positive lower bound used in
order to avoid singularity of the stiffness matrix.

As discussed in Chapter 2, the objective function used in the problem formulations above
is appropriate for stiffness maximization only in the case of a single point load. When a dis-
tributed load is applied, the load-controlled objective fTNuN should be used. Then also the sensi-
tivity analysis is performed considering a load-controlled setting following the hybrid approach
presented in Chapter 2.

As mentioned earlier, the design sensitivities are computed by the adjoint method, following
the framework for transient, nonlinear coupled problems described by Michaleris et al. (1994).
To the best of the authors’ knowledge, this is the first implementation of this framework in
topology optimization of structures with material nonlinearities. Furthermore, it is presumably
the first sensitivity analysis for topology optimization of structures with material nonlinearities
where no simplifying assumptions are made. An effort is made to use similar notation to that in
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Michaleris et al. (1994). The procedure for sensitivity analysis is described here only for the two
material and void problem (7.18) since the two-material problem can easily be deduced from it.
We begin by forming the augmented objective function ĉ(ρ)

ĉ(ρ,x) = −θN f̂TuN −
N∑
n=1

λTnRn(vn, θn)

−
N∑
n=1

γTnHn(un,un−1,vn,vn−1,ρ,x)

where λn and γn are the adjoint vectors to be found for all increments n = 1, ..., N . We assume
the initial responses u0, v0 do not depend on the design variables. Furthermore, it can be
observed that the objective function and the nonlinear equation systems Rn = 0 (n = 1, ..., N)
do not depend explicitly on the design variables. Therefore the explicit terms in the derivative
of the augmented objective with respect to the design variables are

∂ĉexp
∂xe

= −
N∑
n=1

γTn
∂Hn

∂xe

∂ĉexp
∂ρe

= −
N∑
n=1

γTn
∂Hn

∂ρe

The adjoint vectors γn (n = 1, ..., N) are computed on a Gauss-point level by a backward incre-
mental procedure, which is required due to path dependency of the elasto-plastic response. The
backward procedure consists of the collection of equation systems resulting from the require-
ment that all implicit derivatives of the design variables will vanish. Further details regarding
the adjoint procedure can be found in Chapter 2. For performing the backwards-incremental
sensitivity analysis, the derivatives of the global and local residuals with respect to the analysis
variables are required. These are given in this section for the elasto-plastic model utilized in
the current study. In particular, we consider a plane stress situation, meaning the stresses and
strains are collected in a vector with three entries: σ = [σ11, σ22, σ12]T and ε = [ε11, ε22, ε12]T .

The derivative of the global residual is independent of the specific material model employed
and is given by

∂(Rn)

∂(vn)
=
[
−BTwJ(8×3) 0(8×1)

]
where B is the standard strain-displacement matrix; w is the Gauss-point weight for numerical
integration; and J is the determinant of the Jacobian at the Gauss-point. For the nonlinear
material model described in Section 7.3, the derivatives of the local residual are

∂(Hn)

∂(un)
=

[
B(3×8)

0(1×8)

]
∂(Hn+1)

∂(un)
=

[
−B(3×8)

0(1×8)

]
∂(Hn)

∂(vn)
=

 −D−1 −∆nλ ∂
2f

∂σn (3×3)
− ∂f
∂σn

T

(3×1)
∂f
∂σn (1×3)

−HE(1×1)


∂(Hn+1)

∂(vn)
=

[
D−1

(3×3)
∂f

∂σn+1

T

(3×1)

0(1×3) 0(1×1)

]
where the derivative of the yield function with respect to the stress components is

∂f

∂σ
=

1

2
√

3J2

[
2σ11 − σ22 2σ22 − σ11 6σ12

]
+ α

[
1 1 0

]
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In actual implementation, the derivatives of the local residuals Hn and Hn+1 should maintain
consistency with respect to the analysis. This means that some rows and columns should be
disregarded in case of elastic loading or unloading. For example, if increment n is elastic, then
we have ∂(Hn)

∂(un) =
[
B(3×8)

]
and ∂(Hn)

∂(vn) =
[
−D−1

(3×3)

]
.

Finally, computing the derivatives ∂Hn
∂xe

, ∂Hn
∂ρe

requires adding the dependency on the design
variables to Eq. (7.8) and differentiating with respect to xe and ρe. This leads to

∂Hn

∂xe
=

[
−∂(D(xe,ρe)−1)

∂xe
(σn − σn−1)−

∂( ∂f
∂σn

(xe,ρe))T

∂xe
(λn − λn−1)

∂f(xe,ρe)
∂xe

]

∂Hn

∂ρe
=

 −∂(D(xe,ρe)−1)
∂ρe

(σn − σn−1)−
∂( ∂f
∂σn

(xe,ρe))T

∂ρe
(λn − λn−1)

∂f(xe,ρe)
∂ρe


where

∂(D(xe, ρe)
−1)

∂xe
= − 1

E(xe, ρe)

∂E(xe, ρe)

∂xe
D(xe, ρe)

−1

∂(D(xe, ρe)
−1)

∂ρe
= − 1

E(xe, ρe)

∂E(xe, ρe)

∂ρe
D(xe, ρe)

−1

∂( ∂f
∂σn

(xe, ρe))
T

∂xe
=

∂α(xe, ρe)

∂xe

 1
1
0


∂( ∂f

∂σn
(xe, ρe))

T

∂ρe
=

∂α(xe, ρe)

∂ρe

 1
1
0


∂f(xe, ρe)

∂xe
=

∂α(xe, ρe)

∂xe
I1 −

∂σy(xe, ρe)

∂xe
∂f(xe, ρe)

∂ρe
=

∂α(xe, ρe)

∂ρe
I1 −

∂σy(xe, ρe)

∂ρe

The above derivatives can be easily computed using the relations given in Eqs. (7.13), (7.14),
(7.15), (7.16).

7.5 Examples

In this section we present several results obtained when implementing the computational ap-
proach described in this article. The purpose is to demonstrate the capabilities and potential
of our approach and to gain insight regarding implementation aspects. Therefore, as prelimi-
nary examples we consider relatively small scale two-dimensional problems with no self weight.
Extending to three dimensional models and incorporating more realistic loading conditions are
among the goals of future work.

7.5.1 General considerations

In the following examples, both optimization problems are considered: distribution of concrete
and steel (7.17) and distribution of concrete, steel and void (7.18). The material parameters
resemble actual values corresponding to steel and concrete, see Table 7.1. For computing αmax
and σ0

y,min, both corresponding to the concrete phase, it was assumed that the strength of con-
crete in compression is ten times higher than in tension. All test cases were solved using a 2D
finite element mesh consisting of square, bi-linear plane stress elements. The optimization was
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performed by a nonlinear optimization program based on the Method of Moving Asymptotes
- MMA (Svanberg, 1987). In order to obtain regularized designs and to avoid checkerboard
patterns, a density filter was applied (Bourdin, 2001; Bruns and Tortorelli, 2001).

Table 7.1: Material properties in all test cases

Parameter Material Value
Emin concrete 25.0 [GPa]
Emax steel 200.0 [GPa]
αmin steel 0.0
αmax concrete 0.818
σ0
y,min concrete 5.5 [MPa]
σ0
y,max steel 300 [MPa]
ν both 0.3
H both 0.01

The actual computational performance of the proposed approach is affected by the choice
of several numerical parameters. First, in order to ensure convergence of the Newton-Raphson
iterations in the nonlinear FE analysis, one should carefully choose an appropriate value of the
prescribed displacement, denoted by δ. Too large values of δ may cause difficulties in conver-
gence, thus increasing the computing time. On the other hand, δ should be large enough to
ensure that the response of the structure is indeed nonlinear. In case the nonlinear analysis fails
to converge at a certain displacement level even after several increment cuts, the analysis is
terminated and sensitivity analysis is performed with respect to the converged configuration.

As for the optimization program, it is well known that in topology optimization the computa-
tional performance is strongly affected by the choice of the filter radius and penalty factors. An
effort was made to keep these values similar for all test cases. In some cases, the penalty factors
are gradually increased and/or the filter radius is gradually decreased in order to obtain a more
refined layout. The particular choice of numerical parameters for each test case is given in the
corresponding text. The number of design iterations varies between test cases. According to the
authors’ experience, most problems require 100 to 200 design iterations to reach a converged
design. After that, no significant changes in the layout can be observed and the improvement in
objective value is negligible. The relatively tight convergence tolerance (1 × 10−4) referring to
the maximum change in an element density throughout the design domain was not reached.

7.5.2 Optimized concrete-steel layouts

Example 1. Simply supported beam subject to a concentrated load In this example prob-
lem, the competence of the proposed procedure in designing the reinforcement for a simply
supported beam is demonstrated. We consider a beam with a length-to-height ratio equal to
4, loaded with a prescribed displacement directed downwards at the middle of the top edge,
see Figure 7.5. The model of the symmetric half is discretized with a 200 × 100 FE mesh. The
objective is to maximize the end-compliance, see (7.17). The volume fraction is 0.2 and the
magnitude of the prescribed displacement is δ = 0.005. The final design is achieved by gradu-
ally increasing all penalty factors and reducing the filter radius, for details see Table 7.2. This
is necessary in order to remove “gray” regions of intermediate density, as well as small isolated
reinforcement regions.

The layout obtained for the simply supported beam resembles actual design of reinforced
concrete beams. Away from the supports, bending action is dominant so steel is necessary
in the bottom fibers where tension stresses appear. Closer to the supports, shear forces are

114



Figure 7.5: Maximum end-compliance of a simply supported beam: design
domain, boundary conditions and prescribed displacement.

Table 7.2: Gradual refinement, example 1

Design Penalty Filter
iterations factor radius

Stage 1 100 3.0 0.015
Stage 2 50 4.0 0.010

dominant so concrete typically cracks in an angle of 45◦, corresponding to the direction of the
principal stresses in pure shear. Consequently, the steel reinforcement should be bent in order
to accommodate the tensile stresses due to shear. Additional reinforcement is placed at the
upper fibers and at the supports. This is necessary since the load and the reaction force are
concentrated at single nodes. Moreover, the relatively high available volume of steel facilitates
the use of steel also in compression, both in the top fibers and in the shear-dominated regions.
As will be seen in the following example, this is not the case when the volume fraction of steel is
reduced and the load is distributed. Concluding this example, the benefit of employing nonlinear
modeling is clear when comparing the result to the layout obtained with linear modeling, see
Figure 7.2.

Example 2. Simply supported beam subject to a distributed load In this example problem,
we again address the maximum end-compliance design of a simply supported beam. However,
in this case the load is evenly distributed along the beam and the length-to-height ratio is larger,
see Figure 7.5. This means that we expect bending action to be much more dominant than
in the previous example. The model of the symmetric half is discretized with a 160 × 40 FE
mesh; the volume fraction is set to 0.1; and the magnitude of the prescribed displacement is
δ = 0.005. The load is modeled as 10 equally spaced point loads on one half of the beam. As in
the previous example, gradual changes in penalization and filtering are necessary for obtaining
the final design, see Table 7.3 for details.

Examining this example, it can be seen that the presented procedure enables a clear distinc-
tion between tensile and compressive stresses. The optimized layout is generated accordingly:
steel reinforcement is placed in the bottom fiber where tensile stresses appear due to bending,
and in the vicinity of concentrated forces (at the supports in this case). Near the supports, the
reinforcement is bent upwards. This improves the structure’s resistance to shear failure, which
is dominant in these regions.
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(a) Optimized layout after 100 design iterations with pE = 3, pα = 3, pσy = 3 and filter radius
r = 0.015.

(b) Optimized layout after 50 further design iterations with pE = 4, pα = 4, pσy = 4 and filter
radius r = 0.010.

Figure 7.6: Maximum end-compliance of a simply supported beam subject
to a concentrated load. Black = steel, white = concrete. Steel consists of
20% of the total volume.

(a) Design domain and boundary conditions.

(b) Optimized layout for maximum end-compliance after 100 design iterations with pE = 3, pα =
3, pσy = 3 and filter radius r = 0.040.

(c) Optimized layout after 50 further design iterations with pE = 4, pα = 4, pσy = 4 and filter
radius r = 0.025.

Figure 7.7: Maximum end-compliance of a simply supported beam subject
to a distributed load. Black = steel, white = concrete. Steel consists of
10% of the total volume.
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Table 7.3: Gradual refinement, example 2

Design Penalty Filter
iterations factor radius

Stage 1 100 3.0 0.040
Stage 2 50 4.0 0.025

Example 3. Short cantilever In this example problem, the proposed procedure is applied for
designing the reinforcement in a short cantilever. The design domain is a square supported at
two corners on one side and loaded with a prescribed displacement directed downwards at the
opposite bottom corner, see Figure 7.8(a). The model is discretized with a 100 × 100 FE mesh.
The objective is to maximize the end-compliance, and we present two results: one of concrete-
steel distribution (see (7.17)) and another of concrete-steel-void distribution (see (7.18)). For
the two-material design, the steel volume fraction is 0.2. When void is considered as well, then
the total volume fraction is 0.4 and the steel volume fraction is 0.1. The prescribed displacements
are set to δ = 0.002 and δ = 0.001 respectively. The penalty factors are set to the value of 3.0
and the filter radius is r = 0.015 for all design iterations.

In both cases, steel is used mainly for a cable-like member in tension, transferring the load to
the upper support. This cable is then supported by either a continuous concrete domain (when
no voids are possible) or by two compressed concrete bars, see Figures 7.8(b), 7.8(c). This
again demonstrates the capability of the procedure to distinguish between structural elements
in tension and in compression and to choose the appropriate material for each type. The layout
obtained when distributing steel, concrete and void resembles strut-and-tie models that are
widely used in practical analysis and design of reinforced concrete. As observed in previous
examples, steel might be used also for stiffening support regions. In the short cantilever, this is
the case mainly for the two material problem with no voids. To a lesser extent, this is observed
also in the result of the concrete-steel-void distribution.

7.6 Discussion

Optimized conceptual design of reinforced concrete was demonstrated, based on a new ap-
proach to topology optimization with nonlinear material modeling. The different failure criteria
corresponding to the nonlinear response of concrete and steel were taken into account, using
material interpolation rules for post-yielding behavior in addition to the standard interpolation
of elastic properties. Even though the approach was applied only to the design of steel-reinforced
concrete, it can be easily applied to other compositions of materials where it is necessary to cap-
ture the nonlinear behavior for the purpose of optimizing the design.

The resulting optimized layouts clearly demonstrate the potential of this approach. When
distributing steel within a concrete beam, the placement of reinforcement resembles traditional
design and agrees with common engineering knowledge. When distributing concrete, steel and
void, it is shown that optimized strut-and-tie models are generated. These can be used for sev-
eral purposes: first, to provide the engineer an improved initial design before the detailed design
stage; second, to challenge traditional practice and achieve more efficient design of reinforced
concrete structures by suggesting non-traditional forms and shapes; third, to reduce weight and
concrete production, by utilizing lightweight concrete in the “void” regions where no strength is
required.

Future work will focus on more realistic modeling. With respect to loading conditions, it is
necessary to consider also self-weight and multiple load cases. Another important issue is the
constraint on the volume of reinforcing material: in practice, the relative volume of steel seldom
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(a) Design domain, boundary conditions and prescribed
displacement.

(b) Optimized layout after 500 design itera-
tions, 80% concrete, 20% steel. Black = steel,
gray = concrete.

(c) Optimized layout after 200 design itera-
tions, 30% concrete, 10% steel, 60% void.
Black = steel, gray = concrete, white = void.

Figure 7.8: Maximum end-compliance of a short cantilever
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exceeds 1%. This requires much more refined FE models in which thin steel bars can be properly
realized. Another important extension is to consider strain softening in the concrete phase.
Consequently, transferring tension forces in concrete will be even less preferable, meaning that
more realistic designs can be suggested. Finally, the introduction of other objective functions
will also be explored.
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Chapter 8

Re-using solutions and tangent
stiffnesses for efficient nonlinear
structural analysis in topology
optimization

Amir O, Stolpe M and Sigmund O. Re-using solutions and tangent stiffnesses for efficient non-
linear structural analysis in topology optimization. To be submitted.

Abstract In the nested approach to topology optimization, most of the computational effort
is invested in repeated solutions of the analysis equations. When nonlinear structural response
is considered, the computational effort invested in the solution of the nested problem is even
more dominant. In this study, we present efficient solution procedures for nonlinear structural
analysis based on re-using information throughout the optimization process. In the proposed
schemes, the solution of the nonlinear structural analysis corresponding to a certain design
cycle is used as a starting point for the analysis in the next design cycle. When the design
changes between two subsequent cycles are small, it is suggested to re-use also the factorization
of the tangent stiffness matrix. The approach is tested on several design problems involving
either geometric or material nonlinearities. Savings of up to 50% are achieved for problems
involving large deformations. When considering elasto-plasticity, the results are less promising
due to difficulties arising from the path-depenedent nature of the desired solution.

Keywords Topology optimization, Nonlinear structural analysis, Structural reanalysis

8.1 Introduction

The application of structural optimization, and topology optimization in particular, to large-scale
problems has been advancing rapidly over the past few years, especially due to the utilization of
high performance computer systems (e.g. Aage et al. (2008), Wang et al. (2007) and Evgrafov
et al. (2008)). Nevertheless, improving the efficiency of computational procedures in topology
optimization is still important. Reducing the computational costs can enable more realistic
modeling of complex physical systems and can facilitate the solution of even larger problems,
compared to standard procedures.

In many topology optimization problems, the number of inequality constraints is consid-
erably smaller than the number of design variables. Then it is natural to apply the nested
approach, where optimization is performed in the design variables only and the equilibrium
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equations are solved separately by a function call. When utilizing the nested approach, the com-
putational cost of the whole optimization process is dominated by the effort involved in repeated
solutions of large systems of finite element equilibrium equations. Several studies have recently
addressed the issue of reducing the computational effort invested in repeated solutions of the
nested analysis problem. A common feature in these studies is that they suggest to re-use infor-
mation for performing a sequence of structural analyses efficiently. One approach presented by
Wang et al. (2007) is to recycle information used by a Krylov subspace solver in order to reduce
the number of iterations performed when solving the analysis equations. Another approach sug-
gests to apply an approximate reanalysis procedure (Amir et al., 2009). This means the analysis
equations are not solved accurately but consistency of the optimization problem is ensured by
taking the errors in the analysis into account in the sensitivity analysis. Finally, using a similar
reanalysis approach, Amir and Sigmund (2010) recently presented an approximate procedure
based on only one matrix factorization for the whole design process.

The studies mentioned above show that significant computing time can be saved by employ-
ing efficient solution procedures based on re-using information. However, they all focus on the
particular case in which the nested analysis problem is linear. This means that for every design
cycle a linear system of equations needs to be solved (in some cases an additional adjoint system
is solved for the purpose of sensitivity analysis). When aiming to optimize the performance of a
structure that exhibits nonlinear behavior, solving the nested problem involves the solution of a
system of nonlinear finite element equations. In such cases the computational effort invested in
the solution of the nested problem is even more dominant, and the need for efficient procedures
for repeated solutions of the analysis problem is evident. This is the purpose of the current study.
The suggested computational schemes are demonstrated on topology optimization problems in-
volving either material or geometric nonlinearities.

Material nonlinearities in topology optimization were initially considered by Yuge and Kikuchi
(1995). Layout optimization of frame structures undergoing plastic deformation was presented,
based on homogenization of porous material. Swan and Kosaka (1997) suggested a framework
for topology optimization of structures with material nonlinearity based on Voigt and Reuss mix-
ing rules. The SIMP (Solid Isotropic Material with Penalization) interpolation scheme, originally
proposed for linear elastic material (M. P. Bendsøe, 1989), was extended for elasto-plastic be-
havior by Maute et al. (1998). Although several other articles on the subject were published over
the last decade, topology optimization involving elasto-plasticity is still not well established. One
difficulty lies in obtaining accurate design sensitivities. In some cases, several derivative terms
are neglected (Maute et al., 1998; Schwarz et al., 2001). Apparently this has no effect on the
outcome of the optimization but in general these terms are not negligible. Moreover, when com-
paring analytical design sensitivities to finite difference calculations, errors in the order of 10−2

are observed (Swan and Kosaka, 1997; Yoon and Kim, 2007). Another difficulty is related to the
loading conditions. All the studies mentioned above considered only point loads or distributed
loads with rigid interconnections, meaning the deflections at the loaded points are coupled.
This simplifies the sensitivity analysis for displacement-controlled procedures, as demonstrated
in Chapter 2. In the current study, design sensitivities are computed following the framework
by Michaleris et al. (1994) and are found to be perfectly compatible with numerical deriva-
tives. Moreover, optimization in the presence of a general distributed load is made possible by
combining displacement-controlled analysis with sensitivity analysis based on a load-controlled
procedure. Finally, a new application of topology optimization with elasto-plastic material mod-
eling for reinforced concrete design is used as one of the test cases. This is based on the design
procedure presented in Chapter 7.

Topology optimization of geometrically nonlinear structures was first addressed by Buhl et al.
(2000) for the purpose of stiffness maximization and later by Pedersen et al. (2001) and by
Bruns and Tortorelli (2001) for compliant mechanism design. Numerous studies were dedicated
to the challenging aspects of engineering design that arise when considering geometric nonlin-
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earities, for example the snap-through phenomenon and loss of stability (Bruns and Sigmund,
2004; Kemmler et al., 2005). In the current study, we consider only stiffness maximization
for structures exhibiting large deformations. The suitability of efficient analysis procedures for
problems involving extreme geometric nonlinearities will be examined in future work.

The article is organized as follows. First, in Section 8.2 we briefly review the nonlinear fi-
nite element formulations for each of the problems considered in this study. Then, in Section
8.3 the topology optimization problems are presented, together with the material interpolation
schemes and the procedures for sensitivity analysis. Section 8.4 is dedicated to the proposed
computational schemes based on re-using information throughout the optimization process. Fi-
nally, several demonstrative examples are presented in Section 8.5 and preliminary conclusions
are drawn is Section 8.6.

8.2 Considered structural nonlinearities and finite element formu-
lations

In principal, the proposed computational procedures can be applied to any structural optimiza-
tion problem involving nonlinear structural response, which is solved using the nested approach.
For demonstrative purposes, this study focuses particularly on topology optimization problems
where the underlying physical arises from nonlinear continuum mechanics. Standard nonlinear
finite element procedures are employed for solving the structural analysis problems. In essence,
the efficient procedures discussed in this article are based on re-using information from the non-
linear finite element solver, namely converged solutions and corresponding factors of tangent
stiffnesses. This can be useful since in the nested approach, a sequence of nonlinear structural
analyses needs to be performed, where in many cases the differences between two consecutive
systems (due to design changes) are very small.

The structural nonlinearities considered in the demonstrative examples are: large deforma-
tions as a case of geometric nonlinearity; and rate-independent plasticity as a case of material
nonlinearity. In this section, we briefly review the finite element formulations corresponding to
the problems addressed by this study.

8.2.1 Large deformations

In large deformation continuum mechanics, equilibrium should be satisfied in the deformed
geometry which is unknown beforehand. One approach to large deformation analysis is the
so-called total Lagrangian formulation, where all finite element computations are performed
with respect to the original configuration. For this purpose, the Green-Lagrange strain tensor is
defined as

n
0 εij =

1

2
(n0ui,j + n

0uj,i + n
0uk,i

n
0uk,j)

where u is the displacement field; i, j and k represent the cartesian axes; ul,m = ∂ul
∂m ; and

Einstein summation convention is applied. The n
0 notation means evaluation at “time” n in the

initial coordinate system corresponding to “time” 0. The term “time” is used here to represent
the incrementation of loads or displacements. The derivation of the finite element equations
follows Bathe (1996) and will be omitted here for the purpose of brevity.

The basic nonlinear equation system to be solved represents force equilibrium at the “time”
increment n where the unknowns are the nodal displacements u

nR(nu) = nfext − nfint = 0 (8.1)

nfext and nfint are the vectors of external and internal nodal forces, respectively. For simplicity,
it is assumed that only the internal forces depend on the displacements. Eq. (8.1) is typically
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solved using an iterative Newton-Raphson procedure, where the tangent stiffness matrix is uti-
lized. Even though alternative approaches may be applied (Bathe, 1996), the discussion here
as well as the proposed re-use of information are limited to the context of Newton-Raphson
procedures. At any iteration within step n, the tangent stiffness matrix and the internal forces
are computed as follows

n
0K = n

0KL + n
0KNL =

∫
0V
{n0BT

L}{0D}{n0BL}d0V +∫
0V
{n0BT

NL}{n0S}{n0BNL}d0V

n
0 fint =

∫
0V
{n0BT

L}{n0 Ŝ}d0V

where n
0BL is the strain-displacement transformation matrix, corresponding to linear terms of

incremental strains; n
0BNL is the strain-displacement transformation matrix, corresponding to

nonlinear terms of incremental strains; 0D is the constitutive tensor; n0S represents the second
Piola-Kirchoff stresses in matrix format; and n

0 Ŝ represents the same stresses in vector format.

8.2.2 Classical rate-independent plasticity

The derivation of the governing equations follows the textbooks by Simo and Hughes (1998) and
Zienkiewicz and Taylor (2000). For the purpose of sensitivity analysis in optimal design, these
equations are cast into the framework for transient, coupled and nonlinear systems suggested
by Michaleris et al. (1994). In the coupled approach, for every increment n in the transient
analysis, we determine the unknowns nu and nv that satisfy the residual equations

nR(nu,n−1 u,n v,n−1 v) = 0
nH(nu,n−1 u,n v,n−1 v) = 0

where u is the displacements vector and v are the internal variables - stresses, plastic strains and
internal hardening parameters. Neglecting body forces, nR is defined as the difference between
external and internal forces and depends explicitly on nv only

nR(nv) = nfext − nfint = nfext −
∫
V
BT nσdV (8.2)

where B is the standard strain-displacement matrix in the context of finite element procedures.
For solving the local nonlinear constitutive problem, an implicit backward-Euler scheme is

employed. The central feature of this scheme is the introduction of a trial elastic state. For any
given incremental displacement field, it is first assumed that there is no plastic flow between
time tn and the next time step tn+1, meaning the incremental elastic strains are the incremental
total strains. It can be shown that the the loading/unloading situation which is governed by the
Kuhn-Tucker conditions can be identified using the trial elastic state (Simo and Hughes, 1998).
Once a plastic increment occurs, the new state variables can be found by solving a nonlinear
equation system resulting from the time discretization of the governing equations. This results
in the nonlinear system nH which is derived specifically for any given elasto-plastic model.

8.2.2.1 J2 flow theory

J2 flow theory is a widely accepted model for predicting the elasto-plastic response of metals.
It is based on the von Mises yield criterion (von Mises, 1928) which relates the yielding of the
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material to the second invariant of the deviatoric stresses. The vector nv is given by

nv =


nεpl
nκ
nσ
nλ


The internal variables in this model are as follows: nεpl are the plastic strains, nκ is the equiva-
lent plastic strain, nσ are the stresses and nλ is the plastic multiplier, all corresponding to a time
increment n. The residual nH is defined as the collection of four incremental residuals, resulting
from the time linearization of the governing constitutive equations

nH1 = n−1εpl + (nλ− n−1λ)(
∂f

∂nσ
)T − nεpl

nH2 = n−1κ+ (nλ− n−1λ)

√
2

3
(
∂f

∂nσ
)T (

∂f

∂nσ
)− nκ

nH3 = n−1σ + D
[
Bnu−Bn−1u− (nεpl − n−1εpl)

]
− nσ

nH4 = J2 −
1

3
(σy(κ))2 (8.3)

The equation nH1 represents the associative flow rule, where λ is the plastic multiplier and f
is the yield function; nH2 represents the evolution of the isotropic hardening parameter κ; nH3

relates stresses to elastic strains through the constitutive tensor D; and nH4 is the yield criterion
in squared form. A bi-linear hardening rule relates the yield stress to the hardening parameter

σy(κ) = σ0
y +HEκ

where σ0
y is the initial yield stress, H is a scalar (usually in the order of 10−2) and E is Young’s

modulus. As mentioned above, the local nonlinear equations nH = 0 are solved implicitly.
An elastic trial stress is first assumed and then the true stresses and plastic strains are found
iteratively using a Newton-Raphson procedure. Clearly, if an elastic increment is predicted by
the elastic trial state, then this equation system is satisfied trivially: nλ = n−1λ so nεpl = n−1εpl

and nκ = n−1κ, and the stresses are computed using the elastic constitutive tensor and the
elastic trial stresses.

For plane stress situations, the local nonlinear problem (8.3) can be solved efficiently by
the return-mapping algorithm by Simo and Taylor (1986). Nevertheless, for the purpose of
sensitivity analysis we find it convenient to use the full representation as suggested by Michaleris
et al. (1994).

8.2.2.2 A simplified model based on the Drucker-Prager yield criterion

The Drucker-Prager yield criterion (Drucker and Prager, 1952) is widely used to model the
behavior of pressure-dependent materials such as soils, rock or plain concrete. Moreover, the
von Mises yield criterion can be seen as a particular case of the Drucker-Prager criterion. The
Drucker-Prager yield function is expressed as

f(σ, κ) =
√

3J2 + α(κ)I1 − σy(κ) ≤ 0 (8.4)

where I1 is the first invariant (trace) of the stress tensor. α is a material property depending on
the internal hardening parameter κ according to some hardening function. When α = 0, the
von Mises yield criterion is obtained.

In the study presented in Chapter 7, a Drucker-Prager model with simplified flow and hard-
ening rules is used for interpolating the nonlinear behavior of two candidate materials. This
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interpolation is utilized in a topology optimization procedure aimed at generating optimized
conceptual designs of reinforced concrete structures. One of the example problems in the cur-
rent study is based on the same procedure, therefore a brief review of the governing equations
is given in the following. We assume simple isotropic hardening rules

α(κ) = constant (8.5)

σy(κ) = σ0
y +HEκ (8.6)

Furthermore, an associative flow rule is considered and the hardening parameter is simply the
plastic multiplier

ε̇pl = λ̇
∂f

∂σ

κ̇ = λ̇ (8.7)

The assumptions (8.5), (8.6) are not necessarily suitable for accurate modeling of concrete
but do not affect the ability to capture the most important failure in concrete, that is failure in
tension. Moreover, the relation (8.7) does not accurately represent hardening mechanisms. Nev-
ertheless, it is accurate enough for the purpose of the current study, since post-yielding response
of the steel phase should not affect the optimal choice of material. Upon time discretization, the
local nonlinear equation system for this model is obtained

nH1 = B(nu− n−1u)−D−1(nσ − n−1σ)− (nλ− n−1λ)(
∂f

∂nσ
)T

nH2 =
√

3J2 + αI1 − σy(nλ)

where the internal variables v are
nv =

[
nσ
nλ

]

8.2.3 Load control vs. displacement control

When performing a nonlinear structural analysis it is sometimes useful to increment a pre-
scribed displacement rather than a given load. Controlling the displacement can improve the
numerical stability, for example when a small additional load corresponds to a large additional
displacement or when limit points are encountered (Crisfield, 1991). When applying displace-
ment control, the incrementation parameter n represents the magnitude of the displacement
at a particular degree of freedom whose incremental displacements are prescribed, instead of
representing the load intensity.

In the context of optimal design, using displacement control has some advantages but it is
not necessarily suitable for practical engineering design. In most cases, the designer has prior
knowledge about the loads to be applied on the structure but not about the expected deflections;
it is also not known beforehand if the response is linear or nonlinear. Naturally, nonlinear behav-
ior is not preferable in the majority of practical situations. Therefore an appropriate approach
would be to apply the given loads and to optimize the structure so that the final design behaves
linearly. The main obstacle when following this approach is that for intermediate designs the
response can be highly nonlinear, thus posing difficulties in computing accurate sensitivities and
in obtaining an overall smooth optimization procedure.

When performing a displacement-controlled nonlinear analysis, the global residuals (8.1),
(8.2) are modified respectively

nR(nu,n θ) = nθf̂ext − nfint = 0

nR(nv,n θ) = nθf̂ext −
∫
V
BT nσdV
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where θ is an unknown load factor that multiplies the fixed external load vector f̂ext. In the
context of structural optimization, prescribing a displacement can be useful if we wish to opti-
mize the nonlinear response. By setting the magnitude of the deflection at a critical point in the
structure, it is possible to ensure nonlinear response for all design cycles. Moreover, difficulties
in solving the nonlinear analysis equations corresponding to early design stages are less likely
to occur. This is because the load intensity corresponds to the structural stiffness, and varies
throughout the optimization process.

Applying displacement control in the nonlinear analysis poses some difficulties in defining
appropriate objective functions. Another problem is that sensitivity analysis becomes more de-
manding when non-prescribed degrees of freedom are loaded. These issues are thoroughly
discussed in Chapter 2. As a consequence, the topology optimization problems addressed in this
study are formulated in a hybrid manner: for the nonlinear finite element analysis, displacement
control is utilized; on the other hand, sensitivity analysis is performed as if load control is used,
based on the obtained converged solution.

8.3 Considered topology optimization problems

As mentioned above, the proposed procedures are intended for structural optimization problems
that are solved using the nested approach. This means that the nonlinear structural analysis is
performed separately by standard finite element procedures. The solution is then used for sen-
sitivity analysis and the optimization problem is solved in the design variables only. In this
study, the discussion is limited to structural topology optimization problems, where the design
variables are densities corresponding to finite elements. We follow the material distribution
approach for topological design (Bendsøe and Kikuchi, 1988) together with the SIMP interpola-
tion scheme (M. P. Bendsøe, 1989). A generic form of such an optimization problem, aimed at
minimizing a certain quantity subject to a volume constraint, is as follows

min
ρ

c

s.t.:
Ne∑
e=1

veρe ≤ V

gi ≤ 0 i = 1, ...,m

0 ≤ ρe ≤ 1 e = 1, ..., Ne

with: R = 0

where c is the objective function and gi (i = 1, ...,m) are (optional) additional constraints. The
element densities ρe are collected in the vector ρ; Ne is the number of finite elements; ve is the
element volume; and V is the total available volume. The nested analysis problem is stated here
as a residual problem, R = 0, and takes different forms according to the physical model.

For demonstrative purposes, a few particular topology optimization problems are consid-
ered. Problem (I) involves geometric nonlinearities and addresses the maximization of stiffness
when large deformations are considered. Problem (II) involves material nonlinearities, where
the response is governed by J2 flow theory. The aim is to find a topology that combines high
stiffness with minimum plastic straining. The overall procedure can be seen as an alternative
approach to achieving minimum compliance while satisfying stress constraints, which is a chal-
lenging topic attracting much attention over the years, see Bendsøe and Sigmund (2003) and
recently Le et al. (2010) and references therein. Problem (III) deals with a new extension of
the SIMP interpolation scheme, aiming at optimizing the distribution of two nonlinear materials
whose response can be approximately represented using the Drucker-Prager yield criterion. This
formulation can be utilized for generating conceptual designs of reinforced concrete structures,
as initially presented in Chapter 7.
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In this section, the topology optimization problems addressed in this study are shortly de-
scribed. For each type of problem, the SIMP interpolating functions and the derivation of design
sensitivities are presented.

8.3.1 Stiffness maximization considering large deformations

We consider the simple case of a structure subjected to a concentrated load. In order to avoid lo-
cal buckling modes, the load is distributed between several adjacent nodes. The displacement at
the center of the loaded region is prescribed to a value that corresponds to a large deformation
so that an appropriate nonlinear formulation is required. Since the displacement is prescribed,
the analysis is performed using displacement control. This may be seen as a rather academic
problem because in practice one would typically design for a given load intensity. In general, the
designer would ultimately prefer a linear response but it may be necessary to consider nonlinear
analysis for intermediate design stages. Such topology optimization problems were initially con-
sidered by Buhl et al. (2000) and addressed in numerous later articles, for example by Kemmler
et al. (2005). In the current study, we consider the prescribed displacement version since it
ensures nonlinear response for all design cycles. This is useful for examining the applicability of
the proposed computational procedures, which is the main purpose of this study.

Applying a distributed load while prescribing a single displacement poses a problem when
defining a proper objective for stiffness maximization. As discussed in Chapter 2, maximizing the
global end-compliance θf̂Textu may result in a structure that is very stiff with respect to bearing
the load at the prescribed DOF but very flexible with respect to all other loads. Therefore
the objective is defined as minimizing the end-compliance fext

Tu as if the analysis is load-
controlled and as if the load intensity is constant throughout the optimization. The resulting
procedure combines the advantages of both load and displacement control. On the one hand,
the analysis is more stable numerically and is more likely to converge when the structural layout
is relatively “soft”. On the other hand, the objective is well-defined and should lead to the
best global stiffness with respect to all loads. In practice, this can be seen as a load-controlled
procedure, just that the load intensity varies throughout the design process to fit the prescribed
displacement. Moreover, in the sensitivity analysis it is assumed that the solution was obtained
using load control, which leads to a more straightforward computational procedure.

The quantity to be minimized is therefore the end-compliance, which corresponds to the
final level of the prescribed displacement

c(ρ,u) = fTextu

The nonlinear finite element analysis problem to be solved is given by

R(ρ,u, θ) = θf̂ext − fint(ρ,u) = 0 (8.8)

In principal, incrementation is not mandatory since the evolution of large deformations is not
path-dependent. Therefore it is assumed that (8.8) can be solved in a single increment. If it fails
to converge, the increment is cut and an automatic incrementation scheme is employed.

SIMP interpolation When assembling the tangent stiffness matrix and the internal forces vec-
tor for solving (8.8), Young’s modulus is interpolated as follows

E(ρe) = Emin + (Emax − Emin)ρpEe (8.9)

In general, Emin and Emax are the values of Young’s modulus of two candidate materials which
should be distributed in the design domain. For the case of distributing a single material and
void, Emin is several orders of magnitude smaller than Emax. Finally, pE is a penalization factor
required to drive the design toward a 0-1 layout.
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Sensitivity analysis The gradients of the objective function are computed using the adjoint
method. We begin by forming the augmented objective function

ĉ(ρ,u) = fTextu− λT (fext − fint(ρ,u))

Differentiation with respect to a certain element density gives

∂ĉ

∂ρe
= fText

∂u

∂ρe
− λT (−∂fint

∂ρe
− ∂fint

∂u

∂u

∂ρe
) (8.10)

Using the tangent stiffness matrix corresponding to the final equilibrium point K = ∂fint
∂u and

exploiting symmetry, the following equation is obtained

Kλ = −fext

Finally, the solution for λ is inserted back into (8.10) to give the design sensitivities

∂ĉ

∂ρe
= λT

∂fint
∂ρe

8.3.2 Stiffness maximization considering elasto-plasticity

In the first stage of problem (II), as well as in problem (III), we find the stiffest structural
layout subject to a volume constraint, given a certain prescribed displacement and a reference
distributed load. Applying the hybrid approach again, the objective function considered for
stiffness maximization is

c(ρ,Nu) = fText
Nu

where the total number of increments performed in the analysis is denoted by N , meaning that
the end-displacement vector is Nu. The nested nonlinear analysis problem is now a coupled
system. The residuals nR = 0 and nH = 0 should be satisfied at every displacement increment
n = 1, ..., N . nR and nH are explicitly defined in Sections 8.2.2.1 and 8.2.2.2.

SIMP interpolation The constitutive model corresponding to J2 flow theory involves three
material parameters: Young’s modulusE, the hardening fractionH and the initial yield stress σ0

y .
As mentioned above, an extension to the SIMP approach for interpolating the three parameters
was originally presented by Maute et al. (1998). In this study, we keep H independent of the
design variables so in addition to (8.9) we have

σ0
y(ρe) = σ0

y,min + (σ0
y,max − σ0

y,min)ρ
pσy
e (8.11)

where σ0
y,min and σ0

y,max are the initial yield stresses for the two candidate materials, corre-
sponding to ρ = 0 and ρ = 1 respectively. From a physical point of view, the penalization factor
pσy should be equal to pE , but in many cases it is necessary to set pσy < pE in order to avoid
numerical difficulties arising when low density elements reach their yield limit. This is further
discussed in Section 8.5.

In problem (III), the goal is to distribute two nonlinear materials, one of them represented
by a von Mises model and the other by a Drucker-Prager model. This is achieved by using a
Drucker-Prager model (8.4) with the interpolations (8.9) and (8.11) and adding the following
interpolating function

α(ρe) = αmax − (αmax − αmin)ρpαe

For the choice αmin = 0, the von Mises yield surface is obtained for the material corresponding
to ρ = 1. For ρ = 0 we obtain the Drucker-Prager yield surface with the material parameter
α = αmax.
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8.3.3 Plastic strain minimization considering elasto-plasticity

For solving problem (II), the second stage involves the minimization of the equivalent plastic
strains, subject to a volume constraint and a compliance constraint, and given a prescribed
displacement and a reference distributed load. The objective function considered at this stage is

c(ρ,Nv) =

Ne∑
e=1

4∑
k=1

Nκe,k (8.12)

which is simply a sum over all values of the equivalent plastic strain measured at the Gauss
points. Again, the nonlinear residuals nR and nH are defined in Section 8.2.2.1 according to
the respective elasto-plastic model. The applied SIMP interpolation scheme is the same as above.

8.3.4 Sensitivity analysis for problems involving elasto-plasticity

Sensitivity analysis for topology optimization problems involving elasto-plasticity is fundamen-
tally different than for geometric nonlinearities due to path-dependency of the nonlinear re-
sponse. As mentioned earlier, the framework presented by Michaleris et al. (1994) is followed
when deriving the backwards-incremental adjoint procedure for such problems. The general
procedure, without reference to a particular objective or elasto-plastic model, is presented in
Chapter 2.

For performing the backwards-incremental sensitivity analysis, the derivatives of the global
and local residuals with respect to the analysis variables are required. These are given in this
section for the two elasto-plastic models considered in the current study. In particular, we con-
sider a plane stress situation, meaning the stresses and strains are collected in a vector with
three entries: σ = [σ11, σ22, σ12]T and ε = [ε11, ε22, ε12]T .

For J2 flow theory, the required derivatives are as follows

∂(nR)

∂(nv)
=

[
0(8×3) 0(8×1) −BTwJ(8×3) 0(8×1)

]
∂(nH)

∂(nu)
=


0(3×8)

0(1×8)

DB(3×8)

0(1×8)


∂(n+1H)

∂(nu)
=


0(3×8)

0(1×8)

−DB(3×8)

0(1×8)



∂(nH)

∂(nv)
=


−I(3×3) 0(1×1) ∆nλP(3×3) Pnσ(3×1)

0(1×3) −1(1×1) ∆nλ
√

2
3

nσTP√
nσTPnσ (1×3)

√
2
3
nσTPnσT

(1×1)

−D(3×3) 0(3×1) −I(3×3) 0(3×1)

0(1×3) −2
3HE(σ0

y +HEκ)
(1×1)

nσTP(1×3) 0(1×1)


∂(n+1H)

∂(nv)
=


I(3×3) 0(1×1) 0(3×3) −Pn+1σ(3×1)

0(1×3) 1(1×1) 0(1×3) −
√

2
3
n+1σTPn+1σ

(1×1)

D(3×3) 0(3×1) I(3×3) 0(3×1)

0(1×3) 0(1×1) 0(1×3) 0(1×1)


where B is the standard strain-displacement matrix; w is the Gauss-point weight for numerical
integration; J is the determinant of the Jacobian at the Gauss-point; D is the plane stress
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constitutive tensor; and P and ∆nλ are defined as follows

P =

 2 −1 0
−1 2 0
0 0 6


∆nλ = nλ− n−1λ

For the Drucker-Prager model, ∂(nR)
∂(nv) is the same since it does not depend on the particular

elasto-plastic model employed. The derivatives of the local residual are

∂(nH)

∂(nu)
=

[
B(3×8)

0(1×8)

]
∂(n+1H)

∂(nu)
=

[
−B(3×8)

0(1×8)

]
∂(nH)

∂(nv)
=

[
−D−1 −∆nλ ∂

2f
∂nσ (3×3)

− ∂f
∂nσ

T

(3×1)
∂f
∂nσ (1×3)

−HE(1×1)

]
∂(n+1H)

∂(nv)
=

[
D−1

(3×3)
∂f

∂n+1σ

T

(3×1)

0(1×3) 0(1×1)

]
where the derivative of the yield function with respect to the stress components is given by

∂f

∂σ
=

1

2
√

3J2

[
2σ11 − σ22 2σ22 − σ11 6σ12

]
+ α

[
1 1 0

]
As explained in Chapter 2, when implementing the adjoint procedure, the derivatives of the

local residuals nH and n+1H should maintain consistency with respect to the analysis. This
means that the actual loading/unloading situation encountered within a certain increment af-
fects the computation of the derivatives of the respective residuals nH and n+1H. Therefore the
derivatives of the local residual are matrices of varying sizes, depending on the situation which
is determined exclusively by the elastic trial state as described in Section 1.2.2.2.

The final component required for performing the sensitivity analysis is the derivative of the
residual nH with respect to the design variables, for each of the models considered. For the J2

flow theory model we obtain

∂(nH)

∂ρe
=


0(3×1)

0(1×1)
∂E
∂ρe

D0(nεel − n−1εel)
(3×1)

−2
3(σ0

y +HEκ)(
∂σ0
y

∂ρe
+H ∂E

∂ρe
κ)

(1×1)


where D0 is the elastic constitutive tensor for Young’s modulus equal to 1 and εel are the elastic
strains. For the Drucker-Prager model we obtain

∂(nH)

∂ρe
=

 −∂(D−1)
∂ρe

(nσ − n−1σ)− ∂( ∂f
∂nσ

)T

∂ρe
∆nλ

(3×1)

∂α
∂ρe

I1 −
∂σ0
y

∂ρe
−H ∂E

∂ρe
nλ

(1×1)


where

∂(D−1)

∂ρe
= − 1

E

∂E

∂ρe
D−1

∂( ∂f
∂σn

)T

∂ρe
=

∂α

∂ρe

 1
1
0
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8.4 Re-using information

The main idea behind re-using information is to take advantage of the fact that during the opti-
mization process, we solve a sequence of nonlinear structural analysis problems. In some cases,
the solution to two consecutive nonlinear analyses are similar since they correspond to similar
structural layouts. Consequently, when performing the nonlinear analysis within a certain de-
sign cycle, it may be possible to use information gathered in the previous nonlinear analysis in
order to facilitate a more efficient solution scheme. In the following, we describe three schemes
that are based on re-using solutions (i.e. displacements vectors) and factorizations of tangent
stiffnesses.

Re-using solutions This straightforward scheme is based on keeping the result of the nonlin-
ear finite element analysis corresponding to a certain design cycle, and re-using it as a starting
point for the analysis within the next design cycle. When the changes in the design between two
consecutive cycles are not large, it is expected that also the corresponding displacements will be
similar. Therefore the displacements in a certain design cycle can serve as a reasonable initial
guess for the displacements corresponding to the next cycle. Consequently, it may be possible to
reduce the number of Newton iterations performed for solving the analysis equations, since the
starting point may be closer to the neighborhood of quadratic convergence.

In case the analysis is performed in increments, for example due to path-dependency, the
information transferred between design cycles consists of a set of displacements vectors cor-
responding to the converged states at the end of all increments. As a consequence, the same
incrementation must be applied when performing consecutive analyses. In case a coarser or a
finer incrementation is desired, the analysis should be performed without using an initial solu-
tion.

Re-using displacements vectors goes hand-in-hand with displacement-controlled analysis.
This is because the value of the prescribed displacement is likely to be fixed throughout the de-
sign process, meaning that at the prescribed degree of freedom the initial guess is accurate. This
is demonstrated in Figure 8.1(a) on a force-displacement plot corresponding to the prescribed
degree of freedom (DOF). The aim is to maximize the end-compliance for a certain prescribed
displacement, meaning that the load level rises as the design is improved. At a certain design
cycle k, the displacement vectors un (n = 1, ..., N) corresponding to the solutions of the resid-
uals nR = 0 are saved. Then, when performing the nonlinear analysis at the next design cycle
k + 1, these vectors are used as initial estimates of the solutions. If the prescribed displacement
remains unchanged, then these estimates are accurate at that particular DOF. If the prescribed
displacement is modified or in case load control is employed, the estimates are approximate for
all DOF. Nevertheless, convergence can still be achieved faster than with a standard procedure,
especially if the design changes are small.

Re-using factorized tangent stiffnesses Two other schemes aiming at more significant sav-
ings are inspired by the Modified Newton-Raphson procedure (MNR), where the tangent stiff-
ness matrix is factorized once in the beginning of each incremental step, see for example Bathe
(1996). Then, only forward and backward substitutions are required at each iteration. This
means that convergence of the Newton iterations is slower compared to the standard procedure
but the overall cost may be reduced due to the fewer number of factorizations. When a sequence
of nonlinear analyses is performed, it is suggested to re-use factorizations of tangent stiffness
matrices corresponding to equilibrium at a certain design cycle, in a modified Newton-Raphson
procedure at the next design cycle.

In the classical MNR procedure, the iterations within each increment are performed using
the factorization corresponding to the last equilibrium configuration, meaning the load or pre-
scribed displacement are one step smaller. In the proposed scheme, the iterations are performed
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(a) Re-using displacements as initial estimates for the
next design cycle.

(b) Re-using tangent stiffnesses as approximate stiff-
nesses for the next design cycle.

Figure 8.1: Re-using information between subsequent nonlinear analyses,
demonstrated in a single degree of freedom space.

using the factorization corresponding to the equilibrium point with the same load or prescribed
displacement, but at the previous design cycle. When design changes between subsequent de-
sign cycles are small, this approximate tangent stiffness can be very effective. In practice, the
factorizations that are utilized are those that are performed for the purpose of sensitivity anal-
ysis, since they correspond to the converged equilibrium state and must be computed anyway
after the analysis is complete. This scheme is demonstrated in Figure 8.1(b) on the same plot as
for the first scheme. At a certain design cycle k, the factorized tangent stiffnesses KT as well as
the displacement vectors u corresponding to the solutions of the residuals nR = 0 (n = 1, ..., N)
are saved. Then, when performing the nonlinear analysis at the next design cycle k + 1, a MNR
procedure is performed with the available factorizations and the estimated displacements as
initial guesses.

In our numerical experiments, the MNR procedure converged only when the design changes
between consecutive design iterations were very small. Therefore we suggest a third scheme,
which again is based on transferring the solutions and the tangent stiffnesses to the next design
cycle. Then at each Newton iteration, an inexact Newton step is calculated using a reanalysis
approach. The typical iterative Newton-Raphson equation system to be solved is

nKi−1∆u = nfext − nf i−1
int

where nKi−1 is the tangent stiffness at iteration i − 1 within increment n; ∆u are the iterative
displacements at iteration i; and nfext − nf i−1

int are the un-balanced forces. This can be rewritten
as a reanalysis equation

(K0 + ∆K)∆u = nfext − nf i−1
int (8.13)

Instead of factorizing the tangent stiffness matrix nKi−1 every Newton iteration, the factoriza-
tion of K0 is utilized in a reanalysis procedure. In the current context, K0 corresponds to the
same increment but in the previous design cycle. An efficient solution of (8.13) is obtained using
the Combined Approximations (CA) approach, see Kirsch (2008) for an overview of the method
and Amir et al. (2008) for applications in nonlinear analysis.

In terms of accuracy and efficiency, this scheme is a compromise between the standard and
the modified Newton-Raphson procedures. The iterative step is not as accurate as in a standard
Newton procedure and not as cheap as a modified Newton iteration. Nevertheless, convergence
is achieved in some cases in which MNR fails. Moreover, computational savings are expected
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for medium- and large-scale problems when comparing to the standard Newton-Raphson pro-
cedure.

Monitoring design changes The effectiveness of the proposed schemes strongly depends on
the magnitude of the design changes between subsequent designs. In some cases, these schemes
are applied only once the design changes are small. For this purpose we monitor the cosine of
the angle between subsequent design variable vectors

cos(β) =
ρTk ρk−1

‖ρk‖2
∥∥ρk−1

∥∥
2

(8.14)

8.5 Examples

In this section, we examine the applicability of the proposed schemes by solving several test
problems. Example 1 deals with maximizing the stiffness of a beam undergoing large defor-
mations; Example 2 is concerned with finding a topology that combines high stiffness with
minimum plastic straining, based on J2 plasticity; and Example 3 deals with conceptual design
of reinforced concrete using a Drucker-Prager material model. All test cases were solved using
a 2D finite element mesh consisting of square, bi-linear plane stress elements. The optimization
is performed by a nonlinear optimization program based on the Method of Moving Asymptotes
(Svanberg, 1987). In order to obtain regularized designs and to avoid checkerboard patterns, a
density filter is applied (Bourdin, 2001; Bruns and Tortorelli, 2001).

For each test case, we compare the performance of several schemes employed for solving the
sequence of nonlinear structural analyses. The first scheme, denoted NR, is simply a standard
Newton-Raphson procedure performed independently within every design cycle. In the sec-
ond scheme, denoted FAST-NR, the same Newton-Raphson procedure is used but the solution
of the previous nonlinear analysis (corresponding to the previous design cycle) is used as the
starting point for the Newton iterations. The third scheme, denoted MNR, is only tested on Ex-
ample 1 where the geometric nonlinear analysis is solved in one increment. In this scheme, the
factorized tangent stiffness used for the adjoint equations in one design cycle is used in a mod-
ified Newton-Raphson procedure within the next design cycle. In the other examples involving
elasto-plasticity, we apply the inexact Newton scheme where factorized tangent stiffnesses from
all increments are re-used. Within each Newton iteration, an inexact step is obtained using the
Combined Approximations (CA) reanalysis approach. This scheme is denoted MNR-CA.

8.5.1 Example 1: Large deformations of a clamped beam

In this example, the efficient schemes based on re-using information are tested on a topology
optimization problem involving large deformations. The aim is to maximize the end-compliance
of a clamped beam subject to a prescribed displacement at the middle of the upper fiber, see
Figure 8.2(a). In order to avoid local buckling of loaded finite elements, the load is evenly
distributed between 10 adjacent nodes. The displacement at the upper-center node is prescribed
throughout all design iterations to the value δ = 0.1. The model is discretized with a 200×40 FE
mesh and the volume fraction is set to V = 0.25. Additional data regarding material properties
and optimization parameters is given in Table 8.1.

The optimized design presented in Figure 8.2(b) is achieved after 100 design iterations.
The convergence tolerance (1 × 10−2) referring to the maximum change in an element density
throughout the design domain was not reached. Nevertheless, the process was terminated af-
ter 100 cycles since the changes in objective value, as well as in the optimized layout, were
practically negligible. The end-compliance corresponding to the optimized layout is 0.1661. Ob-
serving the optimized structure, the impact of incorporating large deformations is evident. If

134



Table 8.1: Solution parameters, GNL beam

Parameter Value
Emin 1.0× 10−3

Emax 1.0× 103

ν 0.3
SIMP penalty 3.0
Filter radius 0.075

only small deformations are considered, it is expected that the loaded region will be connected
to the supports in the shortest path using compressed bars. These are unfavorable when large
deformations are considered due to buckling. Therefore the layout consists of a combination of
short bars in compression and longer bars in tension, meaning that buckling of internal members
is avoided. Similar results were reported in various articles, for example by Buhl et al. (2000)
and by Kemmler et al. (2005).

(a) Ground structure, boundary conditions and prescribed displacement.

(b) Optimized layout after 100 design iterations.

Figure 8.2: Maximum end-compliance of a clamped beam subject to a pre-
scribed displacement, considering large deformations.

For this test case, we compare the number of tangent stiffness factorizations performed using
the three schemes: NR, FAST-NR and MNR. The FAST-NR scheme is employed throughout the
whole optimization process, beginning from the second design cycle. Since the MNR scheme
tends to diverge when significant changes in the design occur between subsequent design it-
erations, it is only used once the measure given in (8.14) exceeds 0.999. Until that stage, the
FAST-NR scheme is used instead. The comparison is presented in Table 8.2 for 100 design it-
erations, where the factorizations performed for solving the adjoint systems are also taken into
account. Observing Figure 8.3, it can be seen that the FAST-NR scheme is at least as fast as
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the standard NR scheme, except for the second design cycle. Throughout 100 design iterations,
re-using the solution as an initial point reduces the number of factorizations for nonlinear anal-
ysis by roughly 50%. As for the MNR scheme, it can be seen that once it is employed (after 22
design iterations), no extra factorizations are required for the analysis. This means that within
each cycle, only one factorization is performed for solving the adjoint system. This factorization
is then re-used in the solution of the analysis problem in the next design cycle. Concluding this
example, we note that the objective values and obtained layouts are identical for all solution
schemes.

Table 8.2: Computational performance, 100 design iterations, GNL beam

Solution Newton-Raphson Matrix factorizations
scheme iterations (incl. adjoint)
NR 391 491
FAST-NR 201 301
MNR 363 158

Figure 8.3: The number of matrix factorizations performed for nonlinear
structural analysis, 100 design iterations.

8.5.2 Reducing stress concentrations in an L-bracket

In this example, the proposed schemes are utilized for topology optimization of an elasto-plastic
structure. The aim is to find a conceptual design that avoids significant stress concentrations. As
a representative case we optimize the L-bracket structure, see Figure 8.4 for the problem setting.
This test case is often examined when considering stress constraints in topology optimization,
see for example Le et al. (2010) for a recent report. The model is discretized with a FE mesh
consisting of 6400 elements and the volume fraction is set to V = 0.35.

The overall procedure is as follows. We begin with maximizing the end-compliance for a
prescribed displacement δ = 0.01 which represents an acceptable deflection at the loaded point.
This leads to a topology that is very similar to that obtained using linear material modeling, see
Figure 8.5. In the particular case of the L-bracket, this means there is a significant stress concen-
tration in the re-entrant corner. In the next stage, the objective is to minimize the plastic strains,
subject to a compliance constraint. The target value for the constraint is set in accordance to
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Figure 8.4: Ground structure, boundary conditions and prescribed dis-
placement, the L-bracket problem.

the results of the first stage and with design considerations in mind - how much compromise
can we accept in the compliance in order to achieve a design that has no plastic strains. The
maximum end-compliance achieved at the first stage was 3.65 × 10−4. The target compliance
for the constraint was set to 3.0×10−4, meaning a reduction of roughly 18% in the load-bearing
capacity was assumed to be acceptable.

The minimization of plastic strains is performed in four gradual steps. Each step is termi-
nated when the constraint is satisfied and the objective (8.12) is zero. In the final step, all
material properties and penalty factors are identical to those used for the end-compliance ob-
jective so that the final designs are comparable. Details regarding these parameters are given in
Tables 8.3 and 8.4. The evolution of the optimized design is presented in Figure 8.6. It can be
seen that this procedure leads to an alternative design that avoids transferring the load through
the re-entrant corner. However, this result requires further post-processing since plastic strains
may re-appear when no penalization is applied. With the current penalization, the limit yield
strain is artificially “delayed” in low-density elements in order to avoid numerical difficulties
arising when they reach their yield limit. This means that in the final design, “gray” elements
may actually yield if the true physical properties are considered. We believe that this can be
resolved by either improving the filtering scheme or by simple post-processing.

For the maximum end-compliance objective, we compare the number of tangent stiffness
factorizations required using the three schemes: NR, FAST-NR and MNR-CA. For the minimiza-
tion of plastic strains, only the FAST-NR scheme is compared to the standard NR procedure. The
FAST-NR and MNR-CA schemes are employed once the measure given in (8.14) exceeds 0.999.
Until that stage, the NR scheme is used instead. If the FAST-NR scheme fails to solve the non-
linear analysis at a certain design cycle, then a standard solution is performed instead. If the
MNR-CA fails, then the FAST-NR is utilized for both the current cycle and the following design
cycle. The comparison of performances is presented in Tables 8.5 and 8.6.

It can be seen that the applicability of the efficient analysis schemes differs significantly be-
tween the two design objectives. For stiffness maximization, both the FAST-NR and the MNR-CA
schemes offer some savings in terms of matrix factorizations. When evaluating the actual sav-
ings offered by the MNR-CA scheme it should be taken into account that every inexact Newton
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(a) Optimized layout for minimum compliance,
linear modeling, 100 design iterations.

(b) Optimized layout for maximum end-
compliance, nonlinear modeling with a pre-
scribed displacement, 100 design iterations.

Figure 8.5: Stiffness maximization of an L-bracket.

Table 8.3: Solution parameters, maximum end-compliance of an L-bracket

Parameter Value
Emin 1.0× 10−3

Emax 1.0× 103

ν 0.3
H 0.01
pE 3.0
pσy 2.5
Filter radius 0.015

iteration costs roughly the same as 10 PCG iterations. For the minimization of plastic strains
the FAST-NR scheme fails to reach a converged solution in many design cycles. In such cases a
standard procedure is performed instead and the overall number of factorizations is higher due
to “wasted” factorizations in the FAST-NR attempts.

There are two main reasons for the difficulties encountered in this test case. The first is re-
lated to the path-dependent nature of the solution. If the changes between subsequent designs
lead to a different yielding sequence in the structure, it is expected that any of the efficient
schemes will fail, because the re-used information is related to a different evolution of plastic-
ity. The second obstacle is related to the optimization process. For stiffness maximization, the
topology is roughly determined after 20-30 design iterations. Thereafter the design improves
gradually, mostly by changing the densities of elements on the boundaries. Such design changes
have little impact on the nonlinear response of the structure. However, when minimizing plastic
strains subject to a compliance constraint, we observe significant design changes even in ad-
vanced stages of the optimization process. This may be related to the fact that the design is
driven towards two conflicting targets.
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(a) Step 1: 36 design iterations with pE =
1.5,pσy = 1.0, filter radius r = 0.015 and hard-
ening H = 0.001.

(b) Step 2: 35 further design iterations with
pE = 2.0,pσy = 1.5, filter radius r = 0.015 and
hardening H = 0.001.

(c) Step 3: 51 further design iterations with
pE = 2.5,pσy = 2.0, filter radius r = 0.015
and hardening H = 0.001.

(d) Step 4: 35 further design iterations with
pE = 3.0,pσy = 2.5, filter radius r = 0.010 and
hardening H = 0.01.

Figure 8.6: Minimization of plastic strains in an L-bracket.
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Table 8.4: Solution parameters, minimum plastic strains in an L-bracket

Parameter Step 1 Step 2 Step 3 Step 4
Emin 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

Emax 1.0× 103 1.0× 103 1.0× 103 1.0× 103

ν 0.3 0.3 0.3 0.3
H 0.001 0.001 0.001 0.01
pE 1.5 2.0 2.5 3.0
pσy 1.0 1.5 2.0 2.5
Filter radius 0.015 0.015 0.015 0.010
Design iterations 36 35 51 35

Table 8.5: Computational performance, maximum end-compliance of an
L-bracket, 100 design iterations

Solution Newton-Raphson Matrix factorizations
scheme iterations (incl. adjoint)
NR 1045 1345
FAST-NR 624 924
MNR-CA 1223 610

8.5.3 Conceptual design of a reinforced concrete beam

In this example problem, we address the conceptual design of a reinforced concrete beam.
The aim is to maximize the end-compliance subject to a constraint on the amount of available
reinforcing steel. This example is identical to Example 2 in Chapter 7, so many of the details are
omitted here and the discussion is limited to the application of efficient analysis procedures. The
beam is subject to a distributed load and the analysis is controlled by a prescribed displacement
at the middle of the top fiber, see Figure 8.7(a) for the problem setting. The model of the
symmetric half is discretized with a 160 × 40 FE mesh; the volume fraction is set 0.1; and the
magnitude of the prescribed displacement is δ = 0.005. The load is modeled as 10 equally
spaced point loads on one half of the beam. As in the previous example, gradual changes in
penalization and filtering are necessary for obtaining the final design, see Table 7.3 for details.
The optimized layout presented in Figure 8.7(b) is obtained after 150 design iterations.

Again we compare the number of tangent stiffness factorizations required using the three
schemes: NR, FAST-NR and MNR-CA. The FAST-NR and MNR-CA schemes are employed once
the measure given in (8.14) exceeds 0.999. Until that stage, the NR scheme is used instead. If the
FAST-NR scheme fails to solve the nonlinear analysis at a certain design cycle, then a standard
solution is performed instead. If the MNR-CA fails, then the FAST-NR is utilized for both the
current cycle and the following design cycle. The comparison of performances is presented
in Table 8.7. It can be seen that some savings are possible in terms of the number of matrix
factorizations. However, the difficulty arising due to path-dependency of the solution leads to
numerous failures of the efficient schemes. Consequently, the savings are not as promising as
for path-independent problems.
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Table 8.6: Computational performance, minimum plastic strains in an L-
bracket, 157 design iterations

Solution Newton-Raphson Matrix factorizations
scheme iterations (incl. adjoint)
NR 1979 2638
FAST-NR 2129 2788

(a) Ground structure and boundary conditions.

(b) Optimized layout after 150 design iterations with gradual penalization and filtering.

Figure 8.7: Maximum end-compliance of a simply supported reinforced
concrete beam subject to a distributed load. Black = steel, white = con-
crete. Steel consists of 10% of the total volume.

8.6 Summary and conclusions

Efficient schemes for nonlinear structural analysis in topology optimization were presented. The
main idea is to transfer information between subsequent structural analyses, namely solutions
and factorizations of tangent stiffnesses. It was shown that savings in computational effort
can be achieved, essentially by reducing the number of matrix factorizations performed in the
nonlinear structural analysis.

The suggested approach is most suitable for path-independent nonlinear response. For path-
dependent problems such as elasto-plasticity, the efficient schemes are applicable only when the
design changes between subsequent cycles are small. In future work, we hope to extend the
approach for the case that a Newton-Krylov method is employed for the nonlinear analysis.
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Table 8.7: Computational performance, 150 design iterations, reinforced
concrete beam

Solution Newton-Raphson Matrix factorizations
scheme iterations (incl. adjoint)
NR 2354 2814
FAST-NR 1935 2395
MNR-CA 2894 1671
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