View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
oo
oo
oo
Dial-a-Ride

Jargensen, Rene Munk; Madsen, Oli B.G.

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jargensen, R. M., & Madsen, O. B. G. (2003). Dial-a-Ride.

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13746281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/dialaride(34b0537c-5527-45b5-ac65-448630461f7b).html

Dial-a-Ride

by

RENE MUNK JORGENSEN

SUPERVISOR
Professor, Dr.techn. Oli B. G. Madsen

Submittet in partial fulfillment of
the requirements of the degree of

DOCTOR OF PHILOSOPHY

CENTRE FOR TRAFFIC AND TRANSPORT
Technical University of Denmark

June 30, 2002

i
ISBN 87-91137-10-1

ISSN 1600-1575

Report 2004-1

(©COPYRIGHT 2002

by
René Munk Jgrgensen

Trykt af XXXXXXXXXX

XXX

il

iv

XXX

Preface

Entitled “Dial-a-Ride” this thesis concerns the use of operations
research methods when solving the practical Dial-a-Ride problem.
The thesis was prepared by René Munk Jgrgensen during the pe-
riod March 1999 to June 2002, partly at the department of In-
formatics and Mathmatical Modelling (IMM), and partly at the
Center for Traffic and Transport (CTT), both related to the Tech-
nical University of Denmark (DTU).

The Ph.D. was supervised by Professor Oli B. G. Madsen, and it is
submitted in partial fulfillment of the requirements of the degree
of Doctor of Philosophy at the Technical University of Denmark.
The project was financed by the Technical University of Denmark.

Acknowledgements

First and foremost I would like to thank my supervisor Oli B. G.
Madsen for excellent support and encouragement throughout the
entire project. I would also like to thank my former colleagues
from section of Operations Research at IMM, especially Jesper
Larsen for beeing positive, friendly, and helpfull during the period
in which we shared office space. As for the last half of the duration
of this project, I would like to thank Brian Kallehauge with whom
I shared the office. Brian helped making the change from IMM
to CTT painless and in many counts our discussions have kept the
project on track.

A special thanks goes to Centre de Recherche sur les Transports at
Universié de Montréal in Canada, where Jean-Yves Potvin, Michel
Gendreau, and Francois Guertin always had time to help and pro-
vide me with valuable input.

vi PREFACE

As for the practical part of this project, I would like to thank
Palle at Jensens Turisttrafik for taking the time to describe the
practical aspects of the Dial-a-Ride problem and to provide data
and scenarios. Also I would like to thank Jesper Bislev, who helped
develope InfoRoute as part of his Masters thesis. Professor David
Ryan visited CTT during the last part of my Ph.D., and I would
like to thank him for taking the time to be so generous with red ink.

Last but not least I would like to thank my family. My wife for sup-
porting me when things were not always performing as expected,

and for her endless patience with me during the phases of the
project.

Kgs. Lyngby, June 2002

René Munk Jgrgensen

Summary

The Dial-a-Ride problem is a Vehicle Routing problem in its most
general form. The problem was formulated in the beginning of the
1970’s and since then a large number of researchers have worked
on developing efficient algorithms for use in automated planning of
Dial-a-Ride transportation systems.

In a Dial-a-Ride transportation system, passengers request a trip
between two stops with either a desired time of departure from
the pickup stop or a desired time of arrival at the destination.
The time windows at the stops are then calculated by the operator
based on additional parameters such as maximum excess ride time
and allowed deviation from desired service time. All vehicles start
and end at a depot, which can be different for each vehicle. The
fleet of vehicles is heterogeneous meaning the vehicles can have a
different capacity of passenger seats, wheelchairs and beds.

The problem is then an extension of the Capacitated Vehicle Rout-
ing Problem with Time Windows (CVRPTW) with the additional
constraints that a pickup stop must precede a delivery stop for a
passenger, and that both a pickup stop and a delivery stop related
to the same passenger must be assigned to the same vehicle. The
objective is to minimize the cost of operation similar to the objec-
tive for the CVRPTW, with the extension that the level of service
to the passengers is considered.

Several algorithms for solving the Dial-a-Ride problem have been
proposed in the litterature. Because of the complexity of the Dial-
a-Ride problem, most methods described in the litterature are
based on various insertion techniques often coupled with some sort
of clustering of stops, but since 1980 some experiments have been
performed with dynamic programming, column generation and set

vil

viii SUMMARY

partitioning. In recent years meta heuristics have also been ap-
plied to the problem. The metod used in this thesis is based on
a clustering first insertion second technique developed at CRT in
Canada in the mid 1980’s.

The algorithm is extended to include constraints imposed by a
practical Dial-a-Ride problem at a Danish transportation opera-
tor. These constraints are mainly related to a generalization of
capacity to include substitution of seats to wheelchairs and beds,
but also extensions to the objective to give a better view of pas-
senger comfort are included.

To enable practical use of the algorithm, it is incorporated in the
developed user interface and linked with a digitized road network.
The user interface is developed as generically as possible making it
reuseable in all sorts of Vehicle Routing problems. The foundation
of the user interface is a database for storing customers, requests,
routes etc.

The digitized road map is included in the developed software by
use of MapX, which is a program developed and sold by Maplnfo
Corporation. MapX handles the visualization of the map layers,
selections, and labels. The road network is read from MapX into
a different network structure in memory to allow for a more intel-
ligent calculation of shortest path between stops and vehicle posi-
tions.

Unfortunately data from actual Dial-a-Ride transportation systems
is not readily available, so tests are based on data generated in this
project. While the algorithm performs as expected, other results
such as the stable performance of the different modules in the de-
veloped software and the developement of a practical setting for
solving the Dial-a-Ride problem are equally important.

Resumé 1n Danish

Dial-a-Ride Problemet (DARP) er et Vehicle Routing Problem i
dets mest generelle udformning. DARP blev fgrst formuleret i beg-
yndelsen af 1970’erne, og siden har der veeret en anseelig forskning
i at udvikle effektive algoritmer, som kan assistere ved en automa-
tisk planlsegning i Dial-a-Ride transportsystemer.

I denne type af transportsystemer bestiller passagerer en tur mellem
to stoppesteder, som i nogle tilfaelde er fastlagte steder og i andre
tilfzelde er selvvalgte adresser. I forbindelse med valg af desti-
nationer specificerer passageren ligeledes enten et gnsket tidligste
afhentningstidspunkt eller seneste afleveringstidspunkt. Tidsvin-
duerne pa de to stoppesteder beregnes herefter af operatgren ved
hjeelp af eksternt fastsatte parametre s& som maksimal ungdvendig
rejsetid og tilladt afvigelse fra gnsket afhentnings- eller aflever-
ingstidspunkt. Maksimal ungdvendig rejsetid er den faktiske re-
jsetid fratrukket den kortest mulige rejsetid.

Den benyttede vognpark er heterogen, og det antages, at alle vogne
starter og slutter pa et eller flere depoter. Med heterogen vogn-
park menes vogne, som kan have forskellig kapacitet og indretning
i forbindelse med sader, kgrestole og senge.

DARP er siledes en udvidelse af the Capacitated Vehicle Rout-
ing Problem med Time Windows (CVRPTW) med nogle ekstra
begrensninger. Disse begraensninger siger, at et afhentningsstop
skal besgges af en vogn fgr et afleveringsstop, samt at to stop re-
lateret til samme passager skal besgges af samme vogn. Malet
i planlaegningen er at minimere de samlede kgrselsomkostninger
som i CVRPTW med den udvidelse, at der skal tages hensyn til
serviceniveauet for passagererne, som maksimeres.

X

X RESUME IN DANISH

Den eksisterende litteratur inden for omradet praesenterer adskil-
lige algoritmer, som kan lgse Dial-a-Ride problemet. P& grund af
kompleksiteten og stgrrelsen af praktiske Dial-a-Ride problemer,
er de fleste algoritmer baseret pa forskellige indsasetningsteknikker,
som i mange tilfeelde er suppleret af forskellige former for grupper-
ing af stop. Siden 1980 er der dog ogsa forsket en del med metoder
inden for dynamisk programmering, sgjlegenerering og “set parti-
tioning”. I de senere ar er forskellige former for meta heuristikker
ogsd spgt benyttet. I dette projekt er der taget udgangspunkt i
en metode udviklet af CRT i Canada. Metoden grupperer fgrst
stoppene, hvorefter de indsaettes i ruter.

Metoden fra Canada er udvidet til at tage hgjde for forskellige
faktorer fra et virkeligt problem hos en dansk transportgr. Disse
faktorer har primeert relation til kapaciteten af vognene, hvor det
er muligt at omlaegge nogle sseder til kgrestole eller senge men ikke
altid den anden vej rundt. Herudover er malfunktionen sendret til
at give et mere detaljeret billede af serviceniveauet for passager-
erne.

For at undersgge metodens brugbarhed i praksis, er den koblet med
en grafisk brugergraenseflade, som er baseret pi en meget generel
database forberedt til lagring af data relateret til alle kendte typer
af ruteleegningsproblemer. Hele den grafiske brugergraenseflade er
opbygget modulaert, hvilket giver mulighed for genbrug ved lgsning
af andre typer af problemer. Til at visualisere data pa vejkort er
programmet MapX benyttet, men for at sikre en hurtig beregning
af korteste veje mellem stop og biler, leses vejdata ind i comput-
erens hukommelse i en speciel netvaerksstruktur. Herefter er et
korteste vej modul tilknyttet graensefladen.

Det har desveerre ikke vaeret muligt at benytte data fra eksisterende
Dial-a-Ride transportsystemer, idet denne data ikke er umiddel-
bart tilgeengelig. I stedet er der genereret et realistisk datasaet,
hvorpa metoden er testet. Metoden fungerer som forventet, hvilket
dog kun er en del af det samlede resultat, idet sammenkoblingen
af de forskellige dele af den udviklede software i en grafisk bruger-
graenseflade med de udfordringer som opstar herved, er en lige sa
vaesentlig del af projektet. Resultatet er en stabil og velfungerende
softwarepakke, som dog stadig mangler en del i at veere fuldt funk-
tionsdygting i kommerciel sammenhang.

Contents

Preface v
Summary vii
Resumé in Danish ix
1 Terminology and abbreviations 1
1.1 Definitions 0 it e e e e e e e 1
1.1.1 Demand responsive transportation 1

1.1.2 Public transportation 4

1.1.3 Levelofservice 4

1.2 Table of abbreviations 6

2 Introduction 7
2.1 Example of a DAR transportation system 9
2.2 OVerviewt v i i it e e e e e e e e e e e e e e 11

3 Thesis objectives 13
3.1 Scientificcontents 13
3.2 Practicalcontents 14

4 Problem formulation 17
4.1 Jensens Turisttrafik 17
4.2 Static vs. dynamic Dial-a-Ride. 20
4.3 Related problems 21
4.4 Parameter setting 22

5 Previous work 25
5.1 Papersurveyottt 25
5.1.1 Chronological overview 53

5.2 Dial-a-Ride in Denmark 54

xi

xii

5.2.1
5.2.2
5.2.3

5.2.4
5.2.5

CONTENTS

Standard of reference
Initial projects,
Knowledge center for public transportation
in rural areas (CPTRA)
Projects partly funded by CPTRA
Comments and comparison

6 The mathematical model

7

9

6.1 Notation and basicmodel
6.2 The objective function.
6.3 Timewindows. &« i i v i v v e v
6.4 Capacity i i e
6.5 The extended mathematical formulation

Existing software

7.1 MobiRouter & @ @ i i i i it
7.2 Transmation . . . v v v v v v v v v e e e e e e e e
7.3 SUMMATY . v ¢ v v v v v v et et e e e e e e e e

Shortest Path Problem - MLThreshX?2

8.1 Overview« v v i v it i i e e e e e e e e
8.2 Definition and notation
8.3 Choosing the right algorithm
84 L-Thresh-X2.,
8.5 Road network design.
8.6 ML-Thresh-X2
8.7 Implementation,
88 Results e
89 Futurework 0.,
InfoRoute
9.1 Databasedesign,
9.1.1 Customer,
9.1.2 Request0
9.1.3 RepeatRequest and RepeatRequestType
9.1.4 TypeRH and TypeRV
9.1.5 Vehicleand Depot.
9.1.6 ConversionTable
9.1.7 SolRequest
9.1.8 SolRoutes

9.1.9

SolVehicle.« v v v v

54
%)

S7
61
64

69
69
74
76
78
79

81
81
82
83

85
85
86
86
87
89
91
93
94

CONTENTS xiii

10

9.1.10 OVverview v v v v v v v v v v vt e 109
9.2 Userinterface 109
9.2.1 Starting InfoRoute and Using the Toolbars . 109
9.2.2 The Horizontal Toolbar. 112
9.2.3 The VerticalToolbar. 113
9.24 TheMenultems 115
9.2.5 “Find adresse” 117
9.2.6 “Find Korteste Vej” 119
9.2.7 Manipulating Map Layers 120
9.2.8 Create New Customer 122
9.2.9 Editing and Erasing a Customer 123
9.2.10 Creatinga Request 124
9.2.11 Editing and removing requests 125
9.2.12 Summing up00 o 127
9.3 OtherResults 127
9.4 Representation of road data - MapX 128
9.5 Implementation. 130
9.5.1 Structure 0000 130
9.5.2 Database 00000 130
9.5.3 MFCttt 134
9.5.4 Map interface 135
9.5.5 The Work Process 136
9.6 Perspectives o it e s e e e e e e e 137
9.6.1 Possibilities for Adaption to Transportation
Branches 137
9.6.2 Inserting new Algorithms in the Program . . 137
9.6.3 MapX . . . i it e e e e e e e e e e e e e 138
9.7 The Users Experience 139
Multi capacity Cluster algorithm - McCluster 141
10.1 Problem characteristic. 141
10.2 Choosing the structure of the algorithm 142
10.3 Implementation 144
10.3.1 Capacity, 145
10.3.2 Time windows o.... 146
10.3.3 Affinity values 149
10.3.4 Inmitializing 150
10.3.5 Imsertion v v v v v v 155

10.4 Adding McCluster to InfoRoute 159

xXiv

11 Results

11.1 Jensens Turisttrafik
11.2 Data generation
11.3 Simulated data
11.4 General comments

12 Improving solutions
12.1 Forecasting
12.2 Graphical User Interface

13 Conclusion

Litterature

CONTENTS

Chapter 1

Terminology and abbreviations

The following chapter will give an introduction to the terminology
used throughout this thesis. The definitions are for the most part
reflections of the author and thus designed to give the reader the
necessary background information prior to reading the thesis. The
hope of the author is to make the thesis accessible to anyone with
no prior experience with operations research.

1.1 Definitions

This section will list the terminology needed to define the Dial-a-
Ride Problem. Since the methods described later in this thesis are
used to solve problems in public transportation, an introduction to
different types of public transportation will presented secondly.

1.1.1 Demand responsive transportation

e Transport
Noun: Something that serves as a means of transportation.
Verb: Move goods or people from one place to another.

e Transportation
The act of performing a transport.

e Vehicle
A conveyance (train, bus, taxi etc.) that transports people or
goods.

CHAPTER 1. TERMINOLOGY AND ABBREVIATIONS

Depot
The origin and final destination of a vehicle, or an intermedi-
ate depot for refuelling or reloading.

Stop
Where transport vehicles load or unload passengers or goods.

Trip

A collection of stops serviced by the same vehicle. The ve-
hicle starts and ends a trip empty, but is never empty while
performing the trip. A trip can also be the empty driving
between two trips.

Route
A collection of trips.

Scheduled route
A route which will be serviced at a scheduled time. Scheduled
routes are planned far in advance of the actual service.

Tele bus

A bus without scheduled routes to service. In order to be
transported by a tele bus, customers must contact the opera-
tor and place a request for transportation.

Coverage

The frequency of which vehicles service a scheduled route cou-
pled with the geographical distance between scheduled routes,
and the size of the vehicles servicing the routes.

System

The term system is used to define the borders of an environ-
ment. Everything within a system has similar characteristics,
and a system can enclose multiple smaller systems or be part
of a larger system.

Transportation systems

An enclosed system with various transports of goods or peo-
ple. The system can be just one transport or an intercon-
nected series of transports between stops with a heteroge-
neous fleet of transport vehicles originating from various de-
pots.

1.1.

The

DEFINITIONS 3

Regular transportation systems

All transports within the system are performed according to
a predefined schedule. The systems capacity is fixed in an op-
erational time horizon. Changes in the system are performed
at the strategic level often with massive impacts on the overall
economy of the system.

Demand responsive transportation

Transports are performed according to demand within a short
time horizon. Capacity is flexible within the operational time
horizon with minimal overall change in cost. Demand respon-
sive transportation can be combined with a regular trans-
portation system to improve the overall flexibility of the sys-
tem.

Demand responsive transportation system
A system where the main characteristic is demand respon-
siveness.

Pickup-and-Delivery transportation

The term Pickup-and-Delivery is used when dealing with the
transportation of goods. This type of transportation is char-
acterized by the vehicle’s ability to both pick up and deliver
goods along the same route without visiting a depot in be-
tween. The goods do not necessarely have to be both picked
up and delivered on the same route.

Dial-a-Ride transportation

Dial-a-Ride transportation is a generalization of Pickup-and-
Delivery transportation. The objects being tranported here
are people, which adds extra restrictions related to customer
inconvienience. In Dial-a-Ride transportation people have to
be picked up and delivered along the same route. Our objec-
tive is partly to minimize the travel time and waiting time
for customers using this type of transportation, and partly to
minimize the overall cost of transportation.

Dial-a-Ride Problem
The problem is to construct algorithms to assist in automated
planning for a Dial-a-Ride transportation system.

scale of the demand responsive transportation system is often

limited to local transportation systems which are then connected

4 CHAPTER 1. TERMINOLOGY AND ABBREVIATIONS

to a regional transportation system. This is due to the fact that
variations in demand usually decreases proportionally to the scale
of the system, or one could say that estimates of demand are in-
creasingly accurate with increasing system size.

1.1.2 Public transportation

When considering a public transportation system it is necessary to
differentiate between three types of transport:

e Regular public transports
These transports involve the moving of the main body of the
population between stops. This is often implemented as a
regular transportation system providing a certain degree of
mobility within the community.

e Specialized public transports
This includes all transports that can not be served by the
regular transportation system because of special needs of the
people being transported. Examples are:

— transportation of senior citizens
— transportation of permanently handicapped

— transportation of temporarely disabled.

e Delivery of goods
In combination with the movement of people within the pub-
lic transportation system, there is also a need to transport
various goods to the citizens of a community. An example
could be food for senior citizens, books from the library to
disabled citizens etc.

1.1.3 Level of service

A very important part of transportation systems is the level of ser-
vice they provide to customers. It is very complicated to meassure
the level of service, since it is a mix of many different physical and
psycological factors. To simplify this, we will devide level of service
into the following two groups where focus is on transportation of
people:

e Strategic level of service

1.1. DEFINITIONS 5

type of transportation system
— frequency of scheduled routes
— geographical proximity of scheduled routes

— physical sorroundings at fixed stops
e Operational level of service

— average excess transportation time for passengers
— average deviation from expected time at stops
— waiting time at stops

— waiting time in idle vehicles

Strategic measures often involves comparatively large investments
or at least major changes in the existing transportation system.
Notice also, that the service parameters mentioned in the strategic
group for the most part involved looking at the previously men-
tioned coverage. The better coverage of the chosen transportation
system, the more service the system offers to its passengers.

In this thesis, we will focus mainly on the operational level of ser-
vice. In a regular strictly fixed schedule transportation system,
the measures on the operational level also becomes strategic in
the sence that they are determined by the coverage of the system.
However, in a demand responsive transportation system, it is pos-
sible to control the operational level of service parameters directly
in the dynamic planning process.

6 CHAPTER 1. TERMINOLOGY AND ABBREVIATIONS

1.2 Table of abbreviations

Abbrev. | Description

DAR Dial-a-Ride

DARP | Dial-a-Ride Problem

DTD Door-to-Door

EU European Union

™ Time Window

PDP Pickup-and-Delivery Problem
MFC Microsoft, Foundation Classes
DSP Data Storing and Processing
GUI Graphical User Interface

Table 1.1: Table of abbreviations

Chapter 2

Introduction

As still more and more people and goods are being transported
around the world, the present global development is going to em-
phasize demands on transportation in the future. An efficient and
ever evolving transportation sector is crucial for the competitive-
ness of a society, just as it will be a prerequisite for growth and
dynamic adaption to future demands.

One of the key elements in the necessary development of trans-
portation systems, is an advanced IT-structure including software
based systems for decision support. As the techniques for mod-
elling and simulating transportation systems improve together with
the performance of modern computers, the use of automatic or
semi-automatic decision support software systems will play an im-
portant role in future transportation planning.

In the European economy the transport sector employs around 6.3
million persons, which is 4.1% of all persons employed, amounting
to 4% of the gross national product (GNP). The transportation
equipment industry employs around 2.6 million people. The over-
all cost of transportation within the EU when including private
transportation is estimated to account for 17% of the total GNP
of the union!. In Denmark transportation accounted for 13% of
the gross national product in 1981 and 15% in 19942, so it seems
natural to examine this area when looking to reduce costs.

“EU Energy and Transport in figures 2001”, European Commission, Directorate-
General for Energy and Transport, 2001.
ZTrafikredeggrelse 1997”7, Trafikministeriet, 1998.

7

8 CHAPTER 2. INTRODUCTION

Transportation is also one of the major contributors to the increas-
ing problems concerning the environment. In 1999 transportation
within the European community accounted for around 28% of the
total CO, emission'. By improving the efficiency of transportation,
the total distance travelled is usually decreased, which again has a
very positive environmental side effect.

This thesis will concentrate only on public transportation, which in
recent years has received increasing focus on modernisation both
politically as well as in the media. Public transportation includes
transportation of disabled and other specialized public transports
as well as ordinary public transportation. When looking at or-
dinary public transportation, one can see that modernisation is
especially important in sparsely populated areas.

In Denmark the yearly budget for public transportation is around
4 billion kroner (est. US$ 500 million). About half of these funds
are used to run the regular public transportation system, and the
other half constitutes the cost of the specialized public transports.
In short there is a comparatively small set of people who use half
the total budget for public transportation.

As the pressing need to cut costs conflicts with the need for better
service within the sector of public transportation, operators are
seeking better ways of structuring public transportation. There
are many examples in Denmark, especially in rural areas, where
large buses drive entire routes with the driver as the only passen-
ger. To solve this problem, coverage is reduced by merging routes
geographically and decreasing frequency. However reducing cover-
age does not seem to be the right way to reduce costs, since this
only adds to the increasing amount of private transportation by
car. Also by reducing coverage, a small and relatively fragile part
of the population is held at a comparatively large disadvantage,
since they do not have access to private vechicles.

Keeping the above in mind, we can establish a set of goals for
the public transportation system. One is to improve the level of
service by extending the existing coverage or by improving over-

“EU Energy and Transport in figures 2001”, European Commission, Directorate-
General for Energy and Transport, 2001.

2.1. EXAMPLE OF A DAR TRANSPORTATION SYSTEM 9

all coverage, and two is to minimize costs. These objectives are of
course conflicting, but fortunately the existing system has room for
improvement, meaning that results have shown that better trans-
portation systems can be developed without increasing costs and
sometimes even decreasing them.

There are several ways to improve the public transportation sys-
tem, and many of them are being or have been tested in recent
years. One improvement can be found in various types of outsourc-
ing. One type of outsourcing that looks to be especially profitable
involves funding on the basis of passenger-kilometer. This fund-
ing provides the private contractor with an incentive to increase
passenger numbers, thus fullfilling some of the goals of the public
transportation system.

This thesis will focus on the planning of demand responsive Dial-a-
Ride transportation systems, where regular buses are substituted
with tele buses to drive not only fixed routes but also variable
routes on demand. Furthermore the flexibility of the Dial-a-Ride
system can be a way to merge the specialized public transports with
the regular public transports. The hope is to both reduce cost and
improve overall coverage of the public transportation system.

2.1 Example of a DAR transportation system

The simplest form of DAR tranportation can be found in a taxi
system. Here there is one pickup and one delivery on the same
trip. There might be special cases where there is more than one
delivery (e.g. when collecting a group of people with slightly dif-
ferent destinations), but for the most part the problem consists of
allocating a vehicle to pickup a person or a group of persons at
one location, and then take the shortest or fastest route to a single
destination. After performing the transport, the vehicle is driven
empty to the pickup point of the next request.

In taxi systems, capacity is of no concern when looking at the
individual vehicles, but the overall capacity of the system (e.g. the
number of taxis) can be restrictive. From the operator’s point of
view, the problem consists of minimizing the number of needed
taxis and the distance driven with empty taxis. However this con-

10 CHAPTER 2. INTRODUCTION

flicts with the need to minimize customer inconvenience, since in
taxi systems this consists only of the time a customer has to wait
for a taxi to become available and arrive at the pickup location.
So, the need to minimize customer inconvenience conflicts with
the need to minimize the number of taxis. It becomes even more
complicated when considering the fact that minimizing customer
inconvenience also means that sometimes it is necessary to drive a
taxi empty a comparatively long distance to serve the next request.

The above description of the taxi system serves to give an intro-
duction to the complexity involved when seeking to solve DARP.
Later in the thesis it will become clear that the taxi system is in
fact one of the simplest recognized DAR transportation systems.

2.2.

2.2

The
tion

OVERVIEW 11

Overview

following chapters are introduced below with a short descrip-
of what is discussed in each chapter.

Chapter 3 The problem and main focus of this thesis will be
stated. The chapter is divided into two sections addressing
respectively the scientific goals and the practical issues.

Chapter 4 This chapter gives a description of the practical
problem at a bus operating company in Denmark and its re-
lation to other recognized problems within the area of vehicle
routing.

Chapter 5 Some research has been done on the Dial-a-Ride
Problem around the world. This chapter will give an extensive
introduction to this research as well as provide the motivation
for choosing the solution method used herein. The last part
of this chapter will focus on the research and practical work
performed in Denmark.

Chapter 6 Using a mathematical formulation as a discussion
approach, the various aspects of dial-a-ride problems are dis-
cussed in detail. This chapter will also address formulations of
objectives and constraints not previously seen in the existing
litterature.

Chapter 7 This chapter gives a brief introduction to two com-
mercially available software packages developed to assist in
automated planning for a Dial-a-Ride transportation system.

Chapter 8 To obtain distances on a real road network, a Short-
est Path algorithm has been developed. This algorithm uses
an alternative network structure to account for restrictions on
the road network, and to obtain distances in short computa-
tional time.

Chapter 9 This chapter discusses a project consisting of prepar-
ing a multi purpose graphical user interface for representing
data and solutions regarding vehicle routing problems. This
chapter will introduce the functionality and implementation
aspects of the interface.

12

CHAPTER 2. INTRODUCTION

Chapter 10 This chapter presents a description of the en-
hanced mini cluster algorithm (McCluster) used to solve the
Dial-a-Ride problem will be presented here. To some extent
the chapter will focus on the handling of some of the con-
straints imposed by pratical applications of Dial-a-Ride.

Chapter 11 McCluster has been run on various constructed
and real datasets. Results will be discussed here with focus
on aspects of future practical implementation.

Chapter 12 Improving solutions obtained with McCluster can
prove vital in acommodating as many customers as possible
in a Dial-a-Ride system. Different intelligent approaches are
suggested here.

Chapter 13 Goals and focus points stated in chapter 4 will be
addressed in this last chapter.

Chapter 3

Thesis objectives

This chapter is divided into two sections concerned with respec-
tively the scientific and the practical goals of the thesis. The sec-
tions will define the framework of this thesis.

3.1 Scientific contents

Based on realistic practical problems, the main focus of this the-
sis is to develop a new or improve an existing algorithm aimed
at solving the dynamic Dial-a-Ride Problem. The algorithm will
be designed for solving real-time problems and be efficiently im-
plementet to enable practical use. The theoretical background of
Dial-a-Ride Problems is described and existing literature exam-
ined.

The thesis will use clustering and insertion heuristics as a starting
point since these heuristics have proven to perform well in practical
environments with short run-times and reasonable results. When
using such heuristics, the implementation will aim to incorporate
as many practical constraints as possible to ensure proper mod-
elling of real life problems.

When solving Dial-a-Ride Problems the distances between cus-
tomers and depots must be known. To obtain this information,
a shortest path algorithm will be implemented for use on real road
digitized networks. This algorithm will show to perform adequately
according to the practical use of the Dial-a-Ride algorithm, mean-
ing that the run-time of the shortest path algorithm will be low

13

14 CHAPTER 3. THESIS OBJECTIVES

enough to ensure a low overall run-time.

To provide a theoretical background to developed algorithms, a
mathematical formulation of the Dial-a-Ride Problem is given in
the thesis. Parts of the model will be derived directly from the
existing literature, whereas other parts will be a new contribution
to the area. The mathematical formulation will be thouroughly de-
scribed, and strong points and limitations to the formulation will
be mentioned.

A major part of the thesis will be to give an extensive overview
of the existing literature concerning Dial-a-Ride Problems. This
overview will focus on solution methods, results, and practical us-
ability.

3.2 Practical contents

Besides focusing on the scientific aspects mentioned in the previ-
ous section, there are several aspects that needs to be examined in
order to ensure the future practical use of the developed planning
method.

First a user interface is developed to enable on screen visualization
of results on real road networks. This user interface will enable
users to do the following:

e Use the underlying road network to lookup addresses and per-
form shortest path calculations.

e Input and correct customer and request data.
e Run the algorithm developed and described in this thesis.
e Visualize real-time data such as vehicle positions.

A database for storing and manipulating requests within the user-
interface will be constructed. This database is able to import and
export data from various formats, just as the structure should fit
all known types of Dial-a-Ride problems and the practical infor-
mation needed in daily operations.

3.2. PRACTICAL CONTENTS 15

The overall implementation will be object oriented and imple-
mented in C++ to follow the trends in modern computing and
to improve readability of the source code. This will also ensure the
possibility of incorporating source code in COM (common object
modules), and thus make the implementation somewhat indepen-
dent of Operating System.

16

CHAPTER 3. THESIS OBJECTIVES

Chapter 4

Problem formulation

Based on the definition of DARP stated in 1.1.1, this chapter will
first give an example of a typical and very complex DAR trans-
portation system, as it is seen at the Danish bus operator Jensens
Turisttrafik. This will be followed by an introduction to static
vs. dynamic DARP and the relation to other recognized problems
within the area of Vehicle Routing. The chapter will conclude with
a general and somewhat social discussion of parameter setting.

4.1 Jensens Turisttrafik

A description of the Dial-a-Ride problem handled by Jensens Tur-
isttrafik (JT) offers a good overview of the complexity of real world
transportation systems. At the same time the reasonable size of
the problem at JT makes it possible to get into all aspects of prac-
tical transportation needs.

In the municipality of Skovbo in Denmark, JT operates three flex-
ible bus routes. A typical schedule of one of these routes is found
in figure 4.1, showing a mix of regular, DAR, and prioritized stops.
The schedule is most easily explained by a summary of the various
transportation jobs performed by the bus on a given day. The items
listed are in chronological order and indicate the type of transports
given priority at the time of the day.

e Morning
— Commuters to the central railway station

— Schoolchildren going to school

17

18 CHAPTER 4. PROBLEM FORMULATION

— Elderly going from home to activation centers

— Dial-a-Ride transportation
e Midday

— Schoolchildren going home from school

— Elderly returning home
e Evening

— Commuters from the central railway station

— Dial-a-Ride transportation

¢
822 '@0 o &
q‘:s'v A& & X e?ﬁ
o [8) & 2 2 o 2 ¥
i Qs o & @QQ © @ CPQ' © mof' & R
&Q J @Q {‘\o Q‘é‘o 0‘\‘, \Q‘Q \? -o'\g" \éd' ‘:)Q 0400 (")Q
¢ 5 @ ¢ & & ¥ o & o & o of
9@ - - = = .= = = — —. 816 &0 — [N
o — — = — — — . . . — — — |B.58
.g 6.23 L] . L L] — — - — 655 G658 — 00
@ e - = = — e] — 110 713 — SRS
° ol = — 7.08 720 . e o pem — ET38 e o
X - = sy b — = 125 748 |758 e < A s
0 e 930 .
.
] L] L]]]]] [] [] [] L]] []
11.44 — 11.46
- s = e — 1240 . [] - = — - ==
L s 1255 . s 1340 . [] . = = . L]
13.44 e 1346 . . o = o — [. . .
L] L] — e - 14256 L] L] . o — 1455 —
14.44 e 14.48 .] = — — - . e 1520 -
— 1520 [] . [[]] [
17.15 [} -] [. . . -
18.15 [.] L] . L] L]
19.48 L] L] . . [] L]
20.48 - . L] . . . L] [] [] . . -
21.48
2248 [] [] . L] . [] L] L] . L] L] L
— Bus does not stop @ Request a stop Specialized transportransportation has priority

Figure 4.1: A schedule for a bus route at Jensens Turisttrafik.

DAR transportation is performed all day as seen i figure 4.1
but when capacity is exceeded, then the group of passengers with
priority is served before the DAR passengers. To simplify the
planning process, JT recieves a weekly list of schoolchildren and

4.1. JENSENS TURISTTRAFIK 19

the elderly requirering transportation that week. Also a large part
of the commuters are known in advance. All requests are listed
in a spreadsheet which is printed and given to the drives at the
beginning of their workday. When changes in the driving schedule
occurs, the planner calls the bus driver with the information.

The total number of passenger trips (requests) on the three routes
is about 300 per day, of which half is schoolchildren and the elderly.
A large part of the remaining requests are known in advance. Al-
though the DAR transportation is mainly based on regular stops
for pick up and delivery, some passengers are serviced Door-to-
Door, which is often the case with elderly and young schoolchil-
dren. Two of the busses have a capacity of 20 seats of which 10 can
be rearraged to hold 5 wheelchairs. The third bus has a capacity
of 17 seats with room for 3 wheelchairs.

In the evening only one bus services the entire municipality, and
the driver is then responsible for the planning. Instead of phoning
the call center (the planner), passengers just call the driver to place
a request. In the evening only a very few requests are known in
advance, but the number of passengers is also very limited. When
time permits, or when the driver estimates it to be necessary (for
example a young child living far from a regular stop having to walk
home at night) Door-to-Door service is included in the DAR trans-
portation.

The planner at JT is familiar with the area and so with his com-
bined years of experience and special knowledge concerning the
different passengers, it is unlikely that an automated planning pro-
cess can compete with the manually obtained results. However, JT
has a problem when the regular planner is on vacation or ill, since
it is difficult for other employees to take over the planning process.
Another problem is bidding for similar transportation systems in
areas where the planner has little experience, since the expected
cost of transportation is uncertain.

The problem on the operational level at JT does not concern a min-
imization of the number of vehicles, but rather an assignment of
requests that coincides with the established somewhat fixed routes.
At the same time it is reasonable to conclude that an objective is
to maximize availability, meaning to provide as much space for

20 CHAPTER 4. PROBLEM FORMULATION

passengers in the vehicles as possible in order to maximize the ac-
comodation of “new” requests. Maximizing availability is also the
objective during the evening when a regular DAR transportation
system with only one vehicle services the entire area. As the prob-
lem at JT seems to include almost all of the alterations in DAR
transportation system, it is chosen as a reference for the DAR al-
gorithm to be used in the automated planning software.

4.2 Static vs. dynamic Dial-a-Ride

As with all other Vehicle Routing Problems there can be both
a static and a dynamic version of DARP. In this sense static or
dynamic refers to the amount of information that is known in ad-
vance. In the case where all information is known in advance it
is characterized as a static problem, but when only a part or no
information is available beforehand but becomes available as oper-
ations advance, it is a dynamic problem.

Static problems are usually found when modelling on a strategic or
tactical planning level. In these situations data on the operational
level is often constructed on the basis of historical information, or
estimated according to expectations. The model is then solved to
give an overview of possibilities within different scenarios.

In principle a dynamic problem can be formulated as a discreet
series of static problems, where a new problem is defined each
time data changes. However solving a static model many times is
not always possible or efficient, so different approaches have to be
used when dealing with dynamic problems. When looking to solve
realistic and detailed models, where computational time is critical,
it is often possible to solve the static problem first, and then de-
velop réoptimization algorithms to apply when data changes.

In the case of DARP it will be shown that it is not realistic to
solve the static case to optimum. Many transportation systems are
highly dynamic on the operational level, which makes it inefficient
to solve the static problem over and over again. To explain the
different aspects of DARP, a discussion based on the mathematical
formulation of the static DARP will be presented in chapter 6, but
as described in chapter 10 the algorithm used later will solve the

4.3. RELATED PROBLEMS 21

static problem first, and then alter the solution when data changes.

4.3 Related problems

As mentioned in chapter 6 the mathematical formulation of DARP
is based partially on that of PDP (also called the Vehicle Routing
Problem with Pickup and Delivery - VRPPD). DARP is a general-
ization of PDP taking into account customer satisfaction by adding
additional factors to the objective function. These additions can
be formulated in various ways. In chapter 6 we will see how to-
tal customer travel time and waiting time in an idle vehicle can
be addressed in the objective function, but other formulations of
customer satisfaction, deviation from desired service time, for ex-
ample, can be used.

PDP is again a generalization of VRPTW (Vehicle Routing Prob-
lem with Time Windows) where the VRPTW is the special case
of the PDP with either the origins or the destinations located in
a common depot. VRPTW is itself the extension of the CVRP
(Capacitated VRP) where the service at each customer must hap-
pen at a fixed time interval in VRPTW. Using the same arguments
as with DARP, the VRPTW is NP-hard. Even finding a feasibly
solution to the problem with a fixed fleet size is itself NP-complete
as mentioned in Toth & Vigolll.

As the above mentioned problems are all generalizations of the
TSP, this often leads to solution methods, in which the formula-
tion uses the TSP as a subproblem. The TSP is a description of
a transportation system where a travelling salesperson has to visit
a number of customers once and only once, travelling the short-
est possible distance. Very often the subproblem TSPs are small,
which makes it possible to solve these problems to optimality or at
least in very short computational time with a heuristic.

Although not directly related, the SPP (Shortest Path Problem)
deserves some attention in this section also. With or without Time
Windows or Capacity constraints, the various VRPs all depend on
knowing the distances between customers and depots in order to
find optimal or near optimal solutions. In static problems these
distances can be calculated once and placed in a distance matrix

22 CHAPTER 4. PROBLEM FORMULATION

for future lookup, but in the case of dynamic problems taking into
account vehicle positions, the rapid solution to the SPP can be cru-
cial to obtain results in short computational time. However SPP
will be discussed in more detail in chapter 8.

4.4 Parameter setting

The following is a general discussion concerning the setting of pa-
rameters to control the objective when solving DARP. As these
parameters have impact on objectives such as level of service and
overall cost within the public transportation system, this will mostly
be a social discussion. One important consideration when introduc-
ing DAR transportation systems is the existing goodwill among
potential passengers.

First of all it is easy to conclude that the lower the existing ser-
vice the more goodwill among the potentional passengers towards
a new system. The passengers are the essential part of a public
transportation system, which does not always show in the present
systems. Coverage and scheduled routes are not always consistent
with the actual transportation needs, a situation which, fortunately
is changing. Because of the increasing cost of running public trans-
portation, there is now a need to rationalize the sector.

As the need to cut costs conflicts with the need to increase the
service in the rural areas to ensure the mobility of the population,
there are a few questions that have not been answered. The most
important is concerning the level of service. As it is now, the hand-
icapped, seniors, and patients receive a much higher level of service
than the rest of the population. Notice that this statement is based
solely on the definition on level of service as stated in section 1.1.3.

Results from existing DAR transportation systems have shown that
the disabled, seniors etc. now had to share vehicles with other pas-
sengers. This raises the question: Should the level of service for the
disabled be higher than for the rest of the population? Of course
it is, but only when necessary. Most disabilities do not exclude the
possibility of sharing a minibus with others. It is always hard to
give up privileges, but somehow the level of service should be close
to the same for everybody.

4.4. PARAMETER SETTING 23

The goal for public transportation is not to give the highest possible
level of service to people, since that would mean giving everybody
access to a taxi or a car of their choice. The goal is however to give
a level of service that will ensure that everybody can travel from
and to anywhere within the country in reasonable comfort within
a reasonal traveltime for a reasonable price. Comparing the fares
of the public transportation system with the cost of owning and
driving a car, determines the necessary level of comfort and excess
travel time in the public transportation system.

Now why spend time discussing the social aspects in a report con-
cerning the operational research view on the planning proces? The
reason is that it is very important to set the goals before starting
an automated proces, since the outcome is mainly dependent on
two parameters:

e level of service
e cost of operation.

Most of the projects mentioned later in section 5.2 state that the
level of service is to be improved within the original budget. The
question is then why all projects start by defining the level of ser-
vice. By simulation it would be possible to actually find the best
possible level of service given the maximum cost.

24

CHAPTER 4. PROBLEM FORMULATION

Chapter 5

Previous work

This chapter will aim to give a general understanding of where,
when, and what work has been carried out within the topic Dial-
a-Ride throughout the years. The academic interest for DARP
started in the late 1960s mainly with small localized manual plan-
ning. However this chapter will concentrate on work performed
from 1971 forward, since this is the beginning of the documented
research and initial results. The chapter will end with a description
of practical projects carried out in Denmark in recent years.

5.1 Paper survey

The DARP was first examined by Wilson et al.[37] and Zobrakl[59]
in 1971. Wilson et al. started the development of real-time algo-
rithms designed specificly for DARP, and many later concepts such
as sequential insertion of customers has been derived from this ini-
tial work. Zobrak’s work which ran simultaneous with Wilson et
al. focused mainly on the design and impelementation of DARP. In
generel, developments on DARP can be divided into two classifica-
tions. The first works with the development of efficient algorithms,
which is the main focus of this thesis. The second consists of work
performed in designing and evaluating DAR Systems with regards
to level of service, energy cost etc.

Throughout most of the 1970’s almost all work was carried out
within the area of simulating, implementing and evaluating DAR
Systems. MIT developed the first computer controlled Dial-a-Ride
system in 1972[40]. Here a heuristic insertion method was used

25

26 CHAPTER 5. PREVIOUS WORK

to sequencially insert customers in routes by minimizing the in-
convienience to existing customers and maximizing service to the
new customer. The problem solved was one of immediate request
DARP, which means that a customer calls the dispatcher with a re-
quest for immediate transportation between two destinations. The
dispatcher then informs the customer of estimated pickup and de-
livery times.

Wilsonl54l, in his overview of developments until 1972, refers to
the MIT method. Wilsons main focus is to evaluate the future
potential role of computerized planning in Dial-a-Ride systems in
contrast to the widespread manual planning. He proposes a Pro-
visional Route Assignment Algorithm (PRAA). Wilson states that
the overall objective of the DAR algorithms should be: “To pro-
vide lowest mean service times within fixed costs and guaranteed
bounds on the worst service times.” In 1972 however the amount
of computational power available was very limited, so Wilson also
mentions that the necessary detail level of the algorithms, in order
for them to compete with an adequate manual dispatcher, makes
it very hard to solve computationally. PRAA consists of 3 compo-
nents:

e 1 - insertion of new requests into the provisional route of the
best vehicle

e 2 - transfer of requests between routes to improve overall plan-
ning

e 3 - redistribution of unallocated vehicles to improve service
to future demands.

Wilson mainly addresses the first of the three components where
he sets the framework of a greedy insertion heuristic. Wilson con-
cludes that the computerized systems can handle a much larger
capacity than the manually planned systems but with fewer details
in the planning process. He concludes that it might be efficient to
establish computer aided planning systems to combine the best of
the two worlds.

Unfortunately Wilson does not specify the exact nature of the
DARP he is solving with PRAA. Keeping in line with the previ-
ous work at MIT, it does however seem likely that Wilson is again

5.1. PAPER SURVEY 27

solving the immediate request DARP. The introduction of PRAA
by Wilson is very interesting since the basic structure (greedy in-
sertion and post optimization by swapping) of many recent devel-
opments can be traced back to PRAA. The third component, that
of redistributing unallocated vehicles according to expected future
demand has unfortunately not received the same attention as the
insertion and swapping components.

In 1973 Slevin & Cooperl46l report experiences with a DAR Sys-
tem in Abingdon, England. Here a minibus was inserted to traverse
three fixed schedule routes as a supplement to the existing bus sys-
tem. Requests could then be met at any point along those routes.
As with previously mentioned literature, the article does not specif-
ically state the exact operational nature of the DAR transportation
system addressed.

The most important conclusion in this paper is that DAR sys-
tems should only be introduced where they can greatly improve
the level of service to customers. It is suggested that customers
seem to be reluctant to accept a novel system if no comparatively
large improvements over the old system is apparent.

The results from the Abingdon experiment are not completely rel-
evant in 2002, because only about half the population in the area of
Abingdon had access to a phone in 1970, which obviously limited
the number of potential passengers for the DAR transportation.
One thing that has not changed though is the fact that the walking
distance to the nearest pickup point or bus stop is very influential
on the number of passengers using the system.

In 1974 Hobeikal24l simulated a DAR Bus System in Indiana. Again
in 1975 Felsl16] estimated the energy costs of DAR Systems com-
pared to other transportation systems. In short the conclusion of
these articles was that DAR transportation can improve the level of
service to the customers without leading to higher costs or energy
consumption, when implemented on relevant transportation sys-
tems. In some cases, DAR systems might even decrease the cost
of transportation while also improving the level of service. One
important conclusion in Hobeikal24] was that DAR transportation
systems seem to work best in geographical areas with medium to
low demand.

28 CHAPTER 5. PREVIOUS WORK

Wilson returned to the DARP in 1975551 proposing a second gener-
ation algorithm for computer control procedures. The basic frame-
work of the algorithm is similar to PRAA mentioned previously,
but changes are made to the assignment of new customers to ex-
isting routes. First, the assignment takes into account the fact
that different users will have different preferences, so in order to
maximize customer satisfaction, identification of individual prefer-
ences need clarification. Secondly the assignment should consider
the impact on future assignments. Wilson identifies four different
groups of users based on previous experiments. These four groups
each have individual criteria for perceving the level of service in
the DAR transportation system. The criteria are:

e immediate service

e immediate transferring service
e advanced pickup service

e advanced delivery service.

Immediate service is a criterion for customers who want to be
picked up and delivered as soon as possible without having addi-
tional deadlines associated with the trip. Immediate transferring
service customers have a desire to reach the first possible depart-
ing fixed route vehicle at a certain destination. Advanced pickup
covers the customers who specify a time window for pickup, and
advanced delivery customers specify a time window for delivery.
There are of course other parameters controlling the passengers
perception of the level of service such as bus driver attitude, but
these parameters are naturally beyond the control of the algorithm.
After identifying these four criteria, Wilson constructs objective
functions according to the dissatisfaction of the passenger groups.
When a passenger is classified, the dissatisfaction is calculated ac-
cordingly, thus enabling the computer control system to compute
solutions maximizing customer satisfaction in much more detail
than was previously possible.

The paper by Wilson is interesting, because it includes more than
one type of request for transportation in a DAR transportation
system. Wilson also formulates the possibility of placing the DAR

5.1. PAPER SURVEY 29

transportations system within a scheduled transportation system
by including the immediate transferring service customers.

In 1978, Steinl48] proposed a possible design of a immediate re-
quest DAR System. Based on a mathematical model of a regular
bus line, Stein proposes an algorithm for the static problem where
a region is divided into k£ subregions with a fixed transfer point.
For each subregion, a bus is inserted to serve that particular sub-
region. Each bus then traverses the subregion on a TSP tour and
ends at the transfer point where passengers can transfer to other
regions and so on.

For the dynamic case of DARP, Stein first examines the SV-DARP
where a region is again divided into subregions. The problem is
then fomulated as decisions in discreet instances of time as to which
region the bus must visit next, and to which points in that region
the bus must visit. This can be formulated as a queuing system
where the units to be served are the feasible pickup and delivery
points. When a demand arises, the corresponding pickup point
enters the queue, and when the pickup point has been visited the
corresponding delivery point enters the queue. The algorithm then
starts by visiting the region with the largest number of feasible
points and then visits all the feasible points there. This is re-
peated until no more feasible points are in the system.

For the MV-DARP the algorithm is a mix of the algorithm for
the static DARP and the algorithm for the SV-DARP. Here, spe-
cialized buses are inserted in the subregions but allowed to traverse
more than one subregion according to the algorithm for SV-DARP.
The subregions then have transfer points on the boundaries of the
regions where all the specialized buses meet to transfer passengers
between regions.

Stein then defines a class of algorithms to be used on real DAR
problems. This class includes five elements:

e The decomposition of area and specialization of buses. The
area must be divided into a large number of subregions, and
buses must each have a fixed set of subregions to serve.

e Tours for the buses are determined as the demand becomes
known. Each time a bus enters a new region, an optimal TSP

30 CHAPTER 5. PREVIOUS WORK

tour is calculated for that region.

e The following rules for visiting subregions are applied. When
a bus enters a subregion, it must visit all feasible points in
that region before moving on to the next subregion, and all
subregions should be visited in a fixed order.

e The transfer points are usually located at the boundaries of
the subregions, and buses might only travel between transfer
points (line-hauling) with zero subregions allocated.

e Concerning quotation times, the passengers need not know
beforehand the expected pickup and delivery times, which is
seen as a separate problem.

The theoretical approach suggested by Stein is based on certain
assumptions, where the uniform subregions and the constant and
large number of passengers seem to be the most obvious limita-
tion. There is also the problem of limited capacity, which is not
addressed in this paper. Real passengers also need to know the
expected pickup and delivery times. However for useon practical
problems, the proposed algorithms might give a general idea of
how to design a DAR transportation system.

Stein’s results however justified additional research within the de-
sign of algorithms for solving DARP. In 1980 Psaraftis[36] presented
an exact dynamic programming algorithm using backward recur-
sion for solving the Single-Vehicle, Many to Many, Immediate Re-
quest DARP. This dynamic programming solution require O(n?3")
time where n is the number of customers which put a strong limit
on the number of customers that can be handled by the method.
A more serious limitation of Psaraftis’ approach was the omission
of any consideration of time windows.

Psaraftis continued his work in another paper in 1983[38l. In this
paper a different version of the dynamic programming algorithm is
described. The main difference is the use of forward recursion as
opposed to backward recursion. Also in this new version of the al-
gorithm, Psaraftis examines the case where customers specify time
windows at both pickup and delivery points. The upper bounds of
the time windows are considered hard. For example, if a vehicle
arrives later than the upper bound, the route is not feasible. The

5.1. PAPER SURVEY 31

same is true for the lower bounds, where a vehicle will stay idle
uppon arrival before servicing the customer when the lower bound
of the time window is reached.

The introduction of time windows in the dynamic programming
algorithm forced Psaraftis to develop a forward recursion scheme.
Naturally, backward recursion can not keep track of time onward
from a specified time. The objective of the algorithm is to mini-
mize the time needed to service all customers in the transportation
system, and this may not be generalizable to minimizing customer
inconvenience etc. The fact that time windows are specified by
the customer at both pickup and delivery points may prove to
be a problem when solving practical instances, since this severely
lessens the planning and solution space.

Also in 1983 Psaraftis[37] published a paper concerning a heuris-
tic for solving the single vehicle many-to-many euclidian DARP.
This heuristic is based on the minimum spanning tree of the nodes
(pickup and delivery points) of the problem. First a TSP tour
through all nodes is constructed using the minimum spanning tree
of the nodes and without destinguishing pickup point nodes from
delivery point nodes. In the next step a pickup node is chosen ran-
domly, and the TSP tour is then traversed clockwise until all nodes
have been visited and included in the DAR tour. While traversing
the TSP tour, any node that has been previously visited or any de-
livery point node where the corresponding pickup point node has
not yet been visited is not yet included in the DAR tour. Psaraftis
then suggests various improvement methods to be used on the re-
sult obtained by the heuristic. One possible improvement method
could be regular local interchanges or a repetition of the DAR tour
construction step but moving counterclockwise. Lastly the DAR
tour construction step could be repeated with different starting
pickup nodes. After performing some or all of these improvement
steps several times, the best solution found is chosen. This heuris-
tic has a complexity of O(n?) and results have shown the algorithm
very effective at solving this type of DARP, which again is the im-
mediate request DARP without capacity constraints.

As with the backward recursion dynamic programming scheme,
a serious limitation is the computational time. In practical cases
it is not possible to use a dynamic programming method in an

32 CHAPTER 5. PREVIOUS WORK

on-line scheduling environment. Another limitation is the lack of
constraint on capacity, and the disability to minimize customer in-
convenience.

In the beginning of the 1980’s, work with DARP began at Cen-
tre de Recherche sur les Transports (CRT) and Groupe d’Etudes
et de Recherche en Analyse des décisions (GERAD) in Canada,
which resulted in a working paper by Roy et al.[4!] in 1983 concern-
ing the Multi-Vehicle DARP. This article addresses transportation
of handicapped, and uses a heuristic to divide the customers into
clusters after which routes are generated within the clusters by in-
sertion. The heuristic takes into account both the advance request
and the demand responsive part of the problem, and the objec-
tive is to maximize vehicle productivity for a fixed level of service.
The Roy et al. working paper[41] is one of the first examples of
the class of algorithms designated as “cluster first route second”.
Here the requests are characterized by an origin, a destination,
and a desired service time corresponding to respectively a desired
departure or arrival time depending on the type of request. The
request may consist of an individual person or a group of persons
to be transported. Also specified for each request is the quality of
service that is to be provided. Besides the requests, the heuristic
takes into account driver duties which are known in advance and
handling times at the stops. The quality of service is then specified
by the operator using two parameters. The maximum allowed de-
viation from the desired pickup or delivery time and the maximum
excess ride time of the passenger in the vehicle. Excess ride time
is defined as the difference between the actual ride time and the
minimal ride time necessary to service the request. Time windows
can now be calculated according to the description in section 6.3
and figure 6.1 (1) on page 77.

To construct the initial clusters, a neighbor concept is introduced.
First a maximum time between stops related to two different re-
quests is given, and then the following conditions are set up to
define two requests as neighbors. If the difference between the
latest departure time of one stop and the earliest arrival time at
another stop is less than the specified maximum time, the stops
might be considered neighbors. However this is only enough in
the case where the stops are of different types (e.g. one is origin
and the other is destination). If the stops are of the same type,

5.1. PAPER SURVEY 33

another condition is required to ensure the requests are going in
the same direction. This condition is constructed by looking at the
other stops in the two requests where an ellipse is defined around
the stops.

After having constructed the clusters according to the neighbor
concept, the authors introduce a measure of affinity between a re-
quest and a route. First, the feasibility of inserting the request into
the route is examined. Infeasibility results in a very large measure
of affinity. For all feasible solutions, the measure of affinity is cal-
culated as the detour of the route by inserting the request. The
affinity values are calculated for all requests in all routes and in-
serted into a matrix. The heuristic then starts by initializing one
or several routes with neighboring requests. The requests are then
read in chronological order and insertion is attempted. If no fea-
sible insertions are possible, a new route is constructed with the
request and all neighboring requests are now inserted if feasible.

To limit the problem size, the authors use a time horizon for plan-
ning. Since the requests placed in the afternoon usually do not
influence the morning requests, the requests to be considered are
within a given time horizon. As the day moves forward, the hori-
zon is extended and new requests are included. When all requests
within the horizon are included in the solution, a post optimiza-
tion teqnique is applied to minimize cutomer inconvenience. Here
the requests are evaluated according the the actual deviation from
desired service time, and swapping of requests between routes are
tried to improve these values. The heuristic was implemented and
tested on several data sets from Montreal. For larger problems re-
sults show a great improvement over the existing manual planning
with respect to vehicle and driver utilization.

The success of this work resulted in further development and tests
which are described in a series of techical reports from 1985[43[42][44]
addressing respectively test problems, implementation, and results.

Also in 1983 Daganzols] published a very interesting paper, in
which three different types of transportation namely Fixed Route
Transit (FRT), Checkpoint Dial-a-Ride Transit (CPDART), and
Door-to-Door Dial-a-Ride Transit (DDDART) were compared math-
ematically. Although the problems were simplified for comparison

34 CHAPTER 5. PREVIOUS WORK

purposes, the results seem to be much in line with later experi-
mental results. Daganzo looked at the cost of operating the dif-
ferent transportation systems under different demand pressures,
and found that in the case of a large demand pressure, the FRT
outperformed the other two types both in cost and in complica-
tion level of operations. However as demand pressure decreased
a CPDART transportation system outperformed the FRT but by
no more than 5% . When the CPDART outperformed the FRT,
the DDDART was a serious competitor, and would often outper-
fom CPDART. The paper concluded that only in a very limited
demand pressure interval was the CPDART superior but probably
not superior enough to account for the extra cost of dispatching.
The FRT should be used in areas with high demand pressure, and
as demand pressure decreases, a regular DDDART should be used.

Belisle et al.l4l presented a conference paper in 1984 concerning the
impact of using different transportation systems to service trans-
port of the handicapped. They simulated three different scenarios.
Two scenarios where minibuses where solely used and one scenario
with mainly taxis as the means of transportation. In one of the
minibus scenarios they used a call-back system, thus making the
planning much more flexible since requests did not need to be
planned right away. For the other minibus and the taxi scenario
there was no call-back procedure, and expected time of pickup etc.
was given to the customer upon making the request. In this simu-
lation, service to all requests were guaranteed with the exception
of requests phoned in on the day of service. Booking of requests
and cancellations would have to be given at least one hour prior to
departure. All desired service times are guaranteed, eg. no pick-
ups can occur before and no deliveries after the desired time, and
the pickup time is given as a 15 minute time interval in which the
vehicle is guaranteed to arrive. The data used in the simulation
was taken from the Wheel-Trans Service in Toronto on a regular
work day. In total there was 1096 requests in the dataset, where
410 requests were regular (eg. known in advance) and 686 requests
were occasional (eg. know up to 3 days in advance). The cancella-
tion rate used was about 17% .

The algorithm used to solve the above problem was the cluster-
ing first parallel insertion technique developed by Roy et al.[41]
(see earlier this chapter) and to improve results a dynamic pro-

5.1. PAPER SURVEY 35

gramming method developed by Desrosiers et al.[?] was used. The
result was that route operating cost was higher for the minibus
scenario without call-back than with call-back, but this does not
take into account the cost of performing the call-back procedure.
The transportation of hadicapped is more like a taxi service than a
bus service, but the choice of operations is not so much a question
of level of service, but more a question of organisation.

Desrosiers et al.[10] in 1984 developed an algorithm based on clus-
tering first and column generation second for the Multi-Vehicle
many-to-many VRP. Although not mentioned in the title of the
paper, the algorithm is in fact developed for solving the DARP
or PDP. Again the problem consists of requests characterized by
a pickup stop and a delivery stop, time windows at stops, pickup
and delivery times, and a homogeneous vehicle fleet with capacities
for wheelchairs and ambulatory passengers. There can be multiple
depots, and the objective is to first minimize the number of work
pieces (which can be seen as independent routes), and secondly to
minimize the total distance travelled by the vehicles.

The algorithm takes into account capacity constraints and depot
constraints, and the same vehicle must visit both the pickup and
delivery stop for a request. Starting with a feasible solution, a sin-
gle vehicle algorithml[9 is used to optimize each of the initial routes
according to driven distance. The routes are then divided into
miniclusters of customers after which integer linear programming
with column generation is used to reallocate the constructed clus-
ters between vehicles. At last the miniclusters are again opened,
and the single vehicle algorithm once again optimizes the individ-
ual routes. The single vehicle problems are solved by dynamic pro-
gramming, and this method will be addressed later in this chapter.
Since the single vehicle problem consists of the TSP with additional
time window, capacity, and precedence constraints it can be solved
by dynamic programming more efficiently than the regular TSP.
This is due to the fact that the solution space is severely limited
be the additional constraints. The authors state that the dynamic
programming approach has shown to have an execution time that
is a linear function of the number of stops.

Desrosiers et al. used data in which a route usually serves be-
tween 5 and 20 customers, the number of stops are between 10

36 CHAPTER 5. PREVIOUS WORK

and 40. These customers are divided into miniclusters each time
the vehicle becomes empty. This means that a minicluster is char-
acterized by being a group of customers that are in the same vehicle
at some point in time. On average fewer than four customers are
in a minicluster. The minicluster now forms an artificial customer
with time windows according to the customers with earliest pickup
time and latest delivery time and a duration time. All constraints
are naturally satisfied within the minicluster.

To solve the routing problem the authors create a network struc-
ture in which the nodes are the miniclusters, and the arcs are the
unproductive run of a vehicle as it drives empty from one miniclus-
ter to another. A mathematical formulation of an integer program-
ming problem is then presented with two types of variables. First
the regular binary flow variables followed by a continuous time
variable associated with the visit starting time for the miniclus-
ters. Instead of solving the problem in terms of the flow variables,
the problem is formulated and solved in terms of binary variables
on the use of feasible paths in the graph. Since enumeration of all
feasible paths is not possible, a column generation scheme using
Dantzig-Wolfe decomposition is used. The columns are generated
by solving shortest path problems with scheduling constraints.

The above mentioned method was tested on problems from 3 Cana-
dian cities. The number of requests in the 6 test problems varied
from 86 to 880. The number of stops is only roughly twice the
number of request since additional stops have been added to sim-
ulate multiple depots, just as some stops are at the same location
and therefore considered one. The size of the miniclusters were on
average 4 customers, but some miniclusters consisted of more than
10 customers. Good solutions were found in comparatively short
computational time (measured in minutes for the largest problem).
The work resulted in a paper published in 1988[11],

Some of the papers above have used the dynamic programming
method developed by Desrosiers et al.l?l. This algorithm uses a
forward scheme to solve the SV-DARP with the objective of min-
imizing the total distance. To ensure comparatively fast compu-
tational time, criteria for the elimination of infeasible states have
been developed. The problem is essentially a constrained TSP
where the non-linear time constraints require increasing times at

5.1. PAPER SURVEY 37

each stop, thus eliminating the possibility of sub-tours. Since the
objective is to minimize the distance travelled, the customer in-
convenience is only indirectly included in the formulation by the
construction of the time windows.

The dynamic programming algorithms works as follows: The ve-
hicle starts at the depot and at each iteration there are several
states to choose from. In the first iteration the states are made of
routes visiting a single stop representing an origin. In each of the
following iterations, the states are constructed from the previous
states including one additional stop among all the stops. The last
iteration requires the vehicle to move back to the depot. At each
iteration the number of possible states is reduced by applying the
capacity, time window, and precedence constraints, thus improving
performance of the method dramatically. Results on test datasets
with up to 40 customers which corresponds to the TSP with 80
nodes show a computational time measured in seconds, showing
the effectiveness of the state elimination scheme.

In 1986 Jaw et al.[28] published a paper on which a lot of the later
work is based. The paper describe a heuristic for the Multi-Vehicle
DARP based on sequential insertion of customers on vehicles and
thereby deciding a time schedule for pickups and deliveries for each
vehicle. The objective function minimizes the cost of transporta-
tion balanced with the minimization of inconvenience to customers.
The algorithm is referred to as ADARTW short for Multi-Vehicle
many-to-many Advanced request Dial-a-Ride problem with Time
Windows. Only the static DARP is considered. The problem con-
sidered here is the same as in Roy et al.[4!l where customer incon-
venience is measured in terms of deviation from desired pickup or
delivery times and excess ride time. Time windows and excess ride
times are individual parameters for each customer. This enables
some negotiating of these parameters with the customers. The
fleet of vehicles is heterogeneous, and dwell times (handling times
at stops) are considered. One additional constraint that had not
been considered before is that a vehicle is not allowed to be idle
when carrying passengers.

ADARTW starts by sorting the customers in a specific manner.
In this paper the authors chose to sort the customers according
to their earliest pickup time, but different strategies can be used

38 CHAPTER 5. PREVIOUS WORK

to obtain different solutions. The algorithm then processes each
customer in the list in sequence, and assigns the customers to the
vehicles until the list is exhausted. For all feasible insertions of
a customer to a vehicle the additional cost measured in operat-
ing costs and customer inconvenience the insertion with the lowest
cost is performed. If a customer cannot be inserted into an exist-
ing route (vehicle), a new vehicle is initialized or the customer is
rejected.

The authors also mention the possibility of considering more than
one customer at a time. However this do not seem to improve re-
sults substantially, and computational time increases to some ex-
tent. The feasibility check when inserting customers into schedule
blocks (blocks of active vehicle time between idle time) first checks
if the insertion violates the time window constraints of the existing
stops in the block without creating idle time in the middle of the
block. If time window feasibility is found, the next step is to con-
sider the excess ride time for both the inserted customer and the
customers already inserted in the schedule block. The insertion is
performed one stop at a time, eg. the feasibility of inserting the
pickup point leads to the insertion of the delivery point. After
having found all feasible insertions of the new customer into the
schedule blocks, the incremental cost of insertion for each feasible
insertion is calculated. This incremental cost is calculated of three
parts:

e The inconvenience of the customer to be inserted is calculated
as the sum of the inconveniences caused by respectively the
deviation from desired service time and the excess ride time.

e The inconvenience for all customers in the block where the
new customer is to be inserted is then calculated as for the
customer to be inserted. NNote that it is an incremental cost
(eg. the difference in inconvenience of the customers in the
block before the insertion and after the insertion).

e The incremental cost of the operator is then calculated as a
weighted function of the additional active vehicle time (the
expansion of the schedule block), the change in vehicle slack
time (future flexibility of the block), and an indicator of sys-
tem workload.

5.1. PAPER SURVEY 39

ADARTW has been run by Jaw et al. a large number of times on
both simulated and real data, and the conclusion of the authors are
that solutions found by ADARTW both in case of simulated data
as well as real data are as good or better than manual planning
in all respects. Computational time for real problems with 2617
customers could be solved on a VAX 11/750 in minutes.

In 1986 Psaraftis[39] published a paper comparing ADARTW with
the Gouping/Clustering/Routing (CGR) algorithm developed at
MIT in Boston in 1982, and described in a working paper by Jaw,
Odini, Psaraftis, and Wilson. The CGR algorithm models cus-
tomer satisfaction by the difference between actual pickup/delivery
time and the desired pickup/delivery time. Also in CGR the ve-
hicle fleet size is given beforehand, whereas in ADARTW the fleet
size can be a variable. Both algorithms consider the advance re-
quest problem, thus treating the static problem. CGR operates
with time groups of for example 30 minute intervals (eg. when
the customer specifies a pickup time, an attempt will be made of
picking up the customer in the corresponding time group). This
also meens that the customer service guarantees are soft in CGR
while they are hard in ADARTW.

The algorithm CGR works in three steps:

e The customers are grouped into time groups based on either
their desired pickup or delivery time. The customers are then
futher divided within a time group into clusters. This is done
by looking at each time group and finding the customers that
are furthest apart in distance. These customers are then des-
ignated seed customers, and there are as many seed customers
as there are available vehicles.

e The vehicles are assigned to the seed customers in a least cost
manner, after which the rest of the customers in the time
group are assigned to the clusters formed by the vehicles and
the seed customers.

e Routes within the clusters are constructed by applying a sin-
gle vehicle routing algorithm on the clusters while checking
capacity of the vehicle assigned to the cluster. The objective
here is to minimize driven distance.

40 CHAPTER 5. PREVIOUS WORK

To compare CGR with ADARTW, a real and a simulated dataset
was used. The real dataset covered 16 hours of operation with 2617
customers. 2397 customers were immediate request customers and
the last 220 were advance request customers. Since both CGR
and ADARTW only considers advance request customers, the data
for the immediate request customers were converted so the actual
pickup time became the desired pickup time. The fleet used in the
dataset was not heterogeneous which also is a presumption used
by both agorithms, but consisted of one vehicle with capacity 33, 4
vehicles with capacity 9 and 23 vehicles with capacity 17. The al-
gorithms were then tested with a capacity of 17 for every vehicle,
and ADARTW was initialized with an active fleet of 10 vehicles
with the possibility of adding more vehicles as needed.

Because of the conversions, it is not possible to realistically com-
pare the results from the algorithms with the actual solution at
the dataset provider. Results of the comparison of the two algo-
rithms on the real dataset shows a significant better performance
of the ADARTW, which uses around 19% fewer vehicles and has a
deviation from desired service time that on the average is less than
one third of that produced by CGR. In addition the ADARTW
naturally serviced all customers within the designated time win-
dows which was not the case with CGR. The passengers in the
CGR solution had to spend on average almost 50% more time in
the vehicles. However the solution time for CGR was almost half
that of ADARTW. When comparing the algorithms on simulated
data, the difference between the solutions is not nearly as signifi-
cant, and CGR actually outperforms ADARTW in some objectives
while still using less computational time.

In Japan in 1990 Kubo & Kasugail3!l worked on several heuris-
tics based on insertion algorithms, and a number of different in-
sertion methods are described. In this article some of the previ-
ous algorithms are examined and compared with newly developed
approximative algorithms. The authors present four methods for
solving DARP without time windows or capacity constraints. The
objective is solely to minimize the total driving distance of a single
vehicle DARP.

The first method is based on sequential insertion, and after con-
cluding that the methods inserting either a pickup point or a de-

5.1. PAPER SURVEY 41

livery point at each iteration provide bad results, they formulate a
pairing insertion method, in which both pickup and delivery points
of a customer is inserted at once. The insertion is straight forward
greedy insertion where the next customer to be considered can be
either the one farthest from the existing route or closest to the
existing route.

The second method is based on randomized nearest neighbor prin-
ciple. Here the pickup or delivery points are inserted individually,
and the authors start by adding the depot and a pickup node. The
next point to be added to the route is decided by using a probabil-
ity function, where respectively one of the delivery points or the
pickup points are visited with a certain probability.

The third method is derived from the minimum spanning tree
heuristic developed by Psaraftis (described earlier in this chap-
ter), where instead of using the minimum spanning tree to devide
customers into regions, a space filling curve is used.

The fourth method is a local search procedure to be used as a
post optimization procedure. It is essentially the Or-Opt method
known from TSP, but modified to remove a pair (pickup and de-
livery) of points from the tour at once.

The results obtained by the authors from running on 10 constructed
problems with 10 to 100 points (plus the depot) shows that the in-
sertion method seems to outperform all other methods in terms of
objective value. The local search procedures do not perform well
under any circumstances, and they also require much more com-
putational time. The various alterations of the Opt method works
very well both with a bad and a good feasible starting solution.

In 1991 Desrosier et al.[12] wrote a report concerning an improve-
ment in the construction of miniclusters. As the authors state, this
part of solving the DARP (when using a minicluster algorithm) is
essential, since the quality of service is closely linked with the re-
sulting clusters. To construct the miniclusters in an intelligent
way, the first thing to consider is an intelligent determination of
neighboring requests, and the authors present a method taking
into account both spacial and temporal proximities, directionality,
economy of distance, and feasibility.

42 CHAPTER 5. PREVIOUS WORK

The temporal proximity between two requests is given by the cost
(C) in distance of servicing the requests immediately after one an-
other. If not possible to do so, c is arbitrarily large. The savings
obtained by clustering two requests is measured as the sum of
the cost of servicing each request subtracting X. By considering
the closeness in time windows for the stops associated with two
requests, the temporal proximity is checked. If it is possible to
service two requests without leaving the vehicle empty in between,
they are close enough in time to be considered neighbors.

The spacial proximity is calculated from an ellipse where the foci
are the stops of a request. All requests with one of their stops
within the eclipse can be considered neighbors with respect to the
spacial proximity. The directionality is defined as an angle between
two requests. This angle must be less than a specified maximum
angle. To construct the miniclusters, the requests are sorted de-
creasingly according to their total direct duration of service, since
these requests offer most flexibility when trying to incorporate new
customers in the clusters. To calculate the costs of inserting cus-
tomers into clusters, the previously mentioned dynamic program-
ming method is used. After performing some tests with this new
strategy of creating miniclusters, the authors conclude that the nu-
merical performance is good and very fast.

Also in 1991, Ioachim et al.[26] presents a mini clustering algorithm
using column generation similar to the previously described paper
by Desrosier et al.[l0l. The master problem is here formulated as
a linear relaxation of a set partitioning problem, and the subprob-
lem is again formulated as a constrained shortest path problem. To
obtain integer solutions, a branch and bound strategy correspond-
ing to branching on time variables is used. At each node of the
branch and bound tree, the columns (miniclusters) are generated
when needed, and the reduced cost of a minicluster is calculated
as the sum of the reduced cost of the arcs within the miniclus-
ter. To solve the subproblem, a forward dynamic programming
shortest path algorithm is used. As seen in Desrosiers et al.[9],
the number of labels used in the dynamic programming algorithm
can be reduced significantly by eliminating infeasible paths in the
constrained shortest path problem. The dynamic programming al-
gorithm is at initialization given the path of length 3 (eg. source

5.1. PAPER SURVEY 43

-> i -> n+1i -> sink) from the starting point, since this path need
only be computed once.

The algorithm was tested on 20 problems originating again from
the previously mentioned Wheel-Trans service in Toronto. The
datasets had between 50 and 250 requests, and the optimal so-
lution was found on 17 of the test problems using this heuristic.
The solutions were compared to the parallel insertion heuristic de-
scribed by Desrosier et al.['2], and results show, that the insertion
algorithm was outperformed by the set partitioning formulation by
10% with regards to the travel time. However the computational
time for the insertion heuristic on the 250 customer problem was
less than 15 seconds, whereas the set partitioning formulation used
5133 seconds. The work is also presented in a paper from 1995271
where test on an actual problem with 2545 requests is presented.
The result was a 5.9% improvement in total travelling time over
the heuristic. In order to solve the large problem with the set
partitioning method, the problem was divided into seven smaller
problems. These problems were then solved in about 5 hours of
computational time.

In Denmark a Masters thesis concerning transportation of patients
in a dynamic DAR environment with Falck (a Danish operator) was
finished in 1991 by Christensen and Jensenl?l. The thesis describes
the development of two strategies for solving the problem. Both
strategies are based on ADARTW mentioned previously, which is
expanded to include some of the problem specific parameters stated
by Falck. The problem here is to minimize the total drive time for
all vehicles while also minimizing the discomfort of the passengers.
The discomfort is measured by deviation from expected departure
respectively arrival times of the vehicles at the stops, as well as the
excess ride time of the passengers.

Falck used a limited number of vehicles “selling” rejected passenger
trips to taxi companies. The first strategi called “PDARtaxa” uses
the greedy insertion structure of ADARTW to insert as many pas-
sengers into the vehicles as possible. All passengers not inserted
are then sold to taxi companies. The second strategi constructs as
many vehicle trips as necessary in order to accommodate all pas-
sengers. The vehicle trips are then assigned to the vehicles. If the
capacity offered by the vehicles is insufficient, the cost of selling

44 CHAPTER 5. PREVIOUS WORK

a vehicle trip to a taxi company is calculated for each trip. The
vehicle trips are then assigned to vehicles and taxi companies ac-
cording to the calculated costs.

Results from using the strategies on a real problem with 370 re-
quests in one of the regions operated by Falck showed a 20% saving
in cost. Also important was the average deviation from desired ser-
vice time, which was improved from 50 minutes to 13 minutes. The
CPU-time used for solving the static problem was less than 2 sec-
onds.

Although it is not really related to algorithms within the field
of Operations Research, an interesting article was published by
Williamson in 1992[53] concerning the development of an advanced
user interface to assist the planners of Dial-a-Ride problems in
daily scheduling. The software package developed was designed to
help dispatchers and call centers in sorting and storing data to be
displayed in a helpful manner on a computer screen, thus giving
dispatchers a greater overview of the possible solutions. The au-
thor mentions that a computer controlled planning procedure used
in conjunction with the interface software might give a great im-
provement in the planning process.

At CRT in Canada, work concerning the DARP continued, and
a new heuristic was proposed by Potvin and Rousseau in 1992[35]
as an extension to the work presented by Jaw et al.[28]. Here a
constraint-directed search is applied to the problem, and the com-
putational results are compared to those of ADARTW. Once again
schedule blocks are used, thus making a solution not feasible if a
customer waits in an idle vehicle.

The proposed constraint-directed search algorithm can be formu-
lated in three phases:

e clustering (optional)
e beam search

e post optimization.

The clustering phase is optional and consists of identifying groups
of customers that fit naturally together. This is accomplished as
previously described in the paper by Roy et al.[4ll. After clus-
tering the customers, they are then sequenced by searching for a

5.1. PAPER SURVEY 45

feasible sequence within each cluster, by constructing a route and
iteratively inserting the customers of a cluster into the route. If
customers can not be directly inserted into their corresponding
route, they are discarded from the initial construction. Instead of
just inserting one customer at a time into the constructed routes,
the authors propose a beam search procedure that helps take into
consideration the customers that have not yet been inserted. The
not yet inserted customers are sorted according to their earliest
pickup time, and the customers with earliest pickup time within
a given time horizon are then examined. At each of these states,
an additional option is included, namely the construction of an en-
tirely new route. A set of the customers giving the best possible
solutions in the beam search procedure are then inserted into the
routes, and the rest of the customers are discarded until the next
iteration. The number of customers to be assign to routes at each
iteration is called the beam search width, thus the ADARTW has a
beam search width of one. During the beam search phase, solution
quality is evaluated by summing up the values of weighted utility
functions concerning cost of operation and customer inconvenience
measured in deviation from desired service time and excess ride
time. Cost of operation is given as number of vehicles to be used,
total vehicle time, utilization of vehicles, and distribution of cus-
tomers among vehicles. After having inserted all customers into
the routes, a post optimization phase is started. Here two swap
operations and an OPTIMUM procedure are used.

SWAP-1 aims to eliminate the smaller routes by selecting all the
customers in the smallest route and considering them for inser-
tion by the beam search procedure into all other existing routes.
If all customers in the smallest route can be inserted into other
routes, SWAP-1 then considers the next smallest route. SWAP-
1 stops when feasible possibilities of moving customers are ex-
hausted. SWAP-2 is then applied to each two customers in turn.
Here the pickup and destination points of two customers are simply
exchanged between routes while maintaining feasibility. SWAP-2
stops when there are no more pairs of customers where an exchange
can improve the solution. Within each schedule block OPTIMUM
is now applied. This step consists of finding the optimum sequence
of the stops within the schedule block. In order to avoid a large
increase in computational time, only blocks with three customers
or fewer are considered.

46 CHAPTER 5. PREVIOUS WORK

The constraint-directed search procedure was tested on data with
90 customers in 9 hours of operation, (ie. 10 customers per hour).
The results were compared to those of ADARTW, where the beam
search procedure generated a better solution with respect to both
service quality and cost of operation. As expected, increasing the
beam width generate even better results, although with a consid-
erate increase in cumputational time. ADARTW was about twice
as fast (66 seconds) as the beam search procedure (125 seconds)
with respect to computational time.

A Masters thesis by M. K. Mikkelsen from Denmark was pre-
sented in 1994[33] comparing results of a miniclustering algorithm
with results from an extension of ADARTW called REBUS (see
below). The miniclustering algorithm was based on the algorithm
mentioned in Ioachim et al.[26l previously in this chapter, where
column generation is used in the construction of routes resulting
in a set partitioning problem. The miniclustering algorithm was
extended by Mikkelsen to include additional parameters to control
passenger discomfort and to enable a more direct comparison with
the results from REBUS.

Mikkelsen concluded that the results obtained by the miniclus-
ter algorithm were superior when stops were clustered, and in 12
of the 15 test problems, the miniclustring algorithm outperformed
REBUS with regards to solution quality. However the CPU time
used by the miniclustering algorithm was substantially above that
of REBUS, which could limit the practical use of miniclustering.
In 1995 Madsen et al.[32] presented an insertion algorithm based
on ADARTW developed for use by the Copenhagen Fire-Fighting
Service (performing ambulance service, transportation of disabled
and other specialized transports besides fire-fighting). The algo-
rithm REBUS was designed to handle in excess of 50.000 requests
per year, and implemented in a dynamic environment intended for
online scheduling. Response time of inserting an immediate request
is less than 1 second, permitting interaction between system, call-
center and customer. The DARP treated here differs somewhat
from previously considered problems because of the multi dimen-
sional capacity involved. REBUS is also designed for the dynamical
case of DARP.

5.1. PAPER SURVEY 47

To enable the operater to control the solution with respect to var-
ious objectives, the authors introduce several operator controlled
parameters. To control the insertion procedure, requests are sorted
according to difficulty of insertion. Difficult requests are inserted
first. The difficulty is measured as a sum of difficulties related
to time windows, excess ride time, and capacity requirements. A
narrow time window is harder to satisfy than a wide time win-
dow, large excess ride time is easier to comply with than short
excess ride time, and small capacity requirement is easier to han-
dle than large capacity requirements. When dealing with capacity,
note that the algorithm operates with multiple capacity, eg. regu-
lar seat, child seat, space for wheelchair, and space for beds. The
different possible insertions of requests in a preliminary plan are
ranked according to parameters concerning driving time, waiting
time, deviation from desired service time, and capacity utilization.
The insertion algorithm REBUS now processes the requests to be
inserted according to their difficulty by generating all feasible in-
sertions into the existing routes, one for each vehicle. The feasible
insertion generating the smallest change in the objective function
is then performed. If no feasible insertions exist, the request can
be assigned to a fictitious vehicle eg. a taxi.

Although REBUS is based on ADARTW, it differs to some extent
in the way the requests are sorted. As stated above, the requests
are sorted according to cost. REBUS also makes it possible to min-
imize the waiting times for vehicles, just as there is an upper limit
on the total ride time of each customer. REBUS also allows for ve-
hicles which can have different capacities that exclude one another.
There are also some differences in the insertion procedure, where
REBUS reduces the number of feasible insertions by applying ca-
pacity, excess ride time, and time windows constraints at this stage.

REBUS was implemented in the C++ programming language and
tested on a HP-735/9000 computer with the UNIX operating sys-
tem. The size of the dataset was 24 vehicles and 300 customers
taken from real data provided by the Copenhagen Fire-Fighting
Service, and the problem was solved in less than 10 seconds. The
dynamical addition of a new customer to the existing routes took
less than 1 second once the original problem was solved.

In 1995 Healy and Molll22] published a paper concerning an exten-

48 CHAPTER 5. PREVIOUS WORK

sion to the traditional local improvement procedure. This extended
local search was then applied to the DARP. The heuristic is based
on a concept called “sacrificing” by the authors and show consid-
erable improved results when compared to the solution quality of
the traditional local search heuristic. In general the extension is
formed by adding an extra goal to the search procedure. When a
local optimum is reached with respect to the primary goal, a sac-
rificing step improving the secondary goal is allowed even though
the solution quality is temporarily worse.

Based on neighborhoods generated by applying a swap procedure
to the current solution, the extension of the local search heuristic
can be described as follows. Whenever a local optimum is found,
the seach heuristic enters a sacrifice phase, where the size of the
neighborhoods to the local optimum are evaluated. By using 2-opt
or 3-opt swap methods on the requests in routes, the number of
possible swaps can be quickly estimated, and the largest neighbor-
hood can be identified. Although moving to a solution with a large
neighborhood results in worse solutions with respect to the objec-
tive function, the step is allowed, and a search starts for a local
optimum in this new solution. There are various ways of termi-
nating the sacrifice phase, but the authors here chose to sum the
length of the segments sacrificed in each 2-swap. When this total
length exceeded twice the number of customers, the sacrificing step
was halted.

The extended local search procedure was compared to the tra-
ditional local search on 10 dataset constructed with 10 to 100
customers. All distances were Euclidian. On these datasets the
sacrificing step was performed with the 2-opt swap procedure, and
compared to a local search heuristic using 2-opt swapping and 3-opt
swapping. Because of the much larger neighborhood generated by
the 3-opt method, this also generated by far the best result. How-
ever the computational time for running 3-opt is far larger than for
the 2-opt because of the resulting much larger search space. The
authors show solutions of their sacrificing extension with respect
to total driving distance that are in between the solutions obtained
by regular 3-opt and 2-opt. This is accomplished in about 15 times
the computational time of 2-opt, but still a factor of 20 faster than
the regular 3-opt. Although not explicitly indicated in the paper,
the extended local search seems to be very similar to a Tabu Search

5.1. PAPER SURVEY 49

method.

Robert Dial introduced a new design in fully automated planning
for the DARP in 1995[14]. He suggests that each vehicle in the
fleet operates with its own computer communicating solely with
the computers in the other vehicles, thus enabling the fleet to act
like a swarm of ants. The transportation system resulting from
this structure is called ADART (Autonomous Dial-a-Ride Tran-
sit), and all functions in the system are maintained by computers
with no human interference. The billing for using the transporta-
tion system is performed electronically, and upon subscription to
the transportation system, the customer registers a personal list of
addresses to be used when placing a request in the system. When
a request is received, it is sent to a vehicle, that can either include
it into its own schedule or send it off to another vehicle. This all
happens without the drivers’ knowledge, and their only job now
is to follow instructions from the onboard computer. Whenever a
vehicle computer has free cycles it works on optimizing the current
schedule. When a request is received by the computer, it calculates
its marginal cost of servicing the request. The information about
the request and the initial vehicle’s marginal cost is broadcasted
to the other vehicles, who then calculate their own marginal cost.
Any vehicle with a better marginal cost responds to the broadcast,
and the request is send to the vehicle best suited to service the
request. There is of course need for some centralized functions in
order for the transportation system to work. These functions are
for instance billing information, personal address list storing etc.

In 1996 Ben-Akiva et al.[5 published a survey concerning the im-
pact on demand by introducing a Dial-a-Ride transportation sys-
tem. Different service quality parameters were tested according to
the expected effect on demand. Results showed that one of the
most important parameters is the travel time and time window of
pickup. For every 5 minutes of extra excess ride time, the demand
lowers with 10-15% , and increasing the time window of expected
pickup also lowers the demand substantially.

Considering the advance request DARP, Toth and Vigo published
a paper in 1997[51] where a set of real-life instances from Bologne
involving about 300 requests were solved using a parallel insertion
heuristic called TV. The problem here consists of a mixed set of

50 CHAPTER 5. PREVIOUS WORK

vehicles, where the objective is to minimize the use of taxis with
regard to both number of taxis and distance/time driven by the
taxis. This is to be accomplished within a specified service qual-
ity. The heuristic proposed here is based on the relaxation of the
desired service time by the introduction of a piecewise linear user
inconvenience penalty in the objective function.

TV starts by initializing a set of routes in which the size of the
set is given by an estimate of the minimum number of vehicles
needed to serve a fraction of the requests. The estimate is calcu-
lated by considering only the capacity requirements of the problem
discarding all other constraints. At each iteration of the insertion
of requests into routes, a min-cost Rectangular Assignment Prob-
lem is solved on a matrix of requests and routes. Each element
in the matrix describes the marginal cost of the best insertion of
the request into the route. If no feasible insertion can be found,
the marginal cost is set to a very large number, and where a re-
quest cannot be inserted into any route, a new route is initialized
based on the available vehicle best suited to serve the request.
To further improve the solutions obtained by TV, the authors in-
troduce a Tabu Thresholding algorithm (TT). TT works in a way
very similar to the algorithm described in Healy and Molll22l, but
instead of searching the largest neighborhood, a candidate list is
maintained in TT. Where the extended local search used a sacrifice
phase, the TT algorithm uses a mixed phase (performing respec-
tively “sacrificing” steps and improvement steps) that is repeated
for a certain number of iterations, whereafter an improve phase
takes over. The two phases are alternated until the best known
solution has not been improved for a certain number of iterations.

The neighbourhood of a given solution can be obtained by per-
forming three different steps:

e Remove a request from a route, and try to insert it into a
different route.

e Perform a swap of two requests belonging to two different
routes.

e Perform a trip double insertion. Here a request is removed
from a route and inserted into a nother route. Then a request
from a third route is inserted into the first route.

5.1. PAPER SURVEY ol

The above mentioned TV and TT were applied on the datasets
from Bologna, and tests were run on an IBM Personal Computer
486/66. The solution obtained by TV in less than 30 seconds of
computational time satisfy all operational constraints, and offered
a considerably better level of service than the hand made solutions.
The hand made solutions were slightly infeasible, but resulted in
trip durations almost as good as those of TV. TV was able to reduce
the cost of operation by more than 36% by reducing the number
of taxis used from 245 to 108. By running the TT improvement
heuristic the number of taxis used was reduced even further to
only 42 taxis while still producing a solution that is better than
the hand made solution with regards to all parameters.

In 1998 Charikar and Raghavacharil®l talked at a conference about
the finite capacity DARP. They introduce a non-trivial approxima-
tion algorithm for the capacitated DARP without time windows.
Also they consider the preemptive DARP, which allow delivering
the load at intermediate locations, thus pickup up the load later
for final delivery. Although the the problem is referred to as Dial-
a-Ride, it is perhaps better classified as the Pickup-and-Delivery
problem, but it still deserves a little space in this chapter.

As meta heuristics are being used to solve still more problems,
Baugh et al. introduced a solution to DARP using Simulated An-
nealing in 1998[30]. The authors use Simulated Annealing since
they find it appears to be the meta heuristic best suited, since
the technique is easily adapted to problems with a well defined
neighborhood structure and it seems to find near-global optimums
in a reasonable amount of computational time. The authors also
state that Simulated Annealing is preferable because of the ease
of integrating other meta heuristics such as Tabu Seach into the
procedure.

To solve the problem using Simulated Annealing, the authors use
a Cluster-First Route-Second strategy where the clustering is per-
formed by simulated Annealing and the routing within the clus-
ters are done by a space-time nearest neighbor heuristic. The au-
thors argue that the most crucial part of DARP is the assigment
of customers to vehicles and not the routing part which usually
only involved a comparatively small set of customers. The clus-
tering technique is initialized by randomly assigning customers to

52 CHAPTER 5. PREVIOUS WORK

clusters, and then two different operations are used to alter the
clusters. The first alteration is obtained by randomly swapping
customers from different clusters, thus leaving the total number
of clusters, and the size of the clusters the same. The second al-
teration is obtained by swapping randomly selected customers to
randomly selected clusters, thus making it possible to annihilate
clusters, generate new clusters, and change the size of the clusters.

The strategies for altering the clusters are desirable since they are
simple. Also they give an opportunity to generate a cluster from
another cluster which is important when using Simulated Anneal-
ing. The exchange operation allows for a smoother solution space,
whereas the swapping allows for dynamical updating of the clus-
ters. At each iteration of the Simulated Annealing, the routing
heuristic is invoked on the clusters and the number of vehicles
needed to service the routes is reassessed. The objective function
used to evaluate the resulting solution penalizes the total distance
traveled by all the vehicles, the total disutility of the customers,
and the number of vehicles used. If the new set of clusters result
in an improvement, it is accepted. Otherwise it is accepted with
a probability calculated with the parameters change in cost, and
temperature.

To further improve the results of the Simulated Annealing scheme,
a Tabu List is introduced. This list keeps in memory the accepted
transitions at each iteration so as to give the transitions a certain
amount of time to show their effectiveness. The resulting algorithm
has been tested on a data set provided by the Winston Salem Tran-
sit Authority with more than 300 customers a day. A significant
number of the customers travel only very short distances. Results
show that the algorithm presented here improves the manual solu-
tion obtained in all respects. Travel time is reduced by 25% which
is also the case for duration of individual trips and number of ve-
hicles. However the computational effort required to obtain these
solutions was not provided by the authors. In general it would
seem better to use a Tabu Search Heuristic than a heuristic based
on Simulated Annealing since Tabu Search rely on special charac-
teristics of a problem. In the case of DARP, the expected solution
structure is so well known it can be used to develop intelligent
neighborhood search procedures to improve solution quality in a
Tabu Search environment.

5.1.

PAPER SURVEY

5.1.1 Chronological overview

1970

1975

1980

1985

1990

1995

2000

Wilson
Static - MV

Sequetial insertion

Wilson
Static - MV

Sequetial insertion

Stein
Static - SV w. transfer points
Grouping - insertion
Psaratftis
Static - SV
Dynamic programming

23

Desrosiers et al.

Static - SV Static - SV
Dynamic programming Min. spanning tree

\ Desrosiers et al.

Static - MV
Column generation

Psaraftis

loachim et al.
Static - MV
Potvin & Rousseau Set partitioning

Static - MV

Constraint-directed search

Roy et al.
Static - MV
Clustering
Belisle et al.
Static - MV
Clustering
Jaw et al. Psaraftis
Static - MV Static - MV
Sequential insertion Clustering
Desrosiers et al.
Static - MV
Clustering
Madsen et al.
Dynamic - MV
Sequential insertion
Toth & Vigo
Static - MV
Parallel insertion
Tabu threshold

Healy & Moll
Static - MV

Extended local search

Baugh et al.
Static - MV
Simulated Annealing

Figure 5.1: Chronological overview of some of the publications on the Dial-
a-Ride Problem over the years.

54 CHAPTER 5. PREVIOUS WORK

5.2 Dial-a-Ride in Denmark

The development within the area of alternative public transporta-
tion methods in Denmark is not quite as extensive as in other
countries. However after a few years’ delay, we started examin-
ing the possibilities of introducing new transportation systems by
analysing the need for and gains made by such an introduction.
While Canada, for instance, established a Dial-a-Ride bus system
in the mid 1980’s (see section 5.1), we did not start this develop-
ment until the beginning of the 1990s.

5.2.1 Standard of reference

The following sections will describe various initiatives in Denmark
within the area of demand responsive public transportation. In
order to be able to compare these initiatives, this section will list
parameters concerning the objectives and transportation systems
chosen here to evaluate and compare the different projects. The
actual comparison is done later in section 5.2.5.

There are two main objectives when transforming public trans-
portation systems. The first priority is often to raise the level of
service without increasing costs, but in many cases raising the level
of service in some areas lowers the level of service in other areas.
The following list of objectives should give an overall idea of the
concept.

o Decrease total costs

— by decreasing level of service in some or all areas.
— while keeping current level of service in all areas.

— while raising level of service in some or all areas.
o Increase level of service

— in some or all areas with no increase in costs.
— in some or all areas with little increase in costs.

— in some areas by lowering service in other areas.
The areas mentioned above are:

e Traditional public transportation in more populated areas.

5.2. DIAL-A-RIDE IN DENMARK 95

e Traditional public transportation in less populated areas.
e Transportation of senior citizens.
e Transportation of handicapped.

e Transportation of temporarely disabled.

Delivery of goods and food for senior citizens.

To reach the above mentioned objectives, different transportation
systems can be used. The solution methods used in Denmark up
until now are listed below. Note that these transportation solutions
can either be added to an existing system or replace some/all of
the existing system.

e More extensive scheduling of existing public transportation.

e Long term (typically 5 years) contracts with independent op-
erators and
— centralized planning.

— decentralized planning.
e Dial-a-Ride systems with

— pure door-to-door transportation.
— regular stops.

— a combination of door-to-door and regular stops.

5.2.2 Initial projects

HUR is by far the largest single planner of public transportation
in Denmark. Thus they were also the first to introduce new con-
cepts in the coordination of specialized public transports. In the
late 1980’s HUR started a project to centralize the planning of
a demand responsive transportation system, hoping thereby for a
massive saving on the overall costs in the area.

In the beginning of the 1990’s HUR was operational, and over
the years they have obtained a significant decrease in costs caused
mainly by two initiatives. First, a central exchange was established

56 CHAPTER 5. PREVIOUS WORK

to handle all requests from customers, which decreased the admin-
istrative costs of the system. Secondly, the gathering of all request
in one place made it possible to coordinate the transportation in
a much more efficient way because of the better general overview.
Thus HUR was able to invite tenders for parts of the total trans-
portation need, which again resulted in a decrease of the cost per
time a passenger is in the system.

The results today of the reorganization within HUR are 47 % fewer
driven kilometers total and a decrease in costs per trip of 69 %.
These numbers from before the reorganization used in this com-
parison are of course adjusted to reflect the current situation. All
in all the HUR model has been very successful in reaching the ex-
pected goals.

In 1995 COWI (Danish Consulting company), in cooperation with
Grenaa Kommune (Danish municipality) and the Danish State De-
partment of Traffic, started analysing performance by simulation
of a system named “Kaldebus”. Kaldebus consists of regular bus
stops beeing serviced by minibuses, but instead of servicing the bus
stops at regular intervals, the passengers call the buses from the
bus stops to order transportation. All in all the system is similar
to a taxi based transportation system, where pickup locations and
destinations are defined by the regular bus stops.

The Kaldebus project consisted of three phases of which the first
phase was a description of the new transportation system as writ-
ten in the previous paragraph. Phase two was the completion of a
demand estimation, in which the attitude of the possible passen-
gers toward the project was evaluated. Phase two was completed in
1996 with the result that with the right service parameters (Max.
waiting time at a busstop 10 min., max. driving time between
stops 25-30 min., and rate of fare 10 dkr.) there would be an in-
crease in the number of passengers of about 30 % amounting to
about 200 passengers per day. In phase two COWI also sets the
framework for the practical testing of Kaldebus. However phase
three consisting of the practical testing was never carried through
for somewhat blurred economical reasons.

In 1991 BAT, a trafic operator on a Danish island, introduced an
arrangement for handicapped that allowed them up to 160 trips

5.2. DIAL-A-RIDE IN DENMARK 57

by taxi a year. This arrangement became such a success that the
rapidly increasing demand and rising costs led to a discussion of the
possibility of introducing a public door to door trasportation sys-
tem. This system would then be available to all passengers within
the BAT operating area, with the purpose of economical and envi-
ronmental benefits by operating big scale.

The discussion resulted in a combined public transportation sys-
tem with both regular bus based transportation and a taxi based
door-to-door (Dial-a-Ride) system called HandyBAT. HandyBAT
was partly financed by the Danish State Department of Trafic and
established as a joint work of handicap organisations, users, taxi
operators, universities etc. The scale of HandyBAT was in 1995
about 350 users and the serviceparameters were 40 minutes at a
maximum waiting time at pickup location, maximum 30 minutes
early arrival at destination, maximum driving time 200% of short-
est driving time or 35 minutes more than shortest driving time,
and at least 20 min. longer than shortest driving time is accept-
able. HandyBAT was the first operational computerized Dial-a-
Ride transportation system in Denmark.

5.2.3 Knowledge center for public transportation in ru-
ral areas (CPTRA)

In 1999 the Minister of Trafic in Denmark launched a center for
improving the public tranportation in low populated areas (CP-
TRA). The center was given 90 million dkr. to support projects
within those areas in the following four years. The founding has
been and is to be used on costs rising as a direct consequense of
the adaption to new transportation systems, things such as hard-
ware and software for using GPS in the route planning process in
a dynamic transportation environment. CPTRA is also to become
a knowledge bank for the various operators within this area, and
the starting point consists of a report made by the Department of
Trafic[52] in 1999.

Since the report made by the Department of Trafic is very im-
portant for the development of alternative public transportation
systems in Denmark in near future, the following will aim to give
a rough idea of some of the conclusions. As a start it is shown that

58 CHAPTER 5. PREVIOUS WORK

the number of potential passengers in the rural areas is around
200.000 people. These people are all part of families, who do not
have direct access to a car. Based on case studies with a varying de-
gree of adaption to demand resposive transportation systems from
regular systems, the conclusions in [52] follow.

As this is being written the new administration in Denmark has
decided to close CPTRA. How this will affect already established
initiatives is not yet known. However as decribed in section 5.2.4
CPTRA has already managed to help launching several initiatives,
just as the transportation sector in Denmark now has a larger
awareness towards the possible improvements found by restructur-
ing part of the public transportation system.

In many cases it is possible to give a more extensive service within
an unchanged budget by introducing Dial-a-Ride buses, though of-
ten it is nessesary to add regular school buses etc. to meet peek
demand. Also it is somewhat difficult to integrate different types
of transportation e.g. handicapped tranportation and regular bus
transportation, since the passengers see theDial-a-Ride system as
time demanding and not very flexible. To adapt it succesfully it
is important to have extensive support among operators and the
public service administration.

The following is a description of 10 smaller projects of introducing
various new transportation systems in different parts of Denmark.
Some of these are still operational and some were terminated af-
ter a limited period of time. A more thorough description can be
found as a suplemnent to the report made by the Department of
Traficl2]. The small projects are very similar in structure, but
since they show a usefull pattern they are all included here.

In Ravensborg a Totalbus (a bus performing all public transporta-
tion needs eg. transportation of people and goods such as food)
was introduced in 1992. The bus had a regular schedule in the
morning and afternoon rushhours transporting mainly school chil-
dren to and from school. In between rush hour Totalbus performed
Dial-a-Ride bus tranportation between busstops with possible de-
viations. Demand for transportation was given by telefon directly
to the driver. In total 6 Totalbus lines were established; there is a

5.2. DIAL-A-RIDE IN DENMARK 29

general consensus' among the population that it is now more con-
venient to live in the area. Also it has been succesful to have the
buses deliver food and books for the elderly, but the delivery of
medicine and other goods have not been used extensively. Overall
the Totalbus project had a 25 % increase in the number of passen-
gers over 3 years and still the total costs of running this improved
system showed savings after 3 years.

In 1993 a Borgerbus (Danish for Citizens bus) was introduced
in the area of Fasterholt-Kglkaer. In 1995 Borgerbus, which was
made a permanent part of the public tranportation system in the
area, consists of a regular Dial-a-Ride bus system to supplement
the existing system. About 10 % of the potential passengers used
Borgerbus which has raised the level of service while being just
about economically neutral.

On the same island HandyBAT, experimented with a better coordi-
nation of the local activities with the public transportation system.
There was an overall increase in the number of passengers, but it
is unsure if it was in any way connected with the coordination.
Overall almost no passengers chose to use the buses on the special
premisses.

In the area around the danish city of Brgnderslev two regular bus
routes where substituted with a Dial-a-Ride minibus, and two other
routes were adapted to the new situation in order to handle school
children. On weeknights and weekends a taxi was used as the
Dial-a-Ride bus. The minibus followed a regular route with only
exceptional deviations. Results shows that even though demand
decreased by 90 passengers per month, 84 % of the passengers
were happy with the new system. Costs decreased with the de-
mand.

In Lejre the existing public transportation system consisted of two
local bus routes and a closed school bus system. In the evenings
a Dial-a-Ride bus was the only service, also it only covered the
southern part of the area. This was changed to one regular bus
route, 3 open (for tranportation of all possible passengers) school
bus routes, and an all-day Dial-a-Ride bus covering the entire area.

175 % agrees

60 CHAPTER 5. PREVIOUS WORK

In the beginning the Dial-a-Ride bus was operating independently
of any regular lines, but since passengers found it inconvenient to
have to call for the bus every time, the system was changed to a
regular route based bus. However the bus still carried out door-to-
door transportation, and it was still necessary to call if there was
a need to go to destinations far from the regular route. Results
indicated an increase in demand by 20-30 %, with overall passenger
satisfaction. The opening of the school buses to accept other pas-
sengers did not provide any flexibility. There was neither increase
nor decrease in finances.

The next project was carried out in the area around Nysted. Here
the situation was somewhat different from the previous projects,
since the public transportation system consisted of open school bus
routes. To obtain a higher level of service for non school children,
the school bus routes were closed to other passengers, and a Dial-
a-Ride bus (Landsbybussen) was inserted. Landsbybussen had the
primary goal of transporting the senior citizens to and from a re-
gional center, with 3-4 daily departures, secondly it functioned as
a regular open dial-a-ride bus. This lead to an increase in demand
by 340 % (to 120 passengers per week) of satisfied passengers; how-
ever there was a budget increase of about 3 %.

One of the most successful projects was in Praestg. Here the reg-
ular bus routes were again transformed into door-to-door Dial-a-
Ride buses. Except for small problems concerning the peak hours
for school children, the passengers were very content with the new
transportation system and wanted it extended. Also unique for this
project was the apparent succes of integrating the various special-
ized transportation tasks? in the system. The demand was trippled
to 50.000 passengers per year and at the same time the costs were
decreased by 17 %. One of the primary reasons for the satisfaction
among the passengers was the direct contact® between the opera-
tor/driver of the buses and the passengers.

In Kjellerup the situation was reversed when an attempt was made
to increase the coverage of the public transportation system. A
small bus was inserted to transverse the existing routes on peak

2Handicapped, seniors etc.
3Demand was telephoned directly to the driver

5.2. DIAL-A-RIDE IN DENMARK 61

hours and assume the existing routes in low demand hours. The
plan was to include the delivery of library books, food for elders,
and other goods, but this was never implemented because of struc-
tural barriers’. Results showed no change in demand in spite of
extensive marketing.

Inspired by the project in Preestg, a county consisting of a small
island, transformed their seven local routes to two buses transport-
ing school children to and from school and driving as door-to-door
Dial-a-Ride buses in between. Eventhough the costs went up mod-
erately, the demand did not increase. However as in Praestg, the
passengers wanted the system extended.

5.2.4 Projects partly funded by CPTRA

Although the ten projects mentioned in the previous section 5.2.3
are the basis of the knowledge obtained by CPTRA, additional
adaptions in the rural area of Denmark can be found. Keeping
the above in mind, which follows is a more extensive description
of recent developments partly founded by the new center. There
is not yet a complete documentation of these developments, but a
description of the centers actions so far can be found in the centers
yearly report/17l. However the center hosted a small seminar on
the improvement of public transportation in rural areas on which
the following is based.

So far the center has supplied various areas with a total funding of
twenty million dkr. Thirteen million has been divided between two
large projects, the rest is divided among nine smaller projects like
the ones already described. The 2 large projects are almost identi-
cal and operational as this is written. The main driving force in the
first large project is Nordjyllands Trafikselskab (Traffic operator of
northern Jutland) from now on reffered to as NT. NT has also
inspired and participated in the second large project lead by Vest-
sjellands Trafikselskab (VT - Traffic operator of Western Sealand).

Before introducing the projects, the following list defines “special-
ized transportation”, since it is treated independently of regular
public transportation in the projects. Specialized tranportation

4Not mentioned in the report

62 CHAPTER 5. PREVIOUS WORK

consists of:
e Transportation of handicapped
e Transportation to/from medical care
e Other municipal transportation

Putting the regular scheduled public transportation aside for the
moment, NT has developed a system for coordinating the spe-
cialized transportation within their comparatively large operations
area. This system is based on a software module called Planet
(more detailed describtion in chapter 7), which assigns passengers
to vehicles. The goal of NT is to reduce the costs by 20-25 %
in comparison to the standard transportation systems where each
passenger is serviced by a regular taxi at the cost of the regular
fare paid by the government. This reduction is anticipated as a
direct consequense of the ability to fill up the vehicles and just as
important as a consequense of using the taxis and minibuses based
on contracts.

As illustrated in figure 5.2 the Planet system consists of a server
performing the assignment of passengers to vehicles and a number
of clients placed at a call center and at the various institutions such
as hospitals, municipal offices etc. The server is designed with a
large over capacity to ensure instant response time for the clients.
Also the plan is to use Planet for regular Dial-a-Ride buses open
to all in the future as a suplement or maybe even a replacement of
the existing transportation system.

Planet is based on the following cycle:

e The transportation is offered to the various smaller operators
eg. taxi companies, minibus companies.

e The operators asks a price per driven hour and a price per
hour waiting.

e All prices are used as input in Planet eg. no company is
refused.

e Planet assigns passengers to vehicles based on the prices of
the vehicles and geographical positions 24 hours a day.

e The transportation is once again offered to the operators.

5.2. DIAL-A-RIDE IN DENMARK 63

PLANET SERVER

/ \ INSTITUTIONS

CALL CENTER

Figure 5.2: The representation of the total Planet system.

As this is written NT cooperates with around 100 operators with
a total of about 500 vehicles, and by coordinating the transporta-
tion the total number of vehicles used has decreased. The least
inexpensive vehicles are of course given most of the demand so by
having more demand on fewer vehicles, the operators have the pos-
sibility of making a greater profit per vehicle, lowering the prices.

The use of Planet has resulted in reduced costs for passengers,
who also gets a response on their order imediately on placing their
demand. Also important information is automatically transferred
to the destination (this is mainly for handicapped), and regular de-
mand is taken care of automatically. Transportation demanded by
hospitals, senior centers is also simplified resulting in less adminis-
tration and more control over costs. It is now possible to make a
larger profit per vehicle since they no longer have to keep track of
the billing; Planet does this automatically.

There are of course also disadvantages by using a system such

64 CHAPTER 5. PREVIOUS WORK

as Planet, and the experience at NT is that the passengers are
not happy about having excess driving time or risking unneces-
sary waiting time, and most feel it is inconvenient to have to share
the vehicle with others. Hospitals and other institutions miss the
closeness with the patients just as they feel they depend too much
on technology. For the operators it is harder to estimate prices and
foresee outcome just as it brings more competition.

The results so far are savings on the transportation of patients
of about 6,5 %, handicapped transportation 26 %, and other med-
ically related transportation 25 %. However there has been in-
creased administrative costs of a little more than half the saved
amount. All in all total savings of 11 %. The experience gained by
NT during the implementation of Planet points to various prob-
lems and traps. First of all the hardware must be designed so there
is no down time. Also the personnel must be educated properly to
make sure no knowledge is lost, and because the automated process
does not handle everything, there is still the need for the human
factor. Good will among the organizations, institutions and oper-
ators using the transportation system is also very important, and
last, the implementation of the system is very expensive.

Based on all of the above, the following section will comment on
the projects made so far as well as list a number of additional areas
of investigation in the future.

5.2.5 Comments and comparison

What can be concluded from the projects mentioned in this chap-
ter? Why is the adaption to a more flexible transportation system
not always succesful? What still needs to be done to improve the
public transportation in the less populated rural areas? Proposals
to some of the answers will follow and hopefully help make the
often costly but necessary transition to a higher level of service for
citizens in these areas less problematic in the future.

Table 5.1 shows a comparison of the projects with regard to the pa-
rameters mentioned in section 5.2.1. The table displays the change
in overall costs of the local transportation system after the adap-
tion to a demand responsive model which is then compared with
the change in the level of service of the traditional and specialized

5.2. DIAL-A-RIDE IN DENMARK 65

Project Cost Seruvice Goods DAR Reaction
Trad. | Spec. DtD | Stops
Ravnsborg | Down | Up okk Yes | Yes | Yes Better
Fasterholt-
Kolkeer — Up Up k1 Yes | No Better
Gudhjem Up Up ook ook No | Yes —
Bronderslev | Down | Down | *** ok No | Yes —
Lejre — Up okk R Yes | Yes Better
Nysted Up Up Up k1 Yes | No Better
Praesto Down | Up Up k1 Yes | No Better
Kjellerup ook ¥k | Down | No No | Yes Worse
Mogn Up Up — % 1 Yes | No Better
Ringe Up Up | Down | *** | Yes | Yes —

Table 5.1: Evaluation of Danish projects

transports, also weather transportation of goods is included. The
two Dial-a-Ride columns indicate the structure of the new system
with true Door-to-Door transportation, regular stops, or a combi-
nation of both. The last column gives an indication of the passenger
reaction after the adaption. “***” indicate that the feature was not
included or information not available, and “—” is a symbol of no
change from before.

The table shows that in almost all instances it was possible to raise
the level of service in order to achieve an increase both in num-
ber of passengers but also in passenger satisfaction. In about half
these cases, the cost of operation was actually lowered. In general
all projects where the adaption to DAR transportation was total
(e.g. the regular transportation system was swapped to a pure
DAR transportation system, the level of service always increased
from the passengers point of view).

Keeping in mind the discussion of the service parameters from
section 4.4, it is extremely valuable to be able to evaluate the cost
connected to adjustning these parameters. For instance, how much
worse would the driven routes be by decreasing the time interval
between a request is given to when it is carried out, or how many
more vehicles will be needed with a demand increase of 10 %? It
would also be valuable to know where to place a vehicle waiting for
the next request based on the probablilities of getting requests in

66 CHAPTER 5. PREVIOUS WORK

the various areas. A knowledge generating simulation environment
would of course also provide a useful tool for automatic planning
once the parameters are locked.

The projects tested various different combinations of transporta-
tion systems showing that what worked in one area did not work in
another. This might be according to the density of the population
e.g. low density calls for total door-to-door transportation, higher
density calls for a combination of regular stops and door-to-door
transportation and so on. Most areas also have a comparatively
large municipal center or a railway station which takes care of the
passage to and from the area. Again looking at the current demand
should tell something about which transportation system has the
highest probability of succes.

There is one focus point missing in the entire discussion of an
improved public transportation system. The work leading to the
establisment of the center of knowledge not only focused on the
improvement of service but also on the amount of energy spent on
transportation. It is reasonable to state that another goal of the
adaption of public transportation is to decrease the total distance
driven and the size of the buses used, which can be done by using
the capacity of the buses efficiently. It might, however, be a good
idea to include the planning of the driven routes in the assignment
of passengers to operators. There are still many areas in Denmark
where the entire transportation system, however small, is operated
by one single operator. Maybe a route planning and visualization
tool could save distance in those frameworks.

All projects agree that it must be convenient to submit a request
to the operator, and that the personal contact between the op-
erator and the passengers is vital. All of the above supports the
need for a tool that helps planning the transportation without tak-
ing over the entire process. Most often automated systems do not
plan nearly as well as can an experienced person with a lot of lo-
cal knowledge. However it is always helpful to use tools that help
structuralize and visualize the planning process, especially when
the experienced person is not around. Somehow that local knowl-
edge must be conserved, since it seems that flexible transportation
systems based on personal contact and local knowledge are most
likely to succeed.

5.2. DIAL-A-RIDE IN DENMARK 67

There are basically two possibilities for the traffic units. Either
they contract with smaller operators and perform the planning be-
fore relaying orders to the operators, or they outsource the system
in large chunks to larger operators, who then plan the fulfillment
of the orders themselves.

68

CHAPTER 5. PREVIOUS WORK

Chapter 6

The mathematical model

This chapter starts with definition of the notation used to describe
the DARP in a mathematical model. It is a very complicated
model, which can only be solved to optimality for very small in-
stances. Thus we will not try to solve the model as a part of this
thesis but instead the mathematical formulation will be used to
help discuss the various aspects of the DARP. The formulation
will also assist in later implementation of heuristics in which the
objectives and constraints can be used as a guidance.

The formulated mathematical model is very similar to the one pre-
sented in chapter gl1] concerning PDP, with some extensions taken
from Baugh et al.[30l. Only a very few papers contain a mathe-
matical model of the DARP. However in order to fully discuss the
aspects of practical DARP, some time will be spend developing
further extensions to the mathematical model.

6.1 Notation and basic model

First let us introduce the notation used to formulate the mathe-
matical model. We have a set of n requests consisting of a pickup
point ¢ and a delivery point n + ¢ together with a demand d; giving
the number of passengers to be transported from ¢ to n + i. The
complete set of pickup points is denoted P = {1,...,n} and delivery
points D = {n—+1,...,2n}. Let N = PUD. For each vehicle k € K we
have two nodes: An origin depot o(k) and a destination depot d(k).
Let A= NU{o(k),d(k)}Vk € K. Since not all vehicles are necessarily
used, let V' C K denote the set of vehicles used to obtain a solution,

69

70 CHAPTER 6. THE MATHEMATICAL MODEL

and v be the number of vehicles used. Each vehicle has a capac-
ity C* The problem consists of transporting d; passengers from i
to n + 1, so the change in load at node i and n + ¢ is represented
respectively by [; = d; and [,,; = —d;. L¥ is the load of vehicle k
after serving node i. Each node ¢ (both pickup and delivery) has
to be served within a time window [a;,b;]. Let TF be the starting
time for service at node ¢ on vehicle k. The driving time between
nodes ¢ and j is denoted ¢, ;, and the service time at node i is s;.
We now introduce the binary decision variable x - with value 1 if
vehicle k£ services node ¢ and then drives stalght to and services
node j, otherwise xf ; has value 0.

When constructing the basic model, we first need to state some
general assumptions concerning the DARP. Note that these as-
sumptions derived from the problems seen in existing literature,
from which we try to capture the most common characteristics.

e The objective is to minimize the total cost of transportation
and to maximize the level of service provided to passengers.

e Vehicles start and end at a depot (not necessarily the same
depot).

e Passengers must be picked up and delivered by the same ve-
hicle.

e Time windows for pickup and delivery of passengers are given
and must not be violated (hard time windows).

Keeping these items in mind, we can now construct a basic math-
ematical model starting with the objective function. Since we will
consider both the cost of operation and the level of service, it seems
clear that we have a multicriteria problem. This is in itself an ex-
tensive area of science which we will only address shortly here by
considering two main procedures.

One procedure for solving a multicriteria problem is to prioritize
the objectives and then solve the problem according to the ob-
jective with highest priority first and lowest priority last. This
solution, however, does not seem reasonable in the case of DAR,
since the desired level of service is dependent on the type of trans-
portation (see section 1.1.3 and 4.4). In the case of a public trans-
portation system, it is desireable to attract as many passengers

6.1. NOTATION AND BASIC MODEL 71

as possible while still controlling the cost of operation which also
points towards a procedure for solving the multicriteria problem
where the influence of the objectives can be controlled in great de-
tail. Thus we will use the procedure where every objective in the
multicriteria objective function is multiplied by a variable. This
variable can then be set by the operator according to the desired
effect of the objectives on the final solution.

We now consider what objectives to include in the objective func-
tion. To represent the cost of operation we will look at the number
of vehicles used together with the total driving time. The actual
cost is often calculated on the basis of bus-hours which of course
also includes the service for passengers. However since the service
time is fixed, it makes sense just to minimize the driving time of
the vehicles. As shown in section 1.1.3 it can be very difficult to
determine a proper objective with regards to level of service. It is,
however, well known that the number of passengers in the public
transportation system is closely related to the total transportation
time for each customer which often is by far the most important
factor to passengers. Using total time of transportation for each
passenger, we can now formulate the multicriteria objective func-
tion:

min Oéz Z tjx1]+ﬁv+’yzz K —si—TF) (6.1)

keV (i,j)€A keV ieP

To decide the influence of each objective in the objective function
we have introduced the multipliers «, 3, and v. Now we need to
ensure that the number of vehicles leaving the depots is equal to
the number of vehicles returning to the depots. This is done by
adding the following two constraints:

Z Z xo(k (62)

keV jePUd(k)

> Y xl i) (6.3)

keV i€ DUo(k

To be sure each customer is picked up and delivered only once and
that both operations are carried out by the same vehicle, we add

72 CHAPTER 6. THE MATHEMATICAL MODEL

the following constraints to the model:

Y) ak;=1, VieN (6.4)

keV jeA
doati =) =0, VkeVieP (6.5)
JEN JEN

In order to obtain a feasible solution, we introduce a compatibility
constraint which constraint states that in order for a vehicle to
service nodes i and j in sequence, the time of arrival at node j
must be larger than the time the vehicle leaves node ¢ plus the
driving time between nodes 7 and j:

o (Tf 4 si+ti;—TF) <0, VkeV,(i,j)eA (6.6)
As stated earlier in this section, we assume the time windows at
nodes to be fixed and hard. This is modelled by a constraint re-
quiring the start of service of vehicle k£ at node i to be within the
specified time window:

a; <TF<b; |, VkeV,icA (6.7)

Not only does the pickup and delivery nodes of each customer have
to be served by the same vehicle but also the pickup node must
be visited by the vehicle before the delivery node, resulting in the
precedence constraint:

TF 48 +tinyi <TE, , Vk€V,i€ P (6.8)

(2

The number of passengers loaded at a pickup node must match
the number of passengers unloaded at the corresponding delivery
node. This is ensured by the following constraint, which states that
when vehicle k has a load L? after visiting node i, it must have a
load L +1; after visiting node j:

e LE+ - L) =0 | YEeV, (i) €A (6.9)

To ensure the capacity of a vehicle is not exceeded at any point in
time and that a vehicle after visiting a pickup node ¢ has at least
a load corresponding to the number of passengers picked up at ¢,
we introduce the following capacity constraint:

L<LF<C* | VkeV,icP (6.10)

6.1. NOTATION AND BASIC MODEL 73

Every vehicle must start at a depot empty and return to a depot
empty:

As stated earlier the decision variable xf ; 1s binary:
€01} | VheV,(ij)€A (6.12)

To further discuss the various aspects of DARP, the following is di-
vided into subsections concerning respectively the objective func-
tion, the time window constraints, and the capacity constraints.
These extensions are contributions solely of the author and based
on experiences with practical problems. Before introducing the
extensions to the mathematical formulation of the DARP, we sum-
marize the basic formulation to be used in comparison with the
extensions. Note also that T} is a variable, thus making some of
the constraints inequalities.

min az Z tu$”+ﬁU+sz K — s —TF) (6.1)

keV (i,5)€A keV ieP

subject to

YD wm=v (6.2)

keV jePud(k)
Z Z xz dk) = U (6.3)
keV ie DUo(k
ZZ% =1, VieN (6.4)
keV jeA
Soak =N ab, =0, VkeVieP (6.5)
JEN JEN
2 (TF 4 s+, —TF) <0, VkeV,(i,j) e A (6.6)
a; <TF<b;, , VkeV,icA (6.7)
TF+si+tini <TE, , VkeV,ieP (6.8)
L+ - L) =0, VkeV,(i,j) € A (6.9)
L<LF<CF | VkeV,icP (6.10)
o, €401} , VkeV,(ij) €A (6.12)

74 CHAPTER 6. THE MATHEMATICAL MODEL

6.2 The objective function

This subsection will concentrate first on the problem of setting the
multipliers «, 3, and 7, since this is dependent on the structure
of the problem as well as the problem size. Furthermore, we will
discus possible additions to the objective function, to improve cus-
tomer satisfaction with solutions produced by the mathematical
model.

Possible savings when substituting a regular transportation sys-
tem with a DAR transportation system can be divided into two
catagories: Sequencing, and parallelization. Sequencing consists
of scheduling neighboring customers to be transported one after
the other thus minimizing empty driving. In this case neighboring
customers are customers where the first customer destination is
close to the second customer pickup point. Parallelization, on the
other hand, is the ability to plan for having more than one group
of customers in the vehicle at a time.

It is important to distinguish between sequencing and paralleliza-
tion since they represent two different strategies, which are not
always compatible. For instance, when transporting the severely
disabled, it might be prudent to have only one customer in the
vehicle at a time and then try to serialize customers. However
when performing regular public transportation in a DAR trans-
portation system, the number of passengers riding together in a
vehicle should be as high as possible.

When problem size is relatively small when measured in number
of customers, but the area covered by the DAR transportation
system is relatively large, it seems logical to focus a great deal
on minimizing the distance travelled. Often historical information
can be used to calculate probabilities of where the origin of the
next customer is going to be. When the vehicle is idle, it can be
placed somewhere near the most probable next customer. In such
DAR transportation systems, there is usually just a single vehicle
(SV-DARP) or a fixed number of them, thus making the need to
minimize number of vehicles unnecessary. Again there will often
be only one customer in the vehicle at a time, meaning that the
vehicle will perform close to a taxi service, which makes the need
to minimize customer inconvenience unnecessary. In short there

6.2. THE OBJECTIVE FUNCTION 75

will be savings mostly because of sequencing.

As problem size increases, saving on parallelization also increases,
making the objective of minimizing distance driven less impor-
tant, and the objective of minimizing number of vehicles more im-
portant. In systems with a fixed number of vehicles, the second
objective is equivalent to a maximization of accomodation, which
means a maximization of the systems ability to accomodate new
customers. When ensuring maximum accomodation, we look at
minimizing the travel time for each customer in the system. De-
pending on how the time windows are determined (see 6.3), the
travel time will always be within the allowed limit, or the 3rd part
of the objective function will be changed to penalize the violation
of travel time limit.

Many practical applications of DARP have shown that it might
be prudent to add an extra term to the objective function, namely
the minimization of a customer’s time spent in a waiting vehicle
which can be acomplished by introducing two new decision vari-
ables into the objective function: T} is the time a vehicle k arrives
at node i, and TF is the time the vehicle k leaves node i. Now we
have the following objective function:

min az Z ti7jxﬁj + fv + 72 Z(T:H — 5 —TF) (6.13)

keV (ij)eA keV icP

+5ZZ(T§_T£‘—&‘)

keV ieN

This would also add the following two restrictions to the formu-
lation to ensure that the vehicle arrives before starting service at
node ¢, and leaves after servicing node i not later than the time
window permits:

Te <TF |, VkeV,Yie N (6.14)

(2

TE <bi+s; , VkeV\Vie N (6.15)

By introducing this to the formulation of DARP, we also minimize
the time spend waiting at a customer location before a customer
is served, and the time spend waiting in the vehicle after the cus-
tomer is served until the vehicle moves on to the next service node.

The above formulation applies the same weight to waiting time

76 CHAPTER 6. THE MATHEMATICAL MODEL

for an empty and a full vehicle meaning that the formulation also
tries to minimize vehicle idle time which might not be preferable,
since it could result in a vehicle picking up a customer a little early
and then waiting with the customer in the vehicle before servicing
the next customer. To avoid this problem, the waiting time could
be multiplied by the load of the vehicle to generate the objective
function:

min o ti ol + Bo -+~ (TF,, — s = TF) (6.16)
3J +

keV (i,j)eA keV ieP
+6> Y (TF=THLE, — (T = TF — si) L)
keV ieN

A positive effect of 6.16 is that a vehicle will wait untill the last
possible moment before servicing a customer, since it is more “ex-
pensive” to wait after servicing the customer.

6.3 Time windows

The mathematical formulation of DARP described in section 6.1
is based on the assumption of hard time windows in which case,
the total travel time is taken into account when determining the
time windows for each request. There are two possible scenarios
in which the customer specifies either an earliest time of pick up
or a latest time of delivery. Then the operator specifies maximum
excess travel time and maximum time window interval at destina-
tions.

If excess travel time FE is considered, the formulated mathemat-
ical model is not adequate. Until now excess travel time has only
been formulated in the objective function, where total travel time
for each customer is minimized. However by adding the following
constraint 6.17 to the model, a limit can be set on excess travel
time.

ST, —tinsi—si—TH<E | VkeV (6.17)

1eP

E is most often defined as a fraction of direct travel time. For
example if F is set to 25% , a direct travel time of 1 hour would
permit an excess travel time of 15 minutes. There are cases in

6.3. TIME WINDOWS 7

which a fixed excess travel time is set common to all customers.
An example of this could be F = 20minutes for all customers. Using
E, the time window interval is set as the following shows. If earliest
time of pickup is specified, the time interval at pickup is set at the
pickup location to be a; =the specified time, b, = a;+a fixed time
interval. Likewise when latest time of arrival is specified, then
b..; =the specified time and a,,; = b,,,—a fixed time interval. Now
the time window in the opposite end of the trip (e.g. where nothing
is specified by the customer) can be set according to two methods:

1 If {a;, b;} is set according to the specifications by the customer,
then a,,; = a;+t; s and b,; = b;+1; ,4;+E. The same principle
is use for the situation where the latest arrival time i specified
by the customer.

2 The time window interval length is fixed, so the time window
where nothing is specified will need to be decision variables
in the model.

(1)
ti,n+i+E
ail bll an+i| bn+i| -
I I I T Time
ti,n+i
(2) ti,n+i E
a| by c| d
| ! Time
ti,n+i i i
{an+i’bn+i}

Figure 6.1: Setting the time windows according to the two principles.

The principle of the two methods are illustrated in figure 6.1. Con-
sidering (1) it is obvious that this is a very simple way of calculating
the time windows. However it seems unreasonable that a time win-
dow interval increases with the excess traveltime of the customer.
When earliest time of pickup is specified, this method is adequate,

78 CHAPTER 6. THE MATHEMATICAL MODEL

but when latest time of arrival is specified, the time window for
pickup can become unreasonably large. This model for calculating
the time windows can still be used in systems in which the cus-
tomers receive a notification before actual pickup.

Using the method where the unspecified time window becomes
a decision variable (2) is much more problematic. First of all, the
entire DARP must be solved in order to set the time window,
whereas (1) only needs to make sure that a feasible solution can
be found after adding the customer. Secondly the solution space
can be severely reduced by setting time windows too tightly there
by reducing the flexibility of the model to include more customers
after fixing a time window in a previous solution. In the static
case of DARP, where all requests are known in advance, the sec-
ond method can be used followed by a notification to customers of
when they can expect to be picked up.

6.4 Capacity

In the formulation used until now, each vehicle has a fixed capac-
ity. However this is rarely the case in real life situations, where,
for instance, a minibus can have room for a number of sitting cus-
tomers, wheelchairs etc. Often different types of capacity can be
substituted, so a wheelchair might be equivalent to two sitting
customers, but the capacity for wheelchars is not equal to half the
capacity for sitting customers. The simplest case of this exists with
a fixed capacity in units (e.g. seats), and all other capacities can
be expressed in those units. An example: A minibus has twenty
seats. Ten of those seats can be substituted for 5 wheelchairs, or
they can be used as regular seats. This simple case can be ex-
tended to) = {1,...,q} different capacities. Let ¢ = 0 represent the
standard unit type (eg. seats), with total unit capacity of C*(0) for
vehicle k. We now introduce this into the mathematical formula-
tion as follows:

Let /;(q) be the change in load of type ¢ at node i, and L¥(q) be
the load of type ¢ in vehicle k after servicing node ;. We now in-
troduce a capacity substitution variable p = {py, ..., p,} where py =1,
and p, is the number of units substituted when loading one unit of
type ¢. In the mathematical formulation we now replace 6.9, 6.10,

6.5. THE EXTENDED MATHEMATICAL FORMULATION 79

and 6.11 with:

2 J(LE(q) + 1(q) = Li(q) =0 , VEeV,(i,j) €A, qeQ (6.18)
() <Li(q) <CMq) , VkeViie Pgeq (6.19)

Ly (@) = Ly (@) =0, VkeV,qeQ (6.20)

> Liqpy < CH0) , VEeV (6.21)

Constraint 6.18 is similar to 6.9 with the addition that the type of
capacity used when visiting stop ¢ must match not only the quan-
tity but also the type of capacity vacated at the corresponding
stop j. The load of each type ¢ on vehicle k after visiting a stop
is controlled by 6.19, stating that this load must be less than or
equal to the capacity of type ¢ of vehicle k£ servicing the stop. It
also states that the load of type ¢ after leaving a stop must be less
than or equal to the quantity loaded at the stop for the vehicle
k. Constraint 6.20 insures that the vehicles start and end with an
empty load of all types. The only new addition to the mathemati-
cal formulation is 6.21 where the various capacities are multiplied
by the substitution number and summerized to ensure that the
total capacity of the vehicle is not exceeded.

The above formulated extension of the capacity restrictions should
in most cases cover practical problems, but there might be special
cases where it is possible to substitute different capacities that can-
not be converted to regular seats. In such cases, the mathematical
formulation will be almost unreadable, since a second index would
be needed on the substitution parameter, and a variable number
of substitutions would be needed to ensure feasibility. However if
this is of any interest, there will be an algorithmic formulation of
this in chapter 10.

6.5 The extended mathematical formulation

To summarize, the extensions to the basic formulation of the DARP
given in this chapter are repeated to give a full overview of the

80 CHAPTER 6. THE MATHEMATICAL MODEL

resulting mathematical formulation.

min O‘Z Z t”:c”—l—ﬁv—i—’yzz (T — s —TF)

keV (i,j)€A

+5ZZ ((TF =Tk LF |

keV ieN
subject to

Z Z xk)]

keV jePUd(k)

2. >«

keV i€ DUo(k)
> k=1
keV jeA
k k
Doal =D a5 =0
jEN jEN
.’L’i%(Tf -+ S; —+ tiJ’ — Tjk) S 0
TF+ 8+ tipsi S ﬂﬁn
Z(Tz]in —linyi — Si — Tzk) <FE
i€P
ot (L5 () + 1i(g) — Lj(q) =0

li(q) < Li(q) < C*(q)

L (q) = L () =0
> Li(q)p, < C*(0)
qEQ

keV ieP

— (T = T} = i) L)

. Yie N
VkeV,ieP

, VeV, (i,j)e A
, VkeVie A

, YVkeV.ieP

, VkeV

, VeeV,(i,j) € AgeQ
, VkeVie Pge @
, VkeV,ge@

VkeV

, VkeV,(i,j) e A

(6.16)

Chapter 7

Existing software

Two commercially available software packages for solving dynamic
DAR problems are briefly introduced in this chapter. The descrip-
tions are based on information obtained at conferences from the
companies and users of the products. This information is then
paired with marketing material from the companies.

7.1 MobiRouter

The MobiRouter system is not a public transportation planning
system as such, but rather a DRTS (Demand-responsive transport
services) planning tool. The designers of MobiRouter view their
system as perfectly able to compete with public transportation,
both time- and costwise.

MobiRouter consists of a software package, which contains opti-
mization software for planning the transportation. Communica-
tion between dispatcher and vehicles takes place using the regular
cellular phone network. Each time an order is to be executed,
the system describes the precise route the driver should use. This
obviously creates the need for each driver to have an on-board
computer, although examples in MobiRoutes information material
seems to suggest that a regular cellular phone could suffice. This
does not, however, seem to be the rule. When an order has been
planned, the customer is then adviced by the dispatcher.

Although MobiRouter do not claim to be operating in real-time,
they do say that a few minutes of advance warning is enough for

81

82 CHAPTER 7. EXISTING SOFTWARE

them, which would suggest near real-time capabilities. At the same
time, they state that their map-based route design works in real-
time. Nothing else is mentioned concerning the possibility of man-
ually manipulating routes.

MobiRouter especially focuses on three groups: The elderly, the
disabled and school children. These groups, and their obvious
special transportation needs are mentioned several times by Mo-
biRouter as their main concern. They target municipalities as their
main customers, since municipalities would have the overall respon-
sibility for the welfare of the three groups.

Apart from the customer being able to phone in an order, the
MobiRouter system is able to receive orders by both SMS and
WAP.

7.2 Transmation

The Transmation system can be used both for the planning of
DRTS and public transportation. Again, the software is the main
focus. Transmation has both transportation planners and software
designers as part of their design team. The system runs using the
windows environment.

The main window of the product consists of orders not yet com-
pleted. In this window, orders can be planned both automatically
and manually. Whole trips can be deleted or divided into several
trips, as well as erased or added to other trips. All information
from a customer should be received through one phone call. The
details about pick-up etc. should be resolved at the same time.

The automation part of the system utilizes fuzzy logic as its main
component. Any final decisions about a trip, however, is left to the
dispatchers, allowing for both automatic and semiautomatic trans-
portation planning. Various other functions, such as storing past
transport data about a certain customer for later use are also in-
cluded in the system. This has been done on the urging af various
dispatchers cooperating with the design team. Another feature is
the systems ability to coordinate with other public transportation,
e.g. information concerning the public transportation network can

7.3. SUMMARY 83

be called up on demand by the system.

Several diagnostic tools are also included in the system. Graphs,
tables etc of past transportation plans can be displayed when needed
to provide statistics and further optimize the planning process.

7.3 Summary

Although there seems to be some differences between the two sys-
tems, they seem remarkably alike. Both deal with automatic plan-
ning. Both state that their customers receive fast service. Mo-
biRouter has not mentioned anything about diagnostic tools, but
from any software system statistics can always be obtained.

Setting all claims of cost-saving, environmental advantages etc.
aside, what could probably set their systems wide apart in terms
of performance are their build-in algorithms. MobiRouter have
mentioned nothing of their methods. Transmation have mentioned
using fuzzy logic, but not explained in-depth. From the material
offered by both, it is impossible to draw any conclusions about
their effectiveness, nor is an analysis of used algorithms within the
scope of this paper.

84

CHAPTER 7. EXISTING SOFTWARE

Chapter 8

Shortest Path Problem -
MLThreshX?2

The Shortest Path Problem (SPP) is one of the most fundamental
problems in Operations Research, in which it is used in numerous
network applications. SPP in its simplest form seeks to find the
shortest path between two points in a network while travelling only
on arcs within that network.

The following will focus on calculating shortest paths on real-road
networks, which is an application of SPP that is gaining an in-
creasing amount of interest in todays research. The developement
of ever more detailed digitized roadmaps in conjunction with the
use of the Global Positioning System (GPS) demands fast algo-
rithms.

As the level of detail on digitized roadmaps increase, the demand
for more acurate and realistic solutions in SPP calculations be-
comes obvious. It is therefore necessary to look at new ways of
performing SPP calculations in which the complexity of adding
restrictions such as low bridge, no right turn, etc. to the road
network has minimal impact on the performance of the algorithm.

8.1 Overview

There will be two main parts of this chapter: Part one focuses
mainly on the algorithm to be used; Part two focuses on the de-
sign of the road network.

85

86 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

First there will be a short definition of the general SPP followed by
a short introduction to the algorithm L-Thresh-X2 and the modifi-
cations to this algorithm that are implemented in ML-Thresh-X2.
Then the design of the network will be adressed, and results of
tests on various networks will be presented.

8.2 Definition and notation

Let us introduce a graph G(N, E') where N is a set of nodes, and F is
a set of arcs. The length of the arc between node 7 and j is denoted
d(i,j). The distances can be physical distance, time used to travel
the arc, Euclidian distance etc. s is the given starting node. d(s,1)
is the upper bound on the shortest distance from s to i, d*(s,?) is
the shortest distance from s to i, and p(i) is the predecessor to node
1. Now the problem consists of finding the shortest path between
s and all other nodes in the graph, or:

Find d*(s,i) from node s to all
nodes : € N — s

where the criteria of optimality is:

d*(s,i) for all nodes i € N — s
is found if and only if:
d*(s,j) < d*(s,i) +d(i,j) for all arcs (i,j) € E

8.3 Choosing the right algorithm

When choosing an algorithm to use on real-road networks, the ba-
sic structure of the network needs to be considered. In Glover et
al.[21] where the most widely used types of graphs are described it
seems clear that a road-network is best described by either a ran-
dom network or a transit grid network. Zhan & Noon[58] found
that on real-road networks covering different states in the US, the
basic threshold algorithm was amongst the 5 best performing algo-
rithms. Also in Mondou et al.[34] the threshold algorithm showed
promising results by being the overall fastest algorithm on com-
puter generated grid and random networks.

Road-networks are always sparse networks (generally 2-4 arcs per

8.4. L-THRESH-X2 87

node) but not homogeneously sparse (like most randomly gener-
ated networks). The fact that density usually rises with the level of
population. This leads to the assumption that the algorithm needs
to perform fairly well on graphs with a density within a certain
interval.

The algorithm L-Thresh-X2 is described in Glover et al.[21], where
it is shown that it is overall the best performing threshold algo-
rithm. Andersen & Grejs[3] compared L-Thresh-X2 with Dijkstra’s
heap implementation described in Johnson[29] on a road network
over the city of Aarhus in Denmark. They found that the L-Thresh-
X2 performed significantly better than the Dijkstra with heap im-
plementation.

Keeping all of the above in mind, the L-Thresh-X2 algorithm seems
to be the most efficient algorithm to use on real-road networks with
the European structure that is characterized by more or less ran-
dom placement of roads.

8.4 L-Thresh-X2

L-Thresh-X2 is a modification of the original threshold algorithm
Thresh-S developed by Glover, Klingman & Phillips in 1985[20].
The modifications are thoroughly described in Glover & Klingmann|21]
thus they will not be addressed here.

L-Thresh-X2 consists of the following four steps:

Step 0. Initialization:
Initialize the predecessor p(i) = 0 and the distance label d(s,i) =
oo for each node ¢ € N. Also create and initialize three mutu-
ally exclusive and collectively exhaustive sets of nodes called
NOW, NOW', and NEXT. The sets are all initially empty.
Set iteration count £ = 0 and threshold value ¢ = 0.

Step 1. Select an Element of NOW:
Elements in NOW and NOW’ are selected in LIFO fashion
(Last In First Out) as follows. If NOW = () then goto Step 3,
else get the node u that was last placed in NOW.

Step 2. Scan selected node:
Scan node u by examining each node v € {vy,...,v,} in the

88 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

forward star E, of u where F, = v: (u,v) € E as follows. If
d(s,u)+d(u,v) < d(s,v) then {d(s,v) = d(s,u)+d(u,v) and p(v) = u
and if (d(s,v) <tand v ¢ NOW and v ¢ NOW’) then {insert v at
the end of NOW’ and if v € NEXT then NEXT = NEXT—{v}}
else if v ¢ NEXT then insert v in NEXT}.

Step 3. Repartition Scan FEligible Nodes:
Start the next iteration or stop by performing the following
actions: If NOW’' = () then {if NEXT = () then STOP else
{k = k+1 and recompute threshold value and select all nodes i
from NEXT where d(s,i) <t and insert the selected nodes into
NOW and goto Step 1}} else {NOW = NOW’' and NOW’' =)
and goto Step 1}.

Recompute Threshold Value. :
Calculate the new threshold value as:

ty = MIN,+TINC

where
VIN B min{d(s,i)|i € NEXT} when k={0,1}
F n th—1 +1 when £ ={2,3,..}
rive - f [P Luax] when DENSE <7
= \ [P*Lyax/(DENSE/7)] when DENSE >7

DENSE = min(35,[|E|/|N|))
I B max{d(i, 7)|(i,j) € E} random and grid problems
MAX N max{d(i, j)|grid arcs} transit grid problems

0.25 for random problems
P = 1.5 for grid problems
1.0 for transit grid problems

The values for P are empirically found, and for the reasons de-
scribed in section 8.3 we use the values for a random network when
calculating the threshold value.

8.5. ROAD NETWORK DESIGN 89

Segment

Border

Segment node

Figure 8.1: The representation of a real road.

8.5 Road network design

When digitized a road has the structure shown in figure 8.1. There
is a node at every point where either two roads join together or
where the attributes of the road change. A segmentnode is included
to show the geographic positioning of the road, and the piece of
road between two segmentpoints is called a segment. On figure 8.1
a border is indicated. This border could for instance represent a
change in zip code which is a change in the road attributes which
again results in a node, at which the road crosses the border. A
link is defined as a part of the road existing between two adjacent
nodes, so the road shown in figure 8.1 is represented by four links.

The traditional way of representing this structure is to construct a
regular graph, which shows travel on the arcs between the differ-
ent nodes and then updates various parameters at the nodes. The

90 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

problem with this representation arises when various restrictions
are added to the network. For example with the “no right turn”
restriction which one traditionally had to take into account by re-
membering the node one came from. By having to check where one
came from every time he determines the forward star, the process
of exploring the network slows down.

When exploring the possibilities of incorporating restrictions on
the real road network into the sollution, it seems logical to use
an approach that splits nodes affected by the restrictions into a
number of artificial nodes. For instance in case of a “T”-crossing
with a “no right turn”, the node where the roads meet could be
split up into 2 artificial nodes as seen in figure 8.2 (nodes 2 and 3).
However it is in this representation still possible to travel nodes 2,
3a, 3b, and 6 and thereby make a right turn.

To avoid the problems mentioned above let us introduce a new
way of representing the road network. Instead of concentrating on

4 ‘ [ud bmd bud
D TRy /E F
3b
7 nodes | 2 8 nodes 4|2
6arcs | 15 arcs l 6 nodes
1 o1 1larcs A m

Figure 8.2: Handling “no right turn” restrictions. (i) is the regular network,
where the letters A through F refers to (iii). (ii) is the split node structure,
and (iii) is the new representation

nodes as the primary part of the network, we now direct the focus
on the links between the nodes, and we convert these links to new
nodes on which we store all relevant information, after which the
old nodes are deleted. This gives us a new graph where the nodes
represent the links (roads) and the arcs are the possible connec-
tions to other links. This is illustrated in figure 8.2 (i) and (iii),
where A constitutes the path between nodes 1 and 2, B is the path
between nodes 2 and 3 etc.

8.6. ML-THRESH-X2 91

In order for the distances to be consistent with the original road
network after the modification, the distances are now represented
as follows. Since the new nodes are the old links, the old starting
node s is now converted to a set of new starting nodes L, which
consists of the set of old links beginning at the old node s. For
each [€ L we set the distance d(s,[) = |/| where |/| is the distance of
the old link /. In short we travel the distances of the old links by
visiting the new nodes.

Since the density' of a road network varies between two and four
on the average, the number of nodes in the new graph is two to
four times higher than the traditional representation. One could
expect that the CPU time would increase when solving the short-
est path problem on this new networkstructure. However this is
not the case, since the number of possible shortest paths has not
increased by the conversion.

In case of a “no right turn” restriction we can just omit the arc
between the two new nodes as seen in figure 8.2 and thus decreases
the size of the network which leads to a significant observation that
the size of the network decreases with the introduction of restric-
tions on the road network and thereby speeds up the calculations
instead of slowing them down. It is easily seen that this is also the
case when adding other restrictions such as “one way”.

8.6 MUL-Thresh-X2

After having changed the structure of the network as mentioned
in the previous section, it is necessary to modify the original algo-
rithm. Also the recursive formulation of the algorithm turns out
to cause problems when running on large networks. This is easily
solved by reformulating the algorithm to be iterative, which is, of
course, a transformation not depending on the underlying network
design. Also the initialization step is omitted and the algoritms
now uses dynamic initialization.

To avoid having to initialize the network before each calculation,
the nodes are initialized dynamically by updating a label on the

'Number of links compared to number of nodes in the original graph

92 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

node describing in which iteration the node was last used. So if
the node was not yet used in this iteration, it is initialized and
otherwise nothing happens.

To convert the algorithm to be iterative the variable state is in-
troduced. Then a superroutine running the various steps based on
the state variable is constructed replacing Step 0. Step 1 is then
modified to do nothing but control the state variable. In this way
the goto statements are avoided, and the algorithm finishes each
step before moving on. The procedure is described in more detail
below.

The modification of the original algorithm to run on the new net-
work structure consists mainly of changes to the initial new nodes
to be examined and the updates on the distance labels. Since the
starting node for the algorithm is an old type node, the modified
algorithm uses a list of new nodes (arcs connected to the old node)
as the definition of the starting point. In order to insure that all
possible paths out of the starting point are explored. The new
nodes in the list already have a distance different from 0 to the
starting point, which is the length of the old arc constituing the
new node.

Keeping the above modifications in mind, ML-Thresh-X2 now con-
sists of the following four steps:

Step 0. Superroutine:

If the algorithm is run for the first time then create and initial-
ize three mutually exclusive and colloctively exhaustive sets
of nodes called NOW, NOW', and NEXT. The sets are all
initially empty. Set iteration count k£ = 0 and threshold value
t = 0. Otherwise set increase iterationcount by 1. In every
case set threshold value and state variable to 0. Run the fol-
lowing loop: While stop = false {run Step 1; if state = 2 then
run Step 2 else run Step 3}.

Step 1. Investigate NOW:
If NOW = () then state = 3 else state = 2.

Step 2. Scan successors:
Select v from NOW. Do the original step, but remember to
initialize nodes used in previous calculation.

8.7. IMPLEMENTATION 93

Step 3. Mowe nodes or stop:
Start the next iteration or stop by performing the following
actions: If NOW' = () then {if NEXT = () then stop = true else
{k = k+1 and recompute threshold value and select all nodes
i from NEXT where d(i) <t and insert the selected nodes into
NOW}} else {NOW = NOW' and NOW' = ()}.

There is no change in the way the threshold value is calculated.

It is important to remember that the new network structure changes
the handling of distances and starting points as previously de-
scribed in this section.

8.7 Implementation

To get optimal performance from the implementation of the algo-
rithm, it is important to consider how the movement of elements
between the sets is implemented. Also the algorithm needs to
lookup in which set the element is placed in practically every step,
which can be very time consuming if it is performed by a regu-
lar search procedure. The last important factors are to insert and
erase elements from the sets. The implementation of this can have
a tremendous impact on the speed of the algorithm.

The algorithm is implemented in Visual C++ using the contain-
ers found in the Standard Template Libarie (STL) for storing the
sets. Using an object oriented approach insures that the algorithm
is encapsulated in a way that makes it relatively simple to switch
algorithms when new ones are developed without having to change
the surrounding administrative source code.

Size =9 R

40/81 66/ 60| 142609 23(s3)

Size =8

40/81/66/60 14(@)99 2345

Figure 8.3: Erasing elements from NEXT.

94 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

When inserting or erasing elements to and from arrays, vectors
etc. it leads to a memory allocation or deallocation which is time
consuming. For this reason the set NEXT, which is implemented
as a vector, is given a variable that contains the size of the set (not
the vector). Whenever there is a need to erase an element (object)
from the vector, an operation as shown in figure 8.3 is performed.
The element to be erased is read or copied from the vector, and
then the last element in the set is copied to its place, and the size
of the set is decreased by 1. In this way it is not necessary to deal-
locate memory, just as it is not necessary to allocate space next
time an element is inserted.

Another way of bringing down the time spent on memory handling
is the allocation (reservation) of memory in the first initialization
phase. Knowing the approximate size of the road network, it is pos-
sible to decide on the memory to be allocated from start, which is
sensible since time spend on allocation of memory increases much
less than linear with the amount of memory to be allocated.

As each element is implemented as an object, the element keeps
track of its position in the various vectors itself, thus avoiding a
search procedure whenever an element has to be found. When
knowing the id of the element (or by using a pointer to the ele-
ment), the placement and position in the vectors are also known.

8.8 Results

Test of the algorithm were performed on several real road networks
from Scandinavia on a Compaq Deskpro Pentium IT 300 Mhz MMX
with 6 GB Ultra DMA harddisk and 288 MB RAM running Win-
dows NT 4.0 workstation. The results are shown in table 8.1.

There are no “one way” or “no turn” restrictions on the networks,
since this information was not available at the time of the tests.
Also it will be noted that the number of nodes and arcs referred
in the table are based on the original network structure.

The run times for ML-Thresh-X2 constitutes a summary of 100
runs on the networks. These 100 runs are based on randomly se-

8.8. RESULTS 95

Network name Characteristics CPU-times (sec.)
nodes | # arcs | Density | Best | Avg. | Worst
Randers 3,983 9,942 2.50 | 0.01 | 0.02 0.04
Aarhus 14,392 34,822 2.42 | 0.08 | 0.09 0.11
Kbh97 46,820 | 116,564 249 | 0.30 | 0.32 0.34
Kms-D200-96 51,405 | 144,042 2.80 | 0.39 | 041 0.42
Kms-vejg-96 52,447 | 149,314 285 | 042 | 0.44 0.48
KmsAarhus95 63,171 | 171,834 2.72 | 0.48 | 0.51 0.55
Oslo98 74,970 | 172,814 2.31 | 0.39 | 0.45 0.52
KmsKbh97 86,273 | 227,522 2.64 | 0.65 | 0.68 0.72
Sverige 97,212 | 228,286 2.35 | 0.61 | 0.67 0.89

Table 8.1: Results from tests on various Scandinavian networks. All solution
times are in seconds.

lected starting nodes, from which the entire shortest path tree is
calculated which means that after one run the shortest path from
the starting node to all other nodes in the network is known and
can be returned. The runtimes in table 8.1 are shown as seconds
to calculate the intire shortest path tree from one node in the net-
work to all other nodes.

Note that the CPU-time spend on reading data and constructing
the network in memory is not included in the results above, since
this task is only performed at startup. Also in the above runs, no
resulting trace (path) from the calculated shortest path tree is re-
turned. In figure 8.4 the average CPU-times for ML-Thresh-X2 is
shown as a function of the number of nodes in the original network.
It is seen that the CPU-time is approximately linear the number
of nodes. This is especially the case with the Danish? networks,
whereas deviations occur when running the algorithm on networks
such as “Oslo98” and “Sverige”. A reason for these deviations could
be that the density of the networks changes when in a different ar-
eas. An example is the “KmsAarhus95” which has fewer nodes and
links than “Oslo98”, but with a density that is 18% higher.

Since the algorithm is transformed to deal with the links, not caring
about the nodes, it might be interesting to look at the CPU-time
as a function of the number of links shown in figure 8.5. In this

2 All networks except for “Oslo98” and “Sverige”

96 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

0.7 1

0.6 |

05 r

04 |

03

CPU-time in seconds

0.2 7t

0.1

Number of nodes

0 20000 40000 60000 80000 100000

Figure 8.4: CPU-time as function of the number of nodes.

case it seems even more obvious that the CPU-time is linear in
the network size. In practical application however, it should not
matter whether the CPU-time is depending on number of nodes
or links, since these two numbers on these types of networks are

proportional.

Based on the results shown above, it is not safe to conclude that
CPU-time is linear with respect to network size, since none of the
tests were carried out on really large networks. The total road net-
work of Denmark for instance has 500,000 nodes and approximately
1,000,000 arcs. Experiments on the total road network of Denmark
have been carried out elsewhere and based on the results obtained
there, the CPU-time can still be assumed linear with respect to

network size.

8.9 Future work

As the need for fast calculation of shortest paths is vital to the
incorporation of real road networks in Vehicle Routing Problems,
the following will address some possibilities not yet explored for
speeding up the performance.

8.9. FUTURE WORK 97

0.7 7t

0.6

05 r

04

03 1

CPU-time in seconds

0.2 1

0.1 1

Number of links

0 50000 100000 150000 200000 250000

Figure 8.5: CPU-time as function of the number of links.

The most obvious and logical way of improving the performance of
the algorithm is to introduce of a stop criterion. Since many ap-
plications using shortest path calculations include customers and
depots located very close on the network, it seems a waste to calcu-
late the full shortest path tree in every instance. It will, however,
be inefficient to check if the required path is found every time a
new link is to be examined, which will also require the use of a la-
bel setting algorithm. Instead when using ML-Thresh-X2, a check
could be performed each time a new threshold value is to be cal-
culated, since it is easily seen that all shortest paths within the
radius of the previous threshold value will be the optimal shortest
paths.

The placing of stop criteria in the manner described above can
also be of interest when looking at the calculation of the threshold
value. If an upper bound for the distance is known, it would seem
logical not to let the threshold value exceed this limit.

Another way of speeding up the process of calculating the shortest
path is network reduction. One way of doing this, is to omit the
nodes dividing a road because of change in attributes. In these
instances it is then possible to join two links thereby reducing net-
work size. Also removing links that are outside the circumferential

98 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

circle of all customers, depots etc., might reduce the CPU-time
spent in the last iteration of the calculation.

Hyperlink A

Leve Supernode

; /\
e

/

Link

Figure 8.6: Modifying the network by introducing levels.

When using very large road networks as for instance a map of all
Europe, it will probably not be efficient to perform calculations
on the entire road network. A better idea might be to introduce
various network levels. Figure 8.6 illustrates two levels of the same
road network, where level 1 is the regular digitized network. The
idea is that the shortest path will be calculated locally around des-
tinations and globally on a higher level.

Of course it can not be guaranteed that the optimal path is found
when some of the calculations are performed on a higher level, but
over large distances the inaccuracy might not be significant. A
large portion of the work needed for implementing a level strategy
would be examining the areas and distances required if such a so-
lution is valid.

To construct the various levels, it is necessary to explore the net-
work to find the supernodes, as these will decide the link structure
of the upper levels. In case of a problem with many regular and
well known destinations, an upper level could be constructed with
the placement of these customers as supernodes. However if desti-

8.9. FUTURE WORK 99

nations are changing rapidly in time, it might be better to gather
data from solutions to seek out the most visited nodes in the net-
work, and then construct an upper level based on that knowledge.

100 CHAPTER 8. SHORTEST PATH PROBLEM - MLTHRESHX?2

Chapter 9

InfoRoute

InfoRoute is the administrative environment in which the DAR
algorithm is to function. It consists of a database and a GUI coup-
pled with a road network module and the shortes path algorithm.
The GUI is developed with Danish toolbars and menus, but a de-
scription in English will complement the screenshots.

9.1 Database design

To begin construction of the InfoRoute program, a database must
be designed. Since this database will lay the foundation for all of
the work to come later, as well as ensuring the usefulness of the
end product, a lot of work will have to be put into the design. The
purpose of the design process is to create a standard, which itself
can be used for virtually all sorts of transportation planning. With
this in mind, a series of demands are to be made for the design of
the database.

First and foremost, the number of variables must be kept at a
minimum, while still ensuring the usefulness of the database. This
means, that without altering the database, it should be possible
to use it for anything from the transportation of people to trans-
porting goods, from oil delivery to container transport etc. It is
obviously a difficult task to get all of the necessary data crammed
into a handfull of parameters. On the other hand, using more pa-
rameters than is strictly needed will make the database to complex,
which again stand a good chance of compromising the demand for
the database to be of general use as a tool for transportation plan-

101

102 CHAPTER 9. INFOROUTE
ning.

Another demand, this one also derived from the need for simplic-
ity, is the demand that data inserted into the database should not,
or should only in rare cases, be present at more than one place.
This is both an advantage because it keeps the size of the database
at a minimum, but in addition to this, a more compact database
(as a general rule) makes the processing of inserted data faster.

Yet another consequence of the demand for a general tool is the
fact, that all table- and parameternames are in english, despite
that the product is to be used, at least during testing, by a danish
firm (Jensens turistfart). Thus, the names in the database and the
names used in the GUI are not necessarily identical.

As may be guessed from the fact mentioned above, the final de-
mand is that the database can be completely separated from the
GUI and a new GUI can be designed and implemented, but still
be able to use the old database. This ensures the longevity of the
database, ie. a user will not have to reinsert new customer data
just because he wishes to modernise his GUI. By having this last
demand, virtually anyone should be able to place a new GUI on
top of the "old" database.

Since there are so many different transportation algorithms that
works in many different ways, there is not one single way to rep-
resent their recquired input. However, no developer needs to use
all of the tables described below, as this would violate the demand
for a general tool. No problems will arise from leaving some of the
tables unused.

The input for the program/database are arranged in the tables
described in the following sections.

9.1.1 Customer

Customer is used for storing information about single customers,
thus making the entire table into a customer filing system. Cus-
tomer information is identified by a customer number, id. In ad-
dition to this, the table contains general information about the
customer, such as name, address, telephone number etc. These

9.1. DATABASE DESIGN 103

pieces of information are indexed to obtain fast access to every
customer, no matter what information is used to search for him.
The table furthermore contains the coordinates for the customers
residence. In the case of the InfoRoute program, these will not
have to be entered by the user, but will be calculated automati-
cally and inserted into the table.

Following the coordinate slot, the e-mail address of the customer
can be entered. Finally, there is a field for special notes that one
way or the other do not fit into the other slots. This might be
special information about restricted access to the customers house
or any other information that might be important to know for the
driver or the recipient of the transportation request.

This customer database not only simplifies the process of trans-
porting the customer to or from his residence by allowing the user
to simply transfer the information to the request database (de-
scribed later). It is also vital for companies that need to bill their
clients after transportation of either the client himself or goods,
that the client has ordered. In the tasks covered by this project
(telebusses), payment falls instantly, so this aspect of the costumer
database is not strictly necessary. However, in order to ensure
the general usefulness of the database as a tool for transportation
planning, it was included anyway.

9.1.2 Request

Request is used for the storing of information concerning each re-
quest. It comprises a unique id once more, this time to identify the
request, as well as a reference to the customer id. This prevents
the need for entering any customer information again. It also con-
tains the time, that the order was received. This can later on be
used as a tool to simulate the processing of an order to determine
whether or not this process can be improved upon.

Among other things, this will make it possible to examine how the
much of an effect a long or short warning has on the final solution.
The data can also be used to simulate the behaviour of a customer
in the system. Another possibility is, if the transport company
wishes to do so, it can charge customers different amounts for the
same transportation, based on how much warning they were given,

104 CHAPTER 9. INFOROUTE

as express orders tend to be more costly, since optimum solutions
are difficult to obtain when planning is rushed. Finally, this data
can be used to evaluate the behaviour and effectiveness of the un-
derlying algorithms.

Apart from this, Request contains the deadline for the completion
of the order, and its start- and destination address. These consists
of a single text field, as the address in this case is the combination
of both the roadname and number. This is to allow addresses to
be located in the address database.

The addition of letters to the road numbers are not registered
in the address database. They are therefore placed in a separate
parameter. The sole reason for their inclusion is the necessity for
a driver to have access to the correct address. The ZIP codes of
the start- and destination addresses are also to find in the Request
table. They are indexed to allow a user to look up all destinations
within a given Zip code area.

InfoRoute will insert the coordinates of the start and destination
adresses after they are entered. They are used by the underlying
algorithm to find a shortest path.

Requests are also given a priority, represented by a positive in-
teger. The lower this value, the higher the priority of carrying
out the request. Priorities only become useful when the supplier
is unable to satisfy all requests for transportation and has to se-
lect which orders can be delayed or cancelled. It is obviously not
a situation that should arise to often. One of the tools that can
be used to avoid the situation is the possibility for the supplier to
accept or turn down an order at the point of receiving it by using a
fast algorithm that will seek to approximate the final result. Still,
this is no guaranty of the situation never occuring. Furthermore,
as mentioned before, the database should be useful for later use by
other programs. Thats the reason for the inclusion of priority in
the design.

The order type determines which sort of transportation is requested
within the scope of possibilities, that the supplier offers. For exam-
ple, a petroleum company will offer various kinds of petrochemical
products to be delivered to the customer, while for a company

9.1. DATABASE DESIGN 105

specialising in transporting people this parameter might represent
whether or not special measures need to to taken to accomodate
the transportation of disabled people etc.

Finally the amount or number of goods or people to be trans-
ported is registered. Request, like Customer, also contains room
for special notes, that for some reason or another will not fit into
the other categories.

9.1.3 RepeatRequest and RepeatRequestType

RepeatRequest is rather special, as it contains all of the same vari-
ables as Request plus an additional one called repeattype. Re-
peatRequest is to be used for the automated generation of orders
based on deals, that the customer and suppliers arrange. In the
transportation industry, it is often the case that orders are gen-
erated in this way, rather than the customer having to place each
and every order manually. The methods used for generating or-
ders are many and varied. There exists the plain interval order,
where a certain amount of a product is delivered at fixed intervals.
But rather more complicated systems can also be found, for exam-
ple the degree day system used by the oil industry, in which each
chronological day is given a certain degree day value, based on the
temperature on that day. A customers use of oil is then calculated
from the total amount of degree days since he last received a ship-
ment of oil. The oil company then uses the system to determine
when it is necessary to send a truck to refill the customers tank.
In other parts of the transportation industry other, more or less
elaborate systems, are used for generating ordrers.

For the reasons mentioned above, the database contains the pos-
sibility of defining various ways of automatic generation of orders.
These methods are represented in RepeatRequestType by an in-
teger. It is then up to the user (supplier) to define the different
methods and numbering them. The end result is, that the program
should look for the method of generation, generate a new order and
place it in Request, just as if the customer himself had placed the
order manually. In InfoRoute, however, no such generators will be
implemented at this time. They must be developed specifically for
each user, according to his needs.

106 CHAPTER 9. INFOROUTE

9.1.4 TypeRH and TypeRV

When a transportation task is carried out, not all of the time spend
is used for driving. At both the beginning and the end of the task,
a certain amount of time used for handling the goods or passen-
gers must be added to get the total transportation time. The table
TypeRH is used to store these extra amounts of time.

TypeRV describes the vehicle type with respect to which sorts
of goods and/or passengers the vehicle can transport. In addition
to this, there is a vehicle number which refers directly to the table
Vehicle. TypeRV also contains the maximum capacity of a vehicle.
There is, however, no key for the exchange of different sorts of
goods. Instead, this key can be found in the Table PayloadSubsti-
tution.

9.1.5 Vehicle and Depot

Vehicle is used to register vehicles in a fleet. Each vehicle is given
an id-number. To each number is attached a description of the
vehicle, a vehicle type and the home depot of the vehicle. There
is also a number to indicate whether or not a vehicle is subject
to restrictions regarding the types of tasks it can undertake. For
example, most trucks are not able to pass under low bridges or
negotiate dirt roads etc. This can be registered by this number.

Depot contains information about the placement of a depot with
both an address and coordinates. Depot also conatins a note field.
This information is attached to a depot number, the same one that
is used in Vehicle to determine the vehicles home depot. Informa-
tion about depots is included in order to calculate what vehicles
are to undertake what tasks, and to calculate the total time con-
sumption of a plan, as the time to drive to and from the depot
must be included.

9.1.6 ConversionTable

ConversionTable determines whether or not a type of goods is in-
terchangeable with another. This may affect both the planning and
execution of a working day. The ratio is used to either determine
the remaining capacity of a vehicle or to find out if a product can

9.1. DATABASE DESIGN 107

replace another product and, if this is the case, what the cost will
be. In the case of transporting people, it is quite relevant to use
this table in connection with the transportation of disabled people.
One person in a wheelchair takes up the same amount of space as
two walking passengers, giving a two to one conversion ratio in this
case. It must be added, though, that this in no way means that the
program will (or should) prioritise healthy passengers above dis-
abled ones (healthy passengers pay the same fare as the disabled).
The problem is handled by simply giving the transportation of dis-
abled people a higher priority.

Another use for this table is when a supplier transports different,
but downwards interchangeable products, meaning that the most
expensive product will satisfy most or all customers, the slightly
cheaper product fewer people etc. right down to the cheapest prod-
uct, which will only be accepted by those, who specifically ordered
it (to save money). When products are downwards interchange-
able, it can sometimes be profitable to sell an expensive product
as if it was a cheaper one, since the loss in sales profit can happen
be less than the increased cost of transportation to go home and
get the cheaper product. Of course, this sort of downwriting only
occurs if there are sudden changes in the middle of a working day.

Just as the input for an algorithm depends completely on the
structure of the algorith, so does the output. In the case of this
database, it has been decided to make the output tables extremely
generel. In practical terms, this means that there is no single table
from which a complete result or solution to a problem can be read.
Rather, it has been sought to ensure a developer or programmer
complete freedom to arrange a result as he wishes by means of
his own application. This also means, that he will be able to best
present the data to reflect the behaviour and results of his specific
algorithm.

The following three sections describes table containing all the data
necessary to represent of a solution.

9.1.7 SolRequest

SolRequest displays how the execution of each individual order is
carried out by linking the order id with the planned start and fin-

108 CHAPTER 9. INFOROUTE

ishing time of the order and the addition of the time spend loading
and unloading. This partial solution is then, as most other tables,
given a unique id number. The solution is of course affected by
the fact, that during the time between loading and unloading of an
order, other orders may be partially or completely executed.

This table allows a developer to pick out and present the various
orders, arranging them as he prefers them to present his solution.

9.1.8 SolRoutes

SolRoutes is an overview, which displays the total amount of time
spent on a working day, identifiable by a number once more. This
information can be transferred directly to the application and used
for simulating the application/algorithms behaviour, thus allowing
the developer to make improvements on the system, should he wish
to do so.

9.1.9 SolVehicle

Finally, SolVehicle ties vehicles to tours using the id of the vehicle
and tour, respectively. Together with the two other output tables
mentioned above, this allows for a complete solution to be con-
structed.

As mentioned earlier, this solution must be arranges by the de-
veloper using his own application. Following this, he can choose to
let his application generate plans for each tour, a complete tour-
plan, or any other arrangement that the developer wishes. The
only important thing to remember here is, that despite the appar-
ent lack of a coherent plan in the tbales, all necessary information
for a solution is present.

As has just been described, the structure of the database is easily
grasped, it is simple and not very large. Still, this does in no way
impair the usefulnes of the database, as the overall demands for
simplicity and generel use makes the database easy to use later on.

9.2. USER INTERFACE 109

9.1.10 Overview

Figure 9.1 Shows the tables of the database and displays their inter-
nal relations. It is a good indicator as to the simplicity of its design.

The figure contains the abbreviations PK for Primary Key, FK
for Foreign Key and I for Indexed. A primary key is used to iden-
tify a table. A foreign key is the primary key of one table, referred
to in another table. Indexed means, that the content of a table is
arranged in a search tree, thus making a specifik part easy to find.

9.2 User interface

InfoRoute is designed for use within the Windows environment.
This makes it a graphically oriented application. This, in turn,
makes working with InfoRoute a pleasant experience, as most func-
tions can be understood intuitively. The build-in Shortest Path
algorithm makes finding the best route between to addresses easy.
Furthermore, the locations of addresses can be found and both
addresses and routes can be marked on a map. It is possible to
select and deselect layers on the map, including the road network
(although this arguably makes the map somewhat dull to look at),
municipal borders, marked addresses and marked routes.

The following section will make the user proficient in the use of In-
foRoute by explaining how to open the program, create customers
and orders, mainpulate map layers and exploit all the other possi-
bilities, that InfoRoute offers.

9.2.1 Starting InfoRoute and Using the Toolbars

Upon opening InfoRoute (By finding the file "InfoRoute.exe" in
the folder, to which you copied InfoRoute), the first screen looks
as seen in figure 9.2.

The central part of the program window is occupied by a map.
Right after opening InfoRoute, the map displayed will be the Skov-
bo utm32 (a map covering Skovbo municipal district, generated
by data using the UTM32 standard). The map can be closed at

110 CHAPTER 9. INFOROUTE

Depot Vehicle PayloadSubstitution
PK,I1 |id PK id
adress |« d ot > original_payload_type
x_coord N escription subst_payload_type
y_coord gapsesability relation
note FK1,11 | depot_id cost_of_substitution
A A
RepeatRequestType
SolVehicle PK [id
11 | repeat_type
FK2 | vehicle_id A
FK1 |solroute_id
RepeatRequest
TypeRH
PK id
. FK2 repeat_type
request_type_id - FK1,U1 | customer_id
pickup_handlingtime 12 time_received
delivery_handlingtime arrival
A TypeRV 13 time_targetdate
from_adress
to_adress
from_zip
FK1 | request_type to_zip
FK2 | vehicle_id from_xcoord
v capacity from_ycoord
SolRoutes A to_xcoord
to_ycoord
PK |solroute_id 11 from_link_id
14 to_link_id
total_km priority
total_time type
total_waiting_time Request demand
A PK id note
FK3,11 customer_id
14 time_received
arrival
SolRequest 15 time_targetdate
from_adress \ 4
to_adress Customer
from_letter
FK1,12 | solroute_id N to_letter PK |id
FK2,11 | request_id 7113 from_zip
pickup 17 to_zip 12| firstname
pickup_handling from_xcoord 14 | lastname
delivery from_ycoord 16 |roadname
delivery_handling to_xcoord p 17 | zip
to_ycoord 13 | housenumber
12 from_link_id houseletter
16 to_link_id 15 | phone
priority 11 | email
FK1,FK2 | type xcoord
demand ycoord
note note

Figure 9.1: An overview of the internal relations of the database.

9.2. USER INTERFACE 111

123 4 5

=
o

(##7 G818

Figure 9.2: InfoRoutes appearence immmediately after it is opened

all times by clicking the usual icon (the "x" in the top right corner).

As is apparent on the picture, there are two toolbars present, one
horizontal and the other vertical. On the picture, the icons on the
horizontal toolbar have the numbers 1-5 attached to them, while
the vertical toolbar icons are numbered 6-12. The numbered icons
will be briefly explained here (The icons not numbered are inactive)

1. Open new map

Get map from disk

Save map to disk

Print currently active map

Information concerning the program’s version

e vk Wb

Zoom in

112 CHAPTER 9. INFOROUTE

7. Zoom out
8. Move map
9. Select part of the map (by clicking on it)

10. Select parts of the map (by drawing a box around the wanted
parts)

11. Select parts of the map (by drawing a circle around the wanted
parts)

12. Pick layers on the map

Several of the functions mentioned above are also available as menu
items (the menus are located just above the horizontal toolbar).
The purpose of the toolbars is simply to make access to the most
commonly used features in the program easier.

9.2.2 The Horizontal Toolbar

The icons 1-3, also accessible through the menu item “Filer” (Eng.:
Files) - “Abn” (Eng.: open), “hent” (Eng.: get) and “gem” (Eng.:
save), respectively, are used for disk operations in connection with
the maps. The icon marked 4 is used for printing out the currently
active map. 5 gives information about the program version in use.

By clicking 1, alternatively by selecting the menu item “Filer -
Nyt” (Eng.: new), a new map will appear. Since it makes no sense
to start with an empty map, (it goes beyond the specifications of
this product to be able to draw a new map), a copy of the map
currently in use will appear. If no map is being used, the map last
viewed will appear. The user must note, however, that any changes
made to the new map, such as marking routes and addresses, will
take place on the map first opened. This old map must be closed,
before manipulating the new one becomes possible.

By clicking 2, alternatively by selecting the menu item “Filer -
Abn”, a map can be retrieved from the harddrive (or other media).
The user must obviously have a map (of type Maplnfo) ready, if
he wishes the program to be able to use it).

By clicking 3, alternatively by selecting the menu item “Filer -

9.2. USER INTERFACE 113

Gem”, the currently active map can be stored on disk, including
any modifications made to it, such as marked routes and addresses,
Which layers are selected or deselected etc. NOTE: It is timportant,
that the user remembers not to overwrite the map Skovbo utm32,
that the programs starts with, since InfoRoute will start with a ma-
nipulated map afterwards. To avoid this, the user should always
click on the menu item “Filer - Gem som...” (Eng.: Save as...)
and save a copy of the map elsewhere and under a different name.

By clicking 4, alternatively by selecting the menu item “Filer -
Print”, the map will be printed out on a printer, that the user
chooses from the menu appearing before printout. If no printer is
selected, the windows default printer will be used. It is a good idea
to use a colour printer, since the marked routes and addresse will
be invisible if a black and white printer is used.

By clicking 5, alternatively by selecting the menu item “Hjeelp -
Om InfoRoute...” (Eng.: Help - about InfoRoute...) a window
containing information about which version of the program is in
use.

9.2.3 The VerticalToolbar

The vertical toolbar with the icons 6-12 is used for manipulating
the active map. This includes selecting parts of the map and se-
lecting and deselecting layers.

By clicking 6 and 7, it becomes possible to zoom in, resp. out,
on the map. The way this works is, that the mouse pointer is
turned into a looking glass with a tiny "+" or "-" in it. By left-
clicking on a point on the map with this new pointer, the map will
zoom either in or out, centered around the position of the pointer.
Zoom always takes place using a 1:2 scale. By clicking 8, the mouse
pointer will turn into a hand. This can be used to move the map
around. By placing the "hand" over a point on the map, the user
can "grab hold" of this point by left-clicking, thus enabling him to
move the map around by keeping the left mouse button down and
moving the mouse. If the mouse is moved downward, the hand and
the map will move to the south, enabling the user to view more
northernly parts of the map.

114 CHAPTER 9. INFOROUTE

By clicking 9, 10 or 11, it becomes possible to select a part or
parts of the map. Clicking 9 turns the mouse pointer into an ar-
row, slightly different from the usual windows arrow. By clicking
on different parts of the map with this new arrow, the parts will
be highlighted. If a piece of road is clicked on, this road will be
highlighted. If an area not occupied by a road is cliked on, the
entire municipal district will be selected (requires the municipal
district layer to be active). 10 and 11 basically does the same, but
allow more parts of the map to be selected at once. 10 allows the
user to draw a rectangle around the parts of the map to be selected
and 11 allows the user to draw a circle for the same purpose. The
effect of this will prove useful later on.

Clicking 12 brings up the menu for selecting and deselecting map
layers and manipulate their characteristics. This menu will be ex-
plained in detail later.

< InfoRoute - Kortl 18l x|
Eiler Redigér Ws Wndue Kort Kunde- ogordrebehanding Hislp

T IEEEIEEL

B Kort1

S T Y

[

Figure 9.3: The user in the process of selecting the lower half of the map using a
selection tool, in this case 10

9.2. USER INTERFACE 115

9.2.4 The Menu Items

Besides the tool bars, it is also posssible for the user to use menu
items for employing various functions. As has been shown earlier,
the user can in some cases gain access to the same funtion by means
of either a toolbar icon or a menu item. However, the menu items
also contains functions not accessible through the toolbar. The ba-
sics of these other functions will be described here.

The menu “Filer” also contains, other than the items described ear-
lier, the items “Luk” (Eng.: Close), “Se udskrift” (Eng.:Print Pre-
view), “Printerinstillinger” (Eng.: Printer settings), “Forlad pro-
grammet” (Eng.: Quit Program) and “Initialisér” (Eng.: Initial-
ize). “Luk” closes the active map, corresponding to clicking the
"x" in the top right corner of the map. “Se Udskrift” shows how
the map will look when printed out. “Printerindstillinger” acti-
vates the windows dialog box, making it possible to change various
settings concerning the printout. “Forlad programmet” quits the
program.

“Initialisér data” is special. By selecting this item, a message will
appear at the bottom of the application window (the status line),
saying "Etablerer vejnet i hukommelsen" (Eng.: "Creating road
network in memory"). Next to the text is a staus bar, showing
how far along this process is. Note that the entire road network is
highlighted during the process. This merely means, that the pro-
cess is underway.

Initializing the road data is necessary in order to use the programs
build-in Shortest Path algorithm. It is a little time consuming
(Approx. 30 sec. on a fairly modern PC running 700-800 MHz),
but only have to be performed once (unless the road network is
changed). So, instead of doing this every time the algorithm is
used, the initializing process has been separated from the rest of
the shortest path module to save time.

The menu “Redigér” (Eng.: Edit) is at present inactive, The same
applies to the icons on the horizontal toolbar corresponding to this

menu (The scissors, clipboard and clips).

In the menu “Vis” (Eng.: Show) the user can choose whether or not

116 CHAPTER 9. INFOROUTE

to have the horizontal toolbar and the status line displayed on the
screen. The staus line is the line at the bottom of the application
window. The position of both horizontal toolbar and status line is

displayed on figure 9.4.

Horizontal
toolbar

=o =]

£+ InfoRoute - Kort1
Filer Rediger Yis Yindue ‘k Kunde- og ordrebehanding Hj=lp

IR

BB KorkL

Status line

Figure 9.4: The location of the horizontal toolbar and the status line

In the menu “Vindue” (Eng.: Window) the usual options from
windows regarding the placement and position of any or all active

9.2. USER INTERFACE 117

subwindows in the application can be selected. Which window is
to be the active one is also picked here.

The menus “Kort” and “Kunde- og ordrebehandling” (Eng.: Map
and Customer- and requestdealings, resp.) contains tools for the
location of addresses and shortest path routes as well as tools for
creating and maintaining a customer and request database. The
will be described later on.

The menu “hjselp” contains, besides the already mentioned “Om
InfoRoute”, the item “hjselp”. In the present version of InfoRoute,
it has not been deemed necessaery to provide the user with on-line
help. Instead, the user should refer to this chapter.

9.2.5 “Find adresse”

“Find addresse” allows the user to localise an address and highlight
it on the master map. By selecting this item, a dialog box appears
as shown in figure 9.5.

As is apparent, The box consists of a minimap and a series of fields
and checkboxes. The numbered items on the figure are utilized as
follows:

1. In this combobox, the road data to be used in the search is
selected. It must be noted, that the user should make sure,
that the selected data is actually road data, since road data
and other geographical data, ZIP codes for example, appears
in the same format. For the present task, it is recommended
to use the preselected data (kdv_utm32)

2. Check this checkbox if the search is to be reffined by using
ZIP codes.

3. If 2 is checked, this combobox will activate. Once again, the
user should make sure to select correct data. Currently, the
2 and 3 items are not necessary, as no similar addresses with
different ZIP codes exists within Skovbo municipal district. It
will, however, become necessary when larger maps are used.

118

CHAPTER 9. INFOROUTE
Miniature
map
2 1
/? M (J Vejdata 3
- 4
Brug poztrurmmer
I postir_utm3z2 / 5
Zoom fakkor |2— K
Adresze 6
|
7
Postnurmmer
9
Find
Mark\ér | Luk
8
Figure 9.5: The Dialog box Find addresse
. In this field an integer is entered. This number will designate

the length of the sides of the square minimap, that will appear
if an address is found. The center of this zoomed-in map,
marked by a "+" will be the wanted address.

. In this field, the wanted address is entered. Since the under-

lying map software is american, the house number is entered
first, rather than using the danish method with the house
number last. If no address is found, an error message will
appear.

. If 2 was checked, a ZIP code is entered here.

After having filled out the above, click "Find" (or press re-
turn).

. If an address was found, it can be marked on the master map

by clicking here.

9.2. USER INTERFACE 119

9. 9 closes the find address dialog box

As can be seen, this functionality makes finding an address easy,
and the build-in zoom makes spotting it just as easy.

9.2.6 “Find Korteste Vej”

“Find korteste vej” (Eng.: Find Shortest Path) makes InfoRoute’s
Shortest Path Algorithm avaliable to the user. By selecting the
menu item “Kort - Find korteste vej”’, a new dialog box appears as
shown in figure 9.6.

1
Find Korteste ¥ej x| 4
3
Brug posthurmmer
6 13 adresse Posgtrr 5

[|
Til adressze Pzt

| |
N Find | Markér | Luk

7
Figure 9.6: The dialog box Find korteste vej

The dialog shown in figure 9.6 is intuitively easy to understand.
Here is a short explanation using the numbered items:

1. By checking here, the address can be further ascertained by
using phone numbers.

2. The starting address of the calculation is written here.

3. The destination address is written here. Both 2 and 3 rec-
quires the house number to be entered first.

4. This item is used, if 1 was checked, to designate the ZIP code
of the starting address.

120 CHAPTER 9. INFOROUTE

5. This item is used, if 1 was checked, to designate the ZIP code
of the destination address.

6. Upon entering the above items, click Find. If both adresses
exist, a message telling the distance between them will appear.
If one or both addresses are not found, an error message will
appear instead.

7. If the route found should be marked on the map, click Markér.
The road pieces constituting the route will appear in red.

8. Closes the window.

The shortest path function thus makes it easy to find and highlight
a route between to addresses. By utilizing this function the user
does not have to worry about whether or not the routes he is using
are the shortest possible.

9.2.7 Manipulating Map Layers

In both the find address and find shortest path functions, the user
can alter how the map looks. Each of the functions use different
layers on the map. How to manipulate these layers will therefore
be explained now.

By clicking the layer control icon on the vertical toolbar, a dia-
log shown in figure 9.7 appears.

As can be seen in figure 9.7, this dialog is in english, since it is a
feature of the underlying map software. The numbered items are
used as follows:

1. This window allows selection of the layers, that the user wants
to manipulate. This can be done using the mouse or 2.

2. As an alternative to 1, these buttons kan be used for selcting
layers.

3. This item is used to remove a layer or add a new one. It
is not recommended to use this option at present, unless the
user has experience with map software.

4. This box is checked, if the selected layer is to be visible on
the map. It carries no risks to make the layer invisible.

9.2. USER INTERFACE 121

2
x

1

Layers:

.3|:||:|[Ee:5::5: Up 3

rauke —_—

shortestpath Diown

v _utm32

postnr_utm32
4 fdd. 8
S Remove
6
7 9

~ Properties

\IV Yizsible :

\IV Dlsplay...il
Selectable

Automatic Labels

Labels. .
\l_ Editable ==
ok | Cancel |

10 11

Figure 9.7: The dialog box layer control

. This box is checked, if the user wants to be able to select parts
of the map.

. By checking this box, InfoRoute will write location names
on the map. This means, that the road network will have
road names attached to it, while the ZIP code layer contains
names (not numbers) of the postal districts. This checkbox
only affects these two layers.

. Checking this box will make the chosen layer susceptible to
change, meaning that it becomes possible to remove parts of
(or all of) the layer, using the tools described in the section
concerning the vertical toolbar. It is not advisable to choose
this option for the road network and ZIP code layers. How-
ever, it is quite useful on the layers with addresses and routes
on them, to prevent the map from getting "crowded".

. Clicking Display... provides access to a dialog, concerning
the more advanced options for displaying map layers. This

122 CHAPTER 9. INFOROUTE

is for use by advanced users and is not recommended for the
ordinary user.

9. After selecting the desired options, OK is clicked. The dialog
then closes and the options are activated. If the user is not
satisfied with his choices, clicking cancel will cause the window
to close without the option selected options being activated.

The layers presently selectable on the map are:

e address: This layer is used for marking addresses found in the
find address dialog.

e route: This layer is empty at present. It will be used for route
planning in later version of the program.

e shortest path: This layer is used for drawing the shortest
paths found in the shortest path dialog.

e kdv_utm32: This layer is used by the program to draw the
road netwok.

e postnr utm32: This layer is used to draw the ZIP code bound-
aries. It is adviced to render this layer invisible when drawing
shortest paths, as these might be mistaken for boundaries.

9.2.8 Create New Customer

By selecting the menu item “Kunde- og ordrebehandling - Opret
ny kunde” (Eng.: Create new customer), a dialog appears, used for
placing new customers in the customer database (see figure 9.8).

The dialog is easy to understand for which reason the items have
not been numbered. The user enters First name, last name, road-
name and number, letter (if any), ZIP code, telephone number,
e-mail address (if any) and any notes, that might be useful. Af-
ter making sure, that the information entered is correct, “Opret
kunde” is clicked to save the information to the harddrive.

The effect of this is, that the customer information entered will be
inserted into a new row in the customer database. Notice, that it
is not possible to gain acces to the entire customer database from
inside InfoRoute since even a moderate size customer dtatabase

9.2. USER INTERFACE 123
~=lolx|

Filer Redigér Vis Vindue Kort Kunde- og ordrebehandling Hijselp

DER L B2 |&| 28

EElKort1

Fomavn

Opret ny kunde

Efternavn

-

YWenavn

Telefonnr.

Evt. E-mail

Husnr. Evt

Postr.

Y R I

Fundenr

—

=10l

Bemazrkninger

Opret Kunde |

"

Luk

1/

I I

Figure 9.8: InfoRoute with the dialog box Opret ny kunde open

would cause InfoRoute to attempt to write hundreds of names and
addresses on the screen. Instead, a search function has been im-
plemented (explained later), and the user can explore the database
with Microsoft Access if needed.

9.2.9 Editing and Erasing a Customer

The menu item “Ret/Slet eksisterende kunde” (Eng.: edit/erase
existing customer) is used for just that. By clicking this item, a
dialog almost identical to the create customer dialog appears. The
only difference is the buttons at the bottom. To find a customer
to edit or erase, a phone number must be entered in the correct
field, and the Find kunde (Eng.: Find Customer) -button is clicked.
Upon this, the other fields of the window will fill up with the data
on the customer. If no customer is found, an error message will
appear.

124 CHAPTER 9. INFOROUTE

If a customer is found, the user is free to correct any information
he wants. Until the button “Ret kunde” (Eng.: Edit customer)
is clicked, nothing will be saved. If the user changes his mind,
the windows is simply closed without clicking this button. If the
wishes is to permanently remove a customer from the database,
click “Slet kunde” (Eng.: Erase customer) and the active customer
will be removed from the database.

If a phone number with multiple customer attached to it is entered
in the search for the customer to be edited, a message appears to
relay the fact. After this, the first customer will fill the fiels of the
window. Pressing “Find Kunde” again brings up the next etc.

9.2.10 Creating a Request

By selecting the menu item “Kunde- og ordrebehandling - Ny or-
dre” (Eng.: New request), the dialog (figure 9.9) for creating a
request is activated. To use this function, a customer must first
exist. It is not possible to make a request without attaching it to
a customer in the customer database.

Therefore, the user must first click “Find kunde” at the bottom of
the dialog. This calls up a search dialog identical to the one used
for editing the customers. Upon having located a customer, the
top half of the window will display the customer data. To ease the
process of creating a new customer for a first-time order, there is a
shortcut button to the create customer dialog, also at the bottom
of the screen.

After having searched for or created a customer, the data concern-
ing the requested transportation is filled in. this data consists of
desired starting and destination adresses, the roadname and num-
ber in the same field, and a ZIP code. Furthermore, a date/time
must be entered, and a checkbox designating the date/time as ei-
ther the start or destination left checked or unchecked. finally, the
number of seats and the priority of this request must be entered.
Optionally, the bottom field can be used to note any special cir-
cumstances. This field is the only one not being directly tranferred
from the customer data. Instead, it is left blank and it is up to the
user to engage in a dialog with the customer to ensure, whether

9.2. USER INTERFACE 125

;lr! InfoRoute - Kortl ol x|
Filer Rediger Vis Vindue Kort Kun%ugurdrsbshandling Hizelp

DER L =2 |&|2 8
ﬁ_—ﬂﬁ

sknyvhn 11#tm=29 |

Ordreoprettelse x|

KUMDE

Mavn Kundenr
| o
Adresse Ext. Postnr. Telefonnr.

T

Bemaerkninger

ORDRE:
Transport:

[~ Til hismmet [~ Fra higmmet

Tranzport Ewt. Postnr.

| — b
Transpoit kil Ewt. Postnr.
I [
I ank, Datodtic Antal pladser Prioritet Ordrenr.
I afg [erazomor2zss | [0 [

Bemaerkninger Type
IEI

Find kunde I Opret kundel Opret ordre: | Luke I

Figure 9.9: InfoRoute with the dialog box Opret ordre open

the customer information should be transferred, a new note en-
tered or the field left blank, if no special circumstances apply to
this particular request.

9.2.11 Editing and removing requests

The final menu item in “Kunde- og ordrebehandling” is “Ret/slet
eksisterende ordre” (Eng.: Edit/remove existing request). As the
name hints at, the item is used to maintain the request database.
By selecting the menu item, a dialog box appears (figure 9.10).

The dialog shown in figure 9.10 is used for finding requests in the
request database. As mentioned earlier, requests are connected
to customers. Again, the dialog starts with the user finding a
customer. The figure shows, that all fields except for the phone
number field in the dialog are diabled. After having filled in the
telephone number field, “Find kunde” is clicked. As before, if more

126 CHAPTER 9. INFOROUTE

_a-}_InloRoute-Knrtl o] x|
Filer Rediger Yis “indue Kort Kunde- ogordrebehanding Hjsslp

=R

EKort1

skgvbo_utm32

i PR =)

Fomarn Efternavn

I I

Wenavn Puostrr, Husnr. Ewt,

| O N

Telefonnr. Evt. E-mail Kundenr
o I m

4 Bemaerkninger

“ind Kundi

I I

Figure 9.10: InfoRoute with the dialog box Ordre slet/ret - Kundesggning open

than one match is found, a message will display this and the dif-
ferent matches can be viewed by clicking “find kunde” again.

When the desired data is displayed, the requests already made
by this customer will appear in the field at the bottom of dialog
box. The request, that the user wishes to alter is clicked. This in
turn will open a window, similar to the bottom half of the create
request window (figure 9.11).

After opening the dialog displayed in figure 9.11, the data can be
edited at will. By clicking “Ret ordre”, the changes will be saved
to the harddrive. If the entire request has been cancelled, clicking
“Slet ordre” will remove it from the database.

9.3. OTHER RESULTS 127

{a— InfoRoute - Kortl ol x|
Filer Redigér Vis Vindue Kort Kunde- og ordrebehandling Hijselp

DER L B2 |&| 28

EElKort1

skovbo_utm32
& AT A"

TP x

Be
Ve Transpart:

IE: v TilHjemmet I~ Fra hiemmet

Ta Tranzpart fra Ewt bogstaw Postrr.

~ |3 [Malleve) 14 4130
(Be Transport bl Ewt bogstav Postrr.
r [Dyndetvei 18 140 [

[~ 2 Datodid Antal pladser Prioritet Type Ordrenr.
W pfg [3/4/200 054347 1 =1 Io |2

Bemzsrkninger

IKmresmI

Fet ordre | Slet ordre: |

I I

Figure 9.11: InfoRoute with the dialog box Ordre slet/ret open after a customer
with an active request has been located.

9.2.12 Summing up

As described in this manual, InfoRoute enables the user to create
and maintain a customer database, create and maintain a request
database, view a map, manipulate it’s layers, find and mark an
address, and find and mark a shortest path between two addresses.
Furthermore, the program has been readied for further develop-
ment, with the goal of making it a complete tool for route planning
in every category of the field of transportation planning.

9.3 Other Results

In the above, the functionality of InfoRoute has been described in
its present state. But since the entire design process has been fo-
cused on the general aspect of the task at hand, a lot of the results

128 CHAPTER 9. INFOROUTE

generated are not directly visible in the program. These results,
though less apparent than the application, are never the less an
important part of the project - maybe it’s most important part.
These results will be summed up here.

First of all, the database has been designed with focus on future
use in various transportation systems. The design allows for ad-
vanced algorithms to be easily inserted. The program has been
prepared for complete route planning for a fleet of heterogeneous
vehicles with capacity substitution. describe the depot. Map lay-
ers for advanced uses are reserved. Several advanced map features
are actually implemented.

The results, therefore, surpass the product readily avaliable. De-
velopers can, by using the database and application, visualize their
results, thus simplifying their work with algorithms and applica-
tions that use them.

9.4 Representation of road data - MapX

The following will provide a brief description of the advantages and
disadvantages of utilizing MapX for displaying data graphically.
MapX is developed and sold by the american MapInfo Corpora-
tion, one of the leading suppliers of GIS-software. The MapInfo
Corporation supplies a long list of products, all of which stems
from the program MaplInfo Professional - a program for processing
geographical information much the same way as does ArclInfo etc.
MaplInfo supplies programs developed for use on the internet, with
Visual Basic etc., making MapX suited for inclusion in either a
Visual Basic or a Visual C++ project.

MapX consists of several components, where GeoSetManager is
the most important non-C++ specific component. Using this pro-
gram, maps (geosets) of layers, each consisting of tables in the
MaplInfo format, are build. The layers of such a map are then regis-
tered in GeoDictionary, from where it can be used by outside code,
C++ for example. Described in specific terms, GeoDictionary is a
file that the Windows Registry refers to in such a manner, that a
GeoSet-file is coupled to its layers when it is opened.

9.4. REPRESENTATION OF ROAD DATA - MAPX 129

The above mentioned characteristics may provide some problems
conserning the distribution of programs developed with MapX, be-
cause GeoSetManager (and thereby MapX) will have to be installed
on all workstations that are to use the software developed for use
with MapX. The C++-specific part of MapX must be installed in
order to use it with programs developed for this purpose.

With regard to the map consisting of several layers, this provides
the possibility of a user adding self generated layers to the pro-
gram. An excellent example is the map in this application, which
consists of a layers representing road-pieces and a layer with the
ZIP code boundaries represented. The layer with the road-pieces
is made up by lines, where the layer with the ZIP codes consists of
polygons. A specific layer on the map can only contain one type
of objects (points, lines or polygons). Thus, InfoRoute establishes
layers for recording the location of addresses, Shortest Paths and
routes, and these layers can then be shown, edited and erased in-
dividually.

In short, MapX consists of a series of C+-+ classes, all connected
to a comminucationsclass (CMapX). These classes contains a sig-
nificant amount of functionality, too much to be treated in depth
here. This section is therefore limited to provide only a short de-
scription of the functionality used by InfoRoute.

By including MapX in the code, and then creating an instance
of it in MFCs view-class, the developer gains access to all func-
tionality in MapX. Following this, MapX is set to use GeoSets and
by altering various parameters, the different layers of the map can
be displayed on the screen.

Some of the functions from MapX that are used here is address
search, search for road pieces when these are in close proximity to
an address, highlighting objects on the different layers, zoom, se-
lecting objects etc. Searching for the road pieces in close proximity
to an address is necessary, since addresses are not linked directly
to a road piece. Instead, the addresses are points, located a short
distance from the road. The fact, that addresses are points also
means, that they cannot be included in the layer containing the
road pieces.

130 CHAPTER 9. INFOROUTE

The functionality mentioned above can be called directly from
their respective classes, but must of course be called in a way
consistent with what functionality the developer wishes use and
combine. Therefore, there is still a lot of development work to be
performed, even when using MapX, but MapX surely simplifies the
process Furthermore, most digitalized roadmaps today can be con-
verted to the Maplnfo format, allowing them to be used directly
in applications developed with the help of MapX.

9.5 Implementation

As the project primarely consists of programming, this chapter
will provide a thorough description of the development work in
connection with the completion of the application. This work will
obviously be founded on the structure of the database, and the
implementation has been made parallel to the functionality analy-
sis. In other words, during the programming phase, it was found
necessary to adjust the functionality analysis. This occured when
the programming revealed, that the conclusions made during the
original functionality analysis where impractical. However, these
adjustments hasn’t changed the program in any basic way, but has
merely served to make the endproduct more user friendly.

9.5.1 Structure

Figure 9.12 shows the structure of end product. As can be seen,
the possibility inherent in the programming language of encapsu-
lating diferent functionalities in individual modules has been ex-
ploited. The boxes on the figure, enveloping the various function-
alities shows how the internal communication has been limited.
These limitations are among the most important features of the
program and the following description will reveal how the commu-
nication takes place between the modules and the classes, respec-
tively. The headlines used in the rest of this chapter corresponds
with the names of the modules.

9.5.2 Database

This module takes care of the communication with the database.
The individual classes of the module are named CDb (Class Database),

9.5. IMPLEMENTATION 131

DATABASE
\ CDBRepeatRequestType\ \CDBPayLoadSubstitution
‘CDBRepeatRequest‘ ‘CDBSolRequest ‘
| CDBSolVehicle| |CDBSolRoutes |
‘CDBCustomer‘ ‘CDBRequest ‘
| CDBTypeRH| |CDBTypeRV |
|CDBVehicle| |CDBDepot |

MFC / \

‘ CinfoRouteView ‘

DATABASE INTERFACE
| COrdreRetKundeSoegDIg |
‘COrdreKundeSoegDIg ‘

‘ CinfoRouteDoc ‘ ‘CKundeRetSIetDlg ‘
| CinfoRouteDSP | | COrdreRetSletDIg |

CChildFrame [CKundeOpretDlg |
COrdreOpretDlg ‘

Ny
\ KORTESTE VEJ

I CMapX \ | CSpcRoadComponent |
KORT INTERFACE \CSpcDistSolObject \

CMapFindDIlg || «— » ||CSpcDistance
CMapFindSP CSpcDSP

| CinfoRouteApp |

Figure 9.12: An overview of the structure of the program and the internal
communication between modules.

followed by the name of the table it communicates with in the
database. The modules internal communication is shown on figure
9.13. This figure also shows, that CDbDSP is the only class com-
municating with the rest of the program.

Figur 9.13 shows, how the individual classes communicate with
their corresponding table. Each instance of a classe establishes
a connection with its underlying table. Initially, this connection
points to the first element of the table. Subsequently its possible
to point to other elements using various build-in functions, ie. it is
possible to find an element, that satisfies certain criteria or to move

132 CHAPTER 9. INFOROUTE

DATABASE

‘CDBPayLoadSubstitution ‘ —

‘ CDBRepeatRequestType

Underliggende
database

CDBSolRequest
CDBSolVehicle
CDBSolRoutes
CDBCustomer
CDBRequest
CDBTypeRH
CDBTypeRV
CDBVehicle

CDBDepot .

CDbDSP

@)
w)
o
Py
©
o
@
=
Py
®
o
[=
®
n
@

Figure 9.13: An overview of the internal communication of the database
module.

to a specified element. When the connection has been established,
data from the database can be read directly from the table.

When establishing and editing elements, the classes provide the
possibility of calling certain functions, such as Edit(), Update(),
AddNew() etc., still bearing in mind the importance of the connec-
tion pointing to the correct element. To control this functionality,
it is kept together in a communications class named DSP (Data
Storing and Processing), where the connections to the tables can
be created and controlled.

The DSP-class provides other parts of the program with access
to the database using its own implementation of the functionality
needed to do so. Thus it is ascertained, that the database is up-
dated or edited with correctly formatted data. It also eases the
process of replicating functionality between other classes. Notice,
that the database is never opened directly in the communication.
Instead, data is written into the database by calling the Update()
function on the database, thus protecting future users against loss
of data.

9.5. IMPLEMENTATION 133

In the database interface module the possibility for the user to
interact directly with the customer- and request parts of the un-
derlying database is established. Several Dialogs have been made
available, that read and write data to and from the files of the
database.

DATABASE INTERFACE

| COrdreRetSletDg |

‘ COrdreRetKundeSoegDlg ‘

‘ COrdreOpretDIg ‘

‘ CKundeRetSletDlg ‘

‘ CKundeOpretDlg ‘

\ COrdreKundeSoegDlg ‘

Figure 9.14: An overview of the internal communication in the database
interface module.

Figure 9.14 shows 6 classes, each representing a dialogbox in the
program. COrdreRetKundeSoegDlg and COrdreKundeSoegDlg
are such dialogs, helping the user find customers in order to edit
them or enter them into the system as new customers, respectively.
By utilizing this approach, using separate dialogboxes for process-
ing customers and requests, the GUI acquires a uniform design,
thats makes the handling of it by an end user much easier.

Each class in figure 9.14 communicates independently with the
communications class of the database module. This design is cho-
sen for two reasons: First, this minimizes the respons time of the
program. Secondly, it allows the various dialog boxes to be used
elsewhere in the program without having to modify them. The
downside of this form of communication between a module’s classes
is, that it makes implementation of the module in other classes or
programs much harder. This can be changed later, however, by
adding a communication class to the module and using this to
handle the modules external communication.

134 CHAPTER 9. INFOROUTE

9.5.3 MFC

The following describes the basic structure of the use of MFC in
the implementation. Apart from MFC themselves, a class named
ClnforRouteDSP is included. This class handles the tasks, that
MFC do not traditionally take care of, for example making sure,
that other classes gain access to the functionality of the MFCs.

MFC has been included in the development work to easy the pro-
cess. By using these classes, a lot of functionality known from
the Windows environment has been implemented beforehand, in-
cluding menu-lines, print functions, I/O functions etc. This func-
tionality can be used and modified relatively easy. In addition to
this, some of the functionality used in the graphic representation
of roadmaps, routes etc. is already implemented in MapX, which
itself use MFC for exactly that purpose.

MFC

‘ CinfoRouteApp ‘ ‘CInfoRouteDSP ‘

‘CInfoRouteDoc ‘ CChildFrame A

I :
.
‘ CinfoRouteView ‘

" [cbouniy

)

Figure 9.15: An overview of the generel structure of MFCs used

In short, the MFC-structure basically allows an application to have
a number of documents of different kinds. A document is an in-
stance of a document template. The template specifies the vari-
ous characteristics of its type of document. A document template
could for example contain functionality in connection with display-
ing textfiles in the screen. Each instance (each document) would
then be a text file or a text document.

9.5. IMPLEMENTATION 135

Just like each document template can have different documents
attached to it, each document can in turn have views attached to
it. This means, that a textfile can be shown on the screen like we
usually see it, it can be shown inverted, without consonants etc.
These different representations of the document are its views. In
this case, a document template, a document and a view containing
road maps presented graphically have been made. This functional-
ity has been implemented in Multiple Document Interface (MDI)
to make it possible to extend the functionality using more docu-
ment templates at a later stage.

MFC also contains frames corresponding to the application and
its windows. The application itself contains a main window con-
tained in the class CMainFrame. This in turn contains some static
functionality, that is not affected by whichever functions or views
the application is actually working with. That the information is
static is ensured by passing on the functionality to all the frames of
the application. In this case there is one instance of CChildFrame,
the subwindow containing the road map. In the various subframes
or childframes, it is possible to implement menu items, status bars
etc. that are specific to the subwindow. This structure also have
the added bonus, that menu items etc. changes dynamically de-
pending on which subwindow the user activates.

CAboutDlg is made up of a dialog box, that displays the name
and version number of the program. Apart from this, there is no
other functionality. The class is included as a standard feature
within MFC and needs no further implementation. Thus, it was
decided to include it.

9.5.4 Map interface

The interface for the map displayed on the screen primarely con-
sists of the two classes shown in figure 9.12. Each class represents
a dialog box for displaying addresses and shortest path between
addresses, respectively. This funtionality is included, as it seems
to be the most natural extension of the graphical view. In section
9.2 a more thorough description of the functionality of the module
is provided.

A major part of the functionality used in handling the map has

136 CHAPTER 9. INFOROUTE

been implemented by use of a toolbar, which is a vital part of
the view (MFC) containing the map. The implementation of the
toolbar will, however, be described here, since it solely concerns
handling the displayed road map.

The toolbar enables moving the map around on the screen, zooming
etc., but the most important functionality is the implementation of
layer control on the map (The make up of the map is described in
section 9.4). This includes making various layers on the map visible
or invisible, layers can be protected from tampering, explanatory
labels can be displayed etc. The standard map contains five layers:
Roads, ZIP codes, addresses, shortest paths and routes. However,
more layers can be added as they are needed.

9.5.5 The Work Process

As was mentioned in the beginning of this chapter, it has been nec-
essary to make changes to the implementation and the functionality
simultaniously during the development work. This was primarely
caused by the continous testing of the programs user friendliness
giving cause for updates in dialog boxes and functionality. Some
functionality, which at first seemed effective, would later prove to
be impractical when tested. Among other things, it quickly proved
necessary to be able to find customers directly from the request
dialog window. The option of showing a list of requests from an ac-
tive customer was also found to make the program easier to handle.

Looking at the road map and its functionality it became obvious,
that a user during his daily work would need to be able to find and
display customers on the map, as well as having the program do
a single range calculation when necessary. Another discovery was
how frustrating the calculating time when initialising the map at
program start was. This waiting period can most likely be reduced
significantly by trimming the implementation. Also, a status indi-
cator was created, showing the remaining time of the initialising
process. This greatly reduces the frustration by giving an indica-
tion of the amount of time left to wait.

As just described, the implementation has taken place alongside
extensive testing of the various parts of the program. During these
tests, besides making generel corrections to the code, the focus has

9.6. PERSPECTIVES 137

been on improving the user friendliness of the application. This
also means, that the final application acts as stable as has been at
all possible to determine and on the test machine used, it proved
impossible to locate any errors in the code affecting the stability
of the program.

9.6 Perspectives

This section concerns the future use of the developed product in
connection with testing algorithms to solve transportation prob-
lems. The chapter follows the structure of the report, adding com-
ments to the database, the implementation and the map viewing.

9.6.1 Possibilities for Adaption to Transportation Branches

Probably not all problems concerning transportation can be read-
illy solved with the underlying database’s structure. In particular,
a practical problem can have some very specific related parame-
ters, that it is necessary to take into account when dealing with
the problem. The database is, as mentioned before, of a very gen-
eral nature and its simplicity and easily grasped structure should
be able to help future developers, should they wish to add to it or
modify it.

The application is prepared for reading parameters by use of text
files. This form has been selected to meet the needs from many
different algorithms, that require all sorts of parameters in order
for them to run properly. These parameters are the domain of
the developer. It would not be practical to include them in the
database.

9.6.2 Inserting new Algorithms in the Program

Besides the data connections in the algortihms, the implementation
of InfoRoute has focused on partitioning the functionality to pro-
vide easy access to the information for the road network and other
data, This means, that is is easily understood where in the pro-
gram the information about the shortest path is retrieved, where
the new menu item can be placed, where the map manipulation

138 CHAPTER 9. INFOROUTE

takes place etc. Therefore, the problem of implementing other al-
gorithms in InfoRoute should not be problematic.

However, there are certain requirements to the implementation
of future algorithms, if the usability of the interface is to stay un-
changed.

e The implementation of the algorithm and its administrative
code must be encapsulated and its communication handled
by one class, which job it is to maintain a connection with
InfoRoutes various communications classes.

e The functionality of the algorithm module must be clearly
documented in its communications class, for example by means
of comments for each of its functions.

e No communication must be directed against any InfoRoute
class other than the above mentioned. This goes for MapX as
well, which must not by used directly.

e If any new funtionality is desired within InfoRoute, it must be
implemented as described in this report, and its functionality
accessible through the communications classes.

e Extra menu items in the interface must be implemented in
the algorithms own document with its own views. This helps
to avoid a crowded and confused menu structure to appear as
more and more algorithms are used.

By having developers comply with the rules outlined above, In-
foRoute will maintain its present simple structure, since the present
documentation will still be usable for implementing even more al-
gorithms. This will hopefully allow the application to grow without
compromising its existing modularity.

9.6.3 MapX

As mentioned in chapter 9.4, it is not solely an advantage to use
MapX with InfoRoute. It can prove a problem that seperate li-
censes and installations of MapX are needed to run InfoRoute.

Also, a small alteration in CInfoRouteView is needed at present
in order to be able to use other maps than the one currently used,

9.7. THE USERS EXPERIENCE 139

making it necessary for a full version of MapX to be installed in
order to be able to compile new maps. If it proves necessary, chang-
ing maps can of course take place as part of the compiled version,
and consequently InfoRoute is prepared for opening map files.

9.7 The Users Experience

A special warning when enhancing InfoRoutes functionality in the
future: It is important to keep menu structure etc. at a mini-
mum to avoid flooding the user with functionality that might be
confusing. Functionality not used wery often should be buried
deeply. Also, waiting time in any program is irritating and should
be avoided. If unavoidable, use the progress bar already imple-
mented and connect it to the algorithm. Its functionality is already
available through the communications class.

Apart from the possible things mentioned in the above, no prob-
lems should occur when including other algorithms in InfoRoute,
and the development time for connecting 3. party algorithms to it
is minimal. This makes it possible to present the results from such
algorithms in a graphics user interface.

140 CHAPTER 9. INFOROUTE

Chapter 10

Multi capacity Cluster algorithm
- McCluster

his chapter descibes how the cluster first insertion second algorithm
developed at CRT in Montréal has been extended to solve the
problem at Jensens Turisttrafik (see section 4.1 and the following
section 10.1). Also in this chapter the reason for choosing the
algorithm from CRT as the basis of McCluster (Multi capacity
Cluster algorithm) is found.

10.1 Problem characteristic

As described in section 4.1 we have a fixed set of vehicles operating
three different routes. The capacity of the vehicles is heterogeneous
and divided into a capacity for sitting passengers and capacity for
wheelchairs. The two types of capacity are fully compatible mean-
ing that one wheelchair uses space equal to two seats. However not
all seats can be converted to space for wheelchair, which results in
two different subcapacities and one total capacity.

The routes are flexible with required stops at certain points in
time to ensure correspondance with train schedules, school opnen-
ing and closing hours, and activation center opening and closing
hours. It is preferred to pickup and deliver passengers at the fixed
set of stops belonging to a route, but DtD transportation is at times
required. At certain time intervals during the day different types
of passengers have priority and must be serviced. In the evening
the three routes are replaced by an exclusive DAR transportation

141

142 MULTI CAPACITY CLUSTER ALGORITHM

system without fixed stops serviced by one bus.

At the beginning of each day, a large number of requests for trans-
portation that day is known in advance. During the day, new re-
quests are called in at the call center and the planner immediately
informs the caller if the request can be met and the time of pick up.
Requests have to be made no later than one hour before requested
pick up, and the bus is allowed to arrive within a 15 minute time
interval around the requested time of service. Passengers calling
in can request respectively a desired time of pick up or a desired
time of delivery. The bus then has to arrive no earlier than the
desired time of pick up respectively no later than the desired time
of delivery.

When a request is recieved and accepted by the planner it is dis-
patched to one of the drivers. Routes are planned by the driver
from the list of requests to be included in the route. In other
words the purpose of the automated planning is to accept or deny
service to requests and to dispach accepted requests to the correct
route. Accepted requests will also recieve a time stamp from the
automated planning stating the required time of pickup or deliv-
ery within the system parameters. System parameters are length
of time windows and maximum excess ride time for customers.

The objective is to maximize utilization of the fixed set of ve-
hicles, which transfers to maximizing availability for new passen-
gers. Minimizing the total distance driven is secondary, and may in
some cases conflict with the necessary minimization of time driven.
Driver scheduling, breaks and other driver related issues are not
included in the problem. From the passenger viewpoint the objec-
tive is to drive as directly as possible between destinations and to
spend as little time in the vehicle as possible.

10.2 Choosing the structure of the algorithm

Based on the previous section 10.1 we can list some requirements
the algorithm used to solve the DAR problem must meet. The
following items are listed according to their importance.

e Low computational time. As we are dealing with the dynamic
case of the DAR Problem, the ability to obtain results instan-

10.2. CHOOSING THE STRUCTURE OF THE ALGORITHM 143

taneously is very important.

e Problem adaption. As the problem changes over time from
fixed routes to flexible routes, a versatile algorithm must be
used to obtain the solution.

e Manual input. The planner needs the ability to manually fix
assignments of requests to vehicles.

e Fast reoptimization. When realtime information such as de-
lays enters the planning process, reassignment of requests to
vehicles must happen in low computational time.

e Common sense. Since the algorithm is going to be used in
software to assist a planner, the construction of plans must
make sense to the planner.

The last item concerning the planners perception of the quality of
the solution might actually be the most important item. However
this is a “soft” item which is hard to quantify, and thus placed at
the end.

When studying the algorithms described in chapter 5 it is clear that
the requirement of low computational time effectively eliminates a
large number of possibilities. Thus dynamic programming meth-
ods, column generation and metaheuristics all require too much
computational time to obtain comparatively good solutions. This
leaves only insertion and clustering first insertion second.

The difference between a pure insertion and a clustering first in-
sertion second heuristic is small. The cluster first heuristic simply
seeks to obtain better results by utilizing available knowledge of
the problem at the beginning of the planning process. This knowl-
edge is used to initialize the routes in a reasonable manner, where
requests located near each other in space, time, or both are chosen
to be inserted into the same route.

Since we operate with a large number of requests known in ad-
vance, it seems reasonable to use clustering. Clustering might also
lead to better solutions when we have fixed routes because of the
ability to cluster the requests with stops on the routes. As requests
are called in during the planning horizon, a greedy insertion can

144 MULTI CAPACITY CLUSTER ALGORITHM

then be applied to add the requests to the initial solution. Greedy
insertion might not be the most intelligent approach, but the com-
putational time required by simple insertion is very small.

The most flexible of the clustering heuristics is the one mentioned
in Roy et al.[431[42][44], Although applied only to the statical prob-
lem by the authors, it seems simple to extend the insertion pro-
cedure to the dynamic problem. As we will see in the following
part of this chapter, extending this algorithm to consider all the
complex additions to the original problem stated by the authors
(Roy et al.), is comparatively uncomplicated.

10.3 Implementation

The structure of McCluster is illustrated in figure 10.1. The labels
in the figure include the subsection in which each box is explained.

[IMPORT DATA CALV(\:”L,J\‘LDAJ\I,EV;IME
(10.3.5) ()

(10.3.2)

|

} ()
CREATE CLUSTERS M
(10.3.5) (%HECKFEA&BmWf]

IN TIME
(10.3.2)

CREATE AFFINITY
VALUES
(10.3.3)

1 :

CHECK FEASIBILITY
IN DISTANCE

(10.3.3)

L 3

CHECK FEASIBILITY
IN CAPACITY

(10.3.1)

|

|

! ((INSERT REMAINING

! REQUESTS

! (10.3.6)

|

,,,
This step is repeated when new
dynamic requests are received

Figure 10.1: The structure of McCluster.

10.3. IMPLEMENTATION 145

10.3.1 Capacity

The special problem covered in this thesis involves capacity sub-
stitution as described in the chapter concerning the mathematical
formulation in section 6.4. In the mathematical formulation, we
introduced the possibility of having different capacities all relat-
ing to a total capacity. The example used was a bus with twenty
seats, of which half could be rearranged for wheelchairs. Each
wheelchair then require the space of two regular seats. To check
if the constraint on capacity of a vehicle is violated by including
a new request in the route of the vehicle, it is necessary to first
check violation on each type of capacity. Thereafter each type of
capacity is multiplied with a substitutional factor (this factor is
two for wheelchairs since they require two seats), and the sum of
these multiplications must then be less than the total number of
seats.

In section 6.4 it is noted that practical DAR problems might be
more complicated, since it is not always possible to just convert
all capacities to a single unit (eg. seats). An example is a bus
with sixteen seats of which six can be rearranged to accommodate
up to three wheelchairs. In addition to the sixteen seats, the bus
also has permanent space for two wheelchairs and this space can
also be converted to hold one bed. The possible variations of the
capacity of such a bus are many, but the difficult part is the lack
of an unambiguous total capacity, since it is invalid to convert the
space for one bed into seats.

While the problem of arbitrary substitutions between capacity
types is very complicated to handle in a mathematical formula-
tion, the algorithmic solution is fairly simple as seen in algorithm
10.1.

As mentioned in chapter 11 it was not possible to get data spec-
ifying the exact type of capacity required, which unfortunately
made the use of multi-substitutional capacity unnecessary. The
implementation of McCluster is however prepared for such a def-
inition of capacity, just as the database used in InfoRoute (see
section 9.1) is prepared for storage of substitutional factors and
multi dimensional vehicle capacities.

146 MULTI CAPACITY CLUSTER ALGORITHM

Algorithm 10.1 Dealing with multi-substitutional capacity.

List of vehicle capacities (VCap) = {co,c1, ..., Cn}

1 S12 .. Sin
. . . S2.1 1 - Son
Matrix of substitution factors (SFactor) =
Sn,l Sn,2 .- 1

List of vehicle load (VLoad) = {lo,l1,...,0n}

i=1;

j=1;

while(i < n+1){
load = 0;

while(j < n+1){
load = load + VLoad[i]*SFactor[i][j];
Jjt+;

}

if (load > VCapl[il)
return(capacity is exceded);

i++;

¥

return(feasible in capacity);

10.3.2 Time windows

As seen in figure 10.1 time windows are calculated when requests
are imported. The method used to calculate these time windows
is the same as shown in figure 6.1 where the customer specifies
either a desired time of pick up or a desired time of delivery. At a
fixed level of service defined by the maximum excess ride time and
maximum time span of the time windows, the initial time windows
can be derived.

This method of calculating the time windows does however prove
to be somewhat difficult to handle, since the time interval at the
destination (pick up or delivery) where nothing is specified by the
customer will exceed the allowed time span. To overcome this, the
time windows in this step are treated as temporary values. When
a solution is found, the actual time of service is known. As this

10.3. IMPLEMENTATION 147

is done at the time of request, a time window based on the actual
time of service is given to the customer.

If the passenger requests a desired time of pickup, the time win-
dows ({a;,b;} and {a;,b;} denotes respectively time window of pick
up and time window of delivery) given to the passenger at the time
of request can then be derived from the solution as follows. Since
the desired time of pick up is specified, the vehicle can not arrive
earlier than the desired time, thus a; is given by the passenger.
Latest time of pick up b; is then found by adding the allowed time
span to a;. Running the algorithm resulted in an actual time at
each of the vehicles destinations, which corresponds to knowing
the expected distance in time between the stops. We can then just
add the expected distance to the time window at pick up to get the
time window at delivery. However when the resulting time window
at delivery makes it possible to exceed maximum excess ride time
a downward (backward in time) adjustment of the time window at
delivery will be made. The situation is of course reversed, when a
desired time of delivery is given at the time of request.

Narrow time windows at destinations leaves little room for plan-
ning when new requests are recieved. However when adjusting
the time windows according to the expected ride time, situations
severely limiting the ability to accomodate new passengers can oc-
cur. When the routes are initialized with a small set of requests
known in advance, the expected ride time of these requests will be
close to that of a taxi service. This is especially the case, when the
first request on a new day is recieved. In this case the expected
ride time will equal the time of driving directly between the two
stops.

To maintain room for dynamic requests in the planning process,
a minimum excess ride time can be included in the initial phase.
The optimal value for minimum excess ride time could be estimated
empirically, and by using historical data to forecast expected re-
quests. In this thesis a minimum excess ride time is not used, since
a very large number of requests are known at the beginning of the
planning process.

When requests are imported and time windows are set, we face
the problem of checking feasibility of inserting request ; after re-

148 MULTI CAPACITY CLUSTER ALGORITHM

quest ¢ in a route. As this insertion is limited by precedence con-
straints (pick up of a passenger must occur before delivery of the
passenger), there is a total of three possible sequences of stops:

1. pi —d; —pj — d,
2. pz—pj—dz—dj
3. pi—pj—d;—d;

where p; is pickup of the :’th passenger and d; is delivery of the :’th
passenger (see figure 10.2. Of course there is also the possibility of
inserting passenger i after passenger j in a route which adds three
more sequences equal to the three above with ¢ and j swapped.

S A
®,: .@®~@
®=®
®-©

Figure 10.2: The three possible ways of linking two requests.

In order to set up constraints to check the feasibility of insert-
ing passengers in the different sequences, we consider the general
sequence of stops:

e a—-b—c—d

Each of the stops a through d have time windows denoted {a;, a,},
{bi,b.}, {c1,c.}, and {d;,d,} (I=lower bound and u=upper bound)
the distance in time between the stops are t,;, t,., and t.4. In
order for this sequence to be feasible, each of the three sequences
of two stops a — b, b — ¢, and ¢ — d must be feasible. To ensure this
we can construct a constraint for each of the two-stop sequences:

man(by, min(cy, dy — tea) —tpe) —ap —top >0 (10.1)

min(cy, dy — tea) — max(by, a; +top) — tpe > 0 (10.2)
dy, — maz(c;, maz(by, a; + tap) + toe) — tea >0 (10.3)

10.3. IMPLEMENTATION 149

For the first way of inserting a request into a route, constraints
10.1 and 10.3 are automatically feasible, thus it is only necessary
to check violation of constraint 10.2, which again can be simplified
to:

Cu_bl_tb,c>0

For the second way of inserting a request into a route, all three
constraints must be used in the listed form, but in the third case
constraint 10.2 is automatically feasible. We then have to check
only constraints 10.1 and 10.3, which we can simplify to:

mm(bu, d, — tc,d — tb,c) —a; — ta,b >0

dy —max(c, a+top + the) —tea >0

Based on these constraints we can now implement a time window
feasibility check by looking at two requests and attempt linking the
stops of those requests in the three sequences. Naturally we start
by checking if the first sequence is feasible, and if not we move on
to check the third sequence and at last the second sequence, since
the second sequence is the most difficult to handle.

10.3.3 Affinity values

Based on the time window constraints we continue to look at the
general sequence of stops a — b — ¢ — d regarding the feasibility of
inserting request j after request i in a route. In problems with
narrow time windows, only one sequence of stops will be feasible,
but as time windows widen, two or all three sequences may be fea-
sible. In general we want to create a value of affinity between a
route r and a not yet inserted request ;. We do this by first finding
all feasible insertions between j and ¢ € r and then calculate the
detour of the route by inserting j in all feasible insertions.

If the first sequence is feasible we risc driving with an empty ve-
hicle between stops b and c. As it is not desireable to drive with
an empty vehicle, we introduce a penalty factor penalty to be set
by the operator. Thus inserting j in r after request ¢ creates the
affinity value:

penalty * ty . + tcq

150 MULTI CAPACITY CLUSTER ALGORITHM

In case of feasibility of sequence two or three, we use the following
estimate of the detour:

ta,b + tc,d

This corresponds to the sum of the distances between respectively
the pick up locations and the delivery locations of requests i and j.
In the case of no feasible sequences, the value of affinity is set to
a large number symbolizing infinity. Note that in contrast to the
usual meaning of the word affinity, the larger the value the worse
the affinity.

10.3.4 Initializing

The solution obtained in the first part of the planning process is
somewhat critical since it will form the basis of the dynamic inser-
tion procedure for new requests during the day. For this reason we
develop a clustering technique to use the advantage obtained by
knowing large number of requests in advance. The possibility of
using an even more intelligent approach exist since this phase could
be executed the night before, thus removing the demand for short
computational time. A solution enabling the planner to interact
with the automated process is however often preferrable. This is
caused by the fact, that it is not always possible to incorporate all
“soft” knowledge into the automated process.

The clustering technique has the advantage of beeing fast with
regards to computational time, just as the principle behind clus-
tering requests is intuitively easy to comprehend. We construct
the requests by performing two steps:

e Check feasibility in time.
e Check feasibility in distance.

The time feasibility check is performed according to the constraints
formulated in section 10.3.2. However we want neighboring re-
quests to be close geographically as well as chronologically. This
is done by formulating a set of constraints controlling the distance
in driving time between the stops of request ¢ = (p;,d;) and re-
quest j = (p;,d;). In the formulations of these constraints we use
a parameter maxridetime stating the maximum ride time allowed

10.3. IMPLEMENTATION 151

between stops of two different requests in order for those requests
to be considered neighbors. We consider two stops a and b with
time windows respectively {q;,a,} and {b,b,}. The first constraint
can then be formulated as:

by — a; > tap < maxridetime (10.4)

If stop a is the delivery stop of request i and b is the pick up stop of
request j (ie. the stops are of different type), then constraint 10.4
is sufficient to ensure that the two requests ¢ and j are neighbors.
However if the stops a and b are of the same type (ie. both pick up
stops or both delivery stops) then two additional constraints are
needed. If the stops d; and d; satisfy constraint 10.4, then:

tpsms + tpdi < LA %ty 4 (10.5)
and if p; and p; are the stops satisfying constraint 10.4 then:
tpjdi + tdi,dj < 1.4x p; d; (106)

The distance constrains are illustrated in figure 10.3, where con-
straint 10.4 is satisfied by the stops d; and d;. However constraint
10.5 requires all stops to be within an eclipse based on the distance
of the stops in request i, and stop d; is located outside this eclipse.
Thus request 7 and j in figure 10.3 are not neighbors.

< i -
\ / -
\ [
\ I
\ e
\ 7
\ Py

Figure 10.3: Controlling the distance between neighboring requests.

We now construct a set of clusters as described in the source code
10.1 below.

152 MULTI CAPACITY CLUSTER ALGORITHM

Source code 10.1 Creating clusters.

long i=0;

Request *pReq;

Cluster *pCluster;

list<Cluster *>::iterator itlC;

pReq = FindNextNonInsertedRequest();
pCluster=new(Cluster) ;
Clusters.push_back(pCluster) ;
pCluster->listRequest.push_back(pReq) ;

it1C=1istCluster.begin() ;
pReq = FindNextNonInsertedRequest();
while (pReq!=NULL){
if (IsNeighbor ((x(*it1C)->1istRequest.begin()) ,pReq))

{
(¥*1t1C)->1listRequest.push_back(pReq) ;
it1C=1istCluster.begin() ;
pReg=FindNextNonInsertedRequest() ;

}

else

{
it1C++;

}

if (it1C==1listCluster.end())

{
pCluster=new(CCluster) ;
listCluster.push_back(pCluster) ;
pCluster->listRequest.push_back(pReq) ;
pReg=FindNextNonInsertedRequest() ;
itlC=listCluster.begin();

}

SortClusterList();

10.3. IMPLEMENTATION 153

The procedure of creating clusters is fairly simple. We start by
creating the first cluster and insert the first request ¢ into that
cluster. Then we examine the next non inserted request j to check
weather it is a neighbor of the first request in the first cluster. If
the requests are neighbors, we insert j in the first cluster. If not
we create a new cluster containing j. Then we examine the next
request to check if it is a neighbor of any of the requests placed
first in each created cluster. If a pair of requests are neighbors
we perform an insertion, else we create a new cluster for the not
inserted request.

Creating clusters according to the procedure described by source
code 10.1 is not seen anywhere else in litterature. Note that all
requests in a cluster are neighbors with the request that created
the cluster, but not necessarily with any other request in that same
cluster. The reason for this is an attempt to keep cluster size small
so as to leave room for the insertion procedure described later in
this chapter. If a request is inserted in a cluster by beeing a neigh-
bor of any request already in the cluster, the clusters in themselves
would represent almost fully constructed random routes, since the
clusters form the basis of the routes.

After having created the clusters, they are sorted according to the
number of requests they contain. In principle they are sorted with
the largest cluster first in a descending order. However when prob-
lems are large, the number of clusters is also large, which makes
the sorting procedure expensive in computational time. For this
reason the sorting procedure just places the largest cluster as the
first cluster in the list without changing the order of the remaining
clusters.

154 MULTI CAPACITY CLUSTER ALGORITHM

Source code 10.2 Initializing routes.

CRoute *pRoute;

CRequest *pR1, *pR2, *pDepot;
1list<CCluster *>::iterator itlC;
list<CRequest *>::iterator itlR;

for(iterroutes=0;iterroutes<nbofroutes;iterroutes++){
pRoute=new (CRoute) ; vRoute.push_back(pRoute) ;

pDepot=CreateDepot () ;
InsertInRoute (pRoute->1Id,pDepot,NULL) ;
SortClusterList();
if (!1istCluster.empty()){
it1C=1listCluster.begin() ;
pR1=*((*it1lC)->1listRequest.begin());
pR2=p_Depot;
while((!IsFeasibleInCapacity(pRoute))
&&(it1C!=listCluster.end())){
it1C++; pR2=p_Depot;
pR1=*((*it1lC)->1istRequest.begin());
}
if (itlC!=1istCluster.end()){

itlR=(*it1C)->listRequest.begin();
while(itlR!=(*it1C)->1listRequest.end()){
if (IsFeasibleInRoute(
(*1it1R) ,pRoute) .first[0] !=0)
InsertInRoute(iterroutes, (xit1lR),pR1);
pR1=(*itlR); itlR++;
(*1itlC)->1listRequest.remove (pR1) ;
+

else itlR++;

else itlR++;

}
if ((¥*it1C)->1istRequest.empty())

listCluster.erase(itlC);

10.3. IMPLEMENTATION 155

Source code 10.2 describes how routes are initialized on the basis
of the created clusters. We first decide on the number of routes
we want to initialize. This number is small, if we want to minimize
the number of vehicles used, or a fixed number of available vehi-
cles when fleet size is known. In a straight forward manner we now
start the construction of the first route by inserting the depot into
that route. Using the first request in the largest cluster, we then
insert this request into the route after the depot. This is followed
by an attempt to insert all of the remaining requests of the largest
cluster into the same route. If it is not feasible to insert a request,
it is left in the cluster. In case all requests from the cluster are
inserted, the cluster is deleted.

Results show, that even when constructing clusters as groups of re-
quests which are neighbors with one specific request in the group,
almost all requests from a cluster will be inserted into the same
group. This is not surpricing since the largest clusters are concen-
trated in areas with high density of population generating many
requests within the same time horizon. There will be a more com-
plete examination of this in chapter 11.

10.3.5 Insertion

After having generated and used clusters for initializing the routes,
we are left with a number of requests not yet inserted. To proceed
with the insertion we perform a series of greedy steps based on
the affinity values described in section 10.3.3. The pseudo code for
generating affinity values is shown in source code 10.3. Note that
this time the code is heavily manipulated to improve readability,
since the actual source code is based on complex object oriented
structures. The detours for inserting a request into a route is
found by trying an insertion of the request after all other requests
in the route. Naturally, a great part of these insertions are claimed
infeasible just by looking at the time windows. We get the lowest
affinity value between a not inserted request and a route by pairing
the request with all requests in the route choosing the best value.

156 MULTI CAPACITY CLUSTER ALGORITHM

Source code 10.3 Creating affinity values.

vector<CTimeSpan> *vL;
CTimeSpan ctsRes=infeasible;
pair<vector<CTimeSpan>,CRequest *> pvRes;
vector<CTimeSpan> vCts;
CRequest *pNULL=NULL;
vector<CRequest *>::const_iterator itvR;
for (itvR=vRequest.begin() ;itvR!=vRequest.end () ; itvR++)
{
vL=new(vector<CTimeSpan>) ;
if (the request is not in a route){
for(long i=0;i<p_MCSolRoutes->vRoute.size();i++){
pvRes=IsFeasibleInRoute(request,route);
if (the request is feasible){
if (it is the first sequence of stops){
CalculateDetourSeql(route,request);
if (IsVehicleEmpty(by inserting request into route))
ctsRes = penalty * detour;
else
ctsRes = detour;

}
elseq{
if (it is the second sequence of stops){
CalculateDetour2(route,request) ;
ctsRes = detour;
}
elseq{
CalculateDetour3(route,request);
ctsRes = detour;
}
}
(*vL) .push_back(ctsRes) ;
+
else

(*vL) .push_back(infeasible) ;

}
vvAffinity.push_back(*vL);

10.3. IMPLEMENTATION 157

In order to save computational time, we save as much information
as possible from the feasibility check. This information is stored in
a vector containing:

e The feasible sequence of the stops.
e The distance between the stops.

e The request in the route after which the non inserted request
will be inserted should it be chosen for insertion.

This information allows a quick calculation of detour without hav-
ing to perform any of the shortest path calculations again. Later
during the actual insertion phase, this information is also available
to allow for quick insertion of requests into routes.

To find the next request to be inserted, we simply find the low-
est value of affinity between a request and a route in the affinity
matrix. This request is then inserted, the route is updated by rear-
ranging the stops in the route, and the affinity matrix is updated.
Naturally it is only necessary to update the column in the matrix
describing the updated route. The row concerning the newly in-
serted request is simply deleted from the matrix.

In this implementation of the insertion procedure, we have the
option of pausing after each insertion to perform a trouble check.
It might not always be prudent to just choose the lowest value of
affinity as an insertion guide. For instance a situation where a re-
quest only has one route it can be inserted into to keep feasibility.
The trouble check would then use this information to insert the
request and update the affinity values for the route. The trouble
check is optional and not always desireable, since the affinity value
of the troublesome request might be high enough to indicate an
extraordinary decrease in the level of service given to the requests
already in the route.

The desireability of the trouble check is dependent on the char-
acteristics of the DAR transportation system considered. If we
consider a fixed number of vehicles, the trouble check is important
to ensure service to as many requests as possible. In this case we
might also want to even out the load of the vehicles by balancing
the number of requests on the routes. Even loads on the vehicles

158 MULTI CAPACITY CLUSTER ALGORITHM

will make the routes more flexible with regards to accommodating
future not yet known requests, thus maximizing utilization of the
vehicles in the entire planning horizon. With an unlimited number
of vehicles (eg. when taxis are used as a supplement to busses) the
trouble check is not entirely necessary.

The insertion procedure continues as long as there are feasible
insertions between routes and not yet inserted requests. When
operating with a fixed number of vehicles, we might have to deny
service to some requests, but with supplementing vehicles, new
routes for the difficult requests will be initialized and dispatched
to idle vehicles. To summerize, figure 10.4 illustrates the insertion
procedure with the trouble check.

Generate affinity _ Check for
values difficult request

YES/ w‘
Insert request Find non
in route inserted request

Update stops
of route

Delete affinity /
values for

P
-

——
N——

/

Update

affinity values
for route

inserted request

Figure 10.4: The insertion procedure with the additional trouble check.

When the insertion procedure is finished, the static problem is
solved, and the resulting routes can be given to the drivers of the
vehicles. Since the routes are based on the actual road network, it
is of course possible to append driving directions and map printouts
to the list of requests each driver must service. We are however
dealing with the dynamic case of DAR problems here, indicating
that information will change during the day. Not only will new re-
quests arrive, but disruptions might also occur during the planning

10.4. ADDING MCCLUSTER TO INFOROUTE 159

horizon. Possible disruptions could be a flat tire, causing the bus
to get behind schedule, or road construction not yet registered in
the database storing the road network.

When new requests are made, the insertion procedure is applied
to the request. A vector of affinity values between the request and
the existing routes is established, and a greedy insertion is chosen.
Denying service to a dynamic request is not as serious as when
solving the static problem, since the passenger is notified immedi-
ately upon making the request. In the static problem, passengers
have already been promised service days in advance. When dealing
with dynamic requests it is also noteworthy that the level of service
parameters can be set individually for each request. This enables
the planner to negotiate the level of service with the passenger
when recieving the request to suggest possible insertions.

10.4 Adding McCluster to InfoRoute

To enable the use of the database for storing the requests, display
of routes on a map, and the shortest path calculations on the un-
derlying road network, we need to add the McCluster module to
InfoRoute. The structure of the InfoRoute software is shown in
figure 9.12. We add McCluster as shown in figure 10.5 where the
communication between McCluster and InfoRoute is shown.

In figure 10.5 we see a good example of how easy it is to add algo-
rithms to the InfoRoute software. Only one class in the InfoRoute
software needs to be available to enable access to the total func-
tionality of InfoRoute. To access the functionality of McCluster
from InfoRoute, some additions have to be made to the menus of
the user interface. These additions are implemented in the Cln-
foRouteApp class with little difficulty. An example could be the
menu item “Import Requests”. We add this item to the existing
menu structure with the command handler source code:

void CInfoRouteApp::0nMcclusterImportRequests()

{
p_InfoRouteDSP->p_McDSP->ImportRequests() ;

}

In InfoRoute we have the ability of adding a request to the database.

16

o

McCluster

‘ CMCSolRoutes ‘

\ CRequestTemp ‘

MULTI CAPACITY CLUSTER ALGORITHM

DATABASE

‘CDBRepeatRequestType‘ ‘CDBPayLoadSubstitution ‘

\ CDBRepeatRequest \ \CDBSolRequest \

| CDBSolVehicle| |CDBSolRoutes |

\CDBCustomer\ \CDBRequest \

| CDBTypeRH| |CDBTypeRY |

|CDBVehicle| |CDBDepot |

MFC

‘ CinfoRouteView ‘

‘ CMCAlgorithm ‘

CRequest

‘ CinfoRouteApp ‘
‘ CinfoRouteDoc ‘

CMCDSP | =
CVehicle
CCluster
CRoute
CSeat
CStop

‘ CinfoRouteDSP ‘
CChildFrame
CMainFrame

CAboutDlIg

Using the McDSP class, we can now solve the insertion of the re-
quest into the route in the same step by adding the following line
to the source code:

.

N

DATABASE INTERFACE

\ COrdreRetKundeSoegDlg ‘

‘ COrdreKundeSoegDlg ‘

| CKundeRetSletDIg |

‘ COrdreRetSletDlg ‘

\ CKundeOpretDlg ‘

COrdreOpretDlg ‘

CMapX

KORT INTERFACE
CMapFindDlg
CMapFindSP

“\

+—>

KORTESTE VEJ

‘CSpcRoadComponent ‘

‘CSpcDistSoIObject ‘

CSpcDistance
CSpcDSP

Figure 10.5: The structure of InfoRoute with McCluster added.

void COrdreOpretDlg: :0n0Opretordre()

{

p_InfoRouteDSP->p_McDSP->InsertRequest () ;

10.4. ADDING MCCLUSTER TO INFOROUTE 161

These small pieces of source code capture the essence of introducing
interface classes (in our case DSP classes) to all modules in a soft-
ware program. If the InfoRouteApp class needs to communicate
with other modules it calls its corresponding DSP class (InfoRout-
eDSP). InfoRouteDSP then calls the DSP class of the module with
which communication is required (McDSP), and McDSP then as-
signs the required tasks to its internal classes. Naturally the force
of designing software this way has been further explored to obtain a
standard of interface classes. This standard is called COM (Com-
ponent Object Modelling) or DCOM (Distributed COM). COM
and DCOM enables software modules running on different operat-
ing systems and implemented in different languages to communi-
cate. Although a discussion of the advantages of COM and DCOM
is beyond the scope of this thesis, the implementation of InfoRoute
and McCluster in a COM like manner is worth mentioning.

162 MULTI CAPACITY CLUSTER ALGORITHM

Chapter 11

Results

Results will be based mainly on a test dataset generated from ad-
dresses in Skovbo Kommune (the municipality in which Jensens
Turisttrafik operates). InfoRoute with McCluster (in the following
just InfoRoute) was also introduced to Jensens Turisttrafik (JT)
and evaluated by the person responsible for planning the DAR
routes.

11.1 Jensens Turisttrafik

As stated earlier in chapter 2, JT is interested in automating some
of the planning process for the DAR routes they operate. The
routes are partly decided by the drivers, who recieve a list of pas-
sengers (with addresses) they must serve during their shift. This
list is made by the planner manually based on experience. As this
procedure has proven very efficient, it is also depending heavily on
the planner. JT therefore wants software to help at the call center,
when the planner is away. When a call is recieved, the person on
duty should be able to enter address and time of service on the
computer. The computer then needs to instantaneously respond
with an accept of the request or a denial of service. Also the com-
puter needs to allocate the request to an existing route, so the
person on duty can inform the correct driver.

It might seem unnecessary for InfoRoute to show the routes graph-
ically and sort the stops, when routes are not a required part of
the output requested by JT. In order for InfoRoute to be able to
accept or deny a request it is however necessary to calculate the

163

164 CHAPTER 11. RESULTS

routes anyway to keep an updated solution at available.

The planner at JT was very positive about the functionality of
InfoRoute. One feature that is especially usefull is the ability to
lookup an address on the map. This feature can be used in the
manual planning process to guide the planner in allocating a new
request to a route. A demonstration of the automated planning
included in InfoRoute convinced the planner that a further devel-
opement of the user interface could make the software valuable
to JT. The further developement mentioned is actually a down-
grading of the user interface. In order for InfoRoute to be of true
value, some information will have to be disregarded. Dialogues for
entering customer and request information are too complicated to
be used in the daily planning, since practical use requires a lot
less information. If just the address and time would have to be
entered, the ease of using InfoRoute would be improved. JT sug-
gested that automated communication between InfoRoute and the
drivers would be of great help.

To sum up, JT would be pleased to continue cooperating in de-
veloping a final version for them to use in their planning process.
JT suggested a reduction in the available functionality in order
to simplify the use of InfoRoute, but also extensions in the form
of automated communication between InfoRoute and the drivers
were given as a possible improvement.

11.2 Data generation

We developed a data generator to generate problem sets for testing
our algorithm. First we read a list L’ of all addresses in the road
database, which represents the potential pick up or delivery points
(service points) for the requests in the system. Let N denote the
number of service points in L' and let L, denote the ith service
point. L’ is sorted according to the road name. Next we shuffle the
elements of L’ in a random order using a method in the Standard
Library of C++. We refer to the random order list as L. Now we
can take any number n > N of service points from L and generate
a request for each point i, 1 =1,... n.

Let random(k) be a function which takes an integer k£ > 0 and re-

11.3. SIMULATED DATA 165

turns a random number between 0 and k — 1.

The requests are generated by the following procedure. For each
service point L; we generate the type of service 7" = random(3) and
an additional random service point L;, j = random(/N) + 1 generated
from the list of all service points:

e T'=0: return trip, i.e. trip from pick up point L; to delivery
point L; and back to L;,

e T'=1: trip from pick up point L; to delivery point L;,
e T'=2: trip from pick up point L, to delivery point ;.

Next we generate the demand d; = random(3) + 1, i.e. the number
of passengers requiring pick up or delivery at the service point.

Finally we generate the pick up or delivery time ¢ for each re-
quest according to the type of service. We generate service times
in a planning horizon of 960 minutes corresponding to the time
between 06:00 and 22:00. If we are considering a return trip we
generate a delivery time in the morning (0-420) and a pick up time
in the afternoon (540-960). For pick up or delivery trips we gener-
ate service times in the entire planning horizon (0-960):

Type of service Service time

0 tdetivery = random(420) + 1
tpickup = 540 + random(420) + 1
taetivery = random(960) + 1

2 tpickup = random(960) + 1

[y

11.3 Simulated data

The dataset resulting from the method described in the above sec-
tion 11.2 is illustrated in figure 11.1, where the geographical lo-
cation of the pickup and delivery stops are marked with stars on
the road network. The location of the stops seems to be fairly
representative of a realistic problem, where there is a large con-
centration of stops in densely populated areas with comparatively
few and widespread stops in the rural areas.

166 CHAPTER 11. RESULTS

Figure 11.1: The geographical location of the stops belonging to the 300
generated requests.

In figure 11.2 the time windows corresponding to the stops are
illustrated. The figure shows a high concentration of stops from
7am to 12pm and again from 3pm to 21pm. Around these two
time intervals, the number of stops is limited. This is a behavior
we expect to see in realistic problems as well, since people often
leave home in the morning to come back in the afternoon/evening.

11.3. SIMULATED DATA 167

300 — = —

250 | [
200 | T —- - =

150 + =T — == R

100 | - — _=-—= .=
50 | - e =
0 R T T |_ N — T L=

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Figure 11.2: Time Windows of the 300 generated requests.

The test dataset does not incorporate the special cases seen at JT,
but focuses mainly on more traditional DAR problems with a mix
of static and dynamic information. It does not seem possible to
generate a test dataset mirroring the situation at JT, but the reg-
ular DAR problem is part of almost any realistic situation.

The requests in the test dataset are mainly treated as static in-
formation, since in practical problems the requests are known up

168 CHAPTER 11. RESULTS

to one hour in advance. The solution time of the McCluster algo-
rithm is measured in seconds, giving amble time to solve the static
problem each time a new request is added. However, to observe
the effect of the cluster generation, this chapter includes a test
where 50% of the requests are considered static information, leav-
ing the last half as dynamic requests. The dynamic requests are
still known one hour in advance, but instead of solving the entire
problem in each instance of a new request, the request is inserted
using the insertion scheme described in chapter 10.

Table 11.1 shows results from running McCluster on five instances
of the constructed dataset. The five instances are derived directly
from the full 300 request dataset simply by extracting the first 25
requests, the first 50 requests etc. Since the requests are random-
ized when generated, they should be similar in structure. Again
trying to simulated part of the situation at JT, we have chosen to
use 3 vehicles with 20 seats each, driving at 21.6 km/t in average,
based on the actual speed of the vehicles at JT. In near future it
will be possible to use a better estimate of the vehicle speed, since
this parameter is added to the characteristics of the road network.

No. | Max. Avg. | No. of | Dist. | Drive | Idle | No. of
of | cluster | cluster | req. in | driven | time | time | rejected
req. | size size init. (Km) | (hmm) | (%) req.

25 4 1.67 10 096.86 | 27:38 | 52 0
50 6 2.38 17 1024.48 | 47:26 | 17 4
100 11 3.13 32 970.43 | 44:56 | 21 ol
200 23 4.17 D7 1014.43 | 46:58 | 18 141
300 34 4.69 67 1160.53 | 53:44 6 231

Table 11.1: Results with three vehicles driving 6 m/s (21.6 Km/t).

When fixing the number of vehicles the algorithm seeks to max-
imize the number of requests to be served while minimizing the
driven distance. The amount of idle time for the vehicles is usually
a good indicator of how well the vehicles are utilized. However, this
is not always the case as shown in figure 11.3, where the idle time
from table 11.1 is shown as a function of the number of requests.

11.3. SIMULATED DATA 169

Idle time in the solution based on 50 requests is lower than that
of both 100 and 200 requests, while the actual number of requests

served increases. The reason for this behavior is a combination of
the following:

e Idle time for an empty vehicle is “free”.

e Limitations on capacity.

e Limitations on excess ride time for passengers.

e More requests in near proximity.

55

50 |

45 L \

40

35

30

Idle time (%)

25

20

10 +

50

100 150

No. of requests

200 250

Figure 11.3: Idle time with three vehicles as a function of the number of
requests.

When including more requests in the problem, we get larger clus-
ters of requests grouped close together in time and space. This
enables the algorithm to replace requests that are “hard to serve”
with requests resulting in less driven distance. This can prove a
problem in realistic situations if the number of vehicles is too small,

since the passengers living in remote locations will be deselected
at all times.

300

170 CHAPTER 11. RESULTS

As stated before we use an estimate of the average speed of the
vehicles. This estimate is critical when maximizing vehicle utiliza-
tion and the number of accommodated requests. In table 11.2 the
results when doubling the average speed of the three vehicles is

shown.

No. | Max. Avg. | No. of | Dist. | Drive | Idle | No. of
of | cluster | cluster | req. in | driven | time | time | rejected
req. | size size init. (Km) | (hmm) | (%) req.
25 6 2.78 14 573.88 | 13:17 | 77 0
50 10 4.17 25 1063.08 | 24:36 | 57 0
100 21 5.26 52 2230.44 | 51:38 9 1
200 37 8 93 2272.52 | 52:36 | 8 87
300 58 9.38 115 | 2385.66 | 55:13 | 3 178

Table 11.2: Results with three vehicles driving 12m/s (43.2 Km/t).

Naturally a lot more requests can be served when doubling the
speed of the vehicles, but when reaching a problem size where
vehicle utilization is close to maximum, further increase in prob-
lem size results in almost the same number of additional requests
served. This is illustrated in figure 11.4, where the number of
requests served at the two different average speeds is considered.
The extra speed also makes it possible to avoid vehicle idle time,
thus halving this from the results driving at 6 m/s.

As the results show, the estimate of vehicle speed has a large impact
on the quality of the solution. However, when speed is incorpo-
rated in the digitized road map, we be able to estimate this with
much greater accuracy since each road will have a speed stamp.

On the more strategic level, McCluster can be used to minimize
the number of vehicles. The results of this is shown in table 11.3.
Once again we use an average speed of 6 m/s, which means that
none of the instances can be solved with just one vehicle, since we
have to serve all requests.

The results from minimizing the number of vehicles can be used
for many purposes. In Denmark DAR problems are often based

11.3. SIMULATED DATA

130

171

120 -

110

100

90

80 -

70

No. of requests served

60 -

50

40

30

20

50

100

150

No. of requests

200

250

Figure 11.4: Number of requests served driving 6 or 12 m/s.

No. | Max. Avg. | No. of | Dist. Drive | Idle | No.
of | cluster | cluster | req. in | driven | time | time | of
req. | size size init. (Km) | (h:m) | (%) | veh.
25 4 1.67 8 574.39 | 26:36 | 30 2
50 6 2.38 22 1126.49 | 52:09 31 4
100 11 3.13 55 2144.09 | 99:16 | 13 6
200 23 4.17 141 4176.31 | 193:21 | 22 13
300 34 4.69 220 | 6275.04 | 290:31 | 24 20

Table 11.3: Results when minimizing number of vehicles.

300

on regular school bus routes etc. beeing opened for public use. In
this case we again have a lot of requests known in advance, and
by finding the minimum number of busses needed to serve these
requests, we also get an estimate of how well the busses are uti-
lized. From the results shown in table 11.3 we see that requirering
service to all requests can result in a somewhat large percentage
of vehicle idle time. This figure gives a general idea of how many
more requests can be handled with current busses, or how many

172 CHAPTER 11. RESULTS

requests must be denied service in order to save a bus.

McCluster does not consider load balancing. In some practical
cases this can be a problem, since a desired result of the auto-
mated planning is for drivers to serve an equal number of requests.
For this reason we have run tests with 5 vehicles driving at 6 m/s.
Results are shown in table 11.4, where average vehicle load is the

number of requests served by the vehicle.

No. | No. of | Avg. no. Min. no. Max. no. | Deviation | No. of
of |req. in | of req. per | of req. per | of req. per | from avg. | rejected
req. | init. vehicle vehicle vehicle (%) req.
25 14 5.0 2 14 180 0
50 27 10.0 5 20 100 0
100 49 16.4 12 21 38 18
200 84 21.0 16 27 38 95
300 95 22.0 20 27 23 190

Table 11.4: Deviation of vehicle load with 5 vehicles.

The results from not considering load balancing are very obvious
when the number of vehicles is more than adequate to serve all
requests. Typically the first vehicle recieves the largest cluster of
requests, thereby enabling this vehicle to server many more re-
quests than the next one in line during the planning process. The
graph of the results are shown in figure 11.5.

With few requests and a large number of vehicles, the first vehicles
will always serve the larger part of the requests. The last vehicles
will then serve fewer requests, but it will also be the most “difficult”
requests, thus the last vehicles will perform the longest routes. The
positive sideeffect of the lack of load balancing, is the ability to spot
areas in which it might be prudent to establish a regular bus route.
If the first route is small geographically and almost similar every
day, it might be reasonable to exclude the area from the DAR
transportation system.

While the clustering part of McCluster is responsible for the un-
even load of the vehicles by assigning larger clusters to the first ve-
hicles, it also enables the algorithm to quickly identify geographical

11.3. SIMULATED DATA

180

173

160 -

140

120 |-

100 ~

Deviation (%)

80

60

40 |

20

50

100

150

No. of requests

200

250

Figure 11.5: Deviation of vehicle load from average.

No. | Max. Avg. | No. of | Dist. | Drive | Idle | No. of
of | cluster | cluster | req. in | driven | time | time | rejected
req. | size size init. (Km) | (hxm) | (%) req.
25 3 0.91 12 582.44 | 26:57 | 72 0
50 4 1.67 18 974.89 | 45:08 | 48 0
100 6 2.38 26 1848.65 | 85:35 | 11 19
200 11 3.13 49 1935.85 | 89:37 | 6 103
300 27 3.82 74 1973.08 | 91.21 | 4 193

Table 11.5: Results with five vehicles and 50% known requests.

300

areas where it is “inexpensive” to service requests. The question
is how much the clustering procedure affects the overall solution.
In table 11.5 results from tests with half the requests known in
advance are displayed.

Comparing the results from the partly dynamic case with the re-
sults from table 11.4, we note only a slight increase in the number
of rejected requests as shown in figure 11.6. If the extra rejected
customers are enough to justify the implementation of a clustering
technique is hard to answer, and will depend on the structure of

174 CHAPTER 11. RESULTS

200

160 | E
140 4

120 B

100 - . Static
Dynamic

80 |- -

No. of rejected requests

60 |- -

40 - B

20 B

] 50 100 150 200 250 300

No. of requests

Figure 11.6: Number of rejected requests when considering the problem as
static vs. 50% dynamic.

the problem to be solved. When requests are largely clustered ge-
ographically, a clustering technique will give a very good starting
point for the algorithm. On the other hand, when requests are dis-
persed throughout an area, using the largest cluster as an initial
route may not prove quite as effective as simply choosing “most
difficult” or “easiest” requests first.

The tests are performed on a PC with an AMD Athlon 1.2GHz
processor and 512MB RAM running Microsoft Windows 2000 Pro-
fessional. CPU time used to solve the three vehicle 300 request
problem was around 20 sec. where half the CPU time was used
to solve the SPP. Insertion of a dynamic request into the problem
used less than one CPU second.

Whereas McCluster solves the problems fast, the display of routes
on the road network is somewhat expensive. Displaying the routes
of three vehicles servicing around 20 requests each takes around
two minutes of CPU time. The reason for this is the large number
of memory allocation and deallocation MapX uses to display data,
and it is expected to improve greatly in future versions of MapX.

11.4. GENERAL COMMENTS 175

11.4 General comments

To evaluate the results obtained it is important to keep the frame-
work of the algorithm in mind. While one of the main goals with
this project was to incorporate and use digitized road networks in
a graphical environment with automated planning for DAR trans-
portation systems, this turned out to be a non-trivial task. The
development of the GUI is in itself an entire projekt, which should
be carried out in close cooperation with future users, and making
MapX work within the GUI was difficult because of insufficient
documentation.

When seeking to develop a software package to be used in a practi-
cal environment, the algorithm for the automated planning process
is not nearly as important as its surroundings. However, there are
some aspects of the design of the algorithm that needs attention,
such as simplicity and reasonability. It is more important that the
structure of the algorithm seems logical to the planner than that
the results obtained are the best possible. The planner, who is to
use the software, must “trust” the software in order for the project
of moving to an automated planning process to become a success.

As the development of the GUI is normally not performed in
academia nor a credited part of an academic project, it is, however,
very important in real life planning situations. The GUI InfoRoute
developed here does not fulfill the requirements in real situations,
but is meant as a test environment for developed algorithms. In-
foRoute is easily expanded to practical useability, and will in its
present form be more than adequate for testing puposes.

176 CHAPTER 11. RESULTS

Chapter 12

Improving solutions

Depending on the degree of dynamism in a practical DAR trans-
portation system, there will be a certain amount of time in which
the computer handling the automated planning process is idle.
This CPU idle time could be used to improve solutions obtained by
McCluster since these are found with focus mainly on CPU speed
rather than solution quality.

Using the specifications from Jensens Turisttrafik, we receive about
50 calls during a 10 hour workday. Each of these calls uses about
half a second of CPU time including the administrative function-
ality (database, shortest paths and mapping). We will leave the
computer idle as long as a request is beeing entered at the call
center, which is a procedure of approximately two minutes. Dur-
ing these two minutes, the request is negotiated with the passenger
over the phone, and entered into InfoRoute. Spending two minutes
of CPU time on each dynamic request thus leaves eight hours and
twenty minutes available CPU time for improving solutions.

Improving solutions can be seen in various ways depending on the
objective:

1. Maintaining an even load of requests on vehicles in order to
maximize accommodation.

2. Maximizing level of service by avoiding excess ride time and
idle time with passengers in a vehicle.

3. Minimizing total drive time while maintaining service to a
maximum number of requests.

177

178 CHAPTER 12. IMPROVING SOLUTIONS

4. Minimizing total idle time to improve utilization of vehicles.

5. Minimizing number of vehicles.

When considering a DAR transportation system performing regu-
lar public transportation, it is likely that only the first three objec-
tives will be of any interest. Regular public transportation systems
usually operate with a fixed number of vehicles on the operational
level. When using a fixed number of vehicles in a dynamic en-
vironment, it would be natural to maintain an even load on the
vehicles hoping that maximizing accommodation will lead to bet-
ter utilization of the vehicles. In a static environment the diversity
of the load is of no consequence, so the objective could be to min-
imize distance driven and/or maximize level of service. The level
of service in public transportation is usually seen as a constraint
more than an adjustable parameter to be included in the objective.

Specialized public transportation has quite different objectives from
the regular public transportation. Systems with a variable set of
vehicles are often used, and even on the operational level, it is
possible to cut costs by minimizing the number of vehicles used.
This characteristica is caused by the use of taxis as suplementary
vehicles in order to cut down fleet size to an absolute minimum.
In the case of taxis it is also important to minimize the total dis-
tance driven, since the distance has direct influence on the cost of
operations.

The remaining part of this chapter will focus on possible heuristics
for improving initial solutions with regards to the objectives stated
above. Wheater or not we are dealing with regular or specialized
public transportation systems is of no consequence to the following
discussion.

One of the most obvious methods of improving solutions is a meta
heuristic like Tabu Search. The reason for this is the well known
neighborhood structure of the DAR Problem. Creating and explor-
ing neighboring solutions based on swapping of two neighboring
customers is simple, although implementing a swapping procedure
on DAR problems is somewhat more complicated than with other
VRP’s because of the precedence restrictions. When swapping re-
quests between routes it does also seem natural to consider mainly
requests where the difference of the detours (when including the

179

request in a route) for two or more routes is small. Tabu Search
can be used to improve solutions with regards to any of the objec-
tives.

The solution found by McCluster might include large deviations
between the number of requests allocated to the different vehicles
as discussed in chapter 11. This could lead to inefficient solutions
when a new request is to be considered. The vehicle operating in
closest proximity to the new request might have a larger load than
other vehicles, thus causing the request to be served by a vehi-
cle normally operating an area far from the position of the new
request. To avoid this situation we can reuse some of the function-
ality of McCluster by creating affinity values between all requests
on the “overloaded” route (the route with highest number of re-
quests allocated) and the other routes. We then use the greedy
procedure to keep transferring requests until an adequate size of
the route has been reached. To avoid overloading a different route
in the process, we specify a maximum number of requests allowed
on the routes.

Excess ride time is used in McCluster as an externally given pa-
rameter not to be exceeded. To minimize this value in order to
obtain a higher level of service, we could penalize excess ride time
in the creation of affinity values. However this would not influence
the initialization of routes, which is based on generated clusters. It
does not make sense to include excess ride time in the construction
of clusters, which leaves the choise of allowing only small clusters
to add importance to the affinity values.

There are other ways to improve the level of service besides mini-
mizing excess ride time. For example narrowing the time windows.
A more exact estimate of actual departure and arrival times is seen
as a considerable improvement to the level of service by the passen-
gers. When a comparatively large number of requests are known
in advance, or with intelligent forcasting (see section 12.1 later in
this chapter) it should be possible to narrow time windows without
severely damaging the solution space. In transportation systems
with an interactive feed back method (email, sms or phone) the
exact departure and arrival times can be communicated to the
passenger in advance.

180 CHAPTER 12. IMPROVING SOLUTIONS

Minimizing total drive time and /or minimizing total distance driven
is probably the most widely used objective when solving DAR
Problems (or any other VRP). Again swapping of requests be-
tween routes can be used to obtain better results if implemented
as an improvement to solutions obtained by McCluster. It is also
possible to guide McCluster directly when constructing the solu-
tion by penalizing distance harder in the creation of affinity values.

The last two objectives regarding idle time and number of vehi-
cles are impossible to separate, since they both aim to improve
vehicle utilization. A simple method of reaching these objectives
is to eliminate the smallest route by reallocating requests from that
route to all other routes. If there are still requests in the smallest
route when other routes are filled, a strategy of space creation on
the other routes can be applied. Consider a request : from the
route r* to be eliminated. We then find the request j from route
r € R\ {r*} that when removed from the route leaves space for
request i. We now start a chain reaction by trying to insert j in
another route. If the insertion of ; expells a request we try in-
serting that request in another route etc.. If in a certain number
of iterations we still have a broken chain, we roll back the proce-
dure, and choose another route for insertion of i. This might at
first glance seem like a never ending procedure, but the number of
possible insertions is actually quite limited because of precedence,
time, excess ride time, and capacity constraints.

12.1 Forecasting

In a dynamic environment forecasting can play a significant role
in obtaining good solutions. Depending on the accuracy of a fore-
cast, solutions obtained on data including expected future requests
can reach a level of quality near the solutions to the corresponding
static problems. There are several statistical methods of forecast-
ing based on historical data of which data aggregation is one of the
more simple methods.

The method of data aggregation devides an area into several smaller
units. We can then calculate the probable number of stops to be ex-
pected within a certain time in that unit. These probable stops are
then aggregated to one stop with a summerized demand (each stop

12.2. GRAPHICAL USER INTERFACE 181

has a demand d for pick up and —d for delivery). The aggregated
probable stops are situated in the center of their corresponding
unit, and added to routes as if they belonged to actual requests.
The difficult part of the aggregation is maintaining data integrity.
Since we operated with both pick up and delivery stops, we need
to pair the aggregated stops according to expectations.

The information obtained by using forecasts can also be usefull in
time intervals with traditionally very few requests. In these time
intervals, a vehicle spends a substantial amount of time waiting idle
for the next request. This idle time could be used to position the
vehicle close to the area of the expected next pick up. This would
lower response time for the vehicle and allow a narrowing of the
notification time interval (the time before earliest pick up a request
has to be made). This again would be an improvement of the level
of service offered by the transportation system to passengers.

12.2 Graphical User Interface

In order for InfoRoute to become of practical use, there are some
small changes and expansions to implement. First, the map must
be displayed in more detail with forests, buildings etc. to help
locate addresses fast. Secondly the street offset for addresses will
need to be displayed on the map in order to give DtD transporta-
tion planners a better estimate of the actual ride time to addresses.

With regards to the underlying database, it is preferable to include
algorithmic parameters in a separate table to avoid textfiles. It is
not included in the present version since it would only be confusing
in a test environment for various algorithms. Also functionality for
starting a new planning horizon needs implementation. While data
is copied manually between days, an automated process in which
selected data is copied to a new database at the beginning of a new
planning horizon needs to be implemented.

The communication from InfoRoute to a user is also neglected some
in the present version. Error messages for the most common er-
rors when using InfoRoute have been implemented, but it is still
possible to perform illegal tasks resulting in a somewhat cryptical
message from the system. Not that the system shuts down, but

182 CHAPTER 12. IMPROVING SOLUTIONS

it is comforting to know what went wrong. Also as part of the
communication is the online help system. The structure of this
is implemented, but the files, indexes and actual help text is still
missing.

Chapter 13

Conclusion

This thesis is focusing on solving the practical Dial-a-Ride Problem.
To gain specific knowledge about the objectives and constraints in
such a problem, a case at Jensens Turisttrafik is chosen because of
its diversity, complexity, and relatively small size. The problem is
described in detail with emphasis on both the special characteris-
tics and the political aspects in the beginning of the thesis.

Having described the problem, the thesis aims to give an extensive
survey of the litterature concerning the Dial-a-Ride Problem. This
survey is coupled with a description of experiments and solutions
found in Denmark over the years. The survey also provides the
background for choosing the type of algorithm to be used.

Before chosing an algorithm to be used in solving this practical
case of the Dial-a-Ride Problem, a shortest path algorithm is im-
plemented and documented. This algorithm shows impressive re-
sults with regards to CPU-time when run on digitized road net-
works. The shortest path algorithm is implemented to perform
on a special network design allowing for easy handling of practi-
cal restrictions on the road network. An important feature is the
ability to reduce network size by adding one-way and no-right-turn
restriction, thus actually decreasing the CPU-time needed to ob-
tain a solution. Possible modifications and enhancements to the
shortest path calculations are also considered in this thesis.

A mathematical formulation of the Dial-a-Ride Problem from ex-

isting litterature is presented. However to give structure to the
discussion of additional issues in the practical Dial-a-Ride Prob-

183

184 CHAPTER 13. CONCLUSION

lem, an extension to the standard formulation is developed and
presented here. This extended formulation captures all aspects of
the practical problem. However, because of the complexity of the
Dial-a-Ride Problem, using the extended mathematical formula-
tion to solve the problem to optimality is considered unimportant
in this context.

Input to and output from the solution of the practical Dial-a-Ride
problem is handled by a separate user interface called InfoRoute.
InfoRoute is developed and designed to hold and display informa-
tion in various practical vehicle routing problems. It is based on
an extensive database allowing more exotic features such as capac-
ity substitution along with more standard customer and request
related data. InfoRoute can display customer, vehicle and routing
data on a road map, and allows for independent address lookup,
shortest path calculations, and map layout features. It is also pos-
sible to visualize real-time information in separate layers on the
map. The implementation of separate layers on the map allows for
quick and intuitive display of the data necessary in a given situa-
tion.

The algorithm McCluster for solving the practical Dial-a-Ride Prob-
lem is implemented as an independant module within the InfoRoute
environment. InfoRoute sends and receives data to and from the
McCluster module by communicating with the modules interface.
This implementation ensures easy replacement or further devel-
opment of the algorithm together with the possibility of having
more algorithms running simultaniously. McCluster is based on an
algorithm developed at CRT (University of Montréal) in the mid
1980’s. McCluster is however modified to include practial aspects
uncovered by the problem description and the extended mathe-
matical formulation.

Since data is not readily available, a test dataset with a more sim-
ple structure the actual situation at Jensens Turisttrafik is gen-
erated. The dataset includes problems ranging from 25 to 300
dynamic and static requests. The tests serve mainly to show that
the implemented algorithm is operational. However additional re-
sults indicate the importance of a good estimate of vehicle speed.
The clustering-insertion technique is also very adept at finding “ex-
pensive” requests that are hard to serve because of time/distance

185

constraints related to customer inconvenience.

The overall result of this thesis is a software package able to solve
the practical Dial-a-Ride Problem in a realistic and operationel en-
vironment. A few additional features will have to be implemented
in order for the product to be used commercially, but the core of
the developed software with the database, visualization, shortest
path calculations, and automated features for solving the practi-
cal Dial-a-Ride problem is performing fast and reliable in a stable
software environment.

186 CHAPTER 13. CONCLUSION

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, 2002.

C. R. Alexandersen. Dial-a-ride - en analyse af ht’s handicap
service. Master’s thesis, University of Copenhagen, 1994.

Bjarke Andersen and Thomas Grejs. Route planning with
graphical display of optimal routes (in danish: Ruteplan-
leegning med grafiske kgrselsanvisninger). Master’s thesis,
The Technical University of Denmark, Dept. of Mathemati-
cal Modelling, 1997.

J.-P. Belisle, F. Soumis, S. Roy, J. Desrosiers, Y. Dumas, and
J.-M. Rousseau. The impact on vehicle routing of various op-
erational rules of a transportation system for handicapped per-
sons. Technical report, CRT - Université de Montréal, 1984.

M. Ben-Akiva, J. Benjamin, G. J. Lauprete, and A. Ply-
doropoulou. Impact of advanced public transportation sys-

tems on travel by dial-a-ride. Transportation Research Record,
(1557):72 — 79, 1996.

M. Charikar and B. Raghavachari. The finite capacity dial-
a-ride problem. In Proceedings 39th Annual Symposium on
Foundations of Computer Science (Cat. No. 98CB36280),
pages 458 — 467. IEEE Comput. Soc., 1998.

L. L. Christensen and J. K. Jensen. Patientbefordring - et
dynamisk dial-a-ride system. Master’s thesis, Technical Uni-
versity of Denmark, 1991.

C. F. Daganzo. Checkpoint dial-a-ride systems. Transportation
Research, Part B (Methodological), 18B(4 - 5):315 — 327, 1984.

187

188

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic program-
ming method for the large-scale single vehicle dial-a-ride prob-
lem with time windows. Technical report, CRT - Université
de Montréal, 1984.

J. Desrosiers, Y. Dumas, and F. Soumis. The multiple vehicles
many to many routing problem with time windows. Technical
report, CRT - Université de Montréal, 1984.

J. Desrosiers, Y. Dumas, and F. Soumis. The multiple vehi-
cle dial-a-ride problem. In J. R. Daduna and A. Wren, edi-
tors, Computer-Aided Transit Scheduling. Proceedings of the
Fourth International Workshop on Computer-Aided Schedul-
ing of Public Transport. Springer-Verlag, 1988.

J. Desrosiers, Y. Dumas, F. Soumis, S. Taillefer, and D. Vil-
leneuve. An algorithm for mini-clustering in handicapped
transport. Technical report, GERAD, 1991.

J. Desrosiers and F. Soumis. Centres de correspondance pour
le transport des handicapes. Technical report, GERAD, 1982.

R. B. Dial. Autonomous dial-a-ride transit introductory
overview. Transportation Research Part C: Emerging Tech-
nologies, 3(5):261 — 275, 1995.

Y. Dumas, J. Desrosiers, and F. Soumis. Large scale multi-
vehicle dial-a-ride problems. Technical report, GERAD, 1989.

M. F. Fels. Comparative energy costs of urban transportation
systems. Transportation Research, 9(5):297 — 308, 1975.

Faerdselsstyrelsen. Year report 2000 - knowledge center for
public transportation in rural areas (in danish), 2000.

Giorgio Gallo and Stefano Pallotino. Shortest path meth-
ods: A unifying approach. Mathematical Programmaing Study,
26:38—64, 1986.

Giorgio Gallo and Stefano Pallotino. Shortest path algorithms.
Annals of Operations Research, 13:3—79, 1988.

Fred Glover, Darwin D. Klingman, and Nancy V. Philips. A
new polynomially bounded shortest path algorithm. Opera-
tions Research, 33(1):65-73, 1985.

BIBLIOGRAPHY 189

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Fred Glover, Darwin D. Klingman, Nancy V. Philips, and
Robert F. Schneider. New polynomial shortest path algo-
rithms and their computational results. Management Science,
31(9):1106-1128, 1985.

P. Healy and R. Moll. A new extension of local search applied
to the dial-a-ride problem. FEuropean Journal of Operational
Research, 83(1):83 — 104, 1995.

Richard V. Helgason, Jeffery L. Kennington, and B. Douglas
Stewart. The one-to-one shortest-path problem: An empirical
analysis with the two-tree dijkstra algorithm. Computational
Optimization and Applications, 2(1):47-75, 1993.

A. G. Hobeika. Simulation of dial-a-ride bus system in the
greater lafayette area; indiana. In W. G. Vogt and M. H.
Mickle, editors, Modeling and Simulation vol.5. ISA, 1974.

Ming Hung and James Divoky. A computational study of
efficient shortest path algorithms. Computers and Operations
Research, 15(6):567-576, 1988.

I. Ioachim, J. Desrosiers, Y. Dumas, and M. M. Solomon. A
request clustering algorithm in door-to-door transportation.
Technical report, GERAD, 1991.

I. Toachim, J. Desrosiers, Y. Dumas, M. M. Solomon, and
D. Villeneuve. A request clustering algorithm for door-to-door
handicapped transportation. Transportation Science, 29(1):63
— 78, 1995.

J. Jang-Jei, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wil-
son. A heuristic algorithm for the multi-vehicle advance re-

quest dial-a-ride problem with time windows. Transportation
Research, Part B (Methodological), 20B(3):243 — 257, 1986.

D. B. Johnson. Efficient algorithms for shortest paths in sparse
networks. Journal of the Association for Computing Machin-
ery, 24(1):1-13, 1977.

J. W. Baugh Jr., D. K. R. Kakivaya, and J. R. Stone. In-
tractability of the dial-a-ride problem and a multiobjective so-
lution using simulated annealing. Engineering Optimization,
30(2):91 — 124, 1998.

190

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

BIBLIOGRAPHY

M. Kubo and H. Kasugai. Heuristic algorithms for the single
vehicle dial-a-ride problem. Journal of the Operations Re-
search Society of Japan, 33(4):354 — 365, 1990.

O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard. A heuristic
algorithm for a dial-a-ride problem with time windows, multi-
ple capacities, and multiple objectives. Annals of Operations
Research, 60:193 — 208, 1995.

M. K. Mikkelsen. Interaktiv dial-a-ride og matematisk op-
timering. Master’s thesis, Technical University of Denmark,
1994.

Jean-Francois Mondou, Teodor G. Crainic, and Sang Nguyen.
Shortest path algorithms: A computational study with the c
programming language. Computers and Operations Research,
18(8):767—786, 1991.

J. Y. Potvin and J. M. Rousseau. Constraint-directed search
for the advanced request dial-a-ride problem with service qual-
ity constraints. In O. Balci, R. Sharda, and S. A. Zenios,
editors, Computer Science and Operations Research. New De-
velopments in their interfaces. Pergamon, 1992.

H. Psaraftis. A dynamic programming solution to the single-
vehicle, many-to-many, immidiate request dial-a-ride problem.
Transportation Science, 14:130 — 154, 1980.

H. N. Psaraftis. Analysis of an o(n/sup 2/) heuristic for
the single vehicle many-to-many euclidean dial-a-ride problem.
Transportation Research, Part B (Methodological), 17B(2):133
— 145, 1983.

H. N. Psaraftis. An exact algorithm for the single vehicle
many-to-many dial-a-ride problem with time windows. Trans-
portation Science, 17(3):351 — 357, 1983.

H. N. Psaraftis. Scheduling large-scale advance-request dial-
a-ride systems. American Journal of Mathematical and Man-
agement Sciences, 6(3-4):327 — 367, 1986.

D. Roos. An innovative computer based urban transportation
system. In A. Lew, editor, Proceedings of the 5th Hawaii in-
ternational conference on system science. Western Periodicals,
1972.

BIBLIOGRAPHY 191

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

S. Roy, L. Chapleau, J. Ferland, G. Lapalme, and J.-M.
Rousseau. The construction of routes and schedules for the
transportation of the handicapped. Technical report, CRT -
Université de Montréal, 1983.

S. Roy, J.-M. Rousseau, G. Lapalme, and J. Ferland. Routing
and scheduling for the transportation of the disabled persons:
Test problems and evaluation of results. Technical report, CRT
- Université de Montréal, 1985.

S. Roy, J.-M. Rousseau, G. Lapalme, and J. Ferland. Routing
and scheduling for the transportation of the disabled persons:
The algorithm. Technical report, CRT - Université de Mon-
tréal, 1985.

S. Roy, J.-M. Rousseau, G. Lapalme, and J. Ferland. Routing
and scheduling for the transportation of the disabled persons:
The analyst’s manual and computer programs. Technical re-
port, CRT - Université de Montréal, 1985.

K. S. Ruland and E. Y. Rodin. The pickup and delivery prob-
lem: Faces and branch-and-cut algorithm. Computers € Math-
ematics with Applications, 33(12):1 — 13, 1997.

R. Slevin and A. E. Cooper. Minibus and dial-a-ride: Initial
experiences with the abingdon experiment. Traffic Engineer-
ing & Control, 14(12):586 — 589, 1973.

M. M. Solomon and J. Desrosiers. Time window constrained
routing and scheduling problems. Transportation Science,
22(1):1 — 13, 1988.

D. M. Stein. Scheduling dial-a-ride transportation systems.
Transportation Science, 12(3):232 — 249, 1978.

L. Suen, A. Ebrahim, and M. Oksenhendler. Computerised
dispatching for shared-ride taxi operations in canada. Trans-
port Planning and Technology, 7(1):33 — 48, 1981.

D. Teodorovic. Fuzzy logic systems for transportation engi-
neering: The state of the art. Transportation Research Part
A: Policy and Practice, 33(5):337 — 364, 1999.

192

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

BIBLIOGRAPHY

P. Toth and D. Vigo. Heuristic algorithms for the handi-
capped persons transportation problem. Transportation Sci-
ence, 31(1):60 — 71, 1997.

Trafikministeriet. Public transportation in rural areas (in dan-
ish). Technical Report 95757 1999, Trafikministeriet, 1999.

J. B. Williamson. The on-line vehicle scheduler. In Interna-
tional Conference on Information-Decision-Action Systems in
Complex Organisations (Conf. Publ. No. 353), pages 49 — 53.
IEE, 1992.

N. H. M. Wilson. Routing and scheduling decisions in demand
responsive transportation systems. In Proceedings of the 1972

International Conference on Cybernetics and Society, pages
484 — 488. IEEE, 1972.

N. H. M. Wilson. Second generation computer control proce-
dures for dial-a-ride. In Proceedings of the 1975 IEEE Con-
ference on Decision Control including the 14th Symposium on
Adaptive Processes, pages 547 — 552. IEEE, 1975.

N. H. M. Wilson and C. Hendrickson. Performance models
of flexibly routed transportation services. Transportation Re-
search, Part B (Methodological, 14B(1-2):67 — 78, 1980.

N. H. M. Wilson, J. Sussman, H. Wang, and B. Higonnet.
Scheduling algorithms for dial-a-ride systems. Technical Re-
port USL TR-70-13, MIT, 1971.

F. Benjamin Zhan and Charles E. Noon. Shortest path algo-
rithms: An evaluation using real road networks. Transporta-
tion Science, 32(1):65-73, 1998.

M. J. Zobrak. Mini computer system for dial-a-ride. In 5th an-
nual 1971 IEEFE international Computer Society conference on

hardware, software, firmware and trade-offs (digests), pages
41 — 42. IEEE, 1971.

