Technical University of Denmark

Capture and Storage Projects at IVC-SEP

Faramarzi, Leila; Darde, Victor Camille Alfred; Niu, Ben; Lerche, Benedicte Mai; Sadegh, Negar; Arshad, Muhammad Waseem; Fosbøl, Philip Loldrup; Breil, Martin Peter; Yan, Wei; Stenby, Erling Halfdan; Thomsen, Kaj; Kontogeorgis, Georgios; Michelsen, Michael Locht; von Solms, Nicolas

Publication date: 2008

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Faramarzi, L., Darde, V. C. A., Niu, B., Lerche, B. M., Sadegh, N., Waseem Arshad, M., ... von Solms, N. (2008). Capture and Storage Projects at IVC-SEP. Poster session presented at DTU Energy Conference, Technical University of Denmark, Copenhagen, DK, .

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CO₂ capture and storage projects at IVC-SEP DTU Chemical Engineering

PhD. and master students: Leila Faramarzi, Victor Darde, Ben Niu, Benedicte Mai Lerche, Negar Sadegh, Muhammad W. Arshad(Master stud.) Research staff: Philip L. Fosbøl, Martin P. Breil, Wei Yan

Faculty: Erling H. Stenby, Kaj Thomsen, Georgios Kontogeorgis, Michael L. Michelsen, Nicolas von Solms

Dec. 2008

Figure 1: Sketch of CO2 flow in electricity production

Capture

Why CO₂ Capture and Storage (CCS)?

CO₂ is a greenhouse gas and during 2007 the Intergovernmental Panel on Climate Change (IPCC) concluded that the major contribution to the global warming is CO₂. Electricity produced solely by renewable energy-sources like wind, solar, or wave power is not possible yet, since the full scale infrastructure and knowledge is not available. In the meantime while these expertises are being developed the existing proven state-of-the-art know-how must be taken into use in order to lower the emission of CO₂. Figure 1 shows a principle sketch of the CO_2 flow in electricity production. The capture of CO_2 is performed at the plant and storage of CO₂ in nearby underground aquifers or in oil reservoirs, which as a side effect may enhance oil production. Figure 2 shows the known solvent-based CO₂ capture process studied at IVC-SEP.

Figure 2: Solvent based CO₂ capture Facility. Solvent is recycled and pure CO₂ is produced

Process Optimization & Development

The solvent used in the equipment of figure 2 consists typically of an amine component. It binds and removes the CO₂ from the flue gas in the absorber. The CO₂ rich solvent is heated in the stripper and pure CO₂ is released which is transported for on or off-shore storage. In IVC-SEP the phase equilibria are studied in order to improve current technology. The technology is extended for simultaneous capture of CO_2 and H_2S in order to lower the cost.

Improved Design of CO, Capture

A model of the thermodynamic properties of amines is being created by Leila Faramarzi in order to improve column calculations.

Combined CO₂ and H₂S capture

The aim of the PhD study by Negar Sadegh is to develop a thermodynamic model which can describe acid gas-alkanolamine mixtures over extensive pressure and temperature ranges.

Solvent Design & Selection

The amine solvent may not be the most optimal solvent for CO₂ capture. Several interesting alternative solvents are being studied in IVC-SEP.

Amino Acids

Recently the PhD project by Benedicte M. Lerche was initialised in order to study

the process improvements of using amino acid solvents. The benefit of these solvents are low toxicity, low volatility, high stability to oxidative degradation, leading to low solvent loss.

Ionic Liquids

Ionic liquids (IL) are liquid salts. They have similar benefits to amino acids and may be used for combined capture of CO₂ and SO₂. IVC-SEP just received a large grant in collaboration with DTU Chemistry for developing new IL solvents. Muhammad W Arshad is finishing his master on this topic.

Aqueous and Chilled Ammonia

Victor Darde is involved in the thermodynamic model development of the CO₂electrolytic NH₃-H₂O system.

Technology Evaluation & Experimental Work

Mathematical Column Models

Philip L. Fosbøl, Martin P. Breil and Leila Faramarzi are involved in the creation of software packages (CAPE-OPEN) for the calculation of heat and energy balances for the figure 2 columns as sketched in figure 3.

Experimental absorber pilot

Several master students have been, and are, involved in building an absorption column as shown in figure 4. This is done in order to test packings and solvents. Lars Kiørboe and Nicolas von Solms are supervising these projects.

Storage

Experimental equilibrium and injection tests

Two types of storage experiments are performed in IVC-SEP. CO₂-Chalk interaction test as shown in figure 5 by Ben Niu and CO₂ solubility in brine as shown by figure 6 performed by Wei Yan and students.

Figure 5: CT-scanner

Model of CO₂ Injection

The aim of the studies by Ben Niu is to build a CO₂ reservoir injection model in order to predict the experimental findings from the CT-scanner. Figure 7 shows the planned modelling methodology.

