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Synopsis

The thermal diffusion effect has been studied intensely during the past 150 years.
Many researchers have developed different techniques to measure this effect and
deduced theories to explain it. However, only recently, there has been an
agreement on the values of the thermal diffusion coefficients measured by different
techniques. Theoretically, there exists a rigorous approach based on the kinetic gas
theory which explains the thermal diffusion effect for ideal gas mixtures. For
liquids, the theories developed are not that accurate and still there is a lack of
understanding the basis of the effect for these mixtures. The situation becomes
more complicated when considering multicomponent mixtures. The background

and main goal of this project is presented in Chapter 1.

In Chapter 2 we present a comprehensive review of different thermodynamic
models proposed along the years to estimate the thermal diffusion factor. Most of
these models are based on the theoretical explanation given by Denbigh. He
introduced the concept of the heats of transport to explain the thermal diffusion
effect. The theories that followed his work present mainly different approaches to

estimate the heats of transport.

In Chapter 3 we present description of the different setup used to measure the
thermal diffusion effect. Advantages and disadvantages of each technique are
discussed and a global conclusion is made. Only in the past years researchers have
come to an agreement on the value for the thermal diffusion coefficient for three

binary mixtures measured by different setups.

Chapter 4 presents wide comparison between the existing thermodynamic models
for the thermal diffusion factor and the available experimental data. Different
equations of state are used for evaluation of the thermodynamic properties. The
thermal diffusion factor is highly sensitive to the values of the partial molar

properties and to the chosen model.

In Chapter 5 we present a new model for estimating the thermal diffusion

coefficient. This new approach is based on statistical mechanics and the



vi

fluctuation theory. A solid basis for modeling the transport coefficients is

introduced by this new approach.

In Chapter 6 we evaluate the thermal diffusion factor for multicomponent mixtures
of ideal gases. Approach to such mixtures based on the kinetic gas theory. The
expressions for estimating the thermal diffusion ratio give excellent results for
binary mixtures. However, in the case of multicomponent systems the results are

not so promising.

Evaluation of the thermal diffusion factor for multicomponent mixtures was
extended onto non-ideal systems, in Chapter 7. We present general formulae for
the thermal diffusion factor in multicomponent mixtures which different
expressions may be derived. Comparison between the models and molecular

dynamics simulations is presented.

In Chapter 8, conclusions and suggestions for future work are presented.



Dansk Resumé

Termodiffusionseffekten er blevet intenst studeret i de sidste 150 ar. Mange
forskere har udviklet forskellige teknikker til maling af denne effekt og udledt
teorier for at forklare den. Imidlertid er det forst for nylig, at der har veeret
enighed med hensyn til veerdierne af de termodiffusionskoefficienter, der er malt
ved hjeelp af forskellige teknikker. Der er teoretisk en rigoristisk fremgangsmade,
baseret, pa den kinetiske gasteori, som forklarer termodiffusionseffekten for ideale
gasblandinger. For veaesker er de udviklede teorier ikke sa ngjagtige, og der mangler
stadig forstaelse af grundlaget for effekten for disse blandinger. Situationen
kompliceres yderligere, nar multikomponentblandinger tages i betragtning.

Baggrunden og hovedformalet med dette projekt praesenteres i kapitel 1.

I kapitel 2 praesenterer vi en omfattende oversigt over forskellige termodynamiske
modeller, der er blevet foreslaet i arenes lgb til beregning af
termodiffusionsfaktoren. De fleste af disse modeller er baseret pa Denbighs
teoretiske forklaring. Han indfgrte konceptet med transportvarme for at forklare
termodiffusionseffekten. De teorier, der fulgte hans arbejde, pracsenterer

hovedsageligt forskellige fremgangsmader til beregning af transportvarme.

I kapitel 3 giver vi en beskrivelse af forskellige opstillinger, der er anvendt til
malinger af termodiffusionseffekten. Fordele og ulemper ved hver teknik diskuteres,
og en overordnet konklusion drages. Forst i de sidste ar er forskerne naet til
enighed om veerdien for termodiffusionskoefficienten for tre binaere blandinger malt

ved forskellige opstillinger.

Kapitel 4 praesenterer en vidtspeendende sammenligning mellem de eksisterende
termodynamiske modeller for termodiffusionsfaktoren og de foreliggende
eksperimentelle data. Forskellige tilstandsligninger anvendes til vurdering af de
termodynamiske egenskaber. Termodiffusionsfaktoren er saerdeles fglsom over for

vaerdierne af partielle molare egenskaber og den valgte model.

I kapitel 5 fremlaegger vi en ny model til beregning af termodiffusionskoefficienten.

Denne nye fremgangsmade er baseret pa statistisk mekanik og fluktuationsteorien.
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Et solidt grundlag for modellering af transportkoefficienterne indfgres med denne

nye fremgangsmade.

I kapitel 6 vurderer vi termodiffusionsfaktoren for ideale gassers
multikomponentblandinger. Fremgangsmaden for sddanne blandinger er baseret pa
den kinetiske gasteori. Udtrykkene for beregning af termodiffusionsratioen giver
udmerkede resultater for binaere blandinger. Imidlertid er resultaterne ikke sa

lovende for multikomponentsystemer.

Vurderingen af termodiffusionsfaktoren for multikomponentblandinger bliver
udvidet til ikke-ideale systemer i kapitel 7. Vi fremlaegger generelle formler for
termodiffusionsfaktoren i multikomponentblandinger, hvoraf forskellige udtryk kan
udledes. Der gives en sammenligning mellem modellerne og molekylaere

dynamiksimuleringer.

I kapitel 8 gives konklusioner og forslag til kommende arbejde.
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Chapter 1

Introduction

The thermal diffusion effect was first observed by Ludwig in 1856, and later studied
by Soret in 1880. It is also known as the Ludwig-Soret effect. It can simply be
described as the relative motion of species in a uniform mixture due to temperature
gradient. It is an important cross coupling phenomenon observed in non-isothermal
systems. The Dufour effect is inverse: A heat flux is created due to an isothermal
diffusion process. Both the Soret and the Dufour effects are directly connected to
isothermal diffusion.

Many transport processes induced by temperature gradient take place in situ-
ations of basic and practical interest. Diffusion effects are much slower than the
heat transport. The isothermal diffusion and the Soret effects are of fundamental
importance for description of natural convection. It has been observed that ther-
mal convection decreases due to the Soret effect, since concentration gradients are
relaxed by diffusion. It is therefore important to know the whole set of isothermal
and thermal diffusion coeflicients to correctly describe the transport processes in a
system exhibiting convection. A particular example of thermodiffusion is the ther-
mohaline convection in oceans [33]. Salinity gradients are studied in connection with
the temperature differences and water circulation in oceans. Other studies of the
thermohaline convection were carried out for aqueous lithium chloride solutions [17].

The thermal diffusion effect may play an important role in metallic alloys. The
physical parameters as well as the morphological stability of solidification front and

the hydrodynamic stability are strongly dependent on the thermal diffusion effect,

1
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even under small temperature gradients [127,128]. Hydrodynamic instabilities and
Rayleigh convection make it difficult to measure the thermal diffusion effect on the
Earth and, therefore, several microgravity experiments have been carried out on the
international space station [90,126]. Further studies on the effect of thermodiffusion
in solids and in condensed systems were carried out in connection with the electrical
properties of conductors and semiconductors [4,15,61] and, in particular, with the
problems of damage of the metal-oxide-semiconductor [79]. The thermal diffusion
effect was taken into account to describe water fluxes on the surface of Mars [58].
In geology, the Ludwig-Soret effect was studied in connection to the origin of the
deformed Proterozoic anorthositic massif [95].

The thermal diffusion effect in gases has been largely studied. Theoretically,
Chapmann and Enskog [14] derived a rigorous mathematical approach for estimat-
ing the thermal diffusion ratio, based on the gas kinetic theory. Excellent approxi-
mations were obtained for binary ideal gas mixtures. Experimentally, the thermal
diffusion effect was studied in relation to the influence on the soot formation for
ethylene-air flames [43]. It was observed that the addition of Helium to the air
stream increases the thermal diffusion velocity, exceeding ordinary diffusion veloci-
ties. Dunlop [29] estimated the isothermal diffusion coefficients for gas mixtures by
means of the thermal diffusion effect. Thermodiffusion works as a separation effect
in industrial processes relevant to gases. In particular, gas separators were used in
the fuel cycle of fusion nuclear reactors [56,129].

A special area of thermodiffusion is thermophoresis: movement of particles due
to the temperature gradient. Several important applications were developed in this
particular area, as cleaning of particles from gas streams. Thermophoresis may
also have a negative effect as, for example, in nuclear reactors, where transport
of radioactive aerosols may cause serious accidents and may contribute to ambient
pollution through airborne particle deposition [131].

A more recent application of thermodiffusion was related to macromolecules like
DNA. The Soret coefficient was measured for this type of molecules. It was observed
that a temperature difference may lead to DNA depletion. However, due to con-

vection, depletion can be turned into accumulation. This suggests a possibility for
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designing Soret-driven bio-reactors [10]. Special interest was given to the study of
the thermal diffusion for polymers solutions [22, 89|, asphaltenes [11] and other or-
ganic compounds [50], in connection to the thermal field-flow fractionation (ThFFF).
This method employs the thermal diffusion effect in order to separate macromole-
cules and colloids [13,82]. For example, one of its applications was determination of
the molecular weights of asphaltenes. In the area of protein crystallization, the influ-
ence of the thermal diffusion effect on crystal growth was studied under microgravity
conditions [81].

The present study was initiated in connection to chemical and, mainly, petro-
leum industry. The Soret effect may have a significant impact on the composition
gradients in thick petroleum reservoirs. Its neglection may result in incorrect esti-
mation for the GOC (gas-oil-contact) location and inaccurate evaluation of oil and
gas in place [38]. Several methods are available for calculating the compositional
gradient in the reservoir taking into consideration the gravity and the thermal gra-
dient. However, in many cases, it was observed that the calculated profile differs
from the actual one. Thus, it is important to estimate the thermodiffusion accu-
rately. A detailed description of the reservoir, fundamental for petroleum industry,
is required, as well as knowledge of all the phenomena occurring in the field [76-78].

One of the first theoretical approaches for calculation of the thermal diffusion
effect in condensed phases was presented by Denbigh in 1951, who introduced the
concept of heat of transport. After his publication, many researchers presented
different approaches to estimate the heats of transport. An intensive literature
review was carried out and the different models for estimating the thermal diffusion
factor are presented in Chapter 2.

There are many experimental methods for measuring the thermal diffusion effect.
We present these methods in Chapter 3. There are many inconsistencies in the
available experimental data. The reported thermal diffusion coefficients for the same
mixture may exhibit large deviations in the absolute values and even different sign.
Only in the past years, researchers seemed to come to agreement in the measurement
techniques. However, the reliable experimental data is still very scarce.

Comparison of the models with experimental data available shows that neither
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of the models is capable of correct determining the thermal diffusion factor, not
even the sign of the effect. A new theory for estimating the thermal diffusion coeffi-
cients is presented. The transport properties are described on the basis of statistical
mechanics and the fluctuation theory. We show that the theory presents a solid
basis for modeling the transport coefficients and in particular the thermal diffusion
coefficient.

Normally, the transport processes deal with multicomponent mixtures and cal-
culations for binary systems are not sufficient. Several thermodynamic models for
prediction of the thermal diffusion factors, both for liquids and gases, have been
proposed along the years. The majority of these models is applicable only to binary
mixtures and, even if formulas to determine these coefficients in multicomponent
systems exist, no results based on these formulae have been presented. In this
area, we first evaluated the thermal diffusion effect in ideal gas ternary mixtures.
We tested different approaches presented by Hirschfelder et al. [47] for estimating
this coefficient. No experimental data has been reported in the literature. Hence
we compared different theoretical approaches. We incorporated the corresponding
states law, according to which the ternary mixture is considered as a binary mixture
of a component and a pseudo-component. The properties of the pseudo component
are estimated from the properties of the rest of the substances in the mixture. For
non-ideal mixtures, we evaluated available thermodynamic models for estimation of
the thermal diffusion factors. The experimental data available for this type of sys-
tems are very scarce and deal only with associated fluids and/or polymer solutions.
Recently some measurements were carried out for ternary organic mixtures of heavy
molecules [88]. Additionally, molecular dynamic simulations for an alcane ternary
system were published [37]. We compared the results obtained by thermodynamic
modeling with these data.

The thermal diffusion ratio in this thesis is defined as k' = —V(In(z;))/V(In(T))
where z; is the mole fraction of component ¢ and 7" the temperature. The common
convention on the sign of the thermal diffusion factor is such that the component
with the positive sign concentrates in the colder region.

150 years had passed since the thermodiffusion effect was first observed. A lot of
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research has been carried out in this area. However this effect has not yet been fully
understood. Investigations on thermodiffusion are currently being carried out in
wide variety of fields. It is the intention of this work to provide one more mile-stone
to the progress towards the general physical understanding of thermodiffusion and
to contribute into building the theoretical scheme necessary for future prediction of

the thermodiffusion coefficients.
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Chapter 2

Existing models

This chapter presents the theory involved in the description of the thermal diffusion
effect by means of thermodynamics of irreversible processes. Further, we will de-
scribe the approach developed by Denbigh, who introduced the heats of transport to
describe the thermal diffusion effect. Finally, we present a summarized explanation

of different models for estimation of the thermal diffusion factor.

2.1 Thermodynamics of irreversible processes

The thermal diffusion coefficient DT, ratio k7, factor o’ and Soret coefficient ST
are defined by means of the thermodynamics of irreversible processes, as presented
by de Groot [23]. When diffusion is coupled with heat conduction, cross-phenomena
appear, called the thermal diffusion (Soret effect in condensed phase) and the Dufour
effect. The thermal diffusion represents the concentration gradient rised due to the
temperature difference. The Dufour effect represents the heat flux created as the
result of the diffusion process. Therefore, the Dufour effect is considered to be
inverse to the Soret effect.

Equations developed from the thermodynamics of irreversible processes and de-
finitions given for the coefficients will be presented according to the book of de
Groot [23]. Let us consider a mixture of n components in a non-uniform tempera-

ture field. The second law of thermodynamics has the form of
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ds dU dv dmy,

T—— =" +pP— — — 21

a ~ar T Xk:“kdt 21)

where S is the total entropy of the system, U the total energy, u; the chemical
potential of substance k. This equation is valid both for open and for closed systems.
It can be writen in terms of intensive variables: specific entropy s = S/M, specific

energy u = U/M, specific volume v = V/M, and concentrations ¢, = my/M, M

being the total mass of the system.

ds du dv dey,
T'—=—+P— — o—— 2.2

a-ata ; M at (22
It is shown [23] that equations (2.1) and (2.2) are equivalent if one keeps in mind

Eurler relation and the specific Gibbs function (mean specific chemical potential) is:

L
g:Zukck:%:ufTs+Pv (2.3)
k

De Groot stresses that equation (2.16) is supposed to be corrected when working
with material derivatives. In this way, it is established that entropy s

does not explicitly depend on space and time coordinates but only through the
variables u, v, and ¢(k = 1,...,n — 1). For detailed proof of this postulate please
refer to [23] .

The energy equation can be writen as

d(ivi4+u
g

7 =-V(Pv+1J,) +ZFkovkpk (2.4)

k=1
where u is the internal energy per unit mass, v, the velocity of k, J, is called the
flow of heat.

The force equation has the form of

dv

Py =—VP+ ) Fipy (2.5)

k=1

where v is the center of mass velocity, P is the pressure and Fy, is the external

force per unit of mass acting on substance k. Viscous forces are neglected.
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By multiplying equation (2.5) by v and then substracting it from the energy
equation (2.4), the equation for change of energy u is obtained
du

pg = —PVV=VI,+ S Fie (2.6)
k

The mass conservation law can be writen as

dck

where p is the density of the system, ¢ the concentration of component £ in the
system, t is the time variable, J;. the flux of component &, J. mass exchange due to
chemical reactions and v the rate of reaction. We will neglect chemical reactions,
therefore J. = 0.

Introducing equation (2.6) and (2.7) into equation (2.16) together with the con-

tinuity equation results in the entropy balance equation

T

ds
E:_VJQ+%:Fk.Jk+zk:MkVJk (2.8)

It can be rewriten in the following way

=—-VI;+o (2.9)

ds - Jq—zkuka Jq+Zk']k.Xk
Pat = V( T M T

where

VT

- YL 2.1
X, = - (2.10)
X, = F) — TV% (2.11)

From equation (2.9) it may be noticed that the change of entropy of the system
has two main contributions: the negative divergence of the entropy flow J, and the
entropy production o. This last term is the sum of the products of “fluxes” J; and
J; and the corresponding “forces” X, and Xj.

Linear relations between fluxes and forces can be assumed, as a first approxima-
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tion. The so-called Onsager phenomenological relations are

Ji =Y LaXi + L X, (2.12)
k=1

3y = LuXi+ L X, (2.13)
k=1

The Onsager reciprocal relations are: L;, = Ly; and Ly, = Ly;.

The entropy production can be writen in terms of the fluxes and forces as

To=> JX;+JX, (2.14)

i=1
The mass conservation equation (2.7) can be written with respect to the center
of mass movement, assuming the form Y ;_, J; = 0. Introducing this last expression

into equation (2.14) we obtain

To=> Ji(X;—X,)+J,X, (2.15)

=1

The following realations exist between the phenomenological coefficients

zn:L,.k:o : zn:Lukzo (2.16)
k=1 k=1

Zn:Lik:O , zn:Lw:O (2.17)
i=1 i=1

Introducing these relations into the expressions (2.23) and (2.13), we obtain:

n—1
Ji=) La(Xp = Xo) + LuXy  (i=1,.,n—1) (2.18)
k=1
n—1
J, = Lu (X —X,) + LuX, (2.19)
k=1

In equation (2.18) we have only n — 1 independent fluxes. Taking into consider-

ation Onsager relations, we find that there are 1(n + 1)n independent coefficients.

The coefficients L;, are then replaced by new coeflicients, ();. They are defined as
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solutions of the system of equations

n—1
Ly, = Z LixQy (2.20)
k=1
Substituting them into equation (2.18) we obtain:

n—1

T =Y Li (Xi — X, + Q4 X.) (2.21)

k=1
Q; represent the heat transported with the unity of mass & at uniform temper-
ature (X, = 0).
Replacing X}, and X, in equation (2.21) by their definitions, (2.10) and (2.11),

we get

= - VT
3= La (Fk —F,-TV (LT“") - Q;T> (2.22)

k=1
The chemical potentials are functions of both temperature, pressure and compo-

sition. Therefore

"9
Vi = —siVT + VP + > Py, (2.23)
k=1

- 802-

where si is the specific entropy and vy is the specific volume of component k.

The flux can be writen now as

n—1 n—1 a (,uk _ /Ln) . VT
']i = Z sz Fk - F»,L — (’Uk — vn)VP - Z TVC]‘ — (Qk - }Lk + hn) T
k=1 j=1 7

(2.24)
where hy = py + T'si is the partial specific enthalpy of component k.
The definitions for the different coefficients describing the thermal diffusion effect
are given only for binary mixtures.

For a binary mixture the flux equation becomes
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10 vT
Jl = 7.]2 = Lll <F1 — F2 — (’Ul — UQ)VP — 5£v01 - (Qi — hl + hz) T)
(2.25)
The diffusion coefficient Djs is defined by the following relation
Lyy Opy,
Dy = —— 2.26
P2 ¢ 06 ( )
Similarly, the thermal diffusion coefficient D, is defined by
L I—hi+h
pDier(1— 1) = u(Qf 1+ ho) (2.27)

T
Analogous definitions can be given using the mole fraction z; instead of the weight

fractions ¢;. However this is valid only for binary systems and cannot be directly

extended onto multicomponent mixtures. This is further discussed in Chapter 7.
Three possible combinations of the ordinary and thermal diffusion coefficients

have been given by specific names:
1. The Soret Coefficient: Sy = D%, /Dy,
2. The thermal diffusion factor: o = DL,T/Dy,

3. The thermal diffusion ratio: kp = DL, Tcicy/Dis

If no external forces exist and the system is under mechanical equilibrium (equation

(2.25)) we obtain the expression for J; only in terms of V¢; and VT. For binary
mixture,

J1 = 7J2 = fDlngcl - D;};pCl(l — Cl)VT (228)

A particular case to be considered is a stationary state where all diffusion flows

vanish, J; =0, but a heat flow still exists J, # 0. Equation (2.25) becomes

D1,Ve, — Diyey(1—¢)VT =0 (2.29)
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From this equation, the relations between the thermal diffusion coefficients, ratio,
factor and Soret coefficient, and the gradients of concentration and temperature are

obtained

VCj
= 2.
ST Cl(]. - Cl)VT ( 30)
TVC]'
| = - 2.31
@ Cl(l — Cl)VT ( 3 )
o TVC]'
hr == (2.32)

2.2 The Denbigh theory

To estimate the thermal diffusion effect, many authors have proposed different cor-
relations. Denbigh [25] was the first to describe in a clear way this effect by means
of thermodynamics of the steady state. He introduced the concept of heat of trans-
port. After his work many authors proposed different correlations to estimate the
heats of transport. A review of this models and correlations is presented here. We
will start by presenting the theory of Denbigh.

Denbigh defined the steady state as a simplification of a real state where the
processes involved are considered to be in pseudo-equilibrium and no spontaneous
evolution takes place. This meant, for Denbigh, that macroscopic parameters such
as temperature, pressure and composition are time independent at every point of the
system, despite occurrence of the dissipative processes. The second law of thermo-
dynamics postulates that the total change in entropy of a system and its surround-
ings resulting from a reversible process is zero whereas it is positive for irreversible
process: ».S; > 0. Denbigh applied Thompson hypothesis to describe the thermal
diffusion effect. Thompson used Y S; = 0 for the system at steady state, even if
this is rigorously only valid for a system in equilibrium.

Figure 2.1 shows the imaginary setup used by Denbigh to describe the thermal

diffusion effect. In this setup the temperatures in vessels I and II are held constant at
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T
Heat Reservoir
11

Heat Reservoir
1

NN - - - - - - - -

Vessel I Vessel I1
—-—EIE—— T TedT
—_— P P+dP

~

Temp. T ——bid— Temp. T+dT

Figure 2.1: The Denbigh imaginary system used to describe the thermal diffusion
effect

T and T'4+dT by contact with infinite heat reservoirs, and each layer is separated by
a purely imaginary plane. A heat flow is created due to existence of the temperature
gradient. Let us assume that the system is a homogeneous mixture of n components,
and flows of various components relative to each other may exist. We are dealing
with a "virtual” displacement at the steady state comparable to the "virtual” changes
in equilibrium theory. Considering the displacement of one mole of substance i from I
to I1, where both pressures and temperatures remain constant, we get an unchanged
thermodynamic state. We can now consider different entropy changes in the system:

1- dS,1= Entropy change due to the absorption of heat by the fluid from the

reservoirs:

H 1 (dH, dH; dH;
dSp =~ =~ (deT+ dePJrzj: dﬂjdm)

2- dS,2= Entropy change in the reservoir due to transport of component 7. Let
us denote by @ the heat provided in reservoir I and removed from II (apart from
the heat absorption by the enthalpy change) in order that a mole of this component

may pass from I to II at constant temperature and pressure:
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Q, & _ @

= dT
T T+dT T2

dS,s = —

3- dSy= Entropy change in the mole transferred due its change of state from

(T, P) to (T + AT, P + AP)

aSl d’n]‘
J

on;

S; a5,
dSy = SdT + S 5dP + ;

Applying the Thompson hypothesis then the sum of dS,1, dS,sand dSy is equal

to zero and we obtain:

s :
vdP +y az_dnj L9 (2.33)
j J

T2

In a system in absence of rigid barriers the variation of pressure is negligible, so
that the first term in the last equation vanishes. Further, in the case of an ideal

system, the chemical potential of component 7 is:

wi = p(T, P) + RT'In z;
Therefore, equation (2.33) results in the following expression for the thermal
diffusion effect:

dlnz;  Qf

dT RT

That is, the compositional variation per temperature difference is given as a
function of a heat of transport of the particular component. Further, together with

dozi=1, we get:

> Q=0

When considering a binary mixture, it is convenient to express the relative sep-

aration of species as:

_‘““(%) Q-
dT  ~ RT

(2.34)
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From equation (2.34) it follows that:

* *
G-

RT

A more general expression is:

T G1Q§ - G2QT

= e 2wl (2.35)

Opi
@ (azl)TP

That is the thermal diffusion factor which depends on the "system of coordinates"

with regard to which the relative motion of the species of the mixture is considered:
whether it is associated with the center of masses, of volumes, or of molar amounts.
Correspondingly a; = (i = 1,2) are the partial molar properties corresponding
to the system of coordinates selected: partial molar volumes V; for the system
associated with the center of volumes, molar masses M; for the center of masses, and
unities for the center of molar amounts. The value of a is an average determined as
a = a121 + as2o.

Denbigh explains the nature of the heats of transport by the analysis of energetic
molecular motion. He declares that the total flux of energy differs from the flow of
molecules multiplied by the average energy, since it may occur that the particles in
various energy states do not pass through the cross-section at a proportional rate as
the fluxes, as for example in processes where the particles have to exceed a certain
energy before changing state. The heat of transport Q* takes into consideration the
difference between the energy per mole of transported fluid and the energy per mole

of the fluid on either side.

2.3 Existing models for the thermal diffusion coef-
ficient

After the work of Denbigh, several approaches to describe the heats of transport were
developed. In earlier works the authors often proposed a thermodynamic model for

the chemical potential along with an expression for the thermal diffusion factor. In
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the following sections we will present different models found in the literature.

2.3.1 Rutherford and Drickamer

Rutherford and Drickamer [98] presented an approach to evaluate the heats of trans-
port based on a molecular model. The mixture was considered to be a random distri-
bution of molecules. Transport was represented as a process of filling and emptying
the "holes" between the molecules. When the mixture was composed of molecules
of approximately the same size and shape, the relative probabilities of a hole being
filled by a molecule of type 1 or 2 were supposed to be related as (z1/z2), while
the heats of filling and leaving a hole were expressed in terms of the partial molar
enthalpies. Consequently, the thermal diffusion factor was found to be

. (zlh% + bl ) (h2 _ hf) )

2 <RT i (hf - h§)2>

The authors extended the theory to be applied to binary mixtures composed by

particles of different sizes or shapes. Different modifications were proposed:

1- It was considered that not only one, but several molecules can move into a
hole. Therefore, factor 1; was incorporated, as the number of molecules moving
into a hole left by molecule 1, with similar definition for ;. An extra term was

obtained, additional to the right-hand side of equation (2.36)

(V1 —a) (Zlfl% + Zzhé%)

1 1\ 2
2 <RT—|— Z122 (%)2 — 2122 (hli — hg) >

ar = ab + (2.37)

2. A second approach was in taking into account different expressions for f;
(fraction of nearest neighbor) and CN; (coordination number) when considering
molecules of different size and shapes. In this case the results were presented in the

two forms:

2.a. If f1 = f2 and CN1 ?é CNQ

ar = a2 + (hihy)? <z2 (6—1)— = (% - 1)> (2.38)
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where § = (CNl/CNg)%. The results are discussed in terms of the ratio of the
coordination numbers even if they can not be individually calculated. The authors
claim that this second equation is physically less likely than equation (2.37).

2.b. For the case where f; # fo and CN; = CN; the authors give only the
expression for the difference f1 — f5 , see (2.39), and do not specify how it affects to

the thermal diffusion factor.

1
2
h2

iz k= (zlh% + ZQhQ%)

(2 — 1) (2.39)

3- Finally the third expression is given to take into account the interaction be-
tween unlike molecules, like in the case of the associated fluids. The equation for

the thermal diffusion factor becomes

1 1\ 2
(2221) A+ (Y1 — 12) ((21/11§ + zzhg) + QlezA)

2 (RT (1 + 2129 (%)2) — 2129 (h% - hé)2 - 22122A>

o=

where A = hyip — (hiho)?.

2.3.2 Dougherty and Drickamer

The following year Dougherty and Drickamer [27] presented an approach based on
the previous work of Rutherford and Drickamer [98]. In this new theory the energies
involved in the transport process were expressed in terms of partial molal cohesive
energies of the components in solution. These energies, in turn, were expressed as
functions of the internal energies of the mixtures and of the solution. The resulting
expression for the thermal diffusion factor in case of the molecules of similar sizes

is:

AU,
(U1 e 921 )
[0
1 ( 921 ) TP

The coeflicient 1/7 is equivalent to assuming that the supplied energy by molecule

T

1
= — 2.40
a . ( )
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motion is 1/7 times the cohesive energy of the liquid. According to the authors the
value 7 may be set to 4. The approach of Dougherty and Drickamer was extended
onto molecules of different sizes, similar to Rutherford and Drickamer [98], obtaining

the following expression:

U,
1 (ul — Uz — ox1 (21U1 + 2oug + Ue)

) !
T, T A,

021 D21

ap = (2.41)

Coefficients 1)1 and 1), are expressed as functions of the molar volumes and of the
correction factor 7;. They represent the excess (or deficiency) of volume resulting in
the region when a certain amount of molecules type 1 is replaced by the two other
quantities: one of the same type of molecules and the second amount of molecules

of the type 2. The resulting expression is

Vj i
=g (1+

The authors observed pressure and temperature dependency of ;.

In the same year, Dougherty and Drickamer [28] presented a second approach
where the heats of transport, )7, were calculated from viscosity measurements and
the solution thermodynamic data. They expressed the thermal diffusion factor in

terms of the activation energies U, ;:

Ua2 _ Uaa
(Mﬂ}g + M2U1) v2 V1

).,

Instead of the activation energies of the components in the mixture, Dougherty

(2.42)

ar =

and Drickamer proposed to use individual activation energies of pure components,

which may be determined from the viscosity data by the known Eyring formula

Nah AF
_ - 2.4
1 \% P (RT) (243)

The authors compared their formula with experimental data. In the calculations
they were forced to make three mayor approximations, which are not inherent from

the theory. Firstly, the pure component volumes were used instead of the partial
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molar volumes. Secondly, the derivative of the chemical potential with respect to
composition was assumed to be as for an ideal mixture. This second assumption
may create large deviations. Finally, activation energies of the pure components
were used instead of the activation energies in the mixture. The authors were not
able to predict the error of this approximation. From the plots presented in the
paper, one can see that the theoretical curves and the experimental one in most of
the cases do not agree satisfactorily. However, some of them seem to predict the

sign and the behavior of the thermal diffusion factor.

2.3.3 Tichacek et al.

In 1956 Tichacek et al. [121] presented a new approach the heats of transport. They
based their theory on thermodynamics of irreversible processes and the steady state.
In this new theory the heats of transport were described as functions of the activation
energy, as was proposed by Dougherty and Drickamer in their second approach [28].
A difference with the previous model was that the model of Tichacek et al. depends
only on the partial molar volumes and the activation energies and is independent of
the molecular weights of the components as the previous model did. The thermal

diffusion was expressed as

P l(”an,z - U2Ua,1)
VL),
921 Jp p

The authors neglected non-ideality contributions, and they replaced the deriva-

(2.44)

tive of the chemical potential by RT. The activation energies were calculated in the

same way, as for the previous model, applying equation (2.43).

2.3.4 Shieh

In 1969 Shieh [115] presented a new model for estimating the thermal diffusion
factor. The author proposed to use unperturbed terms for the heats of transport in
the equation given by Denbigh. Based on the Bearman-Kirkwood-Fixman theory [5],

the thermal diffusion factor was represented as a function of the partial molar heats
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of vaporization and the partial molar volumes, and the derivatives of the chemical

potential

UIEUH.[) — Uy Euap
9,

2V21 (ﬂ)
821 T,P

In the reference paper, the author used experimental data for the heats of vapor-

ar = (245)

ization. Here we will determine the energies of vaporization by means of the Riedel
method given in [96]. This method was tested for several types of mixtures and the

errors were almost always less than 2 percent.

In P, —1.013
EY — 1.093RT, <Tan7>

0.930 — Ty, (246)

where R is the gas constant, 7. is the critical temperature, P. the critical pressure
and Ty, = T;,/T. the reduced boiling temperature. In order to take into account the
variations of the energy of vaporization with temperature the Watson relation may

be applied

AN
’2) (2.47)

By =57 (14

where ExpU® was calculated according to Viswanath and Kuloor [96] recomen-

dation
Evap 10
Exp®® = ( 0.00264=LL + 0.8794
w ( RT, )
2.3.5 Haase

In 1969 Haase [44] suggested a new expression for the thermal diffusion factor by
exploiting analogy with baro-diffusion, where particle motion is studied due to pres-
sure gradient in an isothermal system. According to Haase, the baro-diffusion factor

for a binary mixture has the form of

PM; (vg —v9) — PMy (vy — v) RT
+ aP
(21]\/.{1 + Z2M2 Zl (g‘;ll)

ap =
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According to this equation, the baro diffusion factor ap can be determined from
the thermodynamic properties of the (real) gas mixture. o% is the barodiffusion
factor corresponding to the pressure tending to zero.

Haase stated that in the case of thermal diffusion, the thermodynamics of irre-
versible processes produces no analogous relation as for baro-diffusion because there
does not exist a general connection between diffusion and thermal diffusion (We will
see later in section 2.3.7 that still there is a way to theoretically obtain the Haase
expression [52,53]). Nevertheless, Haase compares the relation between s and
ap. By substitution of the partial molar volumes by the partial molar enthalpies, a

resulting expression for the thermal diffusion factor was obtained

RT
2 (%),

The limiting value % can be obtained from the gas kinetic theory [47]. Similarity

My (hy — h3) — My (hy — hS)

+ad
(21 My + 29M3) 21 (%)T,P

ar (2.49)

of equation (2.49) to the general expression (2.35) may be observed. The values of
a; for this case are equal to the molecular weights M; and the heats of transport
Q7 equal to the difference between the real and the ideal partial molar enthalpies
(hi — hY). The extra term, which computes the effect of the thermal diffusion in

ideal gas state, does not change the main form of equation (2.35).

2.3.6 Shukla and Firoozabadi

Shukla and Firoozabadi [116] based their theory on the approach of Dougherty and
Drickamer [28]. Their modified expression incorporates more accurate thermody-
namic properties of a mixture expressed by means of the Peng-Robinson equation
of state (PR EoS). Further, the non-equilibrium part in the model is accounted by
incorporating the energy of viscous flow. The expression obtained for the thermal

diffusion factor in a binary mixture has the form of:

uy o u2
T1 T2
o
1 (azl)TP

For practical calculations the authors use the values of 71 = 75 = 4. The authors

(UQ - Ul) (21% + 22%22)

o
21V1 + 29V9) 21 (—)
( )2 (%),

n (2.50)

ar =
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stated that these coefficients can be calculated by the relation between the energy of
viscous flow and the energy of vaporization and viscosity, but they did not succeed
to rigorously define them. Let us note that for the case where 7, = 7 = 4 equation
(2.50) is reduced to equation (2.35) with a; equal to partial molar volumes v; and
QF equal to u;/4.

This approach has been extended onto multicomponent mixtures, as it is shown

in Chapter 7.

2.3.7 Kempers

Kempers [52,53] introduced a new way of calculating the thermal diffusion factor.
Although his theory was developed for multicomponent mixtures, we would like to
describe it first for the binary case. We will give the corresponding multicomponent
formulations in Chapter 7.

The approach of Kempers consists in extending statistical mechanics onto a
non-equilibrium two-bulb system (Figure 2.1). This is similar to the old Thompson
approach, as described by Denbigh.

A single assumption was made that a non-equilibrium steady state is the macro-
scopic state accomplished by the maximum number of microstates with respect to
the ideal gas state. The canonical partition function for the whole system was
expressed as the product of the canonical partition functions of each bulb, and

maximized under two constrains. In the first paper [52] the constrains were:

1. The material conservation nf! + nf =nf(i =1,...,n).

2. Pressure equality in the whole system P4 = P5.

The final expression for binary thermal diffusion factor was similar to equation

(2.35):

vihy — vahy

o
2101 + 2202) 21 (*)
( 2 (22),,

ar = (2.51)

Later, Kempers [53] in 2001 modified his model. The main difference with his
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previous work was the constrains. Instead of the equality of pressure, he applied the

following constrains

1. The material conservation nf! + n? =nf(i=1,...,n)

2. The material conservation of the components in the ideal gas state n!°+n?0 =

nf4+nf (i=1,..n).

3. Invariability of the reference frame in which the process takes place (Center-
of-volume or center-of-mass). For example, for the center of volume case, the

constraint had the form of: > nfvA =" nfvf.

The constraint of mechanical equilibrium is not applied in the second approach. The

final expression for the thermal diffusion factor with volume frame of reference was

(%1 (h2 — hg) — Vg (hl — htl))

RT
- +ad
(z101 + 2209) 21 (%)T,p

T o (2
1 021
TP

Kempers made an extensive comparison between his model and the model pre-

(2.52)

ap =

sented by Haase shown by equation (2.49). When the center of mass frame is used
instead of the center of volume, equation (2.52) is reduced to that of Haase. As was
mentioned previously, Haase obtained his expression purely by analogy with baro-
diffusion, but Kempers could obtain the same expression applying thermodynamics
of irreversible processes and statistical mechanics.

The ideal state is normally considered as a state at a small pressure, where the
mixture becomes an ideal gas. In this case the value of o is computed on the basis
of the Boltzmann gas kinetic theory. The formula for the thermal diffusion ratios
for binary mixtures, in the first approximation of the Chapman-Enskog expansion,
may be found in Hirshfelder et al. [47]. In some cases it is assumed that the first
term in the last equation is negligible compared to the second term. However, our
experience indicates that this assumption is not always correct.

Although the authors of the papers cited above presented some comparison of
their results with experimental data, this comparison usually was not very extensive.

A more or less extensive comparison may only be found in Shukla and Firoozabadi
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[116], and Kempers [53]. For simulation of partial molar properties the authors
used available experimental data or the simplest equations of state, such like the
Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) EoS [96]. It was noticed [53]
that the thermal diffusion factors are extremely sensitive to the values of the partial
molar properties and, thus, to an EoS selected. A systematic comparison of all the
existing models on the same sets of experimental data and with different equations
of state was presented in our publication [42]. This comparison is further extended

to other types of mixtures and will be presented in Chapter 4.
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Chapter 3

Measuring the thermal diffusion

factor

150 years have passed since the thermal diffusion effect was firstly observed by
Ludwig. Along these years researches have imagined, designed and created a wide
variety of setup for measuring this effect. Measuring thermodiffusion is not an easy
task. This effect is usually very small compared to convection and other transport
phenomena. However, researchers have been very ingenious to develop setup in
order to reduce, avoid or, in its worse, compute convection or other phenomena that
may affect the measurements.

In this chapter we present a review of different methods used for measuring the
thermal diffusion effect. The designations given for the techniques do not always
agree. Hereby we propose a possible classification for the existing techniques. A
complete list of the measured mixtures and the corresponding technique is given in

table 4.1 of the next Chapter.

3.1 The thermogravitational column - TGC

Two types of geometries and three operational procedures were used for the thermo-
gravitational columns. Further sub-classification can be made by the materials used
for their construction. A concentric tube column and a parallel plate column are

the two possible geometries for this type of apparatus. The second type of columns

27
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may be operated in two different ways. In the classical technique, the system is
closed. Once the steady state is reached the concentration gradients are measured.
The second method was developed by Dutrieux et al. [30]. The Soret coefficients
were estimated during the transient regime. This method was based on application

of the Laser Doppler Velocimeter (LDV), as will be explained in section 3.2.

3.1.1 The concentric tube column

The Thermal diffusion column of Trevoy and Drickamer [124,125] is the oldest type of
this setup we have found. It was used both to measure the diffusion and the thermal
diffusion effects. This apparatus consists of two connected vessels mounted on a
thermostat-tube inside a thermostat-bath. Water circulates through the thermostat-
tube. The wall temperatures of the column are measured by thermocouples clamped
against the wall. A typical run of the column starts by draining the bath. Then
the column is filled with the mixture to be studied and, subsequently hermetically
closed. It is important to prevent liking into the vessel. The bath is filled with
water and its temperature is adjusted. Then water from the second thermostat
starts circulating through the thermostat tube. The steady sate is reached in about
1 hour. The system evolves for a period between 4 to 10 hours. At the end of a
run the thermostat bath is half drained and the content of the upper reservoir is
taken out. The remaining water in the bath is then siphoned and the content of the
second reservoir is extracted. The concentration is measured for each reservoir by
refractive index, assuming a linear dependence between the concentration and the
mole fraction. The original figure of the setup used by Trevoy and Drickamer [125]
is shown in Figure 3.1.1.

The authors carried out several runs for small gradients of temperature AT =
5°C, in order to study the dependence of a” on the temperature. It was therefore
necessary to use relatively large annular space. As a consequence, small equilibrium
separation ratios were obtained.

The authors used the separation ratio equation developed by Furry, Jones and
Onsager. This equation is deduced from the Navier-Stokes system for the steady

state separation in the thermal diffusion column and has the form of:
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Fic. 1. Thermal diffusion column.

Figure 3.1: The original thermogravitational column of Trevoy and Drickamer [125]
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Figure 3.2: The original thermogravitational glass column of Humphreys and Ma-
son [48]
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where 21, 2o are the mole fractions of component 1 and 2, Dy, is the binary diffu-
sion coefficient, 7 is the viscosity of the fluid, § is the thermal expansion coefficient,
g is the gravity acceleration. Both the diffusion coefficients and the viscosity data
were measured by the authors, while the density data were taken from standard
tables [49]. The geometrical variables are: L the length of the column and w half of
the annular spacing.

The low-temperature thermogravitational column constructed in glass was used
by Humphreys and Mason [48] in 1970 to measure the thermal diffusion effect in gas
mixtures. The original sketch of the column is shown in Figure 3.2. The temperature
gradient is obtained by using liquefied nitrogen at 77K and liquified oxygen at
90K. The liquified nitrogen is contained in a special vessel (B) where the whole
column is immersed. The oxygen is contained in tube (C) maintaining the proper
temperature of the inner-wall. Capillary sampling tubes (D) are located at the
top and at the bottom of the column. The experiments were performed at 0.5
atmospheres for various time periods, between 2 to 10 hours. Trace amounts of a
radioactive substance are incorporated in the mixture before the run starts, in order

to measure the composition at the top and at the bottom of the column.
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Figure 3.3: The parallel thermogravitational column

3.1.2 The parallel plate column

This type of setup is slightly different from the previous one. The liquid mixture
to be studied is enclosed in a vertical slot and the upper and the lower reservoirs
are eliminated. The two vertical walls are maintained at two different temperatures,
so that the required AT is obtained. A sketch of this type of column is shown in
Figure 3.3.

Once the steady state is reached, about 30 minutes after start, the concentration
at the top and at the bottom of the column are measured by refractive index. The
Soret coefficient is determined by the following relation:

Ac StnDis
co(1 — ¢p) =V o3

where ¢q is the initial concentration, Ac is the steady-state separation between

the column ends, W is a parameter that depends on the geometrical dimensions of
the column given by ¥ = 504L/gw?, where L is the distance between the sampling
ports and w is the gap width. The values for density, ordinary diffusion and viscosity
were obtained from the literature. Other researchers [8] measured the isothermal

diffusion coefficient by the “Open-ended capillary” (OEC) technique.
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3.2 The Laser Doppler Velocimeter - LDV

Dutrieux et al. [30] presented a new technique for measuring the Soret coefficient
utilizing modification of the velocity field under the influence of the Soret effect.
The setup was the parallel thermogravitational column, where the hot and cold
walls were connected by a glass strip, allowing optical access (Figure 3.3). With the
help of the nozzles incorporated along the column it was possible to evaluate the
concentration gradients as functions of the height.

The LDV technique is based on the fact that during the transient time the con-
centration gradient can be thought as mainly caused by the Soret effect. In other
words, it has been observed that during the steady state the concentration gradient
depends mainly on the vertical coordinate, and therefore the horizontal contribu-
tion may be neglected. On the other hand, in the transient regime the concentration
gradient is mainly function of the horizontal coordinate, in the direction of the tem-
perature gradient. This initial horizontal concentration gradient is mainly induced
by the Soret effect. When the temperature gradient is established, the light sub-
stance migrates to the hot region in order to lower the local density. The LDV
technique takes these phenomena into consideration and measures the Soret coeffi-
cient during the transient time. The maximum horizontal density gradient appears
in diffusive regime, indicated by a larger velocity amplitude transient in time. This
velocity amplitude inside the column is measured by Laser Doppler Velocimetry
(LDV).

The thermal diffusion coefficient is determined by the following relation:

N v o_p L
Ac =~ 504[3791) C()(l — CO)E

where ¢ is the mass fraction and v is the kinematic viscosity. The authors

measured the kinematic viscosity and the thermal expansion coefficient themselves.
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3.3 The two-chamber apparatus

The design of a two-chamber apparatus may be different, but the concept behind
this technique is the same. The pressure cell used by Rutherford and Drickamer [98]
and the cell used by Shashkov et al. [107] are based on the idea that a large volume
difference between the chambers avoids convection. The difference between these
two setups is in their construction and in the method used to change pressure in the
system. In the two-chamber cell of Trengove et al. [122,123] used for gas systems
the volume of the chambers may vary by attaching the bulbs of different sizes. A
different type of the two-chamber setup is a diaphragm cell where the volume of
each chamber is equal and they are separated by a fine-grade porous diaphragm. In
the cell apparatus used by Longree et al. [71] the top and the bottom chambers are
connected by a section constructed of 125 stainless tubes, as a sort of diaphragm,

in order to avoid convection.

3.3.1 The two-chamber pressure apparatus of Rutherford and

Drickamer

Figure 3.4 shows the original setup used by Rutherford and Drickamer [98]. The
thermal diffusion pressure cell consists of the two chambers constructed of thin
stainless steel. They are separated by a piece of the fine porous fritted glass. The
chambers are mounted in a mercury cup, with which pressure may be regulated. A
brass cap is mounted on the upper part of the cell constituting the cold chamber
with a volume of 0.15 em3. The rest of the cell constitutes the hot chamber, with
a volume of 1.1 em®. The large volume difference between the chambers is deliber-
ately designed to avoid remixing. Iron stirrers are located inside each chamber and
activated every second by direct current pulse.

The lower chamber is heated by a wire in the lower part of the cell, so that it
was possible to maintain a temperature difference of 10°C' between the chambers.
Thermocouples are inserted in both chambers. Pressures up to 10000 atmospheres
may be obtained by means of a pressure bomb mounted on the bottom plug of the

cell. To avoid evaporation the cell was immersed into a water bath.
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Figure 3.4: The original two chamber cell of Rutherford and Drickamer [98]

In a typical run of this setup the chambers are filled by the liquid under study.
The cell is stabilized by standing several hours at constant temperature and low
pressure. Concentration gradients inside the chambers are eliminated in this way
before starting the run. The runs last between 3 and 20 hours to make sure that the
steady state has been reached. The pressure bomb is removed at the end of the run
and the composition of each chamber is analyzed in a refractometer. Corrections for
the cold temperature chamber are needed, since the thermocouples in this section

are in contact with the pressure transmitting fluid.

3.3.2 The the two-chamber gas apparatus of Shashkov et al.

The original cell apparatus developed by Shashkov et al. [107] is shown in Figure
3.5.

This type of apparatus, as the previous one, is constructed of the two chambers
of largely different volumes. A metal jacket filled with an asbestos coating covers the
top large chamber (V; = 141.2¢m?). The small bottom chamber (V; = 2.45 cm?)
is drilled in a solid metal block. A second cavity drilled next to the small chamber

is connected with the previous chamber by a valve. This second cavity acts as a
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Figure 1. A schematic diagram of the two-bulb apparatus, A: top bulb; B: bottom bulb; C:

gas inlet valve; D: thermacouple; E: metal jacket with asbestos insulation; F: metal block;
G and H: th i ! and I: isolation valve.

Figure 3.5: The original two-chamber gas apparatus of Shaskov et al. [107]

reference cell, to determine the compositional gradient. The lower and the upper
chambers are connected by a thin-wall metal tube. The temperature of the top
chamber is controlled by circulating a silicon organic liquid in the jacket. A ther-
mostat bath is used to fix the temperature of the lower metal block containing the
small chambers. The temperatures are measured and controlled by thermocouples
installed in both chambers.

Due to the large volume difference, it can be assumed that almost all changes in
the mixture composition occur in the small chamber. The katharometer method is
used to determine the composition in the bottom chamber. This method consists in
application of thermistors mounted in the bottom cell and in the reference cell. The
difference in the values shown by the thermistors indicates the composition gradient.

The thermal diffusion factor is determined by:

AZ TH
T
= ""m (2
“ 2122H<Tc)

where z; and z, are the initial concentrations of the mixture, Az is the mole frac-
tion gradient and Ty and T are the top-chamber (hot) and bottom-chamber (cold)

temperatures. The resulting thermal diffusion factor corresponds to the average
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temperature between the cells.

3.3.3 The two-chambers gas apparatus of Trengove et al.

A different chamber cell setup was designed by Trengove et al. [122] to measure the
thermal diffusion factor in gas mixtures. The original sketch of the apparatus is
shown in Figure 3.6.

The cell has cylindrical brass bulbs connected at either end, so that it is possible
to change them. The relaxation times depend on the volumes of the attached bulbs.
The valves located in ports (N) allow the gas mixture to enter the bulbs. The gas
mixture in the bulbs is isolated from the gas in the long separating tube (S) by
means of two stainless bellow valves (V) tolerating pressures up to 5 atmospheres.

The relaxation time for a particular pair of bulbs is measured by attaching a
thermal conductivity cell (T) to the lower end of the apparatus. This cell is removed
for the thermal diffusion experiments. The volumes of the cell bulbs are always
adjusted for pressures less than 1 atmosphere, for which the steady state is reached
within 12 hours.

A typical run starts by introducing the gas mixture in the cell through the valves
(N). The cell is put in an upside down position. The canopy (C) is attached to the
main cell frame through the holes (H). The cell is then turned into the right position
and lowered into a water thermostat up to the level (L), so that the bottom bulb and
the valve are immersed into the thermostat bath. After this, hot water from a second
thermostat is pumped through the canopy entering at (W1) and exiting at (W2) by
means of the oil pump attached at (P). The pressure of the jacket surrounding the
water in the canopy is reduced to 10~° Torr. The top valve can be closed, while the
hot water is circulating by means of an adjustable connector (E). The gas samples
in each bulb are isolated simultaneously once the steady state is reached. The cell
is removed from the thermostat bath. The canopy is removed and the content of
the top and bottom bulbs is analyzed. The concentration in each cell is determined

by digital volumeter-thermal conductivity.
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Fig. 1. Diagram of the thermal diffusion cell and canopy; see text for details.

Figure 3.6: The original two-chamber cell of Trengove et al. [122]
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Nylon Sleeve D
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Figure 2. Cross section of thermal diffusion cell: A, ground-glass
tubings; B, water jackets; C, diaphragm; D, nylon sleeve; E,
threaded nylon ring; F, G, magnetic stirrers; S, N, rotating magnets;
O, Orings. Inset at lower left shows the diaphragm assembly.

Figure 3.7: The original diaphragm cell of Shieh [115].

3.3.4 The diaphragm apparatus

This type of apparatus is also called the modified Stokes diaphragm cell. It was
originally designed for study any kind of membrane transport. The original sketch
of the setup used by Shieh [115] is shown in Figure 3.7.

The cell consists of one large glass tube (A) divided on two halves by a fine-
grade diaphragm (C). Each chamber has a volume of 16 milliliters. The diaphragm
is mounted in a nylon sleeve (D), so that it is simple to remove and to replace it.
A cylindrical nylon ring (E) is used to tighten the two chambers together. Two
stirrers, (F) and (G), are located inside each chamber and are rotated by cylindrical
magnets. By means of the diaphragm and the stirrers convection is avoided. The
temperature gradient is obtained by means of the two cylindrical water jackets (B).
Each half is inserted inside the jackets circulating hot water in the top jacket and
cold water in the bottom one. The temperatures of both chambers are measured
and controlled constantly near the diaphragm region.

An ordinary run starts by cleaning the cell by acetone and then filling it by the
mixture to be studied. The top stopcock is left open until the cell is finally mounted

on a platform and then extra fluid is removed. The stopcock is then closed. It takes
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Figure 1. The cell: (1) lateral boundary, cylinder in stainless steel; (2)
filing by 125 thin-walled stainless steel tubes; (3) lower plate; (4)
methane thermometer; (5-12) supports of the capacitors; (6-13)
lates of the capacitors; (7) quartz spacer: ¢ 0.05 mm; (8) stainless
steel wire ¢ 0.1 mm acting on spring 10; (9) insulator; (10) stainless
steel plates, 0.08 mm thick, used as spring; (11) heating wire.

Figure 3.8: The original 125 tubes cell of Longre et al. [71].

two days to reach steady state. The concentration in each chamber is determined

by liquid scintillation spectrometry.

3.3.5 The gas cell of Longree et al.

An alternative cell for measuring the thermal diffusion effect in gas mixture was
used by Longree et al. [71]. The original schema of the apparatus is shown in Figure
3.8.

The setup consists of a single chamber which is filled with 125 vertical thin-
walled stainless steel tubes. These tubes are used in order to avoid convection. A
liquid-nitrogen cryostat is used to work at various constant temperatures, obtaining
the thermal gradient by controlled electrical heating. The concentration gradient
obtained at the end of the run is measured by capacity variation using a liquid
solution as a dielectric medium. The concentration is measured in situ and therefore
the mole fraction can be studied as a function of time. The final concentration is

determined when steady state has been reached.
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FIG. 1. Principle of the trennschaukel or swing separator. A given num-
ber of tube/capillary pairs is connected top to bottom and the contained
gas mixture is swung to and fro by a pump. A temperature difference,
AT=Ty—T¢, is imposed across the n tubes by embedding the top ap-
proximately 1/3 of the tubes in an isothermal region at T and the
bottom 1/3 in another isothermal region at T'¢.

Figure 3.9: The swing separator cell of Clusius and Hubert [16].
3.4 The swing separator cell

This cell was developed by Clusius and Huber in 1955 [16]. The sketch of the cell is
shown in Figure 3.9.

The cell consists of a number of tubes (nuu.s) connected in a series. The top
part of each tube is immersed in the isothermal hot region and is connected by a
capillary to the bottom part of the next tube, which, in turn, is immersed in the
cold isothermal region. The gas mixture to be studied slowly circulates through the
tubes by means of a pump. The top part of a tube has the same concentration as
the bottom part of the next tube. The authors claim that convection is eliminated
by setting the temperature gradient vertically with the hot end (7%) at the top. The
separation factor of the components is multiplicative, therefore separation increases
with increase of the number of tubes. In the particular setup used by Taylor and
Hurley [118] the apparatus consisted of 20 tubes. Two solid nickel blocks were used
to transmit the temperature. A bellow pump was used to swing the gas mixture.

Explicit operational parameters were established by Taylor et al. [117] in order to
operate the device in an optimal way. Even though the setup is very simple, careful

considerations have to be made regarding operational times, pump period, pumped
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volume and pressure. The operational time has to be sufficiently long in order to
reach the steady state. Incorrect flow velocities can damage the experiments. If
the velocity is too slow, backward diffusion in the capillaries may appear. On the
other hand, if the velocity is too high, the thermal diffusion balance is perturbed.
The compositions at the hot and the cold end of the cell are measured at the end of
the experiment on a mass spectrometer. Corrections for back diffusion in capillaries
and for disturbances due to pumping are applied. Further, a third correction is
implemented taking into account approach to equilibrium. The final separation

factor, sp, is:

_ 1+ (Az(corr) /2 (Tc))
14+ (Azy(corr)/z(T¢))

sp
where zjand zy are the mole fractions of the light and heavy component species,
respectively. The experimental thermal diffusion facto is given by:

1 1
ol = n(sp)
Ntubes In (%)

c

where 1.5 is the number of stages (or tubes).

3.5 The thermal field-flow fractionation - ThFFF

This setup is employed nowadays as a separation technique similar to chromatogra-
phy. It is especially useful for solutions of large molecules [82]. Average molecular
weights of asphaltenes and their distribution in crude oil were investigated using
this type of apparatus [11]. The original sketch of the setup used by Janca is shown
in Figure 3.10.

The apparatus consists of two walls, the hot wall (1) and the cold wall (2),
clamped together by a polymer foil (3). The mixture to be studied flows through
a channel, which is cut in the foil. The lower plate is cooled by circulating ther-
mostated liquid (5). The upper bar is either heated by an electric cartridge or by
circulating liquid, as in the lower plate. Thermocouple holes (8) are located along

the plates to control and to measure the temperature during the experiment. The
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Figure 3. Schematic representation of the u-TFFF channel: 1, hot bar; 2, cold bar; 3, poly-
mer foil; 4, heating cartridge; 5, duct for cooling liquid; 6, inlet capillary; 7, outlet
capillary; 8, thermocouple holes.

Figure 3.10: The thermal field-flow fractionation apparatus of Janca [51].

liquid mixture enters the channel from the inlet capillary (6) and leaves it through
the outlet capillary (7). Two different types of exit capillary exist: a single nozzle
as shown in figure (3.10) and two exit nozzles which split the upper from the lower
part of the channel.

The principle of the ThFFF apparatus is that due to the temperature gradient
compositional flow appears towards the walls of the channel. Heavier molecules will
flow to the cold plate while lighter molecules will stay at the top. For the second
type of exit nozzle, the upper and the lower sections are divided and the composition
is determined by refractive index. When the exit nozzle is a single capillary, the
composition is determined by fractogram. The concept lying behind this is that
friction between large molecules and the walls slows down these molecules. The
compositional gradient is determined by the difference in average velocity due to

the spatial and temporal separation of different particles.

3.6 The thermal diffusion force Rayleigh scattering
- TDFRS

The holographic grating technique was first suggested by Allain et al. [1] and was

later developed by Kohler [57]. In the recent years this technique has become a reli-
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Figure 4. Schematic drawing of a thermal diffusion forced Rayleigh scattering (TDFRS) set:
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Figure 3.11: The TDFRS setup of Kohler [57].
able method to measure the Soret coefficient. This method has several advantages:
for example, neither external calibration is needed, no absolute intensity measure-
ments are required. Convection is also eliminated due to low temperature gradients
of several micro-Kelvin. Further, equilibration times are very short. A sketch of the
set-up is shown in Figure 3.11.

By means of the interference of two laser beams intersecting on the sample,
grating is created. The intensity of the laser light is converted into a temperature
gradient due to small amounts of dye dissolved in the sample. In turn, the temper-
ature gradient creates a concentration gradient due to the thermal diffusion effect.
Grating of the refractive index shows both the temperature gradient and the com-
positional gradient, which is read out by diffraction of a third laser beam. Analyzing
the time dependence, one can extract three transport coefficients: the thermal diffu-
sion coefficient DT, the translational diffusion D = 1/¢* and the thermal diffusivity
Dy, = 1/¢*ty,, where t and ty, are the the decay time of the thermal grating and
the delay time of the concentration grating correspondingly, and ¢ is the grating
vector magnintude determined each time when a TDFRS experiment is performed.
The Soret coefficient, St, is obtained as the ratio of the thermal diffusion coefficient
and the translational diffusion coefficient. These coefficients are all simultaneously

determined in one single measurement.
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3.7 The single-beam Z-scan or the thermal lens tech-
nique

Figure 3.12 illustrates a typical thermal lens setup. In this type of technique a single
laser beam is used for both heating and detecting. Any effect that creats variation
of the refractive index can be studied with this setup.

Gliglio and Vendramini [40] noticed that, when an intense narrow laser beam is
reflected in a liquid, beside the thermal expansion, the Soret effect appears. This
work showed the effect of the laser beam in binary mixtures compared to pure
liquids.

This technique for determination of the Soret coefficient is based on analyzing
the optical nonlinearities of the laser light. The sample cell is located along a single
focus gaussian laser beam (z axis). The light intensity is measured as a function of
the sample position (z). The temperature difference is created by space modulation
of the light intensity. In turn, due to the Soret effect, this temperature gradient gen-
erates a modulation of the nanograin volume fraction ¢. The temperature and the
volume fraction profiles are analyzed by the laser beam. It is possible to determine
two different diffracted intensities: I7 only for volume fraction modulation and IdT+¢
when both volume and temperature modulations take place at the same time, due

to the different evolution times. Alves et al. [2] derived the following equation for
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determining the Soret coefficient by this method:

T+ -1
% = 1-— Id¢ FTthal <8n>
I ¢ \ OT

where n is the refractive index of the sample, 7, is the relaxation time of the

temperature grating and F' is the pulse repetition rate.

3.8 The packed Soret cell and column

This technique was first used by Costeseque in 1982 [18]. It exists in two basic
geometries: as a cell and as a column. In the first case, the glass - (ZrO;) inert micro-
balls are packed between the two horizontal walls, maintained at the temperature
Ty, (hot) for the lower plate and T, (cold) for the upper plate. The second geometry
is basically identical to the thermogravitational column, but in this case the gap
between the hot and the cold walls is filled by the glass (ZrO,) inert micro-balls.
The original sketches presented by Costeseque et al. [19,20] are shown in Figure
3.13.

The packed cell requires a perfect vertical temperature gradient for effective
separation of the components. The cell is designed with lateral dimensions (b) and
(L) much larger than the thickness of the gap (a) to avoid convection. Therefore,
variations of the thermal gradient may be neglected in the center of the cell where
sampling is performed. The stationary state is considered to be achieved after five

times the characteristic time 6, which is estimated by:

CL2

ST

where a is the thickness of the gap and D* the isothermal diffusion coefficient.
Concentration is measured by the refraction index technique.

In the vertical geometry, convection effects are important. Flux of light molecules
going to the bottom (hot) is observed. Vice versa, heavy molecules flow to the top.

Due to the denser fluid located in the upper part of the column, instability arises.

However, a stationary state was achieved after 60 days.
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This technique is of special interest to the petroleum industry, since it is a first
approach to determine the thermal diffusion coefficient in porous media. It is im-
portant to emphasize that the actual Soret coefficient measured in the packed cell
and/or the packed column corresponds to the thermal diffusion coefficient in porous
media, but not in free space. However, Shaprio and Stenby [112] demostrated that
the thermal diffusion coefficient in macro porous media should be the same as in
bulk fluids. Desagreement existing between the theory and the experiments should

further be studied.

3.9 The Benard-configuration cell

This type of cell consists of the two heat-conducting horizontal plates, which are
made from a massive sapphire. Spacers and O-rings are used to form a gap between
the two sapphires. The mixture is located in this gap. The sapphire walls present the
advantages of optical access and good thermal conducting properties. The Peltier
elements connected to the sapphire create the temperature gradient.

Stability of colloidal suspensions with negative Soret coefficient were studied
with this apparatus [12]. Convective flow inside the cell was analyzed by means of
the shadowgraph technique, which gets images of the mixture by an out-of-focus
condition. Perturbations of the refraction index are observed as bright and dark
zones, indicating oscilating behavior. No values for the thermal diffusion coefficient

have been reported using this method yet.

3.10 Comparison of different methods

In measurements of the thermal diffusion coefficients, it is difficult to avoid convec-
tion. Discrepancies between different measurements have been attributed mainly
to this effect. Convection depends on geometry, dimensions of the setup as well
as the material of the cell walls. The Soret effect is very small compared to other
transport phenomena. It is therefore necessary to apply large temperature gradi-

ents to be able to observe this effect experimentally. Density variations due to the
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temperature gradient can induce thermo-solutal Rayleigh convection. The resulting
re-mixing may be very effective, leading to no compositional gradient inside the cell
like for example in some of the experiments performed by Prigogine [93,94].

Several ways have been suggested to avoid convection. As was already seen in
section 3.2, the LDV technique determines the Soret coefficient during the transient
time before convection can influence the results. Several setups are designed with
very small gaps between the hot and the cold wall. In this way convection is reduced
significantly, and its effect may be neglected. The TDFRS technique works with
thin cells under very small temperature gradients and, therefore, convection is also
neglected. The diaphragm cell is used mainly because of the possibility to avoid
remixing. However, it has been shown [24] that the porous medium has an active
action on the separation process. The temperature dependence of the porous solid
surface is not well known and it could be of the order of the Soret effect. A similar
effect may be observed when using capillaries to connect the cells, since wall effects
may affect the final value of the Soret coefficient.

Five different experimental setups were used to measure the thermal diffusion
effect for three organic mixtures [87]. This project was called the Fountain bleau
Benchmark test. It was shown that the results obtained by different methods differ
from each other by at most, 8.5 percent. The largest difference was obtained with the
TGC method by Bou-Ali et al. [9]. The results in that work were obtained as mean
values for four different columns, with larger or smaller gaps between the cold and
the hot wall. The authors observed differences in the value of the Soret coefficient,
depending on the gap. Further, the LDV technique [86] failed for mixtures where the
separation factor is small due to creation of enhanced buoyancy. It was also pointed
out that the values obtained by application of the packed cell (porous medium)
present uncertainties in the value of tortuosity. The thermal diffusion coefficient
obtained by this technique presents high deviations from other results.

Many experimental setups have been used to measure the thermal diffusion effect.
However there are still some disagreements between the results. A major poryect [24]
is being conducted by the European Space Agency and several research groups to

measure the thermal diffusion effect under microgravity conditions. It is believed
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that performing the experiments under this condition, convection is totally avoided.
Nevertheless, it is important to perform these measurements with a reliable setup
to avoid perturbations during the flight. This project is being carried out at the
present time and the flight is expected to be launch in 2005. We believe that as
a result of these experiments it will be possible to establish, what corrections are
needed (for convection perturbations), when measuring the thermal diffusion effect

on the Earth.
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Chapter 4

Calculations for Binary Mixtures

The available expressions for the thermal diffusion factor have been compared with
different sets of experimental data for binary systems. Diversity of the experimental
data requires implementation of different equations of state suitable to determine
the thermodynamic properties needed for the calculations. In this chapter we com-
pare sets of experimental systems found in the literature with the different models
presented in Chapter 2. The results are presented in the two sections: the first one,
where for four binary mixtures several EoS are used, and the second section, where

we compare different models by analyzing the errors of calculation.

4.1 Sets of experimental data

There is a large amount of experimental data for thermal diffusion coefficients.
Among them, we analyzed only the data presented by numbers, not by plots. Exper-
imental data for several isotopic mixtures have been reported in the literature, but
we do not include them in our analysis. The binary mixtures selected for comparison
with the models are presented in Table 4.1, where setup used for measurement is

also specified.

51
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Table 4.1: List of binary mixtures, experimental setup and references found in the
literature for the thermal diffusion effect.

‘ ‘ Substance 1 ‘ Substance 2 Setup ‘ Reference ‘
1 Methane n-Butane Diaph-cell [101]
. Diaph-cell [121]
2 Benzene Carbon Tetrachloride ThFFF (6]
2Chamber [62]
3 Benzene n-Hexane P-TGC i8]
4 Benzene i-Heptane C-TGC [125]
2Chamber [62]
5 Benzene n-Heptane P-TGC 8]
C-TGC [125]
6 Benzene n-Octane 2Chamber [62]
7 Benzene n-Decane C-TGC [125]
2Chamber [62]
9 Benzene n-Tetradecane C-TGC [125]
10 Benzene n-Hexadecane C-TGC [125]
11 Benzene n-Octadecane C-TGC [125]
12 Benzene Cyclohexane Diaph-cell [121]
13 Benzene Nitrobenzene P-TGC [93]
14 Benzene Chloro Benzene P-TGC [93]
15 | Carbon Disulfide | Carbon Tetrachloride | P-Diaph-cell [98]
16 | Carbon Disulfide Benzene P-Diaph-cell [98]
17 | Carbon Disulfide 2 Methylpentane PI?IID?:LE;(L*BH [[12083]
. . Diaphr-cell 28
18 | Carbon Disulfide | 2,2 Dimethyl Butane P—Dilz)iph—cell [[IOJJ
. . Diaph-cell 28
19 | Carbon Disulfide | 2,3 Dimethyl Butane P_Diaph-cell [[1 03]
20 | Carbon Disulfide 3 Methyl Pentane P?;;:ZE;EEH [[12083]
. Diaph-cell [28]
21 | Carbon Disulfide n-Hexane P_Diaph-cell [99, 100]
22 | Carbon Disulfide n-Heptane P-Diaph-cell [99]
23 | Carbon Disulfide n-Octane P-Diaph-cell [99]
24 | Carbon Disulfide m-Xylene Diaph-cell [28]
25 | Carbon Disulfide o-Xylene Diaph-cell [28]
26 | Carbon Disulfide p-Xylene Diaph-cell [28]
27 | Carbon Disulfide | Isobutyl Chloride Diaph-cell [27]
28 | Carbon Disulfide Ethyl Benzene Diaph-cell [28]
29 | Carbon Disulfide Chloro Benzene P-Diaph-cell [98]
30 | Carbon Disulfide Bromo Benzene P-Diaph-cell [98]
31 | Carbon Disulfide Ethyl Todine P-Diaph-cell [98]
32 | Carbon Disulfide | 1,1 Dichloro Ethane Diaph-cell [28]




4.1. Sets of experimental data 53
Substance 1 Substance 2 Setup Reference
33 Carbon Disulfide 1,2 Dichloro Ethane Diaph-cell (28]
34 Carbon Disulfide cis-Dichloro Ethylene Diaph-cell [28]
35 Carbon Disulfide trans-Dichloro Ethylene Diaph-cell [28]
36 Carbon Disulfide n-Butyl Bromide P-Diaph-cell [98]
Diaph-cell [27]
37 Carbon Disulfide n-Butyl Chloride
P-Diaph-cell [98]
38 Carbon Disulfide n-Butyl Iodide P-Diaph-cell [98]
39 Carbon Disulfide sec-Butyl Chloride Diaph-cell [28]
40 Carbon Disulfide t-Butyl Chloride Diaph-cell [28]
41 Carbon Tetrachloride Carbon Tetrabromide Diaph-cell [27,108]
42 Carbon Tetrachloride 1,1,2,2tetrachloro Ethane Diaph-cell [108]
43 Carbon Tetrachloride 1,1,2,2tetrabromo Ethane Diaph-cell [108]
Diaph-cell [121]
44 Cyclohexane Carbon Tetrachloride
ThFFF [65]
45 Cyclohexane n-Hexane P-TGC [93]
46 n-Pentane n-Decane TDFRS [84]
47 n-Hexane Carbon Tetrachloride P-TGC [8,93]
48 n-Heptane Carbon Tetrachloride P-TGC (8]
49 n-Hexane Nitrobenzene prae 31}
ThFFF [120]
50 n-Hexane Toluene P-TGC 18]
51 n-Hexane 1,1,2,2tetrachloro Ethane Diaphr-cell [109]
52 Toluene n-Heptane P-TGC [8]
53 n-Heptane 1,1,2,2tetrachloro Ethane Diaph-cell [109]
54 n-Heptane n-Dodecane C-TGC [125]
55 n-Heptane n-Tetradecane C-TGC [125]
56 n-Heptane n-Pentadecane C-TGC [125]
57 n-Heptane n-Hexadecane Diaphr-cell [115]
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58 n-Heptane n-Octadecane C-TGC [125]
59 i-Heptane n-Dodecane C-TGC [125]
60 i-Heptane n-Hexadecane C-TGC [125]
61 o-Xylene m-Xylene P-TGC [93]
62 1,2 Dichloro Ethane 1,2 Dibromo Ethane Diaphr-cell [108]
63 n-Octane 1,1,2,2tetrachloro Ethane Diaphr-cell [109]
64 n-Nonane 1,1,2,2tetrachloro Ethane Diaph-cell [109]
65 1,1,2,2tetrachloro Ethane n-Tetradecane Diaph-cell [109]
66 | 1,1,2,2tetrachloro Ethane n-Octadecane Diaph-cell [109]
Diaph-cell [108]
67 1,1,2,2tetrachloro Ethane 1,1,2,2tetrabromo Ethane
ThFF [64]
Diaph-cell [108]
68 1,1,2,2tetrachloro Ethane Carbon Tetrabromide
P-TGC [64]
LDV [86]
Pk-TGC [19]
69 | 1,2,34tetrahydronaphtalene n-Dodecane P-TGC [9]
TDFRS [69]
TDFRS [130]
LDV [86]
Pk-TGC [19]
70 | 1,2,3,4tetrahydronaphtalene isobutylbenzene P-TGC 9]
TDFRS [69]
TDFRS [130]
LDV [86]
Pk-TGC [19]
71 Isobutyl Benzene n-Dodecane P-TGC [9]
TDFRS [69]
TDFRS [130]
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Diaph-cell [121]
80 Methanol Benzene P-TGC [94]
ThFFF [68]
2Chambers (6]
81 Methanol Carbon Tetrachloride
Diaph-cell [121]
82 Ethanol Cyclohexane P-TGC [94]
83 Ethanol Triethylamine Diaph-cell [121]
Diaph-cell [80,121]
84 Water Methanol
ThFFF [65]
Diaph-cell [80,121]
LDV [30]
85 Water Ethanol
Pk-cell [20]
ThFFF [65]
86 Water Diethylamine Diaph-cell [121]
87 Water 2 Propanol Diaph-cell [20]
88 Ethanol Diethylamine Diaph-cell [121]
92 n-Butyl Alcohol Carbon Disulfide Diaph-cell [28,121]

The input data are presented in Appendix A, where the sources are also listed.

In order to calculate the thermodynamic properties of the mixtures, we used
the SRK (Soave-Redlich-Kwong) and the PR (Peng-Robinson) equations of state
[75]. These EoS show good performance for hydrocarbon mixtures. However, these
equations are imprecise when used for prediction of the molar volumes. Therefore,
in our first calculations we implemented two different methods for evaluation of the
partial molar volumes: the Peneloux correction [83] and a method based on the
principle of corresponding states [75].

In the second set of calculations we used only the SRK and the PR equations
of state for mixture 1 to mixture 71 and the CPA (Cubic plus association) EoS [59]
for mixture 80 to mixture 92. These last mixtures contain at least one alcohol
component. Even though it has been shown that the EoS has a large influence on

the estimation of the thermal diffusion factor [42, 53], we restricted ourselves with



4.2. Results 56

these three EoS. Ohterwise, the amount of computation could be too large, without

bringing really new results.

4.2 Results

Here we present the calculations performed for four binary mixtures. We compare
the impact of different equations of state on the calculation of the thermal diffusion
factor. In the next section we compare ten different models, using only the SRK,
PR and CPA EoS, according to explanations mentioned in the previous section.

The notation used in the plots is specified in Table 4.3.

Table 4.3: The models tested in the calculations

Notation ‘ ‘ Equation ‘ Reference ‘
aEXP Experimental thermal diffusion factor -
QRD54A Rutherford - Drickamer 1954 A 2.36 [98]
QRD54A Rutherford - Drickamer 1954 B 2.37 98
apDs5A Dougherty - Drickamer 1955 A 2.40 27
QppssB Dougherty - Drickamer 1955 B 2.47 [28]
arrose | Tichacek - Dougherty - Drickamer 1956 2.44 [121]
QSHI69 Shieh 1969 2.45 [115]
CUH AA69 Haase 1969 2.49 [44]
QK EMS9 Kempers 1989 2.51 [52]
QSHF98 Shukla - Firoozabadi 1998 2.50 [116]
QK EMO2 Kempers 2002 2.52 [53]

4.2.1 Evaluation of the Thermal diffusion factor with differ-

ent equations of state

Seven thermodynamic models for the thermal diffusion factor were tested: the
Rutherford and Drickamer (A), arpsia; the Dougherty and Drickamer appssa; the
Dougherty and Drickamer appssp; the Haase agaae9; the Shukla and Firoozabadi
aspros; the Kempers agpiysg; and, finally the Kempers aggpo2. See table 4.3 for

details.
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Four sets of experimental data were choosen for this analysis: n-Pentane -+ n-
Decane [84], Benzene + Cyclohexane [27], Methane + Propane [45], Methane +
n-Butane [101].

4.2.1.1 n-Pentane + n-Decane

Figure 4.1 shows the results obtained for three different compositions of this mixture
at 300.15 K and atmospheric pressure. Thermodynamic properties are calculated
by the SRK EoS (plots (a), (c) and (e)), and the PR EoS ((b), (d) and (f)). The
Peneloux correction was used in plots (¢) and (d). Plots (e) and (f) are produced

with application of the principle of corresponding states.

The models predicting the correct sign are those of Rutherford and Drickamer
(2.36) and Haase (2.49). Equation (2.36) overestimates the thermal diffusion ratio,
while the Haase model, equation (2.49), gives the best approximation, with an av-
erage deviation of 19.85 per cent. The Kempers equations (2.51) and (2.52) behave
differently, depending on an EoS used. When the SRK EoS is applied, both Kem-
pers models give the wrong sign for the thermal diffusion ratio. When the PR EoS is
applied, both Kempers models give the correct sign, but underestimate the thermal
diffusion factor. As regards to the thermodynamic models, the PR EoS provides
generally better results than the SRK EoS. The volume corrections are not always
useful. For example, there was a negative effect when the Peneloux correction was
applied together with the SRK EoS. The Kempers thermal diffusion factor notice-
ably decreased, moving out from the measured values. The volume correction based
on the method of corresponding states slightly improved the results for some of the
models, while it had a negative effect on some other ones. In the case of the Haase

model, no change is observed when the volume corrections are applied.

4.2.1.2 Benzene + Cyclohexane

Measurements of the thermal diffusion factor for this mixture were carried out by

Dougherty and Drickamer [27] at 313K and atmospheric pressure, at three different
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Figure 4.1: Comparison between experiments and calculations for the thermal diffu-
sion factor for n-Pentane - n-Decane mixture at 300.15K and atmospheric pressure
using different equations of state. The measured values are denoted by a_ EXP; the
Rutherford and Drickamer model is represented by a_ RD&54a; the Dougherty and
Drickamer first model by a DDb5a; the Dougherty and Drickamer second model
by a DD55b; the Haase model by a HAAG9; the Shukla and Firoozabadi by
a_ SHF98; the Kempers from 1989 by a KEMS89; and finally the Kempers from
2002 by a_ KEMO02.
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concentrations. The results of comparison of the measured points with our simula-
tion are shown in Figure 4.2, which is organized in the same way as Figure 4.1.
For this mixture, the models of Rutherford and Drickamer (2.36) and of Dougherty
and Drickamer (2.47) are not able to predict correct sign of the thermal diffusion
factor. Among the models predicting the right sign, the models of Shukla and Firooz-
abadi (2.50) and of Haase (2.49), are the most precise. The average deviation for
the best model (2.50) is around 6.84 %. As in the previous case, application of the
PR EoS is more advantageous than that of the SRK EoS. The Peneloux corrections
do not affect accuracy of the results when used with the PR EoS. However, when
they are used with the SRK EoS, the calculated values move away from the ex-
perimental data. The method of corresponding states presents some improvements
when applied to some of the models, as for example, to both of Kempers models.
However, for the model of Shukla and Firoozabadi, the results are moving away from

the experimental values.

4.2.1.3 Methane + Propane

The measurements were carried out under near-critical conditions, at 346.08K and
5.6 MPa at seven different mole fractions of methane. The experimental data were
obtained by Haase et al. [45]. Comparison of the measured points with our simula-
tions is shown in Figure 4.3, which is organized in the same way as Figures 4.1 and

4.2.

For this mixture the models of Rutherford and Drickamer (2.36), and both models
of Dougherty and Drickamer (2.40) and (2.47), are not able to predict the correct sign
of the thermal diffusion factor. As far as the rest of the models are concerned, those
of Haase (2.49) and Shukla and Firoozabadi (2.50) are the closest to experimental
data. The average deviation for the best model (2.50) is around 43.93 %, which is
still high. This may be explained by the fact that the classical equations of state,
which are used in this study, do not perform well close to critical points. Some
models perform very well for the low mole fractions of methane, as for example the

Kempers models (2.51) and (2.52). However, for higher mole fractions of methane
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Figure 4.2: Comparison between experiments and calculations for the thermal dif-
fusion factor for Benzene - Cyclohexane mixture at 313K and atmospheric pressure
using different equations of state. The measured values are denoted by a_ EXP; the
Rutherford and Drickamer model is represented by a_ RD&54a; the Dougherty and
Drickamer first model by a DD55a; the Dougherty and Drickamer second model
by a DD55b; the Haase model by a HAA69; the Shukla and Firoozabadi by
a_SHF98; the Kempers from 1989 by o KEMS89; and finally the Kempers from

2002 by a_ KEM02.
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Figure 4.3: Comparison between experiments and calculations for the thermal diffu-
sion factor for Methane - Propane mixture at 346.08 K and 5.6 MPa using different
equations of state. The measured values are denoted by a EXP; the Rutherford and
Drickamer model is represented by a RD54a; the Dougherty and Drickamer first
model by a_ DDb5a; the Dougherty and Drickamer second model by a_ DD55b; the
Haase model by a_ HAA69; the Shukla and Firoozabadi by a_ SHF98; the Kempers
from 1989 by a_ KEM89; and finally the Kempers from 2002 by o KEM02.
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these models move away from the experimental values. The Shukla and Firoozabadi
and the Haase models provide very good approximation for high mole fractions, but
are not that close for low mole fractions. Concerning the equations of state, some
models perform better when the SRK EoS is used and some others when the PR
EoS is applied. The Peneloux correction does not improve the results when applied
with the PR EoS, however, for the SRK EoS, a major improvement is observed for
one of the best models (2.50). On the other hand, the Peneloux correction has a
negative effect on the Haase correlation (2.49). The volume correction based on the
method of corresponding states improves the results when applied with the SRK
EoS. However, its effect for the model (2.50) is not as good as the effect of the
Peneloux correction. The Dougherty-Drickamer model (2.47) is not shown on the

plot since the results are completely out of range.

4.2.1.4 Methane + n-Butane

The measurements were carried out by Rutherford and Roots [101] for a single com-
position (40 molar percent of methane), but different pressures and temperatures.
Comparison of experimental and calculated thermal diffusion factors for different

thermodynamic conditions (29 data points) is shown in Tables 4.4 to 4.9.

The models of Haase (2.49), Shukla and Firoozabadi (2.50), and both Kempers
models (2.51) and (2.52) predict correctly the sign of the thermal diffusion factor,
while the Rutherford and Drickamer (2.36) and both Dougherty and Drickamer
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4.2. Results

Table 4.4: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures and

pressures using the SRK equation of state
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4.2. Results

Table 4.5: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures and

pressures using the SRK equation of state and the Peneloux correction.
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4.2. Results

Table 4.6: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures and
pressures using the SRK equation of state with the corresponding states volume

correction.
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4.2. Results

Table 4.7: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures and

pressures using the PR equation of state.
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4.2. Results

Table 4.8: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures and

pressures using the PR equation of state and the Peneloux correction.
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4.2. Results

Table 4.9: Comparison of the calculated and experimental thermal diffusion factors

for the mixture of Methane (0.4) and n-Butane (0.6) for different temperatures
and pressures using the PR equation of state and the corresponding states volume

correction.
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models (2.40), (2.47) do not predict the right sign. For this system the Haase model
with the SRK EoS and Peneloux corrections performs better than other models,
with an average deviation of around 10.62%. The best-fitted experimental points,
with the deviations within 20%, are marked bold in Tables 4.4 to 4.9. The cells
marked with italic font correspond to the values that do not predict the correct
sign for the thermal diffusion factor. Comparing the equations of state, we observed
that the SRK EoS provides better results. The Peneloux correction, again, gives no
significant improvement when used with the PR EoS. However when this correction
is used with the SRK EoS, the results obtained with the Haase model (2.49) and
Shukla and Firoozabadi (2.50) are significantly improved. The volume correction
based on the corresponding states model slightly improves the results for the models
of Shukla and Firoozabadi (2.50) and both Kempers approaches (2.51) and (2.52);

however it is not as good as the Peneloux correction.

4.2.2 Other sets of binary mixtures

We extended the calculations described above to additional sets of binary mixtures.
The results are diveded into two parts: the first part where the components are not
alcohols (mixture 1 to the mixture 71), and the second part, where at least one of
the substances is an alcohol (mixture 80 to mixture 92). We implemented three
EoS to determine the thermodynamic properties, as described above. The results
were analysed in terms of correct sign of the thermal diffusion factor and of the
average deviation. For the mixture of Benzene + n-Heptane (mixture 5) we report
comparison between the models and the three sets of experimental values presented
in the literature. In the second part we present different results obtained for the
mixture of Methanol + Benzene (mixture 80).

Appendix B contains all the results obtained for each mixture of Table 4.1 using

the models specified in table 4.3.

4.2.2.1 Mixtures without alcohol components

First we analysed, which of the models was capable of correctly determining the

sign for the thermal diffusion factor. We found that the Haase model, equation
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(2.49), was able to predict the correct sign for 50 mixtures out 71 mixtures. The
Rutherford and Drickamer models, equation (2.36) and equation (2.37), did so for
49 mixtures followed by Dougherty and Drickamer first model, equation (2.40), with
38 mixtures. Both of Kempers approaches, equation (2.51) and equation (2.52) and
the Shukla and Firoozabadi model, equation (2.50) estimated the correct sign for 36
mixtures. The second approach of Dougherty and Drickamer model, equation (2.47),
and the Tichacek model, equation (2.44), estimated the correct sign for 35 mixtures
and, at last, the Shieh model, (2.45), did so only for 34 mixtures. For most of the
mixtures, when the models of Dougherty and Drickamer, Tichacek et al. and Shieh
estimated the correct sign, both models of Kempers and Shukla and Firoozabadi
did not, and vice versa. On the other hand, the Rutherford and Drickamer and the
Haase equations do not seem to follow any particular behavior with respect to other
models. Furthermore, both approaches of Rutheford and Drickamer exhibit change
of sign for some mixtures. In some cases the changes are expected, in comparison
with the experimental data, and in some other cases are not.

We analysed which of the models gave the smallest standard deviation error.
The results obtained show that in most of the cases Rutherford and Drickamer
model, equation (2.36), had the smallest error for 21 mixtures out of 71, while their
second model, expression (2.36), presented the smallest error for 9 mixtures. The
Shukla and Firoozabadi model (2.50) and the Haase model (2.49) gave the smallest
deviations for 13 and 11 mixtures, correspondingly. The model of Dougherty and
Drickamer, equation (2.40), gave the smallest error for 13 mixtures. For the case
where this model gave the best approximation, generally the models of Haase, Shukla
and Firoozabadi, and Kempers failed. It has to be remarked that for some mixtures
even the smallest error remains very large, of the order of 10° percent.

Some very good approximations were obtained for the mixture of Toluene + n-
Heptane (mixture 52) for which the model of Shukla and Firoozabadi gave a standard
deviation of 5.6% with the SRK EOS. The Rutherford and Drickamer model gave
standard deviations of 4.19% (with the SRK EoS) and 3.91% (with the PR EoS)
for the mixtures of Isobutyl-benzene + n-Dodecane (mixture 71). The model of

Haase, equation (2.49), gave a standard deviation of 0.89% for the mixture of n-
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Table 4.10: Experimental thermal diffusion factor reported for the mixture of Ben-
zene + n-Heptane (mixture 5) by three different sources, Trevoy and Drickamer [124],
Korsching [62] and Bou-Ali et al. [8].

‘ Trevoy and Drickamer [124] ‘ Korsching [62] ‘ Bou-Ali et al. [§] ‘

ZBenzene T OBup | ZBenzene T Oup | #Benzene T | af,

0.5 296.10 -1.19 0.1 308.70 | 0.69 0.1 298.00 | 0.92
0.5 306.20 -1.20 0.2 308.70 | 0.75

0.5 321.35 -1.06 0.3 308.70 | 0.84 0.3 298.00 | 1.03
0.5 337.10 -1.14 0.4 308.70 | 1.00

0.5 306.35 -1.24 0.5 308.70 | 1.21 0.5 298.00 | 1.48
0.5 306.55 -1.28 0.6 308.70 | 1.41

0.7 308.70 | 1.56 0.75 298.00 | 2.06

0.8 308.70 | 1.83 0.8 298.00 | 2.19

0.9 308.70 | 2.02 0.9 298.00 | 2.47

Heptane + n-Octadecane (mixture 58) with the PR EoS. The models of Kempers,
equation (2.51) and eqution (2.52), gave standard errors of 3.76% and 3.75% for
the system Benzene + Carbon Tetrachloride (mixture 02) with the SRK EoS. For
the system n-Heptane + n-Pentadecane (mixture 56) the smallest errors were also
obatined with the first and second model of Kempers models with 10.78% and
10.58% correspondingly, with the SRK EoS in both cases. Finally, we found that
the model of Shukla and Firoozabadi, equation (2.50), gave an error of 5.6% for
the mixture Toluene + n-Heptane (mixture 52) with the SRK EoS. The system of
Tetrahydronaphtaline + n-Dodecane presented good approximation both with the
Haase model (3.84%) and for the Shukla and Firoozabadi model (5.96%) with the
SRK EoS.

Some data for the same mixtures were measured using different experimental
techniques. We noticed in some cases inconsistencies between the experimental val-
ues. In particular, we found that for the mixture of Benzene + n-Heptane (mixture
5) the measurements performed by Trevoy and Drickamer [125] present an oppo-
site sign from those reported by Korsching [62] and Bou-Ali et al. [§]. The results
obtained by the three different research groups are reported in Table 4.10.

We have compared each of the three experimental sets presented in Table 4.10

with different models. Figure 4.4 shows the obtained results. The notation used
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in the plots follows the specifications given in Table 4.3. Plots (a) and (b) present
the results in comparison with the experimental data of Trevoy and Drickamer.
The results are plotted as functions of the temperature. Plots (c) and (d) show
comparison with the experimental data of Korsching. The results are presented as
functions of the mole fraction. Finally, plots (e) and (f) shows the results for the
conditions given by Bou-Ali et al. They are also plotted as functions of the mole
fraction.

The models of Rutherford and Drickamer (2.36) and (2.36), Haase (2.49), Shukla
and Firoozabadi (2.50) and both of Kempers models (2.51) and (2.52) predict pos-
itive thermal diffusion factor for this mixture. On the contrary, both models of
Dougherty and Drickamer (2.40) and (2.47), Tichacek et al. (2.44) and Shieh (2.45)
predict negative thermal diffusion factor. The models of Shukla and Firoozabadi
(2.50) and Rutherford and Drickamer (2.36) provide the best approximation in com-
parison with Korsching and Bou-Ali et al. data. On the other hand, the model of
Dougherty and Drickamer (2.40) provides the best approximation in comparison
with Trevoy and Drickamer data [125]. We believe that the last reported values by
Korsching [62] and Bou-Ali et al. [8] are more reliable than those reported by Trevoy
and Drickamer [125]. One would expect for all the mixtures containing Benzene +
n-Alcane, where the n-Alcane is of higher density than Benzene, to have a positive
thermal diffusion factor. The results presented by Trevoy and Drickamer [125] show
exactly the opposite (mixtures 05, 07, 08, 09, 10 and 11).

The thermal diffusion factor for 26 mixtures containing carbon disulfide have
been reported [28,98,99]. Comparing the experimental values with those calculated
by different models, we see that the best model is the one of Rutherford and Drick-
amer, which can predict the correct sign for 21 mixtures and has the lowest standard
error. However, this model presents an unexpected change of sign for some systems,
as for example the mixtures with Benzene (mixture 16), Bromo-Benzene (mixture
30), n-Butyl Bromide (mixture 36) and n-Butyl Chloride (mixture 37). The model
of Haase predicts the correct sign for 17 mixtures and the Shukla and Firoozabadi
model and both of Kempers approaches can predict the correct sign for 15 mixtures.

The Shukla and Firoozabadi model, equation (2.50), is the best between these four
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Thermal diffusion factor for Benzene +n-Heptane Mixture using SRK Thermal diffusion factor for Benzene +n-Heptane Mixture using PR
Trevoy and Drickamer experimental data Trevoy and Drickamer experimental data
10 * abp 8 )
8 |——a_RD54A 6 |——a_RD54A
6 a_AD54B 4 a_RD54B
4 a_DD55A a_DDSSA
N |—a_DDS558 2 |—a_DDS5B
. a_TICS6 0 a_TICS6
= - Y Py |—a_sHiss 2 . > < ® | |—asHieo
2 ——a HAAGY ——a_HAABY
- ——a Kemss “ ——a_Kemso
6 —a_sHFos 0 —a_sHFos
. |—a_kemoz s |—a_kemoz
10 10
200 285 300 305 810 315 320 25 330 335 340 200 285 300 305 810 315 %20 325 330 3% 340
Temperature (K) Temperature (K)
Plot (a) Plot (b)
Thermal diffusion factor for Benzene +n-Heptane Mixture using SRK Thermal diffusion factor for Benzene +n-Heptane Mixture using PR
Korsching experimental data Korsching experimental data
hd * aEn 10 * abxp
0 —a_RDS4A |—a_RD54A
a_AD54B 5 a_RD548
5 /__ a DDSSA — a_DDs5A
—a_DDs58 o —— | |—aoDosse
0 - + > - > v ¥ 4 a TICss a TiCs6
—a_SHIeY 5 - |—a_sHies
5 ——a HAAGY —a_HAAGY
——a_KEMBY e ——a_KEM89
-0 - —a_sHFos o |—a_sHF98
—a_kewmoz |—a_kemoz
15 15 —
0 o1 02 03 04 05 06 07 08 08 1 0o o1 02 03 04 05 06 07 08 09 1
Mole fraction of lightest component Mole fraction of lightest component
Plot (c) lot (d)
Thermal diffusion factor for Benzene +n-Heptane Mixture using SRK Thermal diffusion factor for Benzene +n-Heptane Mixture using PR
Bou-Ali et al. experimental data Bou-Ali et al. experimental data
1 v abe 10 * abe
o —a_RD54A —a_RDS4A
a_RD548 5 a_RD54B
5 —// a_DDS5A 53— a DD35A
= —a_0Ds58 0 —a_DDs58
0 o= ¥ - a_TICs6 aTicss
e — —a_sHiee s —a_SHieo
5 ——a HAAGY ——a HAAS
S ——a KEMB9 = ——a KEMS9
10 — 10 S
—_— —a_sHFs —a_sHFos
—a kewmoz —a Kemoz
15 15
o o1 02 03 04 05 06 07 08 09 1 0o o1 02 03 04 05 06 07 08 09 1
Mole fraction of lightest component
Plot (e) Mole fraction of ightest component
Plot (f)

Figure 4.4: Comparison between experiments and calculations for the thermal dif-
fusion factor for Benzene - nHeptane mixture reported by three different sources.
The measured values are denoted by a EXP; the Rutherford and Drickamer model
is represented by a RDJ&ja; their second model by a RD54b; the Dougherty and
Drickamer first model by a_ DD55a; the Dougherty and Drickamer second model by
a_DD55b; the Tichacek et al. model by a_ TIC56; the Shieh model by a_ SHI69;
the Haase model by a_ HAA69; the Shukla and Firoozabadi by a_ SHF98; the Kem-
pers from 1989 by a_ KEM89; and finally the Kempers from 2002 by a_ KEMO02.
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Table 4.11: Results obtained from different models for the mixtures where one of
the components is alcohol.

Model Components Mixtures ‘ Error ‘
Water + 2-Propanol 87 28.98 %
Ethanol + Diethylamine 88 51.94 %
Rutherford and Drickamer Ethanol + Triethylamine 83 80.84 %
Water + Ethanol 85 181.7 %
Water + Methanol 84 203.8 %
Methanol + Benzene 80 597.6 %
Methanol + Carbon Tetrachloride 81 66.70 %
Shukla and Firoozabadi Ethanol + Cyclohexane 82 98.40 %
Water + Diethylamine 86 373.1 %
Douherty and Drickamer 2-Butanol + Carbon Disulfide 92 65.70 %

expressions, followed by the Haase model. The rest of the models, both of Dougherty
and Drickamer, Tichacek et al. and Shieh, can only predict the correct sign for 13
mixtures. The model of Dougherty and Drickamer, equation (2.40), gives the best

approximation among these last expressions.

4.2.2.2 Mixtures with alcohol

Thermodiffusion factors of ten mixtures containing an alcohol compound were com-
pared with experimental values. As mentioned before, only the CPA EoS was used
to determine the thermodynamic properties. The results obtained for these mixtures
are more difficult to analyze. It was noticed that the experimental values change
sign depending on the concentration (mixtures 82 and 84). For mixture 86 the mod-
els present change of sign, contrary to the experimental data. We have evaluated
the models in terms of the lowest error. However, the errors still remain very large.
Table 4.11 details the results for each of the models.

The Ethanol + Cyclohexane mixture (mixture 82) exhibits a change of sign in
the experiments and this can not be predicted by any of the models. The Water
Methanol mixture (mixture 84) exhibits a change of sign both in the experimental
and in the calculated values. However, these changes of sign do not correspond to

each other.
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Legros et al. [68] compared different sets of experimental data found in the
literature for the mixture Methanol + Benzene (mixture 80). Figure 4.5 presents
in plot (a) the experimental values reported by Legros et al. Plot (b) shows the
results obtained with different models. Large disagreement can be noticed between
the experimental data from different sources, as well as between the models.

Some of the data exhibits change of sign for high concentrations of Methanol.
None of the models is capable of predicting this effect. The tendency is not repro-
duced, either. In particular, the values obtained by Thomaes are much smaller than
other experimental values. No sign agreement for this mixture can be establised.
Therefore, the only conclusion with regards to this mixture is complete indefiniteness

of the information available.

4.3 Conclusions

The analysis leads to the conclusion that, although if none of the models correctly
describes the thermal diffusion factor for all the mixtures, we can use the Haase
expression, equation (2.49), as a first estimation. One can see that the Haase model
is the best for the systems of n-Pentane + n-Decane and Methane + n-Butane. For
the systems of Benzene + Cyclohexane and Methane + n-Propane the best approach
is that of Shukla and Firoozabadi (2.50). However, for the last two systems the
Haase model gives good approximation as well. The Kempers model is capable to
correctly predict the sign of the thermal diffusion factor; however, it overestimates
its value with respect to the experimental data. One may conclude that the Haase
model provides generally reasonable and stable results. The Shukla and Firoozabadi
and the Kempers models may be better for some systems or experimental values,
however, they may give large errors for other systems. Both models of Dougherty
and Drickamer do not provide good results for the investigated mixtures, even for the
mixtures of similar molecules, for which they were originally designed. The second
series of calculations, confirms good performance of the Haase model. Surprisingly
good approximations were obtained with the model of Rutherford and Drickamer,

which in the first series of calculations did not give good results. It is important to
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Experimental Thermal diffusion factor for Methanol Benzene mixture
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Figure 4.5: Experimental thermal diffusion factor reported in the litterature for the
mixture Methanol + Benzene by six different research groups are shown in plot
(a). Plot (b) shows the models resutls where the Rutherford and Drickamer model
is represented by a RDS&ja; their second model by a RD54b; the Dougherty and
Drickamer first model by a_ DD55a; the Dougherty and Drickamer second model by
a_DD55b; the Tichacek et al. model by a_ TIC56; the Shieh model by a_ SHI69;
the Haase model by a_ HAAG9; the Shukla and Firoozabadi by a_SHF98; the
Kempers from 1989 by a_ KEM 89; and finally the Kempers from 2002 by a_ KEM02.
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point out that the standard errors are in general very large, with only few exceptions.

We can confirm an observation made by Kempers [53] that the thermal diffusion
factors are very sensitive to the values of partial molar properties. Therefore, they
are sensitive to the EoS chosen as well as to a method applied for calculation of the
partial molar volume. It is even more difficult to correctly calculate the thermo-
dynamic properties for the mixtures with associating compounds. As mentioned in
the work of Kempers [53], there is a need for improving the existing equations of
state in such a way that they are not only able to predict the phase equilibria, but
also the partial molar properties with a high degree of accuracy. This is the well-
known limitation for the presently available equations of state. The fact that the
Peneloux corrections do not improve the results in the most cases (while they im-
prove prediction of the partial molar properties) may be interpreted as insufficiency
and roughness of the existing models for the thermal diffusion factors.

Our work was complicated by the fact that the experimental data on thermal
diffusion coeflicients were not very reliable, as indicated by disagreement between
the different sources. For the same systems, the experimental values reported could

present large disagreement.
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Chapter 5

A new model for estimation of the

thermal diffusion coefficients

Several thermodynamic models for the thermodiffusion coefficients have been pro-
posed along the years. However, the analysis performed in Chapter 4, where the
different models were tested by comparison with experimental data, indicated that
there has been no single model, which would uniformly be good for all the data sets.
Prediction of the thermal diffusion factors within an order of magnitude and pre-
diction of the right sign seems to be a maximum possible achievement of a model.
It should be noted that all the models are based on different more or less rough
assumptions, which imprecision is difficult to evaluate. For the only case of ideal
gas mixtures, where the rigorous theory exists (based on the Boltzmann gas kinetic
theory [47]), it provides a good approximation to the thermodiffusion coefficients,
at least, for the binary mixtures as it is shown in Chapter 6.

In order to overcome this problem, a general and rigorous theory of the trans-
port properties was developed on the basis of the statistical mechanics and the
non-equilibrium theory of fluctuations [113,114]. Particular implementation of the
theory was successfully tested by evaluation of the diffusion coefficients in binary
mixtures [74]. In this chapter we present general results of this new theory for
description of thermodiffusion in binary mixtures. An expression for the thermal
diffusion coefficient in a general non-ideal binary mixture is presented, based on

the standard thermodynamic quantities and on the new variables, the penetration
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lengths. The properties of the thermal diffusion coefficient are discussed based on
the derived expression.

As was mentioned in the literature [111], one of the problems in modeling the
thermodiffusion coefficients lies in the fact that the fundamental thermodynamic
quantities, energy and entropy, are determined within a constant. If these quanti-
ties, or other partial molar quantities, enter a modeling expression for a transport
coefficient, it is reasonable to require that the result is invariant with regard to the
constants determining the values of entropy and energy at the reference state. This
requirement is not satisfied for most of the models for thermodiffusion coefficients
discussed in Chapter 2.

Another, somehow more delicate question, is dependence of the transport prop-
erties on formation energies and formation entropies (often reported as formation
enthalpies and formation Gibbs energies, [96]). The chemical potentials and many
other partial molar values depend on these quantities. Together with the partial mo-
lar values, the energies and the entropies of formation enter modeling expressions
for the thermodiffusion coefficients. However, there is no physical grounds why the
thermodiffusion coefficients should depend on these values.

We demonstrate invariance of the thermal diffusion coefficient, derived within our
model, with regard to the reference state, as well as with regard to the energies and
entropies of formation. This provides a good theoretical validation for the proposed

model, although further validation and testing of the theory is required.

5.1 Diffusion and thermodiffusion coefficients in a
binary mixture

The general theory of transport coefficients in multicomponent mixtures was formu-
lated in [113] and afterwards extended onto non-isothermal mixtures in [114]. The
approach consisted in considering the fluctuations around an equilibrium state in a
two-vessel system. The equilibrium distribution of the thermodynamic values in the
vessels may be found from the basic formalism of the statistical mechanics, while

dynamics of the fluctuations may be described in the framework of the theory of
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random processes. The theoretical deduction is rather complicated and we will only
bring the final results.

We calculate the n x n matrix L of diffusion and heat transfer coefficients for
the n-component mixture. This matrix is determined as a proportionality matrix
between the n — 1 diffusion fluxes d;, the nth heat flux d,, and the corresponding

n thermodynamic forces X;:
n—1
d; =) LijX; (5.1)
j=1

The fluxes and the forces are chosen according to the principles of the non-equilibrium
thermodynarmics, so that the sum d;X; is equal to the entropy production. In the
convective-diffusive system of thermodynamic variables [23], the first (n — 1) fluxes
are diffusion fluxes, while the nth flux is the non-convective heat transfer:

) " h
d; = My — c%e, X = Y My (i =1,...,n—1); d, =1 — VR (5.2)
j=1

_ P - Cnx ol
Xl_v(]WTLT M,-T) (i=1,...,n 1),Xn—V<T)

Here n; are the molar fluxes of the components, M; their molecular masses, ¢; the
mass fractions, x. the mass convective flux, 1 the flux of internal energy, i the molar
enthalpy, p' the chemical potentials, and T the temperature. The average molar
mass M is equal to > M;z;, or Y. M;N;/N, where N; are partial molar densities,
N = >" N; the overall molar density, and z; the molar fractions.

Such a defined matrix L has been found to be expressed in terms of the sym-
metrized transfer matrix Lp,, responsible for the fluctuation-induced transfer of
n;,

_ _ 1
L=GL;,G', Ly = §(LTT +LT) (5.4)

Here G is the transformation matrix to the convective-diffusive system of ther-
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modynamic variables, expressed as follows:

(1 —Cl)]\fl —01M2 —Can 0
—CgAfl (1 - CQ)MQ e te —CgMn 0
G = : : : (5.5)
—Cp1 My —Cpi My - (1 - Cnfl)Mnfl —Cp1M, 0
—Mih —Msh . —Mn_1h —Mnh 1
M M M M

The (n+ 1) x (n+ 1) matrix Ly, possesses a block structure, consisting of the
n X n molecular transfer matrix Ly, the 1 x n block of convective energy transfer
Ly, the n x 1 block of the thermally induced mass transfer Lyy, and the 1 x 1

block (single coefficient) for the energy transfer:

Ly L
Ly, = % 7% (5.6)

LNU LUU

The coefficients of the corresponding matrices may be found as:

p 0Z; 07Z; .
Ly = 1 —Zifij + N Z TNkfkj + Niann-&—l,j} (4,5 =1,..,n); (5.7)
k
Ly =
C; 0Z; T
Z —Z; fz n+1 + N Z 8]\7 fk n+1 i%fn-;—l,n-;—l + NZZZ§ (58)

The expressions for the components of the vector column Ly and for the element

Lyy are expressed in terms of the previously determined coefficients:

RT
Lyn,; = Z (Uj + ) Ly i + Z CiN; (Z; — 2Zv) xi5: (5.9)

J

RT RT?
Lyy = Z (u] ) Lyu; + 1 ZC’ N; (Z; — 2Zy) (Xn+1,j - 8) (5.10)

J
In expressions (5.7) to (5.10) the partial molar energies u; are involved. The
values of C; = (8RT/wM;)"/* are average molecular velocities of the ith component.

The thermodynamic coefficients f;; are determined as follows. First, the entropy
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of a unit volume S is expressed in terms of its proper variables: molar densities IV;
and the internal energy density U. Then the (n + 1) x (n + 1) matrix of second
derivatives is found:

oS o5 s

ON;ON; T I T ANLOU T g

(5.11)

Finally, the matrix f consisting of the coefficients f;; (4,7 = 1,...,n+ 1) is

determined as inverse to the matrix F':
f=F"! (5.12)

The thermodynamic parameters ;; are determined by the formula

Xij = zl:fﬂg‘vjl +fi7n+1% (i=1,....,n+1; j=1,...,n) (5.13)

The values of u; are the partial molar energies (OU (N, V,T')/ON;) taken as func-
tions of the variables N;, U. These dependencies are rather non-trivial. The way of
their expressing in terms of more “standard” thermodynamic values is shown in [114].
Apart from the thermodynamic quantities, the expressions (5.7) to (5.10) involve
other type of values, the penetration lengths, Z; and Zy. These lengths were deter-
mined and thoroughly discussed in [113,114] (see also [74]), being the key values
for our approach. However, we summarized the concept behind this variables in the

following section.

The penetration lengths

Here we describe in further detail the newly introduced variables, the molecular
penetration lengths Z; and the energy penetration length Z;;. These penetration
lengths are the key parameters for the new model.

Let us consider the ideal imaginary setup of the two vessels A and B of the same

volume V' connected with each other by a conductor of the length h and cross section
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o, which volume is much smaller than the volume of the vessels and large enough to
contain macroscopic amounts of molecules. The energy of the system is conserved,
since there is no loss of energy exist between the molecules and the walls. The
system is supposed to be in equilibrium. The vectors ya4 = (Na1, Nag, ..., Nan, Ua)
and yp = (N1, Ng2,..., Ngn, Up) denote the composition of the mixture in each
vessel. y = (N1, Na, ...,N,,, U) are the fluxes inside the conductor.

When a molecule of ith component in vessel A enters the conductor, it has intial
characteristics vy, including initial velocity vg. The molecule can either reach the
vessel B with a probavility: A;(7,y”) or return to vessel A with the probability
1= X(70,¥”). The value of \;(vo,y") is the penetration probability. The average
penetration probability is: A;(y") = E(Mvo | y”)/E(ve | y”). The expression a(y”)
refers to variable @ in the environment ”, where environmet ’ referes to the vessel
A and environmetn ” referes to the rest of the system. The penetration probability
depends on the length of the conductor, however it was shown in [113] that the value
of the penetration length (; = h); and the average penetration length Z; = hA; are
invariant. The value of (; can be determined as an average traveling distance, after
which the molecule “forgets” its initial velocity and starts participating in the random
walks along with other molecules.

The energy transfer from vessel A to vessel B may be described similarly to
the molecular transfer, with the difference that in this case two types of the energy
transfer are possible: the convective and the non-convective. The first type repre-
sents the energy transported by the molecules that reach the outlet of the conductor
and can be estimated as u;/)\,- where u;/ is the partial molar energy corresponding to
the thermodynamic conditions in the conductor. Taking into account the statistics
of the molecules leaving the vessel, it is possible to estimate the total convective
energy transfer U,.

The non-convective energy transfer Une can be physically interpreted in terms
of the “energy particles”, if the energy is considered to be split into quanta (only
for explanation sake). The non-convective energy transfer is the random walk of
the “particles” of energy between different molecules, passing them to each other.

When a molecule in vessel A appears in the entrance of the conductor, it transfers
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some energy to the molecules in the tube without necessarily entering it. Some part
of this energy has the possibility of reaching the end of the conductor via molec-
ular interactions. Due to the analogy between the random walks of the molecules
leading to diffusion and the random walks of the energetic “particles” leading to
the non-convective enregy transfer, the concept of energy penetration probability
Ay and the energy penetration length (yy is introduced. Averaging them similarly
to the molecular penetration lengths, we obtain the average values Ay and Zp,
correspondingly.

The portion of energy emitted by the molecule at the entrance of the conductor
is likely to be split into many parts. Each part can move independently of the
others and they are also independent of the initial molecule. Therefore, the energy
penetration probability and the energy penetration length can be considered to be
independent of the initial parameters of the molecule vy and of the portion of energy
initially emitted. Under these conditions Ay = Ay and Zy = (p.

A more rigorous theoretical explanation of the concepts of penetration probabil-
ity and penetration length may be found in [113,114]. An expression for estimating
the molecular penetration lengths was proposed [74]. Regarding the energy pene-
tration length only the first fitting has been made, no expression has been deduced

yet.

The diffusion and the thermal diffusion coefficients

Let us present the formulae for the diffusion and the thermodiffusion coefficients
in binary mixtures, which follow from the multicomponent formulation presented
above. These formulae may be obtained after cumbersome, although rather trivial
transformations. For the case of the binary mixture, there is only one diffusional
flux d = al, and a heat flux dg determined by equation (5.2). Correspondingly,
matrix L from equation (5.1) is a 2 x 2 matrix. The coefficient L, is responsible for
“pure” diffusion and will further be denoted by Lp. The coefficient L1y = Loy are
responsible for thermodiffusion and diffusional heat conduction (Soret and Dufour
effects) and will be referred to as Lpr. The coefficient Los, responsible for heat

conductivity, will not be considered in the present work.
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Matrix Ly is a 2 X 2 matrix consisting of the coefficients

Cy 07, 8Z1 0

[ Z
Ly = T —Zyfi1 + Ny (Wf f21 + (9U1 ) ;
L 1
Cy T 0z 0z 0z
LN,12:Z1 —Zlf12+N1< 1f12+ 1f22+ 8U1 ) ;
Cy [ 0Z. 0Z. 7.
Lyo = f —Zsfo1 + N2 <8T2f 2fm + 8U2 ) ;
L 1
C: 9Z 9Z 0Z.
LN,22:Z2 [—22f22+N2 ( 2f12+ 2f22+ 8U2 >}

The diffusional coefficient Lp may be expressed in terms of Ly ;:

M2M2
M 2

LD = (ZgLN,ll — leg(LN,lg + LN’QI) + Z%LN722) (514)

The expression for the thermal diffusion coefficient requires more effort. First,

we determine coefficients Lyy,; (¢ = 1,2) as follows:

C 0z 0z o7 C
Lyy, = Zl [_ZlfIB + N <8T\f11f lfzg + BUlf )] 1]\7121

NQZQ

822 8Z2 8Z2 CQ
i )] I 2

C
Lyvuz = f |:*Z2f23 + N <87N1f15 + 37N2f U

The coefficients Ly, are convenient to represent in the form of

Lyn; =Ai — BiZy (i=1,2),

RT RT C C
A= (Ul + 2) Ly + (UQ + 2) Lyoi + IlleIXH + ZZN2Z2X12§

RT RT C C
Ay = <U1 + 2> Ly + <U2 + 2) Ly + IlN121X21 + fN2Z2X22;

C Cy C C
B, JNlXu + *N2X12, B, = *1N1X21 + ?QN2X22

In terms of the introduced quantities, the Onsager thermodiffusion coefficient
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Lpr is determined as

Lpr=A+ BZy

1 1 1 1 1 1
A=M —A + =L — —hM,L — —hM, (=L —L
1C2 (2 1+ ginvuy = i bn e = e hiVy (2 N2 T 5 N,21>)

1 1 1 1 1 1
—Mscy (§A2 + §LNU72 - MhJWZLN,QQ - MhMl (§LN,12 + §LN21>>

1
B= 3 (—Mico By + Msey Bs)

The diffusion flux d = d; is expressed as (see equations (5.1), (5.2)):

2 1

. 1 I 1
-y . o vt
d=1LpV (MQT M1T> +LorVi

On the other hand, the standard definition of the diffusion and thermal diffusion

coefficients in a binary mixture exceeds from an equation [23]:

d=—-DpVeci — DrpcicogNVT

Comparison of the two equations results in the following connection between D,
D7 and Lp, Lpr, correspondingly. After standard transformations involving the

Gibbs-Duhem equality, it may be obtained that

1 M3 opt
D=-Lp—— " 5.15
o PTMEMEz 02, (5.15)
1 |Lpr 0 ' 1
Dy = Ty Lp— - 5.16
T perey [T2 T oer \MLT T LT (5.16)

Equations (5.14), (5.15) for the diffusion coefficient are relatively straightforward.
In particular, the last equation shows how the so-called “thermodynamic correction”
Ou'/0z enters the diffusion coefficient. The expression for the thermal diffusion
coefficient is much more cumbersome and much more difficult to analyze. Some

necessary analysis is provided below.
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5.2 The problem of reference state and of formation
energies

In the present section we discuss dependence of the thermodynamic quantities on the
reference states chosen in definitions of the energy and entropy. These fundamental
thermodynamic quantities are determined within a constant. If entropies s, s, and
energies u, u, are related to the two different reference states for the same body,
then

U — Uy = Uy, S— 8 =So (5.17)

In statistical mechanics, constant sq is, in principle, fixed by the Third Law of
thermodynamics postulating that it is equal to zero at zero Kelvin. However, more
detailed analysis of this law indicates that zero may be substituted by an arbitrary
constant without violation of all the consequences. To the best of our knowledge,
direct calculation of the constant sy from the Third Law of thermodynamics for any
body under “normal” conditions has not been carried out with a reasonable accuracy.

The constants ug, so are extensive: if the body increases homogeneously a times,

the constants should also increase:
Uy = G,U(); So — (IS() (518)

The scaling parameter a may be associated with any extensive value: molar
amount n, mass m, volume v etc. The constants Uy, Sy are reference constants
per unit of the corresponding extensive quantity. For a single-component fluid, all
the choices of this extensive quantity a are equivalent. However, for a multicompo-
nent mixture, these choices lead to different answers for intensive parameters, like
chemical potentials, partial molar enthalpies etc.

Indeed, since, for example, chemical potentials ' are determined as derivatives
of the Gibbs energy, ag/ani|T7P7nj, and ¢ = u — T's + Pv (and, correspondingly,
g« = Uy — T's, + Pv), then it follows from equations (5.17), (5.18) that

Oa

on; T,Pn;

pt = = (Uy — T'Sy) (5.19)
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Similarly, for partial molar energies and partial molar enthalpies it may be ob-

tained that
da

u —u, =h'—h, =0
on; T,Pn;

Appearance of arbitrary constants is not a problem for the equilibrium ther-
modynamics, since these constants disappear from most of the thermodynamic re-
lations determining actual physical conditions. For example, the gas-liquid phase
equilibria are described in terms of equalities of phase chemical potentials, ,ug =i,
and arbitrary constants disappear from the both parts of the equality. However,
in the non-equilibrium thermodynamics the dependence on the arbitrary constants
becomes more strict.

It has been proven [41] that the Onsager reciprocal relations and the Onsager
phenomenological coefficients are independent of the reference state if the value of

a is (proportional to) the mass:

a:m:ZMmi

The mass plays an exceptional rule in the non-equilibrium thermodynamics,
unlike the equilibrium thermodynamics, where, for example, mass and molar amount
are interchangeable. The reason is that main conservation laws are formulated in
terms of mass, but not molar or other amounts. This especially relates to the
momentum law.

From now on, we consider a = m, and equation (5.19) assumes the form of

Here ... denote the terms independent of the reference states.
Let us now consider existing models for the thermodiffusion coefficients proposed
by different authors. As stated in Chapter 2, the thermodiffusion factor a in most

of such models may be represented in a single form

N Sl (5.21)

ar az10pt /02
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Here Q7 are the so-called heats of transport [25], and a; are partial molar volumes
v; or molar masses M;, depending whether the center of volumes or the center of
masses is selected as a reference. For the values of @7, different expressions are
proposed. From equation (5.21) the Haase model [44], the Kempers models [52,53],
the model of Shukla and Firoozabadi [116], and other models may be obtained.
As can be seen from equation (5.20), of these models, only the model of Haase is
invariant with regard to the choice of the reference state.

One of the ways to get rid of the problem of the reference states is to modify the

model to the form of

a1(Q* — Qf) — aa(Q' — Qp) n argRT

.22
az10pt )0z 210 /02 (5.22)

ar =

Here Q;° and o”° are the heats of transport and the thermodiffusion factor in a
reference state. Normally such a state is taken to be the ideal gas state, so that the
value of aT% may be computed by formulae of the Boltzmann gas kinetic theory [47].

Let us now consider another problem, dependence of the thermodiffusion coeffi-
cients of the formation constants. These formation constants Ah? and As} describe
the amount of enthalpy and entropy for producing a given substance from elements
at standard reference temperature Ty = 298.2 K. They should be included into the
expressions for the internal energy, for chemical potentials and other quantities.
In fact, the complete expressions for the chemical potentials, taking into account

equation (5.20), are:

p¥ = RTIn ¢* + RT In(2*P/Py) + h&(T) — Tsk(T), (5.23)
where i
T CMT
r T

T
he(T) = MyUp + ARG + | CN(T)dT

To
Here ¢* are the fugacity coefficients, Py reference pressure (normally equal to 1

atm), C;f are the molar heat capacities at constant pressure P,. Correspondingly, it
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may be shown that full expressions for the internal energy and entropy are:

T dln ¢; ;
U= ZNi </T0 CH(T)dT — RT? 5T > - P+ZNZ- (M;Uy + ARY)  (5.24)

S=-2_N (Rln (PP + R~ | AT | YD N (Vi + As))
(5.25)
That is, variation of the reference and formation constants leads to variation of

energy and entropy, which is linear with regard to the molar amounts. With regard

to the partial molar energies and enthalpies, equation (5.20) is extended to

Should the thermodiffusion coefficient be independent of Ahif and As?? For-
mally, this is not required. While invariance with regard to Uy, Sy should be fulfilled,
since these constants are essentially arbitrary, the constants Ahi, and As"f are fixed
and tabulated for different compounds (see, f.ex., [96]). However, on the other hand,
it is not clear why separation of the components under the action of the thermal
gradient should be dependent on the energies spent on their formation in chemical
reactions. It should also be noted that the constants Ah”}, Asic do not influence
the conditions of phase equilibria, since they disappear from the equalities of the
chemical potentials for different phases.

All the models referred above, which may be represented in the form of equation
(5.21), depend on the reference constants Ah} and/or As'}. Moreover, since these
constants are rather large, under certain conditions they may provide a major con-
tribution to the thermal diffusion factors. The models, which may be represented in
the form (5.22), may or may not depend on the reference constants, depending, what
model for Q) is chosen, and whether the reference state is chosen under temperature
T, or under temperature 7.

It was shown in [41] that the thermal diffusion coefficient computed as described
in section 5.1 is independent of the reference states, as well as the enthalpies and

the entropies of formation.
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5.3 Comparison with experimental data

The applicability of the model was checked in the following way. The expression for

the thermal diffusion coefficient may be represented in the following general form:
Dy = a(Thermodynamics, Z;) + 3(Thermodynamics, Z;) Zys

Let us consider a mixture, for which the data on both diffusion and thermal
diffusion coefficients are available, and thermodynamics is also known (may be de-
scribed by a proper thermodynamic model). The molecular penetration lengths Z;
may be found by fitting the data on diffusion coefficients, as in [74], since the diffu-
sion coefficients are independent of Zy;. Then the energy penetration lengths may
be found from the experimental data for the thermal diffusion coefficients. Since
this operation is rather formal, the resulting values of the penetration lengths Z
may a priori behave in any possible way, do not owing even to be positive. The fact
that they are positive, have a right order of magnitude, and behave in a reasonable
way, might indicate that the model is acceptable.

For testing, we used three mixtures of hydrocarbons and hydrocarbon-like com-
ponents: Heptane Carbon Tetrachloride, Hexane Carbon Tetrachloride and Heptane
Benzene. Selection of the mixtures was rather restrictive, since they should have
obeyed the following criteria: (i) Existence on reliable data on thermodiffusion; (i)
Existence of reliable data on diffusion coefficients at multiple temperatures (other-
wise fitting of the diffusion penetration lengths seems to be rather unreliable); (iii)
Existence of a simple and reliable thermodynamic model, allowing for computation
of the necessary properties of the mixture.

As regards to the last criterion, all the selected mixtures may well be modelled
by simple Soave-Redlich-Kwong (SRK) equation of state, with the Peneloux volume
shift [75]. Diffusion data at different temperatures were modelled with application
of the same temperature-independent (and energy independent) dependencies for

Zil

M; N N:
(1= ByN, — ByNy — By

Zi=A b
M12 N1+N2
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Thus, we had four constant parameters for each mixture. These parameters were
sufficient for fitting the diffusion coefficients on the basis of equations (5.14), (5.15)
with great accuracy, as shown in Figure 5.1.

The experimental data for the thermal diffusion coefficient sy for these mixtures
are shown in Figure 5.2. In spite the fact that the data are rather uniform, and the
thermodiffusion coefficients do not vary very much, the energy penetration lengths
show a non-monotonous behavior with maximum in the middle, as shown in Figure
5.3. All the penetration lengths are positive and have a right order of magnitude,
generally, of around 10~°m, which is comparable to the intermolecular distances.
On the other hand, they exhibit a nontrivial behavior, showing a sharp maximum
in the middle. This nontrivial behavior may probably be explained by behavior of
the partial molar properties and their derivatives found from an equation of state.
The SRK EoS, as all the modern equations of state, has been designed and fitted to
the data on phase equilibria, not on the partial molar properties and, especially, to
their derivatives. Non-trivial behavior of such derivatives may be an artifact related

to particular shape of an EoS.

5.4 Conclusions

The study described above has proven principal applicability of the theory devel-
oped in [113,114] to evaluation of the diffusion and thermal diffusion coefficients
in binary mixtures. While diffusion coefficients are reasonably described, further
modeling work is required in order to provide realistic predictable evaluation of the
thermodiffusion coefficients. The theory should further be tested with regard to
the agreement with the basic observations and empirical laws, which have been re-
ported for the thermal diffusion coefficients. The main direction of modeling should
be associated with development of the thermodynamic equations of state providing
reliable and stable evaluation of the partial molar properties and their derivatives.
More experimental data is required for the mixtures where diffusion coefficients
are available, in order to better test the theory and to provide reliable predictable

expressions for the energy penetration lengths.
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Figure 5.1: Diffusion coefficients for the mixtures n-Hexane + Carbon Tetra Chloride
at 298.15K and n-Heptane + Carbon Tetra Chloride at 303.15K and n-Heptane +
Benzene at three different temperatures presented by [74].
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Figure 5.2: Experimental thermal diffusion coefficients data in [8] for nHexane -
Carbon Tetra Chloride, n-Heptane + Carbon Tetra Chloride and n-Heptane + Ben-
zene at 298.2 K and atmospheric pressure
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Figure 5.3: Energy penetration lengths for the mixtures n-Hexane + Carbon Tetra
Chloride, n-Heptane + Carbon Tetra Chloride and n-Heptane + Benzene fitted to

the experimental data.



Chapter 6

Thermal diffusion in ideal gas

mixtures

The goal of this chapter is to present the evaluation of the thermal diffusion effect
for multicomponent mixtures of ideal gases. In Chapter 7 we extend the calculations
to non-ideal multicomponent mixtures.

Hirschfelder et al. [47] rigorously described the transport phenomena based on
the gas kinetic theory. The system under study is described by means of the Boltz-
mann distribution function from which general transport equations are derived. By
expansion of the system, a set of integral equations for the transport coefficients is
obtained, which are then solved by the perturbation technique proposed by Enskog.

The expressions are obtained for different transport coefficients: diffusion, ther-
mal diffusion, heat conductivity and viscosity. These coefficients are expressed in
terms of standard integrals of the Sonine polynomials, which depend, in turn, on the
molecular interaction parameters. It was observed that it is sufficient to consider
the first order approximation to get a good estimation for the diffusion coefficients.
In order to determine the thermal diffusion factor, it is necessary to take, at least,
second order approximation in the Sonine expansion, since the first order form van-
ishes.

Expressions for the thermal diffusion coefficients based on the kinetic theory of
gases were extended onto diatomic gases or denser systems [54,56,129]. Yamakawa

et al. [129] based their theory on the approach of Hirschfelder et al., but considered
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diatomic molecules. They split the thermal diffusion factor into the two contri-
butions: transitional and internal ones. Comparison between this model and the
original formula is presented in [129] only for a binary mixture. The model is in
good agreement with the original model of Hirschfelder et al., unless high tempera-
tures are considered.

Another study was carried out by Kincaid et al. [54,55,72,73]. They presented
a detailed analysis of further approximations of the Enskog theory for hard-sphere
systems of multicomponent mixtures, giving explicit expressions for transport coef-
ficients as functions of the masses, Lennard-Jones parameters, and concentrations
of the components in a mixture. Two approaches were considered: the standard
theory (SET) and the revised theory (RET). It is worth pointing out that the RET
is consistent with the irreversible thermodynamics theory [92], while SET leads to
conflict with that theory when describing the mutual diffusion by higher order ap-
proximations. The fourth of this series of papers [54] presents a detailed study of
the dependency of the thermal diffusion factor on different properties. Of the mul-
ticomponent systems, only ternary mixtures of isotopic components are considered.
This theory was successfully tested for diluted alloys of tin [128]. For concentrated
solutions, it was concluded that, in order to achieve a uniform accuracy of 1%, the
seventh-order approximation is needed. The third or fourth order approximation
are reasonably good except when the masses of the components are rather different.

In this chapter we analyzed three expressions for the thermal diffusion ratio
for binary mixtures given in Hirschfelder et al. [47]: the second approximation,
kI, cs, the third approximation, kI,,¢ and the Kihara approximation, k%, ... In
[47], there is only one explicit formula for the thermal diffusion coefficient DI, for
multicomponent systems, but it is possible to deduce the third order approximation
for the thermal diffusion coefficient, DI, by means of the tables given by Chapman
and Cowling [14].

The binary formulae are applied for these multicomponent systems by an alter-
native approach based on the corresponding states law, where a ternary system is
considered as a binary system of one substance and of a pseudo component. This

pseudo component is formed from the two other components of the mixture by
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means of the corresponding states law. This is the so-called pseudo-binary formula-
tion. We have found a similar study of the properties of multicomponent mixtures of
monatomic gases (Helium, Neon, Argon, Krypton and Xenon) [46]. The authors [46]
analyzed different properties for the ternary system of Neon-Argon-Krypton apply-
ing the corresponding states law. However, their study for the thermal diffusion
coefficients was incomplete since no comparison was made between the binary and
the multicomponent formulations.

The transport coefficients in diluted gas mixtures are estimated on the basis of
the kinetic gas theory. Further, we compare different models for estimating the
thermal diffusion ratio for ideal gas systems. Due to lack of the experimental data
on ternary mixtures of noble gases, we compare theoretical results in the limiting
case of binary systems. Experimental data for the thermal diffusion factor in such

systems are available in the literature [122].

6.1 Theoretical background

The basis of the gas kinetic theory [47], from where the expressions for the transport
coefficients are derived, is briefly described in the first subsection. The second
subsection presents different formulas for the thermal diffusion ratios in ideal gas

mixtures.

6.1.1 The kinetic theory of dilute gases

The gas kinetic theory describes non-equilibrium properties by means of statistical
methods. Complete description of the transport properties of a dilute gas may be
obtained on the basis of the Boltzmann equation for a distribution function f(r,v,t).
Hirschfelder et al. [47] presented two derivations for the Boltzmann equation: one
giving a physical interpretation of various terms and a second derivation, more
mathematically rigorous. Both derivations arrive to the same Boltzmann equation:

o2 o | Pie L) 4 Xy 65:)

= fof (fim/f;l)/ - f;l)f;l)) 9i;b db de dp;

(6.1)
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This equation describes variation of the functions fi(l) with time. Here X; are
the external forces acting on the molecules, (r,p;) are the coordinates r and the
momentum p; of a molecule, m; is the mass of the ith component and fi(l) =
o). 7 = Py ) 1 = 10wl 0 and 7 = 1005 0), where
P; is the momentun before collision and p/j is the momentun after collision.

It is possible to write the Boltzmann equation in terms of the velocities instead

of momenta:

= fof(fz’f]/ _fifj) gi;bdbdedv,;

Multiplying equation (6.2) by some molecular property 1); associated with the ith

(1)
afz +v;e afl 4+ L <Xz ° dgi, ) ( )
6.2

component, and integrating over v; we obtain the equation of change for property

s

M | (2 & piv;) —n (az/», +(vie 2y 4+ L,ggz)

= foff¢v (fzf; - .fifj) gijbdbde dv;dv;
The “over line” represents average values of the corresponding variable. Sum-
mation over all the components gives the value of the property ) for the entire
gas.

It can be proven that equation (6.2) has an equilibrium solution:

o, (M \*P? ~mi(vi — vo)?
i _”1(27rkT) eXp{ 2T

where n; = n;(r,t), vo = vo(r,t) and T = T'(r, t) are functions of space and time.
In order for this function to represent the local values of the physical quantities;

molar density, mass velocity and temperature, it should be postulated that

/fidvi = N4;

ani/vifidvi = pvo;
1Zm-/(v- — Vo) fidv; = S kT
2 0 7 0 A [ 2
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Chapman and Cowling [14] represent function f; = f2¢;, where ¢; is the per-
turbation function. Expansion of the Boltzmann equation with application of the

conservation laws gives the integral equation for ¢;:

£ [ (Viod) + (b fva) — (- W2) (V, 0 287)]

(6.3)
= Z]ffffzof]o(d + ¢ — i — ¢;)gi;bdbdedv;

where

0 n;  n;m;\ Olnp n;m; P
dz—ar(n)+<n p) o (pp)(mixz Zj:njxg) (6.4)

1

biZQ{WiWrS

qu] (6.5)

W, = V, /35 is the dimensionless velocity. The variables d; satisfy the con-
dition ), d; = 0. The perturbation function is a function of space and time, by

means of the variables n;, vo and T. It can be represented as:

olnT 19} i
b = — (Ai. 7> — (Bi e > +n CZ(-]) e d; (6.6)
or or '’ ;( )

where A;, B; and C; are functions of the dimensionless velocity, W;, the local

position and the local temperature:

A; = W, A,(Wh); (6.7)
) 1
CEJ) _ WZCZ(J)(Wz) (6.9)

A general solution was obtained by Chapman and Cowling [14] by infinite ex-
pansion by the Sonine polynomials. It is necessary to consider a finite number of
terms to be able to determine the transport coefficients. The system of equations

for the expansion coefficients t;:;’f) has the form of:
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§—

Z Z mm t]]::ﬂ,k) (f) — 7Rz(:1k> (610)
J m'=0

k)

where ¢ is the degree of approximation used, t]m, is the the unknown coeffi-

cient to be found, being either PZ(O ) or a;0, depending wether we want to estimate
the diffusion coefficients or the thermal diffusion coefficients correspondingly. The
coefficients ng are defined as

~mm . mm, _ nj‘/ijglm/(s

mO(Sm’O

Y N

where

{WvSf[")(WQ) sy

me (6.11)
+6 [W ST (W2); WZS“")(WZ)}
R0 — / (R,Eh‘k) :Wi) S (W2)av, (6.12)

Here W; and W; are reduced velocity vector and its magnitude correspondingly;
Rgh’@ = nifi(o)(éih —d;ix)V; for calculation of the isothermal diffusion coefficients and
= fz.(())(g — W2)V, for calculation of the thermal diffusion coefficients. S{™ (W2)

represents the Sonine polynomial as a function of W2:

5w =3 CU e

" n+ j)l(m — j)j!
In a system under non-equilibrium conditions several macroscopic gradients exist.
They create different types of fluxes: mass flux, energy and momentum fluxes. In
particular, for evaluation of the diffusion and the thermal diffusion coefficients, it is

necessary to consider the mass flux, which can be written as

1 0T
Vi Zm]Dwd =

" np nim; Di or

where d; were defined in equation (6.4), D;; are the multicomponent diffusion

coefficients, and DT are the multicomponent thermal diffusion coefficients:
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P 2T / O) (T T2 40 7V
Dy; = 3, \ T (Wi)Wi fidV; (6.13)
,/QkT / WHWZ2f2dv,; (6.14)

In terms of the Sonine polynomial expansions the diffusion and the thermal

diffusion coefficients become:

2kT ;
ij (Jz) /VZ m) W2 f(JdV (615)

?mm y 3/ 2 (

D (¢) = \/ 2hT Z i (€ /A W20V, (6.16)

m=0
Due to the properties of the integrals of the Sonine polynomials:
I an e )S’T(Lm/>(:r) dr = %5,,%/, equations (6.15) and (6.16) are sim-
plified to:

i 2T
Dyl€) = g\ [ =—di(©) (6.17)

N, 2T
2 my;

DI (&) = aio(€) (6.18)

The argument ¢ of D;;(€) and DI (€) represents the number of terms used in
the expansion. The diffusion coefficient and the thermal diffusion coefficient are
expressed in terms of the zeroth approximation only: cl%’j) and a;. No matter
how many terms are used in the expansion, it is only the zeroth coefficient, which
remains after the integration. However, the values of the coefficients c%’i) and a;
are determined from the system of equation (6.10), which depends upon the number
of expansion terms &.

Solution of this equation is carried out as a standard lineal system of equations.

The coefficients QZ-""/ in the system (6.10) are expressed in terms of the standard
integral functions €2, which are tabulated as functions of the reduced temperature. It

is possible to obtain up to the third approximation (£ = 3) for the thermal diffusion
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coefficient from the tables presented in [47].

For the diffusion coefficient D;;, it has been observed that for { = 1 rather good
approximation is obtained. When the order of approximation is increased to 2, small
corrections are introduced [47]. However, for the thermal diffusion coefficient a first
order approximation (£ = 1) vanishes. Therefore, it is necessary to consider, at
least, the second order approximation (£ = 2). Kincaid et al. [54, 55,72, 73] showed
that the seventh order approximation is necessary to achieve a uniform accuracy of

1%.

6.1.2 Evaluation of the thermal diffusion coefficient

Here we present the correlations for estimating the thermal diffusion ratio in terms
of parameters of the Lennard-Jones potentials, the molecular weights, reduced tem-
perature and standard integral functions. In the book of Hirschfelder et al. [47],
different values for these parameters may be found. First, the thermal diffusion
ratio for binary mixtures in the second order approximation is presented. The two
other expressions are the general third approximation and the Kihara approxima-
tion. Finally, the second order expression for the thermal diffusion coefficient in
multicomponent mixtures is presented. We have extended this expression up to the
third order approximation. Details of each of the expressions are given below.

The second-order expansion for the thermal diffusion ratio is expressed in terms
of the intermolecular forces, molecular weights and the integral omega-functions €.
The second order approximation for the thermal diffusion factor in a binary mixture

is:

Z179 (5(1)21 — 5(2)22) (CIZ — %)

szAcs = (6.19)
A 21 (14U M) 2122(14U ) 22(14+U®3)
[ 12]1 - M += 2[/\12]1 : [A2)1

S _ M + Moy [M2]; 15 My =My 1 (6.20)
2M, [)\1]1 4A3, 2M; '

5@ _ My +Ms Mol 15 (M — My 1 (6.21)
2M, [)\2]1 4A3, 2M, '
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4A% Bi, 1\ M, (M, — M,)*
o= e (D, 2\, W — W) 6.22
15 5 T12) T 2 (6:22)

4A B, 1\ M, (My— M)’
(Ot S (s S [ S At 6.23
5 5 Y1) T o (6.23)

vy _ AAL (My + Mo)* o]} (sz 1 > _ (12Bf, — 25) (My — M>)*
5 12

Uy — —
15 AM M, M) 32A%, M, M,
(6.24)

where A3,, B, and Cj, are ratios of the integral functions 2 and are tabulated
in [47]. The quantities [A;]; and [Ao]; are the first approximations for the thermal
conductivities of the pure components, and [A12]; is the mixture thermal conductiv-

ity. These values are expressed as

T/M;

A1 = 1.9891e ———"—
20" (T,)

VT (M, + My)/2M, M,

[)\12]1 = 1.9891e "
o}, 57 (T;)

where 7' is the temperature in Kelvin (K), T,, = Tkp/c the reduced temperature,
M and M, the molecular weights in kg/mol, and o, ¢/kp are the potential functions
in A and K, respectively. [A] has the unit of calories/cm /sec/K.

The third approximation for the thermal diffusion factor was also tested. This
approximation is expressed in terms of the determinants of the three matrices, which

are functions of the molecular weights and of the integrals above:

ot

(21 %th|501|+22 %‘50710

kL g = 6.25
3ACS 2 |SOO| ( )

The determinants |Sgg|, |So1| and |So_1| are shown in Appendix C.

The Kihara approximation was also tested. The characteristic feature of this
model is that it is expressed in terms of the third approximation by the Sonine
polynomial expansion. However, its structure is rather simple, since Kihara observed

that the main contribution to the estimation of the thermal diffusion coefficient is



6.1. Theoretical background 106

given by the diagonal elements of the matrix. The Kihara expression for the thermal

diffusion coefficient is

5(6C7, —5) (2150 — 2,8®)

kiihara = 6.26
K 71Q" — 2122Q"2 + 2,Q? (6.26)

When considering multicomponent formulae we tested the second approximation
for the thermal diffusion coefficient presented by Hirschfelder et al. This formula is

much more complex in comparison with the previous equation. It has the form

LOO LOl 0
LlO Lll VA
sM;| 4 0 0
DY, (i) = _ (6.27)
S5R Lo 1,0t
LlO Lll

where R is the gas constant and L%, L', L!° and L' are matrices, which are
shown explicitly in Appendix D. Z = (21, 2, ..., 2,,) is the transposed vector of mole
fractions and 0; = (91, 09, ..., 0in) the vector of the Kronecker delta fohgr component
1.

Finally, since it has been proven [54] that a higher order of expansion by the
Sonine polynomials significantly improves estimations of the thermal diffusion co-
efficients, we implemented the third order expansion by Sonine polynomials. This

approximation has the form of

QOO QOl QOQ 0

QlO Qll Q12 R

Q20 Q21 Q22 0

. 0 0 0 0

Diai) = 2/ mzl;BT (6.28)

QOO QOl QO2
Qlo Qll Q12
QQO Q21 Q22

where m; is the mass of component ¢, kg and the Boltzmann constant. The
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matrices, which determinants enter the fraction, are composed of submatrices Q,
Q% Q%, QY Q¥ Q', Q% Q*, Q* and R. The coefficients entering these
matrices are explicitly presented in Appendix C.

It is important to link the thermal diffusion coefficient and the thermal diffusion
ratio, in order to be able to compare equation (6.19), (6.25) and (6.26) with the
multicomponent formulae for DT (6.27) and (6.28). Hirschfelder et al. do not present
this relation directly for multicomponent mixtures, but only for binary systems. The
diffusion equation may be expressed in a general way in terms of the relative motion

of particles as:
T
Wy vy —a -l as (D DL
Di]‘ Or 7 Di]‘ TL]‘M]' TLZ]LL
There are many possible ways to determined the thermal diffusion ratio from

this equation (see also next chapter) we propose the following way:

2z [ DT DT
k' = i} J Tt 6.29
¢ Dy; <anj niMi> ( )

where D;; is the binary diffusion coefficient for components 4 in j. In case of a

binary system, k7 = —kI'| this relation is simplified to
p D"
=Lt __— 6.30
N2MyM; Do (6:30)

where N is the total molar density, p the density of the mixture and D5 is the
binary diffusion coefficient.

We tested the formulae above for simple mixtures of noble gases, comparing
them to experimental data found in the literature. The components chosen for the
calculations, their molecular masses and the Lennard-Jones potential parameters

are presented in Table 6.1.

6.2 Results for binary mixtures

First, we compare the results obtained by application of different formulations pre-

sented in the previous section with seven sets of experimental data for binary mix-
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Table 6.1: Parameters used in the calculations of the thermal diffusion ratios for
ideal gas mixtures [96]

‘ Substance ‘ Mr Weight (kg/mol) ‘ o (4) ‘ e/kp(K) ‘

Helium 4.0026 2.567 10.22
Neon 20.183 2.82 32.8
Argon 39.948 3.542 93.3
Krypton 83.8 3.655 178.9
Xenon 131.1 4.055 331.0

tures of ideal gases measured at atmospheric pressure and 300K. The experiments
were carried out by Trengove et al. in 1959 [122] for Helium-Neon, Helium-Argon,
Helium-Krypton, Helium-Xenon, Neon-Argon, Neon-Krypton and Neon-Xenon mix-
tures.

In the plots, the following notation is used: k’gw represents the experimental
data; k%,.g represents the results obtained with the second approximation for bi-
nary mixtures, equation (6.19); kI,.¢ represents the results obtained with the third
approximation, equation (6.25); k:IT(,L-hmn corresponds to the results obtained with
the binary Kihara approximation, equation (6.26). The coefficients obtained on the
basis of the multicomponent approximations are: the second approximation of the
thermal diffusion coefficient kI, deduced from equations (6.27) and (6.29); the third
approximation kI, (equation (6.28) transformed according to (6.29) or (6.30)).

Figure 6.1 shows the results obtained for all the binary mixtures for different
compositions at 300 K and atmospheric pressure. Plots (a), (c), (e), (g) and (i)
present the results obtained for the mixtures where Helium is the light component
(the other element being respectively Ne, Ar, Kr and Xe). Plots (b), (d), (f), (h)
and (j) present the results for the mixtures with Neon as light component (with
respectively Ar, Kr and Xe). Plots (a) and (b) show the results obtained for the
binary second order approximation, plots (¢) and (d) for the binary third order
approximation and plots (e) and (f) for Kihara approximation. Similarly, plots (g),
(h), (i) and (j) show the results obtained for multicomponent formulation with the
second and third approximation correspondingly.

It may clearly be seen that the results obtained by different formulations disagree.
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Figure 6.1: Plots (a), (c), (e), () and (i): Thermal diffusion ratios for binary mixture
with Helium. Plots (b), (d), (f), (h) and (j): Thermal diffusion ratios for binary

mixtures with Neon.

The second approximation for binary mixture is exhibited

in plots (a) and (b), the third approximation for binary mixture is exhibited in

plot (c) and (d), the Kihara approximation is shown in plots (e) and (f).

The

results for multicomponent equations are shown in plots (g) and (h) for the second
approximation and plots (i) and (j) for the third approximation.
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Excellent agreement is obtained between the binary formulations for k7 (equation
(6.19), equation (6.25) and equation (6.26)) and the experimental values. On the
contrary, for the four mixtures containing Helium the thermal diffusion ratio deter-
mined from the third approximation (shown in Figure 6.1 plot (i)) does not tend to
zero for high concentrations of He. The thermal diffusion factors obtained with the
second multicomponent approximation (Figure 6.1 plot (g)) are much higher than
the experimental results.

The compositions maximizing the thermal diffusion factor are significantly differ-
ent in binary and in multicomponent formulations. For heavy molecules, the second
multicomponent approximation exhibits change of sign at high concentrations of the
lightest component.

In the third multicomponent approximation, the thermal diffusion ratio decreases
with increase of the particle size of the heavy component, being always larger than
predicted by the binary formulation and by experimental observations. Only for
Neon-Xenon results of the multicomponent formulation are comparable to the binary
formulation.

It may generally be concluded that the multicomponent formulation predicts too
large thermodiffusion factors for binary systems, while the binary formulation gives

very good approximations, independently of the order of expansion.

6.3 The Corresponding States Law for thermal dif-
fusion

Since no experimental data exists for ternary systems, and due to large discrepancies
between the binary and the multicomponent formulations, we suggest an alternative
approach to estimate the thermal diffusion ratios in ternary systems. We define
pseudo-binary systems by means of the corresponding state approach. This approach
has been successfully used to determine other properties as viscosity [96], and it
has been shown for molecular dynamics simulations [37] that the thermal diffusion
ratios determined in this way, gives very similar results as the ratios obtained when

cosidering the components individually.
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The ternary system is represented by a pseudo-binary one, in which two com-
ponents define a synthetic single component mixed with the third component. The
synthetic component may be defined by one of the two existing approaches [96]: the
classical or macroscopic approach, as presented by van der Waals, and the molecu-
lar, or microscopic approach. We implemented the second approach, estimating the

pseudo parameters as:

(1= =)oy =D > zzol (6.31)

i#k j#k

(1 — 2)erop = Z Z %i%j€i;0; (6.32)

i#k j#£k

(1= 2) My =Y M, (6.33)
i#k

The thermal diffusion ratio, &7, was calculated from the binary formulations
(equations (6.19), (6.25) and (6.26)), on the basis of the properties of the selected
component and of the pseudo component. The microscopic interaction parameters
of the pseudo binary approach were defined by

(Uk + O-pseudo)

o1y = S (6.34)

€12 = /EkEpseudo (635)

The thermal diffusion ratio for multicomponent mixture can now be calculated
from the binary formulae, equation (6.19) equation (6.25) and equation (6.26), by

implementing the corresponding states law.

6.4 Ternary Mixtures

The ternary systems considered are combinations of the noble gases excluding Radon.
Since, to the best of our knowledge, no experimental data is available for them, com-

parison was carried out between different formulations mentioned above: the pseudo
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binary formulation and the multicomponent formulation of Hirschfelder et al. Differ-
ent ternary compositions were considered in order to cover the whole concentration
range. The simulations were carried out at 300K and atmospheric pressure.

We have selected three most representative ternary systems: Helium-Neon-Krypton,
Neon-Argon-Krypton and Neon-Krypton-Xenon. The results are shown in Figures
6.2, 6.3 and 6.4 correspondingly. Each figure contains 15 plots. The first column
of plots shows the thermal diffusion factor for the lightest component in the mix-
ture, the last column for the heaviest and the middle column shows the results for
the thermal diffusion factor for the intermediate component. The first row of plots
shows the values obtained with the second approximation (kJ,.¢) for the thermal
diffusion ratio in binary systems with the corresponding states law. The second and
the third rows show the values for k7 obtained by the third (kI,.4) and the Kihara
approximation (k% ). The two last rows show the values of the thermal diffusion
ratios obtained by application of the multicomponent approach for DT, with the
second (k%) and third approximation (kI,), correspondingly.

Nine curves for the thermal diffusion ratio corresponding to nine different con-
centrations of the heaviest component are shown in each plot. The horizontal axis
is the molar fraction of lightest component. In all cases, as might be expected, the
light component tends towards the hot region (negative £T) and the heavy compo-
nent towards the cold region (positive k7). The intermediate component exhibits
alternating behavior, tending to the cold or to the hot side depending on the com-
position of the system. It can also be observed that this component exhibits almost
inert behavior for intermediate concentrations, with a very small thermal diffusion
coefficient.

As for the comparison of different formulations, the discrepancies concern mainly
the intermediate component. For pseudo-binary formulation, kI,.¢ tends to change
the sign according to the component concentration. If the intermediate component
is relatively light and similar to the lighter component, its thermal diffusion factor
is mainly negative over all the composition range, while it is mainly positive when
the intermediate component is closer to the heavy component.

It may also be observed that the thermal diffusion coefficient increases in the
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Figure 6.2: Plots (a.1), (a.2), (a.3), (a.4) and (a.5): thermal diffusion ratios for the
Helium. Plots (b.1), (b.2), (b.3), (b.4) and (b.5): thermal diffusion ratios for Neon

and Plots (c.1), (c.2), (c.3), (c.4) and (c.5

): thermal diffusion ratio for Krypton.

Plots (a.1), (b.1), (c.1): obtained by the binary second order approximation; Plots
(a.2), (b.2) and (c.2): third-order binary approximation; Plots (a.3), (b.3) and (c.3):
obtained with the Kihara approximation; Plots (a.4), (b.4) and (c.4): obtained with

=

the second-order multicomponent approximation and plots (a.5), (b.5) and (c.5):
obtained with the third-order multicomponent approximation.
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Figure 6.3: Plots (a.1), (a.2), (a.3), (a.4) and (a.5): thermal diffusion ratios for the
Neon. Plots (b.1), (b.2), (b.3), (b.4) and (b.5): thermal diffusion ratios for Argon
and Plots (c.1), (c.2), (c.3), (c.4) and (c.5): thermal diffusion ratio for Krypton.
Plots (a.1), (b.1), (c.1): obtained by the binary second order approximation; Plots
(a.2), (b.2) and (c.2): third-order binary approximation; Plots (a.3), (b.3) and (c.3):
obtained with the Kihara approximation; Plots (a.4), (b.4) and (c.4): obtained with
the second-order multicomponent approximation and plots (a.5), (b.5) and (c.5):
obtained with the third-order multicomponent approximation.
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Figure 6.4: Plots (a.1), (a.2), (a.3), (a.4) and (a.5): thermal diffusion ratios for the
Neon. Plots (b.1), (b.2), (b.3), (b.4) and (b.5): thermal diffusion ratios for Krypton

and Plots (c.1), (c.2), (c.3), (c.4) and (c.5

): thermal diffusion ratio for Xenon.

Plots (a.1), (b.1), (c.1): obtained by the binary second order approximation; Plots
(a.2), (b.2) and (c.2): third-order binary approximation; Plots (a.3), (b.3) and (c.3):
obtained with the Kihara approximation; Plots (a.4), (b.4) and (c.4): obtained with
the second-order multicomponent approximation and plots (a.5), (b.5) and (c.5):
obtained with the third-order multicomponent approximation.
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second, but decreases in the third approximation with increasing the amount of the
third component. For the binary formulation the behavior is indefinite. The last
remark can be made about the second approximation for multicomponent mixtures,
where for some concentrations we observed unrealistic behavior consisting in several
changes of sign for the thermal diffusion ratio of the intermediate component.

A fundamental difficulty seems to be risen; when one component of a ternary
mixture tends toward zero, the thermal diffusion ratio should approximate the cor-
responding binary thermal diffusion ratio. The theory should reflect this. However
the formulae for multicomponent mixtures, the thermodiffusion ratio do not seem

to obey this consistency requirement.

6.5 Conclusions

Several conclusions can be drawn from this study. First, excellent estimation of
the thermal diffusion factor obtained by the binary approach is confirmed (equation
(6.19), (6.25) and (6.26)).

Second, the second-order approximation to the thermal diffusion coefficient for
multicomponent systems (equation (6.27)), has been truly tested, to our knowledge,
for the first time. We also evaluated the third order approximation. It was ob-
served that these two approaches do not agree with the binary experimental data
for k. It may be concluded that the formulae shown in Hirschfelder et al. for esti-
mating the thermal diffusion coefficient in multicomponent systems does not verify
the consitency check. Therefore, we strongly recommend careful application of the

multicomponent formulae.



Chapter 7

The thermal diffusion effect in

multicomponent mixtures

As it was presented in Chapter 2, most of the theoretical developments dealing with
the description of the thermal diffusion effect are related to binary systems. In this
chapter we present an analysis of the thermal diffusion effect in multicomponent
systems. Several existing models are applicable to this type of mixtures. We eval-
uated these models and compared them to molecular dynamics simulations, since
the only experimental data found in the literature for ternary systems deal with
polymer solutions and associating fluids [13,22,63].

The properties needed for estimation of the thermal diffusion factor were calcu-
lated using the SRK equation of state. In binary systems, it is irrelevant whether to
define the thermal diffusion factor with respect to the mole fraction or to the mass
fraction. However, for multicomponent systems this is not valid. We compared both

definitions.

7.1 The thermal diffusion parameters

7.1.1 From binary to multicomponent mixtures

The thermal diffusion factor is defined by Kempers [53] from the relation:

117
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Az = —z(1 — z)a; — (t=1,..,n) (7.1)

which for binary mixtures becomes:

AT

Az =—z(1 — z1)oy -

(7.2)

On the other hand, de Groot [23] presents the same relation in terms of the mass

fractionS instead of the mole fractions:

AT
Acp = —a1(1 — cl)offT

(7.3)
It can be shown that these two expressions are equivalent for binary systems. Let
us now assume that this last expression can directly be extended to multicomponent
systems as:
AT

Ac; = —¢i(1 = ¢;)q; T (i=1,..n) (74)

Since A¢; = Y (0¢;/0z;)Az; equation (7.4) becomes:

802‘
sz

Azj = —¢;(1 - ci)a?% (i=1,..n) (7.5)

This expression can be transformed into:

32']- .

AT
_ T
p 862' €

(1 —-ci)a - (i=1,..,n) (7.6)

AZ]‘ =

ci/M;
S~ ex(1/My—1/M)+1/M, *

Since z; = then it can be deduced that its derivative with

respect to the mole fraction under independent variables (c1, ¢z, ..., ¢p—1) is:

Sij 1 1 1 (1 1
0z M 21 Ck (Mk Mn) + i ~ o \ag T
= 2
Gci Z c 11 4 1
k Yk \ M, M, M,

Substituting dz;/dc; in equation (7.6), we obtain:

i )
Zij 1 1y, 1 & (1 1
M; Xk (ka an)+1v1n M; (M] ]\/[n)

2
1 1 1
(Zk Ck ( M), My ) +a, )

Azj = Zz

ci(l =)ol &F (7.7)
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Substituting ¢; = W in this last equation and rearranging we get:

Ay==D, <%Zﬂ (“ﬁn)) “ (1* zka—MmMn)% T

K3

(7.8)
In the case of binary mixtures equations (7.8) simplifies to:
Az = —zzma] 8L (7.9)

which is equal to the original definition given by Kempers, equation (7.2). Thus,
it is equivalent, for binary mixtures, to define the thermal diffusion factor in terms
of the mass fraction or in terms of the mole fraction. However, for multicomponent
mixtures this is not valid.

Hence, the definitions for the thermal diffusion factor as a function of the mass
fraction and as a function of the mole fraction are not equivalent in multicomponent
systems. To overcome this problem, we can define two different thermal diffusion

factors according to the definition employed. When working with multicomponent

systems we will use a*T as the mass thermal diffusion factor and «! for the molar
thermal diffusion factor. In binary systems o7 = o = —a'T = —af.

7.1.2 Definitions of different thermal diffusion parameters

In multicomponent systems, one should be careful when applying the definitions for
the thermal diffusion coefficient, factor and ratio. These values have been defined
only for binary systems. The definitions for the thermal diffusion coefficient D7,
the Soret coefficient S7, the thermal diffusion factor o, and the thermal diffusion

ratio kT were introduced in Chapter 2 as

1 h
DT = LHM,
Tpcei(1—¢p)

ST — D7T
Dyy’
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DT
T
o =T—,
D12
k’T = TClch
D12

These definitions cannot be directly applicable to multicomponent mixtures. In
[35,39] the thermal diffusion coefficient, factor and ratio were defined in terms of a
reference fluid. Considering component n as a reference substance, one obtains:

AT

Az = —zizpq; - (i=1,..,n—1) (7.10)

Correspondingly, the thermal diffusion coefficient and the thermal diffusion ratio

are expressed as:

-1 «
o MiziMaz, o~ (@ @
K MRTL; st YA\M;  M,)’
where D;, = MNZ\% is the diffusion coefficient for the reference component

n, L;; are the phenomenological coefficients and @; the net heats of transport.
The authors [35,39] proposed an expression in terms of the partial internal energy
to estimate these heats of transport. This theory seems to be able to define the
thermal diffusion effect in multicomponent mixtures. However, the problem is that
the definition is not symmetric and requires one reference substance n. In case
of dilute solutions this may be convenient, since the solutes interact mostly with
solvent n, but not with each other. However, in case of concentrated solutions this
definition seems to be is artificial. Here we propose a different approach for defining
the thermal diffusion coefficient in multicomponent systems. In order to do so, we

should go back to the expression for the flux, defined by equation (2.21):

F,—F,— (v —v,)VP

T MV — (@4 — e+ ha)

(7.11)

n—1
Ji=> La
k=1 -
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This equation was obtained by expressing the flux of component 7 as a function
of the other fluxes, since ) J; = 0. Instead, we can use flux of component i as a

reference. In this way, the expression for the flux obtains the form:

n F—FZ—U—’UZVP
> La ! ) (v = v) or (7.12)
i1 =2k u(;ka Var = (QF — hj + hi) 7
J#i
Rearranging we get
Ji = Zn ) Lij (F] — Fl) — Zn Lik(vj — ’UZ)VP
J=1 J=1
JF#i J#i
-z S Ly Va | = Ly (@t h) S
k=1 j=1 j=1
k # i J#i J#i
(7.13)

In this way we can derive the definitions for the diffusion coefficient, and the

thermal diffusion coefficient as:

pDy = Z LU ) (7.14)

8zk
j=1
j#i
b= 20D = 30 Ly (@)~ hy+ho) (7.15)
j=1
JFi

Substituting equation (7.14) and (7.15) into the flux equation, when no external

forces are acting on the system and there is no pressure gradient gives
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n
Ji=—p Z DiVzy, — pz(1 — z)DIVT (7.16)
k=1

The result is expressed in terms of the mole fractions. A similar derivation
may be carried out for mass fractions. In the last case, the mass thermal diffusion
parameters are obtained. Further, since j # ¢, we do not take into account the
interaction between the same components, which in the case of thermal diffusion is
equal to zero. The fact that the diffusion coefficients D;; are equal to zero for i = j,
makes the suggested approach very closely linked to the Stefan-Maxwell picture of

the multicomponent transport [21].

7.2 Existing models for multicomponent mixtures

Several models for the calculation of the thermal diffusion factors exist, but most of
them are only applicable to binary mixtures. We presented an extensive evaluation
of the existing models in Chapter 4.

The models proposed by Kempers [52,53] are also applicable for multicomponent
systems. The model of Hasse [44] may be deduced by the same approach. Therefore,
it is also possible to extend this model onto multicomponent mixtures. The model
of Shukla and Firoozabadi [116] is of the same structure as the previous two models.
We have also extended this model onto multicomponent systems using the same
mathematical structure as for the models of Kempers and Haase.

The mentioned models can be generalized in the two ways. The first approach,

suggested by Kempers, depends on a reference component:

=1,.,n—1) (7.17)

n=1(10m _ L0\, (1_-\oT
> i-1 (Mazj an 0z zj(1 = zj)o5
n—Ep
Qn

_mt BeEy gy (70 i) (

an

The second approach suggested by Kempers, is more symmetric:
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Table 7.1: Possible substitutions for a; and F; for the general model, equations
(7.17) and (7.18)

‘ Equation ‘ FE Energy parameter ‘ a; variable ‘
Kempers model hi v;
Haase Model h; M;
Sukla and Firoozabadi model U; v/ T

h; = partial molar enthalpy
M; = molecular weight
u; = partial internal energy

v; = partial molar volume

7'1',:4

n—1
Opi ; A
8752]-(1 —z)aT = %(E—EO) —(E;— B+ RT(1—2)a®" (i =1,..,n) (7.18)

=1

Equations (7.17) are defined only for n — 1 components. The thermal diffusion
factor for the last component is estimated from the relation > alz;(1 — 2;) = 0.
Equations (7.18) are defined for n components, however, only n — 1 of them are
independent.

If a; is the molecular weight and E; the partial molar enthalpy, equation (7.17) is
reduced to the Haase model. Similarly, if E; is the partial molar enthalpy and a; the
partial molar volume, then we obtain the second model of Kempers. In some cases
the contribution for the ideal gas part is neglected and then the second term of the
right hand side of equations (7.17) and (7.18) is equal to zero. If we then substitute
the partial molar volumes for a; and the partial molar enthalpies for E;, we obtain
the first model of Kempers [52]. If E; is equal to u;/7; and a; to v;, the model
of Shukla and Firoozabadi is derived. It can easily be proven that this expression
is simplified to equation (2.50) for binary systems. The values of 7; are already
discussed in Chapter 2. They will be assumed to be equal to 4. The values a and E
represent the properties for the entire mixture and are determined as: a = >, za;,
E =" | zFE;. Table 7.1 summarizes possible interpretations of equations (7.17)

or (7.18). Other interpretations are also possible.
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A different approach for estimating the thermal diffusion factor in multicompo-
nent systems was presented by Firoozabadi et al. [35,39] Their approach was based
on relation (7.10), where the transport coefficients were defined with respect to a

reference component. The following equation for the thermal diffusion factor was

obtained:
MM, (“M - “M)
T vn TnMn T, X
= o 2 Lii i =1,..n—1 1
T MRTLy 2™ +(Seme) (5 %) (i=1..n—1) (719)
7=t > 2k Vi M; M,

where L;; are the phenomenological coefficients, calculated from:

n—1n—1

(M, M, zn6i) 01 M, 2y, o
ZZ S - lk) nfk l = & D;; (Za] = 1,...,77/— 1) (720)
=1 k=1

M, 0z " R Y

where fj, is the fugacity of component %k in the mixture and D;; the binary
diffusion coefficient obtained from equation (7.20). The authors used the model of
Kooijman and Taylor [60] to calculate the molecular diffusion coefficients. For the

case of ideal mixtures the authors proposed the following expression:

O[z«: MIZV[n Up, . U; + sz’uk/Tk E _ Vn (Z: ann_ 1)
MRT T,LMn TiMi Z Zka ]\/jl ]\47,,
(7.21)

7.3 Comparison of different models

Let us compare different models for estimation of the thermal diffusion factor in
multicomponent mixtures. For evaluation we selected a ternary system of alcanes.
We evaluated the performance of different models for a simple system of n-Butane
+ n-Hexane + n-Decane under normal thermodynamic conditions.

A second comparison was carried out between the thermal diffusion factors pre-

dicted by the models and obtained by molecular dynamic simulations for the mixture
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Methane + nPentane + n-Decane. The molecular dynamic simultaions are reported
in [37].

We tested four different approaches in the framework of equation (7.17): the
models of Kempers, both from 1989 [52] and 2002 [53]; the Haase model [44]; the
Shukla and Firoozabadi expression [116] incorporated according to Kempers ap-
proach as shown in Table 7.2. At last, we incorporated the original expression of

Firoozabadi, equation (7.21). Table (7.2) summarizes the equations evaluated.

7.3.1 n-Butane + n-Hexane + n-Decane

Figures 7.1, 7.3 and 7.2 show the results obtained for the six expressions presented
in Table 7.2. The results are plotted as functions of the n-Hexane mole fraction.
Each line represents different mole fractions of n-Decane. Figure 7.1 presents the
thermal diffusion factor for n-Butane, Figure 7.3 for n-Hexane and Figure 7.2 for
n-Decane. In each figure, plot (a) shows the results obtained with the Haase model,
plots (b) and (c) with the first and second model of Kempers, and, finally, plots (d)
and (e) show the results obtained with the Shukla and Firoozabadi model and the
Firoozabadi et al. approach correspondingly.

From Figure 7.1 it may be observed that the Haase model is significantly different
from other models. It predics positive values of the thermal diffusion factor for n-
Butane. This is contrary to expectations, since small molecules are expected to go
to the hot region, exhibiting negative thermal diffusion factors. On the other hand,
this is what it is predicted by the rest of the models shown in Figure 7.1. Comparing
the results obtained by both models of Kempers with those given by Shukla and
Firoozabadi, we see that only the absolute values of the thermal diffusion factors
differ. The model of Firoozabadi et al. shows a slight difference in the behavior.

Figure 7.2 shows thermal diffusion factors for n-Decane. Again, the models of
Kempers, Shukla and Firoozabadi and Firoozabadi et al. predict positive thermal
diffusion factors, as expected, while the Haase model predicts negative factors.

Finally, Figure 7.3 shows the thermal diffusion factor for the intermediate com-
ponent, n-Hexane. In this case, the Haase model and the Firoozabadi et al. model

exhibit positive thermal diffusion factor for the whole range of molar fractions, in
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Table 7.2: Thermal diffusion expressions evaluated for multicomponent systems.
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Figure 7.1: Thermal diffusion factor for n-Butane in the mixture n-Butane + n-
n-Decane under normal conditions. Plots (a) show the results obtained

Hexane

for the Haase model, Plots (b) and (c) show the results for the first and second
model of Kempers correspondingly and Plots (d) and (e) show the results for the
model of Shukla and Firoozabadi and the Firoozabadi et al. apporach.
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Thermal diffusion factor n-Decane
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Figure 7.2: Thermal diffusion factor for n-Decane in the mixture n-Butane + n-
Hexane + n-Decane under normal conditions. Plots (a) show the results obtained
for the Haase model, Plots (b) and (c) show the results for the first and second
model of Kempers correspondingly and Plots (d) and (e) show the results for the
model of Shukla and Firoozabadi and the Firoozabadi et al. apporach.
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Figure 7.3: Thermal diffusion factor for n-Hexane in the mixture n-Butane + n-
Hexane + n-Decane under normal conditions. Plots (a) show the results obtained
for the Haase model, Plots (b) and (c) show the results for the first and second
model of Kempers correspondingly and Plots (d) and (e) show the results for the
model of Shukla and Firoozabadi and the Firoozabadi et al. apporach.
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contradiction to other models. As to the rest of the models, change of sign is ob-
served in relation not only with the concentration of n-Hexane, but also with the
concentration of n-Decane. The thermal diffusion factor is mainly positive for high
concentrations of n-Decane.

In conclusion, both approaches of Kempers and the extension of the Shukla
and Firoozabadi model give most reasonable results. Change of the sign of the
thermal diffusion factor for the intermediate component is exhibited as a function of
composition. Similar behavior was also observed for ideal gas mixtures in Chapter

6.

7.3.2 Methane + n-Pentane + n-Decane

Molecular dynamics calculations of the thermal diffusion factor in binary and ternary
alcane mixtures close to the critical point are described in [37]. Here we test the
models in comparison with the data obtained in [37]. These data are obtained for
constant reduced properties: T = 2.273, p" = 0.4227, and P" = 1.018.

To estimate the real temperature and pressure needed for calculations we used
the following definitions:
3

r _ kpT. « _ Noi. « _ Pog.
T_5£7 P = P_gwa

where 7", p" and P" are the reduced temperature, reduced density and reduced
pressure correspondingly, kg is the Boltzmann constant, N is the number of par-
ticles, V' is the volume of the simulation box, o, is the typical atomic diameter of
the studied mixture, and ¢, is the potential parameter. The last two variables were
calculated by the van der Walls one-fluid approximation, applying equations (6.31)
and (6.32). The evaluated data points are presented in Table 7.3.

The thermal diffusion factor was estimated for each component in the mixture,
as in the previous example. The results are plotted as functions of the mole fraction
of Methane. Figure 7.4 shows the results presented in the literature for the thermal
diffusion factor obtained for Methane by molecular dynamic simulations. Figure 7.5

presents the results obtained by six different models described in Table 7.2.
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Table 7.3: Data points for the evaluation of the thermal diffusion factor near the

critical point

T P ZMethane ZnPentane ZnDecane
(K) (atm)
887.75 | 213.59 0.07 0.47 0.47
825.62 | 217.19 0.17 0.42 0.42
722.40 | 225.08 0.33 0.33 0.33
619.84 | 236.78 0.50 0.25 0.25
518.50 | 255.92 0.67 0.17 0.27
419.92 | 292.78 0.83 0.08 0.08
363.98 | 337.27 0.93 0.03 0.03
or
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Figure 4. Methane thermal diffusion ratios for various methane molar fractions in a ternary
methane-n-pentanc-n-decance mixture () and in an ‘equivalent’ binary mixturc (@)
at T* = 2.273 and p* = 0.4227.

Figure 7.4: Results obtained by molecular dynamics simulation for the thermal
diffusion factor for Methane in the ternary mixture Methane + n-Pentane + n-
Decane. Reproduced from [37].
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Figure 7.5: Thermal diffusion factor for the ternary mixture Methane + n-Pentane
+ n-Decane near the critical point. Plot (a) presents the thermal diffusion factor for
Methane, Plot (b) for n-Pentane and correspondingly Plot (¢) for n-Decane. The
Haase model by a_ HAA69; the Shukla and Firoozabadi model by a_SHF98; the
Firoozabadi et al. model by a_ FIR00; the Kempers model from 1989 by a_ KEM 89;
and finally the Kempers model from 2002 by a_ KEM02.
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It may be observed that the thermal diffusion factor is negative both for Methane
and n-Pentane, while for n-Decane it has a positive value. For small mole fractions
of Methane the thermal diffusion coefficient is quite small and starts increasing
when its concentration increases. A maximum (or minimum) value is observed for
ZMethane = 0.83. The models based on equation (7.17) show trends similar to the
molecular dynamic simulation data. A minimum value for the thermal diffusion
factor for Methane exists in both cases. However, the decreasing slope is much
smaller for the simulations. The Firoozabadi expression, equation (7.21), does not

exhibit the same type of behavior.

7.4 Conclusions

We presented the problems that appear when studying the thermal diffusion effect in
multicomponent mixtures. Study of the transformation from mass fraction to mole
fraction has resulted in the conclusion that in multicomponent systems the mass
thermal diffusion factors and the molar thermal diffusion factors are not equal and
should be defined separately. Different parameters used for describing the thermal
diffusion effect were presented for this type of mixtures.

Most of the existing models for calculating the thermal diffusion factor are of
the same mathematical structure, except for the approach given by Firoozabadi et
al. [35]. A general formula was presented, from which different approximations may
be derived. Different models were compared on the example of an alcane mixture
under normal thermodynamic conditions. The general formula exhibited a change of
sign when working with volume coordinates. The model using the mass framework
predicted oposite values to those obtained with the volume reference. The same
models were also compared with the results of molecular dynamic simulations. It was
observed that the trend for the thermal diffusion factor for the lightest component
was qualitatively reproduced by all the models derived from the general equations
(7.17) and (7.18). However, the absolute values differ largely from those obtained

by molecular simulations.
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Chapter 8

Conclusions and Recommendations

for Future Work

We have presented a comparison between different models available in the literature
and the reported experimental data for binary mixtures, much more extensive than
similar comparisons, which may be found in the literature. The analysis led to the
conclusion that, although none of the models can correctly describe the thermal
diffusion factor for all the mixtures, we can use the Haase expression as a first
estimation. This model predicted the correct sign for 70% of the mixtures. The
model of Shukla and Firoozabadi in some cases gives better approximations than
the Haase approach; however, it was observed that in such cases the Haase approach
does not differ largely from the previous model. The Kempers models, on the other
hand, are capable to correctly predict the sign of the thermal diffusion factor as well
as the Shukla and Firoozabadi approach; however, they overestimate the thermal
diffusion factors compared to the experimental data. The standard errors of the
models are in general very large, with only some exceptions. Even the orders of
magnitude and the signs cannot be trusted.

The thermal diffusion factors are extremely sensitive to the values of the partial
molar properties and, thus, to the EoS selected. There is a need for improving the
existing equations of state in such a way that they are not only capable to predict
the phase equilibria, but also the partial molar properties with a high degree of

accuracy. This is a well-known limitation for the presently available EoS.
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Our work was complicated by the fact that the experimental data on thermal
diffusion coefficients are not always reliable. For the same systems the experimen-
tal values reported may present large deviations. This is due to the fact that in
the measurement of the thermal diffusion effect, it is difficult to avoid convection.
Several techniques have been suggested to avoid convection, but only in the past
years researchers had achieved to reproduce the experimental data using different
setups. Unfortunately, these data is very scarce and it will take some years to mea-
sure and collect reliable experimental data. Experiments in microgravity conditions
may help to establish what corrections are needed (for convection perturbations),
when measuring the thermal diffusion effect on the Earth.

It was the goal of the new approach presented in Chapter 5 to provide a solid
theoretical base for estimating the transport coefficients. General properties of the
thermal diffusion coefficients were established in the framework of this theory. Diffu-
sion coefficients have been shown to give very good approximations with respect to
experimental values once the coefficients of the penetration length were estimated.
Based on those results, we believed that it is possible to obtain equally good results
for the thermodiffusion. However, further modeling work is required in order to pro-
vide realistic predictable evaluation of these coefficients. The theory should further
be tested with regard to the agreement with the basic observations and empirical
laws, which have been reported for the thermal diffusion coefficients.

When studying thermodiffusion in multicomponent systems, several inconsisten-
cies arise. First, we estimated the thermal diffusion ratio for ideal gas mixture.
The expressions for the thermal diffusion coefficients, both for binary and multi-
component mixtures, were presented by Hirschfelder et al. Comparison between the
models and the experiments for binary mixtures, drove us to the conclusion that
the pseudo-binary formulation applied to multicomponent systems gave very good
approximations to the experimental points. However, the consistency requirement
could not be satisfied by the multicomponent formulations. Unfortunately, no ex-
perimental data was found for multicomponent gas mixtures, in order to check the
results. It may be concluded that thermodiffusion in multicomponent systems is

not described correctly by the formulae shown in Hirschfelder et al. Therefore we
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recommend a careful application of these formulae and implementation of one of the
pseudo-binary formula instead.

The theory for non-ideal multicomponent systems also contains some inconsisten-
cies. Two different thermal diffusion coefficients have been defined: a mass thermal
diffusion factor and a molar thermal diffusion factor. For binary systems these coef-
ficients are equal. An alternative definition of the thermal diffusion coefficients was
suggested, very closely linked to the Stefan-Maxwell picture of the multicomponent
transport.

Generalized formulae for calculating the thermal diffusion factors in multicom-
ponent systems were derived. Different models were obtained from these formulae
according to the framework used (mass or volume) and according to different ex-
pressions for heats of transport. Comparison between the models showed that a
reasonable behavior was obtained when working with the volume framework, for
which the intermediate component exhibited a change of sign for the thermal diffu-
sion factor, while the heaviest component went to the cold region and the lightest
component to the hot region. Opposite results were obtained for the mass frame-
work. In comparison with the results of molecular dynamic simulations, similar
trends were obtained with different expressions derived from the general formu-
lation. Both the thermodynamic models and the molecular dynamic simulations
showed a minimum around the same mole fraction. However, the absolute values of
the thermal diffusion factors differed largely from each other.

Comparing the results obtained for binary and for multicomponent systems, we
conclude that only the Shukla and Firoozabadi model is most likely to give the best
approximation. However, due to the lack of experimental data, we can not make
any definite statement. The sensitivity of the thermodynamic models to the EoS
used and possible inaccuracy of the EoS with regards to thermodynamic properties
remains the main problem there. Therefore, we believe that the main direction of
modeling of the thermal diffusion coefficients should be associated with development
of the thermodynamic equations of state providing reliable and stable evaluation of
the partial molar properties and their derivatives. Furthermore, more experimental

data is required for the mixtures both for simple binary mixtures and for ternary
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systems. As was already mentioned, the new approach should be further tested
with regards to derivatives and the equations of state used. And, finally, a careful
revision of the theoretical basis for the thermal diffusion effect for multicomponent

systems is required.



List of Symbols

C; Molecular velocity for component i

¢ Mass fraction of component k

CN; Coordination number for component &

cpr  Heat capacity for component k

Dy; Binary isothermal diffusion coefficient for components & and j
DI Thermal diffusion coefficient for component k
E." Vaporization energy for component &

f Thermodynamic matrix

fr Fraction of nearest neighbors for component k
Iy, External forces over the component k

g Gravity constant

G System of coordinates matrix

H Molar enthalpy of the mixture

hyr  Partial molar enthalpy for component k&

ho Reference enthalpy

J.  Mass exchange flux due to chemical reaction
Ji Mass flux of component &

J, Heat flux
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J& Mass flux due to Soret effect

J¥  Heat flux due to Dufour effect

kI  Thermal diffusion ratio for component k
L Diffusion Matrix

Lp Diffusion matrix for binary mixture

Lpr Thermal diffusion matrix for binary mixture
L;; Phenomenological coefficients

Ly  Diffusion matrix

Lyn Thermally induce mass transfer matrix
Lyu  Convective energy transfer matrix
Lyu Energy transfer matrix

M Total mass of the mixture

M;,  Molecular weight of component &

my, Mass of component k

Nah Avogadro’s number

Ni  Mole density of component k

n,  Number of moles of component k

Om  Accentric factor

P Pressure of the system

Pc  Critical pressure

P"  Reduce pressure

Q)7 Heat transported by component k - Heat of transport
R Gass constant

S Total entropy of the system

s Specific entropy of the system

So Reference entropy
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ST Soret coefficient

t Time variable

T Mean temperature of the mixture

Tc Critical temperature

T" Reduce temperature

U Internal energy of the system

u  Specific internal energy

Uay Activation energy for component &
Ue Excess internal energy

ug  Partial internal energy for component &
V' Total volume of the system

v Specific volume of the system

v, Partial molar volume

v Velocity vector

X Force associated to flux J

X, Force associated to flux J,

Z,  Molecular penetration length for component &
Z, Energy penetration length

2 Mole fraction for component k
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Greek Letters

a”  Thermal diffusion factor

T Thermal diffusion factor in ideal gas mixtures
Xi; Matrix form by the derivatives of the internal energy
Ahf Enthalpy of formation of component k

Asf Entropy of formation of component k

¢; Activation energy

1 Viscosity of the mixture

i Chemical potential of component k&

1o Reference chemical potential

p Density of the mixture

Reduce density

v, Rate of reaction

1 Volume ratio of component &

Abbreviations

2Chamber Two chamber cell

CPA Cubic Plus Association equation of state

C —TGC Concentric Thermogravitational column
EoS Equation of state

Diph — cell Diaphragma cell
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LDV  Laser Doppler Velocimeter

P — Diaph — cell Pressure Diaphragma cell

P —TGC Parallel Thermogravitational column

Pk — cell Packed Thermodiffusion cell

Pk —TGC Packed Thermogravitational column

PR Peng-Robinson equation of state

SRK Soave - Redlich-Kwong equation of state

TDFRS Thermal Diffusion Force Rayleigh Scattering

ThFFF Thermal Field Flow Fractionation
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Appendix A

Input data for pure components

Table A.1: Input data used in the calculations

Component M; om Tc P o e/k Ty | Ref.
(kg/mo) | () | (&) | man | (&) | ®) | K
Methane 16.040 0.0110 | 190.40 | 46.00 3.758 148.60 | 111.60 | [96]
Water 18.015 0.3440 | 647.30 | 221.20 | 2.641 809.10 | 373.20 | [96]
Methanol 32.040 0.5560 | 512.60 | 80.90 3.626 481.80 | 337.70 | [96]
Diethylamine 73.130 0.3115 | 496.50 | 37.10 | 5.433% | 374.72% | 328.60 | [96]
Ethanol 46.070 0.6440 | 513.92 | 61.40 4.530 362.60 | 351.40 | [96]
n-Butane 58.123 0.1990 | 425.20 | 38.00 4.687 531.40 | 272.70 | [96]
2 Propanol 60.100 0.6650 | 508.30 | 47.60 | 5.039% | 383.62% | 355.40 | [96]
n-Pentane 72.150 0.2510 | 469.70 | 33.70 5.784 341.10 | 309.20 | [96]
2butanol 74.123 0.5770 | 536.10 | 41.80 | 5.356% | 404.60* | 372.70 | [96]
n-Butyl alcohol 74.120 0.5930 | 563.10 | 44.20 | 5.345% | 424.98* | 390.90 | [96]
Carbon Disulfide 76.131 0.1090 | 552.00 | 79.00 4.483 467.00 | 319.00 | [96]
Benzene 78.114 0.2120 | 562.16 | 48.90 5.349 412.30 | 353.20 | [96]
Cyclohexane 84.160 0.2120 | 553.50 | 40.70 6.182 297.10 | 353.80 | [96]
n-Hexane 86.178 0.2990 | 507.50 | 30.10 5.949 399.30 | 341.90 | [96]
2 Methylpentane 86.178 0.2780 | 497.50 | 30.10 | 5.829% | 375.47* | 333.40 | [96]
2,2 Dimethylbutane 86.178 0.2320 | 488.80 | 30.80 | 5.751% | 368.91* | 322.80 | [96]
2,3 Dimethylbutane 86.178 0.2470 | 500.00 | 31.30 | 5.763% | 377.36* | 331.10 | [96]
3 Methylpentane 86.178 0.2720 | 504.50 | 31.20 | 5.787% | 380.75% | 336.40 | [96]
Toluene 92.141 0.2630 | 591.80 | 41.00 | 5.572% | 446.64* | 383.80 | [96]
Isobutyl Chloride 92.570 0.2487" | 504.53 | 37.59 | 5.4387 | 380.78% | 327.91 [132]
n-Butyl Chloride 92.570 0.2180 | 542.00 | 36.80 | 5.609% | 409.06* | 351.60 | [96]

@ Lennard-Jones potentials calculated according to Chung et al. method [96]

b Accentric factor calculated according to Reid et al. [96]
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Component M; om Tc Pc o e/k Thr Ref.
(kg/mol) | () | ®) |[Ga)| ) | ® | ®
sec-Butyl Chloride 92.570 0.3000 | 520.60 | 39.50 | 5.405% | 392.91¢ | 341.40 | [96]
tert-Butyl Chloride 92.570 0.1900 | 507.00 | 39.50 | 5.358% | 382.64* | 324.00 | [96]
cis-Dichloroethylene 96.940 0.2219% | 537.00 | 56.00 | 4.862% | 405.28% | 333.30 | [96]

trans-Dichloroethylene 96.940 0.2320 | 513.00 | 48.10 | 5.037* | 387.17% | 321.90 | [96]

1,1 Dichloroethane 98.960 0.2400 | 523.00 | 50.70 | 4.981% | 394.72 | 330.50 | [96]
1,2 Dichloroethane 98.960 0.2780 | 566.00 | 53.70 | 5.017% | 427.17% | 356.70 | [96]
Cyclohexanol 100.160 0.5280 | 625.00 | 37.50 | 5.845% | 471.70% | 434.30 | [96]
i-Heptane 100.204 0.3290 | 530.40 | 27.30 | 6.152% | 400.30° | 363.20 | [96]
n-Heptane 100.204 0.3490 | 540.30 | 27.40 | 6.182% | 407.77* | 371.60 | [96]
Triethylamine 101.193 0.3200 | 535.00 | 30.30 | 5.959% | 403.77* | 362.50 | [96]
Hexanol 102.170 0.5600 | 611.00 | 40.50 | 5.654% | 461.13* | 430.20 | [96]
Ethylbenzene 106.167 0.3020 | 617.20 | 36.00 | 5.901* | 465.81* | 409.30 | [96]
m-Xylene 106.167 0.3250 | 617.10 | 35.40 | 5.933% | 465.74% | 412.30 | [96]
o-Xylene 106.167 0.3100 | 630.30 | 37.30 | 5.872% | 475.70% | 417.60 | [96]
p-Xylene 106.167 0.3200 | 616.20 | 35.10 | 5.947% | 465.06° | 411.50 | [96]
Chloro Benzene 112.559 0.2490 | 632.40 | 45.20 | 5.514% | 477.28* | 404.90 | [96]
n-Octane 114.232 0.3980 | 568.80 | 24.90 | 6.493% | 429.28% | 398.80 | [96]
nitroBenzene 123.110° | 0.3364° | 715.80 | 32.40 | 6.421% | 540.23% | 482.81 | [110]
n-Nonane 128.260 0.4450 | 594.60 | 22.90 | 6.776% | 448.75% | 424.00 | [96]

Tetrahydronaphtalene 132.200 0.3030 | 719.00 | 35.10 | 6.261% | 542.64° | 480.70 | [96]

Isobutylbenzene 134.220 | 0.3800 | 650.00 | 31.40 | 6.283* | 490.57% | 445.90 | [96]
n-Butyl Bromide 137.200 0.3389% | 542.61 | 42.55 | 5.346% | 409.51¢ | 357.08 [132]
n-Decane 142.280 0.4890 | 617.70 | 21.20 | 7.042% | 466.19% | 447.30 | [96]

Carbon Tetra Chloride 153.822 0.1926 | 556.35 | 45.00 | 5.947 | 322.70 | 349.90 | [96]

Ethyl Iodide 155.967 | 0.1843% | 554.00 | 47.00 | 5.208% | 418.11% | 345.60 | [110]

Bromo Benzene 157.010 0.2510 | 670.00 | 45.20 | 5.621% | 505.66% | 429.20 | [96]

1122-TetraChloroethane | 167.850 | 0.3088° | 661.20 | 58.40 | 5.138% | 499.02% | 419.40 | [96]

Dodecane (C12H26) 170.330 0.5750 | 658.20 | 18.20 | 7.567* | 496.75% | 489.50 | [96]
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n-Butyl Iodide 184.200 0.2680° | 588.27 | 37.92 | 5.707% | 443.98% | 384.06 | [132]
1,2 dibromo ethane 187.860 0.7950 | 646.00 | 53.50 | 5.250% | 487.55% | 404.70 | [96]
n-Tetradecane 198.390 0.5810 | 693.00 | 14.40 | 8.324% | 523.02% | 526.70 | [96]
n-Pentadecane 212.410 0.7060 | 707.00 | 15.20 | 8.230% | 533.58% | 543.80 | [96]
n-Hexadecane 226.440 0.7420 | 722.00 | 14.10 | 8.498* | 544.91* | 560.00 | [96]
n-Octadecane 254.490 0.7900 | 748.00 | 12.00 | 9.073% | 564.53% | 589.50 | [96]
Carbon Tetra Bromide 331.630 0.4954° | 757.88 | 96.31 | 4.552% | 571.98% | 483.69 [132]
1122-Tetrabromoethane | 345.650 | 0.5384° | 770.42 | 66.97 | 5.166% | 581.45% | 511.2 | [132]

n-Octadecane

Carbon Tetra Bromide
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Appendix B
Results of the calculations for non-ideal binary
mixtures

The Appendix is found on the attached CD.
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Appendix C

Third approximation for k' in binary

ideal gas
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Appendix D

Second approximation for DT in

ideal gas
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Third approximation for DT in ideal

gas
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