
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Robust topology optimization of photonic crystal waveguides with tailored dispersion
properties

Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

Published in:
Optical Society of America. Journal B: Optical Physics

Link to article, DOI:
10.1364/JOSAB.28.000387

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wang, F., Jensen, J. S., & Sigmund, O. (2011). Robust topology optimization of photonic crystal waveguides
with tailored dispersion properties. Optical Society of America. Journal B: Optical Physics, 28(3), 387-397. DOI:
10.1364/JOSAB.28.000387

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13745837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/JOSAB.28.000387
http://orbit.dtu.dk/en/publications/robust-topology-optimization-of-photonic-crystal-waveguides-with-tailored-dispersion-properties(94e543ba-ce0a-4f23-956d-7aa7accc4ffa).html


Robust topology optimization of photonic crystal
waveguides with tailored dispersion properties

Fengwen Wang,* Jakob S. Jensen, and Ole Sigmund

Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé,
Building 404, 2800 Kgs. Lyngby, Denmark
*Corresponding author: fwan@mek.dtu.dk

Received August 16, 2010; revised December 9, 2010; accepted December 12, 2010;
posted December 15, 2010 (Doc. ID 133488); published February 8, 2011

A robust topology optimization method is formulated to tailor dispersion properties of photonic crystal wave-
guides, with consideration of manufacturing uncertainties. Slightly dilated and eroded realizations are considered
as well as the real structure, and by worst-case optimization, we also ensure a satisfactory performance in the case
of an under- or overetching scenario in the manufacturing process. Two photonic crystal waveguides facilitating
slow light with group indexes of ng ¼ 25 and ng ¼ 100 and bandwidths ofΔω=ω ¼ 2:3% and 0.3%, respectively, are
obtained through the proposed robust design procedure. In addition, a novel waveguide design with two different
constant group index waveguide regions is demonstrated. The numerical examples illustrate the efficiency of the
robust optimization formulation and indicate that the topology optimization procedure can provide a useful tool
for designing waveguides that are robust to manufacturing uncertainties such as under or overetching. © 2011
Optical Society of America

OCIS codes: 000.4430, 130.5296, 230.7400.

1. INTRODUCTION
Slow-light waveguides have a great variety of applications,
such as for compact optical delay lines, optical buffers, and
enhanced light-matter interaction [1]. Photonic crystal wave-
guides (PhCWs), generated by missing air holes in a two-
dimensional (2D) photonic crystal (PhC) slab, facilitate
slow-light propagation within the bandgap of the PhC [2]
through strong structural dispersion. The slow-light regime
of PhCWs is usually located in the vicinity of the Brillouin zone
edge, where the group index diverges to infinity. The slow-
light bandwidth becomes narrower as the group index in-
creases and large group-velocity dispersion (GVD) can be
observed in the slow-light regime, which can severely distort
the optical signal. Therefore, special attention has been paid
to these issues [3–7].

The PhCW dispersion properties are strongly sensitive to
structural details, and they can be tuned through the design
of the supercell, the periodic cell of PhCWs. Previously, it
was demonstrated that the dispersion curve can be tailored
by different approaches. Slow light with low GVD has been
achieved by chirping the waveguide properties [3,4], perturb-
ing the diameters of the air holes [5] or the locations of air
holes [6] adjacent to the central defect. However, slow-light
propagation is very sensitive to geometrical parameters,
and thus very careful experiments are necessary for observa-
tion and evaluation of the slow light [7]; manufacturing uncer-
tainties may degrade or destroy the prescribed group velocity.
Therefore, a systematic and robust design methodology is
highly desirable for PhCW design.

A method that recently has been successfully applied to a
range of PhC based structures and devices is the topology
optimization method [8]. This method, which is based on
repeated finite-element analyses and gradient-based optimiza-
tion updates, was originally developed for mechanical

problems, but has more recently been applied to PhC design
in a number of papers [9–11]. A comprehensive review of
topology optimization applied to nano-optical design can
be found in Ref. [12]. Previously it was demonstrated that
topology optimization can be applied to create novel
waveguides with enhanced dispersion properties [13].
By maximizing the mode confinement for a prescribed
frequency-wavenumber range, Stainko and Sigmund managed
to achieve a constant group velocity within a 5% error interval.
The present work addresses the dispersion control problem
considered in [13] in a more rigorous manner and simulta-
neously tackles important manufacturability issues.

A main challenge in topology optimization is the manufac-
turability of the optimized designs, which includes imposing a
minimum length scale on the designs and consideration of
manufacturing uncertainties due to under or overetching in
the manufacturing process. Different filter schemes have been
introduced to control checkerboard instabilities and achieve
minimum length scale [14–22]. In order to realize robustness
in topology optimization, Sigmund [23] suggested a robust for-
mulation based on dilated, intermediate, and eroded design
realizations corresponding to under, normal, and overetching,
respectively.

In this work, we focus on robust topology optimization of
PhCWs with tailored dispersion properties. Manufacturing un-
certainties are approximated by a threshold projection meth-
od with different thresholds [24]. Based on Floquet–Bloch
type eigenvalue analysis of the supercell, we formulate the ob-
jective as the error between the actual group index and a pre-
scribed group index for certain discrete wavenumbers. The
robust formulation consists in minimizing the maximum error
among the dilated, intermediate and eroded design realiza-
tions. Band constraints are introduced to avoid multiple
modes and to isolate the designed propagation band.
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This paper is organized as follows. In Section 2, we present
the 2D model that is used to calculate the band structure of
PhCWs and a numerical approximation of the group index. In
Section 3, the formulation for robust topology optimization
and the associated analytical sensitivities are given. Numeri-
cal examples are demonstrated in Section 4 and we summar-
ize in Section 5

2. PHYSICAL PROBLEM
PhCWs can facilitate guided modes in the bandgap of PhCs.
For a TE-polarized PhCW, the light propagation can be mod-
eled by the Helmholtz equation in the frequency domain

∇ ·

�
1
εr
∇h

�
þ
�ω
c

�
2
h ¼ 0; ð1Þ

where εr is the space-dependent relative permittivity, h is the
magnetic field, ω is the wave frequency, and c is the speed of
light in vacuum.

In this study, we focus on the triangular lattice PhCW based
on a silicon membrane (nSi ¼ 3:476, εSi ¼ n2

Si). As a starting
point for our optimization study, we consider the initial wave-
guide structure illustrated in Fig. 1(a). The dimension of the
supercell in the propagation direction is the lattice constant a.
The line defect is surrounded by 5.5 layers of air holes and the
dimension of the supercell perpendicular to the propagation
direction is b ¼ 6

ffiffiffi
3

p
a. The diameter of the air holes is

d ¼ 0:6a. The calculation of the band structure of PhCWs
can be formulated as an eigenvalue problem of the supercell
with Floquet–Bloch wave boundary conditions. Based on the
supercell in Fig. 1(a), the Floquet–Bloch wave boundary con-
ditions can be stated as

hðx; aÞ ¼ expðikaÞhðx; 0Þ hð0; yÞ ¼ hðb; yÞ; ð2Þ
where k is the Bloch-wavenumber in the propagation
direction.

The discrete expression of Eq. (1) can be obtained using the
finite-element method

ðKk − ω2MÞh ¼ 0; ð3Þ
where Kk is the global finite-element matrix stemming from
the first term in Eq. (1), h is a vector of discretized nodal
values of magnetic field h, and M is the global finite-element
matrix from the second term in Eq. (1). The wavenumber de-
pendency of Kk is introduced by the implementation of the
boundary conditions in Eq. (2) through the penalty approach.

Figure 1(b) depicts the band structure of the supercell in
Fig. 1(a). The gray regions indicate the slab mode region
(modes in the crystal not confined to the line defect). The
dotted curve denotes the light line ω ¼ ck, which represents
the condition for light leaking in the out-of-plane direction.
Beneath the light line, the higher index waveguide core pulls
down discrete guided modes into the bandgap [2]. Because of
the presence of a lateral symmetry, the guided modes can be
classified as laterally even modes (solid curve) and laterally
odd modes (dashed curve). In this paper, only even modes
are considered for guided waves.

Figure 1(b) shows that the even band flattens out as it ap-
proaches the band edge and the group velocity of the guided
mode decreases to zero. The group velocity vg of a guided
mode with frequency ω is defined as the band slope at
frequency ω:

vg ¼
∂ω
∂k

: ð4Þ

The even band has a negative band slope and thus the group
index ng for the even guided mode is calculated by

ng ¼ −c
∂k

∂ω : ð5Þ

Numerically, we approximate the group index for frequency
ωnðkiÞ by

ngðωnðkiÞÞ ¼
cðki − kÞ

ωnðkÞ − ωnðkiÞ
; ð6Þ

where n is the band number of the designed band in order of
increasing frequency and k is a wavenumber close to ki. This
method is sufficiently accurate if k is sufficiently close to ki.

The group index plot [Fig. 1(c)] shows that the mode is
index- guided in the fast light regime (ng ≈ nSi), whereas in
the slow-light regime (ng ≫ 1), the mode is bandgap guided.
The group index diverges near the band edge and the group
index here is strongly dependent on the frequency. Thus a

Fig. 1. (a) Schematic illustration of the supercell of a triangular lat-
tice PhCW. (b) Corresponding band structure. Gray region indicates
slab mode region, the dotted curve represents the light line, the solid
curves denote the even guided modes, and the dashed curves denote
the odd guided modes. (c) Group index of the even guided modes in
the bandgap.
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large GVD is obtained (GVD ¼ c−1dng=dω), which distorts the
waveform of optical signals and, moreover, the bandwidth
becomes narrower for the slow light.

3. ROBUST TOPOLOGY OPTIMIZATION
PROBLEM
A. Formulation of Robust Design
In many applications, it is highly desirable to reduce the GVD
and extend the bandwidth for slow-light operation. This can
be realized through a proper modification of the waveguide
geometry. In topology optimization, the elementwise design
variables ρ are introduced to represent the material distribu-
tion in the supercell. These design variables are used to
control the dielectric permittivity in each element. The opti-
mization problem can be formulated as minimizing the error
between the actual group index and the prescribed group in-
dex for certain discrete wavenumbers ki, in order to reduce
the GVD and extend the bandwidth of the slow light (shown in
Fig. 2). In order to realize the desired design robustness, the
underetched structure (dilated design, �ρd), normal etched
structure (intermediate design, �ρi) and overetched structure
(eroded design, �ρe) in the manufacturing process can be con-
sidered with a min-max optimization formulation [23]. Robust
topology optimization for tailoring dispersion properties is
achieved by minimizing the maximum error for certain dis-
crete wavenumbers for the three design realizations.

In order to avoid multimode interference for the tailored
modes, band constraints are implemented. First, the lower
and upper bands should be kept away from the design (slow
light) band. Also, as Fig. 1(b) shows, there is interaction be-
tween guided odd and even bands. In order to keep the odd
band away from the designed even modes, an additional con-
straint is implemented on the odd band for ki ¼ 0 (shown in
Fig. 2). The robust formulation can be stated as

min
ρj

max
q

max
ki

f ð�ρqÞ ¼
�

cðki − ki−1Þ
ωq
nðki−1Þ − ωq

nðkiÞ
− n�

g

�
2

s:t: ½Kq
k − ðωqÞ2Mq�hq ¼ 0 max

kii

ωq

n−1ðkiiÞ ≤ a1min
ki

ωq
nðkiÞ

ωq
nð0Þ ≥ a2 max

ki

ωq
nðkiÞ min

kii

ωq

nþ1ðkiiÞ ≥ a2 max
ki

ωq
nðkiÞ f v ¼

P
j �ρdj vjP
j vj

≤ f �v

0 ≤ ρj ≤ 1 j ¼ 1;…; N; i ¼ 2;…;m; a1 < 1; a2 > 1; q ¼ fd; i; eg ð7Þ

where ρj is the design variable for element j, The superscript q
denotes the design type among the three different design rea-
lizations; q ¼ fd; i; eg indicates the dilated, intermediate, and
eroded designs, respectively; �ρq is the physical density vector
of the structure q; ki is the discrete design wavenumber;
ωq
nðkiÞ is the nth order frequency corresponding to wavenum-

ber ki for the design q; n�
g is the prescribed group index; kii is

the discrete wavenumber for lower band (ωq

n−1ðkiiÞ) and upper
band (ωq

nþ1ðkiiÞ); a1 and a2 represent the band constraints; N
is the total element number; vj is the volume of element j; f v is
the actual volume fraction of the total material, f �v is the given
volume fraction; and m is the total number of the design wa-
venumbers ki. The volume constraint is implemented on the
dilated design realization.

B. Numerical Approximation of Manufacturing
Uncertainties
The basis for the approximation of under, normal, and over-
etching in the manufacturing process is the traditional density
filter introduced by Bruns and Tortorelli [16] and Bourdin [17]

~ρe ¼
P

j∈Ne
wðxjÞvjρjP

j∈Ne
wðxjÞvj

; ð8Þ

where ~ρe is the filtered density of element e, xj is the location
of element j, Ne is the neighborhood of element ewithin a cer-
tain filter radius r specified by

Ne ¼ fjj∥xj − xe∥ ≤ rg; ð9Þ

and wðxjÞ is the weighting factor defined as wðxjÞ ¼
r − ∥xj − xe∥.

Based on the filtered density, the under, normal, and over-
etching can be realized based on a threshold projection by
choosing different thresholds. For a given threshold η, the

Fig. 2. Schematic illustration of objective and constraints in the ro-
bust formulation. The crosses denote the prescribed properties, up-
ward arrow indicates pushing upward, downward arrow indicates
pushing downward, and the inset shows the prescribed group index
and actual group index versus wavenumber.

Fig. 3. Illustration of the smoothed threshold projection for η ¼ 0:5
and different values of β.
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physical density �ρe can be approximated by a smooth function
governed by the parameter β (shown in Fig. 3 for η ¼ 0:5):

�ρe¼

8>><
>>:

ηfexp½−βð1−~ρe=ηÞ�−ð1−~ρe=ηÞexpð−βÞg 0≤~ρe≤η
ð1−ηÞf1−exp½−βð~ρe−ηÞ=ð1−ηÞ�
þð~ρe−ηÞ=ð1−ηÞexpð−βÞgþη η<~ρe≤1

:ð10Þ

Three threshold values are chosen as ηd, ηi, and ηe corre-
sponding to the dilated, intermediate, and eroded design.
They satisfy 0 ≤ ηd < ηi < ηe ≤ 1. By controlling the threshold

values, we control the manufacturing tolerance between the
dilated, intermediate, and eroded designs. More details can be
found in [24].

C. Sensitivity Analysis
The interpolation of the relative permittivity of element e in
the design domain is given by a linear function based on
the inverse permittivity

1
εqe

¼ ð1 − �ρqeÞ 1ε1
þ �ρqe

1
ε2

; ð11Þ

where ε1 ¼ 1 is the relative permittivity of air and ε2 ¼ εSi is
the relative permittivity of silicon. The sensitivity of the objec-
tive and constraints can be calculated separately for each
structure by the standard chain rule [20]

Fig. 4. Illustration of design domain. The dash-dot curves denote the
symmetric axes of design domain.

Fig. 5. Robust design of PhCWs. (a) Dilated design. (b) Intermediate design. (c) Eroded design. (d) Band structure of dilated design. The crosses
indicate the design range and the bold curve in the inset denotes the bandwidth of prescribed group index. (e) Band structure of intermediate
design. (f) Band structure of eroded design. (g) Group index of the different design realizations and prescribed group index. (h) PhCW constituted
by intermediate design.
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∂F

∂ρj
¼

X
e∈Nj

∂F

∂�ρqe
∂�ρqe
∂~ρe

∂~ρe
∂ρj

; ð12Þ

where F denotes the objective f or constraints.
The sensitivity of the objective with respect to the physical

density can be expressed as

∂f ð�ρqÞ
∂�ρqe

¼ −2

�
cðki − ki−1Þ

ωq
nðki−1Þ − ωq

nðkiÞ
− n�

g

�

×
cðki − ki−1Þ

ðωq
nðki−1Þ − ωq

nðkiÞÞ2
�
∂ωq

nðki−1Þ
∂�ρqe

−
∂ωq

nðkiÞ
∂�ρqe

�
: ð13Þ

The sensitivity of the eigenvalues and also for multiple eigen-
values can be found in many papers, e.g., Seyranian et al. [25]
and Pedersen and Nielsen [26]. Based on Eq. (10), the deriva-
tive of the physical density �ρqe with respect to the filtered den-
sity ~ρe is

∂�ρqe
∂~ρe

¼
�
β exp½−βð1 − ~ρe=ηqÞ� þ expð−βÞ 0 ≤ ~ρe ≤ ηq
β exp½−βð~ρe − ηqÞ=ð1 − ηqÞ� þ expð−βÞ ηq < ~ρe ≤ 1 :

ð14Þ

The sensitivity of the filtered density ~ρe with respect to the
design variable ρj can be calculated by

∂~ρe
∂ρj

¼ wðxjÞvjP
i∈Ne

wðxiÞvi
: ð15Þ

D. Numerical Implementation
Since the supercell is the periodic cell of PhCWs, the neigh-
borhood of element e, Ne includes the neighbor elements in
the previous or next supercell in the density filter. Further-
more, in order to keep the smoothness between design do-
main and nondesign domain, the physical densities of the
elements adjacent to the design domain are updated accord-
ing to the design variables. The optimization problem is solved
by the globally convergent version of the method of moving
asymptotes (GCMMA) from Svanberg [27]. The full optimiza-
tion procedure is as follows:

1. Set the design domain and choose the η set: ηd, ηi,
and ηe.

2. Build the neighborhood N for changeable elements.
3. Initialize design variables ρ.
4. Compute the dilated (�ρd), intermediate (�ρi), and eroded

(�ρe) design realizations based on the design variables.
5. Solve the eigenvalue problems based on the dilated, in-

termediate, and eroded designs.
6. Calculate objectives and constraints and corresponding

sensitivities.
7. Update design variables ρ using GCMMA.
8. Calculate max design variable change Δρ and max

objective change Δf .

9. For every fortieth iteration or if ({Δρ < 1e − 3 or Δf <

1e − 3 } and β < βmax), set β ¼ 1:3β.
10. If ðΔρ < 1e − 4 or Δf < 1e − 4Þ and β ≥ βmax, termi-

nate, else, goto 4.

Here the maximum value of β is βmax ¼ 50.
The optimization procedure is implemented in MATLAB and

runs in parallel on a standard four-processor PC. The optimi-
zation converges in 400–500 GCMMA iterations, for which
each GCMMA iteration includes three or four inner-iterations
and takes 3–4 min for seven discrete wavenumbers.

4. RESULTS
It was shown in [5] that the first two rows of air holes adjacent
to the waveguide core have a significant influence on the
group index. Here we add one and one-quarter rows and
set the first three and one-quarter rows adjacent to the wave-
guide core as the design domain. A symmetry condition is in-
troduced to ensure symmetric designs (shown in Fig. 4). The
initial design is illustrated in Fig. 1(a). The supercell is discre-
tized with 40 × 408 quadrilateral four-node elements. The vol-
ume constraint is f �v ¼ 0:8, the filter radius r is set as 1=8a, and
the threshold set is η ¼ f0:35; 0:5; 0:65g. In order to measure
the separation between the designed band and the other
bands, we define the relative band distance: the relative band
distance is defined as the band distance to mid-distance fre-
quency ratio Δω=ωm, Δω is the minimum of the minimal dis-
tance between upper band and lower band, and the distance
between the minimal odd mode and lower band and ωm is the
frequency at the middle of the band distance.

A. Robust Design of PhWGs
In the first example, we try to design PhCWs with the constant
group index of ng ¼ 25 in the wavenumber range
k ∈ ½0:3875; 0:4625�2π=a. The target wavenumbers ki are set
to seven equidistant points in above wavenumber range.
The final robust design is shown in Fig. 5. Figures 5(a)–5(c)
display the dilated, intermediate, and eroded design realiza-
tion. The corresponding band structures [Figs. 5(d)–5(f)]
show that the design regions are well isolated from other
modes. By studying the band structures and the inset group
index plots, we can see that the guided modes with almost
constant group index are located at different frequency ranges
for the three design realizations. This is an expected feature,
since the frequency scales as 1=

ffiffiffiεp
in a medium of dielectric

constant ε. The volume fraction of silicon decreases from the
dilated design to the eroded design; therefore, the average di-
electric constant decreases from the dilated design to the
eroded design, and correspondingly, the location of the de-
signed band should increase in frequency. Figure 5(g) shows
the group index plot of all the designs versus wavenumber k. It
can be seen that all the design realizations have equally good
performance in the design region. Therefore, almost constant
group velocity also is achieved when the design is slightly

Table 1. Performance of Different Designs in Fig. 5

Design f v Band distance (2πc=a) Bandwidth (2πc=a) Error

Dilated 0.740 21.1% in [0.20866, 0.25802] 0.00250 in [0.23188, 0.23438] 3.6%
Intermediate 0.678 24.6% in [0.21670, 0.27749] 0.00250 in [0.24760, 0.25011] 3.7%
Eroded 0.613 21.5% in [0.24000, 0.29783] 0.00250 in [0.26800, 0.27050] 3.3%
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under or overetched during the manufacturing process. A con-
stant group velocity is achieved by all three design realizations
in the wavenumber range k ∈ ½0:39375; 0:45625�2π=a, which is
smaller than the target wavenumber range. This is due to the
numerical calculation of the group index based on finite dif-
ferences [Eq. (6)], which causes the errors between actual
group index and prescribed group index at the first and last
wavenumbers to be much larger than for the other target
wavenumbers.

Detailed properties of the three design realizations are
shown in Table 1. Among the three design realizations, the di-
lated one has the smallest relative band distance. The same
bandwidth ofΔω ¼ 0:0025 2πc=a can be achieved by all three
of the design realizations in different frequency ranges. The
frequency ranges of the bandwidths reveal that the designed
modes are located near the center of the corresponding dis-
tance. The maximum error of the constant group index is lim-
ited to 3.7%.

The band structures of the robust design show that there
are two other bands between the slab mode region and the
designed band. These two bands interact and degenerate at
the band edge. Whereas the designed mode is confined in
the waveguide core for all the three design realizations
(Fig. 6), the modes of the other two bands are confined in
the design domain, but not in the waveguide core.

In order to compare normal nonrobust optimization and ro-
bust optimization, we perform a normal optimization for η ¼
0:5 with the same parameter set as in above case. The final
design is shown in Fig. 7. Figure 8 depicts the maximum error
between actual group index and the prescribed group index
versus η for the normal design (Fig. 7) and the robust design
(Fig. 5). The best performance is obtained by the structures
corresponding to the design η, η ¼ 0:5 for the normal design
and η ¼ f0:35; 0:5; 0:65g for the robust design. Compared with
the normal optimization, which degenerates for even very
small etching errors, the performance of the PhCW has been
improved significantly through the robust optimization ap-
proach. The robust optimization formulation ensures that
the structure realizations corresponding to η ∈ ½ηd; ηe� pre-
serve good performance, and the maximum error is limited
within 15.3%. An even better performance could be obtained
by considering more values of η in the interval of ½ηd; ηe�, but at
the expense of increased computation time.

B. Robust Design of PhWGs with Smaller GVD
In this example, we investigate the influence of the band con-
straints on the group index and aim to decrease the error of
the constant group index. The band constraints are relaxed
slightly, i.e., given a smaller relative band distance. The other
parameters are kept exactly the same as in the first case. The
final design is shown in Fig. 9 illustrating that the topology of
the design is quite different in comparison to the first case.
There are topological differences between the eroded and
the other two design realizations and small isolated compo-
nents show up in the eroded design realization. All of the con-
clusions about the frequency shift and confinement drawn
from the first case still apply in this case: the frequency of
the band shifts upwards from the dilated to the eroded design
and the designed modes are confined to the waveguide core
[shown in Figs. 9(e)–9(g)]. The group index plot [Fig. 9(i)]
shows that a group index of ng ¼ 25 is achieved with negligi-
ble error by all three designs. The smallest bandwidth of
Δw ¼ 0:0025 2πc=a can be achieved by all the three designs

Fig. 7. Optimized design of PhCW without considering robustness
for η ¼ 0:5. (a) Optimized design. (b) Group index of different designs
and prescribed group index.

Fig. 8. Maximum error between actual group index and prescribed
group index in the design wavenumber range versus η for normal and
robust formulation.

Fig. 6. Amplitudes of the magnetic field at ki ¼ 0:425 2π=a. (a) Am-
plitude of the magnetic field for dilated design. (b) Amplitude of the
magnetic field for intermediate design. (c) Amplitude of the magnetic
field for eroded design. (d) Amplitude of the lower odd magnetic
mode for intermediate design. (e) Amplitude of the lower even mode
for intermediate design.
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within an error of 0:8%. Comparison between the first example
and this example reveals that the improvement of the disper-
sion properties can be obtained at the expense of the relative
band distance (Table 2).

C. Extension of the Bandwidth
Two key parameters of slow light in PhCWs are the dispersion
properties and the bandwidth. In the first two examples, we
have demonstrated that the GVD of the slow-light regime can
be reduced significantly, and a constant group velocity with
very small error can be obtained for a certain bandwidth.
In this example, we aim to design PhCWs with enlarged band-
width of the constant group index. To achieve this, we extend
the design wavenumber range to k ∈ ½0:3; 0:47�2π=a by setting
10 equidistant target wavenumber ki in above range. The final
design is presented in Fig. 10. It is seen that a broader
bandwidth is obtained in this case. An almost constant group
velocity of vg ¼ 0:04c can be achieved for the wavenumber
range k ∈ ½0:30625; 0:46250�2π=a by all the three design
realizations.

Table 3 shows the properties of all of the design realiza-
tions. The smallest bandwidth of Δω ¼ 0:00625 2πc=a can
be achieved by all design realizations with the maximum error

of 2.6%. Compared to the previous example, the bandwidth is
more than doubled, at the expense of a slightly increased er-
ror. Examining the guided frequency range and the design
wavenumber range, we can see that the largest frequency
of the eroded design is close to the light line, which indicates
that this bandwidth is close to the largest bandwidth we can
obtain.

D. Design of PhCWs with Different Constant
Group Indexes
In this example, we explore the ability of the robust design
formulation further by designing a PhCW, which exhibits
two different constant group indexes over different frequency
ranges. Our prescribed group indexes are n�

g ¼ 20 for
five equidistant design wavenumbers in the wavenumber
range of k ∈ ½0:32; 0:37�2π=a and n�

g ¼ 25 for five equi-
distant design wavenumbers in the wavenumber range of
k ∈ ½0:41; 0:46�2π=a.

The final design is presented in Fig. 11. The group index
plot [Fig. 11(i)] shows two relatively flat parts corresponding
to the group indexes of ng ¼ 20 and ng ¼ 25. The constant
group index of ng ¼ 20 can be achieved in the wavenumber
range of k ∈ ½0:32500; 0:36875�2π=a and the constant group

Fig. 9. Robust design of PhCWs with small GVD. (a) Dilated design. (b) Intermediate design. (c) Eroded design. (d) PhCW constituted by inter-
mediate design. (e) Amplitude of the magnetic field at ki ¼ 0:425 2π=a for dilated design. (f) Amplitude of the magnetic field at ki ¼ 0:425 2π=a for
intermediate design. (g) Amplitude of the magnetic field at ki ¼ 0:425 2π=a for eroded design. (h) Band structure of intermediate design. (i) Groups
indexes of the different design realizations and prescribed group index.

Table 2. Performance of Different Designs in Fig. 9

Design f v Band distance (2πc=a) Bandwidth (2πc=a) Error

Dilated 0.761 11.2% in [0.21129, 0.23644] 0.00250 in [0.22243, 0.22493] 0.6%
Intermediate 0.695 13.0% in [0.22265, 0.25367] 0.00275 in [0.23881, 0.24156] 0.7%
Eroded 0.617 13.2% in [0.24338, 0.27796] 0.00325 in [0.26087, 0.26412] 0.8%
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index of ng ¼ 25 can be achieved in the wavenumber range of
k ∈ ½0:41250; 0:45625�2π=a by all the three design realizations.

The detailed properties of these three design realizations
are listed in Tables 4 and 5. The bandwidth of ng ¼ 20 isΔω ¼
0:0025 2πc=a with maximum error of 1.7% and the bandwidth
of ng ¼ 25 is Δω ¼ 0:00175 2πc=a with maximum error of
1.8%. Among the three design realization, the eroded design
exhibits the largest bandwidths for both group indexes.

E. Further Discussion
The isolated components, which show up in the eroded de-
signs in the second and fourth examples, are not suitable
for membrane waveguides. Therefore, further consideration
should be given to prevent the isolated components during
the optimization process. The isolated components cause
the fundamental free mechanical vibration frequency of the
supercell to be zero. Therefore, a fundamental mechanical vi-
bration frequency constraint is added to the optimization for-
mulation to prevent isolated components in the designs. The

free mechanical vibration problem can be solved as an eigen-
value problem of the supercell under the following boundary
conditions:

uðx; aÞ ¼ uðx; 0Þ uð0; yÞ ¼ uðb; yÞ ¼ 0: ð16Þ

The mechanical properties are interpolated based on the
SIMP model [8] as

E
q
e ¼ Emin þ ðE1 − EminÞð�ρqeÞp;

m
q
e ¼ mmin þ ðm1 −mminÞ�ρqe ; ð17Þ

where Eq
e andm

q
e are the Young’s modulus andmass density of

element e in design q, respectively, and p is the exponential
power of the SIMP model. The parameters in the SIMP model
are set as: Emin ¼ 10−9E1, mmin ¼ 10−9m1, p ¼ 5, and
Poisson’s ratio is ν ¼ 0:3.

Fig. 10. Robust design of PhCWs with large bandwidth. (a) Dilated design. (b) Intermediate design. (c) Eroded design. (d) PhCW constituted by
intermediate design. (e) Amplitude of the magnetic field at ki ¼ 0:376 2π=a for dilated design. (f) Amplitude of the magnetic field at ki ¼ 0:376 2π=a
for intermediate design. (g) Amplitude of the magnetic field at ki ¼ 0:376 2π=a for eroded design. (h) Band structure of intermediate design. (i)
Groups indexes of the different design realizations and prescribed group index.

Table 3. Performance of Different Designs in Fig. 10

Design f v Band distance (2πc=a) Bandwidth (2πc=a) Error

Dilated 0.682 8.7% in [0.23711, 0.25878] 0.00625 in [0.24473, 0.25098] 2.6%
Intermediate 0.611 9.9% in [0.25299, 0.27942] 0.00625 in [0.26477, 0.27102] 2.6%
Eroded 0.537 8.3% in [0.27770, 0.30189] 0.00649 in [0.28665, 0.29314] 2.6%
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The entire robust formulation can thus be modified as

min
ρj

max
q

max
ki

f ð�ρqÞ ¼
�

cðki − ki−1Þ
ωq
nðki−1Þ − ωq

nðkiÞ
− n�

g

�
2

s:t: ½Kq
k − ðωqÞ2Mq�hq ¼ 0 ð~Kq

− λq1 ~MqÞuq ¼ 0

max
kii

ωq

n−1ðkiiÞ ≤ a1min
ki

ωq
nðkiÞ ωq

nð0Þ ≥ a2 max
ki

ωq
nðkiÞ min

kii

ωq

nþ1ðkiiÞ ≥ a2 max
ki

ωq
nðkiÞ

λq1
λ0

≥ δ; λ0 ¼
E1

m1

f v ¼
P

j �ρdj vjP
j vj

≤ f �v 0 ≤ ρj ≤ 1 j ¼ 1;…; N; i ¼ 2;…;m; a1 < 1; a2 > 1; q ¼ fd; i; eg: ð18Þ

To illustrate the efficiency of this formulation, we optimize
the second example with the same parameter set (shown
in Fig. 12) and another example for n�

g ¼ 100 (shown in
Fig. 13). The fundamental free vibration frequency con-
straint is set to δ ¼ 0:00025. The normalized bandwidths
Δω=ω of these two examples are 1.24% and 0.33%, respec-

tively with maximum error of 2%. The final designs show
that this new formulation can prevent the isolated com-
ponents effectively and also performs well for high group in-
dexes. However, it should be noted that the algorithm is
quite sensitive to the choice of the parameter δ.

Fig. 11. Robust design of PhCWs with two constant group indexes. (a) Dilated design. (b) Intermediate design. (c) Eroded design. (d) PhCW
constituted by intermediate design. (e) Amplitude of the magnetic field at ki ¼ 0:345 2π=a for dilated design. (f) Amplitude of the magnetic field at
ki ¼ 0:345 2π=a for intermediate design. (g) Amplitude of the magnetic field at ki ¼ 0:345 2π=a for eroded design. (h) Band structure of inter-
mediate design (f) Groups indexes of the different design realizations and prescribed group index.

Table 4. Performance of Different Designs in Fig. 11

Design f v Band distance (2πc=a) Bandwidth (2πc=a) of ng ¼ 20 Error

Dilated 0.720 8.7% in [0.22847, 0.24939] 0.00250 in [0.23909, 0.24159] 1.7%
Intermediate 0.648 10.5% in [0.24210, 0.26892] 0.00250 in [0.25866, 0.26116] 1.3%
Eroded 0.565 11.5% in [0.26388, 0.29623] 0.00284 in [0.28553, 0.28834] 1.6%
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5. CONCLUSION
In this study, a robust topology optimization method to tailor
the dispersion properties of PhCWs has been presented. The
objective is formulated as a min-max optimization problem
based on the errors between actual group indexes and a pre-
scribed group index among the dilated, intermediate, and
eroded designs, which mimic under, normal, and overetching
in the manufacturing process. Band constraints are implemen-
ted to isolate the design modes from other modes. This formu-
lation ensures that if the proposed design is slightly dilated or
eroded during manufacturing, the PhCW still preserves the de-
sired performance. The proposed robust formulation indir-
ectly ensures a minimum length scale on important design
features (the response of the optimized design is tolerant to-
wards errors in the realization of smaller details). The mini-
mum length scale can be controlled by proper selection of

filter size and projection values (see [24] for more details).
PhCWs with group index of ng ¼ 25 are demonstrated with
very small GVD and the bandwidth of slow light of ng ¼ 25
can be increased to 0:00625 2πc=a through the robust design.
The detailed properties of the PhCWs reveal that the reduc-
tion of the GVD and the extension of the bandwidth are at ex-
pense of the relative band distance. Another example shows
that a slow-light PhCW with ng ¼ 100 can be achieved with a
bandwidth of 0:00079 2πc=a. Moreover, PhCWs with novel
functionality, exhibiting two constant group index regions
over different frequency ranges, can be created by the robust
design formulation. The appearance of isolated components
in the overetching are avoided by introducing a fundamental
free mechanical vibration constraint. The proposed design
method provides a systematic and robust method for tailoring
the dispersion of PhCWs.
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Fig. 12. Robust design of PhCWswith fundamental free vibration fre-
quency constraint. (a) Dilated design. (b) Intermediate design. (c)
Eroded design. (d) Amplitude of the magnetic field at ki ¼
0:425 2π=a for dilated design. (e) Amplitude of the magnetic field
at ki ¼ 0:425 2π=a for intermediate design. (f) Amplitude of the mag-
netic field at ki ¼ 0:425 2π=a for eroded design. (g) Group indexes of
the different design realizations and prescribed group index.

Fig. 13. Robust design of PhCWs with ng ¼ 100. (a) Dilated design.
(b) Intermediate design. (c) Eroded design. (d) Amplitude of the mag-
netic field at ki ¼ 0:425 2π=a for dilated design. (e) Amplitude of the
magnetic field at ki ¼ 0:425 2π=a for intermediate design. (f) Ampli-
tude of the magnetic field at ki ¼ 0:425 2π=a for eroded design. (g)
Group indexes of the different design realizations and prescribed
group index.

Table 5. Performance of Different
Designs in Fig. 11

Design Band distance (2πc=a) of ng ¼ 25 Error

Dilated 0.00175 in [0.23741, 0.23566] 1.2%
Intermediate 0.00175 in [0.25495, 0.25670] 1.7%
Eroded 0.00200 in [0.28355, 0.28155] 1.8%
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