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Summary

Lightweight encryption denotes a class of cryptographic algorithms that are suitable
for extremely resource constrained environments and offer a moderate security level.
The demand for such lightweight encryption algorithms increases because small com-
puting devices such as RFID tags become more and more popular and establish a
part of the pervasive communication infrastructure. But this extensive employment
of computing devices is not only convenient, it also carries security risks.

Lightweight encryption algorithms can be divided into two classes: lightweight
block ciphers and stream ciphers. Before a new algorithm can be deployed an exten-
sive assessment and analysis of its security is necessary. In this thesis we focus on
the cryptanalysis of lightweight encryption schemes and we consider the two block
cipher C2 and Maya, as well as the stream cipher Trivium. We start with an intro-
duction to block ciphers and stream ciphers and give an overview of the most general
techniques in cryptanalysis. Furthermore, we investigate block ciphers with secret
components. The idea of using secret components is to increase the security of the
cipher. We present a cryptanalysis of the cipher C2 where we apply a newly developed
technique for recovering the secret S-box, and a cryptanalysis of the PRESENT-like
cipher Maya, which involves a differential-style attack. In the analysis of the stream
cipher Trivium we combine optimization techniques with cryptanalysis. In this new
direction of research we examine the use of mixed-integer optimization and neighbor-
hood search algorithms such as simulated annealing for solving non-linear Boolean
equation systems.
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Resumé (in Danish)

Letvægtskryptering betegner en klasse af kryptografiske algoritmer, som er specielt
egnede til miljøer med ekstremt begrænsede ressourcer, og som giver et moderat sikker-
hedsniveau. Efterspørgslen efter s̊adanne letvægtskrypteringsalgoritmer vokser, fordi
mikro-computere, s̊asom RFID-tags, bliver mere og mere populære som en del af vores
voksende kommunikationsinfrastruktur. Denne omfattende brug af mikro-computere
er ikke kun praktisk, men medfører ogs̊a potentielle sikkerhedsrisici.

Letvægtskrypteringsalgoritmer kan inddeles i to klasser: letvægtsblokchifre og
strømchifre. Før ibrugtagning skal en ny algoritme underkastes en omfattende sikker-
hedsvurdering og -analyse. I denne afhandling fokuserer vi p̊a kryptoanalyse af letvægt-
skrypteringalgoritmer, og vi undersøger de to blokchifre C2 og Maya samt strømchifferet
Trivium. Vi begynder med en introduktion til blokchifre og strømchifre og giver et
overblik over de mest generelle metoder til kryptoanalyse. Desuden undersøger vi
blokchifre med hemmelige komponenter, hvis form̊al er at øge chifferets sikkerhed. Vi
præsenterer en kryptoanalyse af chifferet C2, hvor vi anvender en nyudviklet teknik
til at finde den hemmelige S-box, og en kryptoanalyse, som inkluderer et differentielt
angreb, af det Present-lignende chiffer Maya. I analysen af strømchifferet Trivium
kombinerer vi optimeringsmetoder med kryptoanalyse. I denne nye forskningsretning
undersøger vi brugen af blandet-heltalsoptimering og omegns-søgealgoritmer s̊asom
“simulated annealing” til løsning af ikke-lineære boolske ligningssystemer.

iii





Preface

Most people use cryptography several times a day, often without being aware of it.
Home banking, the Internet, mobile phones, NemID or access cards are just some
examples. The digital world becomes more and more important in our lives, there-
fore it also becomes more and more important that our transactions in that world
are secure such that nobody can manipulate our data, eavesdrop on our communica-
tions etc. Mathematical algorithms called cryptographic primitives found the basis of
the security. Any trapdoor in these primitives threatens the security of the applica-
tion. Therefore it is important to analyze them carefully before they are employed in
practice. This analysis is called cryptanalysis.

Cryptanalysis advances by discovering unforeseen and unexpected structure of
cryptographic problems. Such structural properties can often be exploited to decrease
the complexity of breaking the cryptosystem below the designated security level.

In this thesis we investigate in particular the security of lightweight encryption
schemes. These are cryptographic algorithms which can be employed in resource con-
strained environments. We try to identify certain properties in the different algorithms
which can be exploited to break the ciphers.

In Part I we give a short introduction into symmetric cryptographic primitives and
their cryptanalysis.
Chapter 1 provides a motivation and a general introduction to the field of cryptog-
raphy. We introduce the cryptographic concepts such as symmetric and public-key
encryption and define terminology such as security definitions, attack goals and sce-
narios.

Chapter 2 introduces the cryptographic primitives called block ciphers. We provide
a short description of both Feistel ciphers and substitution-permutation networks, and
introduce the ciphers C2 and PRESENT as examples of these design concepts.

Chapter 3 gives a short overview of stream cipher design. We compare the two most
common stream cipher designs, synchronous and self-synchronizing stream ciphers
and afterwards we focus on the design of synchronous stream ciphers. We discuss the
properties of building blocks such as LFSRs and sketch designs based on them. After
a short discussion of security considerations the chapter concludes with a description
of the stream cipher Trivium.

Chapter 4 provides an introduction to cryptanalysis applied to block and stream ci-
phers. We give a short description of generic attacks such as the exhaustive key search,
the table look-up attack, the dictionary attack, and the time-memory trade-offs. These
attacks set the bounds on the security of block and stream ciphers. Subsequently, we
present the two most important techniques in the cryptanalysis of symmetric en-
cryption schemes: differential and linear cryptanalysis. Additionally, we describe the
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boomerang and the cube attacks as variants of the classical differential attack. The
chapter concludes with algebraic attacks. Algebraic representations of symmetric en-
cryption scheme are the basis for the novel cryptanalysis presented in Part III.

In Part II we examine the security of block ciphers with secret components where we
in particular consider block ciphers with secret S-boxes.

Chapter 5 is concerned with the cryptanalysis of the cipher C2. C2 is 64-bit block
Feistel cipher with a 56-bit key. The 8-bit S-box is application-dependent and kept
secret. We show a trial-and error attack which recovers the S-box in only 224 queries
to the device and present a boomerang attack to determine the secret key. The dif-
ferential used in the attack is independent of the S-box. These two attacks can be
combined to an attack that enables us to recover the key and the S-box at the same
time. This chapter is based on [22].

Chapter 6 addresses the cryptanalysis of PRESENT-like ciphers with secret S-boxes.
We present a new differential-style attack which enables us to recover the S-boxes of
the first round of encryption. Furthermore, we show that an S-box can be uniquely
determined if we know all sets of input pairs, which lead to an output difference of
Hamming weight one, for the S-box and its inverse. The attack is successfully carried
out on the cipher Maya and we are able to break the full version consisting of 16
rounds with a practical complexity. Based on a mathematical model we infer that our
attack can be successfully applied to ciphers with a randomly chosen S-box layer for
up to 28 rounds, which is better than the best attack known on PRESENT. This
chapter is based on [24].

In Part III we investigate the use of optimization methods in cryptanalysis. Our
main target is the stream cipher Trivium, because its internal state can be described
by a very sparse quadratic Boolean equation system.

Chapter 7 provides a short introduction to optimization with emphasis on mixed-
integer optimization and generalized hill climbing methods such as simulated anneal-
ing. As optimization is a large research field we restrict ourselves to the concepts of
optimization which required in later chapters.

Chapter 8 describes several representations of Boolean functions as real-valued poly-
nomials and the corresponding conversion methods. Next to the four commonly known
representation (the standard, the dual, the sign, and the Fourier representation) which
can be applied to any Boolean function, we also introduce conversion methods which
only apply to Boolean functions in algebraic normal form. While the adapted stan-
dard conversion converts a Boolean equation into a set of equations over the reals,
the integer adapted standard conversion converts a Boolean equation into an equa-
tion over the integers. The integer adapted standard conversion was introduced in [28].

Chapter 9 presents the state recovery problem of Trivium as a mixed-integer linear
programming problem. More precisely, we explain how to convert the Boolean equa-
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tion system describing the small scale variant of Trivium called Bivium A into a set
of constraints that describes the feasible set of a mixed-integer linear programming
problem. Experiments on variants with smaller state size are carried out to find the
optimal settings for the mixed-integer programming problem, such as the objective
function, binary constraints on the variables and the number of observed keystream
bits. The approach breaks Bivium A in about 4.5 hours and Bivium B in 263.7 seconds.
The results have been published in [28].

Chapter 10 explains how the state recovery problem of Trivium can be presented as
a discrete optimization problem. As the equation system given by Trivium exhibits
properties such as sparsity and variable locality we believe that the problem is suitable
for simulated annealing. We present an improved simulated annealing variant which
depends on a new parameter called nochangebound. Applied to Trivium this variant
shows a significant improvement in the complexity compared to the classical simulated
annealing. We are able to recover the initial state of Trivium in 2210 bit flips. Parts
of this chapter will be published in [26].

Chapter 11 summarizes the results of this thesis.

The work presented in this thesis was performed at the Department of Mathe-
matics, Technical University of Denmark, in partial fulfillment of the requirement for
acquiring the PhD degree. The author was funded by a grant from the Danish re-
search council for Technology and Production Sciences grant number 274-07-0246 and
supervised by Professor Lars Ramkilde Knudsen.

The thesis describes the work done by the author during her PhD studies from
January 2008 to December 2010. The contribution is presented in Chapters 5 (where
the author in particular worked on the search for differentials and the S-box recovery
attack), 6 (where the author focused in particular on the mathematical model), 9 and
10. During the three years of PhD studies the following papers were published:

Borghoff, J., Knudsen, L. R., Leander, G., and Matusiewicz, K.

Cryptanalysis of C2. In Advances in Cryptology – CRYPTO 2009, (2009),
S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science, Springer,
pp. 250–266

Borghoff, J., Knudsen, L. R., and Stolpe, M. Bivium as a mixed-
integer linear programming problem. In Cryptography and Coding, 12th IMA
International Conference (2009), M. G. Parker, Ed., vol. 5921 of Lecture
Notes of Computer Science, Springer, pp. 133–152

Borghoff, J., Knudsen, L. R., and Matusiewicz, K. Hill climbing
algorithms and Trivium. to appear in Proceedings of Selected Areas in Cryp-
tology 2010, Lecture notes in Computer Science, 2010
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Borghoff, J., Knudsen, L. R., Leander, G., and Thomsen, S. S.

Cryptanalysis of PRESENT-like ciphers with secret s-boxes. submitted to
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Borghoff, J., Knudsen, L. R., Leander, G., and Matusiewicz, K.

Cryptanalysis of C2 – extended abstract. Pre-proceedings of WEWoRC 2009,
Graz, 2009

Borghoff, J., Knudsen, L. R., and Stolpe, M. Bivium as a mixed-0-1
programming problem – extended abstract. Pre-proceedings of WEWoRC
2009, Graz, 2009

Borghoff, J., Knudsen, L. R., and Matusiewicz, K. Analysis of Triv-
ium by a simulated annealing variant. Proceedings of Ecrypt II Workshop
on Tools for Cryptanalysis 2010, Egham, 2010



Acknowledgments

I would like to take the opportunity to thank the people who supported and accom-
panied me during my PhD studies.

First and foremost I would like to thank my supervisor Lars Ramkilde Knudsen.
Thank you for posing a very interesting research problem to me, introducing me to the
international community of crytologists and sharing your knowledge. I believe that I
became a better researcher and a stronger personality under your supervision and I
am grateful for that. I would like to say thank you for having an open door for all my
question, for our discussions, and for your comments on my work. I appreciate that
you gave me the freedom to do the research I liked and supported me when necessary
and finally I would like to thank you for staying calm whenever I lost my head.

I am especially grateful to Krystian Matusiewicz and Mathias Stolpe. I would like
to thank you, Krystian, for your endless patience when answering my questions, for
sharing your expertise, for your positive attitude and motivation when our research
seemed to be stuck and for your always friendly smile. Krystian, I learned a lot from
you. I also give my deep-rooted thanks to Mathias. Thank your for your open mind
towards our collaboration, our discussions, for introducing me to different methods in
the field of optimization and for giving me the push in the right direction. My work
would not have been as successful without you.

Next I would like to say thank you to the two of my co-authors I have not mentioned
yet, Gregor Leander and Søren Steffen Thomsen. I truly enjoyed working with you.
Furthermore I would like to thank all members of our discrete mat group, who make
the department a really nice place to work: Krystian, Charlotte, Kristian and Diego
(who are not longer with the department), Lars, Gregor, Erik, Søren, Praveen, Valerie,
Mohamed, Hoda, Tom, Peter, Johan, Carsten and also Martin and Nasour (who were
visiting the crypto group). Thank you all for broadening my knowledge, for the serious
and the not so serious lunch discussions and for an always open ear. Sincerely thanks
to Tom Høholdt for taking good care of me, being always concerned about my well-
being and the attempts to teach me Danish. I am truly grateful. Furthermore I
would like to say thank you to Charlotte Vikkelsø Miolane, not only for all the helpful
comments on my thesis but also for support and friendship especially in the first year
of my PhD.

I would also like to thank all my PhD colleagues. Thanks for the fun at our trips,
for the meaningful and in particular for the senseless discussions during our coffee
breaks and lunches, thanks for the international encounters which really broadened
my mind and thanks for the friendship.

It has been a pleasure to be part of DTU mathematics the last three years. I
enjoyed the friendly atmosphere, in particular I would like to highlight the PhD trips,
the social clubs especially the beer club, and the Christmas lunches.

I would also like to thank the members of COSIC at the KU Leuven, in partic-
ular my host Vincent Rijmen, for welcoming me in their group, inspiring seminars,

ix



x

delightful coffee breaks and giving me a proper desk. My stay in Leuven was a great
experience I will never forget.

During my PhD studies I was part of an international project in cooperation with
the TU Graz and KU Leuven. I would like to say thank you to Tomislav Nad, Elmar
Tischhauser, Mario Lamberger, Vincent, Krystian and Lars for all the nice meetings
and the inspiring discussions and presentations.

Furthermore my heartfelt thanks to Anders Astrup Larsen for patiently proofread-
ing my thesis, giving me helpful comments and cheering me up in the stressful times
towards the end.

And last but not least I should say thanks to Volker Krummel for pointing me
to the job and encouraging me to apply which was the starting point of my Danish
adventure.

Kgs. Lyngby, December 2010
Julia Borghoff



Contents

I Introduction to Symmetric Cryptanalysis 5

1 Introduction 7

1.1 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1 Public-key Encryption versus Symmetric Encryption . . . . . . 9
1.1.2 Block and Stream Ciphers . . . . . . . . . . . . . . . . . . . . . 10

1.2 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Security Measurements . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 The Adversary’s Goals . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Classification of Attack Scenarios . . . . . . . . . . . . . . . . . 14

2 Block Ciphers 17

2.1 Feistel Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 The Cipher C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Substitution-Permutation Networks . . . . . . . . . . . . . . . . . . . . 20
2.2.1 The Block Cipher PRESENT . . . . . . . . . . . . . . . . . . . 22

3 Stream Ciphers 25

3.1 The General Structure of Stream Ciphers . . . . . . . . . . . . . . . . 26
3.1.1 Synchronous Stream Ciphers . . . . . . . . . . . . . . . . . . . 27
3.1.2 Self-Synchronizing Stream Ciphers . . . . . . . . . . . . . . . . 28

3.2 Design and Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Linear Feedback Shift Registers . . . . . . . . . . . . . . . . . . 30
3.2.2 LFSR-based Stream Ciphers . . . . . . . . . . . . . . . . . . . 32
3.2.3 Non-Linear Feedback Shift Register . . . . . . . . . . . . . . . 34

3.3 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Keystream Generation . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Key Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Cryptanalytic Results on Trivium . . . . . . . . . . . . . . . . 36
3.4.4 Bivium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Trivium as an Equation System . . . . . . . . . . . . . . . . . . 39

4 Classical Cryptanalysis 41

4.1 Exhaustive Key Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Table Look-up Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Dictionary Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Cryptanalytic Time-Memory Trade-off . . . . . . . . . . . . . . . . . . 42

4.4.1 Time-Memory Trade-off Attack for Block Ciphers . . . . . . . 43
4.4.2 Time-Memory-Data Trade-off for Stream Ciphers . . . . . . . . 45

4.5 Differential Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



2 Contents

4.5.1 The Probability of a Differential Characteristic . . . . . . . . . 50

4.5.2 Iterative Characteristics . . . . . . . . . . . . . . . . . . . . . . 52

4.5.3 Key Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.4 The Boomerang Attack . . . . . . . . . . . . . . . . . . . . . . 55

4.5.5 Cube Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.1 Key Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 The Probability of a Linear Characteristic . . . . . . . . . . . . 63

4.7 Algebraic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II Cryptanalysis of Block Ciphers with Secret Components 67

5 Cryptanalysis of C2 69

5.1 Recovering the Secret S-box with a Chosen Key Attack . . . . . . . . 69

5.1.1 Generating Plaintexts that Fit for Seven Rounds . . . . . . . . 71

5.1.2 A Three-Round Test . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Search for S-box Independent Characteristics . . . . . . . . . . . . . . 75

5.3 Key-Recovery Attack for a Known S-box . . . . . . . . . . . . . . . . . 76

5.3.1 Recovering Bits of the First Round Key . . . . . . . . . . . . . 77

5.4 Key and S-box Recovery with Chosen Ciphertext Attack . . . . . . . . 80

5.4.1 Recovering Remaining Unknown Round Key Bits . . . . . . . . 81

5.4.2 Attacking the Second Round . . . . . . . . . . . . . . . . . . . 82

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Cryptanalysis of PRESENT-like Ciphers with Secret S-boxes 85

6.1 PRESENT-like Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 The Principle of the Attack . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 S-box Recovery given Slender Sets . . . . . . . . . . . . . . . . 89

6.2.2 Generalizing to All S-boxes and their Inverses . . . . . . . . . . 91

6.2.3 Partitioning Pairs into Sets . . . . . . . . . . . . . . . . . . . . 91

6.2.4 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.5 Relaxed Truncated Differentials . . . . . . . . . . . . . . . . . . 93

6.3 The Attack in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Data Collection Phase . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.2 S-box Recovery Phase . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Case study: the Block Cipher Maya . . . . . . . . . . . . . . . . . . . 96

6.5 Model for the Complexity of Recovering Sets De . . . . . . . . . . . . 99

6.6 Fully random PRESENT-like ciphers . . . . . . . . . . . . . . . . . . 102

6.7 Linear-style Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents 3

III Cryptanalysis by Optimization 107

7 Optimization 109

7.1 Mixed-Integer Optimization . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Generalized Hill Climbing Algorithms . . . . . . . . . . . . . . . . . . 123

7.2.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conversion Methods 127

8.1 Representations of Boolean Functions as Polynomials over the Reals . 128

8.2 Conversion Methods for Boolean Functions in Algebraic Normal Form 133

8.2.1 The Integer Adapted Standard Conversion Method . . . . . . . 135

9 Bivium as a Mixed Integer Programming Problem 137

9.1 Bivium A as a Mixed-Integer Linear Programming Problem . . . . . . 138

9.1.1 Linearization Using the Standard Conversion Method . . . . . 138

9.1.2 Linearization Using the Integer Adapted Standard Conversion
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.1.3 Bivium A as a Feasibility Problem . . . . . . . . . . . . . . . . 141

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2.1 Parameters Using the Standard Conversion Method . . . . . . 142

9.2.2 Results on Bivium A Using Standard Conversion . . . . . . . . 147

9.2.3 Results on Bivium B Using the Standard Conversion . . . . . . 148

9.2.4 Results Using the Integer Adapted Standard Conversion . . . . 150

9.3 Possible Improvements through Extra Constraints . . . . . . . . . . . 151

9.3.1 AND-gate Constraints . . . . . . . . . . . . . . . . . . . . . . . 151

9.3.2 CNF Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10 Hill Climbing Algorithms and Trivium 155

10.1 Trivium as a Discrete Optimization Problem . . . . . . . . . . . . . . 156

10.2 Properties of Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.3 Solving the Trivium Systems with Modified Simulated Annealing . . . 158

10.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.5 Some Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.5.1 Guessing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.5.2 Overdetermined System of Equations . . . . . . . . . . . . . . 168

10.5.3 Variable Persistence . . . . . . . . . . . . . . . . . . . . . . . . 170

10.6 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . 171

11 Conclusion 173

A Five-round Characteristics for C2 177



4 Contents

B A Short Analysis of the Trivium Equation System 179

C CNF for the Bivium B Keystream Equation 187



Part I

Introduction to Symmetric
Cryptanalysis





Chapter 1

Introduction

The name cryptography comes from the Greek words “kryptos” which means “hidden,
secret” and “graph” which means “writing” and is the science of hiding information.
Some experts claim that cryptography was developed spontaneously after writing was
invented. However, the first documented form of cryptography dates back to 1900
B.C. when an Egyptian used non-standard hieroglyphs in an inscription. One of the
most famous historic ciphers is the Caesar cipher, named after Julius Caesar. In order
to protect messages with military content against his enemies he wrote his messages
with an alphabet shifted by three positions, e.g., he wrote a “D” instead of an “A”.
This form of simple encryption prevented Caesar’s enemies from reading his messages.
Nowadays, where information technologies become more and more important in our
society, cryptography has more objectives than merely providing confidentiality.

The development of telecommunication systems and digital information opened a
wide range of new possibilities. Billions of people are connected through the Internet
or digital mobile networks and exchange large amounts of data and sensitive infor-
mation over those networks. Digital information has the advantage that it can be
transmitted in different ways and easily copied, meaning that one can store the exact
same information on a USB-stick or on a hard drive, send it over a wireless network
or transmit it over an optical fiber. The transmission of data is fast and easy. The ad-
vantages of digital information and networks such as the Internet and mobile networks
are obvious, but what is the drawback compared to an old-fashion letter? A receiver
of a letter can check if the letter and therefore the information has been compromised.
A handwritten signature does not only verify the origin of the letter, it also prevents
the sender from later denying that he sent the message. An adversary, who reads the
letter, has to open a sealed envelope. If he wants to change the information he has
to rewrite the letter. Both opening the envelope and changing information will leave
traces. This is not the case for digital data. Therefore cryptography has to provide
the characteristics a letter automatically provides. Providing confidentiality is still
the first objective of cryptography that comes to mind. But also authentication, data
integrity and non-repudiation are important objectives of cryptography and charac-
teristics which are also provided by a letter. This list is by no means complete. The
reader is referred to [82] for more information.

Confidentiality When transmitting a message over an insecure channel only the
intended recipient should be able to read the message. An unauthorized eaves-
dropper should not get any information about the content of the message. Also
stored data should be protected against unauthorized access.

7
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Authentication The receiver of a message wants to verify its origin, i.e., the receiver
wants to make sure that the message comes from a certain sender and not from
somebody else.

Data integrity The receiver can verify that the data was not modified (neither ac-
cidentally nor on purpose) during the transmission.

Non-Repudiation The sender should not be able to later deny that he sent a mes-
sage.

In this thesis we focus on symmetric encryption schemes which are supposed to provide
confidentiality.

1.1 Symmetric Encryption

The general setting is that two parties - a sender, called Alice, and a receiver, called
Bob, - want to communicate over an insecure channel without allowing an eavesdrop-
per, called Eve, to obtain any information about their conversation. We assume that
beforehand Alice and Bob have the possibility to exchange a small amount of informa-
tion, the secret key, over a secure channel. The purpose of the encryption algorithms
is to protect the secrecy of the message transmitted over an insecure channel.

In general a cryptosystem, also called an encryption scheme, consists of two func-
tions. An encryption function E, which takes the message or plaintext p as input and
transforms it into the corresponding ciphertext c = E(p), and a decryption function
D = E−1, which inverts the encryption function. Thus, it holds that D(c) = p.

In order to provide confidentiality the encryption function should be designed
such that Eve cannot deduce any information about the plaintext from an intercepted
ciphertext and the decryption function should be kept secret. As the encryption and
decryption functions are often similar and can be deduced from each other, keeping D
secret also implies keeping E secret. However, keeping a whole algorithm secret is from
the practical point of view never a good idea because it means that several algorithms
are needed for different communication partners [41]. The idea to overcome this
problem is to construct a parametrized encryption algorithm. In such an encryption
scheme the encryption and decryption function have an additional secret parameter
k as input such that Dk′(Ek(p)) for k′ 6= k does not reveal any information about
the plaintext p. The parameter k is called the secret key and is usually a bitstring
of length ranging from 56 to a couple of hundred bits which is shared by the parties
beforehand over a secure channel. The secret key is also referred to as their common
secret. Alice encrypts the message p under Bob’s and her shared, secret key k and
sends the resulting ciphertext c = Ek(p) over the insecure channel. After receiving
the ciphertext c Bob applies the decryption algorithm with the key k and ciphertext
c as inputs and obtains the plaintext p = Dk(c) as depicted in Figure 1.1. Formally,
we define a symmetric encryption scheme as follows.

Definition 1.1 (Symmetric cryptosystem [97]).
A symmetric cryptosystem, also called a symmetric encryption scheme, is a five-tuple
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E D pp
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(insecure channel)

K

(secure channel)

Figure 1.1: Symmetric encryption

(P, C,K, E ,D) where P is the finite set of plaintexts, C is the finite set of ciphertexts
and K is the key space. For each key k ∈ K there is an encryption function Ek ∈ E
with respect to k,

Ek : P → C

and a corresponding decryption function Dk ∈ D,

Dk : C → P

such that Dk(Ek(p)) = p for all plaintexts p ∈ P.

The security of an encryption scheme should depend solely on the secret key. This
assumption, which builds the basis of modern cryptography, was first made by the
Dutch cryptographer Auguste Kerckhoffs in 1883 [64] and is generally referred to as
Kerckhoffs’ principle.

Theorem 1.2 (Kerckhoffs’ principle).
A cryptosystem should be secure even if everything about the cipher, except the secret
key, is public.

In practice Kerckhoffs’ principle is not always obeyed. One example is the block
cipher GOST [93] which was developed in the 1970s by the soviet government and
kept secret. After the dissolution of the USSR the specification were released. GOST’s
contains secret S-boxes which vary for different implementations. The design principle
behind this idea is not clear, one speculation is that the government would supply weak
S-boxes for those it would like to spy on.

Kerckhoffs’ principle does not only apply to symmetric cryptosystems but to cryp-
tosystems in general, also to the so-call public key encryption schemes.

1.1.1 Public-key Encryption versus Symmetric Encryption

The drawback of symmetric encryption schemes is that the two parties, who want
to communicate over an insecure channel, have to exchange a secret key over a se-
cure channel beforehand. The key for encryption and decryption is the same and
must therefore be kept secret. This implies that not only the decryption but also
the encryption function is secret. However, in the 1970s Diffie and Hellman found
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out that it is not a necessary condition to keep the encryption function secret in or-
der to construct a secure encryption scheme. This insight was the hour of birth of
public-key cryptography. Public-key cryptosystems are based on functions which are
easy to evaluate but hard to invert unless some extra information is known. Such
functions are called trapdoor one-way functions, where the extra information which
enables one to easily invert the function is referred to as the trapdoor. Alice holds
a key pair consisting of a public and a private key, where the public key defines the
encryption function and the private key is the trapdoor information needed to invert
the encryption function. When Bob wants to send a message to Alice he obtains her
public key from a trusted source, often referred to as certificate authority or trusted
authority, and encrypts the message under Alice’s public key. Alice can then decrypt
the message using her private key. Public-key cryptography has the huge advantage
that Alice and Bob do not have to exchange information over a secure channel before
they can start exchanging messages. However, symmetric cryptography still plays
an important role in practical systems because symmetric encryption is an order of
magnitude more efficient than public key encryption. Often hybrid systems are em-
ployed, where public key encryption is used to establish a secret key for the symmetric
encryption, which is performed afterwards. In the remainder of this thesis we only
consider symmetric encryption schemes.

1.1.2 Block and Stream Ciphers

Symmetric encryption algorithms can be divided into the two categories: block ciphers
and stream ciphers. Roughly spoken, a block cipher divides the input message into
blocks of a fixed size (usually 64 or 128 bits) and then encrypts each block indepen-
dently under the same key. The input to a stream cipher is a continuous stream of
plaintext bits, which is encrypted according to an internal state. The internal state is
initialized by the secret key and an initial value and is updated during the encryption
process independently of the message for most designs [41].

In practice these definitions are not that strict. A block cipher is usually used in
a mode of operation where the encryption of a block often depends on the encryption
of the previous block or the block cipher is used in a stream cipher mode. However,
modes of operation are out of the scope of this thesis. A more detailed description of
block and stream ciphers can be found in the Chapters 2 and 3.

1.2 Security Considerations

In the previous section we pointed out that the purpose of encryption is to enable two
parties to securely communicate over an insecure channel. But what does it actually
mean that a cipher is secure. The definition of security is quite difficult, also because
the attacker may have various goals and abilities. In this section we will list various
definitions of security, name different goals an attacker may have and give an overview
of typical attack scenarios.
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1.2.1 Security Measurements

We can find several approaches to evaluate the security of a cryptosystem in the
literature. We consider two different concepts of security in this section: unconditional
and computational security.

Unconditional Security

A cryptosystem is unconditionally secure if it cannot be broken even with infinite
computational resources. A cryptosystem might be unconditional secure in one at-
tack scenario but easy breakable in another. A more formal definition is given by
Shannon [95] under the name “perfect secrecy” in his paper “Communication The-
ory of Secrecy Systems”. Informally, perfect secrecy means that an adversary cannot
obtain any information about the plaintext by observing the ciphertext.

Definition 1.3 (Perfect secrecy).
A cryptosystem has perfect secrecy if

Pr[P = p|C = c] = Pr[P = p]

for all p ∈ P and c ∈ C.

Note that unconditional security and perfect secrecy are not equivalent definitions,
a cipher which provides perfect secrecy is unconditional secure against a ciphertext
only attack (cf. Section 1.2.3) but not necessarily unconditional secure in any other
attack scenario. Perfect secrecy is a strong condition, which can only be achieved if the
key length equals or exceeds the message length [95]. Therefore, it is rather impractical
to require perfect secrecy. Nevertheless perfect secrecy is achievable. Shannon proved
that the cipher One-time pad provides perfect secrecy. The idea of One-time pad is
very simple:

Definition 1.4 (One-time pad).
Let n > 1 be the length of the message, then P = K = C = Z

n
2 . For p = (p1, . . . , pn) ∈

P, c = (c1 . . . , cn) ∈ C and k = (k1, . . . , kn) ∈ K the encryption and decryption is
defined as bitwise exclusive-or.

Ek(p) = (p1 ⊕ k1, · · · , pn ⊕ kn)

and

Dk(c) = (c1 ⊕ k1, · · · , cn ⊕ kn).

For the security of One-time pad it is crucial that the key k ∈ K is chosen uniformly
at random and that no two messages are encrypted using the same key.

We have seen that unconditional security or even perfect secrecy implies rather
impractical requirements and in practice we can assume that the adversary does not
have infinite computational power to his disposal. This leads us to the definition of
computational security.
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Computational Security

If we have the possibility to somehow verify that the solution we found is correct, we
can always apply an exhaustive search.

Definition 1.5 (Exhaustive search).
The method of trying all possible elements in the search space until the correct one is
found is called exhaustive search. On average half of the elements have to be tested.

In practice it is reasonable to require that a cryptosystem is secure against an
adversary with bounded computational resources.

Definition 1.6 (Computational security).
A cryptosystem provides n bits of security if the most efficient attack requires a com-
putational effort which is equivalent to an exhaustive search over 2n values.

From this definition we can infer that a cryptosystem is computationally secure if
it provides n bits of security where 2n operations are computationally infeasible with
the resource that are currently available or that will be available in the near future.
The parameter n in general is determined by the key size, because it is always possible
to exhaustively search over all 2n keys until the correct one is found if the plaintext is
known (see Section 4.1 for further details). Thus the key size yields an upper bound
for the parameter n and in the optimal case, i.e., if there is no attack faster than
exhaustive key search, also a lower bound.

Computational security is in general hard to prove. Modern designs usually follow
design principles that allow the designer to derive lower bounds for a successful attack.
However, these bounds are derived using certain assumption or models and are often
limited to a certain attack.

In his paper “Communication Theory of Secrecy Systems” [95] Shannon identified
two properties a secure cipher should have for obscuring redundancies.

Confusion means according to Shannon “to make the relation between the simple
statistics of ciphertext and the simple description of key a very complex and
involved one”. This was reinterpreted by Massey [70] to mean that the ciphertext
statistics should depend on the plaintext statistics in a manner too complicated
to be exploited by a cryptanalyst. Confusion is usually realized by substitutions
such as S-boxes.

Diffusion “In the method of diffusion the statistical structure of the plaintext which
leads to its redundancy is dissipated into long range statistics, i.e., into statis-
tical structure involving long combinations of letters in the cryptogram.” [95].
That means that each digit of the plaintext and an secret key should influence
many digits of the ciphertext [70]. A cipher has a good diffusion if each bit of
the ciphertext changes with probability 1

2 if one bit of the plaintext is flipped.
Permutations provide diffusion in block ciphers.

An important question when evaluating computational security is the question of
which components determine the complexity of an attack. There are three different
categories that are used to measure the complexity.
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• Processing complexity: The time needed to actually perform the attack.

• Data complexity: The amount of data needed for the attack to be successful.

• Storage complexity: The amount of memory that is required during the attack.

A design goal for an encryption scheme is to maximize the complexity of known attacks
while minimizing the complexity of encryption and decryption. Here, it is important
that the designer also keeps possible trade-offs between the different complexities in
mind such as the time-memory trade-off described in Chapter 4. As opposed to the
designer’s goals an adversary tries to find an attack with a complexity that is lower
than the bound estimated by the designer. On the one hand, not every successful
attack implies that the cipher becomes useless in practice because even though the
attack is faster than exhaustive search it might still be computational infeasible. On
the other hand, every attack reveals a previously unknown weakness of a cipher and
carries the risk of becoming a practical threat in the future.

In this section we have given two basic definitions of security against a successful
attack. But what does it mean that an attack is successful? In the next section we
give a short overview of the different attack goals, an adversary may have.

1.2.2 The Adversary’s Goals

Clearly, the highest goal of an adversary is to recover the secret key which is used
to encrypt the ciphertexts he intercepts. But the key is not the only information an
adversary can obtain. In the following we list different attack goals in decreasing order
of severity using the classification of [67].

1. Total break: An attacker finds the secret key k which has been used under the
encryption.

2. Global deduction: An attacker finds an algorithm A, that is equivalent to Ek

or Dk without knowing the actual key k.

3. Local deduction: An attacker can recover the plaintext of an intercepted
ciphertext.

4. Information deduction: An attacker obtains some information about the key
or the plaintext. This can be a few bits of the key or plaintext, as well as some
information about the structure of the plaintext etc.

Not included in the classification given in [67] are distinguishing attacks. These are
the most basic attacks. In a distinguishing attack the adversary wants to distinguish
the output of a cipher from the output of a random permutation.

After we have clarified the different attack goals the next step is to classify an ad-
versary’s abilities. An attacker, who can require decryptions of ciphertexts he chooses
himself, might be more powerful than an attacker, who can just eavesdrop a conver-
sation.
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1.2.3 Classification of Attack Scenarios

The overall assumption is that Kerckhoffs’ principle applies, meaning that the ad-
versary knows all details about the encryption algorithms except for the secret key.
Furthermore, we assume that the attacker can access the full communication between
the two parties. Under these assumptions we can classify five possible cryptanalytic
attacks.

Ciphertext only attack: The attacker possesses the ciphertexts of several mes-
sages, all of which have been encrypted using the same key.

Known plaintext attack: The attacker has access to several plaintexts and the cor-
responding ciphertexts. However, he has no control over the plaintexts available
to him.

Chosen plaintext attack: The attacker can choose a number of plaintexts a priori
and obtains the corresponding ciphertexts.

Adaptively chosen plaintext attack: An adaptively chosen plaintext attack is a
chosen plaintext attack where the attacker does not choose the plaintexts a priori
but depending on the ciphertexts he received from previous requests.

Chosen ciphertext attack: The attacker chooses a number of ciphertexts and asks
for the decryption of those. Equivalent to chosen plaintext attacks there are
chosen ciphertext and adaptively chosen ciphertext attacks.

Clearly ciphers which are vulnerable to ciphertext only attacks are considered very
weak. A known plaintext scenario is still a very realistic assumption while there
are easy strategies to impede the more powerful chosen text attacks in a real-world
application. For example, we can require that the plaintexts have certain structure.
And if a plaintext does not have this structure the application denies encryption or
decryption. In general a symmetric cryptosystem that is secure against adaptively
chosen plaintext attacks might still be vulnerable to chosen ciphertext attacks but is
secure against the other three attack types.

In the last years another attack scenario, which can be combined with the attacks
above, has become more popular, the so-called related-key attacks. The attacker ob-
tains the encryptions of a plaintext under two or more related keys, where he either
knows or chooses the relation between the keys while the keys themselves are unknown.
Related-key attacks constitute a not very likely scenario in practice. (However, there
are applications where a related-key attack might be practical.) Nonetheless every
successful attack even if it is just possible in theory compromises the security of the
cipher. Hence, being able to prove that a cipher is secure against a very powerful
attacks such as adaptively chosen ciphertexts under related keys is a convincing argu-
ment for the security of the cipher, especially if the implementation of the algorithm
would not allow such an attack.

The different classes of attack and the adversary’s goals we have seen in the last two
sections consider mainly block ciphers. Due to the different designs, the assumptions,
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we make, and the goals, an adversary has, are usually slightly different when it comes
to stream ciphers. Of course, the highest goal, the recovery of the secret key, which
leads to a total break of the cipher, stays the same, but in general deducing information
about the plaintext for a given ciphertext plays a subordinate role. Instead we want to
predict bits of the keystream which is continuously generated. As we lack the design
details which are necessary to understand the adversary’s goals and attack classes we
postpone the description of those until Chapter 3.





Chapter 2

Block Ciphers

As the name suggests block ciphers operate on plaintext blocks of a fixed length. A
block cipher maps an n-bit block of plaintext to a ciphertext block of the same size.
The mapping depends on the key. Therefore a block cipher can be seen as a family of
bijections indexed by a key. Here the block size determines the space of all bijections
that can be generated by the cipher and the key size determines the subspace of
bijections that will be generated by the cipher. The two important parameters of a
block cipher are the block size which is usually 64 or 128 bits and the key size which
normally ranges between 56 and 256 bits. For a secure block cipher we expect that
the ciphertext does not leak exploitable information about the plaintext or the key
used in the encryption.

Most block cipher are so-called iterated ciphers. That means that a simple func-
tion, called the round function g, is repeatedly applied to the text. Typically the
round function takes the output of the previous round and a round key as the input
and outputs the input to the next round. One application of the round function is
called a round. Let ci denote the intermediate value after i rounds of encryption and
ki is the ith round key. Then

ci = g(ci−1, ki−1).

The input to the first round is the n-bit plaintext block also denoted by c0 and the
last round outputs the ciphertext cr. The round keys or subkeys are usually derived
from the secret key by a key schedule algorithm and are called key schedule.

For a fixed key the round function is by definition bijective because it must be
possible to invert the encryption process with the knowledge of the key. Thus, the
encryption is a permutation if the key is fixed.

Most block ciphers are either realized as Feistel ciphers or substitution-permutation
networks which we will look into in the remainder of this chapter.

2.1 Feistel Ciphers

Feistel ciphers are named after the German cryptographer Horst Feistel. He worked
as an IBM researcher on the project “Lucifer” [49] which was the predecessor of the
Data Encryption Standard (DES) [88].

The round function of ciphers in Feistel structure operates only on one half of the
block while the other half remains unchanged.

Definition 2.1 (Feistel cipher [82]).
A Feistel cipher is an iterated cipher which maps a 2t-bit plaintext block (L0, R0),

17
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function f

function f

Li−1 Ri−1
Ki

Ki+1

Li+1 Ri+1

Figure 2.1: Feistel cipher.

where L0 and R0 are t-bit blocks each, to a 2t-bit ciphertext block (Lr, Rr) through r
rounds of encryption. One round of encryption is performed as follows. For 1 ≤ i <
r − 1

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, ki−1)

where ki is the ith subkey derived from the secret key k and f is a function that takes
a subkey and an t-bit block as input and transforms it into an t-bit output block. In
the last round the swap of the two halves is omitted:

Lr = Lr−1 ⊕ f(Rr−1, kr−1)

Rr = Rr−1.

In a Feistel network (cf Figure 2.1) the plaintext is split into two halves L0 and
R0. The right half is together with the round key input to the function f . The output
of the function f is exclusive-ored to the left half of the text and the two halves are
swapped afterwards. These operations are repeated r − 1 times, each time with a
new subkey. In the last round the swap of the halves is omitted. The reason for this
is that decryption is achieved by using the encryption algorithm with the subkeys in
reverse order. The function f itself does not need to be invertible to invert the Feistel
encryption (or one round of the Feistel cipher). The Data Encryption Standard is
probably the best known example of a Feistel cipher. Here we present the cipher C2.
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Figure 2.2: The round transformation of C2.

C2 is a cipher in Feistel structure with a small variation. The XORs are replaced by
a modular addition.

2.1.1 The Cipher C2

In this section we consider the block cipher C2. We will present a cryptanalysis of
this cipher in Chapter 5. C2 [5] is the short name for the proprietary block cipher
Cryptomeria, which is defined and licensed by the 4C Entity [6]. The 4C Entity is
a consortium consisting of IBM, Intel, Matsushita and Toshiba. C2 was designed for
the CPRM/CPPM Digital Right Management scheme which is used on DVD-Audio
discs and Secure Digital cards.

C2’s specification has been published by the 4C Entity. C2 is a Feistel cipher with
a 56-bit secret key, supporting message blocks of size 64 bits. In each of the 10 Feistel
rounds a 32-bit round key rki, derived from the 56-bit secret key, is used. The round
function is illustrated in Figure 2.2 and can be described as

Li+1 = Ri

X = (Ri ⊞ rki)⊕ 0x2765ca00

Z0..7 = S[X0..7]

Z8..15 = X8..15 ⊕ rotl8(Z0..7, 1)

Z16..23 = X16..23 ⊕ rotl8(Z0..7, 5)

Z24..31 = X24..31 ⊕ rotl8(Z0..7, 2)

Ri+1 = Li ⊞ (Z ⊕ rotl32(Z, 9)⊕ rotl32(Z, 22)) , i = 0, . . . , 9,
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Figure 2.3: One step of the key scheduling algorithm generates 32-bit round key rki.

where Li is the left and Ri is the right half of the word after the ith round of encryption,
rotlm(b, n) denotes a cyclic left rotation of an m bit sequence b by n positions and
Xi,p..q the sequence of consecutive bits Xi,p, Xi,p+1, . . . , Xi,q of the word Xi. The
addition modulo 232 of the words X and Y is denoted by X⊞Y and the bitwise XOR
respectively by X ⊕ Y .

Note that the description differs from the original reference code [5] where three
byte constants are used. We present a simpler but equivalent description using only
one 4-byte constant C = 0x2765ca00.

The 10 round keys rk0, . . . , rk9 are derived from the 56-bit secret key K in the
following way.

K ′
i = rotl56(K, 17 · i) ,

rki = K ′
i,0..31 ⊞ (S[K ′

i,32..39 ⊕ i]≪ 4), i = 0, . . . , 9.

The key schedule algorithm is depicted in Figure 2.3.
The 8-bit S-box S, used in both the round transformation and the key scheduling,

is secret and available under license from the 4C Entity. An example S-box provided
by 4C for the purpose of validating the implementations is available online [7]. The
S-box might be considered as part of the secret key.

Depending on the application different S-boxes are used but the same S-box is used
for the same application. A CPRM compliant device is given a set of secret device
keys when manufactured. The device keys can be revoked.

We can think of different attack scenarios on C2 like an S-box recovery, the recovery
of the secret key when the S-box is known and an attack which recovers the S-box and
the key at the same time. These three attack scenarios will be discussed in Chapter 5
in detail.

2.2 Substitution-Permutation Networks

In a substitution-permutation network (see Figure 2.4) or short SP network the round
function combines layers of invertible functions such as substitutions and permuta-
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tions. The substitution layer realizes the non-linear part of the cipher. Often it
consists of the parallel application of functions S : {0, 1}m → {0, 1}m which operate
on a small chunk of data. These functions are called S-boxes (Substitution boxes)
and can be implemented as a look-up table with 2m entries. (Note that the input and
output size of an S-box may also be different but in those cases the S-box is not bi-
jective.) The S-boxes are non-linear and introduce local confusion. The permutation
layer is an affine transformation that operates on the complete block and introduces
diffusion.

S S SS S

Permutation

S S SS S

Permutation

plaintext

ciphertext

S S SS S

k0

k1

kn−1

kn

Figure 2.4: Substitution Permutation network.

Definition 2.2 (SP-network).
A substitution-permutation network is an iterated cipher where the round function is
built from a substitution layer, a permutation layer and a subkey application.

The Advanced Encryption Standard (AES) is the most famous block cipher based
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on an SP network. Also the lightweight cipher PRESENT is based on an SP-network.
Later on we will consider PRESENT-like block ciphers with secret components. There-
fore we give PRESENT as an example for an SP network in the following section.

2.2.1 The Block Cipher PRESENT

PRESENT is an ultra-lightweight block cipher proposed by Bogdanov et al. [21]. It
has been designed for extremely resource-constrained environments such as RFID tags
and sensor networks where just a moderate security level is required. PRESENT has
implementation requirements similar to stream ciphers (see Chapter 3).

PRESENT is an SP-network which consists of 31 rounds and operates on blocks
of size 64 bits. Two key lengths of 80 or 128 bits are supported, where an 80-bit key
is recommended. Each of the 31 rounds consists of a round-key application, followed

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

Figure 2.5: The S/P network for present.

by a substitution and a permutation layer. Two rounds of PRESENT are shown in
Figure 2.5.

In each round a 64-bit round key Ki for 1 ≤ i ≤ 32 is xored to the current state,
where the last round key K32 is used for post-whitening. Let Ki = κi63 . . . κ

i
0 for

1 ≤ i ≤ 32 be the ith round key and b63 . . . b0 the current state. Then the round-key
addition is a bitwise XOR for 0 ≤ j ≤ 63 as shown in (2.1).

bj → bj ⊕ κij . (2.1)

The non-linear substitution layer, also called sBoxLayer by the authors, is built
from a single 4 to 4-bit S-box S : F4

2 → F
4
2 which is applied 16 times in parallel. This S-

box in hexadecimal notation is given in Figure 2.6. The current state b63 . . . b0 is split
into sixteen 4-bit words w0, . . . , w15 where wi = b4i+3||b4i+2||b4i+1||b4i for 0 ≤ i ≤ 15
and then each of the words is processed by the S-box. The concatenated outputs S[wi]
for i = 0, . . . , 15 update the state value.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Figure 2.6: The S-box used in PRESENT in hexadecimal notation.

Table 2.1: The PRESENT permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The permutation layer, also called pLayer by the authors, uses a regular bit per-
mutation which can be efficiently implemented in hardware. The permutation is given
in Table 2.1.

The S-box S (cf. Figure 2.6) fulfills some additional conditions to improve the
avalanche of change. It has been carefully chosen to resist against differential and
linear cryptanalysis. (The concepts of differential and linear cryptanalysis are ex-
plained in Chapter 4.) This is not generally the case for randomly chosen S-boxes. In
Chapter 6 it will be shown how weak differential properties can be exploited.

The key schedule of PRESENT can take an 80 or 128-bit secret key. In this thesis
we focus on the 80-bit version which is the recommended key size in [21] . The 80-bit
secret key is stored in the key register K and presented as k79 . . . k0. The i-th round
key Ki consists of the 64 leftmost bits of the current state of the key register K.
Thus Ki = κ63 . . . κ0 = k79 . . . k16. After the round key Ki has been extracted the key
register is updated using the three following steps.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19],
2. [k79k78k77k76] = S[k79k78k77k76],
3. [k19k18k17k16k15] = [k19k18k17k16k15].⊕ round_counter

This means that the key register is first rotated by 61 positions to the left, then the
leftmost four bits are processed by the S-box. This S-box is the same as the one used
in the encryption algorithm. At last the bits k19k18k17k16k15 of K are xored with the
least significant bits of round counter. The key schedule for 128 bit keys involves
two applications of the S-box for each update of the key register. For further details
the reader is referred to [21].





Chapter 3

Stream Ciphers

Stream ciphers form the second class of symmetric encryption algorithms. While
block ciphers transform a large block of plaintext data into a ciphertext block, stream
ciphers take a continuous stream of plaintext bits as an input and transform one bit
(or a small chunk of bits) at a time. Stream ciphers are in general faster than block
cipher and smaller in terms of hardware implementations [82]. These properties and
the fact that the bits can be processed one by one as they arrive, make stream ciphers
appropriate for applications where buffering is limited like in telecommunications.
Another advantage is that stream ciphers have a very limited or no error propagation.

Despite all the advantages of stream ciphers over block ciphers for some applica-
tions stream ciphers have been systematically replaced by block ciphers. The stream
cipher A5/1 used in the GSM standard has been replaced by the block cipher Kasumi
(A5/3) after weaknesses in A5/1 were pointed out [14, 20]. A similar example are the
wireless network standards. While WEP (’wired equivalent privacy’) uses the stream
cipher RC4 [93], the newer standards WPA and WPA2 (Wi-Fi protected access) [1]
are based on AES.

One reason for this trend might be that the security of block ciphers is better
understood. It is quite clear what the design principles are and with what building
blocks and internal structure they can be achieved. Stream ciphers, on the contrary,
come in a wide variety of designs of which many have turned out to be flawed.

However, stream ciphers may still play an important role in environments where
resources are very restricted and where a high throughput is critical. Therefore in 2004
the eSTREAM stream cipher project [3] was launched with a call for stream cipher
designs in two different categories. The first profile has focused on stream ciphers for
software applications with high throughput requirements, while the second profile has
aimed for stream cipher for hardware applications with restricted resources such as
limited storage, gate count, or power consumption [3].

One aim of the project was to restore the confidence in stream ciphers. A thorough
cryptanalysis of new stream cipher proposals might help to gain a better understanding
of stream cipher design. Furthermore, during the process simple and reliable design
criteria might be developed. A second challenge of the project was to improve the
efficiency advantage stream ciphers have over block ciphers. The eSTREAM project
ended in 2008 with a portfolio of 7 recommended stream ciphers, four in the software
and three in the hardware category.

In this chapter we will first categorize two different types of stream ciphers. Sec-
ondly we examine building blocks and various designs, followed by a discussion of
security issues. The chapter will conclude with the specification of the stream ci-
pher Trivium and a short review of cryptanalytic results on Trivium. Trivium will
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Figure 3.1: General structure of a stream cipher.

be the main target in Part III of this thesis where we apply optimization methods in
cryptanalysis.

3.1 The General Structure of Stream Ciphers

The design of stream ciphers is inspired by the cipher One-time Pad (cf. Defini-
tion 1.4). As mentioned in Chapter 1 Shannon proved that One-time pad provides
perfect secrecy if the key is of the same length as the message and chosen uniformly at
random. The drawback of this design is that the key must have the same length as the
message and can only be used once. The idea behind the stream cipher design is to
use a short secret key to generate a long sequence of bits, which appears to be random.
This random looking sequence is called a keystream. As encryption the keystream is
combined with the plaintext to produce the ciphertext.

Informally, a cryptographically secure pseudorandom sequence is a sequence that
has the following three attributes. The sequence is produced by a deterministic al-
gorithm, which takes a short truly random sequence as an input, meaning that the
sequence can be reproduced easily. Despite this the sequence appears to be random,
which means that it is difficult to distinguish this sequence from a truly random se-
quence. Furthermore, it should be difficult to predict the next bit of the sequence.
More precisely, given l bits of the sequence there is no polynomial-time algorithm that
predicts the (l+1)st bit with a probability better than 1

2 . In order for a stream cipher
to be secure the keystream must be cryptographically secure pseudorandom.

Alternatively, a stream cipher can be described as a key-dependent algorithm
with an internal memory that processes a message m bit by bit and produces the
corresponding ciphertext bit in parallel or with a short delay using a transformation
that varies as the plaintext is processed. In other words a stream cipher can be seen
as a finite state machine that in each clocking produces one bit (or a couple of bits) of
the pseudorandom sequence in dependency of the internal state, updates the internal
state, and combines the keystream bit and the plaintext bit in order to obtain the
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ciphertext bit. The general structure of a stream cipher is depicted in Figure 3.1.
Most stream ciphers can either be classified as synchronous or self-synchronizing

stream ciphers.

3.1.1 Synchronous Stream Ciphers

A stream cipher is called synchronous if the next state is defined independently of
the plaintext or ciphertext and thus the keystream is generated independently of the
plaintext and ciphertext.

Definition 3.1 (Synchronous Stream Cipher [82]).
A synchronous stream cipher is a finite state machine whose update function does not
depend on the plaintext and ciphertext but only on the current state (and in some
cases on the key k). A synchronous stream cipher consists of

• a internal state which is denoted by σt at time t. The internal state is initialized
using initialization function or key setup function Init which takes an initial
value IV and the key k as inputs

σ0 = Init(k, IV ),

• an update function f which updates the internal state of the finite state machine
depending on the current state at time t

σt+1 = f(σt),

• a keystream output function g which maps the internal state to a keystream bit
zt

zt = g(σi),

• and an output function h that combines the keystream and the plaintext in order
to generate the corresponding ciphertext

ct = h(pt, zt).

The part of the cipher that generates the keystream is also called keystream generator
(see Figure 3.2).

The update function f and the keystream function g may also take the secret key k
as an input, but as for most cases the stream cipher proceeds independently of the key
after the key set-up we omit it here. In order to decrypt, the keystream is generated
in the same way, thus the only requirement is that the output function h is invertible.
Usually h is the exclusive-or and hence self-inverse.

As each bit of the ciphertext is decrypted independently any error that occurs in
one bit of the ciphertexts during the transmission will not affect the decryption of
other ciphertext bits. This means there is no error propagation for corrupted bits.
However, in order to be able to decrypt correctly the decryption has to stay in step,
which means that deleting or inserting a ciphertext bit will cause an error in the
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Figure 3.2: Synchronous stream cipher.

decryption of all consecutive ciphertext bits. This synchronization problem can be
solved by using marker positions, which enable a re-synchronization of the decryption
and encryption process. Then a lost or inserted ciphertext bits just causes incorrect
decryption until the next marker position [91]. These marker positions are usually
realized by frames [78]. A frame is of a fixed size and contains a frame number and
a ciphertext block. Before the plaintext of a frame is encrypted the encryption is
re-initialized using the secret key and an initial value which can be derived from the
frame counter. The receiver of a frame initializes the keystream generator with the
same secret key and initial value and is able to decrypt the ciphertext. Thus, a lost
or inserted ciphertext bit can at most affect all bits in a frame.

An example of a synchronous stream cipher is the cipher Trivium which we will
present in Section 3.4.

3.1.2 Self-Synchronizing Stream Ciphers

The synchronization problem can also be solved using self-synchronizing stream ci-
phers.

Definition 3.2 (Self-synchronizing stream cipher [82]).
A self-synchronizing or asynchronous stream cipher is a stream cipher in which the
keystream is generated as a function of the key and a fixed number of the previous
ciphertext digits.

The internal state σt at time t is then σt = (ct−l, ct−l+1, . . . , ct−1) where σ0 =
(c−l, . . . , c−1) is the initial value. A keystream zt is generate using the keystream
output function g with input σt and the secret key k:

zt = g(σt, k).

The ciphertext is produced as a combination of the keystream and the plaintext under
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a function h as in the case of a synchronous stream cipher. The encryption and
decryption process of a self-synchronizing stream cipher is depicted in Figure 3.3.

The main advantage of a self-synchronizing stream cipher is that it can resume
correct decryption if the keystream falls out of synchronization after a ciphertext bit
was inserted or deleted. This is because the keystream depends only on a fixed number
of the preceding ciphertext bits. Also the error propagation is limited. We assume
that the state of the cipher depends on l previous ciphertext bits. If one ciphertext
bit is corrupted, inserted or lost then the decryption of the following l ciphertext bits
may be incorrect. After that the system is able to resynchronize itself after receiving
l correct ciphertext bits.

The drawback of self-synchronizing stream ciphers is that the attacker knows the
ciphertext bits and with them already parts of the inputs to the keystream generator.
Also the text dependency of the keystream makes it hard to estimate the security.

In general there are more synchronous than self-synchronizing stream cipher de-
signs, maybe due to the fact that for the latter security assessments are difficult. Out
of the 34 submission to the eSTREAM project only two were self-synchronizing stream
ciphers while the other 32 were synchronous stream ciphers. Therefore, we will focus
entirely on keystream generators and synchronous stream cipher for the remainder of
this thesis.

3.2 Design and Building Blocks

In this section we focus on keystream generators. The keystream shall be a crypto-
graphically secure pseudorandom sequence. We know that we can model the keystream
generator as a finite state machine. The machine is regular clocked and at each clock-
ing the internal state is deterministically updated where the update is determined by
the current state. Furthermore, at each clocking a bit (or a couple of bits) of the
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Figure 3.4: A linear feedback shift register (LFSR) of length l.

keystream are generated. Since we consider a finite state machine, and thus only a
finite number of states is available, the machine will eventually reach a state where it
has already been before (not necessarily the initial state). As the update procedure is
deterministic the finite state machine will generate the same states in the same order
as it did before from this point on. Hence, also the keystream will be identical to
that produced when this state previously occurred. The number of bits before the
keystream recurs is called the period of the keystream.

Firstly, it is desirable that the period of the keystream is as long as possible. If
the period is too short, parts of the plaintext will be encrypted using an identical part
of the keystream and make the cipher vulnerable to a known plaintext attack. If an
attacker knows for example the beginning of the message he can easily calculate the
corresponding part of the keystream and use it to decrypt the remaining message [82].

Secondly, the sequence should satisfy some statistical properties. The keystream
symbols/bits should be distributed uniformly at random, meaning that a keystream
bit takes the value 0 or 1 with equal probability. Also the joint distribution of two
or more bits in a window should be uniform and any linear combination of these bits
should be uniformly distributed as well.

In order to achieve good statistical properties and a long period keystream gener-
ators are often based on linear feedback shift register (LFSR).

3.2.1 Linear Feedback Shift Registers

Many stream ciphers are based on linear feedback shift registers (LFSRs). The reason
is that they can be easily analyzed using algebraic techniques. They are well-suited
for hardware implementation and furthermore they have good statistical properties
and can be designed such that they produce a long period.

Definition 3.3 (Linear feedback shift register).
A linear feedback shift register (LFSR) of length l consists of l stages or memory cells
numbered 0, 1, . . . , l − 1. Each memory cell can store one bit and a clock controls
the movement of the data. The content of the stages at time t is called the state of
the LFSR at time t and is denoted by St = (st+l−1, st+l−2, . . . , st), where st+i is the
content of stage i at time t. The state S0 at time zero is called the initial state of the
LFSR.



Chapter 3. Stream Ciphers 31

At each clocking of the LFSR the following operations are performed:

(i) the content of the stage 0 is output,

(ii) the content of stage i is moved to stage i− 1 for i = 1, . . . , l − 1,

(iii) the new content of stage l − 1 is the feedback bit sl+t with

sl+t =
l−1
∑

i=0

cl−i · st+i.

The relation in (iii) is called a linear recurrence relation. The constants c1, c2, . . . , cl ∈
F2 are called feedback positions.

The general structure of an LFSR is given in Figure 3.4. The positions where
ci = 1 are also called tap positions. Algebraically an LFSR can be described through
the feedback polynomial of the LFSR

g(x) = 1 + c1x+ c2x
2 + · · ·+ clx

l in F2[x].

The feedback polynomial can be used to determine the period of the LFSR. We know
that an LFSR is a finite state machine with an internal state of size l, therefore it has
at most 2l possible state. Thus the maximum period of the LFSR for an initial state
is 2l − 1, because the state (0,. . . ,0) obviously has period 1 and can not occur in any
periodic sequence with a period greater than 1. Furthermore the following theorem
holds.

Theorem 3.4.

If the feedback polynomial g(x) over F2 of a linear feedback shift register is a primitive
polynomial of degree l, then for every non-zero initial state the period of the LFSR is
2l − 1 [78].

An LFSR with a primitive feedback polynomial of degree l is called a maximum-
length LFSR. The tap positions for a maximum length LFSR must be relatively prime.

As mentioned before LFSRs are easily implementable in hardware and software
and the generated sequence has good statistical properties. The drawback of a linear
feedback shift register is, however, its linear properties. If the length l of the LFSR
is known, then the knowledge of l symbols at known positions from the output are
sufficient to recover the initial state of the linear feedback shift register. But even if
the length of the LFSR is not known there are fast algorithms to recover the LFSR. We
denote by sn the sequence s0, s1, . . . , sn−1 of length n and by s the infinite sequence
s0, s1, . . .. We say that an LFSR generates a sequence s if there is an initial state S0

for which the output sequence of the LFSR is s. Similar an LFSR is said to generate
the finite sequence sn if there is an initial state such that the output sequence of
the LFSR equals sn for the first n terms. Given a sequence sn we now consider the
problem of finding the shortest linear recurrence generating this sequence or equivalent
the shortest LFSR generating this sequence.
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Definition 3.5 (Linear complexity [82]).
The linear complexity of an infinite binary sequence s, denoted L(s), is defined as
follows:

(i) If s is the zero sequence, then L(s) = 0.

(ii) If s is a truly random sequence, then L(s) = +∞,

(iii) otherwise, L(s) is the length of the shortest LFSR that generates the sequence s.

The Berlekamp-Massey algorithm [62] is an efficient algorithm for finding the short-
est LFSR and can be used to calculate the shortest LFSR that generates a sequence s
with linear complexity k after observing 2k consecutive output bits. While the details
of the algorithm are out of the scope of this thesis it is clear that high linear complex-
ity of a keystream is a necessary condition. However, there are several constructions
of stream ciphers based on LFSR which try to exploit the desirable properties of an
LFSR and add non-linearity in order to increase the linear complexity at the same
time. In the following we briefly review some of the constructions of LFSR-based
keystream generators.

3.2.2 LFSR-based Stream Ciphers

In this section we give a short overview of different keystream generators based on
LFSRs [62]. An analysis of the properties of those such as linear complexity etc. is
out of the scope of the thesis.

The filter generator

filterfunction h

LFSR

output

Figure 3.5: Non-linear filter keystream generator.

The filter generator introduces non-linearity through a non-linear output function
h, called the filter function, which takes a few bits of the LFSR as input. At each
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clocking the filter function h takes t bits from fixed positions of the LFSR as input
and generates the output in a non-linear manner. Usually these positions are neither
consecutive nor evenly spaced in the register. The function h should be carefully cho-
sen, a too simple function yields a weak generator. However the function should still
be efficiently evaluable in order to obtain a fast stream cipher. Figure 3.5 illustrates
the construction of a filter generator.

Non-linear output from multiple generators

This can be seen as an extension of the filter generator. The idea is to run several
LFSRs in parallel and combine their output bits using a non-linear combining function
h. This is depicted in Figure 3.6.

· · ·

LFSR 1

LFSR 2

LFSR n

h output

Figure 3.6: The keystream is generated as a non-linear combination h of the outputs
of n LFSRs.

A simple example for such a generator is the Geffe generator [82], which consists
of three LFSRs that run in parallel. The first LFSR controls the output while the
other two generate the output bits. In each clocking of the algorithm all three LFSR
are clocked. If the output of the first LFSR, denoted by s10, is 0 then the output z
of the keystream comes from the second LFSR, if s10 = 1 then z is the output bit
of the third LFSR. Let s20 and s30 denote the output bit of the second and third
LFSR respectively. Then the non-linear combining function h can be represented as
h(s10, s20, s30) = s̄10 · s20 + s10 · s30, where s̄10 is the negation of s10.

Clock controlled generators

By definition a linear shift register is clocked regularly and the content of the stages
is updated in each clocking. One way to introduce non-linearity is to vary the rate at
which the register is clocked. This can be done by a so-called “control LFSR” that
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Figure 3.7: A non-linear feedback shift register (NFSR) of length l.

controls when the LFSR which produces the output is clocked. An example is the
alternating step generator [82] which consists of one control and two output LFSRs.
At each step the XOR of the output bits of the two output LFSRs is output as a
keystream bit. Furthermore, at each step the control LFSR and exactly one of the
output LFSRs are clocked. The output bit of the control LFSR determines which
of the output LFSRs advances. When the control bit is 0 the first output LFSR is
clocked and otherwise the second.

3.2.3 Non-Linear Feedback Shift Register

In more recent stream cipher designs such as Trivium [42] and Grain [57] a new
building block has been introduced in order to overcome the problem of too low linear
complexity. This building block is called the non-linear feedback shift register (NFSR)
and is very similar to a linear feedback shift register. The only difference is that the
feedback function f which updates the internal state of the feedback shift register
is non-linear for an NFSR (cf. Figure 3.7). Like LFSRs non-linear feedback shift
registers are easy to implement in hardware and software and the sequence generated
by an NFSR is hard to predict. Furthermore, the linear complexity is high and the
updated state variables depend on the initial state in a non-linear manner such that
their algebraic expressions quickly grow in complexity and degree through recursion.

However, NFSR are not easy to analyze. Therefore there is no guaranty that the
maximum period on average is as expected. Moreover, we cannot guarantee good
statistical properties as we could for LFSR.

In current designs the problems are overcome by using e.g., a NFSR with a large
internal state, so that we with a high probability can infer that the period is large.
Another possibility is to use an LFSR to somehow control the NFSR. We can conclude
that so far not enough is known about the analysis of NFSRs in order to guarantee
certain properties and give design guidelines for NFSRs with cryptographic use. How-
ever, designs based on NFSRs such as Trivium and Grain seem to be very promising.

3.3 Security Considerations

In this thesis we focus on synchronous stream ciphers. When the security of a syn-
chronous stream cipher is considered, usually only the keystream generator is exam-
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ined because in most designs a simple XOR is used to combine the keystream and
the plaintext. Thus, we assume that an adversary has access to a certain number of
keystream bits. This can also be seen as a known plaintext attack. A more advanced
attack scenario are resynchronization attacks. Most stream ciphers have an initial
value (IV) as an additional input which enables resynchronization during the encryp-
tion process. In a resynchronization attack the adversary is allowed to manipulate
the IV and he obtains the corresponding keystreams initialized with the different IVs,
from which he tries to deduce information about the secret key.

The adversary’s goal is to recover the internal state of a stream cipher or the secret
key. If the key setup is reversible the recovery of the internal state leads to the recovery
of the secret key, because one can just run the key setup backwards. However, already
the knowledge of the internal state breaks the cipher because an adversary will be
able to run the keystream generator forwards and generate the full keystream which
he can use to decrypt.

A weaker goal is to predict keystream bits without knowing the key or the internal
state. Such an attack reveals a severe weakness of the cipher, because such a knowledge
can be used to decrypt the corresponding ciphertext bits.

A distinguishing attack is also interesting. In a distinguishing attack the adversary
tries to determine whether a given sequence is a truly random sequence or generated
by the keystream generator. In the next section we will consider a specific stream
cipher design based on non-linear feedback shift registers. It is called Trivium.

3.4 Trivium

As mentioned before, the eSTREAM project [3] within ECRYPT in 2004 called for
secure and fast stream ciphers in two categories: hardware and software. In the
hardware category the focus was on stream ciphers for hardware applications with
restricted resources such as limited storage, gate count or power consumption. In
2008 the eSTREAM project ended and amongst the recommended hardware oriented
stream ciphers was Trivium [42].

Trivium is a synchronous stream cipher and designed to generate up to 264 bits of
keystream from an 80 bit key and 80 bit IV. The cipher consists of two phases. In the
first phase, the key setup, the internal state of the keystream generator is initialized
using the secret key and the IV. In the second phase, the keystream generation,
the generator is repeatedly clocked, where in each clocking one bit of keystream is
produced and output. As the key setup is very similar to the keystream generation
we start with a description of the second phase.

3.4.1 Keystream Generation

Trivium has an 80 bit secret key and an 80 bit IV. The internal state of size 288 bits
is divided into three interconnected NFSRs. Five tap positions from each NFSR are
chosen in order to generate one bit zi of keystream and update one bit of each NFSR in
each clocking, meaning a total of 15 tap positions are used to generate one keystream
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bit and update three state bits. The keystream generation proceeds as follows, where
sj denotes the jth bit of the state and zi is the keystream bit at time i:

for i = 1, 2, . . . do

zi ← s66 + s93 + s162 + s177 + s243 + s288 ⊲ Generate output bit zi
ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s264
ti,3 ← s243 + s288 + s286 · s287 + s69
(s1, s2, . . . , s93)← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288)← (ti,2, s178, . . . , s287)

end for

Here the ’+’ and ’·’ operations stand for addition and multiplication over F2 respec-
tively.

3.4.2 Key Setup

During the key setup phase, the key is loaded into the first 80 bits of the state,
followed by 13 zero bits, then the IV is loaded into the next 80 bits of the state and
the remaining bits are filled with constant values. In this constant all bits are zero
except the last three which are set to one. Then 4·288 clockings are computed without
producing any keystream bits. The pseudo-code of the key setup is given below.

(s1, s2, . . . , s93)← (K1, . . . ,K80, 0, . . . 0)
(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to 4 · 288 do

ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s264
ti,3 ← s243 + s288 + s286 · s287 + s69
(s1, s2, . . . , s93)← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288)← (ti,2, s178, . . . , s287)

end for

The cryptanalytic results which are presented in Chapter 9 and 10 of this thesis do
not depend on this procedure.

3.4.3 Cryptanalytic Results on Trivium

Due to its elegant design and simple structure Trivium has been a target for many
cryptanalysts. The authors say “It was designed as an exercise in exploring how far a
stream cipher can be simplified without sacrificing its security, speed or flexibility.”[43].
In this section we want to give a brief state of the art overview of the properties of and
cryptanalytic results on Trivium, whereby this list does not claim to be exhaustive.

In [43] it is claimed that the probability for a given key and IV pair to cause a
period smaller than 280 is 2−208 and it is hoped for a period of at least 2128 bits.
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Furthermore, it is stated that each state bit depends on each key and IV bit in a
non-linear way after 2 · 288 iterations of the cipher. As the key setup consists of
four full cycles (4 · 288 iterations) it is believed that resynchronization attacks are not
possible. To our knowledge, there is no attack on Trivium faster than the exhaustive
key search so far. However, several attacks have been proposed which are faster than
the naive guess-and-determine attack with complexity 2195 which was considered by
the designers [43]. A more intelligent guess-and-determine attack with complexity 2135

using a reformulation of Trivium has been sketched in [65]. Furthermore, Maximov
and Biryukov [79] described an attack with complexity 285.5 and Raddum proposed
a new algorithm for solving non-linear Boolean equations and applied it to Trivium
in [90]. The attack complexity was 2164. McDonald et al. [80] considered Trivium as
a Boolean satisfiability problem and used the SAT-solver MiniSAT to solve it. This
approach was faster than exhaustive key search for the small scale variants of Trivium
called Bivium [90] (see Subsection 3.4.4). However, for the full Trivium the estimated
complexity is about 2159.9 seconds and is therefore worse than exhaustive search.

A common approach is to consider a small scale variant of the cipher, if we are
not able to successfully attack its full version. In the case of Trivium the primarily
considered small-scale variants were introduced in [90] and are called Bivium A and B.

3.4.4 Bivium

Raddum [90] introduced two small-scale variants of Trivium called Bivium A and
Bivium B (the latter is often referred to as Bivium). Both variants are obtained by
removing the last NFSR which yields an internal state of size 177 bits. The pseudo
code given as Algorithm 1 specifies how to generate one bit z of the keystream for
Bivium B where sj denotes the jth state bit. The keystream generator of Bivium B
is depicted in Figure 3.8.

Algorithm 1 Pseudo-code of Bivium B.

for i = 1, 2, . . . do

ti,1 ← s66 + s93
ti,2 ← s162 + s177
zi ← ti,1 + ti,2 ⊲ Generate output bit zi
ti,1 ← ti,1 + s91 · s92 + s171
ti,2 ← ti,2 + s175 · s176 + s69
(s1, s2, . . . , s93)← (ti,2, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)

end for

Bivium A only differs in the keystream bit equation from Bivium B. In Bivium A
the keystream bit is z = s162+ s177 which means that the keystream bit only depends
directly on the second register (see Algorithm 2 and Figure 3.9).

It is important to note that not only the state size is smaller for Bivium compared
to Trivium but also the linear equation or the keystream equation is simpler because
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∧

∧

z

1 93

94 177

Figure 3.8: Bivium B.

Algorithm 2 Pseudo-code of Bivium A.

for i = 1, 2, . . . do

ti,1 ← s66 + s93
ti,2 ← s162 + s177
zi ← ti,2 ⊲ Generate output bit zi
ti,1 ← ti,1 + s91 · s92 + s171
ti,2 ← ti,2 + s175 · s176 + s69
(s1, s2, . . . , s93)← (ti,2, s1, . . . , s92)
(s94, s95, . . . , s177)← (ti,1, s94, . . . , s176)

end for

it only depends on four and two bits for Bivium B and Bivium A respectively.

∧

∧

z

1 93

94 177

Figure 3.9: Bivium A.

Bivium has also been a target of cryptologists. In [80] an attack using MiniSAT is
presented which can recover the initial state of Bivium A in 21 seconds and the initial
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state of Bivium B in 242.7 seconds which corresponds to a search through 256 keys. Also
Raddum’s new algorithms for solving Boolean equations could successfully be applied
to Bivium A and B with a complexity faster than exhaustive search. Raddum also
made the valuable observation that the internal state of Trivium can be represented
as a system of sparse non-linear Boolean equations.

3.4.5 Trivium as an Equation System

In [90] is stated that the initial state, which is the state of the registers at the time
when the key generation starts, (or any other internal state) can be expressed as a
system of sparse linear and quadratic Boolean equations. We consider the initial state
bits as variables and label them with s1 . . . , s288. In each clocking of the Trivium
algorithm three state bits are updated. The update function is a quadratic Boolean
function of the state bits. In order to keep the degree low and the equations sparse we
introduce new variables for each updated state bit ti,1, ti,2, ti,3. We get the following
equations from the first clocking

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289,

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290,

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291,

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z.

(3.1)

where the last equation is the keystream equation with z being the known keystream
bit.

After observing 288 keystream bits we can set up a fully determined system of
954 Boolean equations in 954 unknowns [90]. We only need to consider 954 equations
and unknowns instead of 1152 since we do not care about the last 66 state updates
for each register. These variables will not be used in the keystream equation because
the new bits are not used for the keystream generation before 66 further clockings of
the cipher. By clocking the algorithm more than 288 times we can easily obtain an
overdetermined equation system. We know that the initial state together with the
corresponding updated state bits satisfies all the generated equations (3.1).

In the same way we can obtain a sparse, nonlinear Boolean equation system in 399
equations and unknowns for Bivium A and B after observing 177 bits of the keystream.
Each clocking of the algorithm yields one linear and two quadratic equations and
two new variables are introduced for the updated state bits ti,1, ti,2. We obtain the
following equations for the first clocking of Bivium A

s162 ⊕ s177 = z

s66 ⊕ s93 ⊕ (s91 ∧ s92)⊕ s171 ⊕ s178 = 0

s162 ⊕ s177 ⊕ (s175 ∧ s176)⊕ s69 ⊕ s179 = 0,

(3.2)

and Bivium B

s66 ⊕ s93 ⊕ s162 ⊕ s177 = z

s66 ⊕ s93 ⊕ (s91 ∧ s92)⊕ s171 ⊕ s178 = 0

s162 ⊕ s177 ⊕ (s175 ∧ s176)⊕ s69 ⊕ s179 = 0.

(3.3)
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Solving a random system of non-linear Boolean equations is an NP-hard problem.
However, the equation system for Trivium is not random but exhibits a lot of structure.
Therefore we hope that efficient methods for solving this kind of equation systems
exist. For that reason these equation systems are the starting point of the cryptanalysis
of Bivium and Trivium presented in Chapter 9 and Chapter 10.



Chapter 4

Classical Cryptanalysis

The security of block and stream ciphers is continuously evaluated by cryptanalysts
all over the world in order to examine the resistance of the designs towards different
kinds of attacks. In general the security of block ciphers seems to be better understood
than the security of stream ciphers. Many of the standard techniques that have been
developed for block ciphers are nevertheless also often applicable to stream ciphers.

We differentiate between two classes of attacks, the generic attacks and short cut
attacks. In this chapter we describe the exhaustive key search, the table look-up,
the dictionary and the time-memory trade-off attacks as they are important examples
of generic attacks. Generic attacks do not depend on the internal structure of the
design and can only be avoided by choosing the parameters such as block size, key
size or internal state size such that these attacks become computational infeasible.
Generic attacks yield important bounds on the security of block and stream ciphers.
In short cut attacks the attacker makes use of the internal structure of the cipher.
Here, cryptanalysis focuses on efficient ways of exploiting, perhaps unexpected, struc-
ture. This could be a difference which propagates with a high probability through
the cipher as used in differential cryptanalysis [34, 17] or a linear approximation of
the non-linear parts of a cipher that holds for many of the possible inputs as is the
case in linear cryptanalysis [75]. With differential and linear cryptanalysis [17, 75]
we have mentioned the two most powerful cryptanalytic techniques. In this chapter
we describe both techniques for the block cipher case, however both techniques are
also suitable for the analysis of stream ciphers [54, 102]. We conclude the chapter
with a short introduction to algebraic attacks. Representing a cipher as a system of
Boolean equations has become more and more popular in the recent years. This al-
gebraic description also yields the starting point of our novel cryptanalysis presented
in Part III.

4.1 Exhaustive Key Search

The exhaustive key search is the most general attack that can be applied to any
cipher. We assume that a block cipher encrypts a plaintext p to a ciphertext c using
the encryption function Ek(·) under a secret k ∈ K. Given a plaintext/ciphertext pair
the attacker encrypts p under all possible keys ki ∈ K until he finds a key kj such that

Ekj (p) = c.

That means the attacker tries exhaustively all keys until he finds the correct one. If the
key length equals the block size the attack requires on average one plaintext/ciphertext

41
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pair and the attacker has to try all keys in the worst case but on average he is expected
to find the key after he trying about half of the keys.

An exhaustive key search is also possible in a ciphertext only setting under the
assumption that the attacker has some information about the plaintext he can check,
for example that the plaintext is an English text. In this case the attacker decrypts
the ciphertext under all key guess until he obtains a meaningful plaintext.

For a stream cipher the exhaustive key search works similar. If the attacker knows
sufficiently many keystream bits he runs the key set up and the keystream generation
for all possible keys and compares the newly generated keystream with the given.
When these are equal the attack is successful. The number of keystream bits required
depends on the design of the stream cipher.

Exhaustive key search is in theory always possible but for all recent cipher designs
it is computationally infeasible.

4.2 Table Look-up Attack

In the table look-up attack the idea is to reduce the on-line computation time by doing
the bulk computation in the precomputation phase. The attacker builds up a table
by encrypting a likely message under all possible keys. The table is sorted according
to the ciphertext values. When the attacker intercepts the ciphertext of the likely
message, which he has chosen to build the table upon, he can just look up the key in
the table. The table look-up attack is therefore a chosen plaintext attack.

The advantage of the attack is that the table can be reused several times and
for different keys as long as the attacker can intercept an encryption of the chosen
plaintext. The drawback is that the attacker has to intercept a previously specified
ciphertext instead of just any plaintext/ciphertext pair. Moreover, the attack requires
a non-negligible amount of memory. The attacker needs to store 2nk ciphertext blocks
where nk is the size of the key and he also has to perform 2nk operations during the
precomputation phase.

4.3 Dictionary Attack

In a dictionary attack the attacker does not recover the secret key of a block cipher
but collects a table of plaintexts and corresponding encryptions. If the attacker has
intercepted all 2n possible plaintexts and corresponding ciphertexts where n is the
block size, he can build up a dictionary and decrypt all future messages by just looking
up the plaintext that corresponds to the ciphertext he intercepted. This is possible as
long as the same encryption key is used.

4.4 Cryptanalytic Time-Memory Trade-off

In a time-memory trade-off attack there are five parameters
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• N is the size of the search space which is the key space for block cipher and the
set of initial states for stream ciphers,

• P represents the time which is required in the precomputation phase,

• M denotes the amount of memory required,

• T represents the time required in the online phase of the attack,

• D is the amount of data which is available to the attacker.

4.4.1 Time-Memory Trade-off Attack for Block Ciphers

For block ciphers we have seen that the exhaustive-key search requires no memory
or precomputation (M = P = 1) but the attacker has to perform T = N online
operations after he intercepted a plaintext/ciphertext pair. The opposite of this is the
table look-up. The attacker generates a table that requires M = N blocks of memory
in the precomputation phase, such that after intercepting the ciphertext associated to
his chosen plaintext he can look up the key in one operation (T = 1). Hellman [58]
proposed a time-memory trade-off attack which is not only applicable to block ciphers
but to random functions in general. As the table look-up the time-memory trade-off
attack is a chosen plaintext attack. The attack was originally designed for DES, for
which |K| = 256 and |C| = 264, and therefore it is assumed |C| ≥ |K|.

We consider a block cipher Ek(p) with block size n using an nk-bit key k. Let p0
be a fixed, chosen plaintext. We define

f(k) = R(Ek(p0)),

where R is a simple reduction function from n to nk bits. If nk = n this reduction
function can simply be the identity. We note that inverting the function f is equivalent
to cryptanalysis of the cipher Ek.

There are two steps in the attack: a precomputation phase and an online phase. In
the precomputation phase the attacker chooses m starting points SP1, SP2, . . . , SPm

independently and uniformly at random from the key space. For i = 1, . . . ,m he sets
Xi0 = SPi and from each starting point generates the chain

Xij = f(Xij−1) for j = 1, . . . , t.

This yields a m × t matrix containing m chains of t elements each, depicted in Fig-
ure 4.1.

The endpoint of the ith chain is called EPi and it holds EPi = f t(SPi). The pairs
of start and endpoints (SPi, EPi)

m
i=1 are sorted by the endpoints and stored in a table.

All intermediate points are discarded to save memory.

In the online phase the attacker intercepts a ciphertext c0 = Ek(p0) and he can
easily calculate

Y1 = R(c0) = f(k).
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SP1 = X10
f→ X11

f→ X12
f→ · · · f→ X1t = EP1

SP2 = X20
f→ X21

f→ X22
f→ · · · f→ X2t = EP2

...
...

SPm = Xm0
f→ Xm1

f→ Xm2
f→ · · · f→ Xmt = EPm

Figure 4.1: Matrix of images under f .

Then he checks if Y1 equals one of the endpoints. If Y1 = EPi for some i ∈ {1, . . . ,m},
then either k = Xi,t−1 or EPi has more than one preimage under f . We refer to this
event as a false alarm. If Y1 = EPi the attacker obtains the corresponding starting
point SPi from the table and calculates Xi,t−1 by repeatedly applying the function
f . It holds Xi,t−1 = f t−1(SPi). To verify that Xi,t−1 is the desired key and no false
alarm occurred the attacker can test if EXi,t−1(p0) = c0 holds.

If Y1 is not one of the endpoints the attacker calculates Y2 = f(Y1) and checks
if this is an endpoint. If yes it is either a false alarm or the key is in the t − 2
column of the matrix in Figure 4.1. Otherwise the attacker continues to iteratively
compute Y3 = f(Y2), . . . , Yt = f(Yt−1) and to check whether this value is amongst the
endpoints.

If we assume that all mt elements in the matrix are distinct the success probability
of the attack is

Pr(success) =
mt

N
,

where N = 2nk is the size of the key space.

However, since f is a random function we expect some overlap in the covered
points; because chains collide or repeat themselves. To find the critical values we
make use of the birthday paradox.

Lemma 4.1 (The Birthday Paradox).
Suppose f : C → K is a random function with |K| = N . Then we expect a collision
after N1/2 evaluations of the function.

Now we assume that a matrix with mt distinct elements and an additional chain
containing t elements is given. These two sets are likely to be disjunct if mt2 ≤ N .
Thus, we choose m and t such that mt2 = N holds. That means a single matrix covers
only 1

t of the key space. Hellman’s idea to cover the whole key space is to generate t
unrelated matrices by using different variants fi of the original function f defined as
fi(K) = hi(f(K)) where hi is an output modification. The advantage is that even if
there is a collision in two points between two different tables this does not imply that
also the successive points collide because the generating functions are different.

When we use t matrices of size mt to cover a fixed fraction of the key space the
precomputation requires around P = N operations. The total required memory is
M = mt2 and the online computation time is T = t2 because we have to perform t
applications of some fi for i = 1, . . . , t. The best trade-off is achieved by choosing the
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parameters m = t = N1/3. Then the attack requires M = N2/3 words of memory and
T = N2/3 operations in the online phase (cf. Table 4.1).

Table 4.1: Comparison between exhaustive key search, table look-up and time-memory
trade-off attack.

Exhaustive Search Table Look-up Time-Memory Trade-off

Pre. Online Pre. Online Pre. Online

time 0 N N small N N2/3

memory 0 N N2/3

4.4.2 Time-Memory-Data Trade-off for Stream Ciphers

Hellman’s time-memory trade-off for block ciphers is a chosen plaintext attack. The
precomputation depends on this fixed plaintext, meaning that additional data would
not improve the complexity of the attack. In the case of stream ciphers the setting
is different. When we consider synchronous stream ciphers the search space is the
set of internal states of the keystream generator and the real time data consists of
the first D output bits of the keystream generator which can be obtained by xoring
a known plaintext to the ciphertext. The goal is to recover the internal state of the
keystream generator. If we know the internal state we can run the keystream generator
forward and use the keystream to decrypt further ciphertexts. For many ciphers it is
also possible to run the key setup backwards and recover the secret key from a given
internal state but this is, however, not the goal of the attack.

The first time-memory trade-off for stream ciphers was independently introduced
in [9, 53]. The idea is to use a mapping f(S) = Y that maps all possible states to
the first log(N) bits produced by the keystream generation. This function can be
seen as a random function over a set of N elements. In the preprocessing phase the
attacker chooses M points Si for i = 1, . . . ,M at random from the set of all possible
internal states, computes the corresponding images Yi under the function f and stores
the pairs sorted by Yi. In the online phase the attacker obtains D + log(N) − 1 bits
of the keystream and derives from it all D possible windows of log(N) consecutive
bits. If one of these windows is contained in the table the attacker can look up
the corresponding Si and recover the internal state. From the birthday paradox we
know that two random sets drawn from a set of N elements are likely to intersect
if the product of their sizes exceeds N . This leads to the condition DM = N , the
precomputation time is P = M , and the online time is T = D.

A more sophisticated time-memory-data trade-off, based on Hellman’s time-mem-
ory trade-off for block ciphers, was proposed in [18]. The attacker generates t tables
containing mt elements by using variants fi of the function f . However, in the case of
stream cipher we can make use of additional data and thus reduce the precomputation.
Assuming that we obtain D data points in the online phase we only have to cover N/D
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points in the precomputation. This is done by producing only t/D instead of t tables.
Thus the required memory is reduced to M = tm/D and the total preprocessing time
to P = N/D. During the online phase we have to evaluate t/D different functions
fi at the D data points, which yields a complexity of T = t2. Possible parameters
are P = T = N2/3 and M = D = N1/3. In this case the attack seems to be
computationally feasible almost up to N = 2100. Thus, in order to design a secure
stream cipher the internal state size should be reasonable large even if the key size is
only say, 80 bits.

4.5 Differential Cryptanalysis

Differential cryptanalysis is together with linear cryptanalysis (Section 4.6) one of the
most powerful attacks on symmetric cryptographic primitives. Invented by Biham
and Shamir differential cryptanalysis was original used to demonstrate weaknesses of
the block cipher FEAL but did not receive much attention until the technique was
generalized and applied to DES [16, 17]. DES shows a certain resistance to differential
cryptanalysis which suggests that the designer of DES knew about the technique 10
years earlier. Differential cryptanalysis is a very versatile attack, and even though it
was designed for iterated block ciphers it has many applications to stream ciphers and
hash functions. Furthermore, there exist many variants of the classical differential
attack such as Boomerangs (cf. Subsection 4.5.4, [99]), truncated [68] or impossible
differentials [13].

As suggested by its name, differential cryptanalysis analyzes the effect of a dif-
ference in the plaintext pair on the difference of the corresponding ciphertexts. The
purpose is to examine how a difference propagates through a cipher and to use this
information to recover parts of the secret key or a round key.

Definition 4.2 (Difference).
The difference ∆ between to elements m1,m2 ∈ G is defined as

∆m = ∆(m1,m2) = m1 ⊗m−1
2

where m−1
2 denotes the inverse of m2 with respect to the group operator ⊗.

For most block ciphers the group G is the set of all plaintext blocks, in the case of
stream ciphers it might be set of keystreams of a certain length, i.e., in both cases we
consider a set of fixed-length bit strings. The group operator ⊗ is often the exclusive-
or operator. An element x with respect to the exclusive-or is self-inverse. In the sequel
we consider a group of fixed-length bit strings together with the exclusive-or as group
operator and therefore omit the inverse in the notation.

The reason that the exclusive-or is a popular choice as operator for differences is
that in many block ciphers the key application in the round function is realized as a
simple XOR. It holds

(m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2 ⊕ k ⊕ k = m1 ⊕m2 = ∆m,
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meaning that the XOR application of the key preserves the difference. The permu-
tation layer usually does not preserve the difference but changes it in a predictable
deterministic way which does not depend on the concrete input words but only on
the difference itself. That means the permutation layer is linear with respect to an
XOR difference. However, every cipher contains components which show non-linear
behavior with respect to the exclusive-or operator; these are often realized as S-boxes
(c.f Chapter 2). For these components we cannot predict the output difference to a
certain input difference with probability one as we can for the linear parts. But we are
still able to gather some information about the propagation of a difference through
the S-box. We can use this information to predict the output difference with a certain
probability.

The main task in differential cryptanalysis is to find series of input and output
differences over several rounds (c.f. Definition 4.3) with high probability. This can be
done step by step. We first focus on finding a pair of an input/ an output difference
(α, β) that holds with a high probability through one round of encryption. Such a pair
of differences is also call one-round differential and denoted by α→ β. In order to find
such a one-round differential the attacker considers the single components of the round
functions, tries to find good differentials for those, and combines these differentials to
a differential for the whole round.

We consider an iterated block cipher with the round function f

c(i+1) = f(ci, ki+1) = P (S(ci ⊕ ki+1))

where ci denotes the cipher text after i rounds, P is the permutation layer and S the
S-box layer.

For the components of the cipher which are linear with respect to the chosen op-
erator it is straight forward to find a differential with probability one. As mentioned
before the tricky parts are the non-linear components, the S-boxes. (Another possibil-
ity to realize the non-linear part of a cipher is for example modular addition but here
we will focus on small S-boxes.) As S-boxes operate on small chunks of data, usually
4 to 8 bits, we can exhaustively search over all input pairs and compute their input
difference and the associated output difference. This information is stored in a table,
the so-called difference distribution table, where the rows are labeled by input differ-
ences and the columns by output differences. Each entry (i, j) denotes the number of
input pairs with difference i that lead to an output difference j. The probability of a
differential α→ β is defined as the ratio of all pairs (m1,m2) with input difference α
and output difference β to all pairs with input difference α. That means we obtain
the probability of an S-box differential by dividing the corresponding entry in the
difference distribution table by the number of pairs with the associated input differ-
ence. Table 4.2 shows the differences distribution table for the S-box SD depicted in
Figure 4.2 with respect to XOR. For example, the input difference α = 8 leads with
probability 1

2 to the output difference β = 5. We can observe that all entries in the
table are even, this is because the pairs (m,m⊕ α) and (m⊕ α,m) lead to the same
difference. Furthermore, if there is no difference in the input to the S-box the output
difference is zero with probability one.
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 8 c 1 a 7 6 d 4 e 9 5 f 2 3 b 0

Figure 4.2: The S-box SD in hexadecimal notation.

Table 4.2: The difference distribution table table of SD(·). The first column contains
the input differences while the first row contains the output differences. The entry
(i, j) contains the number of pair with the input difference i and output difference j.
Here ’.’ denotes a zero value.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 . . . . . . . . . . . . . . .
1 . 4 . . 2 . . 2 . 2 2 4 . . . .
2 . . 2 2 . . 4 . . 4 2 2 . . . .
3 . 2 4 2 . . . . 2 . . 2 2 2 . .
4 . . . . . . . . . . 4 . 4 . 4 4
5 . . . . 2 4 . 2 . . . 4 . 2 2 .
6 . . . . . 4 2 2 2 2 . . 4 . . .
7 . 2 2 . . . 2 2 . . . . 2 4 2 .
8 . . . . 4 8 4 . . . . . . . . .
9 . 2 2 . 4 . . . . . . . . 2 2 4
a . . . 4 . . 2 2 . . . . 2 2 . 4
b . . . . 2 . 2 4 2 2 . . . 2 2 .
c . . . . . . . . 2 2 6 2 . . . 4
d . 6 2 . . . . . 2 . . 2 . . 4 .
e . . 2 6 . . . . . 4 . . 2 2 . .
f . . 2 2 2 . . 2 6 . 2 . . . . .

Based on the difference distribution table of the S-boxes we can establish a differ-
ential for one round by combining the S-box differentials with the differential of the
linear components. These one-round differentials can then be concatenated to a chain
of differences over several rounds of the cipher by assuring that the output difference
of each round equals the input differences of the following round. Such a chain of
differences is called a characteristic.

Definition 4.3 (Characteristic [70]).
An s-round characteristic is an (s+1)-tuple of differences (α0, . . . , αs), where αi is the
anticipated difference ∆ci after i rounds of encryption, i.e., the difference between the
values of the partially encrypted plaintexts. The value of the chosen plaintext difference
∆m = ∆c0 is denoted by α0.

In order to clarify the concept of a characteristic and determine its probability we
consider a toy block cipher (see Figure 4.3) which operates on blocks of 16 bits. In
one round of encryption first the round key is applied by an XOR operation, then
the block is divided in chunks of 4 bits which are processed by the S-box SD given in
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Figure 4.2. Afterwards a symmetric bit permutation is applied. The cipher consists
of 4 rounds where in the last round the permutation is omitted and an additional
post-whiting key is applied. We start with a plaintext pair (m1,m2) which has an

key addition

key addition

key addition

key addition

SD SD SD SD

SD SD SD SD

SD SD SD SD

key addition

SD SD SD SD

Figure 4.3: A toy block cipher. The bold lines depict a differential characteristic.

input difference ∆m = 000f. This means the input differences of the first three S-
boxes are zero and the input difference for the last S-box is f. From the difference
distribution table (Table 4.2) we can infer that the difference f will be transformed
into the difference 8 with probability 3

8 by the S-box SD and that the whole difference
will be translated into ∆c1 = 0008. Again, only the fourth S-box has a non-zero input



50 4.5. Differential Cryptanalysis

difference, which will be transformed into difference 5 with probability 1
2 . Continuing

this analysis yields the following 3-round characteristic for our toy example:

000f→ 0008→ 8080→ 5050.

This characteristic is depicted in Figure 4.3.

4.5.1 The Probability of a Differential Characteristic

Before we consider the probability of an s-round characteristic we want to determine
the probability of a single round. For the linear components we can predict the
propagation of the difference with probability one. The difference distribution table
yields the probabilities for the S-box differentials. We call an S-box active if its input
difference is non-zero. The probability for a passive S-box is 1 because a zero input
difference will trivially lead to a zero output difference. As the S-boxes are applied in
parallel to different chunks of the text they are independent. Therefore, the probability
of a one-round differential can be calculated as the product of the probabilities of the
active S-boxes. As an example we remember the one-round differential 8080→ 5050.
There are two active S-boxes in the example, the S-box differential 8→ 5 holds with
probability 1

2 for both active S-boxes. This yields

Pr
P,K

(∆c = 8080|∆m = 5050) =
1

2
· 1
2
=

1

4

for the one-round differential.
The probability of an s-round characteristic is the conditional probability that

∆ci = αi after i rounds of encryption under the condition that ∆ci−1 = αi−1 is the
difference after i−1 rounds of encryption for i = 1, . . . , s, taken over all keys and text
pairs:

Pr
P,K

(∆ci = αi,∆ci−1 = αi−1, . . . ,∆c1 = α1|∆c0 = α0).

This probability might be difficult to determine but for a certain class of ciphers,
Markov ciphers, we can calculate this probability from the probability of the one-
round differentials.

Definition 4.4 (Markov Cipher [73]).
An iterated cipher with round function ci+1 = f(ci, k) is a Markov cipher with respect
to differential cryptanalysis, if there is a group operator ⊗ defining the difference ∆
such that for all choices of α 6= e and β 6= e (where e is the neutral element of the
group)

Pr(∆ci+1 = β|∆ci, ci = γ)

is independent of γ when the key k is chosen uniformly at random.

This means that for a Markov cipher the probability of a one-round characteristic
taken over all keys and plaintexts equals the probability of a one-round characteristic
taken only over all keys. Furthermore, if we have given an iterated Markov cipher
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over r rounds together with r independent round keys which are chosen uniformly
at random, then the sequence of differences ∆c0, . . . ,∆cr is a homogeneous Markov
chain.

Definition 4.5 (Markov chain).
A Markov chain is a sequence of random variables X0, X1, . . . , Xr with the property
that given the current state the past and the future states are independent, i.e., for
0 ≤ i ≤ r

Pr(Xi+1 = βi+1|Xi = βi, . . . , X0 = β0) = Pr(Xi+1 = βi+1|Xi = βi).

A Markov chain is called homogeneous if

Pr(Xi+1 = β|Xi = α) = Pr(Xi = β|Xi−1 = α)

i.e., the probability is independent of i for all α and β.

Thus, for a Markov cipher with independent round keys the probability of an
s-round characteristic (α0, . . . , αs) can be calculated from the probability of the one-
round differential as

Pr(∆cs = αs, . . . ,∆c1 = α1|∆c0 = α0) =

s
∏

i=1

Pr(∆c1 = αi|∆c0 = αi−1). (4.1)

In real-life ciphers the round keys are usually not independent but derived from a
master key via the key schedule algorithm. However, for many ciphers experiments
have shown that this theoretical probability is a very good approximation for the
actual probabilities.

Using formula (4.1) we can calculate the probability of the three-round charac-
teristic in Figure 4.3 from the probabilities of the one-round differentials used in the
characteristic

Pr
K
(∆c = 000f|∆m = 0008) = 3

8 ,

Pr
K
(∆c = 0008|∆m = 8080) = 1

2 ,

Pr
K
(∆c = 8080|∆m = 5050) = 1

4 .

This yields

Pr
K
(∆c3 = 5050,∆c2 = 8080,∆c1 = 0008|∆c0 = 000f) =

3

8
· 1
2
· 1
4
=

3

64
.

In an actual attack the attacker cannot check if the input difference follows the
s-round characteristic in each step. He can choose the input difference and has the
possibility to check the output difference after s rounds of encryption. That means for
carrying out the attack only the input and output difference of the characteristic are
important and often there is more than a single characteristic with the same input and
output difference. The collection of all s-round characteristics with input difference
α0 and output difference αs is called a differential.
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Definition 4.6 (Differential [73]).
An s-round differential is a pair of differences (α0, αs), also denoted by α0 → αs,
where α0 is the chosen input difference and αs the expected output difference ∆cs.

The probability of an s-round differential (α0, αs) is the conditional probability
that given an input difference ∆c0 at the first round, the output difference after the
sth round will be ∆cs. More precisely, the probability of a differential (α0, αs) is
the sum of the probabilities of all characteristics with input difference α0 and output
difference αs

Pr
P,K

(∆cs = αs|∆c0 = α0) =
∑

α1

· · ·
∑

αs−1

Pr
P,K

(∆cs = αs, . . . ,∆c1 = α1|∆c0 = α0). (4.2)

It is usually impossible to enumerate all characteristics contained in a differential.
Therefore we search for a high probability characteristic which yields a lower bound
for the differential.

The probability of a differential (4.2) is taken over all keys and all plaintext pairs.
When we actually attack the cipher the key is fixed and the plaintext is variable, thus
the probability is taken over all plaintext for a fixed key

Pr
P
(∆ci = αi|∆ci−1 = αi−1,K = k).

Since the key is not known during the attack, we cannot calculate this probability. To
overcome this problem the following common assumption is made.

Assumption 4.7 (Hypothesis of stochastic equivalence [72]).
We consider an r-round iterated cipher. For virtually all high probability s-round
differentials, s ≤ r, (α, β)

Pr
P
(∆cs = β|∆c0 = α,K = k) = Pr

P,K
(∆cs = β|∆c0 = α)

holds for a substantial fraction of the key values k.

Under this assumption we can calculate the probability of a differential and later
also the data requirements of an attack using the average probability over all keys.
However, for certain keys the differential might have a higher or lower probability than
estimated. If the actual probability for a fixed key is much lower than the estimated
probability taken as an average over all keys the attack will fail.

4.5.2 Iterative Characteristics

As mentioned before the main task in differential cryptanalysis is finding a high prob-
ability characteristic/differential over s rounds. We have seen before that we can
construct an s-round characteristic as a concatenation of s one-round differential.
However, for a real-life block cipher it is usually very time consuming to find a good
characteristic over a sufficient number of rounds and starting with a high-probability



Chapter 4. Classical Cryptanalysis 53

one-round characteristic in the first round will not necessary lead to a high-probability
differential over s rounds. Therefore it is desirable to find a characteristic over one
or a few rounds with a high probability, where the input difference equals the output
difference. This iterative characteristic can then be concatenated with itself to obtain
a characteristic of the desired length s.

Definition 4.8 (Iterative characteristic).
An t-round iterative characteristic is a characteristic

(α0, . . . , αt),

where α0 = αt.

In our toy cipher example we find the iterative one-round characteristic (1000→
1000) with probability 1

4 which can be concatenated to a characteristic over 3 rounds
with probability 2−6.

4.5.3 Key Recovery

A high probability differential over r − 1 rounds can be used to find parts of the last
round key of an r-round iterated block cipher by partially decrypting the last round.
We assume that we have given an (r − 1)-round differential (α, β) with probability
p for an iterated r-round block cipher. As before cr = f(cr−1, kr) where f denotes
the invertible round function and cr is the intermediated value after r rounds of
encryption. The main idea is to encrypt N plaintext pairs (m,m′) with the chosen
difference ∆m = α and to obtain the corresponding ciphertext pair (c, c′). Then we
make a guess kG for (parts of) the last round key, (partly) decrypt the last round, and
check if the ciphertext pair decrypted with the key guess yields the desired difference
after r−1 rounds. If the difference is as expected we say that the pair (m,m′) suggests
the key candidate kG. When we encrypt N plaintext pairs we expect that around pN
pairs follow the differential (α, β). Such pairs are called right pairs.

Definition 4.9 (right pair).
A pair (m,m′) with ∆m = α and associated ciphertexts (c, c′) is called a right pair
with respect to the (r − 1)-round differential (α, β) if ∆cr−1 = β. Otherwise, it is
called a wrong pair.

In order for the attack to work we need at least one right pair. However, the
basic aim of differential cryptanalysis is to identify a statistically unusual distribution
of differences, e.g., we want to identify a right pair, a plaintext pair which follows
our differential. But this signal is disguised by noise, wrong pairs that do not follow
the characteristic. Therefore it is desirable to eliminate such wrong pairs from con-
sideration in an early stage of the attack in order to make the search for the signal
easier.

Often wrong pairs can be eliminated by considering the associated ciphertexts.
This process is called filtering. The differential in our toy cipher example (Fig. 4.3)
demonstrate an easy filtering criterion. We see that the input difference to the second
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and last S-box of the last round is zero, thus the output difference also has to be zero.
Therefore we can discard all pairs which ciphertexts have a non-zero difference in the
second and last nibble of four bits. A slightly more advanced criterion is to enumerate
all possible output differences for the input difference 5 and discard all pairs whose
ciphertext differences do not show one of these differences for the first and third S-box.
However, this filtering method reduces the number of pairs that have to be considered
but not the number of wrongly suggested keys, because such a ciphertext pair will
for no key guess yield the desired input difference to the last round and hence not
suggest a key. Depending on the cipher and the differential other filtering methods
are possible.

Now we are able to outline the attack on an r-round iterated block cipher using
an r − 1 round differential where we recover parts of the last round key. During the
attack we demand the encryption of N plaintext pairs. Later we will specify how large
N has to be for the attack to be successful.

1. Establish difference distribution tables for the non-linear parts of the cipher.

2. Find a good characteristic (α0, . . . , αr−1) with probability p.

3. Initialize a counter Tj for all possible round key guesses kj in the last round.

4. For i = 1, . . . , N do

(a) Choose mi at random, compute m′
i = mi⊕α0 and obtain the corresponding

ciphertexts (ci, c
′
i).

(b) Use filtering.
If (mi,m

′
i) is a wrong pair, discard it and continue with the next iteration

of the loop.
Otherwise continue with Step 4c.

(c) For each key guess kj :

i. (Partly) decrypt the last round

(c
(r−1)
i , c

′(r−1)
i ) = (f−1(ci, kj), f

−1(c′i, kj)).

ii. If c
(r−1)
i ⊕ c

′(r−1)
i = αr−1 then increment the counter Tj .

5. Find the counter Tmax with the maximum value amongst all counters.

6. Output kmax as the guess for the correct key.

One pair might suggest several key candidates. However a right pair will always
suggest the right key guess, while a wrong pair is expected to suggest a set of key can-
didates which are basically chosen at random but do not include the correct key [70].

In order for the attack to work the attacker must be able to identify the differential
at least once, otherwise he will not be able to distinguish the correct key guess from the
wrong key guesses. Furthermore, the correct key value must be suggested significantly
more often than other candidates. We expect that these conditions are satisfied for
a differential of probability p if we select approximately c

p plaintexts uniformly at
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random where c is a small constant. For a more thorough analysis of the attack
complexity the reader is referred to [70, 16].

The attack described above recovers parts of the last round key using a differen-
tial covering all but the last round of encryption. It is also possible to use shorter
differentials and/or to recover parts of the round keys for the first and last rounds.

Moreover several extensions and variations of the attack are known, such as trun-
cated differentials [68] where the difference is not completely defined, or impossible
differentials [13] where key candidates can be discarded because they lead to a differ-
ential which is not possible. Another variant of a differential attack is the boomerang
attack by Wagner [99] which is a chosen plaintext and chosen ciphertext attack. We
will describe this attack in the next section and show an application in Chapter 5.

4.5.4 The Boomerang Attack

The boomerang attack [99] is a differential-style attack. It is especially efficient for
ciphers where there does not exist a high-probability differential covering the whole
cipher but instead there are two good differentials which together cover the whole
cipher. These differentials do not have to be related to each other.

Let E(·) be the encryption function of an r-round iterated block cipher and E =
E1 ◦E0 its decomposition where E0 represents the first s rounds and E1 the remaining
r−s rounds. Furthermore, we suppose that there is a differential ∆→ ∆∗ through E0

with probability p1 and that also its reverse differential ∆∗ → ∆ holds with probability
p2 through the decryption E−1

0 . Moreover we suppose that a differential ∇ → ∇∗ with
probability q through the decryption of the second part of the cipher exist, i.e., through
E−1

1 .

As mentioned before the boomerang attack is a chosen plaintext and chosen ci-
phertext attack and proceeds as follows (cf. Figure 4.4). First we request the ci-
phertexts c and c′ corresponding to the plaintexts m and m′ = m ⊕ ∆. We know
that a⊕ a′ = E0(m)⊕ E0(m

′) = ∆∗ holds with probability p1 but we cannot predict
the difference c ⊕ c′. From c and c′ we calculate two new ciphertexts d = c ⊕ ∇
and d′ = c′ ⊕∇ and request the corresponding encryptions n and n′. We know that
a ⊕ b = E−1

1 (c) ⊕ E−1
1 (d) = ∇∗ and a′ ⊕ b′ = E−1

1 (c′) ⊕ E−1
1 (d′) = ∇∗ holds with

probability q2. Then we have

E0(n)⊕ E0(n
′) = E0(m)⊕ E0(m

′)⊕ E0(m)⊕ E0(n)⊕ E0(m
′)⊕ E0(n

′)

= E0(m)⊕ E0(m
′)⊕ E−1

1 (c)⊕ E−1
1 (d)⊕ E−1

1 (c′)⊕ E−1
1 (d′)

= ∆∗ ⊕∇∗ ⊕∇∗ = ∆∗

with probability p1q
2. This means under the condition that b⊕b′ = E−1

1 (d)⊕E−1
1 (d′) =

∆∗ it holds n ⊕ n′ = ∆ with probability p2. Starting with a plaintext pair (m,m′)
with difference ∆ this yields a plaintext pair (n, n′) with the same difference with
probability p1p2q

2 after encrypting the plaintext pair and decrypting an associate
ciphertext pair. Often, we assume that the differential and its reverse have the same
probability p. This leads to a probability p2q2.
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Figure 4.4: Illustration of the Boomerang attack.

There are improvements/extensions of the boomerang attack. The amplified boo-
merang [63] turns the boomerang attack into a chosen plaintext attack at the ex-
pense of an increased amount of required text pairs. The idea is to consider quartets
(m′,m, n, n′) with differences m ⊕m′ = ∆ and n ⊕ n′ = ∆ and try to find a quartet
such that E0(m) ⊕ E0(m

′) = ∆∗, E0(n) ⊕ E0(n
′) = ∆∗, E0(m) ⊕ E0(n) = ∇∗ and

thus E0(m
′) ⊕ E0(n

′) = ∇∗. The attacker can check for the property c ⊕ d = ∇ and
c′⊕ d′ = ∇ in order to identify right quartets. When we encrypt N pairs (m,m′) and
(n, n′) with difference ∆ the expected number of right quartets is N22−np2q2 [15, 96].

Another improvement introduced in [63] is that the difference ∇∗ in the differential
∇∗ → ∇ for the second part E1 of the cipher does not have to be specified. Instead we
can allow any differential∇∗

i → ∇. That gives us an improvement on the probability of
the differential through E1. The probability Pr(∇∗ → ∇)2 = q2 of the pairs (a, b) and
(a′, b′) (cf. Figure 4.4) to have output difference ∇ can be replaced by the probability
∑

i Pr(∇∗
i → ∇)2.
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A similar improvement is the rectangle attack [15]. Instead of fixing the output
difference for the differential through E0 to ∆∗ the attacker sorts the pairs into piles
according to their output difference and performs the original attack for each of those
piles.

Coming back to the original boomerang attack we note that its name is derived
from the property that we get a plaintext pair with the same difference as we started
with: “when you send it properly, it always comes back to you” [99]. However,
recently Murphy [85] discovered that some boomerangs never return. In [99] it is stated
that the probability of a boomerang is pB ≥ p2q2, nevertheless, Murphy constructed
examples of boomerangs for round-reduced versions of AES and DES with p > 0 and
q > 0 but the probability of the boomerangs itself is 0, i.e., the boomerang never
comes back. These counter examples point to a flaw in the analysis of boomerang
attacks. Therefore attacks based on boomerangs or related concepts should be handled
carefully and the existence of a boomerang as well as its estimated probability should
be experimentally verified.

Despite Murphy’s concerns successful attacks based on boomerangs do exists. The
existence of the boomerang has been experimentally verified, for example in Wagner’s
attack on COCONUT98 [99] and in the attack on C2 [22], which will be presented in
Chapter 5.

4.5.5 Cube Attacks

The cube attack, also published under the name AIDA [98] as an attack on the stream
cipher Trivium, is a differential-style attack and can be seen as a special case of higher
order differentials [71]. We follow the notation and naming of [45].

Cube attacks are applicable to cryptographic schemes that can be described by a
tweakable polynomial over F2 which contains both secret variables and public vari-
ables. Secret variables may be key bits while public variables are for example plaintext
or IV bits. The complexity of a cube attack depends mainly on the degree of the poly-
nomial. Given a random polynomial of degree d in l secret variables the estimated
attack complexity is 2d−1l + l2 bit operations. However, the degree of a polynomial
that describes a cryptographic scheme is usually quite high and will therefore dominate
the expression.

The attack is divided into two phases. In the preprocessing phase the attacker
should be able to set the values of all variables, the secret and the public ones. This
corresponds to that he has a full description of the cipher. The tweakable polynomial
itself does not have to be known, it is sufficient if it is available as black box. In the
online phase the attacker should be able to tweak the public variables only. For the
attack to be successful it is necessary that the number m of public variables exceeds
d+ logd l.

Before we explain the procedure of the two different phases we start with some
notations and definitions. The tweakable polynomial which describes one output bit
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of the cipher is called the master polynomial p

p :Fl+m
2 → F2

(k1, . . . , kl, v1, . . . , vm)→ p(k, v)
(4.3)

where k1, . . . , kl denote the secret and v1, . . . , vm denote the public variables. This
polynomial is not known but can be evaluated as a black box.

In the following we ignore the distinction between secret and public variables and
label all variables with x1, . . . , xn where n = l +m. For an index set I ⊂ {1, . . . , n},
tI denotes the monomial which contains all variables xi1 , . . . , xir with ij ∈ I for
j = 1, . . . , r. It is possible to denote all monomials over F2 in this way since x2i = xi
modulo 2. Every polynomial over F2 can then be represented as a sum of terms tI .
Furthermore given an index set I and a polynomial p, we can represent the polynomial
as a collection of monomials which are indexed by supersets of I and a collection of
monomials whose index sets lack at least one index of I. This leads to the definition
of the superpoly.

Definition 4.10 (Superpoly).
Given I ⊂ {1, . . . , n} and a polynomial p, p can be represented as

p(x1, . . . , xn) = tI · pS(I) + q(x1, . . . , xn),

where pS(I) does not contain any common variable with tI and q misses at least one
variable of tI . The polynomial pS(I) is called superpoly of I in p.

Of special interest are terms tI such that the superpoly is linear.

Definition 4.11 (Maxterm).
A term tI is called maxterm of p if deg(pS(I)) = 1, i.e., if the superpoly of I in p is a
linear polynomial and not a constant.

If we consider an index set I of size r, it defines a r-dimensional Boolean cube
CI . (Hence the name cube attacks). This Boolean cube contains all 2r vectors v in
which the variables in I take all possible assignments in {0, 1}r, while the remaining
n − r variables are undetermined. If we plug a vector v ∈ CI into the polynomial p
we obtain a new polynomial p|v in n− r variables with degree less than or equal to d.
This leads us to the main observation that cube attacks are based on.

Theorem 4.12.

Any vector v ∈ CI defines a polynomial p|v in n − r variables. Summing over all 2r

possible polynomials generated by vectors in CI yields the superpoly of I in p

pS(I) =
∑

v∈Ci

p|v.

The reader is referred to [45] for the proof of this theorem. This theorem also says
that if we sum over a cube of size r we will obtain a superpoly in n − r variables,
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meaning that the degree of the superpoly is at most n − r. If we sum over a cube
corresponding to a maxterm tI we will obtain a linear polynomial.

The idea of the attack is now that given a master polynomial p of degree d the
adversary has to find sufficiently many maxterms which only contain public variables
and derive the corresponding superpolys in the preprocessing phase. These superpolys
should be degree one polynomials in some of secret variables. In the online phase the
attacker sums over at most 2d−1 values for each maxterm and obtains a linear equations
system in the secret variables.

The goal of the preprocessing phase is to find a description of the secret bits or
a part of the secret bits as a linear equation system where the right-hand side of the
equation system is for the time being undetermined. This equation system is obtained
by finding sufficiently many maxterm in the master polynomial p and is independent
of th secret key.

Identifying the maxterm would be easy if the master polynomial were given in an
explicit way. However, the master polynomial is only given as a black box, but the
attacker is allowed to tweak the secret and public variables. Under the assumption
that tI is a maxterm he derives the corresponding linear polynomial in the following
way.

1. Summing the values of p over the cube CI modulo 2 where all variables which
are not cube variables are set to zero yields the constant term of the linear
superpoly.

2. By summing the values of p over the cube CI modulo where xi = 1 and all other
variables which are neither cube variables nor xi are set to zero one obtains the
coefficient of xi. If flipping a the value of xi in the summation changes the value
of the sum, the coefficient of xi is 1.

Given a random polynomial of degree d, each term tI consisting of d − 1 public
variables corresponds to a superpoly of degree at most 1, the probability that tI
actually is a maxterm is 1− 2−n. In order to obtain l linear equations l maxterms are
needed. Thus, we need d+logd l public variables. The complexity of the preprocessing
phase for a random polynomial of degree d is O(l2 · 2d−1).

However, master polynomials corresponding to an encryption scheme are not ran-
dom. This causes several problems for the attack. First of all, in the theoretical attack
we look for terms of the form vi1 · · · vid · kj which consist of several public and only
one secret variable. For a non-random polynomial there is no guarantee that such
terms exist at all. Secondly, the degree d of the master polynomial is unknown. That
means that the attacker has to guess the dimension of the Boolean cube and test if the
corresponding superpoly is constant, non-linear or the desired polynomial of degree 1.

In the online phase the attacker is able to tweak the public variables while the
secret variables are set to their fixed secret values. The online phase consists of two
parts. In the first part, for each maxterm tI the attacker sums the values of p over CI

in order to obtain the right hand side of the corresponding equation, meaning that the
attacker obtains the evaluation of the polynomial p for all vectors where the variables
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in tI take all possible values. The remaining public variables are fixed to arbitrary
values and the secret variables are fixed to their secret values. The complexity is 2d · l
where d is the dimension of the cubes.

When the adversary has obtained the right hand side for all l linear equations, he
has to solve the system of l linear equations in l unknowns.

Cube attacks were applied to a reduced version of Trivium [45]. The authors claim
that Trivium can be broken with an online complexity of 230 if the key setup is reduced
from 1152 to 736 initialization rounds.

We conclude this section on differential cryptanalysis with pointing out once more
that differential style attacks are extremely powerful tools for a cryptanalyst. We
show applications of differential style attacks in Part II of this thesis.

4.6 Linear Cryptanalysis

Linear cryptanalysis is another important technique in the cryptanalysis of block ci-
phers. It was developed and successfully applied to DES by Matsui in 1993 [75].
Linear cryptanalysis is a known plaintext attack where the idea is to find linear re-
lations between plaintext, ciphertext and key bits with a good probability such that
information about the secret key can be deduced from the plaintext and the cipher-
text. For an iterated block cipher we establish this linear relation by searching for
good linear approximations of each round of the cipher and concatenating these ap-
proximations to a linear expression over several rounds (cf. differential cryptanalysis).
It is trivial to describe the linear functions of a cipher by a linear expression that holds
with probability 1. Therefore our aim is to find good linear approximations for the
non-linear functions of the cipher, for example the S-boxes.

For a non-linear function S : {0, 1}n → {0, 1}m we consider the input variables
X = (xn−1, . . . , x0) and output variables Y = (ym−1, . . . , y0) = S(X) of S(·) and try
to find an n-bit binary vector α and an m-bit binary vector β such that

α ·X = β · Y

holds for a number of inputs bounded away from 2n

2 . The binary vectors α and β are
called linear masks. Usually, so-called linear approximation tables are computed for
the non-linear functions of a block cipher. A linear approximation table contains all
possible input and output masks together with the corresponding probability that the
resulting linear approximation is preserved through the non-linear function. Instead
of considering the probability p = Pr(α · Y = β · Y ) we consider the bias ǫ = p − 1

2 .
Here a high absolute value of the bias ǫ is interesting, while the sign of the bias does
not matter. For the S-box SL(·) shown in Figure 4.5 the linear masks α = (0, 0, 1, 1)
and β = (0, 0, 0, 1) yield the linear equation x1⊕x0 = y0 which holds with probability
p = 1

8 (cf. Table 4.3). That means that the bias is negative. But the linear expression
x1⊕x0⊕ 1 = y0 holds with probability 1− p = 7

8 . Thus this linear approximation has
a positive bias.

An approximation for the non-linear functions can be combined with a description
of the linear functions to obtain a linear approximation for one round of the cipher.
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Figure 4.5: A toy cipher. The table above shows the S-box SL in hexadecimal notation.

Afterwards the one-round linear approximations can be joined to a linear characteristic
(Definition 4.13), which is a linear approximation for several rounds of the cipher.

Definition 4.13 (Linear Characteristic).
An s-round linear characteristic is an (s+1)-tuple (α0, . . . , αs) with probability p where
αi is the input mask to the ith round.

An s-round linear characteristic for an s-round block cipher yields one bit of infor-
mation about the key. In order to clarify the attack idea and explain how one-round
approximations are joined to longer linear characteristics we consider the toy cipher
defined in Figure 4.5. This cipher can be seen as an iterated block cipher consisting
of three rounds together with a post-whitening key after the last round. There is no
permutation layer, therefore the only linear function in this cipher is the key addition.
The non-linear part, the substitution layer, is realized as a 4-bit S-box SL. We now
assume that we have given the following linear approximation for the single parts of
the cipher

α · (m⊕ k0) = α · x0 with probability 1,

α · x0 = β · y0 with probability p0,

β · (y0 ⊕ k1) = β · x1 with probability 1,

β · x1 = γ · y2 with probability p1,

γ · (y2 ⊕ k2) = γ · x3 with probability 1,

γ · x3 = δ · y3 with probability p2,

δ · (y3 ⊕ k3) = δ · c with probability 1.

The linear description of the key addition and the linear approximation for the S-box
of each round can be added to a linear approximation of the whole round. The linear
approximation α·m⊕α·k0 = β ·y0 holds for example with probability p0. Together the
linear approximations for the single rounds yield the linear characteristic (α, β, γ, δ)
over several rounds and the corresponding linear equation

α ·m⊕ δ · c = α · k0 ⊕ β · k1 ⊕ γ · k2 ⊕ δ · k3 (4.4)
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for the toy cipher in Figure 4.5. As in the case of differential cryptanalysis the search
for good linear characteristics over several rounds is difficult. Therefore, it is conve-
nient to build an r-round linear characteristic from a shorter s-round linear charac-
teristic with a high bias where the input and output masks are the same.

Definition 4.14 (Iterative linear characteristic).
An s-round iterative linear characteristic is an s-round linear characteristic (α0, . . . , αs)
where α0 = αs.

In our example we can build a 3-round characteristic (b,b,b,b) for the iterative
one-round characteristic (b,b) which has a bias of − 6

16 (Table 4.3). After we have
established a linear characteristic over a sufficient number of rounds, we can use this
knowledge to deduce information about the secret key.

4.6.1 Key Recovery

At first we use a linear characteristic to deduce one bit of information about the
key. The attack can then be extended to allow us to recover more than one bit of
information at once. The idea is to incorporate partial decryption similar to the
differential attack, meaning that we guess (parts of) the last round key and decrypt
(parts of) the last round.

Let us assume the linear approximation (4.4) holds with probability p = 1
2 + ǫ

and ǫ > 0. (Later in the chapter we will discuss how to determine the probability of
a linear characteristic.) The right hand side of Equation (4.4) only depends on key
variables and is therefore fixed to a value b ∈ {0, 1}. If N plaintexts are encrypted
we expect that the left hand side of the equation takes value b for a fraction of pN
plaintext/ciphertext pairs and b⊕1 for (1−p)N pairs. The attack proceeds as follows.
We encrypt N plaintexts and evaluate the left hand side of Equation (4.4) for each
of these plaintext/ciphertext pairs. We initialize two counters T0 and T1. If the left
hand side of the equation is 0 for a plaintext we increment the counter T0, otherwise
we increment T1. If T0 is the higher counter in the end, we deduce that the right hand
side of Equation (4.4) equals 0, otherwise it equals 1. This gives us one bit of key
information.

However, we would like to recover more than one bit of key information at the time.
Using partial decryption of the last round the attack can be extended as follows. We
consider an r-round iterated block cipher.

1. Find an (r − 1)-round linear characteristic

(α0, . . . , αr−1)

with a high absolute value of the bias ǫ for the r-round block cipher.
This characteristic corresponds to the linear approximation

α0 ·m⊕ αr−1 · xr−1 = α0 · k0 ⊕ · · · ⊕ αr−1 · kr−1 (4.5)

where xr−1 is the input to the last round.
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2. Create a list of key guesses kG for the last round key (or the partial last round
key), create counters TG

0 and TG
1 .

3. For each of the N known plaintext/ciphertext pairs and for each key guess kG
do

(a) Decrypt (or partial decrypt) the last round to get the value of xs−1 under
key kG.

(b) Evaluate the left hand side of Equation (4.5).

(c) Increment the counter TG
0 if the result is zero, otherwise increment TG

1 .

4. Identify the counter TG
j with the maximum value and take kG as the correct

round key. (For a wrong key guess we expected the counters to be around N
2

each.)

We note that often it is not necessary to guess the whole last round key. The linear
approximation usually only contains a few bits of the input xr−1 to the last round.
This means that we only have to guess the key bits of the last round key which are
necessary to decrypt the last round partially in such a way that we get the bits of
xr−1 used in the linear approximation.

If the linear approximation used in the linear attack holds with bias ǫ then ap-
proximately c · ǫ−2 known plaintext/ciphertext pairs are needed for the attack to be
successful where c is a small constant.

4.6.2 The Probability of a Linear Characteristic

In order to determine the attack complexity it is necessary to estimate the probability
of a linear characteristic. The linear approximation of one round can be seen as a
random variable of the form α0X0 ⊕ · · · ⊕ αnXn ⊕ β0Y0 ⊕ · · · ⊕ βmXm which either
takes the value zero or one (depending on the key bits). A linear characteristic is then
the XOR of these random variables and the probability of the linear characteristic can
be computed using the Piling-up Lemma (Lemma 4.15). Before we state the lemma
we give an example to motivate it.

We consider two independent random variables X1 and X2. It holds Pr(Xi = 0) =
pi and Pr(Xi = 1) = 1−pi for i ∈ {1, 2}. Then it follows from the independency of X1

and X2 that Pr(X1 = 0, X2 = 0) = p1p2 and Pr(X1 = 1, X2 = 1) = (1 − p1)(1 − p2).
Thus

Pr(X1 ⊕X2 = 0) = p1p2 + (1− p1)(1− p2).

This results holds in general and is known as the Piling-up Lemma.

Lemma 4.15 (Piling-up Lemma).
Let Xi for i = 1, . . . , n be n independent binary random variables and assume that it
holds Pr(Xi = 0) = pi for all 1 ≤ i ≤ n. Then

Pr(X1 ⊕ · · · ⊕Xn = 0) =
1

2
+ 2m−1

m
∏

i=1

(pi −
1

2
).
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Table 4.3: The linear approximation table of SL(·). The first column contains the
input masks while the first row contains the output masks. The entry (i, j) divided
by 16 contains the bias of the probability that the linear approximation with input
masked by i and output masked by j holds. Here ’.’ denotes a zero value.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8 . . . . . . . . . . . . . . .
1 . 2 -2 . . 2 2 -4 -4 -2 -2 . . 2 -2 .
2 . . . 4 -2 -2 2 -2 . 4 . . -2 2 2 2
3 . -6 2 . -2 . . -2 . -2 -2 . 2 . . 2
4 . . 2 2 6 -2 . . -2 -2 . . . . 2 2
5 . 2 4 -2 -2 . -2 . -2 . -2 . -4 -2 . 2
6 . . 2 -2 . . -2 2 -2 2 . . 2 6 . .
7 . 2 . -2 . -6 . -2 2 . -2 . 2 . -2 .
8 . . . . -2 -2 -2 -2 -2 -2 6 -2 . . . .
9 . 2 -2 . -2 . . 2 -2 . . 2 4 -2 2 4
a . . . 4 . . -4 . -2 2 -2 -2 2 -2 -2 -2
b . 2 2 . . 2 2 . 2 . . -6 2 . . 2
c . . -2 -2 . . -2 -2 . . -2 -2 . . 6 -2
d . 2 . 2 . 2 -4 -2 4 -2 . 2 . 2 . 2
e . . -2 2 -2 -2 . 4 . -4 -2 -2 -2 2 . .
f . 2 4 2 -2 . 2 . . -2 . 2 2 . 2 -4

A requirement of the Piling-up Lemma is that the random variables or the linear
approximation respectively are independent. This cannot always be guaranteed. In
order to be able to use the Piling-up Lemma we make some independence assumptions.
We define a Markov cipher with respect to linear cryptanalysis analogous to a Markov
cipher with respect to differential cryptanalysis.

Definition 4.16 (Markov cipher [70]).
An iterated cipher is called a Markov cipher with respect to linear cryptanalysis, if

|Pr(α ·X = β · Y |Y = γ)− 1/2|

is independent of γ for all α and β, when the round key k is chosen uniformly at
random.

In practice it might not be possible to determine the key even though we found a
good linear characteristic. The reason being that there might be other linear charac-
teristics with the same first and last linear mask but their biases contradict the bias
of the linear characteristic used in the attack. This effect can also lead to a higher
probability than expected. For the attack only the first and last mask of the linear
characteristic matter. We do not need to specify the intermediate masks. This leads
to the definition of a linear hull.

Definition 4.17 (Linear hull).
An s-round linear hull is tuple (α0, αs) of linear masks with probability p. It predicts
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that the input masked with α0 equals the output after s round masked with αs with
probability p.

The linear hull contains all s-round characteristics (α0, α1i , . . . , αs−1i , αs) for all
possible values αji , j = 1, . . . , s − 1. It is unclear how to determine the bias of a
linear hull correctly [84]. The actual complexity of the attack is c · ǫ−2

L where ǫL is
the bias of the linear hull. Even with the difficulty to estimate or lower bound the
attack complexity linear cryptanalysis is a powerful technique. It has been successfully
applied to DES by Matsui [75]. The full 16-round DES was broken using 243 known
plaintexts.

Nowadays it is a general design principle that a block cipher or stream cipher is
strong towards linear and differential cryptanalysis.

4.7 Algebraic Attacks

More recently, the so-called algebraic attacks have received much attention. They
exploit the fact that many cryptographic primitives can be described by a sparse mul-
tivariate non-linear equation system over the binary field in such a way that solving
this equation system recovers the secret key (or the initial state in the case of stream
ciphers). The equation system is usually generated by finding a description of the
single components of the cipher and then joining these together to an equation sys-
tem that represents the whole cipher. Considering an SP-network we first obtain an
algebraic description of the linear components of the round function such as the key
addition and the permutation layer and then we set up an equation system describing
the S-boxes which normally contains non-linear equations. Merging these equations
yields an algebraic description of the round function which can be extended iteratively
to a multivariate equation system of the whole cipher. This equation system can be
set up generally; given a plaintext/ciphertext pair or a part of the keystream we can
plug this information into our general equation system and use it for recovering the
secret key.

In general, solving random systems of multivariate non-linear Boolean equations
is an NP-hard problem [51]. However, when the system has a specific structure, we
can hope that methods exist which are faster than enumerating all possible solutions.

A first approach is to try to solve the equation system with Gröbner bases tech-
niques. However, most of the time this approach is not successful because the memory
requirements and the complexity of the Gröbner bases algorithms are hard to predict.

Another technique to tackle such equation systems is linearization. Here each
non-linear term is replaced by an independent linear variable. The resulting linear
systems can be solved using Gaussian elimination. Linearization works only if there
are enough linearly independent equations in the resulting system which requires the
initial system to be very sparse and highly overdetermined. An approach is to generate
an overdetermined system by adding new equations to it. The XL algorithm [36]
increases the number of equations by multiplying them with all monomials of a certain
degree. It has been refined to the XSL algorithm [38], which, when applied to the
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AES, exploits the special structure of the equation system. Neither the XL nor the
XSL algorithm have been able to break AES but algebraic attacks were successful in
breaking a number of stream cipher designs [8, 37].

The representation of a cipher as a sparse multivariate non-linear Boolean equation
system is also the starting point for the novel cryptanalysis introduced in Part III of
this thesis. We believe that the special structure which is exhibited by the equations
makes them suitable for optimization methods. The difference between algebraic
attacks and this novel cryptanalysis is that in the latter we are not operating over the
finite fields anymore but consider either integer and real-valued equations or mappings
from a finite set into the reals.



Part II

Cryptanalysis of Block Ciphers
with Secret Components





Chapter 5

Cryptanalysis of C2

In this chapter we present several attacks on the block cipher C2 [5], which is used for
encrypting DVD Audio discs and Secure Digital cards. We presented C2 in Chapter 2
as an example of a Feistel network operating on 64-bit blocks with a 56-bit key. The
tweak in this cipher is that the 8-to-8 bit S-box is kept secret and is available under
license from the 4C entity. The S-box is application dependent and can be considered
as part of the secret key.

The specification of the system gives rise to several attack scenarios for C2.

1. The 56-bit key can be chosen by the attacker, who will attempt to determine
the values in the secret S-box.

2. The S-box is known to the attacker, who will attempt to determine the value of
a secret 56-bit key.

3. Both the 56-bit key and the S-box are unknown to the attacker, who will attempt
to determine the values of both.

We attack C2 in all three scenarios. The first attack requires 224 chosen plaintext
queries with a negligible amount of other computations required in the on-line phase.
The complexity of the second attack is around 248 adaptive chosen ciphertext queries
and a similar amount of computations. The third attack requires 253.5 adaptively
chosen ciphertext queries.

The only other cryptanalytical result on C2 we are aware of is the S-box recovery
attack (scenario 1) on 8 rounds of the cipher by Weinmann [100].

5.1 Recovering the Secret S-box with a Chosen Key At-
tack

The first attack depends on the details of the key schedule. We show that by carefully
selecting the value of the 56-bit key, we can ensure that only three S-box entries are
used in the first seven rounds of encryption of a chosen plaintext. By a trail-and-error
approach these three entries can be determined. Subsequently the other entries of the
S-box can be determined in a similar approach.

We assume in this attack scenario that we are allowed to set the encryption key.
The ith round key is generated from the master key by rotating it 17 · i positions
to the left, xoring the round counter to the 5th byte, processing the output by the
S-box, shifting it and adding it to the lower 4 bytes of the master key (cf. Chapter 2

69



70 5.1. Recovering the Secret S-box with a Chosen Key Attack

Figure 2.3). The resulting four bytes are output as the round key. It is important
to note that during the round key generation only one S-box application is used and
that the master key itself is not updated. Thus, given the master key it is easy to
predict the inputs to the S-box during the key schedule. Furthermore, we can observe
that some keys generate only very few different inputs to the secret S-box in the key
scheduling. It is easy to verify using a computer search that the smallest number of
inputs generated in the key scheduling is three. An example of such a master key is

0x40, 0x84, 0x88, 0x40, 0x02, 0x80, 0x09

and the inputs to the S-box in rounds 1 to 10, generated by this master key, are the
following

0x88, 0x4, 0x27, 0x27, 0x4, 0x4, 0x27, 0x27, 0x88, 0x88.

For the attack we first fix the above key and guess the possible outputs of the
S-box for the inputs 0x04, 0x27 and 0x88. Under the assumption that our guess is
correct we know the round keys used during the encryption. For each possible guess
we generate one plaintext that only uses these three S-box inputs during 7 rounds
of encryption. For such a plaintext, again under the assumption that our guess is
correct, we know the output of the encryption process after 7 rounds, i.e., (L7, R7).

These plaintexts are completely independent of the actual S-box used in the attack
(but depend on the different guesses for the S-box entries). Therefore this precompu-
tation has only to be done once, is trivially parallelizable and the data can be reused
for any actual S-box in the implementation of C2 we want to attack. Generating a
plaintext for one fixed key guess requires approximately 219.25 C2-encryptions and as
there are 224 possible values for the three entries in the secret S-box the complexity
for this step is approximately 243.25 C2-encryptions. We will give the details in Sec-
tion 5.1.1. We computed a table containing one plaintext for each guess. The actual
running time was 96 hours and the size of the table is less than 400 MBytes.

In the online phase, when we attack an actual device or implementation using a
secret S-box, we proceed as follows. We set the device key to the master key given
above which only triggers the three different S-box inputs. Then we encrypt each of
the 224 plaintexts in the table. This is one plaintext corresponding to one possible
guess for the three S-box entries. If our guess is correct we know the output after
round 7. It is possible to check whether the observed ciphertext fits to our guess of
the 7th round output. We explain this test in Section 5.1.2. However, this test will
never fail for the right guess and has a (heuristic) probability of accepting a wrong
guess of 2−29. Thus, on average, only the right guess will survive. Using the outlined
approach we can recover three S-box entries with 224 encryptions using the actual
device and marginal overhead for the test.

After the first three entries have been recovered we continue in a very similar way.
First, it is now easy to recover (up to) three additional entries corresponding to the
inputs triggered in the last three rounds without querying the device. For all other
entries we now generate plaintexts that do not trigger any unknown inputs in the
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first six rounds. Using the three round test explained in Section 5.1.2 on any possible
output of the S-box in round 7 we can recover the output of the S-box in the 7th
round and later recover the output of the S-box in the last three rounds again.

Assuming that the inputs to the S-box in rounds 7, 8, 9 and 10 behave randomly, an
estimate for the complexity (in terms of C2 encryptions) of successfully recovering the
whole S-box is derived from the well-known coupon collector’s problem [50, Section
II.7]. The coupon collector’s problem deals with the following question. Given n
different coupons which are drawn with replacement, what is the probability that
more than T samples are needed to collect all n coupons. It holds that the expected
time T to collect all n coupons is

E(T ) = n ·Hn,

where Hn is the nth harmonic number.
For each plaintext we can recover a maximum of 4 S-box entries. Applying the

coupon collector problem leads to a complexity given by

C
(256 ·H256)

4
≈ 219.4,

where H256 is the 256th harmonic number and C is the complexity to generate a
plaintext that fit for 6 rounds. As explained in Section 5.1.1, C can be upper bounded
by

C ≤
(

256

6

)2

.

However, it turns out that those inputs do not behave purely random and experimen-
tally we measured a slightly higher complexity of 220.2 as an average of 10000 trials
(100 tests for 100 randomly generated S-boxes).

To sum up, when we are allowed to choose an encryption key, the S-box can
be recovered with less than 224 queries to the device on average. Of course, the
actual running time highly depends on the encryption speed of the device, but for an
implementation on a standard PC the whole S-box can be recovered in less than 30
seconds.

5.1.1 Generating Plaintexts that Fit for Seven Rounds

Next, we describe a procedure to generate a plaintext such that for known (or guessed)
round keys and a set of known (or guessed) input/output pairs D the inputs to the
S-box in the first seven rounds are within the set D.

A naive method would be to randomly generate plaintexts and verify that the
plaintext satisfies the conditions in all seven rounds. Under the assumption that

those inputs behave randomly, the effort to generate such a plaintext is
(

256
|D|

)7
. For

the first part of the attack, where |D| = 3, this is

(

256

3

)7

≈ 244.9.
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As we have to generate one plaintext for each possible guess of the three S-box entries,
meaning that we have to generate a total of 224 such plaintexts, the complexity of this
naive approach is 268.9 and thus too high. However, it is easy to generate plaintexts
that fulfill the conditions for four out of the seven rounds by construction. Then, again

assuming things behave randomly, the effort is reduced to
(

256
|D|

)3
which for |D| = 3

and 224 plaintexts to be generated gives an overall complexity of approximately 243.25.
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Figure 5.1: Equivalent description of the round transformation of C2

In the following the names of the variables refer to Figure 5.1. In order to generate
a plaintext that satisfies the conditions in the first four rounds we proceed as follows.
First, we choose the inputs to the S-box in the first four rounds in order to get these
inputs correct. That means we fix X0,0..7, X1,0..7, X2,0..7 and X3,0..7 to arbitrary input
values in the set D. Furthermore we choose X1,8..31 and X2,8..31 randomly. Given
these values we can compute backwards

R0,0..7 = (X0,0..7 ⊕ C0..7)− rk0,0..7 (mod 28),

R1,0..7 = (X1,0..7 ⊕ C0..7)− rk1,0..7 (mod 28),

R2,0..7 = (X2,0..7 ⊕ C0..7)− rk2,0..7 (mod 28),

R3,0..7 = (X3,0..7 ⊕ C0..7)− rk3,0..7 (mod 28),

where C = 0x2765ca00 iss a constant. Let F denote the function mapping Xi to Ui.
We observe that for any 8-bit vector x it holds that

F (X ⊕ (x << 23))0..7 = F (X)0..7 ⊕ x.

In particular we can choose bytes z1 and z2 such that

F (X1 ⊕ (z1 << 23))0..7 −R2,0..7 = R0,0..7 (mod 28)

and
F (X2 ⊕ (z2 << 23))0..7 +R1,0..7 = R3,0..7 (mod 28).
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Thus, if we choose

L′
2 = (X1 ⊕ (z1 << 23)⊕ C)− rk1 (mod 232)

and

R′
2 = (X2 ⊕ (z2 << 23)⊕ C)− rk2 (mod 232)

and decrypt two rounds to get a plaintext (L′
0, R

′
0), then we ensure that for this

plaintext all inputs to the S-box in the first four rounds are previously fixed and thus in
the set D. We experimentally verified that the complexity of generating plaintext that
also fit in the fifth, sixth and seventh round for |D| = 3 is approximately (2563 )3 ≈ 219.25

as predicted by the heuristic. The overall running time to generate all 224 plaintexts
for each guess was less than one hour when distributed to 100 CPUs.

5.1.2 A Three-Round Test

To verify that we guessed the correct S-box entries we need to check whether the
intermediate value after 7 rounds of encryption, which we predict based on our guess,
matches the obtained ciphertext. This means that we have to check if encrypting
(L7, R7) with three rounds gives us the correct ciphertext (L10, R10). This test would
be trivial if we knew the S-box. However, we still can do it efficiently and with very
good probability even without knowing the S-box.

We do this by establishing a system of linear equations which holds for the correct
guess of the S-box entries with probability 1. Since we know the values of R7 and
R10, we can compute U8 = R10−R7 and going backwards through the linear function,
we can determine Y8. Since we do not know the S-box, we know only the 24 most
significant bits of X8. We known the round key rk8 for our guess of the S-box entries.
This means that if we knew whether a carry in the modular addition occurred or not,
we would know the 24 most significant bits of R8 and L9. Thus, we can calculate
R8 = L9 for both possibilities (a carry occurs and no carry occurs).

Now, using this knowledge and the values of L7 and L10 we can determine 24 most
significant bits of U7 = R8−L7 and U9 = L10−L9. Again, we do not know the carry
bit so we have to test two possibilities for each of the words, either assuming a carry
occurred or not. Provided that the carries are as predicted, we know the 24 most
significant bits of U7 and U9.

In the next step we check if the values obtained by this procedure match the values
we expect if our guess is correct. We can apply such a test in round 7 and 10. We
focus on the 7th round first. We want to compare the values of U7 obtained by the
above procedure with U ′

7 = Ψ(Y7), where Ψ is a F2-linear map (marked with a dotted
box in Figure 5.1). The mapping

Ψ : F32
2 −→ F

32
2

Y 7−→ U

can be described by the set of linear equations given in Figure 5.2.
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u0 = y0 + y1 + y2 + y10 + y23 u16 = y0 + y3 + y7 + y16 + y26

u1 = y1 + y2 + y6 + y11 + y24 u17 = y1 + y4 + y7 + y8 + y17 + y27

u2 = y2 + y3 + y7 + y12 + y25 u18 = y0 + y2 + y5 + y9 + y18 + y28

u3 = y0 + y3 + y4 + y13 + y26 u19 = y1 + y3 + y6 + y10 + y19 + y29

u4 = y1 + y4 + y5 + y14 + y27 u20 = y2 + y4 + y7 + y11 + y20 + y30

u5 = y2 + y5 + y6 + y15 + y28 u21 = y0 + y3 + y5 + y12 + y21 + y31

u6 = y6 + y16 + y29 u22 = y0 + y1 + y4 + y13 + y22

u7 = y7 + y17 + y30 u23 = y1 + y2 + y5 + y14 + y23

u8 = y7 + y8 + y18 + y31 u24 = y2 + y15 + y24

u9 = y6 + y9 + y19 u25 = y7 + y16 + y25

u10 = y7 + y10 + y20 u26 = y0 + y17 + y26

u11 = y0 + y11 + y21 u27 = y1 + y18 + y27

u12 = y1 + y12 + y22 u28 = y2 + y19 + y28

u13 = y2 + y13 + y23 u29 = y3 + y20 + y29

u14 = y6 + y14 + y24 u30 = y0 + y4 + y7 + y8 + y21 + y30

u15 = y7 + y15 + y25 u31 = y0 + y1 + y5 + y9 + y22 + y31

Figure 5.2: Equations describing Ψ : Y → U .

We cannot compare U7 with U ′
7 directly because we do not know bits U7,0..7 and

the unknown output of the S-box masks bits of U ′
7, meaning we do not known the bits

Y7,0..7. However, we can compare linear combinations of bits of U7 and Ψ(Y7) that do
not depend on any of the unknown bits U7,0..7 and Y7,0..7. As an example we consider
the equations for u8 and u10. The linear combination of these bits

u8 + u10 = y8 + y18 + y31 + y10 + y20

does not depend on any unknown bits. Thus we can check whether it holds that
U7,8+U7,10 = U ′

7,8+U ′
7,10. There are 16 linear equations ξj(U7) = ξj(Ψ(Y7)) involving

bits of U7 and Y7 that do not use any unknown bits. If the pair (L7, R7), (L10, R10)
matches and we guessed all the carries correctly, all these equations will be satisfied.
For an unrelated pair of inputs and outputs, this happens with probability 2−16. The
same happens for the test in round 10. We combine those two tests with a simple
guessing of all the carries we need to know to obtain our testing procedure. For each
of the two possible values of the carry in round 9, we test independently two possible
carries in round 7 and round 10. If for any combination of these all the 32 pairs of
check equations are satisfied, we conclude the pair matches. Otherwise, we reject the
pair.

This procedure always accepts right pairs (L7, R7), (L10, R10) as they will always
produce a match in one of the tested carry combinations. To accept a wrong pair
which is not coming from the encryption, all the 32 pairs of check equations would
need to be satisfied for one of the 23 combinations of carries. This happens with
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probability 2−29 if the values are uniformly distributed. We experimentally verified
that the probability is indeed around 2−29. This is sufficient for us since we need to
test only 224 possibilities.

5.2 Search for S-box Independent Characteristics

The only components of C2 that are not linear over F2 are the S-box and the two
modular additions. As the S-box is secret and therefore its differential behavior is
unknown, we focus on characteristics not involving the S-box. Note that if the input
to the round function has zero difference in the least significant byte Ri,0..7, this zero
difference cannot be destroyed by carries in the modular key addition. Thus, we
can search for differential characteristics independent of the S-box by focusing on
characteristics with Ri,0..7 ⊕R′

i,0..7 = 0.
To search for these characteristics we consider a linear model of the round function,

that is, we replace the modular addition by XORs and assume that the S-box is the
identity (or any linear mapping as the characteristic will be independent of this choice
anyway). This linear model of the round function

( Li, Ri ) = ( Ri−1, Li−1 ⊕ F (Ri−1,Ki) )

can be written as
(Li, Ri) = (Li−1, Ri−1) ·M

where M is a 64 × 64 matrix over F2. Furthermore, the condition that the input
difference to the S-box, i.e., the least significant byte of the output difference, must be
zero can be described as ((L,R)M)Q = 0 where Q corresponds to the projection on
the least significant 8 bits. Thus, for the linearized version of the cipher, the problem
of finding a characteristic which has a zero input differences to the S-box is reduced
to the problem of calculating the kernel of the linear mapping x → x ·M · Q. The
kernel of the matrix K = [Q|M · Q| · · · |M i · Q] contains all differences which have a
zero input difference to the S-box over i+1 rounds. This kernel is non trivial for i ≤ 8
implying that for a version of C2 where the modular additions are replaced by XORs
a characteristic over 9 rounds with probability 1 exists independently of the S-box.

As modular additions are not linear over F2 we need to estimate the probability
that the modular addition behaves like an XOR. Here we are interested in the following
two cases.

1. The probability that the key addition behaves like an XOR

Pr[(C ⊞K)⊕ ((C ⊕ α)⊞K) = α]

where C and K are random bit strings and α is the known difference.

2. The probability that the addition of the left half and the output of function F
behaves like an XOR

Pr[(L⊞ F )⊕ ((L⊕ α)⊞ (F ⊕ β)) = α⊕ β]

where L and F random bit strings and α and β fixed known differences.
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These probabilities have been studied for example in [74] where it was shown that

Pr[(C ⊞K)⊕ ((C ⊕ α)⊞K) = α] = 2−(hw(α)−msb(α))

and
Pr[(L⊞ F )⊕ ((L⊕ α)⊞ (F ⊕ β)) = α⊕ β] = 2−(hw(α∨β)−msb(α∨β))

where hw(α) denotes the Hamming weight of α and msb(α) the most significant bit.
Since the probability of an XOR characteristic mainly depends on the Hamming

weight of all the intermediate input differences, we searched for characteristics min-
imizing it. This problem is equivalent to searching for low weight code words in the
linear code generated by the matrix B · [I|M | · · · |M i] where B is the basis matrix
of the kernel of K. Such an approach has been used before for finding differential
characteristics in dedicated hash functions, cf. [81].

The best five round characteristic we found is

∆ =(0x00020800 0x80200100)

→(0x80200100 0x80000000)

→(0x80000000 0x00000000)

→(0x00000000 0x80000000)

→(0x80000000 0x80200100)

→(0x80200100 0x00020800)

which does not require non-zero differences to the S-box in any round, and it has
Hamming weight 15 over all intermediate input differences. Using the above formulas
from [74] one gets a probability of 2−12 for independent round inputs and keys. Ex-
perimentally, the probability for randomly chosen master keys and S-boxes was even
better, namely approximately 2−11.17, which is due to a differential effect which takes
place inside the 5-round characteristic.

The differential characteristic can also be specified for the last five rounds of C2
and the average probability was estimated to be similar to the one for the first five
rounds.

During the search for differentials we found a total of 11 code words with Hamming
weight 15. They are listed in Appendix A. The characteristic given above has the
highest probability amongst these 11 characteristics and therefore we believe it is the
best five-round characteristic which is independent of the S-box.

5.3 Key-Recovery Attack for a Known S-box

We have seen in Section 5.2 that we can establish a characteristic with a high prob-
ability which is independent of the S-box and covers the first as well as the second
half of the cipher. This is the condition for mounting a boomerang attack on the
whole cipher C2 [99, 63, 15]. As explained in Section 4.5.4 a boomerang attack is
a chosen plaintext and a chosen ciphertext attack that involves two encryptions and
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Table 5.1: Examples of boomerang plaintext pairs for different keys and S-boxes.

S-box used key (hex) plaintext

AES 00 00 00 00 00 00 00 5707aec0 48a9c942

00 30 20 08 00 20 28 0f42cd03 b7b5f077

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ b4b32db5 589913dc

C2 facsimile [7] 00 00 00 00 00 00 00 3af32bac 960693e1

ee 9b 7f 2b 7c 26 cd 69676fdc 339879d4

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ d6b44956 36771c9d

two decryptions. As the five-round characteristic has an experimentally determined
probability of 2−11.17 for the encryption and decryption direction the theoretical prob-
ability of the corresponding boomerang is 2−44.68. In the light of [85] it is important to
experimentally verify the existence of such a boomerang and to confirm the estimated
probability. By testing 1000 random keys and multiplying probabilities of passing the
first five and the last five rounds, we confirmed that boomerangs exist with an average
probability of 2−44.5. We observed that for all such boomerangs the pairs of texts fol-
lowed the characteristic in the first round every time, but not always in later rounds.
The reason why one can obtain a boomerang anyway is the differential effect which
is utilized also in the so-called rectangles [15]. We further observed a large variability
in the probabilities over the keys and some keys were found for which the probability
of the boomerang is as high as 2−32 but there are also keys for which no boomerangs
were found. We present some of actual boomerangs we found in Table 5.1.

We use this boomerang to recover bits of the first round key. The possibility of
finding boomerangs enables us to test if the differences in the first round propagate
according to the characteristics. If not, we do not expect to get any boomerangs.
We will use this observation to recover bits of the first round key rk0 by a careful
analysis of the carries appearing in the addition R0⊞ rk0. This method resembles the
approach used by Contini and Yin to partially recover HMAC keys using a pseudo-
collision differential for MD5 [33].

5.3.1 Recovering Bits of the First Round Key

In this section we describe how the boomerang attack which is outlined above is
applied to recover up to 22 bits of the first round key.

Given a plaintext pair (L0, R0) and (L0 ⊕ α,R0 ⊕ β), for which the boomerang
returns, we know that the pair follows the five-round characteristic at least for the
first round. That means that we know with an overwhelming probability the difference
after the first round. We also know that the difference after the modular key addition
is still β because we assume that the modular additions behave like XORs when
a plaintext pairs follows the characteristic. Thus, the first round key satisfies the
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equation

(R0 ⊞ rk0)⊕ ((R0 ⊕ β)⊞ rk0) = β. (5.1)

We can represent the modular addition of the right half R0 and the round key rk0 as
exclusive-or of the right half, the round key and a vector of carry bits

R0 ⊞ rk0 = R0 ⊕ rk0 ⊕ c(R0, rk0)

where c(R0, rk0) denotes the vector of carry bits of the modular addition of R0 and
rk0 with

c−1 = 0 and ci = R0,irk0,i ⊕ ci−1R0,i ⊕ ci−1rk0,i.

Hence, (5.1) can be rewritten as

R0 ⊕ rk0 ⊕ c(R0, rk0)⊕R0 ⊕ β ⊕ rk0 ⊕ c(R0 ⊕ β, rk0) = β

which is equivalent to

c(R0, rk0) = c(R0 ⊕ β, rk0) (5.2)

and furthermore implies
βi rk0,i = βi ci−1.

This means that whenever βi = 1 the previous carry bit equals the key bit. This carry
bit potentially depends on all previous key bits. Hence, we can use this relationship
to recover key bits by carefully choosing plaintexts of a special structure and checking
whether there exists a boomerang in the class of these plaintexts.

On the downside, Equation 5.2 implies that we cannot extract any key bits beyond
first most significant non-zero bit of β which is not the most significant bit of β. (As the
addition of the most significant bit does not introduce any carry we cannot determine
this bit even though it is one.) Using the five-round characteristic from Section 5.2
we can therefore at most recover 22 bits of the first round key using (5.2).

In the following we describe how bits of the round key can be found one at a
time. We start with recovering the first 9 key bits starting from the key bit rk0,8
and then recursively recover the remaining bits rk0,7, · · · , rk0,0. In order to determine
rk0,8 we start by fixing the 8 least significant bits of R0 to zero, the remaining bits
of the plaintext are chosen uniformly at random. Fixing the 8 least significant bits to
zero ensure that c7 = 0. Equation (5.2) implies that boomerangs with this additional
constraint exist if and only if rk0,8 = 0.

Thus, if we find a boomerang we can conclude rk0,8 = 0 and if after sufficiently
many trials, we do not find any boomerang, we can conclude that rk0,8 = 1. Let us
estimate the probability of making a mistake and wrongly assuming that rk0,8 = 1
while in reality it holds that rk0,8 = 0.

If 2−b is the probability of a boomerang and we make our decision after t2b tries,
then the error probability can be approximated by

(1− 2−b)t2
b

=
(

(1− 2−b)2
b
)t
≈
(

1

e

)t

.
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After recovering r0,8 we modify our choice of plaintexts adaptively in order to
recover the previous round key bits. Our considerations are based on the actual value
of the round key bits we have already determined and the relation between the carries

ci = R0,irk0,i ⊕ ci−1R0,i ⊕ ci−1rk0,i.

In order to recover r0,7 we choose plaintexts such that the 8 least significant bits
of R0 equal 10000000. This means that we ensure that c6 = 0. First, we consider
the case rk0,8 = 0. This means that a boomerang only exists if c7 = 0. However,
c7 = 0 if and only if r0,7 = 0. Thus, after sufficiently many tries, we can with a good
probability recover rk0,7.

Next, we consider the case where rk0,8 = 1. Again c7 = 0 if and only if rk0,7 = 0.
However, in this case boomerangs exist only when c7 = 1, thus when rk0,7 = 1.

This procedure can now be applied recursively to finally recover all the key bits
rk0,0...7. After those bits have been successfully recovered a very similar argument
allows the recovery of the key bits rk0,21...8.

Now, we want to estimate the complexity of our attack. We assume that the
average complexity for finding the boomerang is 244. Furthermore, we assume that
in half of the cases a boomerang is found after 244 trails and that in half of the cases
we do not find a boomerang, meaning that we have to try t244 plaintexts for t > 1.
Then the overall complexity of this procedure to recover B bits for a random key can
be estimated to

B ·
(

t244 + 244

2

)

(5.3)

and the error probability is approximately

1−
(

1−
(

1

e

)t
)B

. (5.4)

If we want to recover 8 bits with a success probability of more than 0.5 we have
to choose t = 2.48 and the effort will be 247.8. The remaining 48 bits of the master
key can then be recovered with a brute force search.

If we want to recover all 22 bits with a success probability of more than 0.99 we
have to choose t = 7.7 and the effort will be 250.59.

We have mentioned before that the complexity of the boomerang varies a lot for
different keys, meaning that for a given key the actual probability of a boomerang is
unclear. However, there are several ways to deal with this problem. One possibility
is to first get an estimate of the probability by running the boomerang search for
randomly selected plaintexts. Another possibility is to double the time until we decide
on a key bit when no boomerang has been found step by step until the right key has
been found.

It should be noted that, even though our attack has a better overall complexity,
it might still be slower in practice than a simple exhaustive key search which can be
distributed. Actually such a brute force attack on C2 has been carried out [2] but was
unsuccessful as the S-box guess turned out to be wrong.
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Table 5.2: A list of master key bits used to generate the round keys in rounds 1 up
to 10.

round master key bits used for the addition bits input to the S-box

1 {0, . . . , 31} 32 33 34 35 36 37 38 39

2 {39, . . . , 55} ∪ {0, . . . , 14} 15 16 17 18 19 20 21 22

3 {22, . . . , 53} 54 55 0 1 2 3 4 5

4 {5, . . . , 36} 37 38 39 40 41 42 43 44

5 {44, . . . , 55} ∪ {0, . . . , 19} 20 21 22 23 24 25 26 27

6 {27, . . . , 55} ∪ {0, 1, 2} 3 4 5 6 7 8 9 10

7 {10, . . . , 41} 42 43 44 45 46 47 48 49

8 {49, . . . , 55} ∪ {0, . . . , 24} 25 26 27 28 29 30 31 32

9 {32, . . . , 55} ∪ {0, . . . , 7} 8 9 10 11 12 13 14 15

10 {15, . . . , 46} 47 48 49 50 51 52 53 54

5.4 Key and S-box Recovery with Chosen Ciphertext At-
tack

In this attack scenario we want to recover the secret key and the secret S-box at the
same time. The first observation we make is that we can determine the master key
from the first two and the last round keys (see Table 5.2).

As explained in Section 5.3.1 we can recover the least significant 22 bits of the
first round key with an average complexity of 250.59 and an error probability less then
0.01 using the boomerang attack. But turning the boomerang upside down, we can
similarly recover 22 bits of the last round key with the same complexity. We explain
in Section 5.4.1 how we can recover the remaining bits of these round keys and one
entry of the secret S-box with an average complexity of 252. The knowledge of the
first round key and one entry of the S-box allows us to recover the second round key
(see Section 5.4.2) with an average effort of 245.32. Thus we can determine the entire
master key uniquely.

After we have recovered the master key we focus on determining the remaining
S-box entries. We can recover additional entries of the secret S-box with an effort
of 244 by again applying the approach of Section 5.4.2. After recovering four more
entries (with an effort of 244+2) of the S-box corresponding to what is triggered in
the key scheduling in rounds 3, 4, 5 and 6 we can use an attack very similar to the
attack described in Section 5.1 to recover the remaining entries of the S-box. Namely,
we guess the remaining three S-box entries triggered in the key scheduling in rounds
7, 8 and 9. For each possible guess we generate a plaintext that does not trigger any
unknown (or not guessed) S-box entries in the first seven rounds. As we know or
guessed 10 entries already the effort of generating such a plaintext is (256/10)3 ≈
214. We encrypt each of those plaintexts and use the three-round test of Section
5.1.2 to verify our guess. This way we recover all 10 S-box entries used in the key
scheduling and afterwards the remaining entries are recovered just as in Section 5.1
with a complexity of less than 220. The complexity of recovering the S-box is therefore
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224+14 = 238 and the overall complexity of the attack is

2 · 250.59 + 2 · 252 + 245.3 + 244+2 + 238 + 220 ≈ 253.5

on average.
For this attack scenario, a brute force search is not an option, as not only the key

but the entire S-box would have to be guessed, all together 2104 bits or 1740 if we
assume that the S-box is a permutation.

5.4.1 Recovering Remaining Unknown Round Key Bits

Once we know bits rk0,0..21 of the first round key we can recover the remaining most
significant bits of the round key and the output of the S-box using the carry behavior
of the left addition L0 ⊞ U0.

Given a plaintext for which the boomerang exists, we know that the following
equation is true

(L0 ⊞ U0)⊕ [(L0 ⊕ α)⊞ (U0 ⊕Ψ(β))] = 0x80000000,

where α = 0x00020800 and Ψ is a linear function mapping bits of Y0 to U0, hence
Ψ(β) = 0x80020800. Since the difference in the most significant bit always propagates
linearly as it does not induce any carries, we can focus on a simplified version of the
above equation

(L0 ⊞ U0)⊕ [(L0 ⊕ α)⊞ (U0 ⊕ α)] = 0.

As in Section 5.3.1 we can represent the modular addition as an XOR of the summands
and a vector of carry bits c(·, ·) introduced by modular addition

L0 ⊕ U0 ⊕ c(L0, U0)⊕ L0 ⊕ α⊕ U0 ⊕ α⊕ c(L0 ⊕ α,U0 ⊕ α) = 0.

This yields
c(L0, U0) = c(L0 ⊕ α,U0 ⊕ α)

and it simplifies to the condition

αi(L0,i ⊕ U0,i ⊕ 1) = 0. (5.5)

In α the 11th and 17th bit are set to 1. Thus (5.5) allows us to determine bits U0,11,
U0,17 by trying to find boomerang plaintexts for all of the four possible combinations
of L0,11, L0,17 in parallel. One of the choices will yield a boomerang and it contains
the correct combination of values of L0,11, L0,17 that determine the values of bits of
U0.

We have U0,11 = Y0,0 ⊕ Y0,11 ⊕ Y0,21 and we can compute the values of Y0,11, Y0,21
because we know R0 and the round key bits rk0,0..21. Thus, we learn one bit Y0,0 of
the output of the S-box for a known input. Furthermore, we get another equation
U0,17 = Y0,1 ⊕ Y0,4 ⊕ Y0,7 ⊕ Y0,8 ⊕ Y0,17 ⊕ Y0,27.

The same principle can be used to recover more bits. In order to do this, we need
differences to appear at other bit positions in the addition L0 ⊞ U0. We can achieve
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this by inducing carry chains in the first addition R0 ⊞ rk0 by appropriately setting
some bits of the plaintext so that the difference β = 0x80200100 will trigger more bit
flips in R0 ⊞ rk0. More precisely, we find plaintexts R0 such that

(R0 ⊞ rk0)⊕ [(R0 ⊕ β)⊞ rk0] = β ⊕ γ.

for some carry-induced difference γ. Remember that Ψ, mapping Y0 to U0, is linear
and induces an extra difference Ψ(γ), thus U0 ⊕ U ′

0 = Ψ(β)⊕Ψ(γ).
Later, we try to compensate for this extra difference in U0 by the additional dif-

ference Ψ(γ) in L0. This situation can be described as

(L0 ⊞ U0)⊕ [(L0 ⊕ α⊕Ψ(γ))⊞ (U0 ⊕Ψ(β)⊕Ψ(γ))] = 0x80000000.

If this equation holds (and we know this when we find a boomerang) we have the
following conditions

(αi ⊕Ψi(γ))(L0,i ⊕ U0,i ⊕ 1) = 0

which allow us to determine bits of U0 at positions i where αi ⊕Ψi(γ) = 1.
Because of the effect of Ψ, each bit in γ usually requires 3 additional compensating

bits of the difference in L0 and this means we need to search for 8 boomerangs in
parallel to determine the correct values of L0. After we find one, we obtain three
more equations as explained before.

The complexity of this procedure depends on the configuration of the carry chains
we are able to induce and this in turn depends on the round key. Assuming we can
extend the difference in β = 0x80200100 at position 8 to chains at positions 8-9,
8-10, 8-11, 8-12, 8-13, 8-14, 8-15 (so γ is 00000200, 00000600, 00000c00, etc.) we get
enough equations to uniquely determine the unknown bits of Y0. We need to test 23

combinations of values of bits in L0 and the total complexity is 23 ·23 ·244 = 252 where
244 is the cost of finding the boomerang plaintext. For other configurations of secret
key bits we may not be able to extend γ by one bit at a time and we will need to test
more bits in L0 each time. In that situation we usually need to test less cases though
because we learn more bits of U0 at the same time. The exact increase in complexity
depends very much on the particular case.

Note that we can always perform a search for the 13 missing bits (10 key bits
and 3 bits output of the S-box) by randomly choosing plaintext pairs (L1, R1) and
(L′

1, R
′
1) with a difference corresponding to the second round difference of the five-

round characteristic, decrypting them using all possible guesses for the missing 13
bits and searching (in parallel) for a boomerang for all 213 pairs. This upper bounds
the complexity of recovering the remaining bits in the first round by 213 · 244 = 257.

5.4.2 Attacking the Second Round

We know the entire first round key and one entry of the secret S-box. This means that
we can start the boomerang from the second round. For this we choose pairs (L1, R1)
and (L′

1, R
′
1) with the input difference of the five-round characteristic where L1,0..7 =

R0,0..7 is fixed to the known S-box entry and compute backwards the corresponding
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values for (L0, R0) and (L′
0, R

′
0). For the lower part of the boomerang we can now use

the five-round characteristic truncated to the first 4 rounds:

∆ =(0x00020800 0x80200100)

→(0x80200100 0x80000000)

→(0x80000000 0x00000000)

→(0x00000000 0x80000000)

→(0x80000000 0x80200100).

This shortened boomerang will give a right pair (L′′
0, R

′′
0) and (L′′′

0 , R
′′′
0 ) with an average

probability of 2−(2·11+2·8) = 2−38. However, we cannot directly verify that the pair
(L′′

1, R
′′
1) and (L′′′

1 , R
′′′
1 ) has the required difference because with a high probability we

do not know the S-box entry in the first round of encryption and thus cannot decrypt
the first round. But for a right pair it holds that

L′′
1 ⊕ L′′′

1 = R′′
0 ⊕R′′′

0 = β = 0x80200100,

and we can check this. Furthermore, by exhaustively trying all possible output values
for the S-box for pairs with the correct right half difference, we get an additional 32−8
bit check for the left half difference. Thus, with high probability we detect correctly
pairs following the boomerang characteristic.

Now, repeating the procedures outlined in Section 5.3.1 and 5.4.1 we first recover
the 22 least significant bits of the second round key (rk1,0..21) and afterwards the
remaining 7 bits of the round key (rk1,22..29) as well as one additional entry of the
S-box. Note that the bits rk1,29..31 are known from the last round key. The complexity
of this is now

22 ·
(

7.7 · 238 + 238

2

)

≈ 244.58

for the first step where we choose t = 7.7 in order to have success probability of 0.99
and

2323238 = 244

for the second step.

Using this shortened boomerang described in the last section, we can moreover
recover arbitrary S-box entries by fixing R1,0..7 appropriately. The complexity for this
is again 244 on average.

5.5 Conclusion

We have shown three kinds of attack on the block cipher C2.

When we are allowed to set the encryption key once and then encrypt chosen
plaintexts, we can recover the secret S-box with only 224 queries to the device and a
reasonable precomputation phase that we have already done. The attack implemented
on a PC recovers the whole S-box in less than 30 sec. Due to the low query complexity,
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we believe that this attack could be applied in practice to recover the S-box from an
actual device.

We presented a boomerang attack that, when the S-box is known, recovers the key
with complexity equivalent to 248 C2 encryptions and works for all possible S-boxes.

For the most difficult case, when both the key and the S-box are unknown and
we are faced with an equivalent of at least 1740-bit long key, we presented an attack
that recovers both of them with complexity of around 253.5 queries to the encryption
device.

Furthermore, we showed that the main strength of the cipher lies in the modular
additions rather than the S-box. With modular additions replaced by XORs, one can
find 9-round differentials with probability 1 and boomerangs for all 10 rounds with
probability 1, both regardless of the S-box that is used.

None of the attacks assume anything about the S-box, not even its bijectivity. It
is surprising that the addition of the secret S-box does not substantially improve the
overall security of the design. It shows that to achieve the desired effect, the algorithm
using a secret S-box must be designed very carefully. Probably a better option would
be to use a longer secret key instead.



Chapter 6

Cryptanalysis of PRESENT-like
Ciphers with Secret S-boxes

In this chapter we investigate PRESENT-like block ciphers with secret key-dependent
S-boxes. The block cipher PRESENT [21] is an important example of a lightweight
cipher. It consists of alternate layers of substitutions and permutations.

Important design principles of lightweight ciphers are efficient hardware implemen-
tation, good performance, and a moderate security level. Usually there is a trade-off
between the performance and the security level. In order to speed up the algorithm
we want as few rounds of encryption as possible but at the same time a minimum
number of rounds is required to assure the security level.

PRESENT was described in Section 2.2.1 and is a 64-bit iterated block cipher
with an 80-bit key. It consists of 31 rounds, each round has three layers, a substitution
layer consisting of 16 parallel applications of the same 4-bit S-box, a permutation layer
consisting of a bit-wise permutation of 64 bits, and a key addition layer, where a subkey
is xored to the text. The PRESENT S-box is chosen carefully to resists differential
and linear cryptanalysis. There are neither any 1 to 1-bit differential characteristics
nor linear approximations with a bias larger than 2−3 such that the Hamming weight
is 1 for the input and output mask. Also the best differential characteristic for the
S-box has probability 2−2 and the best linear approximation has a bias of 2−2. These
properties are not generally fulfilled for randomly chosen S-boxes.

PRESENT was designed to allow fast and compact implementation in hardware.
The best known cryptanalytic attack on PRESENT is a linear attack on 26 of the
31 rounds [31]. The attack requires all possible 264 texts and has a running time of
272. Although this attack is hardly practical, it illustrates that the number of rounds
used should not be dramatically reduced.

An idea of how to strengthen the cipher in a way that enables one to reduce the
number of rounds has been presented by two researchers from Princeton University.
The cipher Maya [55] is a 16 round SP-network similar to PRESENT. The main
difference is that the substitution layer of Maya consists of 16 different S-boxes which
are key dependent and therefore kept secret. The bit permutation between the S-box
layers is fixed and public. In each round a round key is xored to the text. It is argued
that this cipher can be implemented efficiently in practice and also that “differential
cryptanalysis is infeasible”. In this chapter we will investigate if such a cipher is
stronger than the original, and if so how much stronger.

The Maya design is only one possibility to design a PRESENT-like cipher with
secret components. In the extreme case one could choose 16 S-boxes uniformly at
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random and independently for every round. Furthermore, one could also make the
bit permutation part of the key, where the bit permutation could be chosen uniformly
at random from the set of all such permutations and used repeatedly. As another
extreme, a bit permutation could be chosen uniformly at random and independently
for every round.

The idea of having ciphers where the substitutions are not publicly known and part
of the secret key is not new, most notable examples are Khufu [83] and the Khufu
variation Blowfish [92] as well as other proposals [12, 94].

We focus on the cipher Maya and present a novel differential-style attack that
enables us to find the S-boxes in the first round one by one with a practical complexity.
In the next section we give a description of a PRESENT-like cipher. We consider both
cases, the Maya case where the layer of 16 S-boxes is kept secret and used throughout
the cipher and the extreme case where the S-box layer and the bit permutation are
chosen uniformly at random for each round.

6.1 PRESENT-like Ciphers

We focus on a PRESENT-like cipher where the secret consists of one round key
for each round and 16 secret S-boxes. We assume that the round keys and the S-
boxes are randomly chosen. In practice these secret components might be derived
from a master key using a key schedule which generates key-dependent round keys
and S-boxes. These 16 randomly chosen S-boxes form the substitution layer which is
used repeatedly throughout all the rounds. The permutation layer consists of a bit
permutation which is fixed and publicly known.

One round of encryption works as follows (cf. Algorithm 3). The current text is
divided into nibbles of 4 bits which are processed by the 16 S-boxes in parallel. Then
the bit permutation is applied to the concatenation of the output of the S-boxes and
the output is xored with the round-key.

The cipher Maya, proposed by Gomathisankaran and Lee [55], is an instance of
the cipher described in Algorithm 3 with N = 16. The authors claim that it is efficient
in a hardware implementation.

We attack this cipher by recovering all 16 S-boxes. However, in the general case,
we do not know the last-round key, and therefore what we recover is in fact the 16
S-boxes xored with the last round key. Once this is done, we can peel off the first
and last layers of encryption, and attack the cipher with two rounds less; this time,
the S-boxes are known and a standard differential or linear attack can be mounted to
extract the round keys. What we obtain in the end is an equivalent description of the
cipher, but not necessarily the key. Still, the equivalent description of the cipher will
allow us to encrypt or decrypt any text of our choice.

Furthermore, we will outline how our attack can be applied to a generalization
of the cipher. Here, the S-boxes are chosen uniformly at random for each round.
Additionally, the bit permutation can be chosen randomly for each round and kept
secret as part of the key. In this case, the addition of the round keys is not necessary
because it can be seen as part of the S-boxes. Furthermore the permutation is omitted
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Algorithm 3 Pseudo-code of a PRESENT-like cipher with secret S-boxes. The
number of rounds is N .
Require: X is a 64-bit plaintext
Ensure: C = Ek(X) where Ek means the encryption function with key k
Derive 16 S-boxes Si and N round keys ki from k
STATE← X
for i = 1 to N do

Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
for [ doSubstitution layer] j = 0 to 15

STATEj ← Sj(STATEj)
end for

Reassemble STATE

Apply bit permutation to STATE

Add round key ki to STATE

end for

C ← STATE

in the last round. In this variant nothing but the block size and the number of rounds
is known. The pseudo-code of this variant is described as Algorithm 4.

6.2 The Principle of the Attack

In this section, we explain the idea of our approach to recover the S-boxes in the basic
variant of a PRESENT-like cipher with secret S-boxes.

In the basic variant of the cipher (cf. Algorithm 3), the substitution layer consists
of 16 secret S-boxes which are applied in all rounds. We denote these 16 S-boxes Si,
0 ≤ i < 16, and we note that all Si are bijective mappings Si : F4

2 → F
4
2.

For convenience, we introduce the following notation.

Definition 6.1 (Slender set).
Given the S-box S and e ∈ F

4
2, we denote the set of all pairs {x, y} such that S(x) ⊕

S(y) = e by De. Here, we consider the pairs {x, y} and {y, x} to be identical. A pair
{x, y} belonging to a set De where e has Hamming weight 1 is called a slender pair.
A set consisting of slender pairs is called a slender set.

If we consider the S-box SD (see Figure 4.2), then the four slender sets are

D1 ={{2, f}, {c, d}, {7, a}, {4, 5}, {0, 9}, {3, e}, {1, 6}, {8, b}},
D2 ={{c, f}, {2, d}, {5, 7}, {4, a}, {0, 3}, {a, e}, {1, 8}, {6, b}},
D4 ={{7, f}, {2, a}, {5, c}, {4, d}, {0, 1}, {6, 9}, {3, 8}, {b, e}},
D8 ={{0, f}, {4, b}, {2, 9}, {3, c}, {d, e}, {1, 7}, {6, a}, {5, 8}}.

In the following we explain how to recover the leftmost S-box S0. The recovery of
the other 15 S-boxes works in the same way. We want to obtain information about
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Algorithm 4 Pseudo-code of a PRESENT-like cipher with secret S-boxes and secret
bit permutations, all unique for each of the N rounds.

Require: X is a 64-bit plaintext
Ensure: C = Ek(X) where Ek means the encryption function with key k
Derive 16 · N S-boxes Si,j , 1 ≤ i ≤ N , 0 ≤ j ≤ 15 and N − 1 bit permutations Pi

from K
STATE← X
for i = 1 to N do

Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
for [ doSubstitution layer] j = 0 to 15

STATEj ← Si,j(STATEj)
end for

Reassemble STATE

if i < N then

Apply bit permutation Pi to STATE

end if

end for

C ← STATE

the S-box in a differential-style attack and proceed as follows. We encrypt a certain
number t of structures Pri of plaintexts of the form

Pri = {(x‖ri) | x ∈ F
4
2}

where each ri ∈ F
60
2 for 0 ≤ i < t is chosen uniformly at random. Two different

plaintexts (x‖ri), (y‖ri) in Pri have an input difference of the form

(x‖ri)⊕ (y‖ri) = (?‖060),
where 0n denotes the bit string consisting of n zeros.

We obtain the corresponding ciphertexts and check if there is an input pair for
which only one S-box is active in the ciphertext difference. For now, let p({x, y})
denote the probability that only one S-box is active in the ciphertext pair when the
plaintext pair is {x‖r, y‖r}, taken over all the different choices of r ∈ F

60
2 . The attack

is based on some assumptions. The first assumption is a standard one in differential
cryptanalysis:

Assumption 6.2.

The probability p({x, y}) depends only on the value of S(x)⊕ S(y), not specifically on
the pair {x, y}. Hence, given e = S(x)⊕ S(y), we can denote this probability pe.

We are particularly interested in identifying slender pairs. In order to do this, we
need the following assumption, which has been experimentally verified to hold in most
cases.

Assumption 6.3.

The probability pe is higher when e has Hamming weight 1, than when e has Hamming
weight greater than 1.
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In order to learn all the probabilities pe we would have to encrypt all 264 possible
plaintexts, but we can estimate the probabilities by introducing counters

C({x, y}) =
∣

∣{ri |∃j : E(x‖ri)⊕ E(y‖ri) = (04j‖?‖060−4j)}
∣

∣

for all pairs {x, y}, x, y ∈ F
4
2. Hence, the counter C({x, y}) counts how often only one

S-box is active in the ciphertext pair when the input pair to S-box S0 is {x, y}.
Assumption 6.2 states that pairs in the same set have the same probability. That

means, that the counter values for pairs in the same set should be similar when suf-
ficiently many plaintexts have been encrypted. Assumption 6.3 says that the highest
counter values will (usually) correspond to slender pairs. In the attack we will to try
to identify the slender sets, and this will be relatively easy if the probabilities pe and
pe′ , e 6= e′, are sufficiently different. Experiments show that this condition is often
satisfied.

The counter C consists of 120 values since there are
(

16
2

)

= 120 different pairs
{x, y}. After encrypting sufficiently many structures we may sort C in descending
order, and thereby hopefully obtain a partitioning of the 120 pairs into a number of
sets corresponding to De for different values of e. We will return to this partitioning
method later. Our final goal is to learn all four slender sets De. It is enough to
learn all slender sets because all other sets will not give any additional information
about the S-box. The reason is that if De and De′ are known for some S-box S, then
De⊕e′ can be derived from De and De′ and therefore De⊕e′ does not give any new
information. Clearly, if {x, y} ∈ De and {x, z} ∈ De′ , then {y, z} ∈ De⊕e′ . This
observation generalizes to more than two sets. In general, given sets Dei one can
construct all sets De where e can be written as a linear combination of the vectors ei.
This statement is proven in Lemma 6.4 in the next subsection.

In a similar manner we can obtain information about the inverse of the S-boxes as
explained in Subsection 6.2.2.

6.2.1 S-box Recovery given Slender Sets

We assume that we know one or more sets De from the partitioning of the counters.
We focus on sets for the S-box itself and not for its inverse. However, we remark
that it is only possible to recover the S-box up to equivalence when no set for the
inverse S-box is given. We call two S-boxes S and S′ equivalent if they differ only by a
permutation of the output bits and by adding a constant. In other words there exists
a bit permutation P and a constant c such that

S′(x) = P (S(x))⊕ c.

These two S-boxes can never be distinguished.

Lemma 6.4.

Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, and ei ∈ F
4
2 we can construct all sets Dy

where y ∈ span(e1, . . . , er).
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Proof. If y ∈ span(e1, . . . , er) then there exists a (not unique) chain of values

y0 = ej0 , y1, . . . , ys = y

such that yi ⊕ yi+1 = eji for ji ∈ {1, . . . , r}. We can inductively construct the sets
Dyi . We already know the set Dy0 = Dej0

and we can construct Dyi+1 using the set
Dyi and Deji

given that

{a, b} ∈ Dyi⊕eji
⇔ ∃c ∈ F

4
2 such that {a, c} ∈ Dyi and {c, b} ∈ Deji

Based on this lemma we can prove the following theorem.

Theorem 6.5.

Let S : F4
2 → F

4
2 be a bijective S-box and for e ∈ F

4
2 with hw(e) = 1,

De = {{x, y} | S(x)⊕ S(y) = e}.
where hw denotes the hamming weight. Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, up
to equivalence, there are

24−r−1
∏

i=1

24 − i2r

possibilities for S. More concretely,

1. given 4 sets the S-box is determined uniquely,

2. given 3 sets there are 8 possible S-boxes,

3. given 2 sets there are 384 possible S-boxes, and

4. given 1 set there are 645120 possible S-boxes.

Proof. We assume that r sets De1 , . . . , Der are given. Without loss of generality we
can assume that S(0) = 0 and e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and so on. We claim
that given this information, S is fixed on the set

{x | S(x) ∈ span(e1, . . . , er)}.
Let y ∈ span(e1, . . . , er). The proof of Lemma 6.4 describes how we can construct the
set Dy. As a set Dy has to cover the whole F

4
2, there exists a pair {0, x} ∈ Dy for

some x ∈ F
4
2. It follows that we found an x ∈ F

4
2 such that

S(0)⊕ S(x) = S(x) = y.

More generally, the same argument shows that, given De1 , . . . , Der , fixing S(x′) =
y′ the values of S are fixed for all x such that S(x) is in the coset y′⊕ span(e1, . . . , er).
Noting there are 24−r cosets of span(e1, . . . , er) and taking into account the bijectivity
of the S-box, the theorem follows.

However, when we attack a PRESENT-like cipher where we use the same layer
of S-boxes in every round, we can also get information about the inverse of the S-
boxes. This means that we can actually determine an S-box uniquely if we accumulate
sufficient information, as explained in the following subsection.
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6.2.2 Generalizing to All S-boxes and their Inverses

In order to break the cipher we have to eventually recover all S-boxes and not only
the S-box S0. The above observations can clearly be generalized to all S-boxes by
introducing additional types of structures and additional counters.

Moreover, as mentioned above the symmetry between encryption and decryption
in the cipher we are considering allows us to obtain the same type of information
about the inverse S-boxes as we obtain about the S-boxes themselves. This can even
be done in a chosen-plaintext setting, although it may require more texts than in a
chosen-ciphertext setting.

We assume now that we have identified u slender sets for some S-box S, and v
slender sets for its inverse S−1. The following table shows the average number of S-
boxes that would give rise to the same u+ v sets; these averages are based on 100000
randomly generated S-boxes.

u\v 1 2 3 4

1 207 3.52 1.44 1.19

2 3.52 1.16 1.03 1.01

3 1.44 1.03 1.01 1.01

4 1.19 1.01 1.01 1.01

Evidently, if u+ v ≥ 6, the S-box is usually uniquely determined from the u+ v sets,
and in many cases, fewer sets are sufficient. However, there exist S-boxes S which are
not uniquely determined even if all four slender sets are known for both S and S−1.
Note that there is no contradiction to Theorem 6.5, because there we argue that we
can determine the S-box uniquely up to equivalence, meaning that we obtain a class
of equivalent S-boxes, while the information about the inverse usually enables us to
uniquely determine the S-box, meaning we find exactly one S-box in the end.

In the next subsections we describe a number of ways to partition the pairs into
sets and to check that this partitioning is correct.

6.2.3 Partitioning Pairs into Sets

We focus again on recovering the S-box S0. Our starting point for partitioning pairs
(in particular the slender pairs) into sets is the counter C.

The straightforward partitioning method simply sorts C in descending order, and
takes the first eight pairs as the first set, the next eight pairs as a second set, etc.
However, when for example pairs from two different sets De and De′ have a similar
probability, we expect that the counters have similar values. This indicates that using
this method we will often make the wrong partitioning into sets.

But it can be checked that the partitioning is correct using the very strong filtering
methods described in the following subsection.
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6.2.4 Filtering Methods

In this section we present a couple of filtering methods to check whether the sets
we obtain by partitioning the counter values are correct. If the filter methods fail,
meaning one or all filters indicate that the sets are not correct we can infer that this
is true. However, even if the sets survive the filtering this does not guarantee that we
found the correct sets.

The most simple filtering method is what we call the existence filter. Given u sets
for an S-box S and v sets for its inverse S−1, we can count to how many S-boxes
would give rise to the same sets. If no S-box gives rise to these sets, then clearly the
sets must be wrong. However, counting the number of S-boxes that give rise to these
sets is somewhat inefficient, and as we have seen, if we only know a few sets, there
are usually several S-boxes that give rise to the same sets, and so the probability of a
false positive is high in this case.

The cover filter is a much more efficient method. It is based on the trivial obser-
vation that for any valid set De, the pairs cover all values in F

4
2, meaning that it holds

that

{x, y : {x, y} ∈ De} = F
4
2 .

Hence, if we have identified a candidate set De containing two pairs {x, y} and {x, z},
then De cannot be a valid set. Although this method is very simple, it is in fact a very
strong filter; the probability that eight randomly chosen pairs among the 120 pairs
cover all values in F

4
2 is only

∏8
i=1

(

2i
2

)

∏7
i=0

(

16
2

)

− i
=

7
∏

i=1

(

2i
2

)

(

16
2

)

− i
≈ 2−18.7,

and therefore in practice, many wrong candidate sets are discovered by this method.

From the proof of Theorem 6.5 we can deduce the following about the cover filter.

Corollary 6.6.

The cover filter is necessary and sufficient. This means that given a number of sets
De where e runs through a subspace of F4

2, there exists an S-box corresponding to these
sets if and only if each of the sets De passes the cover filter.

The final filtering method that we describe here is called the bowtie filter. We can
observe that if {x1, y1} and {x2, y2} belong to the set De, then {x1, y2} and {x2, y1}
will also belong to the same set De′ for some e′ 6= e, and likewise, {x1, x2} and {y1, y2}
will belong to the same set De′′ for some e′′ 6∈ {e, e′}. The reason for this is that if
{x1, y1} and {x2, y2} belong to the same set De, then by definition

S(x1)⊕ S(y1) = S(x2)⊕ S(y2) = e,

and therefore

S(x1)⊕ S(y2) = S(x2)⊕ S(y1) = e⊕ S(y1)⊕ S(y2) = e′ 6= e
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and

S(x1)⊕ S(x2) = S(y1)⊕ S(y2) = e⊕ S(y1)⊕ S(x2) = e′′ 6= e′ 6= e.

Hence, we assume that we know two sets De and De′ , which both passed the cover
filter, and that {a, b} ∈ De and {a, c} ∈ De′ . Now, if {c, d} ∈ De, then for both these
two sets to be valid, it must hold that {b, d} ∈ De′ . If we follow the partner b of a in
set De to set De′ , we find that b′s partner in set De′ is d. Following d back into set
De, its partner is c. In set De′ c belongs to the pair {a, c} and following a back to set
De finally leads us to the pair {a, b} which we started with. These jumps back and
forth between the two sets form a bowtie-shape cycle, which gave the filter method
its name.

De = {

De′ = {

,

,

{a,b} {c,d} . . .

{a,c} {b,d} . . .

6.2.5 Relaxed Truncated Differentials

So far we have focused on one counter for each S-box in the first round which is
incremented if exactly one S-box in the ciphertext difference is active. But even for
slender pairs the probability that a single active S-box in the input difference leads to
a single active S-box in the output difference is relatively low. That means that many
plaintext pairs are needed before it is possible to partition pairs into sets.

It is much more likely that the weight one difference spreads moderately through
the cipher resulting in a few active S-boxes in the ciphertext. Hence, we might find
slender pair candidates more efficiently by looking at ciphertext pairs with more than
one active S-box. The more active S-boxes we allow, the more noise we will get, and
so there is a trade-off between the signal-to-noise ratio, and the strength of the signal.

It turns out that allowing even a relatively large number of active S-boxes does
not introduce too much noise. This can be used to make the attack more efficient.
Instead of keeping only one counter for each input S-box and each pair {x, y} which
we increment when a single S-box is active, we have one counter for each possible
number of active S-boxes in the ciphertext (except 16 because if all S-boxes are active
we do not obtain any information). For each input S-box Si and for each pair {x, y}
we introduce counters Ci,j({x, y}). We increment the counter Ci,j({x, y}) every time
the input pair {x, y} to S-box Si (with a random but fixed input to the other S-boxes)
leads to exactly j S-boxes being active in the last round, where j ranges from 1 to 15.
When we have done a number of encryptions we sort the counters Ci,j for some pair
i, j. If the cover filter identifies sets based on this sorting, we assume that these are
correct slender sets. When we have several sets, we use the bowtie filter to check the
validity of the sets. We do this for increasing j from 1 to 15. Since the cover filter is a
very strong filter, the risk of errors is low, both in the cases where the signal is weak
(small values of j), and also in the cases where there is a lot of noise (large values of
j).
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6.3 The Attack in Practice

We now describe how the attack is carried out in practice. The attack consists of a
data collection phase followed by an S-box recovery phase, and those two phases are
repeated until all or almost all S-boxes have been recovered.

6.3.1 Data Collection Phase

In the data collecting phase we simply encrypt structures and increment counters
when applicable. Each structure consists of 16 plaintexts differing in only a single
input S-box:

Pri = {(ri1 ||x||ri2) | x ∈ F
4
2, ri = ri1 ||ri2 , ri1 ∈ F

4j
2 , ri2 ∈ F

4(15−j)
2 }

The active S-box is chosen randomly among the S-boxes that have not already been
recovered. From each structure we can form 120 pairs. After encryption, we check all
120 pairs of ciphertexts to see how many S-boxes are active in the ciphertext difference
and we increment the corresponding counter for the input pair to the S-box that was
active in the plaintext.

We also carry out decryptions in order to obtain information about the inverse
S-boxes.

6.3.2 S-box Recovery Phase

Every once in a while, we stop collecting data and try identifying sets for each S-box.
Our aim is to recover up to all four slender sets for each S-box in each direction,
meaning for an S-box and its inverse. We have seen before that it is usually enough
to find 6 slender sets in total to determine an S-box uniquely. In order to identify sets
for an S-box S we first sort the counters for each number of active output S-boxes,
meaning we have 15 different sortings of the counters for the 120 input pairs, one for
each possible number of active S-boxes between 1 and 15. We start with the lowest
number of active S-boxes because here we expect fewest noise, however the signal
might not be strong enough. We check if the top eight counter values in the sorted
list passes the cover filter. If so, we consider these eight pairs a slender set and add
it to a collection of identified sets, unless the set is already present in the collection.
If we have already identified sets earlier, meaning that there are multiple set in the
collection, we can check if they pass the bowtie filter. We then look at the next eight
pairs and so forth. We stop adding sets when we have identified four sets, or we run
into an inconsistency such as failing the bowtie test or non-disjoint sets. In case of an
inconsistency, we give up identifying sets for this S-box and return to it after collecting
more data.

As mentioned before we are only interested in slender sets because we can derive
all other sets from the four slender sets. We can use the bowtie filter to filter out
candidate sets that can be derived from existing sets. Consider as an example a
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situation where the following two candidate sets De and De′ have been identified

De = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {a, b}, {c, d}, {e, f}},
De′ = {{0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, a}, {9, b}, {c, e}, {d, f}}.

Both set pass the cover and the bowtie filter. From these two sets we can derive the
set De⊕e′ directly as

De⊕e′ = {{0, 3}, {1, 2}, {4, 7}, {5, 6}, {8, b}, {9, a}, {c, f}, {d, e}}.

As an example,

S(0)⊕ S(3) = (S(0)⊕ S(1))⊕ (S(1)⊕ S(3)) = e⊕ e′.

Thus, the pair {0, 3} is contained in the set De⊕e′ . Hence, if we identify a set that
can be derived from two sets which have already been identified, then we should not
add the third set to our collection. Because if we assume that the first two sets are
slender sets, then we know that the third is not.

We repeat the above method of identifying sets for the inverse S-boxes as well,
maintaining separate counters for these.

Once we have identified a sufficient number of set (as many as possible) for an
S-box and its inverse using the above method we can simply check whether an S-box
exists that gives rise to these sets in order to see if the sets are valid. If there is no
S-box generating these sets, then the sets are obviously not valid. As mentioned in
Section 6.2, applying the existence filter is not terribly efficient; on the other hand,
it is not terribly slow either. A way to implement the recovery of the S-box from
a number of given sets is the following. We make guesses for value of S(0) and the
exact values ei for the identified sets Dei until one runs into an inconsistency with
the candidate sets. Note that once these guesses have been made, we may find the
“partner” of 0 in all candidate sets. For instance, if the two sets De and De′ in the
example above are our candidate sets, and we guess that S(0) = 0, then we would
know that S(1) = 2i and S(2) = 2j for some (guessed) i, j, i 6= j and 0 ≤ i, j < 4.
We obtain similar information about the inverse S-box from the candidate sets for
the inverse S-box. This method is able to find all candidate S-boxes in a fraction of a
second given at least one set for the S-box and one set for its inverse.

We stop considering an S-box both in the data collection and the S-box recovery
phase when exactly one S-box candidate has been found. If not all S-boxes have been
recovered, we continue the data collection phase. In some cases during the attack,
we have to give up recovering one or more S-boxes because we are unable to identify
sufficiently many sets, or because we consistently get no candidates for the S-box based
on the identified sets. In the latter case, there is obviously an error in the partitioning
into sets. If we consistently obtain multiple candidates for an S-box, we may also
accept this and consider the S-box recovered, keeping a record of all candidates.

A reason that sets pass the cover and the bowtie filter but then fail the existence
filter, meaning that the pairs have been wrongly partitioned is the following. We
consider the sets De and De′ and swap the pairs {0, 1} and {2, 3} in De with the pair
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{0, 2} and {1, 3} in De′ , then the resulting set will still pass the cover and the bowtie
filter. That means that swapping two “bowtie pairs” in two valid sets will result in
two sets that will still pass both the cover and the bowtie test. This is a potential
cause for errors; if two sets have roughly the same probability of causing a single active
S-box (or a limited number of active S-boxes) in the ciphertext, then we are likely to
generate wrong sets that pass both the cover and the bowtie test. This error may be
caught by the existence filter and lead to the case that we cannot find an S-box that
gives rise to the identified sets. However, in rare cases this error stays undetected and
we will recover the wrong S-box.

In the next section we report experimental results for the attack when applied to
the cipher Maya.

6.4 Case study: the Block Cipher Maya

In the following case study we show how to break the cipher Maya with practical
complexity using the attack described in the previous section. Maya is a block cipher
proposed at WCC 2009 [55]. It is a PRESENT-like cipher of the kind described in
Algorithm 3, meaning that the S-box layer consists of secret key-dependent S-boxes
which are repeated in every round. The bit permutation (see Figure 6.1) is fixed and
publicly known. Each round also contains an addition of a round key. The round keys
and the S-boxes are derived from the 1024-bit master key.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 16 32 48 4 20 36 52 8 24 40 56 12 28 44 60 21 37 53 5 25 41 57 9 29 45 61 13 33 49 1 17

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
42 58 10 26 46 62 14 30 50 2 18 34 54 6 22 38 63 15 31 47 3 19 35 51 7 23 39 55 11 27 43 59

Figure 6.1: The Maya bit permutation.

Since the S-boxes are the same in every round we can use the differential-style
attack explained in Sections 6.2 and 6.3 to get information on the S-boxes and their
inverses. We get information on both directions for every encrypted pair. However,
if necessary we can also choose to do decryptions to obtain information about the
inverse of a specific S-box. In this way we often recover at least two sets in each
direction, which usually means all the S-boxes can be determined uniquely. But we
do not recover exactly the S-box which is used during the encryption of the first round
because of the round key additions. This means that we only obtain the correct S-box
up to an XOR by the last round key, which is unknown. This additive constant will be
compensated when recovering the round keys, meaning that we obtain an equivalent
description of the cipher in the end. Recovering the S-box layer xored with the last
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round key enables us to peel of the last round and the S-box layer in the first round of
encryption, after which the attack can be repeated on this reduced cipher. Moreover,
we expect that once the S-boxes are known, a dedicated differential or linear attack
is more efficient than our general attack.

The cipher Maya is proposed with 16 rounds and in Table 6.1 the logarithm to basis
2 of the median complexity to recover the secret S-boxes as function of the number of
rounds is shown. The median is taken over 16 cases. Moreover, Table 6.1 shows the
logarithm to basis 2 of the complexity (number of texts) as a function of the number
of rounds for the same example keys. The complexities in italics are extrapolated
values from running the attack on fewer rounds. The complexities refer to obtaining
all 16 S-boxes (whenever possible, see discussion below), so that the first and the last
round can be peeled off, and the cipher with two rounds less can be attacked. The
complexities are graphically presented in Figure 6.2.

Table 6.1: The log of the complexity (number of texts encrypted or decrypted) of 16
test runs of the attack on Maya as a function of the number of rounds. The com-
plexities in italics are extrapolations based on the assumption of a linear relationship
between the number of rounds and the log complexity. The median was computed on
the assumption that non-existent complexities are infinite.

Rounds
Case 6 7 8 9 10 11 12 13 14 15 16

1 14.4 16.2 18.6 21.0 24.3 28.5 31.6 35.5 40.5 46.8
2 14.1 15.6 17.3 19.7 22.0 23.7 26.9 29.1 32.0 33.8 36.0
3 14.3 16.3 17.4 19.5 22.2 24.7 27.4 29.7 31.3 33.6 35.9
4 14.8 16.1 17.6 19.8 22.3 25.3 27.9 30.1 32.1 34.8 36.9
5 14.6 15.7 17.4 19.4 21.4 23.5 26.0 27.6 30.0 31.4 35.7
6 15.0 16.1 18.3 20.2 22.7 25.6 28.7 31.8 34.2 36.3 39.3
7 14.2 15.6 17.7 19.7 22.4 25.4 27.4 29.9 32.6 35.4 37.4
8 14.5 15.7 17.5 19.4 21.5 24.4 26.9 29.6 31.9 35.5 37.1
9 15.2 16.8 19.1 21.1 23.6 26.5 28.7 31.5 36.3 39.0 41.2
10 14.9 16.5 18.1 20.2 23.0 24.5 27.6 29.8 34.7 38.6 38.5
11 14.4 15.6 17.5 19.8 22.1 25.1 27.5 30.5 33.4 37.7 39.4
12 15.0 15.7 17.5 19.9 22.4 25.3 29.1 31.5 34.2 36.1 39.5
13 14.9 15.9 17.1 19.6 21.7 24.4 27.9 29.3 31.8 35.8 36.0
14 14.4 15.6 17.5 19.3 21.9 24.3 27.7 30.3 32.1 35.4 36.7
15 14.4 15.6 17.2 19.5 22.3 24.0 26.6 29.9 33.0 36.5 40.5
16 14.2 15.7 17.4 19.7 22.4 24.9 27.6 30.4 32.9 34.9 37.4

Median 14.4 15.7 17.5 19.7 22.3 24.8 27.6 30.2 32.5 35.6 37.4

In our implementation of the attack, an S-box was considered correctly recovered
if only one S-box gave rise to the given partitioning into sets. However, if a substantial
amount of time had been spent on an S-box, the conditions were relaxed such that even
if there were more than one candidate S-box, work on this S-box was still discontinued
and all candidates were printed. In extreme cases, where there were no candidate
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Figure 6.2: A graphical representation of the data in Table 6.1. The thick line repre-
sents the median computed for each number of rounds.

S-boxes after a long time had been spent trying to recover the S-box, that S-box
was given up. The choice of when to accept multiple candidates, or when to give
up an S-box, obviously affects the complexity of the attack. A more sophisticated
implementation might adapt better to these situations. As an example, if the program
consistently gives rise to the same partitioning into sets, and there are no candidates
for this partitioning, one might try swapping elements between sets in such a way that
the bowtie condition still holds.

The error rate of the attack is very low. If we consider the highest number of
rounds broken in each of the 16 test cases, then the total number of S-boxes that had
to be recovered was 16 · 16 = 256. Of these, 245 were correctly recovered with only
a single S-box candidate. For seven S-boxes, there were multiple candidates, and the
correct S-box was always one of these. The number of candidates ranged from two
to four. Three out of 256 S-boxes were incorrectly recovered with only a single S-box
candidate. One S-box was given up due to too much time spent trying to recover it.
Thus our attack successfully recovered the S-boxes in more than 95% of the cases and
only failed in less than 2% of the attempts.

In a real attack, the fact that some S-boxes were incorrectly recovered would be
discovered after attempting to break the cipher reduced by the first and the last
rounds. By recording as much information about the identified sets and the counter
values as possible, it is likely that one would be able to locate the S-box causing the
problem. For instance, there may be 16 counter values that are all similar, meaning
that it is likely that two sets have been mixed up. Thus, a closer look at the data
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given might enable us to still correctly recover the S-boxes in such a case.
In this section we applied our attack to the cipher Maya and showed that we can

break the full cipher with a practical complexity. However, one question is how many
rounds of encryption are necessary to prevent our attack. As gathering experimental
results for a higher number of rounds is very time consuming, we invented a math-
ematical model in order to estimate the complexity for more rounds of encryption
which we present in the next section.

6.5 Model for the Complexity of Recovering Sets De

For a small number of rounds the attack to recover one or more sets De has small
complexity and it is possible to get sufficient experimental data. However, to be able
to extrapolate the attack complexity we describe a theoretical model below.

In the attack we are faced with the problem to group 120 counters C({x, y}), each
belonging to an input pair to an S-box of the first round, into 15 distinct groups. All
pairs within a group should yield the same output difference, i.e., belong to a set De

for some e.
Interpreting the counters C({x, y}) as random variables, a counter C({x, y}), with

S(x) ⊕ S(y) = e is binomially distributed with parameters n and pe . Here pe is the
probability that the difference (e||060) after the first layer of S-boxes yields only one
active S-box in the output and n is the number of text pairs.

Assumption 6.3 states that counters C({x, y}) such that S(x)⊕S(y) has a weight
greater than one are significantly smaller than others and we therefore focus only on
the 32 counters corresponding to slender pairs. Thus, we consider 8 counters dis-
tributed with parameters (n, p1), 8 distributed with parameters (n, p2), 8 distributed
with parameters (n, p4) and finally 8 counters distributed with parameters (n, p8)
(here we identified e = (0, 0, 0, 1) with 1, e = (0, 0, 1, 0) with 2 etc.). Without loss
of generality we assume p1 ≥ p2 ≥ p4 ≥ p8 and that holds p1 6= p2. The attack
works by looking at the 8 highest counters and is successful if those counters cor-
respond to the same output difference, e.g., e = 1, of the S-box. The attack fails
whenever there exists a pair {x1, y1} with output difference ’1’ and a pair {x2, y2}
with S(x2) ⊕ S(y2) 6= 1 such that C({x1, y1}) ≤ C({x2, y2}). In the following we
estimate this error probability depending on the number of samples n.

To simplify the problem for now, we consider only two pairs {x1, y1} and {x2, y2}
and their corresponding counters where C({x1, y1}) is distributed with parameters
(n, q) and C({x2, y2}) is distributed with parameters (n, p) for q > p. The attack fails
if C({x1, y1}) ≤ C({x2, y2}) and thus we denote Z = C({x2, y2}) − C({x1, y1}) and
the error with

err = Pr(C({x1, y1}) ≤ C({x2, y2})) = Pr(Z ≥ 0).

To investigate this error further consider the usual approximation of the binomial dis-
tribution by the normal distribution, C({x1, y1}) ∼ N(nq, nq(1−q)) and C({x2, y2}) ∼
N(np, np(1−p)). With this approximation, the distribution of Z can be approximated
by Z ∼ N(µ, σ2), where µ = n(p− q) and σ = n(p(1− p) + q(1− q)).
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The density function for the normal distribution with mean µ and variance σ2 is
given by the following formula:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

The integral of the normal density function is the normal distribution function

N(t) =
1√
2π

∫ t

−∞
e−

1
2
x2
dx.

The error we make is thus described by

err ≈ 1− 1√
2πσ

∫ 0

−∞
e−

(x−µ)2

2σ2 = 1− 1√
2π

∫
−µ
σ

−∞
e−

x2

2 = 1−N

(−µ
σ

)

.

The following lemma gives an estimate of the ‘tail’ 1 − N(x) which is useful to ap-
proximate the error.

Lemma 6.7 ([50]).
As x→∞

1−N(x) ≈ x−1φ(x)

where φ(x) = 1√
2π
e−

x2

2 .

Using the approximation of Lemma 6.7 yields

err ≈ 1−N(−µ

σ
) ≈ −σ

µ

1√
2π

e−
1
2
(µ
σ
)2 . (6.1)

From (6.1) it follows that for a given error probability err the sample must be of size

n >
−c(p2 − p+ q2 − q)

(p− q)2
, (6.2)

where c = LambertW
(

1
2 err2 π

)

[35] is a small constant depending on the error.
After having estimated the error probability for 2 counters, assuming indepen-

dence, the total error probability errt, that is, the probability of the event that one of
the 8 counters with parameter (n, p1) being smaller than one of the 24 counters with
parameters (n, p2), (n, p4), (n, p8), can be bounded as

errt ≤ 1− (1− err)8·24.

If we allow an error probability of errt ≤ 0.5, which in light of the strong cover filter
is clearly sufficient, we need err ≤ 1− 0.51/(8·24) ≈ 0.0036. For this c = 8 is sufficient.

The next step is to find a way to estimate the probabilities pe. Assuming the cipher
is a Markov cipher we can model the propagation of differences through the cipher
as a matrix multiplication of the difference distribution matrices and the permutation
matrices. Considering the difference distribution table for the whole layer of S-boxes
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would yield a 264 × 264 matrix. Therefore we determine the difference distribution
matrix which contains only the probabilities for 1 to 1 bit differences, which as it turns
out when comparing to experimental data, is a good approximation. This matrix is
only of size 64×64. This enables us to simulate the propagation of 1 to 1 bit differences
through a number of rounds using matrix multiplications. For the resulting matrix an
entry (i, j) contains the probability that given the single, active input bit i after the
first layer of S-boxes, a single output bit j in the second last round will be active. This
matrix can therefore be used to get an estimate for the parameters of the counters.
We determine the probability that given a fixed 1 bit difference after the first round
exactly one S-box is active in the last round (analogously for the inverse). This can
be done by summing over the corresponding matrix entries. Then we use formula
(6.2) to calculate the number of plaintexts needed to recover at least two sets De

in each direction. Note that in the original attack we do not restrict ourselves to
having a single active S-box in the last round but a limited number of active S-boxes.
Furthermore, we can expect that a single active S-box will on average not lead to 16
active S-box after two rounds of encryption. Thus we believe that in practice we can
break at least two more rounds of encryption with the sample size determined by the
model, meaning the model yields an upper bound for the complexity.

The comparison between the experimental data and the modeled data supports
this assumption.
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Figure 6.3: Comparison between the medians of the experimental data and the model
for recovering two sets De in each direction. The black line shows the experimental
data while the red line shows the data from the model. The complexity unit is one
plaintext.
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To justify the introduced model we implemented the attack for a small number
of rounds (see Section 6.4). For each number of rounds we sampled 1000 ciphers
in our model to determine the sample size needed to distinguish between the two
distributions. Figure 6.3 gives a comparison of the experimental data with that of the
model for the case that we want to recover at least two sets De in each direction for
all 16 S-boxes. The black line shows the experimental data and the red line shows
the model for an error of around 0.3% which corresponds to c = 8. The complexity is
given as the logarithm of the number of plaintexts used. As seen, the model seems to
give an upper bound on the complexity of the attack. In some rare cases the difference
between p and q is close to zero, which leads to a very high attack complexity. These
rare cases have a strong influence on the average complexity, hence we considered the
median instead of the mean to estimate the complexity of the attack.

The modeled data suggest that we are able to break up to 28 rounds before we
reach the bound of 264 available plaintexts.

6.6 Fully random PRESENT-like ciphers

In this section we will shortly sketch how to break the fully random version of a
PRESENT-like cipher, which was introduced in Algorithm 4. In this variant the S-
boxes and the bit permutations of all rounds are chosen independently and uniformly
at random.

Fully random ciphers of this kind have been investigated before. Biryukov and
Shamir investigated the security of iterated ciphers where the substitutions and per-
mutations are all key-dependent [19]. In particular they analyzed an AES-like cipher
with 128-bit blocks using eight-bit S-boxes. An attack was presented on five layers
(SASAS, where S stands for substitution and A stands for affine mapping) of this con-
struction which finds all secret components (up to an equivalence) using 216 chosen
plaintexts and with a time complexity of 228. Using the terminology of “rounds” as
in the AES, this version consists of two and a half rounds.

The second variant of our cipher, which we consider in this section, is a special
instance of the SASAS cipher [19]. In fact the attack of Biryukov and Shamir applies
to three rounds of this variant and has a running time of 216 using 28 chosen texts.
However, the complexity of the attack for more than three rounds is unclear, but
seems to grow very quickly [19]. The SASAS attack is a multiset attack whereas we
use a differential-style attack to recover the S-boxes. Also, the technique to recover
the bit permutation is different.

Now, we outline the attack in the fully random case. We first focus on recovering
the S-boxes. As the S-boxes layer is different for each round of encryption we will not
get information about the inverse of the S-boxes like in the case of Maya. This means
we cannot uniquely determine the S-boxes but just up to equivalence. Furthermore,
we need to identify all four slender sets De in order to determine the S-boxes uniquely
up to equivalence. We implemented a series of attacks on such ciphers and the results
show that recovering four sets is indeed possible, but not for all S-boxes. The following
table shows the results of our tests to fully recover one S-box in the first round. The
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complexity is the number of chosen plaintexts needed and is given as the median of
500 tests.

Rounds Complexity Probability

4 212.5 73%
5 215.5 82%
8 224.5 81%

In each test the computation was stopped if not all 4 slender sets where obtained with
230 structures. The tests are very time-consuming which is why results for 6 and 7
rounds were not implemented.

Summing up, the attack does not seem to be able to fully recover all S-boxes of the
first (or last) round, merely about 80%. However, in the remaining cases, the attack
identifies one, two or three sets Se, which means that only a limited number of choices
for these S-boxes remain. Depending on exactly how many choices of the S-boxes are
left, one possible way to proceed is to simply make a guess, and repeat the attack
on a reduced number of rounds. If S-boxes in other rounds cannot be successfully
recovered, the guess might have been wrong. This is a topic for further research.

After successfully recovering the S-box layer of the first round we can peel of the
S-box layer and try to recover the bit permutation in the first round.

The idea is similar to recovering the S-boxes. We encrypt plaintext pairs that
differ in only a few bit positions, for example two, meaning that we encrypt pairs
(x, x⊕ 2i ⊕ 2j) for two bit positions i 6= j and x ∈ F

64
2 . (As we can peel of the S-box

layer these plaintext pairs are inputs to the permutation in the first round.)
As in the S-box recovery attack we expect that if exactly one S-box is active in

the second round only a limited number of S-boxes will be active in the last round.
Hence, for each pair of bit positions we maintain a counter which we increment if a
plaintext pair corresponding to these bit positions leads to a ciphertext difference with
only one or a few active S-boxes. After we encrypted a sufficient number of plaintext
pairs for all possible pairs of bit positions we assume that the highest counter values
corresponds to pairs of bit positions that are mapped to the same S-box.

This leads to information about which bit positions are mapped to the same S-box
input in the next round. We can also use plaintext pairs that differ in three or four
bit positions in order to obtain more information. The complexity of this method has
not been thoroughly investigated, but preliminary results indicate that it is similar to
(if not lower than) the complexity of recovering S-boxes.

The attack on the fully random PRESENT-like ciphers we presented here has not
been thoroughly investigated and we cannot confirm our assumptions with a sufficient
amount of experimental data. This is a direction for further research.

6.7 Linear-style Attack

In this section we discuss the possibility to use linear cryptanalysis to obtain infor-
mation about the S-boxes. Our differential-style attack is based on the hypothesis
that the probability of a characteristic with a single-bit difference at the output of the
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S-box layer in the first round is correlated to the number of active S-boxes in the last
round. Under this hypothesis we try to identify sets of 8 pairs that correspond to a
output difference of weight one. Under a similar hypothesis for linear characteristics
we can mount a linear-style attack to extract information about the S-box. The idea
is to identify a set of 8 values such that these values are mapped to outputs of the
S-box with the same value in some single bit. That means that the output of the
S-box masked with a linear mask of weight one yields a constant value (either 0 or 1)
for all values in the set.

We proceed as follows. In order to gather information about the S-box S0 in the
first round we encrypt structures of the form

Pri = {(x‖ri) | x ∈ F
4
2}

where each ri ∈ F
60
2 for 0 ≤ i < t is chosen uniformly as we did in the differential-style

attack. Now we consider the S-boxes in the last round one by one and for each S-box
generate a table in the following way. The rows of the table are labeled with all possible
four-bit linear masks and the columns with the plaintext nibbles corresponding to the
input to S0 in the first round. For each entry in the table we initialize a counter with
zero. For each plaintext we calculate the scalar product of the four bits of ciphertext
which are output of the S-box we consider and all 15 possible linear masks. If the
product is one we increment the counter in the table corresponding to the 4 bits of
plaintext and the linear mask, otherwise we decrement the counter. After encrypting
sufficiently many plaintexts we search for a column with 8 positive and 8 negative
counters with high absolute values. This yields us a partitioning of the 16 inputs to
the S-box S0 into to groups and we expect that S-box outputs coincide in one bit for
all 8 values within these sets.

We ran a small number of experiments on ciphers with a small number of rounds.
It is unclear how many structures must be encrypted in order to ensure that the sets
we obtain are correct with a high probability. However, there is a lot of information
we can use. Each table consists of 15 columns and each of these columns may suggest
a partitioning into two sets. Furthermore, we generate one such table for each S-box.
In our limited number of tests on a 7-round cipher we could observe that this approach
yields a correct partitioning if a set is suggested by at least two columns of an S-box
and at least two S-boxes. However, more experiments are necessary and it is a natural
future direction of research to combine differential-style and linear-style attacks.

6.8 Conclusion

In this section we presented a novel differential-style attack and applied it to several
64-bit PRESENT-like ciphers with secret components. A variant with 16 secret S-
boxes can be attacked for up to 28 rounds with a data complexity of less than 264. It
is interesting to note that the best known attack on PRESENT, a linear attack, can
be used to cryptanalyze up to 26 rounds of PRESENT (which has publicly known
S-boxes and bit permutation).
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Also, the variant where the S-boxes and bit permutations are chosen at random
for every round can also be attacked with a data complexity of less than 264 for up to
16 rounds.

It is clear that our attacks exploit that there are weak differential properties for
some randomly chosen four-bit S-boxes, and they do not apply to ciphers where the
S-boxes are chosen as in PRESENT. However, the number of such strong (w.r.t.
differential attacks), non-equivalent S-boxes is very small, so this restriction would
not allow for a huge key.
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Chapter 7

Optimization

Optimization means the action of finding the best solution for a problem. Histori-
cally optimization goes back to Gauss, the steepest descent method [44] is the first
known optimization method. Also the introduction of linear programs in 1940 by
Dantzig [40, 39] can be seen as the origin of optimization. Dantzig used mathemati-
cal techniques for generating training schedules for military applications which were
called programs. Not only linear programming techniques but also other optimization
techniques nowadays have many applications such as production scheduling, supply-
chain optimization, topology optimization, structural, and process optimization. The
application areas span from agriculture over microchips to airplanes, the oil industry
and banking.

Generally speaking an optimization problem can be represented as follows.
Given: a function f : S → R from a set S into the reals.
Sought : an element xopt ∈ S such that f(xopt) is a minimum (or maximum) for all
x ∈ S.

Usually, the set S is a subset of the Euclidean space R
n, which is often specified

by a set of constraints and integrality restrictions. Constraints are equalities and
inequalities that the elements of S have to satisfy. Integrality restrictions mean that
some or all of the variables are restricted to be integers. The function f is called
the objective function and assigns to each element in S an objective value. This
is the function that shall be minimized or maximized, where we will only consider
minimization in the remainder of this thesis. If the set S is discrete its elements are
also called configurations. In general we distinguish between global and local extrema.

Definition 7.1 (Extrema).
Given a function f : S → R. An element xmin ∈ S is

• a local minimum of f if f(xmin) ≤ f(x) for all x ∈ S with |x − xmin| ≤ ǫ,
i.e., for all x ∈ S which lie in a certain distance to xmin,

• a global minimum of f if f(xmin) ≤ f(x) for all x ∈ S.

An element xmax ∈ S is

• a local maximum of f if f(xmax) ≥ f(x) for all x ∈ S with |x − xmax| ≤ ǫ,
i.e., for all x ∈ S which lie in a certain distance to xmax,

• a global maximum of f if f(xmax) ≥ f(x) for all x ∈ S.

109
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We are mainly interested in global optima. However, often it is difficult to find a
global optimum, especially when the function f contains many local optima.

There are many different subclasses of optimization problems. For some there
exist efficient solvers, while for others the solvability depends on the structure of the
instance we consider. Three typical characteristics of an optimization problem are:
Linear/Non-linear, Constrained/Unconstrained and Real-valued/Integer-valued.

In a linear optimization problem or a linear programming problem the objective
function and all constraints are linear. There are efficient algorithms such as the sim-
plex method [101] for solving linear programming problems. In non-linear optimization
problems the objective function and/or the constraints are non-linear. Whether such
optimization problems are easily solvable depends on the degree of non-linearity and
other features such as convexity.

A constrained optimization problem can be presented as

min
x

z = f(x)

subject to g1(x) = b1

g2(x) ≤ b2,

where f is the objective function and the constraint functions g1 and g2 describe a set of
equalities and inequalities which have to be satisfied. In an unconstrained optimization
problem we search for a minimum or maximum of a function f : X → R. Depending
on the set of configurations X, neighborhood search or hill climbing algorithms such
as simulated annealing can be applied to the problem. Roughly speaking generalized
hill climbing [61] or a neighborhood search tries to optimize the objective function
by moving from one configuration of the problem to a neighbor and comparing the
objective values. Moves which improve the objective value are always accepted, while
worsening moves are only accepted with a certain probability

Most of the time we assume that the variables in the optimization problem are
real-valued, but we can also restrict some or all of the variables to integers. This is
beneficial if we consider discrete problems such as scheduling problems. This leads us
to mixed-integer and integer programming.

In the following sections we first explain mixed-integer linear programming which
considers linear, constrained optimization problems where some of the variables are
integers and some are defined over the reals. Afterwards we illustrate simulated an-
nealing, a hill climbing or neighborhood search algorithm which is used to optimize
combinatorial optimization problem. Simulated annealing works on a discrete config-
uration space and is therefore suitable for our kind of problems which are defined over
the Boolean domain.

7.1 Mixed-Integer Optimization

Combinatorial and integer optimization deals with the problem of minimizing (or max-
imizing) a function of several variables subject to equality and inequality constraints
and integrality restrictions on some or all of the variables.
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Pure integer optimization and mixed-integer optimization have many applications
including operational problems such as production scheduling and distribution of
goods as well as planning problems such as capital budgeting and facility location
and design problems such as network design and the design of automated produc-
tion systems. Integer optimization has been successfully applied to tackle difficult
problems. One example is the traveling salesman problem. The traveling salesman
problem is stated as follows. Given a list of cities and their pairwise distances the
task is to find the shortest tour that visits each city exactly once. It is known that
the decision version of the traveling salesman problem belongs to the complexity class
of NP-complete problems. However, when the traveling salesman problem is carefully
formulated as an integer linear programming problem it has been successfully solved
for up to 2000 cities [101]. (The most direct solution is to try all permutations of
the n cities and calculate the length of the tour. This has a complexity of Ø(n!) and
becomes already for around 20 cities computational infeasible.) The success of integer
optimization for difficult discrete problems raises the question if these methods can
also be exploited for cryptanalysis. We will discuss some possibilities to apply integer
or more precisely mixed-integer optimization in the cryptanalysis of the stream cipher
Trivium in Chapter 9. But to begin with we shall define a mixed-integer program-
ming problem and explain some of the algorithms which are used to solve this kind of
problems.

As mentioned before optimization deals with the problem of minimizing or max-
imizing a function subject to certain constraints and restrictions on the variables.
Throughout this thesis we assume that the function shall be minimized. All defini-
tions and algorithms are also valid for the problem of maximizing a function because
that is equivalent to minimizing the negation of the same function. In the case of
linear programming problems all constraints are linear, while in mixed-integer linear
programming problems some of the variables are additionally restricted to be integer
variables.

Definition 7.2 (Mixed-integer linear programming problem).
A mixed-integer linear programming problem (MIP) is a problem of the form

min
x

cTx

subject to

Ax ≤ b,

x ∈ Z
k × R

l

where c is an n-vector, A is an m × n-matrix (n = k + l) and b is an m-vector
(c ∈ R

n, A ∈ R
m×n, b ∈ R

m) .

This means that we minimize a linear function subject to linear equality and
inequality constraints. Additionally some of the variables are restricted to integer
values while the remaining variables are real-valued. In fact it does not matter if we
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allow both equality and inequality constraints or if we only allow inequality constraints
since each equality can be expressed as two inequalities.

The linear function cTx, objective to minimization, is called the objective function.
A point x which fulfills all integrality restrictions and all constraints is an element of
the feasible set S.

Definition 7.3 (Feasible set).
The set S of all x ∈ Z

k × R
l which satisfies the linear constraints Ax ≤ b

S = {x ∈ Z
k × R

l, Ax ≤ b}

is called a feasible set. An element x ∈ S is called a feasible point.

An instance of a mixed-integer programming problem is said to be feasible if at
least one feasible point exists, i.e., if S 6= ∅. In the case S = ∅ the problem is infeasible.
If the problem instance is feasible a solution for the optimization problem is a feasible
point which minimizes the objective function. That means xopt is a solution if xopt ∈ S
and cTxopt ≤ cTx for all x ∈ S. Then cTxopt is called the optimal value. However,
even though the instance is feasible it might not have an optimal solution. In this
case the instance is called unbounded , that means that for any ω ∈ R there exists an
x ∈ S such that cTx < ω. Every mixed-integer programming problem either has an
optimal solution, is unbounded or infeasible. Hence, solving a mixed-integer problem
means either to find a solution or to show that the problem is unbounded or infeasible.
However, when we apply mixed-integer optimization in cryptanalysis we consider in
almost all cases problems where we know that a solution exists.

In general one may consider two different types of problems in mixed-integer pro-
gramming: the optimization and the feasibility problem. While in the optimization
problem we look for a feasible point which minimizes the objective function, meaning
we are looking for an optimal solution, in the feasibility problem we try to find a point
x that fulfills all linear constraints and restrictions on the variables regardless of the
objective value. Intuitively a feasibility problem is easier to solve than an optimization
problem because we are looking for just one feasible point instead of a feasible point
that yields an optimal value. However, in practice finding any feasible point may be
the most difficult part of the problem.

Special cases of linear mixed-integer programming are linear programming and
integer programming as well as mixed-0-1 or 0-1 programming. In linear programming
(LP)

min
x
{cTx|Ax ≤ b, x ∈ R

n}

there are no restriction on the variables. That means all variables are continuous.
There are efficient algorithms for solving linear programming problems such as the
simplex algorithm [101] and the interior point method [89]. Furthermore, most algo-
rithms for integer or mixed-integer programming use LP relaxations.

Definition 7.4 (LP relaxation).
The LP relaxation or linear programming relaxation of an integer, mixed-integer or
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0-1 programming problem is the linear programming problem that arises by removing
the integer or binary constraints and replacing them by weaker constraints that each
variable is continuous where applicable in an interval e.g., [0, 1].

Thus, linear programming algorithms are applied in order to solve the linear pro-
gram which is obtained from the integer programming problem by removing the in-
tegrality constraints. More details and an example for an LP relaxation are given in
Subsection 7.1.2.

In an integer programming problem (IP)

min
x
{cTx|Ax ≤ b, x ∈ Z

n}

all variables are integer-valued. We are mainly interested in mixed-0-1 programming
problems where the integer variables are replaced by binary variables.

7.1.1 Modeling

Usually there is more than one way to model an MIP or an IP. In integer programming,
formulating a ’good’ model is of crucial importance for solving the problem [101]. The
first step in formulating a model is usually defining variables. The variables are often
already given by the definition of the desired solution. When the problem is stated
the solution is usually defined by certain unknowns we want to determine. We define
a variable for each of these unknowns. One might also use some additional auxiliary
variables. The second task is to find a good objective function. We will consider a
feasibility problem rather than an optimization problem. Hence, we can choose an
arbitrary objective function. The main problem is to find a good formulation for the
feasible set S = {x ∈ Z

k×Rl, Ax ≤ b}. Here it is often easy to find A and b which yield
a valid formulation for S but this description of the feasible set might not be the best
one for actually solving the problem. The reason for this is that integer optimization
algorithms such as branch-and-bound need a lower bound on the objective function
and they often determine this bound by using relaxations. One possible relaxation of
the problem is to solve the corresponding linear program

zLP = min
x
{cTx : Ax ≤ b, x ∈ R

n}.

The feasible set S of the mixed-integer program is a subset of the feasible set P of the
linear programming relaxation

S ⊂ P = {x ∈ R
n : Ax ≤ b}.

The smaller the set P is, the more precise are the bounds for the mixed-integer program
and the efficiency of most algorithms depends on these bounds. Let us consider the
following example (taken from [101]).
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The three following sets describe the same feasible set S

S = {x ∈ {0, 1}4 : 93x1 + 49x2 + 37x3 + 29x4 ≤ 111}, (7.1)

S = {x ∈ {0, 1}4 : 2x1 + x2 + x3 + x4 ≤ 2}, (7.2)

S = {x ∈ {0, 1}4 : 2x1 + x2 + x3 + x4 ≤ 2

x1 + x2 ≤ 1 (7.3)

x1 + x3 ≤ 1

x1 + x4 ≤ 1}.

We consider the corresponding LP relaxation of the mixed-integer programming prob-
lem using the different description of the set S

P1 = {x ∈ R
4 : 93x1 + 49x2 + 37x3 + 29x4 ≤ 111},

P2 = {x ∈ R
4 : 2x1 + x2 + x3 + x4 ≤ 2},

P3 = {x ∈ R
4 : 2x1 + x2 + x3 + x4 ≤ 2

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x1 + x4 ≤ 1}.

It holds P3 ⊂ P2 ⊂ P1. Hence zLP3 ≥ zLP2 ≥ zLP1 for a minimization problem. This
means that the formulation of the problem using the set described in (7.3) yields a
sharper bound and can therefore be considered a better formulation of the problem.

7.1.2 Algorithms

As integer and mixed-integer linear programming problems almost look like linear
programming problems it is tempting to solve the LP relaxation of the problem and
just round the solution to the integer values. The following small example shows that
this will in general not lead to an optimal solution and often not even to a feasible
point [30]. We consider the integer program

minimize z = −x1 − 5x2

Subject to: x1 + 10x2 ≤ 20,

x1 ≤ 2,

x1, x2 ≥ 0,

x1, x2 ∈ Z.

Solving the LP relaxation of this problem yields the point (2, 1.8) as solution with
the optimal value z = −11. The integrality restriction is violated for the variable
x2. Rounding to the nearest integer value yields the point (2, 2). But this point is
infeasible because the first constraint is violated. Rounding down yields a feasible
point. However, (2, 1) yields the objective value z = −7 while the point (0, 2) yields
the objective value z = −10 and is feasible. Therefore (2, 1) is not the optimal solution
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for the integer programming problem. Even though solving the corresponding linear
program and rounding solution values that violate the integrality restrictions does not
solve the integer programming problem, LP relaxations play an important role when
solving integer and mixed-integer programming problems.

In this section we will sketch two important algorithms used in mixed-integer
and integer linear programming: the branch-and-bound algorithm [30, 59] and the
cutting-plane algorithm. Both algorithms solve the problem by progressively adding
constraints to the problem. In practice there are many variations of these algorithms.
Furthermore, the algorithms are usually combined with each other or other solvers,
which will not be mentioned here, in order to achieve good running times and optimal
solutions. First, we explain the basic idea of the branch-and-bound method [30, 59].

The Branch-and-Bound Technique

A natural idea for solving integer-valued problems is to simply enumerate all possible
solutions and then choose the best one. But even for medium-size problems this ex-
haustive search becomes computationally infeasible. However, the branch-and-bound
technique, one of the workhorses for solving integer programming problems, is based
on the observation that the enumeration of all possible integer solutions forms a tree.
The main idea of the branch-and-bound method is to avoid growing the whole solution
tree by growing the tree in stages. This is done by a divide-and-conquer approach.
The original problem is divided into smaller subproblems. This is called branching and
done by partitioning the feasible set into subsets. Then the problems are conquered by
bounding and pruning. The three basic steps of every branch-and-bound algorithms
are branching, bounding and fathoming and will be explained in the following.

Branching

We grow a tree containing a subset of the feasible set in each node starting from the
set of all solutions by branching. This means we consider the current stage of the
tree and pick a node at which we want to grow the tree further, i.e., divide the set of
solutions given at that node and the corresponding problem into smaller subsets and
corresponding subproblems. In general the division is done by adding a constraint
of the form dx ≤ d0 in order to generate one branch of the node and dx ≥ d0 + 1
to generate the other where d ∈ Z

n and d0 ∈ Z. If xLP is a solution for relaxation
of the subproblem represented by the current node then we choose (d, d0) such that
d0 < dxLP < d0 + 1 holds. In practice we only branch at one variable, i.e. d = ej
for j ∈ N, where ej is the jth unit vector. This is called variable dichotomy1. As an
example we assume that the solution of the LP-relaxation of an integer optimization
problem is (1, 3.5, 2.1). Using variable dichotomy we generate two subproblem by
adding the constraints x2 ≤ 3 and x2 ≥ 4 respectively.

1A dichotomy is any splitting of a whole into exactly two non-overlapping parts, meaning it is a

procedure in which a whole is divided into two parts. Variable dichotomy means that we choose one

variable to perform this splitting.
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In the case of binary problems the straight forward way to partition the set of
feasible solutions is to fix one the variables xi to its values. This will yield two subsets,
one where xi = 0 and one where xi = 1. The variable which is used to branch the tree
at any iteration of the algorithm is called the branching variable. When we consider
integer-valued problems we can still assign the branching variable all values, at least
in the cases where the variables are restricted to a finite number of possibilities. A
good alternative to this approach is variable dichotomy where we specify a range of
values for the branching variable by introducing new constraints e.g., xi ≤ d0 and
xi ≥ d0 + 1. This way we only get two branches/two children for each node.

If the division is done by variable dichotomy for all nodes of the tree we can prove
that the tree is finite.

Proposition 7.5.

If P = {x ∈ R
n
+ : Ax ≤ b} is bounded and a solution tree is developed in such a way

that at each node i that requires branching a variable dichotomy of the form (xj ≤
[xij ], xj ≥ [xij ] + 1) is chosen where xi is the solution of the corresponding relaxation

and xij is not integral. Then the solution tree developed on variable dichotomies is
finite.

The reader is referred to [101] for the proof. This proposition guaranties the
termination of a branch-and-bound algorithms, at least for the cases where the feasible
set of the corresponding LP relaxation is bounded.

The choice of the node at which we want to grow the tree further as well as the
choice of the actual branching variable might be important. We will discuss the node
selection and the variable selection policies later in this section.

Bounding

The bounding function assigns to each node in the solution tree an estimate of how
good the best feasible solution for this subproblem can be. More precisely, the bound-
ing function estimates the best value of the objective function that can be obtained
by growing the tree further in this node. The estimate should be as precise as possible
but it must be an optimistic estimate. In other words if we look for a minimum, the
bounding function should underestimate the actual best achievable objective function
value, so the bounding function must make errors in the right, the optimistic direction.

Often relaxations of the original problem which are easy to solve are used as
bounding functions. In most cases a relaxation is obtained by removing the set of
constraints which makes the problem difficult. In the case of integer or mixed-integer
programming problems these constraints are the integer restrictions on all or some of
the variables. The relaxation obtained by deleting the set of integer constraints, LP
relaxation, is the most widely used relaxation.

The bounding function is used for selecting the next node for branching in each
iteration of the algorithm as well as for pruning certain branches of the solution tree.

Fathoming

Sometimes the solution of the LP relaxation is already a feasible solution for the
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integer or mixed-integer programming problem. Such a solution is called incumbent
and denotes the best feasible solution so far. The incumbent is stored together with its
objective value until a better solution is found and the current incumbent is replaced by
this better solution. If an incumbent is found as a solution for one of the subproblems
in the tree, we do not have to expand the tree any further in this node. The reason is
that we will not find a better solution by expanding the node since the LP relaxation
yields an optimistic estimate of the best achieve objective value in this node. It is,
however, possible to find another feasible solution, which is equivalently good or worse
than the one we already found, by growing the tree to the next stages at that node.

The incumbent together with the bounding function is used to prune nodes of the
solution tree. Pruning is crucial in the branch-and-bound method because it prevents
that the solution tree grows too big. Pruning means that we cut off and permanently
discard nodes in the tree because neither the node nor any of its descendants will
yield an optimal or feasible solution. There are two reasons to prune a node. Firstly,
a node can be pruned if expanding this node will not yield a better solution than
the current best feasible solution, namely the incumbent. That means a node can be
pruned when the bounding function value of a node is worse than the objective value
of the incumbent. Secondly, a node can be pruned if we can show that there is no
feasible solution. For example if the LP relaxation of the subproblem presented by
the node is infeasible also the integer or mixed-integer problem will be infeasible and
the node can be discarded.

The algorithm terminates and has found a globally optimal solution for the IP or
MIP or shown that the problem is infeasible if the solution tree cannot be grown any
further because all nodes are either pruned or already contain a feasible solution.

In each iteration of the algorithm one has to decide which node to be expand.
There are three popular node selection policies.
Best-first : We always select the most promising node for branching, that is the node
with the best bounding function value. This node is the most promising one to lead
to the optimal solution of the original problem.
Depth-first : We choose the node for branching among the nodes which have been cre-
ated in the last step. With this selection policy we reach a leaf of the tree quickly and it
is therefore a way to achieve an early incumbent, at least if there are sufficiently many
elements in the feasible set. Another advantage is that the LP relaxation which has
to be solved for branching can use reoptimization instead of solving the problem from
scratch. Reoptimization uses the final simplex tableau of the LP relaxation solved in
the previous iteration and tends to be much faster than starting from scratch.
Breadth-first : We expand the nodes in the same order in which they were created.

Once we have chosen a node for branching we have to select a branching variable.
In the case of mixed-integer programming one only considers the integer-valued vari-
ables as the branching variables. One possibility is to choose the branching variables in
their natural order. Another strategy is to consider the solution of the LP relaxation
and choose one of the variables that violates the integrality restrictions as branching
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variable. We assume that the variable xi = q where q ∈ R \ Z in the solution of LP
relaxation. Then we choose xi as the branching variable and generate two new sub-
problems; one containing the additional constraint xi ≤ ⌊q⌋ and the other containing
xi ≥ ⌊q⌋+ 1 or in the case that xi is a binary variable xi = 0 and xi = 1.

We will now clarify the steps of the algorithm with the help of a simple example.
We consider a binary linear program to simplify matters. However, as explained
above the algorithm works similarly for integer or mixed-integer programs. We select
variables which violate the binary restrictions as branching variables and select the
nodes for branching following the best-first policy. Moreover, we use the LP relaxation
as the bounding function. The following binary linear program is given:

minimize f(x) = −x1 + x2 − 2x3 + 2x4 − x5

subject to x1 + x2 ≤ 1, (7.4)

x1 − 5x2 + 3x3 ≤ 2, (7.5)

2x3 + 3x4 − 4x5 ≤ 1, (7.6)

x2 − 2x4 + x5 ≤ 0, (7.7)

x ∈ {0, 1}5. (7.8)

First of all we solve the LP relaxation of this problem which we obtain by replacing
the binary restriction x ∈ {0, 1}5 by the constraints 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 5,
meaning the variables are continuous in the interval [0, 1]. The optimal solution of
the relaxation is (23 ,

1
3 , 1,

7
15 ,

3
5) and yields -2 as a bounding function value for the

node in the solution tree containing all solutions. The variables x1, x2, x4 and x5
violate the binary restrictions. We choose x1 as branching variable and generate two
subproblems of our original problem by adding the constraint x1 = 0 or x1 = 1
respectively. The LP relaxation of the subproblem obtained by adding the constraint
x1 = 0 yields (0, 15 , 1,

9
25 ,

13
25) as optimal solution and -1.6 as bounding function value.

The optimal solution of the other subproblem is (1, 0, 13 , 0, 0) and the corresponding
bounding function value is −1.667. Now we pick the most promising node in order
to expand it in the next iteration. This is the node corresponding to the subproblem
containing the constraint x1 = 1 because −1.667 < −1.6 and it is marked by a bold
circle in Figure 7.1, Iteration 1. We select x3 as our next branching variable because it
is the only variable which violates the binary restrictions in the solution of relaxation.

The node corresponding to the subproblem generated by adding the constraints
x1 = 1 and x3 = 1 can be pruned because the LP relaxation of the problem is
infeasible. The reason is that the constraint (7.4) forces x2 = 0. But in order to
satisfy constraint (7.5) x2 has to be at least 2

5 . Because of this contradiction the LP
relaxation and therefore also the binary problem are infeasible.

The relaxation subproblem containing the constraints x1 = 1 and x3 = 0 yields a
feasible solution. The objective function value associate to the incumbent (1, 0, 0, 0, 0)
is -1 and the incumbent is marked by a dashed circle in Figure 7.1. We can use the
incumbent to prune nodes in the tree which cannot lead to a better solution than the
incumbent and so prevent the tree from growing too big.



Chapter 7. Optimization 119

−1.6

−1.67

−2

x1 = 0

(0, 1

5
, 1, 9

25
, 13

25
)

x1 = 1

(1, 0, 1

3
, 0, 0)

Iteration 1

−1.6

−1.67

−2

x1 = 0

(0, 1

5
, 1, 9

25
, 13

25
)

x1 = 1

(1, 0, 1

3
, 0, 0)

x3 = 0

−1

(1, 0, 0, 0, 0)

x3 = 1

Iteration 2

−1.6

−1.67

−2

x1 = 0

(0, 1

5
, 1, 9

25
, 13

25
)

x1 = 1

(1, 0, 1

3
, 0, 0)

x3 = 1

Iteration 3

x3 = 0

−1

(1, 0, 0, 0, 0)

(0, 1, 1, 1, 1)

−1.33

x2 = 1

(0, 0, 2

3
, 1

15
, 2

15
)

x2 = 0

0

Figure 7.1: Iterations 1-3 of the branch-and-bound algorithm. The bold circle marks
the most promising node, the dash circle the incumbent and a cross means that the
branch of the tree is pruned, either because the LP-relaxation is infeasible (only cross)
or because we already found a feasible solution which is worse than the incumbent
(circle + cross).
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Figure 7.2: The complete solution tree for the branch-and-bound algorithm.

However, the incumbent might not be the optimal solution. Therefore we have
to check if expanding any of the other nodes in the tree leads to a better solution.
We consider the node labeled with x1 = 0 again and choose x2 as branching variable.
Adding the constraint x2 = 1 yields (0, 1, 1, 1, 1) as solution for the relaxation. As
this solution is already feasible but yields a worse objective function value than the
incumbent, this node can be pruned.

The subproblem obtained by adding the constraint x2 = 0 instead yields a frac-
tional solution for the relaxation and the corresponding bounding function value is
better than the objective function value of the incumbent. Therefore we branch again
using x3 as branching variable. The combination x1 = 0, x2 = 0 and x3 = 1 violates
constraint (7.5) so the corresponding subproblem is infeasible and the node can be
pruned. Adding the constraint x3 = 0 to the subproblem yields a feasible solution
(0, 0, 0, 0, 0). But the objective function value is worse than the value of the incum-
bent, so we prune the node. Now the algorithm terminates because we cannot grow
the tree any further (cf. Figure 7.2).

A closer look at the objective function would have told us already in the second
iteration that the feasible solution we found was an optimal solution. The objective
function consists of integer-valued coefficients. Therefore the value of the objective
function is an integer for any binary solution. That means we can tighten the bounds
by rounding up. In our example all nodes generated in the first iteration would be
bounded by -1 and therefore we could terminate the algorithm after we found a feasible
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solution with -1 as corresponding objective function value. This observation can be
used to tighten the bounds and thus further restrict the size of the search tree in
branch-and-bound computations.

This example demonstrates a pure branch-and-bound algorithm for binary linear
programming problem. However, in practice the branch-and-bound algorithm is usu-
ally combined with cutting-plane method to the so-called branch-and-cut algorithm.
We will roughly sketch the idea of the cutting-plane method in the following subsec-
tion.

The Cutting-Plane Method

The cutting-plane method in general denotes a family of optimization methods which
iteratively refines the feasible set by adding linear constraints to it. These linear
constraints are called cuts. Gomory [56] introduced cutting-plane methods to solve
mixed-integer linear programming problems.

The core idea of all cutting-plane methods is the following. The algorithm solves
the LP relaxation of the given mixed-integer or integer linear programming problem.
If this solution already satisfies the integrality restrictions, it is an optimal solution for
the original problem as is the case in the branch-and-bound technique. Otherwise the
optimal solution for the LP relaxation is in a corner of the polytope that describes the
feasible region of the LP relaxation. The idea is now to add a new linear constraint,
a cut, to the feasible set which fulfills the following properties:

1. The optimal solution of the LP relaxation is not feasible for this cut.

2. None of the feasible solutions which fulfill the integrality constraints are elimi-
nated from the feasible set by this cut.

An example for a cut fulfilling these properties is illustrated in Figure 7.3. It is
guaranteed that such a linear inequality exists. There are different ways to calculate
the cuts. The best known example are Gomory’s cuts [56]. Here the cut is deduced
from the Simplex tableau of the LP relaxation. However, the technical details of how
these cuts are calculated are beyond the scope of this thesis and therefore omitted
here. Instead we explain a very simple procedure of how to generate cuts for pure
binary linear programming problems [59]. It is based on minimal covers of constraints.

Definition 7.6 (Minimal cover).
A minimal cover is a group of N variables contained in the constraint such that the
constraint is violated if all variables in this group are set to 1 and the remaining
variables are set to 0 but the constraint is satisfied if the value of any of these variables
is changed from 1 to 0.

In order to generate a cut we consider a constraint in the feasible set that contains
only nonnegative coefficients and we look for a minimal cover of this constraint. Then
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Figure 7.3: An example for a cutting-plane. The hatched area illustrates the feasible
set of the LP relaxation, while the black dots are the integer feasible solutions. The
optimal solution of the LP relaxation in the corner of the polytope is marked by a
circle. The cut (dashed line) separates this solution from the feasible set without
eliminating any integer solutions.

the new cut is that the sum over all the variables in the minimal cover has to be less
or equal to N − 1. As an example consider the constraint

3x1 + 2x2 + 4x3 + x4 ≤ 6

with xi ∈ {0, 1} for 1 ≤ i ≤ 4. Then the set {x1, x3} forms a minimal cover for the
constraint because (1, 0, 1, 0) violates the constraint whereas (1, 0, 0, 0) and (0, 0, 1, 0)
satisfy the constraint. This yields the cut

x1 + x3 ≤ 1.

The procedure does not guarantee that an optimal solution for the LP relaxation is
not feasible for the cut as opposed to Gomory’s cut. Therefore we have to choose the
constraint and the minimal cover carefully so that this property is satisfied.

In practice an integer or mixed-integer problem is preprocessed before the branch-
and-bound and cutting-plane methods are applied. In the preprocessing phase vari-
ables are fixed to a value, redundant constraints are eliminated and constraints are
tightened. We shall not go into detail here how this preprocessing works. In all
the experiments we use a commercial solver to solve our mixed-integer programming
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problems. Therefore the technical details of the algorithms are not of interest. The
purpose of this subsection is to give the reader a feeling of how integer optimization
algorithms work.

7.2 Generalized Hill Climbing Algorithms

Generalized hill climbing algorithms [61] form a general class of heuristic optimization
algorithms which includes simulated annealing [29, 66] and local search (simple hill
climbing) as special cases. Generalized hill climbing is a direct search technique. This
means that it does not require any derivates as opposed to optimization methods such
as Newton methods. Normally, generalized hill climbing algorithms deal with discrete
optimization problems and under the assumption that the objective function value
of a globally optimal solution is known, the task is to identify an associated optimal
solution. If the optimal value of the objective function is not known the algorithm
tries to find a good approximation to the global optimum.

A discrete optimization problem is defined as follows.

Definition 7.7 (Discrete Optimization Problem).
Given a discrete, finite set X of configurations and a non-negative objective function
f : X → R

+ a discrete optimization problem is the problem of optimizing (minimizing
or maximizing) the objective function over the set X of possible configurations. The
objective function f is called the cost function.

In other words this means that the finite set X is composed of all possible solutions
of the optimization problem. Each configuration x ∈ X is assigned a value f(x) called
cost. And we want to find a configuration which minimizes or maximizes the cost. In
the following we will focus only on minimization.
In order to apply generalized hill climbing methods to an optimization problem a
neighborhood function η : X → 2X is defined such that for each configuration x ∈ X
there is a set of neighbors η(x) ⊂ X. The aim of the search is to find xmin ∈ X
minimizing the cost function f(x),

f(xmin) = min{f(x) : x ∈ X},

by moving from neighbor to neighbor depending on the cost difference between the
neighboring configurations. Deteriorating moves from one neighbor to another are
probabilistically accepted in the hope that the algorithm does not get stuck in a local
optimum.

In [61] Johnson and Jacobsen present a unified view of many hill climbing algo-
rithms by describing conditions on accepting a move from one configuration to another.
The transition probability pk(x, y) of accepting a move from a configuration x ∈ X to
its neighbor y ∈ η(x) is defined as the product of a configuration generation probability
gk(x, y) and a configuration acceptance probability Pr[Rk(x, y) ≥ f(y) − f(x)], where
Rk(x, y) is a random variable and k is an iteration index. A general form of a hill
climbing algorithm is depicted in Algorithm 5.
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Algorithm 5 General formulation of hill climbing algorithms
xbest ← x
while stopping criterion not met do

k ← 0 ⊲ set the outer loop counter
while k < K do

for m = 0, . . . ,M − 1 do

generate a neighbor y ∈ η(x) with probability gk(x, y)
compute the cost function f(y) of the candidate
if Rk(x, y) ≥ f(y)− f(x) then

x← y ⊲ accept the move
if f(x) < f(xbest) then

xbest ← x ⊲ store the best configuration
end if

end if

end for

k ← k + 1
end while

end while

By changing the definition of Rk(x, y) we obtain different variants of hill climbing
algorithms. When Rk(x, y) = 0 no move that will increase the value of the cost func-
tion is accepted. Therefore we obtain a local search or simple hill climbing algorithm
which does not accept deteriorating moves. In this thesis we focus on the simulated
annealing algorithm.

7.2.1 Simulated Annealing

The simulated annealing algorithm uses a key parameter called the temperature tk.
The configuration generation probability of a neighbor y of the current configuration
x is defined as gk(x, y) = 1

|η(x)| , so it is uniform, i.e., each neighbor is equally likely
to be picked at each state. The acceptance probability depends on the difference
f(y)−f(x) in the cost function between the current state x and the selected neighbor
y and the current temperature tk. The move is always accepted when it decreases the
cost and accepted with probability e−(f(y)−f(x))/tk when the cost increases. Hence the
configuration acceptance probability is

Pr[Rk(x, y) ≥ f(y)− f(x)] = min{1, e−
f(y)−f(x)

tk }.

In terms of the general formulation presented above, we get this behavior when we
define

Rk(x, y) = −tk ln(U),

where U is a uniform random variable on [0, 1].
The way the “temperature” tk of the system decreases over time k is called the

cooling schedule. The condition necessary for the global convergence of the method
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is that tk ≥ 0 and limk→∞ tk = 0. In practice, the two most commonly used cooling
schedules are the exponential cooling schedule

tk = α · βk

for some parameter 0 < β < 1 and the logarithmic cooling schedule

tk = α/ log2(k + 1)

proposed in [52], where α is a constant corresponding to the starting temperature.
Simulated annealing was proposed by Kirkpatrick et al. [66] in 1983 and indepen-

dently by Cerny [29] in 1983 for finding the global minimum of a cost function with
several local minima and has received much attention in the following years because
the algorithm often obtains good results for difficult problems. It was motivated by
the analogy between the physical annealing of solids and combinatorial optimization
problems [46]. Physical annealing is used to find a low energy state of a solid. This
is analog to finding a good approximation for the global minimum of a combinatorial
optimization problem. Physical annealing involves heating and controlled cooling of a
material and works as follows. First the material is melted and then the temperature
is slowly lowered so that the temperature is close to the freezing point of material for
a long time. The heating frees the atoms and allows them to randomly move through
states with higher energy. During the slow cooling they will probably find a configura-
tion with a lower internal energy than the initial one. When the temperature is close
to the freezing point the atoms can only take constitutions with lower energy than
the previous one. In the analogy, the internal energy of the material corresponds to
the value of the cost function and the constitution of the atoms in the material to the
configuration of the combinatorial optimization problem. Furthermore the outer loop
in Algorithm 5 corresponds to the current temperature, therefore the parameter tk is
called the temperature. Hence the inner loop corresponds to the time which is spent
at the same temperature. We start with a high temperature which then decreases
following a cooling schedule. Here we can again see the analogy to physical annealing.
In the simulated annealing algorithms the new configuration y ∈ η(x) is accepted if
U ≤ e−(f(y)−f(x))/tk where U is uniformly distributed on [0, 1]. This means that moves
which decrease the costs are always accepted, while moves that increase the costs are
more likely to be accepted at the beginning of the process when the temperature is
still high.

We mainly use a logarithmic cooling schedule

tk = α/ log(k ·M)

where α is the initial temperature and M the number of iterations for the inner loop.
It is possible to use different cooling schedules or to define the acceptance probability
differently. Several suggestions for different acceptance probabilities are made in [61]
but as we use the classical acceptance probability we do not want to go into detail here.
Further improvements are suggested in [46]. One of these is to save the best solution
found so far. We incorporate this suggestion in our implementation of the simulated
annealing algorithm. We furthermore introduce a new idea called nochangebound

which works well for our special problem. More details are given in Chapter 10.





Chapter 8

Conversion Methods

The representation of Boolean functions as polynomials over the reals is of scientific
interest and used in research fields such as Circuit Complexity [10]. This chapter
gives an overview over the different representations of Boolean functions over the re-
als and integers. Firstly, the four most widely use representations and corresponding
conversion methods are presented, these are the standard representation, the dual
representation, the sign and the Fourier representation. We use the naming of [10].
Secondly, we introduce two related conversion methods which are specially tailored for
the kind of Boolean equations which we consider in this thesis - namely Boolean equa-
tions in algebraic normal form. These methods are the adapted standard conversion
and the integer adapted standard conversion.

We begin with the definition of a Boolean function.

Definition 8.1 (Boolean Function).
A Boolean function is a mapping f : Bk → B , where B = {FALSE,TRUE} is a
Boolean domain and k ∈ N.

In order to explicitly describe a Boolean function the operators from Boolean
algebra are used. These are the complement ¬, the conjunction or AND-operator ∧
and the disjunction or OR-operator ∨. We consider additionally the exclusive-or or
the XOR-operator ⊕ because it is frequently used in the description of symmetric
cryptographic schemes. The XOR-operator can be represented by the three previous
operators in the following way x⊕ y = (x ∧ ¬y) ∨ (¬x ∧ y).

For the analysis of Boolean functions or the application of different algorithms
such as SAT-solvers [60] or an implementation of the conversion methods which will
be presented later in this chapter it is convenient to represent Boolean functions in a
normal form. The conjunctive normal form and the disjunctive normal form are two
basic normal forms.

Definition 8.2 (Conjunctive Normal Form).
A Boolean function f is said to be in conjunctive normal form if it is a conjunction
of clauses, where each clause is a disjunction of literals.

∧

I⊆M

(

∨

i∈I
xi

)

where M = {1 . . . n}.
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Definition 8.3 (Disjunctive Normal Form).
A Boolean function f is said to be in disjunctive normal form if it is a disjunction of
clauses, where each clause is a conjunction of literals.

∨

I⊆M

(

∧

i∈I
xi

)

where M = {1 . . . n}.
A third way to present a Boolean function is the algebraic normal form which uses

XOR- and AND-operators.

Definition 8.4 (Algebraic Normal Form).
A Boolean function f is said to be in algebraic normal form (ANF) if it is an XOR of
clauses, where each clause is a conjunction of literals.

⊕

I⊆M

aI ∧
(

∧

i∈I
xi

)

,

where M = {1 . . . n} and aI ∈ {FALSE,TRUE}.
A Boolean function in ANF is also called a Boolean polynomial due to the equiv-

alence between Boolean functions in ANF and polynomials over F2. In cryptography
the representation of a Boolean function as a polynomial over F2 is often used:

f(x1, . . . , xn) =
∑

I⊆M

aI
∏

i∈I
xi

where M = {1, . . . , n} and aI , xi ∈ {0, 1}. In Section 8.2 we will introduce conversion
methods which have been invented especially for Boolean equations in the algebraic
normal form because this is the most frequently used representation of a Boolean
function in cryptography. But prior to that we will define a couple of conversion
methods which are applicable to all representations of Boolean functions.

8.1 Representations of Boolean Functions as Polynomials
over the Reals

If we want to represent a Boolean function - no matter in which normal form it is
given - as a polynomial over the reals we have to map the values FALSE and TRUE to
real numbers. The representation of the Boolean operators follows from this mapping.
The most natural representation is the standard representation.

Definition 8.5 (Standard Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n and
a mapping t : {FALSE,TRUE} → {0, 1} such that

t(x) =

{

0 if x=FALSE
1 if x=TRUE,
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r is the standard representation of f if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).

This representation of FALSE and TRUE as real numbers leads to the polynomial
expressions of the Boolean operators which is given in Lemma 8.6. A Boolean function
can be converted recursively into a polynomial over the reals using these polynomial
expressions under consideration of the distributive law in the Boolean algebra. This
is true for all representations presented in this section.

Lemma 8.6. (Standard Conversion Method)
Let f be a Boolean function and r the corresponding standard representation. Then it
holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r(y1, y2) = y1y2

2. f(x1, x2) = x1 ∨ x2 =⇒ r(y1, y2) = y1 + y2 − y1y2

3. f(x1, x2) = x1 ⊕ x2 =⇒ r(y1, y2) = y1 + y2 − 2y1y2

4. f(x1) = ¬x1 =⇒ r(y1) = 1− y1

where yi = t(xi) for i = 1, 2.

Lemma 8.6 can be proven by inspecting a truth table.
Swapping 0 and 1 in the mapping yields the dual representation.

Definition 8.7 (Dual Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n and
a mapping t : {FALSE,TRUE} → {0, 1} such that

t(x) =

{

1 if x=FALSE
0 if x=TRUE,

r is the dual representation of f if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).

Lemma 8.8. (Dual Conversion Method)
Let f be a Boolean function and r the corresponding dual representation. Then it
holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r(y1, y2) = y1 + y2 − y1y2

2. f(x1, x2) = x1 ∨ x2 =⇒ r(y1, y2) = y1y2



130 8.1. Representations of Boolean Functions as Polynomials over the Reals

3. f(x1, x2) = x1 ⊕ x2 =⇒ r(y1, y2) = 1− y1 − y2 + 2y1y2

4. f(x1) = ¬x1 =⇒ r(y1) = 1− y1

where yi = t(xi) for i = 1, 2.

If we map TRUE and FALSE into the set {−1, 1} this yields the sign and the
Fourier representation and the corresponding conversion methods.

Definition 8.9 (Sign Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n and
a mapping t : {FALSE,TRUE} → {0, 1} such that

t(x) =

{

−1 if x=FALSE
1 if x=TRUE,

r is the sign representation of f if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).

Lemma 8.10. (Sign Conversion Method)
Let f be a Boolean function and r the corresponding sign representation. Then it holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r(y1, y2) =
1
2(y1 + y2 + y1y2 − 1)

2. f(x1, x2) = x1 ∨ x2 =⇒ r(y1, y2) =
1
2(y1 + y2 − y1y2 + 1)

3. f(x1, x2) = x1 ⊕ x2 =⇒ r(y1, y2) = −y1y2
4. f(x1) = ¬x1 =⇒ r(y1) = −y1

where yi = t(xi) for i = 1, 2.

We obtain the Fourier representation by exchanging -1 and 1 in the mapping.

Definition 8.11 (Fourier Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n and
a mapping t : {FALSE,TRUE} → {0, 1} such that

t(x) =

{

1 if x=FALSE
−1 if x=TRUE,

r is the Fourier representation of f if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).
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Lemma 8.12. (Fourier Conversion Method)
Let f be a Boolean function and r the corresponding Fourier representation. Then it
holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r(y1, y2) =
1
2(y1 + y2 − y1y2 + 1)

2. f(x1, x2) = x1 ∨ x2 =⇒ r(y1, y2) =
1
2(y1 + y2 + y1y2 − 1)

3. f(x1, x2) = x1 ⊕ x2 =⇒ r(y1, y2) = y1y2

4. f(x1) = ¬x1 =⇒ r(y1) = −y1

where yi = t(xi) for i = 1, 2.

These four conversion methods have different properties. It depends on the ap-
plication and on the Boolean function itself which of these is the best. The standard
representation and the dual representation have the property that x2 = x while for
the sign and the Fourier representation it holds that x2 = 1. This ensures that the
polynomials are automatically multilinear1.

If we consider a Boolean function in ANF and convert it using any of the four
representations, the total degree of the real-valued polynomial equals the number of
variables contained in the Boolean function. The monomial degree, i.e., the number
of monomials contained in the polynomial, varies for the different representations. We
do not want to give a full analysis of the behavior of the different conversion methods
with respect to the monomial degree. However, for a Boolean function in ANF the
monomial degree seems to be largest using the dual representation. Whether the
standard or the sign/Fourier representation provides a lower monomial degree depends
on the structure of the special Boolean function e.g., on the number of the AND and
XOR operators and the variable sharing of the monomials. If some of the clauses in
the Boolean function share variables this might decrease the monomial degree because
some of the monomials might be canceled out. If we consider a Boolean function in
ANF without variable sharing, the monomial degree t the corresponding polynomial
in standard representation is exponential in the number of clauses in the ANF. This
means that if m is the number of clauses in the ANF then the monomial degree
mdeg(r) of the corresponding polynomial r is mdeg(r) = 2m − 1. As a rule of thumb
one can say that the standard conversion method is a better choice in terms of a low
monomial degree if there are more ANDs than XORs and that the Fourier or sign
conversion method yield a simpler result if the exclusive-or operator dominates in the
ANF.

In general we are not restricted to map {FALSE,TRUE} to {0, 1} or {−1, 1}. In
the following we present a generalization of the representation of Boolean function as
polynomials over the reals where TRUE and FALSE maps to a, b ∈ R [77].

1A function in several variables is said to be multilinear if it is linear in each variable seperately.
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Definition 8.13 (Generalized Representation).
Given a Boolean function f(x1, . . . , xn) with xi ∈ {FALSE,TRUE} for 1 ≤ i ≤ n and
a mapping t : {FALSE,TRUE} → {a, b} with a, b ∈ R, a 6= b such that

t(x) =

{

a if x=FALSE
b if x=TRUE,

r is the representation of f over the reals if

r(t(x1), . . . , t(xn)) = t(f(x1, . . . , xn))

holds for all possible configurations of (x1, . . . , xn).

Using the generalized representation for TRUE and FALSE yields the following
polynomial expressions for the Boolean operators over the reals.

Lemma 8.14. (Generalized Conversion Method)
Let f be a Boolean function and r the corresponding representation over the reals.
Then it holds

1. f(x1, x2) = x1 ∧ x2 =⇒ r∧(y1, y2) = 1
(b−a)2

[ab2 − a2b+ (a2 − ab)(y1 + y2) +

(b− a)y1y2]

2. f(x1, x2) = x1 ∨ x2 =⇒ r∨(y1, y2) = 1
(b−a)2

[a2b− ab2 + (b2 − ab)(y1 + y2) +

(a− b)y1y2]

3. f(x1, x2) = x1 ⊕ x2 =⇒ r⊕(y1, y2) = 1
(b−a)2

[a3 − ab2 + (b2 − a2)(y1 + y2) +

2(a− b)y1y2]

4. f(x1) = ¬x1 =⇒ r¬(y1) = a+ b− y1

where yi = t(xi) for i = 1, 2.

Lemma 8.14 captures all possible conversion methods. In particular we get the
standard conversion for a = 0 and b = 1, the dual for a = 1, b = 0, the sign for
a = −1, b = 1 and the Fourier representation for a = 1 and b = −1.

Proof. The generalized representation (Definition 8.13) is given. This means that the
value a corresponds to FALSE and the value b to TRUE. We consider the truth tables
for the Boolean operators AND, OR, XOR and define analog real-valued variants of
the truth tables for the functions r∧, r∨, r⊕ ∈ R[y1, y2] as

y1 y2 r∧ r∨ r⊕
a a a a a
a b a b b
b a a b b
b b b b a
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This leaves us with a classical interpolation problem in two variables. We have to find
polynomials that take the appropriate values defined by the above table in the points
(a, a), (a, b), (b, a) and (b, b). The interpolation polynomial can be written as

r(y1, y2) = T (a, a)
(b− y1)(b− y2)

(b− a2)2
+ T (a, b)

(b− y1)(−a+ y2)

(b− a2)2

+T (b, a)
(−a+ y1)(b− y2)

(b− a2)2
+ T (b, b)

(−a+ y1)(−a+ y2)

(b− a2)2

where T (·, ·) denotes the truth table entries corresponding to the Boolean function we
want to represent. When we plug in the values from the table, we obtain the general
polynomials r∧, r∨ and r⊕ corresponding to AND, OR and XOR.

As a has to be the complement of b and vice versa r¬ is obviously the polynomial
corresponding to the complement.

All conversion methods in this section have in common that they increase the
total as well as the monomial degree of the real-valued polynomial compared to the
Boolean polynomial. The result is that linear Boolean polynomials are converted into
highly non-linear polynomials over the reals and we loose the advantage of having
linear equations when we want to solve an equation system. For our applications it
is important to keep the total and the monomial degree of the polynomial over the
reals as small as possible. In the next section we introduce two conversion methods
which are designed especially for Boolean equation systems in ANF and meet the
requirements of the application they are used in.

8.2 Conversion Methods for Boolean Functions in Alge-
braic Normal Form

In cryptanalysis a secret key or an internal state of a stream cipher can often be
described as a system of non-linear Boolean equations in ANF. Solving this equa-
tion system then yields the secret key or the internal state and breaks the cipher.
However, solving a non-linear Boolean equation system or equivalent a system of non-
linear equations over F2 is in general an NP-hard problem. But exploiting the special
structure of such a system might make it solvable in time faster than exhaustive key
search. One idea, which is examined in this thesis, is to convert the Boolean equation
system into an equation system over the reals and solve it with optimization tools.
We can roughly say that the simpler the equations and the lower their degree the
more likely it is that an optimization algorithm will successfully solve the system.
In the previous section we have seen conversion methods which recursively convert
Boolean operators into polynomial expressions. The main problem of these methods
is the high increase in the total and monomial degree of the equations. In order to
minimize this effect the so-called adapted standard conversion was introduced [87].
The adapted standard conversion method does not convert the Boolean operators one
by one but considers the equation as a whole. This has the advantage that the basic
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structure of the Boolean equation is kept in the equation over the reals, in particular
the monomial degree stays the same and the total degree increases by at most one.
The drawback of this approach is that the number of variables as well as the number
of equations increases.

As in the standard representation also in the adapted standard conversion the
Boolean values FALSE and TRUE are mapped to the real values 0 and 1 such that

t(x) =

{

0 if x = FALSE
1 if x = TRUE,

where t : {FALSE,TRUE} → {0, 1}.
We clarify how the adapted standard conversion methods works using the following

example:

x1 ⊕ x2 ⊕ (x3 ∧ x4) = FALSE. (8.1)

Now we consider this equation as an equation over the reals where we replace the
conjunction by multiplication and the exclusive-or by addition over R

y1 + y2 + y3y4 = 0. (8.2)

where yi = t(xi) for i = 1 . . . 4. We determine the truth table for the LHS of equa-
tion (8.1) and evaluate the LHS of equation (8.2) for all possible configurations of
(y1, y2, y3, y4) ∈ {0, 1}4.

y1 y2 y3 y4 (8.1) (8.2) y1 y2 y3 y4 (8.1) (8.2)

0 0 0 0 FALSE 0 0 0 0 1 FALSE 0
0 0 1 0 FALSE 0 0 1 0 0 TRUE 1
1 0 0 0 TRUE 1 0 0 1 1 TRUE 1
0 1 0 1 TRUE 1 1 0 0 1 TRUE 1
0 1 1 0 TRUE 1 1 0 1 0 TRUE 1
1 1 0 0 FALSE 2 0 1 1 1 FALSE 2
1 0 1 1 FALSE 2 1 1 0 1 FALSE 2
1 1 1 0 FALSE 2 1 1 1 1 TRUE 3

From this table we can see that for all possible configurations of y there are four
possible outcomes of the LHS of (8.2), namely 0,1,2 and 3. Because we want to find
a configuration such that the LHS of the Boolean equation (8.1) is FALSE we only
have to consider the rows in the table where the outcome of the Boolean function is
FALSE. The possible real values for these rows are 0 and 2 (or in a more general case
all real-valued outcomes which are equal to 0 modulo 2). The converted equations
over the reals should cover both of the cases. Therefore one real-valued equation for
each of these values is generated by keeping the original structure of the equation and
subtracting the outcome value from it. We obtain

y1 + y2 + y3y4 = 0

y1 + y2 + y3y4 − 2 = 0,
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where yi = t(xi) for i = 1 . . . 4. Obviously only one of the above equations can be
true at the same time. Therefore we multiply the LHS of the equations with new
variables, exclusion variables, and add an additional constraint which guarantees that
exactly one of the exclusion variables is 1 and so exactly one of the above equations is
satisfied. This yields the following adapted standard representation for the Boolean
equation (8.1)

e1(y1 + y2 + y3y4) = 0

e2(y1 + y2 + y3y4 − 2) = 0

e1 + e2 = 1,

with ei ∈ R for i = 1, 2. In the case of a linear equation with just two variables the
adapted standard conversion yields a linear equation over the reals. The form of the
polynomial depends on the RHS of the equation. We consider the Boolean equation

x1 ⊕ x2 = z where z ∈ {FALSE, TRUE}.

In the case z = FALSE the resulting equation over the reals is y1 − y2 = 0 and in
the case z = TRUE the adapted standard conversion yields y1 + y2 − 1 = 0. This
conversion can be extended to Boolean polynomial with two monomials.

As mentioned before a drawback of the adapted standard conversion method is
the increase in the number of variables and equations and also the increase of the
total degree by one if the equation contains more than two monomials, which means
we loose linearity.

We can improve this conversion method when we require that the polynomial
equations only hold over the integers instead of over the reals. In Chapter 9 we
will use the conversion methods in order to apply mixed-integer programming to a
Boolean equation system that describes the internal state of Bivium. Therefore the
requirement that the converted equations hold over the integers is strong enough. This
leads to the integer adapted standard conversion method [28].

8.2.1 The Integer Adapted Standard Conversion Method

The main idea of how to convert a Boolean equation into an equation over the integers
is taken from the adapted standard conversion. We consider a Boolean equation where
the RHS equals FALSE and interpret it as an equation over the integers by replacing
XOR by addition and AND by multiplication. Then we evaluate the integer equation
for all solutions of the Boolean equation as we did in the ASC method (Here we map
TRUE to 1 and FALSE to 0). Afterwards we subtract these results from the LHS of
the equation. We observe that all results are multiples of 2. This means that instead
of generating several equations and introducing exclusion variables we introduce a
single new integer-valued variable in a linear term and get one equation.

As an example we consider the Boolean equation

x1 ⊕ x2 ⊕ (x3 ∧ x4)⊕ x5 ⊕ x6 = FALSE (8.3)
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If we evaluate the corresponding real-valued polynomial y1 + y2 + y3y4 + y5 + y6
for all solutions of (8.3) we get 0, 2, 4 as results. That means that a solution of (8.3)
is a solution to the following equation over the integers

y1 + y2 + y3y4 + y5 + y6 − 2yInt = 0

where yInt ∈ {0, 1, 2} and yi ∈ {0, 1} for i = 1 . . . 6. The degree is the same and the
number of variables and monomials per equation is increased only by one. We call
this conversion method Integer Adapted Standard Conversion (IASC).

For an equation which only contains two monomials we can use the same trick as in
the adapted standard conversion and convert it depending on the RHS of the Boolean
equation such that we keep the total degree without introducing a new variable to the
equation.

We will compare performance of the standard and the integer adapted standard
conversion methods in the context of mixed-integer linear programming in Chapter 9.



Chapter 9

Bivium as a Mixed Integer
Programming Problem

Trivium is one of the three stream ciphers that were recommended in the eSTREAM
project portfolio in the hardware category. In Chapter 3, Subsection 3.4.5 we showed
that the internal state of Trivium and also of its small-scale variants Bivium A and
B can be described by a system of sparse non-linear Boolean equations. Solving this
equation system is equivalent to recovering the internal state of the cipher. It is
known that solving a random system of non-linear Boolean equations is an NP-hard
problem. However, the equation systems generated by the ciphers Trivium and Bivium
are not random. They are very sparse and contain a lot of structure and mixed-integer
optimization methods may therefore be suitable for solving them.

In this chapter we present an attack on the Biviums using mixed-integer opti-
mization methods. The main idea is to transform the problem of solving the sparse
system of quadratic equations over F2 into a combinatorial optimization problem. We
convert the Boolean equation system into an equation system over R and formulate
the problem of finding a 0-1-valued solution for the system as a mixed-integer pro-
gramming problem. This enables us to make use of the well-developed commercial
optimization tool Cplex [4] in order to find a solution for the problem and recover the
initial state of Bivium. In particular this gives us an attack on Bivium B in estimated
time complexity of 263.7 seconds.

We explain our approach of conversion and formulation of a mixed-integer pro-
gramming problem on the simplest of the three variants of Trivium, named Bivium A.
We recall that for each clocking of the algorithm we get three equations of the form

s162 ⊕ s177 = z (9.1)

s66 ⊕ s93 ⊕ (s91 ∧ s92)⊕ s171 ⊕ s178 = 0 (9.2)

s162 ⊕ s177 ⊕ (s175 ∧ s176)⊕ s69 ⊕ s179 = 0 (9.3)

After 177 clockings of the algorithm we have a fully determined system of 399 equa-
tions in 399 unknowns. For each further clocking we get an overdetermined system
because we obtain three new equations and introduce two new variables [90] (see also
Chapter 3).

137
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9.1 Bivium A as a Mixed-Integer Linear Programming
Problem

In this section we will explain step by step how to model Bivium A as a mixed-
integer linear programming problem. But first we want to recap the definition of a
mixed-integer programming problem given in Section 7.1.

A mixed-integer linear programming problem (MIP) is a problem of the form

min
x
{cTx|Ax ≤ b, x ∈ Z

k × R
l}

where c is an n-vector, A is an m×n-matrix (n = k+l) and b is an m-vector. However,
in the sequel we will mostly be concerned with the feasible set

S = {x ∈ Z
k × R

l, Ax ≤ b}

which is the set of all points that satisfy the integrality restrictions and the linear
constraints.

We will use the equations of the form (9.1) - (9.3) which describe the initial state
to define the feasible set of the mixed-integer problem. This means that we formulate
the problem of finding the internal state of Bivium A given a sufficiently long part of
the keystream as a feasibility problem rather than as an optimization problem. As
mentioned in Section 7.1.1 the modeling of the MIP is important. In the following
subsections we will describe two different ideas of how to model Bivium A as an
MIP. One model is based on the standard conversion method (Definition 8.5 and
Lemma 8.6) and the other on the integer adapted standard conversion method (IASC)
(Section 8.2.1). Afterwards we will compare the results of the different models.

9.1.1 Linearization Using the Standard Conversion Method

Using the standard conversion method the degree of the real-valued equation is equal
to the number of variables involved in the Boolean equation. We want to keep the
degree of the equation as small as possible because later we have to replace terms of
higher order by new variables in order to get linear constraints. We also want to keep
the number of monomials per equation small because the less complex the constraints
are, the more likely it is that we can solve the MIP. Therefore the first step is to split
up the equations by introducing new auxiliary variables.

Splitting

First we replace s162 ⊕ s177 by the keystream bit z in the quadratic equation. This
is a good opportunity to reduce the number of variables in the equation and the
complexity of the resulting constraint. This is different from the case of Bivium B
and Trivium because of the more complex keystream equation. We introduce new
variables in such a way that there are at most four variables per equation. Using
a small trick of rewriting the equations we can achieve that the equations over the
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reals have at most degree two after applying the standard conversion method. If we
consider the two equations

x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 (9.4)

x1 ⊕ x2 = x3 ⊕ x4 (9.5)

then we see that both equations have the same set of solutions. However applying
the standard conversion method to Equation (9.4) yields a real-valued polynomial of
degree four containing 15 monomials while Equation (9.5) is converted into a real-
valued polynomial equation of degree two containing six monomials.

We split and rewrite the system in the following way:

s162 ⊕ s177 = z

r1 = s66 ⊕ s93

r2 = s91 ∧ s92

r1 ⊕ r2 = s171 ⊕ s178

r3 = s175 ∧ s176

z ⊕ r3 = s69 ⊕ s179

This means we introduce three splitting variables for each clocking (except for the
last 66 clockings). Starting from a fully determined system with 399 equations this
splitting yields a system of 732 equations in 732 unknowns. The equations are still
Boolean. Hence the next step is to convert the system of Boolean equations into a
system over the reals.

Conversion Using the Standard Conversion Method

The only requirement is that a solution of the Boolean system is also a solution of
the equation system over the reals. We can ignore additional non-binary solutions
of the real system. Thus it does not matter whether we convert each side of the
equation and subtract the resulting terms afterwards or write the equation of the
form p(x) = TRUE/FALSE and convert the Boolean polynomial p(x) as a whole
into a polynomial over the reals using the standard conversion method. The advantage
of splitting the equation into two parts is that the degree of the resulting polynomial
is at most two as explained above. This yields equations over the reals of the following
form:

x162 + x177 − 2x162x177 = z

r̃1 − x66 − x93 + 2x66x93 = 0

r̃2 − x91x92 = 0

r̃1 + r̃2 − 2r̃1r̃2 − x171 − x178 + 2x171x178 = 0

r̃3 − x175x176 = 0

(1− 2z)r̃3 − x69 − x179 + 2x69x179 = −z
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where xi = t(si) and r̃i = t(ri) and t is the mapping that maps a Boolean variable to
a real variable (cf. Definition 8.5).
We still have quadratic equations. All these constraints are equality constraints. The
last step is to replace the quadratic terms by new variables which will be forced to
take the correct values by additional constraints.

Linearization

In order to linearize the equations we introduce a new binary variable y for each
quadratic term xixj . We want this new variable to be zero if xi or xj is zero and to be
one if and only if xi and xj are both one. We can achieve this by adding the following
inequalities to the system of constraints:

y ≤ xi, (9.6)

y ≤ xj , (9.7)

xi + xj − 1 ≤ y. (9.8)

The inequality constraints (9.6) and (9.7) make sure that y = 0 if xi = 0 or xj = 0
while (9.8) ensures that y = 1 if xi = 1 and xj = 1. We introduce one new variable
and three inequality constraints for each quadratic term. The equality constraints are
of the form

x162 + x177 − 2y1 = z

r̃1 − x66 − x93 + 2y2 = 0

r̃2 − y3 = 0

r̃1 + r̃2 − 2y4 − x171 − x178 + 2y5 = 0

r̃3 − y6 = 0

(1− 2z)r̃3 − x69 − x179 + 2y7 = −z

This linearization yields a system of 732 equality and 2529 inequality constraints in
1575 variables (again starting from a fully determined system with 399 variables in
399 unknowns).

9.1.2 Linearization Using the Integer Adapted Standard Conversion
Method

In this linearization method we use the fact that we want to use the resulting system
of equalities and inequalities in a mixed-integer programming problem. This means
that we can restrict some (or all) variables to be integers. Consequently, when we
convert a Boolean equation, we do not have to ensure that the equation holds over the
reals but over the integers. Hence, we can use the integer adapted standard conversion
to convert the Boolean equations into integer equations.

It is assumed that the smaller the number of monomials per equation is, the
easier it is to solve the resulting mixed-integer prgramming problem. For this reason
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we start by splitting the equations by introducing auxiliary variables. We introduce
t1 = s66 ⊕ s93 and also replace s162 ⊕ s177 by the keystream bit z in (9.3). We apply
the standard conversion method to equations with no more than three monomials.
In this case the number of monomials per equation and the number of new variables
is the same as when using the IASC. But by replacing a quadratic term by a new
variable we get three constraints instead of only the restriction that the variable is
binary. That means we get stronger constraints by using the standard conversion in
these cases. For equations with more than three monomials we use the IASC. This
yields equations of the form:

x162 + x177 − 2x162x177 = z

t1 − x66 − x93 + 2x66x93 = 0

t1 + x91x92 + x171 + x178 − 2y1 = 0

x175x176 + x69 + x179 − 2y2 = z

where y1 ∈ {0, 1, 2} and y2 ∈ {0, 1}. Finally we replace the quadratic terms by
new variables and add the corresponding inequality constraints (9.6)-(9.8) (as in Sec-
tion 9.1.1.)

x162 + x177 − 2y3 = z

t1 − x66 − x93 + 2y4 = 0

t1 + y5 + x171 + x178 − 2y1 = 0

y6 + x69 + x179 − 2y2 = z

This means for each clocking of the algorithm we introduce one new variable for
splitting, two new integer-valued variables for the integer adapted standard conversion
and four new binary variables for the linearization. As y2 ∈ {0, 1} actually six of these
variables are binary and only one is an integer. We introduce three variables less per
clocking this way than when using the standard conversion method. Starting from a
fully determined Boolean system this yields a system of 2040 equalities and inequalities
in 1020 variables.

9.1.3 Bivium A as a Feasibility Problem

From the linearization we obtain a system of linear equalities and inequalities over the
reals and integers, respectively, which describes the internal state of Bivium A. Since
the number of variables exceeds the number of equality constraints we cannot use
Gauss elimination to solve the system. Therefore we use these constraints to describe
the feasible set of a mixed-integer linear programming problem. Let

min
x
{cTx : Ax ≤ b, x ∈ {0, 1}k1 × Z

k2 × R
l} (9.9)

be the mixed-integer programming problem describing Bivium A where the matrix A
and the vector b are given by the constraints obtained from converting and lineariz-
ing the Boolean equations of Bivium A and by the upper and lower bounds on the



142 9.2. Results

variables. If we can find a feasible binary/integer-valued solution for this MIP for
an arbitrary objective function, this solution can be converted into a solution for the
Boolean system. Hence, it is not important to find a minimal solution but a feasible
point. It is possible that more than one feasible point exists, it is also possible that
the Boolean system does not have a unique solution. But it is likely that an overde-
termined Boolean system has a unique solution and the corresponding feasible region
contains only one element.

Furthermore, we can observe that most of the variables are dependent on the
initial state variables (all except the variables introduced by IASC in Section 9.1.2).
This means that we do not have to restrict all variables to be integer or binary. It is
sufficient to force the initial state variables to be binary (and the IASC-variables to
be integers).

In the next section we will discuss which function might be appropriate as objective
function, how many additional keystream equations we should generate to obtain
an overdetermined system and which variables should be restricted to be binary or
integers. Furthermore, we will compare the two different linearization methods.

9.2 Results

In this section we present our observations and results from experiments with various
variants of Bivium A and Bivium B as mixed-integer programming problems. We
focus mainly on MIPs that use the constraints obtained using the standard conversion
method and linearization. We consider some variants of Bivium A with a smaller
state size, see Table 9.1, to compare the increase of the solution time to the number of
variables. We also tried to find the optimal number of additional keystream equations,
a good objective function and the variables which should be restricted to be binary.
Later we will compare this approach to MIPs using constraints obtained by the IASC.

For all experiments we use the commercial linear optimization tool CPLEX by
ILOG [4]. CPLEX has a user’s choice for emphasis on feasibility or optimality. We
choose emphasis on feasibility because we are not interested in optimality and stop
after we find the first solution because we assume that there is only one element in
the feasible set. We use CPLEX version 9.130 on a Sun Fire E25K SF 12K with
shared processors. On this machine 224 Bivium simulations over 5 × 177 steps take
214.5 seconds. This means we can approximately search through 29.5 keys per second.

9.2.1 Parameters Using the Standard Conversion Method

For finding good parameters (objective function, binary variables, additional equa-
tions) we ran most of the tests for the smallest variant Bivium A Step 1. This variant
has internal state size of 118 bits and keeps the structure of Bivium A as much as
possible. The pseudo code of Bivium A Step 1 is given in Figure 9.2.1. We confirmed
these parameters for the variants with larger state size by running some spot tests.
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Table 9.1: Variants of Bivium A with smaller state size.

Name Step 1 Step 2 Step 3 Bivium A

state size 118 133 147 177

keystream
bits required

158 177 196 236

variables 1530 1718 1894 2283

equalities 728 817 901 1086

constraints 3254 3652 4027 4854

t1 ← s44 + s62

t2 ← s108 + s118

z ← t1 + t2

t1 ← t1 + s60s61 + s114

t2 ← t2 + s116s117 + s46

(s1, s2, . . . , s62) ← (t2, s1, . . . , s61)

(s63, s64, . . . , s118) ← (t1, s63, . . . , s117)

Figure 9.1: Pseudo code Bivium A Step 1.

Binary vs. Continuous

Using the standard conversion method to convert the Boolean equations into real
equations, all newly introduced variables (the newly introduced state variables, as well
as the auxiliary variables and the linearization variables) are dependent on the initial
state variables. This means that forcing the initial variables to take binary values will
also force all other variables to take binary values. This raises the question, whether
it is an advantage to have binary restrictions only for the initial state variables instead
of for all. A branch-and-bound algorithm determines a variable for branching in each
step. In the binary case this variable will be assigned 0 and 1 to grow the search tree
further in one node. Intuition tells us that it is better to choose variables for branching
which automatically force many other variables to take binary values. This can be
achieved by only restricting these variables to be binary or by giving the algorithm
an order in which it should consider the variables. We can confirm our intuition by
experiments, see Table 9.2.

Table 9.2 shows the running time for 10 typical instances of the problem. An 80 bit
key is chosen at random to generate a fully determined Boolean equation system. This
system is used to formulate a mixed-integer linear programming problem as explained
before. As objective function the sum over all variables is used. The last two rows
of the upper table in Table 9.2 give the average and the standard deviation taken
over a larger sample. The lower table contains the average and standard deviation
over a sample where the Boolean system is overdetermined. We can see that the
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Table 9.2: Comparison of running time in seconds for Bivium A Step 1 between the
MIP with binary restriction on the initial state and on all variables. The two last
rows of the upper table contain the average running time in seconds and the standard
deviation for a sample using a fully determined system. The lower table contains the
average running time and the standard deviation for a sample using an overdetermined
system.

No. mixed binary

1 385 1583
2 550 890
3 170 478
4 157 277
5 629 1297
6 42 27
7 1209 620
8 213 1011
9 256 286
10 484 1979

average 548 783

std 393 563

mixed binary

average 493 930

std 272 289

average running time is cut by 30% to almost 50% when we compare the case where
all variables are restricted to be binary to the case where only the initial state variables
have binary restrictions. Even though the running times vary a lot for both cases the
standard deviation is smaller for the mixed problems. Furthermore, we note a decrease
of the standard deviation when we consider overdetermined problems. Considering
these improvements it seems to be a good strategy to restrict only the initial state
variables to be binary. All other variables are continuous variables.

Objective Function

As mentioned before, Bivium A is formulated as a feasibility problem and the objective
function does not influence the solution in a way that matters for us. That means
we can choose an arbitrary objective function. Even if the objective function is not
important to get the correct solution of the problem it is important for the performance
of many mixed-integer algorithms. In branch-and-bound algorithms the bounding
function estimates the best value of the objective function obtainable by growing the
tree one node further. This value is an important factor in the process of choosing
the next node in the search tree. The closer the value of the bounding function to the
objective function the better.

The only restriction for the objective function we have is that it must be linear.
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Natural choices are

1. the zero-function,

2. the sum over the initial state variables,

3. the sum over all variables which are introduced by the original Boolean system
i.e., the sum over all state variables,

4. the sum over all variables,

5. the sum over all but the initial state variables.

Already a few tests showed that the zero-function is not a good objective function in
practice. This is not surprising because the constant zero-function gives the algorithm
no information and does not show any improvement. We focused on the four remaining
candidates for the objective function. Our experiments show, see Table 9.3, that we
achieve the best running time if we use the sum over all variables as the objective
function. Here again the first 10 rows contain the running times of 10 typical instances
of the mixed-integer programming problem we get from a randomly chosen key and
the corresponding overdetermined Boolean equation system. In our formulation of
the MIP only the initial state variables are restricted to be binary. The last two rows
contain the average running time and standard deviation taken over a larger sample.
As mentioned before, the sum over all variables turns out to be the best objective
function in this sample and is used in all further experiments. But the 5th candidate,
the sum over all non-state variables, is almost as good and we expect that these two
functions will yield similar results because the functions have similar properties.

For a random point we expect that approximately half of the bits are zero and
half of the bits are one. This is different when we consider a solution for our equation
system generated by a randomly chosen key. For a key chosen at random we expect
that the state variables behave like a random sequence, meaning that half of the
initial state variables as well as the updated state bits are zero. Otherwise this would
exhibit a severe weakness of the cipher. The same holds for the splitting variables
which represent an XOR sum of two state variables. However some of the splitting
variables and all variables which are introduced in the linearization process represent
a product of two binary variables. Thus we can expect a bias in the distribution of
ones and zeros in these variables. A product of two binary variables is one if both
binary variables are set to one. Hence, when we consider the variables in the solution
which represent products of binary variables we can expect that only one quarter of
them are one. This means for a key chosen at random approximately one third of the
variables take the value one.

Using the sum of certain variables as objective function means looking for a solution
where the Hamming weight of these variables is minimal. For the second and third
candidates the expected value of the objective function for the solution is the same
as for a random point. But for the fourth candidate, the sum over all variables, the
expected value for the correct solution is only one third of the number of variables
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Table 9.3: Comparison of running time in seconds of Bivium A Step 1 as MIP with
different objective functions. The first 10 rows contain the running time in seconds
corresponding to the different objective functions. The row labeled with average shows
the average run time in seconds and the last row gives us the standard deviation. Both
values are calculated based on a larger sample.

No.
∑118

i=1 xi
∑270

i=1 xi
∑#variables

i=1 xi
∑#variables

i=118 xi
1 510 365 262 202
2 477 635 198 270
3 180 1325 791 723
4 495 931 621 512
5 627 1151 411 168
6 145 506 244 180
7 544 342 939 394
8 387 1057 416 542
9 613 527 641 493
10 972 779 136 382

average 573 678 449 463

std 290 320 232 286

Table 9.4: Running times in seconds of Bivium A for instances with low Hamming
weight (All values are averages over samples of size 5.).

HW initial state HW solution time in sec

10 209.4 0.2
20 346.8 17.2
40 496.8 780.3
60 617.0 9113.6
80 657.4 9342.0
100 770.9 29135.7
120 868.8 27777.7

which is significantly less than half of the number of variables which is the expected
value for a random point. Here minimizing the objective function leads us in the right
direction. Also the last candidate has the property that the correct solution has a
lower Hamming weight than a random point.

The observation that the sum over all variables is the best objective function raises
the question if the MIP is solved faster if the Hamming weight of the solution is low.
We tested this on an overdetermined system of Bivium A (59 additional keystream
equations and the corresponding quadratic equations) and our tests show that prob-
lems with a low weight solution are in average solved much faster, see Table 9.4. The
hypothesis of our experiments is:
The sum over all variables

∑m
i=1 xi where m is the number of variables, is a good

choice for the objective function.
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Table 9.5: Average running times over 10 test cases for overdetermined systems.
Bivium A Step 1
add. keystream bits +5 +10 +20 +40 +59

average time in sec 743 548 719 438 2063

Bivium A Step 2
add. keystream bits +10 +40 +44 +67

average time in sec 3493 2446 2209 3767

Bivium A
add. keystream bits +10 +59 +89

average time in sec 25759 15309 21950

We use this objective function in the remaining experiments.

Overdetermined System

The fully determined non-linear Boolean equation system (meaning n equations in
n unknowns where n = 399 in the case of Bivium A) has possibly more than one
solution. For an overdetermined system it is likely that the solution is unique. For-
tunately, it is very easy to generate an overdetermined Boolean system for Bivium.
After we have generated a fully determined system each additional keystream bit gives
us three equations and two new variables. We believe that as little as 5 to 10 addi-
tional keystream bits are already sufficient to get a unique solution in most cases. On
the one hand, the advantage of adding even more equations is that the feasible set
will get smaller and hence the algorithm will become faster. On the other hand more
constraints come into play which will slow down the algorithm. The question is how
many additional keystream equations and corresponding quadratic Boolean equations
we should add. Here the hypothesis of our experiments is, see Table 9.5:
Generate one third more keystream equations and the corresponding quadratic equa-
tions to define the system.

9.2.2 Results on Bivium A Using Standard Conversion

We ran tests for all variants of Bivium A where the key was chosen at random. We
used the following settings which are good according to our earlier experiments:

• The objective function is the sum over all variables.

• We obtain an overdetermined system by generating one third additional key-
stream equations.

• We restrict the initial state variables to be binary, all other variables are con-
tinuous.
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Table 9.6: Overview over Bivium A with different state size.

Name Step 1 Step 2 Step 3 Bivium A

state size 118 133 147 177

keystream
bits required

158 177 196 236

variables 1530 1718 1894 2283

equalities 728 817 901 1086

constraints 3254 3652 4027 4854

time in sec. 555 2110 2535 15267

We summarize the results in Table 9.6 where the last row contains the average running
time taken over a samples ranging from 10 to 30 instances.

We are able to break Bivium A in less than 4.5 hours on average. This shows us
that our approach is faster than Raddum’s [90] (about a day) but slower than using
MiniSAT [80] (reported to be 21 sec).

9.2.3 Results on Bivium B Using the Standard Conversion

In the same manner as for Bivium A we can convert Bivium B into a mixed-integer
programming problem. We use the same settings as we did for Bivium A, i.e., the
objective function is the sum over all variables, we generate an overdetermined system
by adding 59 additional keystream and corresponding state update equations, and we
restrict only the first 177 variables to be binary. This yields an MIP in 2821 variables
and 5865 constraints, 1388 of these are equality constraints. We start by considering
variants of Bivium B with smaller state sizes of 59 and 118 bits respectively.

Table 9.7: Running time in seconds of Bivium B and its variants with smaller state
sizes.

Bivium B Bivium B Bivium B
state size 59 state size 118 full size

210 · 211.5 230 · 212.6 250 · 213.7

Initial experiments showed that Cplex was not able to solve even the small in-
stances of Bivium B as a mixed-integer programming problem in a reasonable run-
ning time. As an example we compared Bivium B with a state size of 118 bits to
Bivium A Step 3 which has a state size of 147 bits. The associated MIPs approxi-
mately correspond to each other in terms of the number of variables and constraints.
A comparision of the problem size is given in Table 9.8. While the MIP corresponding
to Bivium A Step 1 can be solved in approximately 42 minutes on average, no solution
was found for the MIP which was derived from the small-scale variant of Bivium B
after a about a day. Thus, we reduced the complexity of the problem by guessing bits.
When we run all experiments in parallel the expected running time of the algorithm
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Figure 9.2: Running time for Bivium A with different state sizes (exponential com-
pensating curve).

is the time it needs to find the solution for the correct guess times 2n where n is the
number of guessed bits. Inspired by [48] we tried two different guessing strategies.
We guessed bits at the beginning or at the end of the initial state. It turned out that
guessing the last bits is a better strategy. For the variant of Bivium B with internal
state size 118 the average time to find the solution after we guessed the first 30 bits
correct was 31635 sec while the average time for guessing the last 30 bits correct was
just 6334 sec. Here we have an improvement by a factor of five. For that reason we
will guess the last bits of the initial state in all further experiments. We can also see
that for a variant of Bivium B with state size 118 we have to guess 30 variables. This
means the problem has a high complexity.

Table 9.11 shows the results for Bivium B when we guess 50 or 55 bits. We can
see that even though the running time of the optimization algorithm increases, the
overall complexity decreases when we guess less bits. However, we can also observe
that the variance of the results on Bivium B with 50 bits guessed is quite high. So
far there is no explanation for the big differences in the running time but a general
observation is that the fewer variables we fix the higher the standard deviation is.

We can determine the initial state for Bivium B in 263.7 seconds (assuming that we
run the tests for all guesses in parallel). Our simulations showed that we can search
through 224 keys in 214.5 seconds. That means that the complexity of our approach
corresponds to searching through 273.2 keys. This is not a very impressive result
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Table 9.8: Comparison Bivium A Step 3 and a small-scale variant of Bivium B.

Name Bivium A Step 3 Bivium B (small scale)

state size 147 118

keystream
bits required

196 158

variables 1894 1890

equalities 901 930

constraints 4027 3930

Table 9.9: Running time in seconds for some tests on Bivium A using IASC.
no. +10 keystream bits +59 keystream bits

1 243241 50395
2 211305 27853
3 6572 8912
4 35296 12545
5 9966 6760
6 29650 39950
7 52230 10596
8 183083 1050
9 130254 111693

av 100180 27652

compared to the result using Raddum splitting algorithm [90] which takes 256 seconds
corresponding to a search through 269.3 keys or the even better result using MiniSAT
[80] which takes 242.7 seconds, corresponding to a search through 256 keys, to attack
Bivium. But it shows that mixed-integer programming has a certain potential for use
in cryptanalysis.

9.2.4 Results Using the Integer Adapted Standard Conversion

Our second approach involves a different conversion method which leads to a different
model of the state recovery problem of Bivium as a mixed-integer linear programming
problem. The important difference are the constraints defining the feasible set. We
describe the feasible set of the MIP by the constraints we get from using the conversion
and linearization presented in Section 9.1.2. As objective function we use the sum over
all but the variables introduced by the IASC, i.e., we sum over all binary variables. We
restrict the initial state variables to be binary and the variables introduced by the IASC
to their integer values. In Table 9.9 we can see that the running time for this approach
is worse than for the approach using the standard conversion method even though
using the IASC leads to a mixed-integer programming problem with less variables and
constraints than the MIP which is obtained using the standard conversion method.
(The dimensions of the two different MIPs are compared in Table 9.10.) One reason
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Table 9.10: Parameters of the two approaches for Bivium A.
Method IASC SC

state size 177 177

variables 1773 2283

equalities 746 1086

constraints 2984 4854

variables with restrictions 517 177

for that might be that the parameters which yield good results in our first approach
are not optimal for the approach using the IASC. Another more likely reason is that
we have more variables with restrictions in the approach using the IASC, nearly three
times as many as when using the standard conversion approach. This means that the
algorithm has to consider more variables when it chooses the next branching variable.
Some of these variables are not binary but integer-valued. That means there are
even more possibilities to fulfill this equation and therefore the constraint is weaker.
However, this approach is still interesting when we want to derive an MIP from a
more complex equation system such as Bivium B or small-scale variants of AES. Here
the lower complexity of the resulting constraints could be an advantage even if we get
more variables with restrictions.

9.3 Possible Improvements through Extra Constraints

Fixing some variables to their correct values reduces the number of variables of the
problem. Another possibility to simplify the problem is to reduce the size of the
feasible region by adding additional constraints.

9.3.1 AND-gate Constraints

In the previous section we have seen that a mixed-integer programming problem cor-
responding to Bivium B is more difficult to solve than one corresponding to Bivium A.
Thus, we have to simplify the problem and decrease its complexity. Our first idea to
reduce the size of the feasible set is to use what we call AND-gate constraints. These
are constraints which can easily be derived from a given instance of Bivium. The
additional constraints are generated in the following way.

The quadratic Boolean update functions contain a quadratic term (an AND-gate)
which we replace by a new variable during the linearization process. These AND-gates
contain successive variables. This means if one AND-gate or one of the variables which
represent the AND-gate is zero then also the following or the prior AND-gate/variable
must be zero. This leads to the following deterministic constraint:

r1 + r3 − r2 ≤ 1

where r1 = x1x2, r2 = x2x3 and r3 = x3x4 are variables that represent AND-gates.
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Table 9.11: Timing results on Bivium B in seconds (*including cost for bit guessing).
The numbers in the first row indicate how many bits are preassigned, ’AND-Gate’
means we added the AND-Gate constraints. The rows labeled with 1 to 10 contain
the run time in seconds excluding the cost for bit guessing.

50 given 55 given 55+ And-gate

1 1073 104 382
2 1325 550 591
3 213 27 1711
4 97592 3818 742
5 79935 213 2194
6 31311 1308 1667
7 7642 452 2623
8 486 949 566
9 745 364 1734
10 8434 434 851

average * 263.7 265.2 265.5

Table 9.11 lists the running times for 10 instances of the problem as well as the
average running time which is taken over a larger sample. As we can see the additional
constraints do not improve the running time, actually they impair it. One reason
could be that we increase the number of constraints too much, maybe adding just a
few new constraints would improve the running time. However, we did not run tests
to investigate this.

9.3.2 CNF Constraints

Another possibility is to add constraints which we derive from the conjunctive normal
form of the Boolean equation describing the internal state of Bivium [86]. Given
a Boolean function in algebraic normal form it is rather simple to convert it into
conjunctive normal form using Algorithm 6. The size of the expression converted
from ANF to CNF may be exponential.

Given a Boolean equation of the form

f(x1, . . . , xn) = a

where f is a Boolean polynomial and a ∈ {FALSE, TRUE} we convert

• f(x1, . . . , xn) into CNF if a = TRUE and

• ¬f(x1, . . . , xn) into CNF if a = FALSE.

Note that the equation is satisfied if the corresponding term in CNF is true.
Considering a Boolean equation in conjunctive normal form we introduce a new

inequality constraint for each clause. Each negated Boolean variable is converted into
a negative integer variable and the OR operator is replaced by the addition over the



Chapter 9. Bivium as a Mixed Integer Programming Problem 153

Algorithm 6 Converting ANF into CNF.

Require: f is a Boolean function in ANF
1: Eliminate exclusive-or ⊕ using the identity

a⊕ b⇔ (a ∨ b) ∧ (¬a ∨ ¬b)

2: Eliminate negation ¬ using DeMorgan’s law

¬(a ∨ b)⇔ ¬a ∧ ¬b

¬(a ∧ b)⇔ ¬a ∨ ¬b
3: Distribute disjunction ∨ over conjunction ∧

a ∨ (b ∧ c)⇔ (a ∨ b) ∧ (a ∨ c)

reals. The left-hand side of the inequality has to be chosen such that the clause is
satisfied for all assignments of the variables to the values {0, 1} for which the inequality
holds. Given the following Boolean equation in CNF

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) = 1

yields the following two constraints

x+ y + z ≥ 1

−x+ y − z ≥ −1

We focus on the keystream equation and add the constraints we obtain from the
CNF of the keystream equation of Bivium to the corresponding MIP. The keystream
equation of Bivium B in CNF and the resulting inequality constraints are given in
the Appendix C. We performed limited tests on Bivium B with additional constraints
where we considered three different approaches:

• We add all additional inequalities we can obtain from the keystream equations.

• We only add very few additional inequalities (e.g from the first 5-10 keystream
equations).

• We add the inequality constraints which we obtain from the CNF of the key-
stream equations from the first 66 clockings. These are the keystream equations
which only contain initial state bits.

The results are summarized in Table 9.12. The limited number of experiments suggest
that using a few additional inequalities, which are derived by looking at the CNF,
decreases the complexity of the attack. However, more tests are necessary to draw a
firm conclusion.
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Table 9.12: The complexity in seconds for solving an instance of the MIP correspond-
ing to Bivium B where additional constraints obtained from the CNF of the keystream
equations are used. The system is overdetermined by 59 additional clockings and the
last 55 variables of the initial state are set to their correct values. The last row of the
table contains the average complexity over the 10 instances.

reference (no

add. constraints)

all CNF

constraints

few CNF

constraints

CNF constraints of

the first 66 equations

1 124 2731 57 393
3 318 594 703 261
4 2135 1613 942 4492
5 426 208 189 212
6 462 692 643 279
7 770 763 925 442
8 1450 697 283 3040
9 1061 1896 1227 1154
10 2011 3376 269 194

av. 973 1396 582 1163

9.4 Conclusion

We showed two ways of transforming Bivium into a mixed-integer linear programming
problem. One way uses the standard conversion method to convert Boolean equations
into equations over R, the other way uses the integer adapted standard conversion
to convert the Boolean equations into equations over Z. These two methods are also
applicable to any other Boolean equation system.

The best results for Bivium A are achieved by using the standard conversion
method with an estimated time complexity of 213.9 seconds or approximately 4.5
hours. Using the integer adapted standard conversion we get an attack with running
time of 214.76 seconds or approximately 8 hours. Solving the MIP which corresponds
to state recovery of Bivium B converted using the standard conversion has an average
time complexity of 263.7 seconds which corresponds to a search through 273.2 keys.
Comparing the results on variants of Bivium B with a smaller state size to Bivium A
shows that not only the increased number of variables in Bivium B but also the more
complex structure of the equations are responsible for the increase of the running
time. Moving from Bivium B to Trivium would double the number of variables in the
corresponding MIP. Also, the keystream equation of Trivium involves six variables
and hence is more complicated than the keystream equation of Bivium B. Therefore
the mixed-integer programming in its current form as presented in this chapter can
not be considered as a threat for Trivium.



Chapter 10

Hill Climbing Algorithms and
Trivium

In this chapter we propose a new method to solve a certain class of systems of multi-
variate equations over the binary field. We show how heuristic optimization methods
such as hill climbing algorithms and in particular simulated annealing can be relevant
for solving such equation systems. A characteristic of equation systems that may be
efficiently solvable by means of such algorithms is provided. As an example, we inves-
tigate equations induced by the problem of recovering the internal state of the stream
cipher Trivium. We propose an improved variant of the simulated annealing method
that seems to be well-suited for this type of equations and provide some experimental
results.

The motivation behind this approach is that many cryptographic schemes can be
represented as a system of multivariate non-linear equations, in such a way that solving
this equation system recovers the secret key or initial state. This fact is exploited by
the so-called algebraic attacks, which have received much attention in the recent years.
In general, solving random systems of multivariate non-linear Boolean equations is an
NP-hard problem [51]. However, when the system has a specific structure, we can
hope that more efficient methods exist.

The method we propose here applies to sparse equation systems. The important
additional requirement we make is that each variable appears only in a very limited
number of equations. The equation system generated by the keystream generation
algorithm of the stream cipher Trivium [43] satisfies those properties and will be
examined in this paper as our main example. Our approach considers the problem
of finding a solution for the system as an optimization problem and then applies an
improved variant of simulated annealing to it. Simulated annealing works well for
many difficult problem in combinatorial optimization.

The use of simulated annealing in the context of cryptology is not new. An attack
on an identification scheme based on the permuted perceptron problem (PPP) was
presented in [69]. An appropriate cost function was found which made it possible to
solve the simpler perceptron problem as well as the PPP using a simulated annealing
search. The attack showed that the recommended smallest parameters for the identi-
fication scheme are not secure. The same identification scheme was later subjected to
an improved attack [32]. Simulated annealing was used to solve a related problem that
had solutions highly correlated with the solution of the actual problem. Furthermore,
timing analysis was applied where the search process was monitored and one could
observe that some variables were stuck at correct values at an early state and never
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changed again. These variables got stuck at their correct values, thus parts of the
solution could be determined even if no complete solution was found. The two main
properties that make an equation system suitable for simulated annealing are

1. sparsity of the equations,

2. locality of the variables, meaning that each variable only appears in a limited
number of equations.

We will show that Trivium satisfies these properties and present an improved
version of the simulated annealing algorithm.

10.1 Trivium as a Discrete Optimization Problem

To begin with we recall the discrete optimization problem (Definition 7.7). Given
a finite set X of configurations we want to minimize the cost function. The cost
function maps each configuration to a non-negative cost value. We want to find the
configuration that yields minimal costs. In order to apply generalized hill climbing
algorithms such as simulated annealing we additionally have to define a neighborhood
function, which describes a set of neighbors for a given configuration x ∈ X.

We know that the state recovery problem of Trivium can be described as a system
of 954 equations in 954 unknowns where the equations are of the form:

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z

(10.1)

Furthermore, we know that the initial state bits together with the corresponding
updated state bits satisfy all the generated equations (10.1). On the other hand, for
a random point each equation is satisfied with probability 1

2 . It is obvious that a
random point satisfies the linear equation with probability 1

2 . A quadratic equation is
satisfied if the quadratic term and the linear part have the same value. In the Trivium
system each variable appears at most once per equation. Therefore the probabilities
for the quadratic term and the linear part of the equation are independent. Hence the
probability that a random point fulfills a quadratic equation of the Trivium system is
Pr[quadratic term = 0] ·Pr[linear part = 0]+Pr[quadratic term = 1] ·Pr[linear part =
1] = 1

2 · 34 + 1
2 · 14 = 1

2 .
If we consider the problem of solving the Trivium equation system as a discrete

optimization problem which is suitable for hill climbing algorithms (cf. Section 7.2)
the set of all possible assignments of the 954 variables X = {0, 1}954 is the set of
possible configurations. As a cost function f : X → R

+ we count the number of not
satisfied equations in the system. We know that the minimum of the cost function
is 0 and that the initial state of the Trivium system is a configuration for which the
cost function is minimal. There might be other optimal solutions, however, it is easy
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to check whether the solution we found is the desired one. If a configuration is an
optimal solution for the discrete optimization problem, it generates the same first 288
bits of keystream as the initial state we are looking for. But it is unlikely that the
keystream will be the same for the following keystream bits. Therefore we can check
whether a solution is the desired one by observing a few more keystream bits and
comparing them to the keystream generated by the solution. In our experiments it
is unlikely that multiple solutions occur because we set some of the variables to their
correct values and therefore consider a highly overdetermined equation system.

In addition to the configuration set and the cost function we have to define a
neighborhood function in order to use simulated annealing to solve the discrete opti-
mization problem formulated above. We move from the current configuration x to a
neighbor y ∈ η(x) by flipping one bit.

η(x) = {y ∈ X| hw(x⊕ y) = 1}

where hw denotes the hamming weight. That means every configuration has 954
neighbors, which is the smallest possible neighborhood. To sum up the state recovery
problem of Trivium can be formulated as a discrete optimization problem defined as:

• X = {0, 1}954 is the configuration set.

• The cost function is the integer sum of the outcome of equations in the system
evaluated at point x ∈ X or in other words the costs are the number of not
satisfied equations for the current configuration of the system.

• The neighborhood of a configuration x ∈ X is defined as

η(x) = {y ∈ X|hw(x⊕ y) = 1}.

In the next section we analyze some of the properties of Trivium.

10.2 Properties of Trivium

Hill climbing algorithms are sensitive to the way the cost function changes when
moving between configurations. The best results are obtained when a move from a
configuration x ∈ X to one of the neighbors y ∈ η(x) does not change the value of the
cost function too much.

In our case we move from one configuration to another by flipping the value of
a single variable. Each variable appears in at most 8 equations and in 6 equations
on average, that means that we have a great locality of the variables. Thus, when
moving to a neighbor of the current configuration the cost function will change by
at most 8. Furthermore, each variable appears only once in an equation. Therefore
changing the value of a single variable will change the value of the equation with
probability 1 if the variable appears in a linear term and with probability 1

2 if the
variable appears in a quadratic term. In the latter case flipping the value of a variable
will just change the outcome of the equation if the other variable in the quadratic term
is assigned to ’1’. If a variable appears in the maximum of eight equations it appears
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Table 10.1: Change of the cost function when moving to a neighbor configuration:
The first row denotes the number of preassigned bits we use to simulate different
distances from the minimum. We count how often out of 10000 trials the cost function
changes by 0 to 8 units. The last row gives us the average change of the cost function.

i 0 100 200 300 400 500 600 700 800 900 954

0 1714 1702 1685 1560 1309 1052 944 767 601 264 0
1 3253 3246 3297 3158 2641 2143 1856 1550 1120 389 34
2 2248 2235 2240 2241 1930 1720 1385 1172 937 1001 1062
3 1557 1571 1550 1659 1821 1757 1488 1278 1258 1515 1537
4 675 665 668 754 1024 1020 911 810 741 596 648
5 386 400 380 409 691 940 1088 1078 1024 1068 1160
6 127 128 130 164 409 916 1372 1630 1866 2002 2049
7 32 44 41 46 165 439 837 1352 1854 2297 2534
8 8 9 9 9 10 13 119 363 599 868 976

average 1.81 1.824 1.814 1.9 2.32 2.83 3.32 3.85 4.38 4.97 5.3

in two equations in the quadratic term only. The expected number of equations which
change their outcome is 7. Additionally it is unlikely that flipping the value of a
variable changes the outcome of all equations which contain this variable in the same
direction or respectively it is unlikely that all equations which contain the variable
have the same outcome for this configuration before the flip. (The case that a lot
or even all equations have the same outcome will appear with higher probability the
closer we are to the minimum.)

From these observations we infer that even if we move from a configuration x to
one of its neighbors by flipping the value of a variable which appears in 8 equations
we do not expect that the value of the cost function changes by 8 in almost all of the
cases.

We confirmed this by the following experiment. We generated a Trivium system
for a random key and calculated the cost function for a random starting point. Then
we chose a neighbor configuration of our starting point and recorded the absolute
value of the change in the cost function. To simulate being close to the minimum we
set a number of bits to the correct solution but we allowed those bits to be flipped to
move to a neighboring configuration. The results are summarized in Table 10.1.

10.3 Solving the Trivium Systems with Modified Simu-
lated Annealing

The properties of the Trivium equation system suggest that it is possible to employ
heuristic search methods such as simulated annealing to find a global minimum and
thus recover the internal state of the cipher. We have the advantage of knowing that
the minimum value is zero and therefore we have a stop criterion for the search.

Initial experiments with standard simulated annealing were not very encouraging.
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As we knew the correct solution of the system we could observe that even after a long
running time the algorithms would not approach the optimal solution. We simplified
the problem by assigning some of the variables their correct values. To be able to solve
the Trivium system in reasonable time, we needed to simplify the initial system by
setting around 600 out of 954 variables to their correct values throughout the search.

The introduction of a parameter called nochangebound showed a significant im-
provement over the standard algorithms. The algorithm works as follows. As with
standard simulated annealing, we randomly generate a neighbor. If the cost decreases,
we accept this move. If not, instead of accepting the move with a probability related
to the current temperature, we pick another neighbor and test that one. If after test-
ing a certain number of neighbors we cannot find any cost decreasing move, we accept
the deteriorating move with a certain probability, just as in the plain simulated an-
nealing. The parameter nochangebound of this algorithm is the number of additional
candidates to test before accepting a cost increase.

If the nochangebound is zero we get the plain simulated annealing, on the other
hand, if we test all possible neighbors before accepting a deteriorating move, we obtain
an algorithm that is equivalent to local search. We look for any possible decreasing
move and follow it. That means, when we find a local minimum the algorithm gets
stuck and enters a loop. After trying all possible neighbors the algorithm will fi-
nally accept the costs of an increasing candidate but in the next step we will always
move back to the local minimum we found. Setting the parameter between those two
extremes yields an intermediate algorithm.

In practice, we used a probabilistic variant of this approach that randomly selects
neighbors until it finds one with smaller cost or it exceeds the number of tests specified
as nochangebound. This algorithm is presented in Algorithm 7.

The proper choice of the nochangebound is critical for the efficiency of the simulated
annealing variant. The relationship between the number of neighbors tested and
the time it took to find a solution (measured in the number of neighbors tested) is
presented in Fig 10.1. Values of nochangebound below 25 result in running times
exceeding 240 flips. It suggests that the nochangebound must not be too small.

10.4 Experimental Results

In this section we report results of our computational experiments with the basic
equation system generated by the problem of recovering the internal state of Trivium.
We took the fully determined system with 954 equations and 954 variables obtained
after observing 288 bits of the keystream.

We made some comparisons between exponential and logarithmic cooling schedules
(see Section 7.2 for details) and from our limited experience the logarithmic cooling
schedule performed better in more cases, so we decided to pick that one for our further
tests.

After a few trials we decided to use α = 35 as the initial temperature. Too large α
resulted in prolonged periods of almost-random walks where there was no clear sign of
progress in terms of decrease of the cost function. Too small α caused the algorithm
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Algorithm 7 Modified version of simulated annealing.
xbest ← x
T ← α ⊲ initial temperature parameter is α
k ← 0 ⊲ set the outer loop counter
while T > 1 do

for m = 0, . . . ,M − 1 do ⊲ parameter M is the number of inner runs
generate a neighbor y ∈ η(x) uniformly
if f(y) < f(x) then ⊲ if cost decreased

x← y ⊲ accept the move
if f(x) < f(xbest) then ⊲ found a new best value

xbest ← x ⊲ store the best configuration
nc← 0 ⊲ reset the neighbor counter
if f(xbest) = 0 then ⊲ if we found a solution

return xbest ⊲ finish and return it
end if

end if

else ⊲ the candidate cost is higher
nc← nc+ 1
if (nc > nochangebound) ∧ (exp((f(y)− f(x))/T > rnd[0, 1]) then

x← y ⊲ accept the move
nc← 0 ⊲ reset the counter of tested neighbors

end if

end if

end for

k ← k + 1
T = α/ log

2
(k ·M) ⊲ Logarithmic cooling schedule

end while

to behave like a local search algorithm when the process was getting stuck in some
shallow local minimum.

In order to simplify the problem we assigned some of the variables their correct
values. For each number of bits of the state fixed to their correct values (preas-
signed) we ran ten identical tests with different random seeds testing various values of
nochangebound parameter (from the set 100, 150, 175, 200, 250, 300). After the test
batch finished, we picked the value of nochangebound that yielded the lowest search
time. We managed to obtain optimal values of the parameter nochangebound for 200,
195, 190, 185, 180, 175 and 170 preassigned bits where we set the values of the first
bits of the internal state. We used this optimal nochangebound to estimate the total
complexity of the attack. The graph is presented in Fig. 10.2. The total complexity is
the product of the number of guesses we would need to make (2preassigned) multiplied
by the experimentally obtained running time of the search for the solution. We take
the complexity for the correct guess. For a wrong guess the algorithm will not find a
solution with costs 0 and thus not terminate.

Figure 10.3 shows that the increase in the running time for the search procedure
is less than the decrease in the costs for bit guessing, which means that the total
running time for the attack decreases when we reduce the number of preassigned bits
(cf. Figure 10.2).
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Figure 10.1: Influence of the nochangebound parameter on the efficiency of simulated
annealing applied to the basic Trivium system for three values of initial temperature
α. Other parameters are M = 1024 (cf. Alg. 7), averages are over 10 tests. In the top
figure we guessed 200 first bits of the state, in the bottom one 180 bits.

If the curve goes down below the complexity level corresponding to 280 key setups of
Trivium, it would constitute a state-recovery attack. However, the problem is that due
to limited computational power we were not able to gather enough results for values of
preassigned smaller than 170. Our program running on 1.1GHz AMD Opteron 2354
was able to compute 235 bit flips per hour and tests with preassigned = 170 required
around 238 ∼ 239 bit flips.

It seems that trying to extrapolate the running times is rather risky, since we do
not have any analytical explanation of the complexities we get as is often the case
with heuristic search methods. Applications of simulated annealing to other problems
have shown that we might hit a wall for a certain problem size, meaning that the
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Figure 10.2: Running times of the attack based on modified simulated annealing
depending on the number of guessed bits. The numbers on the vertical axis are base
two logarithms of the total number of moves necessary to find the solution. Crosses
represent results of single experiments, the line connects averages.
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axis are preassigned.
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problem is not solvable anymore instead of that it scales as expected. Therefore we
do not claim anything about the feasibility of such an attack on the full Trivium. We
can only conjecture that there might be a set of parameters for which such an attack
may become possible.

Due to the computational complexity, our experimental results are so far based
on only rather small samples of runs for the fixed set of parameters. Therefore, they
cannot be taken as a rigorous statistical analysis but rather as a reconnaissance of
the feasibility of this approach. However, we have noticed that for an overwhelming
fraction of all the experiments, the running times for different runs with the same set
of parameters do not deviate from the average exponent of the bit flips by more than
±2, i.e., most of the experiments have the number of flips between 2avg−2 and 2avg+2.
Therefore, we believe that the results give some reasonable impression of the actual
situation.

10.5 Some Variations

The previous section presented the set of our basic experiments. However, there is a
multitude of possible variations of the basic setup which could possibly lead to better
results.

10.5.1 Guessing Strategies

In order to lower the complexity of solving the equation system we set some of the
variables to their correct values. However, the search complexity depends on which
variables we choose.

We used different guessing strategies for pre-assigning variables and compared the
influence on the running time of our algorithm. We used the following strategies to
guess subsets of the state bits:

1. Select the first variables of the initial state.

2. Select the first variables of each register of the initial state.

3. Select the last variables of the initial state.

4. Select the last variables of each register of the initial state.

5. Select the most frequent variables. These are the variables which are introduced
by the update function at the beginning of the keystream generation. We guess
values for variable s289 and the consecutive ones in this case.

6. An adaptive pre-assignment strategy which is similar to the ThreeFour strategy
in [47] (see Subsection 10.5.1).

7. Select the variables in such a way that the equation interdependence measure is
minimal. (see Subsection 10.5.1).
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Table 10.2: Running time for different pre-assignment strategies. nochangebound=110,
190 bits are preassigned, average taken over ten runs.

first bits of the

initial state

most frequent

bits

first bit of every

register

last bit of the

initial state

last bit of

each register

1 28.8 35.2 36.3 31.6 36.1
2 31.2 33.3 35.1 31.7 37.7
3 30.5 30.9 35.3 31.7 37.0
4 28.1 33.7 35.3 32.3 37.2
5 30.7 32.1 30.9 31.1 35.8
6 28.4 35.2 32.7 32.0 33.7
7 28.5 33.7 37.5 29.7 38.9
8 29.9 33.5 35.4 32.3 37.5
9 27.4 30.8 33.2 30.9 33.0
10 31.3 30.9 33.8 28.3 37.1

average 29.5 33.0 34.5 31.2 36.4

It turns out that the best guessing strategy of the ones we tested is to guess the first
bits of the initial state. In addition to a pre-assignment of variables we can determine
the value of further variables by considering the linear and quadratic equations (see
below). We use this technique in the adaptive pre-assignment strategy. However
we tested this strategy using the nochangebound which has been determined for the
number of guess bits and the optimal nochangebound for the number of actually fixed,
pre-assigned bits might be different.

The Adaptive Pre-assignment Strategy

In this pre-assignment strategy we use the fact that assigning 5 of the variables in a
linear equation will uniquely determine the 6th variable. Starting with an arbitrary
linear equation we guess and pre-assign 5 of the 6 variables, determine the value of
the remaining variable and assign this to its value. We know that a large fraction of
the variables appear in two linear equations. So in the next round of pre-assignment
we pick an equation in which at least one variable is already assigned. That means we
only have to guess at most 4 variable to get one for free. We continue until we have
made the maximum number of guesses or we cannot find an equation in which one
variable is already assigned. In the latter case we just have to pick an equation without
preassigned variables and run the algorithm again until we made the maximum number
of guesses.

The advantage of this pre-assignment strategy is that we can assign much more
variables than we actually have to guess. Table 10.3 gives us an impression of this
advantage.

The disadvantage is that instead of making the equations sparser we fix some
equations to be zero. This means that there are less equations left which contain free
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variables but the maximum number of equations in which a variables appears is still
8. Therefore a variable influences a higher percentage of equations.

Additionally to this adaptive pre-assignment strategy we can also use the quadratic
equations to determine the value of variables.

If we want to use a linear equation to determine the value of a variable the values
of 5 of the 6 variables must be known. Then the value of the remaining variable is
unique. If there are less than 5 variables assigned we cannot say anything about the
remaining variables. These are ’0’ or ’1’ with probability 1

2 , independent of the values
of the assigned variables. If we use a quadratic equation to determine the value of
unassigned variables we have to look at different cases. A quadratic equation contains
6 variables, 4 of them appear in linear terms and two in the quadratic term. We have
to consider how many variables are already assigned, at which positions they are, and
what value they have:

• 5 variables in the equation are preassigned

– If both of the variables in the quadratic term are preassigned we can de-
termine the value of the remaining variable.

– If only one of the variables in the quadratic term is preassigned we distin-
guish between the following two cases

1. The preassigned variable in the quadratic term has the value ’1’. Then
we can determine the value of the remaining variable in the quadratic
term.

2. The preassigned variable in the quadratic term has the value ’0’. Then
we cannot make a statement on the value of the remaining variable.

• 4 variables in the equation are preassigned.

– If both variables in the quadratic term are preassigned no further assign-
ment of other variables in the equation is possible

– If one variable in the quadratic term is preassigned we have to distinguish
between the following two cases

1. The preassigned variable in the quadratic term is ’0’. Then we can
determine the value of the variable which is unassigned and appears

Table 10.3: The table shows how many bits additional to the guessed bits can be
assigned using the adaptive pre-assignment strategy.

# guessed bits # assigned bits additional assigned bits in %

5 6 20%
50 66 32%
100 135 35%
200 281 40.5%
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in a linear term but we cannot determine the second variable in the
quadratic term.

2. The preassigned variable in the quadratic term is ’1’. Then no further
assignment is possible.

– None of the variables in the quadratic term is preassigned i.e all variables
of the linear terms are preassigned. In this case we can set both variables
in the quadratic term to ’1’ if and only if the sum of the variables which
appear in the linear terms is 1.

This enables us to significantly increase the number of assigned variables after
we pre-assigned a sufficient number of bits. Unfortunately, it does not improve the
complexity of the simulated annealing search.

Minimizing Equation Interdependency

If all the equations used different sets of variables, it would be trivial to solve the
system by a simple local search. However, variables appear in many equations and
changing the value of one of them influences other equations at the same time. This
suggests the idea of guessing (pre-assigning) bits to minimize the number of variables
shared by many equations and thus reduce the degree of mutual relationships between
equations.

Capturing this intuition more formally, let Ei be an equation and let V(Ei) denote
the set of not preassigned variables that appear in the equation. We can define the
measure of interdependence of two equations Ei, Ej as

IntrDep(Ei, Ej) = |V(Ei) ∩ V(Ej)|.

If the measure is zero, the equations use different variables and we can call them
separated. Note that pre-assigning any bit that is used by both equations decreases
the value of interdependence.

To capture the notion of equations interdependence IntrDep(E) in the whole
system of Trivium equations E, the following measure could be used

IntrDep(E) =
∑

e,g∈E,e 6=g

|V(e) ∩ V(g)|2 . (10.2)

We used the sum of squares to prefer systems with more equations with only few
active (non-preassigned) variables over less equations that have more active variables,
but it is possible to use an alternative measure without the squares,

IntrDep(E) =
∑

e,g∈E,e 6=g

|V(e) ∩ V(g)| . (10.3)

The algorithm for pre-assigning bits to minimize the above measure is rather sim-
ple. We start with computing the initial interdependence of the system. Then, we
temporarily pick a free variable and assign it to compute the new interdependence of
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the system. If this value is smaller than the current record, we remember it as a new
record. After we test all possible candidates, we pick the record one and assign it for
good. We repeat this procedure until we get the required number of preassigned bits.

Algorithm 8 Bit pre-assignment minimizing equation interdependence.

compute the initial interdependence IntrDep(E) of the system E
while number of preassigned variables ≤ desired number do

for each free variable do

assign the variable temporarily
compute the new interdependence IntrDep(E) of the system
if IntrDep(E) ≤ current record then

record the current record and remember the best candidate so far
end if

end for

assign the best candidate
end while

Using Algorithm 8 with measure (10.2) to preassign 200 bits in order to minimize
the equations interdependence yields the following variable indices:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

307 308 309 313 314 315 319 320 321 325 326 327 331 332 333 337 338 339

343 344 345 349 350 351 355 356 357 361 362 363 367 368 369 373 374 375

379 380 381 385 386 387 391 392 393 397 398 399 403 404 405 409 410 411

415 416 417 421 422 423 427 428 429 433 434 435 439 440 441 445 446 447

451 452 453 457 458 459 463 464 465 469 470 471 475 476 477 481 482 483

487 488 489 493 494 495 499 500 501 505 506 507 511 512 513 517 518 519

523 524 525 529 530 531 535 536 537 541 542 543 547 548 549 553 554 555

559 560 561 565 566 567 571 572 573 577 578 579 583 584 585 589 590 591

595 596 597 601 602 603 607 608 609 613 614 615 619 620 621 625 627 631

633 637 639 643 645 649 651 655 657 661 663 667 669 673 675 679 685 691

697 700

Applying the minimization strategy (10.3) gives a different set of 200 preassigned
bits. This strategy simply fixes 200 consecutive bits starting at position 289. Theses
are the variables which are newly introduced and appear in the maximal number of 8
equations, meaning that this strategy is the same as Strategy 5 and does not have to
be investigated again.

We performed an experiment that compared the results of the reference pre-
assignment strategy fixing the first 190 bits of the state with the pre-assigning strategy
where we minimize the interdependence using measure (10.2). The results presented
in Table 10.4 are interesting. It seems that minimizing the interdependence using the
square of sums as measurements worsen the running time. One possible explanation
is that for such systems a different value of the nochangebound should be used.
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Table 10.4: Running times for bit pre-assignment strategies minimizing equation in-
terdependence. Parameter values α = 33, M = 1024, nochangebound = 110 were
used.

strategy: reference Case 1

29.49 > 39.3
28.36 38.2
30.17 38.1
29.95 39.7
29.53 39.3
29.49 36.9
28.94 40.8
30.66
27.76
29.08

avg: 29.34 38.9

10.5.2 Overdetermined System of Equations

A fully-determined non-linear Boolean equation system might have more than one
solution, which means that the corresponding discrete optimization problem has more
than one global minimum. Additionally we expect that the discrete optimization
problem contains several local minima, this we also observe during our experiments.
When we consider an overdetermined equation system we expect that there exists a
unique solution, which means that the corresponding discrete optimization problem
has only one global minimum. Furthermore we hope, that a discrete optimization
problem derived from an overdetermined Boolean equation system possesses less or
at least more shallow minima, so that it is easier for a search algorithm to find the
optimum because the algorithm does not get stuck in local optima.

The first approach is to consider overdetermined equation systems of Trivium
which are obtained by running the keystream generator further. After the first 288
clockings we have obtained a fully-determined system describing the internal state of
Trivium. Each further clocking yields three additional equations and two unknowns.
Initial experimental results showed that overdetermined systems do not lead to a
better complexity of the attack. We infer that the better properties such as a unique
minimum etc. are offset by the larger size of the system, because we do not only add
equations but also unknowns.

A second approach is to add new equations to the system without increasing the
number of variables. This can be done by adding what we call mixed quadratic
equations [76]. The quadratic equations in the Trivium system are all of the form

sp0 = sp1 + sp2 + sp3 · sp4 + sp5

where the indices p0, . . . , p5 are defined by the clocking process. A condition for new
equations added to the system is that they are zero for the initial state of Trivium,
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so that the global optimum of the corresponding discrete optimization problem is still
zero.

We consider the following two equations taken from the set of quadratic Trivium
equations

sp0 = sp1 + sp2 + sp3 · sp4 + sp5 (10.4)

sq0 = sq1 + sq2 + sq3 · sq4 + sq5 (10.5)

If the set {p3, p4}∩{q3, q4} =: {w} contains exactly one element, then we multiply
equation (10.4) with sa where a := {q3, q4} \ {w} and equation (10.5) by sb where
b = {p3, p4}\{w}. This yields two cubic equations that share the same term of degree
three. By adding these equations together we obtain a new quadratic equation of the
form

sa · (sp0 + sp1 + sp2 + sp5) + sb · (sq0 + sq1 + sq2 + sq5) = 0, (10.6)

which we referred to as a mixed quadratic equation. We can obtain 663 new equations
of this form from the basic Trivium system that way. The set of quadratic terms in
those equations are mutually disjoint, meaning that there is no way of reducing the
density of any equation by linear combinations. Each equation consists of 8 quadratic
terms in 9 variables. There are 9 instead of 10 variables in each equation because in
equation (10.6) either sa equals one of the sqi ’s or sb is equal to one of the spi ’s.

These results can be explained using an alternative description of Trivium utilizing
three registers and recurrence relations as shown by Bernstein [11]. In this description
the three registers that form the internal state of Trivium are called register x, y and
z, respectively, and the Trivium equations are of the form

on = zn−66 + zn−111 + xn−66 + xn−93 + yn−69 + yn−84,

where on denotes the keystream bit and

xn = zn−66 + zn−111 + zn−110 · zn−109 + xn−69,

yn = xn−66 + xn−93 + xn−92 · xn−91 + yn−78,

zn = yn−69 + yn−84 + yn−83 · yn−82 + zn−87.

(10.7)

Considering the equations in (10.7) the only way that two equations can share a
variable in the quadratic term is to take two equations describing the same register in
two consecutive clocks n, n+ 1. As an example we consider the two equations

xn = zn−66 + zn−111 + zn−110 · zn−109 + xn−69, (10.8)

xn+1 = zn−65 + zn−110 + zn−109 · zn−108 + xn−68. (10.9)

These two equations share the common variable zn−109 in their quadratic terms. Thus
the multiplier for Equation (10.8) is zn−108, while the multiplier for Equation (10.9)
is the variable zn−110, which also appears as a linear term in Equation (10.8). Hence
the associated mixed quadratic equation contains 9 variables. Furthermore, in 288
clockings of the keystream generator 666 quadratic equations are generated, 222 for
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each register (Remember that we do not consider the quadratic equations generated in
the last 66 clockings of the algorithm). For each two consecutive quadratic equations
in each register we obtain a mixed quadratic equation, meaning we obtain 221 mixed
quadratic equations for each register, which yields a total of 663 mixed quadratic
equations.

Initial tests showed that adding all possible mixed quadratic equations to the basic
Trivium system impairs the running time of the simulated annealing search. We ran
the tests for the same parameters as we used for the basic Trivium system. One
possible explanation is that we modify the cost function by adding more equations
and that for this new cost function the old parameters such as initial temperature,
nochangebound and cooling schedule are not optimal anymore, because the average
cost and the variance of the cost are significantly different from the original system.

A direction for further research is adding a subset of the mixed quadratic equations
instead of all. This would still give us the benefits of an overdetermined system but
not change the cost function too dramatically. The main questions are how many and
which equations should be added to the system. However, no experiments have been
done so far.

10.5.3 Variable Persistence

In [69] simulated annealing is applied to the permuted perceptron problem. An idea
used in that work is to find a correlation between local minima of the cost function.
In [69] the simulating annealing search is run t times until it found a configuration
with low costs. These solutions where recorded and after t runs a set I of variables was
identified, where a variable had the same sign for all recorded solutions. In the next
runs of the algorithms the starting point of search was chosen such that all variables in
I where fixed to their corresponding signs, while all remaining variables where chosen
uniformly at random.

This gives rise to the assumption that there is a correlation between bits of the
local and global minima and that bits of the global minimum can be identified by
generating solutions for local minima and choosing the majority value of bits in the
different solution as solution value of the global minimum.

We did some experiments that investigated if configurations of local minima, mean-
ing the state we obtained after a long cooling run, have variables correlated with the
global minimum state. In our limited experiments with the basic Trivium system we
did not observe such correlations. In our experiments we considered sets that consists
of 40 configurations with costs between 35 and 45. For each position we calculate the
majority and set the bit to the value of the majority. Comparing this vector to the
solution showed that their hamming distance is approximately the same as the ham-
ming weight of a random point and the solution. The reasons for this might be that
the sample size is too small, the local minima we consider with cost between 35-45 do
not exhibit a correlations or a simple majority is not a strong enough condition.

We could also observe from our preliminary experiments that for a local minimum
with a cost value around 40 the current solution still had a large hamming distance
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to the known optimal solution.

10.6 Conclusion and Future Directions

In this chapter we presented a new way of approaching the problem of solving systems
of sparse multivariate Boolean equations with a large variable locality. We represent
them as a discrete optimization problem where the cost function counts the number
of not satisfied equations and then we apply a simulated annealing variant.

We showed that such systems may be relevant in cryptography by giving an ex-
ample of the system generated by the problem of recovering the internal state of the
stream cipher Trivium.

Our experimental results were focused on the Trivium system and they seem to
be promising but for now they do not seem to pose any real threat to the security of
this algorithm. The attack complexity which we can confirm is 2210 bit flips which is
equivalent to 2203 evaluations of the equation system. Hence this complexity is much
worse than exhaustive search.

There are many open problems in this area, the most obvious ones are the selection
of better parameters of the search procedures and analytically estimating the possible
complexity of such algorithms. However, this is a time consuming process.

The other interesting direction seems to be the investigation of alternative cost
functions. In all our experiments we use the simplest measure counting the number of
not satisfied equations. However, many results in heuristic search literature suggest
that the selection of a suitable cost function may dramatically change the efficiency of
a search. The question of determining whether in our case there exist measures better
than the ones we used is still open.

Furthermore, we can investigate the role, the choice of the neighborhood plays.
In our experiments we use the smallest possible neighborhood. Considering a larger
neighborhood might lead to a faster improvements in the costs but a larger neighbor-
hood comes also for the expense that we might have to consider more neighbors in each
step. Also an adaptive choice of the neighbors instead of random generation might
improve the algorithm. Here we could exploit the special structure of the problem we
are looking at instead of applying a purely generic algorithm.





Chapter 11

Conclusion

The objective of this thesis was the cryptanalysis of symmetric encryption schemes.
We worked in two very different research topics. One topic was the security of block
ciphers with secret components where we considered the block cipher C2 and Maya,
both examples of designs with secret S-boxes. The other topic was the cryptanalysis
by means of numerical methods where we investigated the applicability of optimization
methods in cryptanalysis. Here we focused on the stream cipher Trivium due to its
elegant description as a sparse non-linear Boolean equation system.

Block ciphers are usually built from a round function in an iterative way. While
a single round can often be easily broken, a repeated use of the round function ob-
scures patterns and structures, which could be used to break the cipher. On the one
hand each additional round strengthens the cipher in terms of security but on the
other hand it also adds to the complexity of the encryption. Thus, the designer of a
block cipher has to find the right trade-off between performance and security. One
idea is to reduce the number of rounds while at the same time strengthening the
round function by using secret components. For example the S-boxes could be kept
secret and considered as part of the secret key. If the S-boxes are unknown also their
differential and linear behavior is unknown to an adversary. That suggests that dif-
ferential and linear cryptanalysis, two of the most powerful cryptanalytic techniques,
become infeasible. However, our analysis showed that secret S-boxes do not yield an
impressive improvement of the security. We can recover the S-boxes of Maya with a
practical complexity. Actually, an extrapolation of the attack complexity by means of
a mathematical model suggests that more rounds of a cipher with secret but randomly
chosen S-boxes can be attacked than of a cipher like PRESENT where the S-box is
public but chosen carefully to exhibit good differential and linear properties. As our
attack exploits weak differential properties, ciphers whose S-boxes are strong towards
differential cryptanalysis are not affected by it. However, the set of non-equivalent
strong S-boxes is very small and thus this restriction would not allow a huge key.
We conjecture that the use of secret randomly chosen S-boxes does not allow us to
decrease the number of rounds compared to ciphers with publicly known but strong
S-boxes (at least not significantly).

In the case of C2 where a single 8-bit application-dependent S-box is used we can
find a 5-round differential independent of the S-box which can be used to mount a
boomerang. A further observation is that the security of the cipher almost entirely
relies on the modular addition. For a linearized version of the cipher, where the mod-
ular addition is replaced by XOR, we can find a 9-round differential with probability
one independent of the S-box, meaning that this version can be easily broken. From
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these observations we infer that to achieve an impact on the security an encryption
algorithm using a secret S-box has to be designed carefully.

The second direction of research in this thesis was inspired by the fact that many
cryptographic algorithms can be described as non-linear multivariate Boolean equa-
tion systems. Solving the equation system recovers the secret key or initial state.
However, solving a non-linear Boolean equation system is in general a difficult prob-
lem. Nevertheless, there are specially tailored algorithms which can solve such systems
faster than exhaustive search by exploiting the special structure of the equation sys-
tem. Examples for such algorithms are the XL and the XSL algorithm which operate
over F2. However, in general algorithms for solving non-linear multivariate equation
systems are better developed for the continuous problems. Thus our idea is to lift
the problem of solving an equation system over the binary field to the reals and use
optimization methods in order to solve such systems. We focus on the stream cipher
Trivium because it has a very sparse and simple description as a quadratic Boolean
equation system.

One approach is to convert the Boolean equations into equations over the reals.
Solving the resulting non-linear equation system by means of continuous methods
for zero finding or non-linear optimization leads to fractional solutions which cannot
be converted back into a Boolean solution. Therefore, we restrict the solution space
to integer-valued solutions and formulate the problem as a mixed-integer linear pro-
gramming problem. The commercial solver Cplex was able to solve the mixed-integer
programming problems corresponding to the Trivium small scale variants Bivium A
and B faster than exhaustive key search. However, in the current form mixed-integer
programming is not a threat to Trivium.

We focused on mixed-integer linear programming as mature and proven solvers
exist for such problems. However, linearizing the equations increases the number of
constraints and variables significantly which makes the problem more difficult. Inte-
ger programming is a still developing field of research with solvers for the linear case
being improved and also new algorithms for mixed-integer non-linear programming
being developed. A future direction of research is to consider for example Trivium
as a mixed-integer non-linear programming problem and to investigate if the smaller
problem size compensates for the difficulties caused by the non-linearity of the con-
straints.

In the second approach we used the Boolean equation system to define a discrete
optimization problem. In a discrete optimization problem we consider a finite set
of configurations and assign to each configuration a cost value. We apply simulated
annealing as an example of a neighborhood search algorithm to the problem. If we
consider the Trivium equation system as a random Boolean system we can solve it
faster than exhaustive search, namely in 2203 evaluations of the system. However, as
the complexity of recovering the key is upper bounded by 280 key set-ups this attack
does not pose a threat to Trivium. It is important to note that the neighborhood
defined in the simulated annealing algorithm is the smallest possible neighborhood and
does not incorporate the specific structure of the Trivium system. A future direction
of research is to more carefully design a neighborhood, such that the neighbors are not
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chosen at random but in a way that neighbors which are likely to improve the costs
are considered first. Also an alternative definition of the cost function might improve
the attack.

While simulated annealing was considered in the context of cryptology before,
mixed-integer programming is to our knowledge an entirely new approach in crypt-
analysis. Even though neither mixed-integer linear programming nor simulated an-
nealing pose a threat to an existing real-life cipher our analysis shows the potential
of both approaches in cryptanalysis and we believe that this thesis contains an in-
teresting starting point for further research on the use of optimization methods in
cryptology.





Appendix A

Five-round Characteristics for
C2

We list some 5-round characteristics for the block cipher C2 together with their esti-
mate and actual probabilities. As the 5-round characteristic used in the boomerang
attack on C2 in Chapter 5 this characteristic where found while searching for code
words with low hamming weights. All characteristics contain 15 ones. However, their
estimated and actually probabilities vary depending on if there is a difference in the
most significant bits. We determined they actual probability choosing 224 random
plaintexts and keys. In the first column the input and output difference of the charac-
teristic is given. The second column contains the theoretical estimate of the probability
of the differential and the third column the experimentally obtain probability.

Differential th. prob. exp. prob.

(0x00020800 0x80200100)→ (0x80200100 0x00020800) 2−12 2−11.17

(0x04100000 0x40020100)→ (0x40020100 0x04100000) 2−21 2−18.17

(0x08200000 0x80040200)→ (0x80040200 0x08200000) 2−17 2−14.14

(0x40000010 0x08040100)→ (0x08040100 0x40000010) 2−21 2−16.74

(0x80000020 0x10080200)→ (0x10080200 0x80000020) 2−19 2−15.73

(0x00000104 0x80401000)→ (0x80401000 0x00000104) 2−17 2−13.81

(0x00000041 0x20100400)→ (0x20100400 0x00000041) 2−21 2−17.7

(0x80040200 0x00000200)→ (0x08200000 0xC8260A10) 2−22 2−17.98

(0x00000082 0x40200800)→ (0x40200800 0x00000082) 2−21 2−17.54

(0x80200100 0x80000000)→ (0x00020800 0x84320982) 2−18 2−15.8

(0x40020100 0x00000100)→ (0x04100000 0x64130508) 2−26 2−20.83

177





Appendix B

A Short Analysis of the Trivium
Equation System

As explained in Section 3.4 the internal state of the stream cipher Trivium [43] can
be described as a system of sparse, non-linear Boolean equations where the equations
are of the form

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z

In each clocking of the algorithm we introduce three new variables, one for each
updated state bit and obtain one linear and three quadratic equations. After observing
288 keystream bits we obtain a system of 954 equations in 954 unknowns. The system
consist of 288 linear and 666 quadratic equations. For the last 66 clockings of the
algorithms we do neither derive the quadratic equations nor introduce new variables
since each newly updated state bit is not use for at least 66 clockings of the algorithms.

Each of the equations contains exactly 6 variables. In each clocking all of the
6 variable contained in the keystream equation are also contained as linear terms in
quadratic equations which are derived from the state update functions. Each two that
belong to the same register appear together in the same quadratic equation.

It is easy to obtain an overdetermined system by observing more than 288 key-
stream bits. In each further clocking of the algorithm we introduce three new variables
and obtain four equations.

For any size of the system each variable appears in at most two linear and 6
quadratic equations, in average a variable appears in 6 equations. If a variable appears
in the maximum of 8 equations it appears twice in the quadratic term of a quadratic
equation. We list the variables and the indices of the equations in which they appear
in Table B.1

In Subsection 10.5.2 we explained how to obtain additional mixed quadratic equa-
tions from a given Trivium system. We can obtain q − 3 mixed quadratic equations
where q is the number of quadratic equations in the given equation system. Each
mixed quadratic equations consists of exactly 8 quadratic terms in 9 variables. Each
variable appears in at most 9 mixed quadratic equations.

A similar analysis holds for Bivium B. After observing 177 keystream bits we can
establish a fully determined system of 177 linear and 222 quadratic equations in 399
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unknowns. Each linear equation consists of exactly four and each quadratic equation
of 6 variables. Each variable appears in at most 8 equations.

In the case of Bivium A the analysis is slightly more complicated. The linear equa-
tion in Bivium A depends only directly on bits of the second register. The quadratic
equations are the same as for Bivium B. That means that the each linear equations
contains two variables and each quadratic equation 6 variables. Each variable from
the second register appears in a maximum of 8 equations, two linear and 6 quadratic,
while each variable from the first register appears in at most 6 quadratic and no linear
equations.

Table B.1: Index Table: This table contains the indices of the linear and quadratic equa-
tions in which a single variable appears.

var linear quadratic var linear quadratic
1 65 92 195 206 270 273 276 -1 2 64 91 192 203 267 270 273 -1
3 63 90 189 200 264 267 270 -1 4 62 89 186 197 261 264 267 -1
5 61 88 183 194 258 261 264 -1 6 60 87 180 191 255 258 261 -1
7 59 86 177 188 252 255 258 -1 8 58 85 174 185 249 252 255 -1
9 57 84 171 182 246 249 252 -1 10 56 83 168 179 243 246 249 -1
11 55 82 165 176 240 243 246 -1 12 54 81 162 173 237 240 243 -1
13 53 80 159 170 234 237 240 -1 14 52 79 156 167 231 234 237 -1
15 51 78 153 164 228 231 234 -1 16 50 77 150 161 225 228 231 -1
17 49 76 147 158 222 225 228 -1 18 48 75 144 155 219 222 225 -1
19 47 74 141 152 216 219 222 -1 20 46 73 138 149 213 216 219 -1
21 45 72 135 146 210 213 216 -1 22 44 71 132 143 207 210 213 -1
23 43 70 129 140 204 207 210 -1 24 42 69 126 137 201 204 207 -1
25 41 68 123 134 198 201 204 -1 26 40 67 120 131 195 198 201 -1
27 39 66 117 128 192 195 198 -1 28 38 65 114 125 189 192 195 -1
29 37 64 111 122 186 189 192 -1 30 36 63 108 119 183 186 189 -1
31 35 62 105 116 180 183 186 -1 32 34 61 102 113 177 180 183 -1
33 33 60 99 110 174 177 180 -1 34 32 59 96 107 171 174 177 -1
35 31 58 93 104 168 171 174 -1 36 30 57 90 101 165 168 171 -1
37 29 56 87 98 162 165 168 -1 38 28 55 84 95 159 162 165 -1
39 27 54 81 92 156 159 162 -1 40 26 53 78 89 153 156 159 -1
41 25 52 75 86 150 153 156 -1 42 24 51 72 83 147 150 153 -1
43 23 50 69 80 144 147 150 -1 44 22 49 66 77 141 144 147 -1
45 21 48 63 74 138 141 144 -1 46 20 47 60 71 135 138 141 -1
47 19 46 57 68 132 135 138 -1 48 18 45 54 65 129 132 135 -1
49 17 44 51 62 126 129 132 -1 50 16 43 48 59 123 126 129 -1
51 15 42 45 56 120 123 126 -1 52 14 41 42 53 117 120 123 -1
53 13 40 39 50 114 117 120 -1 54 12 39 36 47 111 114 117 -1
55 11 38 33 44 108 111 114 -1 56 10 37 30 41 105 108 111 -1
57 9 36 27 38 102 105 108 -1 58 8 35 24 35 99 102 105 -1
59 7 34 21 32 96 99 102 -1 60 6 33 18 29 93 96 99 -1
61 5 32 15 26 90 93 96 -1 62 4 31 12 23 87 90 93 -1
63 3 30 9 20 84 87 90 -1 64 2 29 6 17 81 84 87 -1
65 1 28 3 14 78 81 84 -1 66 0 27 0 11 75 78 81 -1
67 26 -1 8 72 75 78 -1 -1 68 25 -1 5 69 72 75 -1 -1
69 24 -1 2 66 69 72 -1 -1 70 23 -1 63 66 69 -1 -1 -1
71 22 -1 60 63 66 -1 -1 -1 72 21 -1 57 60 63 -1 -1 -1
73 20 -1 54 57 60 -1 -1 -1 74 19 -1 51 54 57 -1 -1 -1
75 18 -1 48 51 54 -1 -1 -1 76 17 -1 45 48 51 -1 -1 -1
77 16 -1 42 45 48 -1 -1 -1 78 15 -1 39 42 45 -1 -1 -1
79 14 -1 36 39 42 -1 -1 -1 80 13 -1 33 36 39 -1 -1 -1
81 12 -1 30 33 36 -1 -1 -1 82 11 -1 27 30 33 -1 -1 -1
83 10 -1 24 27 30 -1 -1 -1 84 9 -1 21 24 27 -1 -1 -1
85 8 -1 18 21 24 -1 -1 -1 86 7 -1 15 18 21 -1 -1 -1
87 6 -1 12 15 18 -1 -1 -1 88 5 -1 9 12 15 -1 -1 -1
89 4 -1 6 9 12 -1 -1 -1 90 3 -1 3 6 9 -1 -1 -1
91 2 -1 0 3 6 -1 -1 -1 92 1 -1 0 3 -1 -1 -1 -1
93 0 -1 0 -1 -1 -1 -1 -1 94 68 83 205 231 244 247 250 -1
95 67 82 202 228 241 244 247 -1 96 66 81 199 225 238 241 244 -1
97 65 80 196 222 235 238 241 -1 98 64 79 193 219 232 235 238 -1
99 63 78 190 216 229 232 235 -1 100 62 77 187 213 226 229 232 -1
101 61 76 184 210 223 226 229 -1 102 60 75 181 207 220 223 226 -1
103 59 74 178 204 217 220 223 -1 104 58 73 175 201 214 217 220 -1
105 57 72 172 198 211 214 217 -1 106 56 71 169 195 208 211 214 -1
107 55 70 166 192 205 208 211 -1 108 54 69 163 189 202 205 208 -1
109 53 68 160 186 199 202 205 -1 110 52 67 157 183 196 199 202 -1
111 51 66 154 180 193 196 199 -1 112 50 65 151 177 190 193 196 -1
113 49 64 148 174 187 190 193 -1 114 48 63 145 171 184 187 190 -1
115 47 62 142 168 181 184 187 -1 116 46 61 139 165 178 181 184 -1
117 45 60 136 162 175 178 181 -1 118 44 59 133 159 172 175 178 -1
119 43 58 130 156 169 172 175 -1 120 42 57 127 153 166 169 172 -1
121 41 56 124 150 163 166 169 -1 122 40 55 121 147 160 163 166 -1
123 39 54 118 144 157 160 163 -1 124 38 53 115 141 154 157 160 -1
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Table B.1 – continued from previous page

var linear quadratic var linear quadratic
125 37 52 112 138 151 154 157 -1 126 36 51 109 135 148 151 154 -1
127 35 50 106 132 145 148 151 -1 128 34 49 103 129 142 145 148 -1
129 33 48 100 126 139 142 145 -1 130 32 47 97 123 136 139 142 -1
131 31 46 94 120 133 136 139 -1 132 30 45 91 117 130 133 136 -1
133 29 44 88 114 127 130 133 -1 134 28 43 85 111 124 127 130 -1
135 27 42 82 108 121 124 127 -1 136 26 41 79 105 118 121 124 -1
137 25 40 76 102 115 118 121 -1 138 24 39 73 99 112 115 118 -1
139 23 38 70 96 109 112 115 -1 140 22 37 67 93 106 109 112 -1
141 21 36 64 90 103 106 109 -1 142 20 35 61 87 100 103 106 -1
143 19 34 58 84 97 100 103 -1 144 18 33 55 81 94 97 100 -1
145 17 32 52 78 91 94 97 -1 146 16 31 49 75 88 91 94 -1
147 15 30 46 72 85 88 91 -1 148 14 29 43 69 82 85 88 -1
149 13 28 40 66 79 82 85 -1 150 12 27 37 63 76 79 82 -1
151 11 26 34 60 73 76 79 -1 152 10 25 31 57 70 73 76 -1
153 9 24 28 54 67 70 73 -1 154 8 23 25 51 64 67 70 -1
155 7 22 22 48 61 64 67 -1 156 6 21 19 45 58 61 64 -1
157 5 20 16 42 55 58 61 -1 158 4 19 13 39 52 55 58 -1
159 3 18 10 36 49 52 55 -1 160 2 17 7 33 46 49 52 -1
161 1 16 4 30 43 46 49 -1 162 0 15 1 27 40 43 46 -1
163 14 -1 24 37 40 43 -1 -1 164 13 -1 21 34 37 40 -1 -1
165 12 -1 18 31 34 37 -1 -1 166 11 -1 15 28 31 34 -1 -1
167 10 -1 12 25 28 31 -1 -1 168 9 -1 9 22 25 28 -1 -1
169 8 -1 6 19 22 25 -1 -1 170 7 -1 3 16 19 22 -1 -1
171 6 -1 0 13 16 19 -1 -1 172 5 -1 10 13 16 -1 -1 -1
173 4 -1 7 10 13 -1 -1 -1 174 3 -1 4 7 10 -1 -1 -1
175 2 -1 1 4 7 -1 -1 -1 176 1 -1 1 4 -1 -1 -1 -1
177 0 -1 1 -1 -1 -1 -1 -1 178 65 110 197 259 326 329 332 -1
179 64 109 194 256 323 326 329 -1 180 63 108 191 253 320 323 326 -1
181 62 107 188 250 317 320 323 -1 182 61 106 185 247 314 317 320 -1
183 60 105 182 244 311 314 317 -1 184 59 104 179 241 308 311 314 -1
185 58 103 176 238 305 308 311 -1 186 57 102 173 235 302 305 308 -1
187 56 101 170 232 299 302 305 -1 188 55 100 167 229 296 299 302 -1
189 54 99 164 226 293 296 299 -1 190 53 98 161 223 290 293 296 -1
191 52 97 158 220 287 290 293 -1 192 51 96 155 217 284 287 290 -1
193 50 95 152 214 281 284 287 -1 194 49 94 149 211 278 281 284 -1
195 48 93 146 208 275 278 281 -1 196 47 92 143 205 272 275 278 -1
197 46 91 140 202 269 272 275 -1 198 45 90 137 199 266 269 272 -1
199 44 89 134 196 263 266 269 -1 200 43 88 131 193 260 263 266 -1
201 42 87 128 190 257 260 263 -1 202 41 86 125 187 254 257 260 -1
203 40 85 122 184 251 254 257 -1 204 39 84 119 181 248 251 254 -1
205 38 83 116 178 245 248 251 -1 206 37 82 113 175 242 245 248 -1
207 36 81 110 172 239 242 245 -1 208 35 80 107 169 236 239 242 -1
209 34 79 104 166 233 236 239 -1 210 33 78 101 163 230 233 236 -1
211 32 77 98 160 227 230 233 -1 212 31 76 95 157 224 227 230 -1
213 30 75 92 154 221 224 227 -1 214 29 74 89 151 218 221 224 -1
215 28 73 86 148 215 218 221 -1 216 27 72 83 145 212 215 218 -1
217 26 71 80 142 209 212 215 -1 218 25 70 77 139 206 209 212 -1
219 24 69 74 136 203 206 209 -1 220 23 68 71 133 200 203 206 -1
221 22 67 68 130 197 200 203 -1 222 21 66 65 127 194 197 200 -1
223 20 65 62 124 191 194 197 -1 224 19 64 59 121 188 191 194 -1
225 18 63 56 118 185 188 191 -1 226 17 62 53 115 182 185 188 -1
227 16 61 50 112 179 182 185 -1 228 15 60 47 109 176 179 182 -1
229 14 59 44 106 173 176 179 -1 230 13 58 41 103 170 173 176 -1
231 12 57 38 100 167 170 173 -1 232 11 56 35 97 164 167 170 -1
233 10 55 32 94 161 164 167 -1 234 9 54 29 91 158 161 164 -1
235 8 53 26 88 155 158 161 -1 236 7 52 23 85 152 155 158 -1
237 6 51 20 82 149 152 155 -1 238 5 50 17 79 146 149 152 -1
239 4 49 14 76 143 146 149 -1 240 3 48 11 73 140 143 146 -1
241 2 47 8 70 137 140 143 -1 242 1 46 5 67 134 137 140 -1
243 0 45 2 64 131 134 137 -1 244 44 -1 61 128 131 134 -1 -1
245 43 -1 58 125 128 131 -1 -1 246 42 -1 55 122 125 128 -1 -1
247 41 -1 52 119 122 125 -1 -1 248 40 -1 49 116 119 122 -1 -1
249 39 -1 46 113 116 119 -1 -1 250 38 -1 43 110 113 116 -1 -1
251 37 -1 40 107 110 113 -1 -1 252 36 -1 37 104 107 110 -1 -1
253 35 -1 34 101 104 107 -1 -1 254 34 -1 31 98 101 104 -1 -1
255 33 -1 28 95 98 101 -1 -1 256 32 -1 25 92 95 98 -1 -1
257 31 -1 22 89 92 95 -1 -1 258 30 -1 19 86 89 92 -1 -1
259 29 -1 16 83 86 89 -1 -1 260 28 -1 13 80 83 86 -1 -1
261 27 -1 10 77 80 83 -1 -1 262 26 -1 7 74 77 80 -1 -1
263 25 -1 4 71 74 77 -1 -1 264 24 -1 1 68 71 74 -1 -1
265 23 -1 65 68 71 -1 -1 -1 266 22 -1 62 65 68 -1 -1 -1
267 21 -1 59 62 65 -1 -1 -1 268 20 -1 56 59 62 -1 -1 -1
269 19 -1 53 56 59 -1 -1 -1 270 18 -1 50 53 56 -1 -1 -1
271 17 -1 47 50 53 -1 -1 -1 272 16 -1 44 47 50 -1 -1 -1
273 15 -1 41 44 47 -1 -1 -1 274 14 -1 38 41 44 -1 -1 -1
275 13 -1 35 38 41 -1 -1 -1 276 12 -1 32 35 38 -1 -1 -1
277 11 -1 29 32 35 -1 -1 -1 278 10 -1 26 29 32 -1 -1 -1
279 9 -1 23 26 29 -1 -1 -1 280 8 -1 20 23 26 -1 -1 -1
281 7 -1 17 20 23 -1 -1 -1 282 6 -1 14 17 20 -1 -1 -1
283 5 -1 11 14 17 -1 -1 -1 284 4 -1 8 11 14 -1 -1 -1
285 3 -1 5 8 11 -1 -1 -1 286 2 -1 2 5 8 -1 -1 -1
287 1 -1 2 5 -1 -1 -1 -1 288 0 -1 2 -1 -1 -1 -1 -1
289 69 84 0 208 234 247 250 253 290 66 111 1 200 262 329 332 335
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var linear quadratic var linear quadratic
291 66 93 2 198 209 273 276 279 292 70 85 3 211 237 250 253 256
293 67 112 4 203 265 332 335 338 294 67 94 5 201 212 276 279 282
295 71 86 6 214 240 253 256 259 296 68 113 7 206 268 335 338 341
297 68 95 8 204 215 279 282 285 298 72 87 9 217 243 256 259 262
299 69 114 10 209 271 338 341 344 300 69 96 11 207 218 282 285 288
301 73 88 12 220 246 259 262 265 302 70 115 13 212 274 341 344 347
303 70 97 14 210 221 285 288 291 304 74 89 15 223 249 262 265 268
305 71 116 16 215 277 344 347 350 306 71 98 17 213 224 288 291 294
307 75 90 18 226 252 265 268 271 308 72 117 19 218 280 347 350 353
309 72 99 20 216 227 291 294 297 310 76 91 21 229 255 268 271 274
311 73 118 22 221 283 350 353 356 312 73 100 23 219 230 294 297 300
313 77 92 24 232 258 271 274 277 314 74 119 25 224 286 353 356 359
315 74 101 26 222 233 297 300 303 316 78 93 27 235 261 274 277 280
317 75 120 28 227 289 356 359 362 318 75 102 29 225 236 300 303 306
319 79 94 30 238 264 277 280 283 320 76 121 31 230 292 359 362 365
321 76 103 32 228 239 303 306 309 322 80 95 33 241 267 280 283 286
323 77 122 34 233 295 362 365 368 324 77 104 35 231 242 306 309 312
325 81 96 36 244 270 283 286 289 326 78 123 37 236 298 365 368 371
327 78 105 38 234 245 309 312 315 328 82 97 39 247 273 286 289 292
329 79 124 40 239 301 368 371 374 330 79 106 41 237 248 312 315 318
331 83 98 42 250 276 289 292 295 332 80 125 43 242 304 371 374 377
333 80 107 44 240 251 315 318 321 334 84 99 45 253 279 292 295 298
335 81 126 46 245 307 374 377 380 336 81 108 47 243 254 318 321 324
337 85 100 48 256 282 295 298 301 338 82 127 49 248 310 377 380 383
339 82 109 50 246 257 321 324 327 340 86 101 51 259 285 298 301 304
341 83 128 52 251 313 380 383 386 342 83 110 53 249 260 324 327 330
343 87 102 54 262 288 301 304 307 344 84 129 55 254 316 383 386 389
345 84 111 56 252 263 327 330 333 346 88 103 57 265 291 304 307 310
347 85 130 58 257 319 386 389 392 348 85 112 59 255 266 330 333 336
349 89 104 60 268 294 307 310 313 350 86 131 61 260 322 389 392 395
351 86 113 62 258 269 333 336 339 352 90 105 63 271 297 310 313 316
353 87 132 64 263 325 392 395 398 354 87 114 65 261 272 336 339 342
355 91 106 66 274 300 313 316 319 356 88 133 67 266 328 395 398 401
357 88 115 68 264 275 339 342 345 358 92 107 69 277 303 316 319 322
359 89 134 70 269 331 398 401 404 360 89 116 71 267 278 342 345 348
361 93 108 72 280 306 319 322 325 362 90 135 73 272 334 401 404 407
363 90 117 74 270 281 345 348 351 364 94 109 75 283 309 322 325 328
365 91 136 76 275 337 404 407 410 366 91 118 77 273 284 348 351 354
367 95 110 78 286 312 325 328 331 368 92 137 79 278 340 407 410 413
369 92 119 80 276 287 351 354 357 370 96 111 81 289 315 328 331 334
371 93 138 82 281 343 410 413 416 372 93 120 83 279 290 354 357 360
373 97 112 84 292 318 331 334 337 374 94 139 85 284 346 413 416 419
375 94 121 86 282 293 357 360 363 376 98 113 87 295 321 334 337 340
377 95 140 88 287 349 416 419 422 378 95 122 89 285 296 360 363 366
379 99 114 90 298 324 337 340 343 380 96 141 91 290 352 419 422 425
381 96 123 92 288 299 363 366 369 382 100 115 93 301 327 340 343 346
383 97 142 94 293 355 422 425 428 384 97 124 95 291 302 366 369 372
385 101 116 96 304 330 343 346 349 386 98 143 97 296 358 425 428 431
387 98 125 98 294 305 369 372 375 388 102 117 99 307 333 346 349 352
389 99 144 100 299 361 428 431 434 390 99 126 101 297 308 372 375 378
391 103 118 102 310 336 349 352 355 392 100 145 103 302 364 431 434 437
393 100 127 104 300 311 375 378 381 394 104 119 105 313 339 352 355 358
395 101 146 106 305 367 434 437 440 396 101 128 107 303 314 378 381 384
397 105 120 108 316 342 355 358 361 398 102 147 109 308 370 437 440 443
399 102 129 110 306 317 381 384 387 400 106 121 111 319 345 358 361 364
401 103 148 112 311 373 440 443 446 402 103 130 113 309 320 384 387 390
403 107 122 114 322 348 361 364 367 404 104 149 115 314 376 443 446 449
405 104 131 116 312 323 387 390 393 406 108 123 117 325 351 364 367 370
407 105 150 118 317 379 446 449 452 408 105 132 119 315 326 390 393 396
409 109 124 120 328 354 367 370 373 410 106 151 121 320 382 449 452 455
411 106 133 122 318 329 393 396 399 412 110 125 123 331 357 370 373 376
413 107 152 124 323 385 452 455 458 414 107 134 125 321 332 396 399 402
415 111 126 126 334 360 373 376 379 416 108 153 127 326 388 455 458 461
417 108 135 128 324 335 399 402 405 418 112 127 129 337 363 376 379 382
419 109 154 130 329 391 458 461 464 420 109 136 131 327 338 402 405 408
421 113 128 132 340 366 379 382 385 422 110 155 133 332 394 461 464 467
423 110 137 134 330 341 405 408 411 424 114 129 135 343 369 382 385 388
425 111 156 136 335 397 464 467 470 426 111 138 137 333 344 408 411 414
427 115 130 138 346 372 385 388 391 428 112 157 139 338 400 467 470 473
429 112 139 140 336 347 411 414 417 430 116 131 141 349 375 388 391 394
431 113 158 142 341 403 470 473 476 432 113 140 143 339 350 414 417 420
433 117 132 144 352 378 391 394 397 434 114 159 145 344 406 473 476 479
435 114 141 146 342 353 417 420 423 436 118 133 147 355 381 394 397 400
437 115 160 148 347 409 476 479 482 438 115 142 149 345 356 420 423 426
439 119 134 150 358 384 397 400 403 440 116 161 151 350 412 479 482 485
441 116 143 152 348 359 423 426 429 442 120 135 153 361 387 400 403 406
443 117 162 154 353 415 482 485 488 444 117 144 155 351 362 426 429 432
445 121 136 156 364 390 403 406 409 446 118 163 157 356 418 485 488 491
447 118 145 158 354 365 429 432 435 448 122 137 159 367 393 406 409 412
449 119 164 160 359 421 488 491 494 450 119 146 161 357 368 432 435 438
451 123 138 162 370 396 409 412 415 452 120 165 163 362 424 491 494 497
453 120 147 164 360 371 435 438 441 454 124 139 165 373 399 412 415 418
455 121 166 166 365 427 494 497 500 456 121 148 167 363 374 438 441 444

Continued on next page



Appendix B. A Short Analysis of the Trivium Equation System 183

Table B.1 – continued from previous page

var linear quadratic var linear quadratic
457 125 140 168 376 402 415 418 421 458 122 167 169 368 430 497 500 503
459 122 149 170 366 377 441 444 447 460 126 141 171 379 405 418 421 424
461 123 168 172 371 433 500 503 506 462 123 150 173 369 380 444 447 450
463 127 142 174 382 408 421 424 427 464 124 169 175 374 436 503 506 509
465 124 151 176 372 383 447 450 453 466 128 143 177 385 411 424 427 430
467 125 170 178 377 439 506 509 512 468 125 152 179 375 386 450 453 456
469 129 144 180 388 414 427 430 433 470 126 171 181 380 442 509 512 515
471 126 153 182 378 389 453 456 459 472 130 145 183 391 417 430 433 436
473 127 172 184 383 445 512 515 518 474 127 154 185 381 392 456 459 462
475 131 146 186 394 420 433 436 439 476 128 173 187 386 448 515 518 521
477 128 155 188 384 395 459 462 465 478 132 147 189 397 423 436 439 442
479 129 174 190 389 451 518 521 524 480 129 156 191 387 398 462 465 468
481 133 148 192 400 426 439 442 445 482 130 175 193 392 454 521 524 527
483 130 157 194 390 401 465 468 471 484 134 149 195 403 429 442 445 448
485 131 176 196 395 457 524 527 530 486 131 158 197 393 404 468 471 474
487 135 150 198 406 432 445 448 451 488 132 177 199 398 460 527 530 533
489 132 159 200 396 407 471 474 477 490 136 151 201 409 435 448 451 454
491 133 178 202 401 463 530 533 536 492 133 160 203 399 410 474 477 480
493 137 152 204 412 438 451 454 457 494 134 179 205 404 466 533 536 539
495 134 161 206 402 413 477 480 483 496 138 153 207 415 441 454 457 460
497 135 180 208 407 469 536 539 542 498 135 162 209 405 416 480 483 486
499 139 154 210 418 444 457 460 463 500 136 181 211 410 472 539 542 545
501 136 163 212 408 419 483 486 489 502 140 155 213 421 447 460 463 466
503 137 182 214 413 475 542 545 548 504 137 164 215 411 422 486 489 492
505 141 156 216 424 450 463 466 469 506 138 183 217 416 478 545 548 551
507 138 165 218 414 425 489 492 495 508 142 157 219 427 453 466 469 472
509 139 184 220 419 481 548 551 554 510 139 166 221 417 428 492 495 498
511 143 158 222 430 456 469 472 475 512 140 185 223 422 484 551 554 557
513 140 167 224 420 431 495 498 501 514 144 159 225 433 459 472 475 478
515 141 186 226 425 487 554 557 560 516 141 168 227 423 434 498 501 504
517 145 160 228 436 462 475 478 481 518 142 187 229 428 490 557 560 563
519 142 169 230 426 437 501 504 507 520 146 161 231 439 465 478 481 484
521 143 188 232 431 493 560 563 566 522 143 170 233 429 440 504 507 510
523 147 162 234 442 468 481 484 487 524 144 189 235 434 496 563 566 569
525 144 171 236 432 443 507 510 513 526 148 163 237 445 471 484 487 490
527 145 190 238 437 499 566 569 572 528 145 172 239 435 446 510 513 516
529 149 164 240 448 474 487 490 493 530 146 191 241 440 502 569 572 575
531 146 173 242 438 449 513 516 519 532 150 165 243 451 477 490 493 496
533 147 192 244 443 505 572 575 578 534 147 174 245 441 452 516 519 522
535 151 166 246 454 480 493 496 499 536 148 193 247 446 508 575 578 581
537 148 175 248 444 455 519 522 525 538 152 167 249 457 483 496 499 502
539 149 194 250 449 511 578 581 584 540 149 176 251 447 458 522 525 528
541 153 168 252 460 486 499 502 505 542 150 195 253 452 514 581 584 587
543 150 177 254 450 461 525 528 531 544 154 169 255 463 489 502 505 508
545 151 196 256 455 517 584 587 590 546 151 178 257 453 464 528 531 534
547 155 170 258 466 492 505 508 511 548 152 197 259 458 520 587 590 593
549 152 179 260 456 467 531 534 537 550 156 171 261 469 495 508 511 514
551 153 198 262 461 523 590 593 596 552 153 180 263 459 470 534 537 540
553 157 172 264 472 498 511 514 517 554 154 199 265 464 526 593 596 599
555 154 181 266 462 473 537 540 543 556 158 173 267 475 501 514 517 520
557 155 200 268 467 529 596 599 602 558 155 182 269 465 476 540 543 546
559 159 174 270 478 504 517 520 523 560 156 201 271 470 532 599 602 605
561 156 183 272 468 479 543 546 549 562 160 175 273 481 507 520 523 526
563 157 202 274 473 535 602 605 608 564 157 184 275 471 482 546 549 552
565 161 176 276 484 510 523 526 529 566 158 203 277 476 538 605 608 611
567 158 185 278 474 485 549 552 555 568 162 177 279 487 513 526 529 532
569 159 204 280 479 541 608 611 614 570 159 186 281 477 488 552 555 558
571 163 178 282 490 516 529 532 535 572 160 205 283 482 544 611 614 617
573 160 187 284 480 491 555 558 561 574 164 179 285 493 519 532 535 538
575 161 206 286 485 547 614 617 620 576 161 188 287 483 494 558 561 564
577 165 180 288 496 522 535 538 541 578 162 207 289 488 550 617 620 623
579 162 189 290 486 497 561 564 567 580 166 181 291 499 525 538 541 544
581 163 208 292 491 553 620 623 626 582 163 190 293 489 500 564 567 570
583 167 182 294 502 528 541 544 547 584 164 209 295 494 556 623 626 629
585 164 191 296 492 503 567 570 573 586 168 183 297 505 531 544 547 550
587 165 210 298 497 559 626 629 632 588 165 192 299 495 506 570 573 576
589 169 184 300 508 534 547 550 553 590 166 211 301 500 562 629 632 635
591 166 193 302 498 509 573 576 579 592 170 185 303 511 537 550 553 556
593 167 212 304 503 565 632 635 638 594 167 194 305 501 512 576 579 582
595 171 186 306 514 540 553 556 559 596 168 213 307 506 568 635 638 641
597 168 195 308 504 515 579 582 585 598 172 187 309 517 543 556 559 562
599 169 214 310 509 571 638 641 644 600 169 196 311 507 518 582 585 588
601 173 188 312 520 546 559 562 565 602 170 215 313 512 574 641 644 647
603 170 197 314 510 521 585 588 591 604 174 189 315 523 549 562 565 568
605 171 216 316 515 577 644 647 650 606 171 198 317 513 524 588 591 594
607 175 190 318 526 552 565 568 571 608 172 217 319 518 580 647 650 653
609 172 199 320 516 527 591 594 597 610 176 191 321 529 555 568 571 574
611 173 218 322 521 583 650 653 656 612 173 200 323 519 530 594 597 600
613 177 192 324 532 558 571 574 577 614 174 219 325 524 586 653 656 659
615 174 201 326 522 533 597 600 603 616 178 193 327 535 561 574 577 580
617 175 220 328 527 589 656 659 662 618 175 202 329 525 536 600 603 606
619 179 194 330 538 564 577 580 583 620 176 221 331 530 592 659 662 665
621 176 203 332 528 539 603 606 609 622 180 195 333 541 567 580 583 586
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623 177 222 334 533 595 662 665 -1 624 177 204 335 531 542 606 609 612
625 181 196 336 544 570 583 586 589 626 178 223 337 536 598 665 -1 -1
627 178 205 338 534 545 609 612 615 628 182 197 339 547 573 586 589 592
629 179 224 340 539 601 -1 -1 -1 630 179 206 341 537 548 612 615 618
631 183 198 342 550 576 589 592 595 632 180 225 343 542 604 -1 -1 -1
633 180 207 344 540 551 615 618 621 634 184 199 345 553 579 592 595 598
635 181 226 346 545 607 -1 -1 -1 636 181 208 347 543 554 618 621 624
637 185 200 348 556 582 595 598 601 638 182 227 349 548 610 -1 -1 -1
639 182 209 350 546 557 621 624 627 640 186 201 351 559 585 598 601 604
641 183 228 352 551 613 -1 -1 -1 642 183 210 353 549 560 624 627 630
643 187 202 354 562 588 601 604 607 644 184 229 355 554 616 -1 -1 -1
645 184 211 356 552 563 627 630 633 646 188 203 357 565 591 604 607 610
647 185 230 358 557 619 -1 -1 -1 648 185 212 359 555 566 630 633 636
649 189 204 360 568 594 607 610 613 650 186 231 361 560 622 -1 -1 -1
651 186 213 362 558 569 633 636 639 652 190 205 363 571 597 610 613 616
653 187 232 364 563 625 -1 -1 -1 654 187 214 365 561 572 636 639 642
655 191 206 366 574 600 613 616 619 656 188 233 367 566 628 -1 -1 -1
657 188 215 368 564 575 639 642 645 658 192 207 369 577 603 616 619 622
659 189 234 370 569 631 -1 -1 -1 660 189 216 371 567 578 642 645 648
661 193 208 372 580 606 619 622 625 662 190 235 373 572 634 -1 -1 -1
663 190 217 374 570 581 645 648 651 664 194 209 375 583 609 622 625 628
665 191 236 376 575 637 -1 -1 -1 666 191 218 377 573 584 648 651 654
667 195 210 378 586 612 625 628 631 668 192 237 379 578 640 -1 -1 -1
669 192 219 380 576 587 651 654 657 670 196 211 381 589 615 628 631 634
671 193 238 382 581 643 -1 -1 -1 672 193 220 383 579 590 654 657 660
673 197 212 384 592 618 631 634 637 674 194 239 385 584 646 -1 -1 -1
675 194 221 386 582 593 657 660 663 676 198 213 387 595 621 634 637 640
677 195 240 388 587 649 -1 -1 -1 678 195 222 389 585 596 660 663 -1
679 199 214 390 598 624 637 640 643 680 196 241 391 590 652 -1 -1 -1
681 196 223 392 588 599 663 -1 -1 682 200 215 393 601 627 640 643 646
683 197 242 394 593 655 -1 -1 -1 684 197 224 395 591 602 -1 -1 -1
685 201 216 396 604 630 643 646 649 686 198 243 397 596 658 -1 -1 -1
687 198 225 398 594 605 -1 -1 -1 688 202 217 399 607 633 646 649 652
689 199 244 400 599 661 -1 -1 -1 690 199 226 401 597 608 -1 -1 -1
691 203 218 402 610 636 649 652 655 692 200 245 403 602 664 -1 -1 -1
693 200 227 404 600 611 -1 -1 -1 694 204 219 405 613 639 652 655 658
695 201 246 406 605 -1 -1 -1 -1 696 201 228 407 603 614 -1 -1 -1
697 205 220 408 616 642 655 658 661 698 202 247 409 608 -1 -1 -1 -1
699 202 229 410 606 617 -1 -1 -1 700 206 221 411 619 645 658 661 664
701 203 248 412 611 -1 -1 -1 -1 702 203 230 413 609 620 -1 -1 -1
703 207 222 414 622 648 661 664 -1 704 204 249 415 614 -1 -1 -1 -1
705 204 231 416 612 623 -1 -1 -1 706 208 223 417 625 651 664 -1 -1
707 205 250 418 617 -1 -1 -1 -1 708 205 232 419 615 626 -1 -1 -1
709 209 224 420 628 654 -1 -1 -1 710 206 251 421 620 -1 -1 -1 -1
711 206 233 422 618 629 -1 -1 -1 712 210 225 423 631 657 -1 -1 -1
713 207 252 424 623 -1 -1 -1 -1 714 207 234 425 621 632 -1 -1 -1
715 211 226 426 634 660 -1 -1 -1 716 208 253 427 626 -1 -1 -1 -1
717 208 235 428 624 635 -1 -1 -1 718 212 227 429 637 663 -1 -1 -1
719 209 254 430 629 -1 -1 -1 -1 720 209 236 431 627 638 -1 -1 -1
721 213 228 432 640 -1 -1 -1 -1 722 210 255 433 632 -1 -1 -1 -1
723 210 237 434 630 641 -1 -1 -1 724 214 229 435 643 -1 -1 -1 -1
725 211 256 436 635 -1 -1 -1 -1 726 211 238 437 633 644 -1 -1 -1
727 215 230 438 646 -1 -1 -1 -1 728 212 257 439 638 -1 -1 -1 -1
729 212 239 440 636 647 -1 -1 -1 730 216 231 441 649 -1 -1 -1 -1
731 213 258 442 641 -1 -1 -1 -1 732 213 240 443 639 650 -1 -1 -1
733 217 232 444 652 -1 -1 -1 -1 734 214 259 445 644 -1 -1 -1 -1
735 214 241 446 642 653 -1 -1 -1 736 218 233 447 655 -1 -1 -1 -1
737 215 260 448 647 -1 -1 -1 -1 738 215 242 449 645 656 -1 -1 -1
739 219 234 450 658 -1 -1 -1 -1 740 216 261 451 650 -1 -1 -1 -1
741 216 243 452 648 659 -1 -1 -1 742 220 235 453 661 -1 -1 -1 -1
743 217 262 454 653 -1 -1 -1 -1 744 217 244 455 651 662 -1 -1 -1
745 221 236 456 664 -1 -1 -1 -1 746 218 263 457 656 -1 -1 -1 -1
747 218 245 458 654 665 -1 -1 -1 748 222 237 459 -1 -1 -1 -1 -1
749 219 264 460 659 -1 -1 -1 -1 750 219 246 461 657 -1 -1 -1 -1
751 223 238 462 -1 -1 -1 -1 -1 752 220 265 463 662 -1 -1 -1 -1
753 220 247 464 660 -1 -1 -1 -1 754 224 239 465 -1 -1 -1 -1 -1
755 221 266 466 665 -1 -1 -1 -1 756 221 248 467 663 -1 -1 -1 -1
757 225 240 468 -1 -1 -1 -1 -1 758 222 267 469 -1 -1 -1 -1 -1
759 222 249 470 -1 -1 -1 -1 -1 760 226 241 471 -1 -1 -1 -1 -1
761 223 268 472 -1 -1 -1 -1 -1 762 223 250 473 -1 -1 -1 -1 -1
763 227 242 474 -1 -1 -1 -1 -1 764 224 269 475 -1 -1 -1 -1 -1
765 224 251 476 -1 -1 -1 -1 -1 766 228 243 477 -1 -1 -1 -1 -1
767 225 270 478 -1 -1 -1 -1 -1 768 225 252 479 -1 -1 -1 -1 -1
769 229 244 480 -1 -1 -1 -1 -1 770 226 271 481 -1 -1 -1 -1 -1
771 226 253 482 -1 -1 -1 -1 -1 772 230 245 483 -1 -1 -1 -1 -1
773 227 272 484 -1 -1 -1 -1 -1 774 227 254 485 -1 -1 -1 -1 -1
775 231 246 486 -1 -1 -1 -1 -1 776 228 273 487 -1 -1 -1 -1 -1
777 228 255 488 -1 -1 -1 -1 -1 778 232 247 489 -1 -1 -1 -1 -1
779 229 274 490 -1 -1 -1 -1 -1 780 229 256 491 -1 -1 -1 -1 -1
781 233 248 492 -1 -1 -1 -1 -1 782 230 275 493 -1 -1 -1 -1 -1
783 230 257 494 -1 -1 -1 -1 -1 784 234 249 495 -1 -1 -1 -1 -1
785 231 276 496 -1 -1 -1 -1 -1 786 231 258 497 -1 -1 -1 -1 -1
787 235 250 498 -1 -1 -1 -1 -1 788 232 277 499 -1 -1 -1 -1 -1

Continued on next page
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Table B.1 – continued from previous page

var linear quadratic var linear quadratic
789 232 259 500 -1 -1 -1 -1 -1 790 236 251 501 -1 -1 -1 -1 -1
791 233 278 502 -1 -1 -1 -1 -1 792 233 260 503 -1 -1 -1 -1 -1
793 237 252 504 -1 -1 -1 -1 -1 794 234 279 505 -1 -1 -1 -1 -1
795 234 261 506 -1 -1 -1 -1 -1 796 238 253 507 -1 -1 -1 -1 -1
797 235 280 508 -1 -1 -1 -1 -1 798 235 262 509 -1 -1 -1 -1 -1
799 239 254 510 -1 -1 -1 -1 -1 800 236 281 511 -1 -1 -1 -1 -1
801 236 263 512 -1 -1 -1 -1 -1 802 240 255 513 -1 -1 -1 -1 -1
803 237 282 514 -1 -1 -1 -1 -1 804 237 264 515 -1 -1 -1 -1 -1
805 241 256 516 -1 -1 -1 -1 -1 806 238 283 517 -1 -1 -1 -1 -1
807 238 265 518 -1 -1 -1 -1 -1 808 242 257 519 -1 -1 -1 -1 -1
809 239 284 520 -1 -1 -1 -1 -1 810 239 266 521 -1 -1 -1 -1 -1
811 243 258 522 -1 -1 -1 -1 -1 812 240 285 523 -1 -1 -1 -1 -1
813 240 267 524 -1 -1 -1 -1 -1 814 244 259 525 -1 -1 -1 -1 -1
815 241 286 526 -1 -1 -1 -1 -1 816 241 268 527 -1 -1 -1 -1 -1
817 245 260 528 -1 -1 -1 -1 -1 818 242 287 529 -1 -1 -1 -1 -1
819 242 269 530 -1 -1 -1 -1 -1 820 246 261 531 -1 -1 -1 -1 -1
821 243 -1 532 -1 -1 -1 -1 -1 822 243 270 533 -1 -1 -1 -1 -1
823 247 262 534 -1 -1 -1 -1 -1 824 244 -1 535 -1 -1 -1 -1 -1
825 244 271 536 -1 -1 -1 -1 -1 826 248 263 537 -1 -1 -1 -1 -1
827 245 -1 538 -1 -1 -1 -1 -1 828 245 272 539 -1 -1 -1 -1 -1
829 249 264 540 -1 -1 -1 -1 -1 830 246 -1 541 -1 -1 -1 -1 -1
831 246 273 542 -1 -1 -1 -1 -1 832 250 265 543 -1 -1 -1 -1 -1
833 247 -1 544 -1 -1 -1 -1 -1 834 247 274 545 -1 -1 -1 -1 -1
835 251 266 546 -1 -1 -1 -1 -1 836 248 -1 547 -1 -1 -1 -1 -1
837 248 275 548 -1 -1 -1 -1 -1 838 252 267 549 -1 -1 -1 -1 -1
839 249 -1 550 -1 -1 -1 -1 -1 840 249 276 551 -1 -1 -1 -1 -1
841 253 268 552 -1 -1 -1 -1 -1 842 250 -1 553 -1 -1 -1 -1 -1
843 250 277 554 -1 -1 -1 -1 -1 844 254 269 555 -1 -1 -1 -1 -1
845 251 -1 556 -1 -1 -1 -1 -1 846 251 278 557 -1 -1 -1 -1 -1
847 255 270 558 -1 -1 -1 -1 -1 848 252 -1 559 -1 -1 -1 -1 -1
849 252 279 560 -1 -1 -1 -1 -1 850 256 271 561 -1 -1 -1 -1 -1
851 253 -1 562 -1 -1 -1 -1 -1 852 253 280 563 -1 -1 -1 -1 -1
853 257 272 564 -1 -1 -1 -1 -1 854 254 -1 565 -1 -1 -1 -1 -1
855 254 281 566 -1 -1 -1 -1 -1 856 258 273 567 -1 -1 -1 -1 -1
857 255 -1 568 -1 -1 -1 -1 -1 858 255 282 569 -1 -1 -1 -1 -1
859 259 274 570 -1 -1 -1 -1 -1 860 256 -1 571 -1 -1 -1 -1 -1
861 256 283 572 -1 -1 -1 -1 -1 862 260 275 573 -1 -1 -1 -1 -1
863 257 -1 574 -1 -1 -1 -1 -1 864 257 284 575 -1 -1 -1 -1 -1
865 261 276 576 -1 -1 -1 -1 -1 866 258 -1 577 -1 -1 -1 -1 -1
867 258 285 578 -1 -1 -1 -1 -1 868 262 277 579 -1 -1 -1 -1 -1
869 259 -1 580 -1 -1 -1 -1 -1 870 259 286 581 -1 -1 -1 -1 -1
871 263 278 582 -1 -1 -1 -1 -1 872 260 -1 583 -1 -1 -1 -1 -1
873 260 287 584 -1 -1 -1 -1 -1 874 264 279 585 -1 -1 -1 -1 -1
875 261 -1 586 -1 -1 -1 -1 -1 876 261 -1 587 -1 -1 -1 -1 -1
877 265 280 588 -1 -1 -1 -1 -1 878 262 -1 589 -1 -1 -1 -1 -1
879 262 -1 590 -1 -1 -1 -1 -1 880 266 281 591 -1 -1 -1 -1 -1
881 263 -1 592 -1 -1 -1 -1 -1 882 263 -1 593 -1 -1 -1 -1 -1
883 267 282 594 -1 -1 -1 -1 -1 884 264 -1 595 -1 -1 -1 -1 -1
885 264 -1 596 -1 -1 -1 -1 -1 886 268 283 597 -1 -1 -1 -1 -1
887 265 -1 598 -1 -1 -1 -1 -1 888 265 -1 599 -1 -1 -1 -1 -1
889 269 284 600 -1 -1 -1 -1 -1 890 266 -1 601 -1 -1 -1 -1 -1
891 266 -1 602 -1 -1 -1 -1 -1 892 270 285 603 -1 -1 -1 -1 -1
893 267 -1 604 -1 -1 -1 -1 -1 894 267 -1 605 -1 -1 -1 -1 -1
895 271 286 606 -1 -1 -1 -1 -1 896 268 -1 607 -1 -1 -1 -1 -1
897 268 -1 608 -1 -1 -1 -1 -1 898 272 287 609 -1 -1 -1 -1 -1
899 269 -1 610 -1 -1 -1 -1 -1 900 269 -1 611 -1 -1 -1 -1 -1
901 273 -1 612 -1 -1 -1 -1 -1 902 270 -1 613 -1 -1 -1 -1 -1
903 270 -1 614 -1 -1 -1 -1 -1 904 274 -1 615 -1 -1 -1 -1 -1
905 271 -1 616 -1 -1 -1 -1 -1 906 271 -1 617 -1 -1 -1 -1 -1
907 275 -1 618 -1 -1 -1 -1 -1 908 272 -1 619 -1 -1 -1 -1 -1
909 272 -1 620 -1 -1 -1 -1 -1 910 276 -1 621 -1 -1 -1 -1 -1
911 273 -1 622 -1 -1 -1 -1 -1 912 273 -1 623 -1 -1 -1 -1 -1
913 277 -1 624 -1 -1 -1 -1 -1 914 274 -1 625 -1 -1 -1 -1 -1
915 274 -1 626 -1 -1 -1 -1 -1 916 278 -1 627 -1 -1 -1 -1 -1
917 275 -1 628 -1 -1 -1 -1 -1 918 275 -1 629 -1 -1 -1 -1 -1
919 279 -1 630 -1 -1 -1 -1 -1 920 276 -1 631 -1 -1 -1 -1 -1
921 276 -1 632 -1 -1 -1 -1 -1 922 280 -1 633 -1 -1 -1 -1 -1
923 277 -1 634 -1 -1 -1 -1 -1 924 277 -1 635 -1 -1 -1 -1 -1
925 281 -1 636 -1 -1 -1 -1 -1 926 278 -1 637 -1 -1 -1 -1 -1
927 278 -1 638 -1 -1 -1 -1 -1 928 282 -1 639 -1 -1 -1 -1 -1
929 279 -1 640 -1 -1 -1 -1 -1 930 279 -1 641 -1 -1 -1 -1 -1
931 283 -1 642 -1 -1 -1 -1 -1 932 280 -1 643 -1 -1 -1 -1 -1
933 280 -1 644 -1 -1 -1 -1 -1 934 284 -1 645 -1 -1 -1 -1 -1
935 281 -1 646 -1 -1 -1 -1 -1 936 281 -1 647 -1 -1 -1 -1 -1
937 285 -1 648 -1 -1 -1 -1 -1 938 282 -1 649 -1 -1 -1 -1 -1
939 282 -1 650 -1 -1 -1 -1 -1 940 286 -1 651 -1 -1 -1 -1 -1
941 283 -1 652 -1 -1 -1 -1 -1 942 283 -1 653 -1 -1 -1 -1 -1
943 287 -1 654 -1 -1 -1 -1 -1 944 284 -1 655 -1 -1 -1 -1 -1
945 284 -1 656 -1 -1 -1 -1 -1 946 -1 -1 657 -1 -1 -1 -1 -1
947 285 -1 658 -1 -1 -1 -1 -1 948 285 -1 659 -1 -1 -1 -1 -1
949 -1 -1 660 -1 -1 -1 -1 -1 950 286 -1 661 -1 -1 -1 -1 -1
951 286 -1 662 -1 -1 -1 -1 -1 952 -1 -1 663 -1 -1 -1 -1 -1
953 287 -1 664 -1 -1 -1 -1 -1 954 287 -1 665 -1 -1 -1 -1 -1





Appendix C

CNF for the Bivium B
Keystream Equation

The keystream equation of Bivium B is of the form

x1 ⊕ x2 ⊕ x3 ⊕ x4 = z

where z ∈ {0, 1} is the keystream bit. Then we consider the Boolean polynomial

f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

If z = 1 we convert f(x1, x2, x3, x4) into CNF and if z = 0 we convert ¬f(x1, x2, x3, x4).
One the one hand, we obtain the following conjunctive normal form

CNF (f) = (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4)∧
(x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ ¬x3 ∨ x4)∧
(x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ x4)∧
(¬x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

(C.1)

if z = 1. This leads to the following 8 inequality constraints:

x1 − x2 + x3 − x4 ≥ −1,
−x1 − x2 − x3 − x4 ≥ −3,
x1 + x2 − x3 − x4 ≥ −1,
−x1 + x2 − x3 + x4 ≥ −1,
x1 − x2 − x3 + x4 ≥ −1,
−x1 − x2 + x3 − x4 ≥ −1,
−x1 + x2 + x3 − x4 ≥ −1,
x1 + x2 + x3 + x4 ≥ 1.

On the other hand, if z = 0, we get

CNF (¬f) = (¬x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x3 ∨ x4)∧
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3 ∨ x4)∧
(x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ ¬x3 ∨ x4)∧
(¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4)

(C.2)
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From this Boolean equation in CNF we derive the following 8 inequality constraints:

−x1 + x2 − x3 − x4 ≥ −2,
x1 − x2 + x3 + x4 ≥ 0,

−x1 − x2 − x3 + x4 ≥ −2,
−x1 + x2 + x3 + x4 ≥ 0,

x1 − x2 − x3 − x4 ≥ −2,
x1 + x2 − x3 + x4 ≥ 0,

−x1 − x2 + x3 − x4 ≥ −2,
x1 + x2 + x3 − x4 ≥ 0.

This means every key stream equation yields 8 additional linear inequality con-
straints containing precisely 4 variables.
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differential, 48
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security
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