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Preface
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by DTU and part of the results were obtained with supplementary financial
support from the EU funded project ScorePP (Source Control Options for
Reducing Emission of Priority Pollutants).
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Abstract

The increasing focus on management of stormwater Priority Pollutants (PP)
enhances the role of mathematical models as support for the assessment of
stormwater quality control strategies. This thesis investigates and presents
modelling approaches that are suitable to simulate PP fluxes across stormwater
systems, supporting the development of pollution control strategies. This is
obtained by analyzing four study areas: (i) catchment characterization, (i1)
pollutant release and transport models, (ii1) stormwater treatment models, and
(iv) combination of the above into an integrated model. Given the significant
level of uncertainty affecting stormwater quality models, the identification of
sources of uncertainty (based on Global Sensitivity Analysis - GSA) and
quantification of model prediction bounds (based on pseudo-Bayesian methods,
such as the Generalized Likelihood Uncertainty Estimation - GLUE) are
presented as crucial elements in modelling of stormwater PP. Special focus is on
assessing the use of combined informal likelthood measures assigning equal
weights at different model outputs (flow and quality measurements).

Management of the spatially heterogeneous sources of stormwater PP requires a
detailed catchment characterization, based on land use and the use of information
stored in Geographical Information System (GIS). The analysis carried out in the
thesis, which compares different characterization approaches with different level
of detail, suggests in fact that this approach allows the identification of the major
pollutant sources (and sources of uncertainty) in the catchment and provides the
basis for the development of source-control strategies.

The thesis shows how conceptual continuous dynamic models, combined with
uncertainty analysis, can provide estimation of PP loads that can be used for
scenario analysis over long time periods. The combination of GSA with
uncertainty analysis techniques enables the identification of interactions between
model factors which are commonly ignored by traditional approaches. The
analysis performed in the thesis shows how the use of different informal
likelthood measures in GLUE can affect the estimation of model prediction
bounds and the model applications for stormwater management.

The fate of stormwater PP (dissolved and particulate) in treatment units is
simulated by extending a dynamic multi compartmental stormwater treatment
model with fate processes that are simulated based on the substance inherent
properties (degradation rates, solid-water partition coefficient, Henry’s law



constant, molecular weight). The developed model (STUMP) thus applies
concepts commonly used in chemical risk assessment at the scale of stormwater
treatment facilities by providing a dynamic representation of the system. STUMP
can simulate different substances (metals, organics) in various treatment units
(e.g. ponds, biofilters). The uncertainty analysis performed in the thesis allows
the identification of the major sources of uncertainty in different units, depending
on the dominating PP fate processes. A reduction in STUMP uncertainty of PP
fate estimation can be obtained by a good representation of the physical
characteristic of the treatment unit, reducing the need for PP field measurements.

The thesis shows how the integration of the investigated models provides results
that can be used in the development, assessment, and comparison of different PP
control strategies (e.g. source control or improvement of treatment facilities). The
combination of the integrated model with uncertainty analysis identifies the
information that is necessary to improve the scenario analysis and increase the
reliability of the simulation results. The models developed and demonstrated in
the thesis are applied in a real catchment to evaluate different scenarios for
reduction of PP emissions to the aquatic environment, showing the potential of
the proposed approaches as support tools in stormwater quality management.

The thesis provides a framework for the trustworthy application of models to
estimate PP fluxes from their sources, and through stormwater drainage systems,
and to the sink. This fills a knowledge gap regarding stormwater PP and it
supplies urban water managers with modelling tools for management of
stormwater pollution. Examples in the thesis are focused on heavy metals (Cu,
Zn) and selected organic substances (DEHP, Gliphosate, Pyrene, IPBC, Benzene)
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Dansk sammenfatning

Det voksende fokus péd handtering af miljefremmede stoffer i1 afstrommet
regnvand eger ngdvendigheden af matematiske modeller som stette til udvikling
og evaluering af strategier til kontrol af regnvandskvalitet. Denne athandling
udforsker og belyser modelleringsmetoder til simulering af stoftransport i
regnvandssystemer og stetter dermed udviklingen af forureningsbegrensende
strategier. Dette gores ved at analysere fire forskningsomrader: (i)
oplandskarakterisering, (ii) modellering af stofafstremning, (ii1)) modellering af
regnvandsrensning, og (iv) kombinering af overstdende 1 en integreret model. Pa
grund af de betydelige usikkerheder, der er forbundet med modellering af
kvaliteten af regnvandsafstromning, fremlaegges identificering af de vigtigste
kilder til usikkerhed (baseret pa Global Sensitivitets Analyse - GSA) og
kvantificering af usikkerhederne pa modellens forudsigelser (baseret pa pseudo-
Bayesianske metoder, s& som Generalized Likelihood Uncertain Estimation -
GLUE) som vasentlige elementer 1 modellering af miljefremmede stoffer i
regnvandsafstremning. Der fokusere pa uformelle kombinerede likelihood mal,
som vaegter forskellige output (flow og kvalitets malinger).

Héndtering af de spatialt fordelte kilder til miljefremmede stoffer kraever en
detaljeret karakterisering af oplandet og arealanvendelsen ved brug af
Geografiske Informations Systemer (GIS). Analysen udfert 1 athandlingen, som
sammenligner forskellige tilgange til oplandskarakterisering med forskellige
detaljeringsgrader, tyder pa at et hejt detaljeringsniveau kan medvirke til
identifikation af de vigtigste forureningskilder (og kilder til usikkerheder) i
oplandet og dermed danne grundlag for udvikling af kilde kontrol strategier.

Afhandlingen viser hvordan konceptuelle dynamiske modeller kombineret med
usikkerhedsanalyse kan bruges til at estimere afstremning af miljefremmede
stoffer 1 forbindelse med scenarie analyser. Kombinationen af GSA med
usikkerhedsanalyse gor det muligt at identificere interaktioner mellem model
faktorer, hvilket ofte ignoreres af traditionelle metoder. Analysen udfert i
afhandlingen viser, hvordan forskellige uformelle /ikelihood mél 1 GLUE kan
pavirke vurdering af usikkerhederne ved modellers forudsigelser og folgelig
anvendelsen af modellerne indenfor regnvandshéndtering.

Skaebnen af miljefremmede stoffer (oplest og partikulert) 1 regnvands
renseanleg simuleres ved at kombinere en dynamisk multicelle
regnvandsrensnings model med miljoskaebne processer, der modelleres ud fra
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stoffernes iboende egenskaber. Den udviklede model (STUMP) overforer sdledes
koncepter, som normalt bruges i kemisk risikovurdering, til regnvands
renseanleg ved at tilfoje en dynamisk repreesentation af systemet. STUMP kan
simulere forskellige stoffer (tungmetaller, organiske stoffer) i forskelige typer
anleg (f.eks. bassiner og biofiltre). Usikkerhedsanalysen udfert i afthandlingen
gor det muligt at identificere de vigtigste kilder til usikkerhed 1 forskellige
renseanleg, athengigt af de dominerende miljeskabne processer. En reduktion
af usikkerheden kan opnas med en korrekt beskrivelse af renseanlaeggets fysiske
karakteristika, hvilket reducerer behovet for feltmalinger af miljefremmede
stoffer.

Afhandling vise hvorledes integration af de undersogte modeller giver resultater,
der kan bruges 1 udvikling, vurdering, og sammenligning af forskellige strategier
til kontrol af miljefremmede stoffer (f.eks. kilde kontrol eller forbedring af
renseanleg). Kombinationen af den integrerede model med usikkerhedsanalyse
klarlegger hvilke data, der er nedvendige for at forbedre scenarieanalyser og
foreger palideligheden af simuleringsresultaterne. Modellerne udviklet og
demonstreret 1 athandling anvendes pé& et virkeligt opland til at vurdere
forskellige scenarier til reduktion af udledningen af miljefremmede stoffer til
vandmiljeet.

Afhandlingen fremlaegger en pélidelig systematik for anvendelse af modeller til
beregning af miljefremmede stoffers transport fra deres kilder, gennem
aflobssystemer og regnvandsrenseanlaeg og til recipienten. Dette tilforer vigtig
viden om miljefremmede stoffer 1 regnvandsafstremning og forsyner de
ansvarlige for handtering af regnvand i byerne med modelleringsvaerktajer til
brug 1 forbindelse med héindtering af forurening fra afstrommende regnvand.
Eksempler 1 denne afhandling fokuserer pa tungmetaller (Cu, Zn) og udvalgte
organiske stoffer (DEHP, Gliphosate, Pyrene, IPBC, Benzene).
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1. Introduction

Stormwater quality management is an issue of increasing concern on urban water
managers’ agenda. The successes in reducing the acute and long-term negative
impacts caused by point sources (e.g. wastewater discharge) have increased the
attention to chronic impacts and diffuse sources affecting stormwater quality.

Furthermore, recent environmental legislations (e.g. the EU Water Framework
Directive (WFD) (European Commission, 2000) and the Environmental Quality
Standard (EQS) directive (European Commission, 2008)) identify a wide range
of substances (heavy metals, polyaromatic hydrocarbons, herbicides and other
xenobiotic organic compounds — commonly named Micro Pollutants - MP) that
need to be considered to achieve a good ecological status of natural waters. The
focus has thus moved from addressing only traditional “macro” pollutants
(overall organic matter, nutrients, suspended solids) to include also
micropollutants. While the first are characterized by relatively high
concentrations (in the level of mg/l) as well as acute and short time effects (e.g.
oxygen depletion, eutrophication), the latter are commonly found in low
concentrations (in the level of ng/l — pug/l) and mainly have chronic and long-term
impacts on the natural environment. The fate of these substances in the
environment can significantly differ from the behaviour of macro pollutants, and
therefore the scientific tools that were developed to address macropollutants may
be inadequate to deal with MP.

Urban water managers should develop and implement strategies to reduce the
non wanted biological impact due to discharge of stormwater MP. These actions
require identification of the most critical and representative pollutants (also
defined as Priority Pollutants — PP) and the quantification of the fluxes of these
substances in stormwater systems. While there are examples of tools developed
to select PP (see e.g. Eriksson et al., 2005; Baun et al., 2006), mathematical tools
capable of estimating the dynamic fluxes of these specific pollutants in
stormwater systems are lacking.

Also, the implementation of extensive monitoring campaigns is limited by the
complexity of the system, the high variability of stormwater pollution processes,
the difficulties in measuring the low MP concentrations, and problems related to
obtaining representative quality data. These limitations boost the role of
mathematical models in integrating the monitoring data, providing a complete
overview of the situation in the system and evaluating the effects of possible



modifications. Mathematical models can thus provide an important support in the
control of stormwater micropollutants, but need to be specifically adapted to the
characteristics of these substances.

1.1. The elements in stormwater systems

Separate stormwater systems can be subdivided into three basic parts: the
catchment where runoff is generated and sources of pollutants are located, the
drainage system which collects and routes stormwater away from the catchment,
and, where adopted, a final treatment before discharge into the receiving water.
Stormwater quality models can be structured with a similar scheme (Figure 1.1),
as described by Ball et al. (1998). Pollutant sources and pollutant generation
processes (accumulation on the catchment surfaces) are modelled by specific
submodels. Pollutant release processes are modelled by collection submodels,
which also estimate the stormwater volume entering the drainage system.
Stormwater and pollutant flows are routed across the catchment by transport
submodels. Finally, stormwater treatment before discharge in receiving waters is
simulated by disposal models.

Stormwater quality

_____

Stormwater PP
source
characterization )

|
|
|
|
I
|
|
I
L
|
:
: Stormwater PP
: release and
I transport
:
|
|
|
| ]
|
|
|
1
|
I

Catchment

Stormwater
Treatment

Treatment
System
‘

Drainage System
A

—alll— 4

Integrated stormwater
system Integrated models

Figure 1.1. Schematization of stormwater quality models (adapted from Ball et al.,
1998) and study areas investigated during the project.



The stormwater system is subdivided and studied in this thesis into three areas
(exemplified by the three coloured circles in Figure 1.1): the first study area deals
with (i) source characterization, the second with (ii) modelling of pollution
release and transport and the third with (ii1) stormwater treatment. The outcomes
from these three study areas are finally combined into an integrated model.

1.2. Application of models in stormwater pollution
management

The issues and policies involved in the management of stormwater pollution and
the interaction between the various elements of the stormwater system can be
described by using the Driver-Pressure-State-Impact-Response (DPSIR - EEA,
1999) framework, which enables an easy delineation of environmental systems
and issues. Using this framework, the issues related to stormwater pollution
management can be classified as shown in Figure 1.2. Models can play an
important role in several phases of stormwater management:

B Drivers. Rainfall is the natural process that leads to runoff, while the urban
activities that are present within the catchment are potential pollutant
sources. Models can be used to estimate the stormwater volume generated in
the catchment and to identify the major potential pollutant sources by
analyzing the catchment.

Pressures. Priority Pollutants are released from sources, enter stormwater
and are transported in the drainage systems. Models can be used to quantify
these releases and the loads entering the aquatic environment.

B State. Stormwater quality is the environmental variable that expresses the
situation in the analyzed system. Models can be employed to estimate
stormwater quality, to integrate field measurement in the assessment of the
environmental status and to evaluate the effects of stormwater discharge
(which are estimated, for example, from simulations of concentrations in the
outlet and in the receiving waters).

B /mpact. Stormwater discharges can have negative effects on the receiving
aquatic environment. When dealing with Priority Pollutants, negative effects
include acute and other non- time biological limited effects (endocrine
disruption, cancer, etc.). Models can be employed to highlight potential
problems (e.g. excessive concentrations) and to estimate the temporal scale
of such impacts (e.g. frequency and duration of exposure to excessive
concentrations).



B Response. Different control strategies can be employed to improve
stormwater quality and to reduce the impact on the water environment.
Source control options target the Drivers (e.g. substitution of building
materials reduces the sources that can release PP) and Pressures (e.g.
stormwater infiltration reduces the PP release to the drainage system). Other
more technological approaches focus on stormwater treatment, reducing the
emissions to the drainage network and to the receiving water. These options
contribute to improve the state of the receiving water bodies. Models can be
used for scenario analysis, assessing the efficiency of different pollution
control strategies by simulating the changes in the PP fluxes across the
system and the improvement of the state of the system caused by the
implementation of the strategy.

The role of models in the management of stormwater Priority Pollutants is
magnified by the difficulties in monitoring these substances and by the
complexity of stormwater systems (due to spatial and temporal variability of
pollutant sources, hydraulics of the drainage system, etc.). Models can in fact
supply information (e.g. long term statistics, data regarding non-monitored
events) that can integrate the (commonly limited) monitoring data in the
elaboration and assessment of stormwater quality management plans.

Rainfall
Urban activities

Figure 1.2. DPSIR scheme for the emission of stormwater pollutants to the water
environment.



1.3. Aim of the thesis

This thesis aims to provide a framework for the trustworthy application of
models to estimate the fluxes of Priority Pollutants across integrated stormwater
systems from the source to the sink. These models can provide support in the
development and evaluation of policies aiming to control emissions of
stormwater PP to water bodies. The thesis investigates the application of models
in the various contexts within the elements of the stormwater system described in
the previous sections. For each element of the stormwater system listed in
Section 1.1, the project aims to (a) identify the available modelling tools, their
range of applicability and limitations with special focus on Priority Pollutants.
When these tools are not available, (b) new tools are developed. Finally, the
analyzed models are tested on real case studies, (c) assessing the model
performance against measurements in terms of support for stormwater quality
management.

The thesis is based on the main hypothesis that a detailed estimation of PP fluxes
in stormwater systems requires dynamic models capable of simulating the system
over long time intervals. This is necessary due to the dynamics of the processes
involved in stormwater pollution. These dynamic models can be integrated to
provide support for stormwater quality management. The latter requires the
analysis of highly spatially heterogeneous systems: in the thesis it is thus
hypothesized that the pollutant sources in the catchment need to be characterized
by using the information stored in Geographical Information Systems (GIS).
Given the diverse properties of stormwater micropollutants, it is furthermore
assumed that the different chemical properties of the modelled substances should
be considered to estimate their fate in the environment. Finally, models are
simplifications of reality; therefore a final assumption that is considered through
the entire thesis asserts that model results cannot be employed for practical
purpose without considering their uncertainty.

1.4. Thesis outline

Section 2 illustrates the research questions that are investigated in the thesis.
After an introduction of the general context and methods employed during the
project (Section 3), the thesis is structured to resemble the pollutant flow across
the stormwater system. The thesis deals with the characterization of stormwater
pollutant sources (Section 4), models for the generation and transport of
stormwater pollutants (Section 5), and stormwater treatment (Section 6).



For each of the stormwater system elements the questions listed in Section 2 are
addressed: by describing (a) the existing knowledge and (b) the models that have
been considered/developed during the project; and by (c) assessing the model’s
performances. Finally, the various parts of the stormwater systems are considered
and holistically modelled in Section 7, showing an example of model application
in stormwater quality management. The main results of the project and areas for

future research are discussed in Section & and conclusions are drawn in Section
9.



2. Research questions

To achieve the objectives of the thesis stated in the previous section, a modeller

needs to investigate various issues that can be linked to basic research questions.

These questions are addressed in the different sections of this thesis (see the

scheme outlined in Table 2.1):

How can pollutant sources be characterized? How can the distribution
of micropollutant sources across the catchment be represented?

Is it possible to simulate the complex dynamic processes that drive the
release of micropollutants into stormwater and their transport across the
stormwater system?

What are the fate processes that should be considered to quantify the PP
removal in stormwater treatment systems? How can these processes be
modelled in different stormwater treatment systems?

How can PP fluxes across stormwater systems be modelled?

Is it possible to simulate the effects of potential pollution control
strategies on the existing system? Which information is sufficient?

While formulating well documented responses to those questions, the following

common principles guided the development of the thesis:

Expansion of existing models: several stormwater quality models have
been developed in the past decades. There is a solid modelling
background to dynamically represent the hydraulic and pollution
generation and transport processes in stormwater (limited to
macropollutants). Also, several mathematical approaches are available to
describe the fate of micropollutants based on their chemical properties.
This existing knowledge provides an essential starting point for the
development of models that specifically target stormwater PP.



Table 2.1. Outline of the research questions addressed in the thesis.

Catchment characterization

How can pollutant sources be characterized?

How can the distribution of micropollutant sources across
the catchment be represented?

Objectives Thesis section Appendices
Identification of existing models Section 4.1
Assessment of performance Section 4.3

Pollution release and transport

Is it possible to simulate the complex dynamic processes
that drive the release of micropollutants into stormwater
and their transport across the stormwater system?

Objectives Thesis section Appendices
Identification of existing models Section 5.1

Development of model Section 5.2 Paper I
Assessment of performance Section 5.3 Paper I

Treatment

What are the fate processes that should be considered to - %
quantify the PP removal in stormwater treatment systems? T ol

How can these processes be modelled in different ‘. _

stormwater treatment systems?

Objectives Thesis section Appendices
Identification of existing models Section 6.1 Paper 11
Development of model Section 6.2 Paper 11
Assessment of performance Section 6.3 Paper 111
Paper IV
Integrated system
How can PP fluxes across stormwater systems be
modelled? ‘ /
Is it possible to simulate the effects of potential pollution
control strategies on the existing situation? Integrated models
Which information is sufficient? Which additional data are
needed?
Objectives Thesis section Appendices
Assessment of performance Section 7 Paper IV




Comparison of different modelling approaches: different modelling tools
are available in the literature. These are based on different conceptual
approaches that need to be compared (looking at their range of
applicability and limitations) when identifying the most appropriate
model to simulate PP fluxes in stormwater systems.

Evaluation of the appropriate model complexity: the complexity of the
various available approaches needs to be considered in view of the
general scarcity of available measurements regarding stormwater quality,
and in particular stormwater PP. The chosen level of complexity should
be a compromise between the need for a detailed description of the
pollution processes, the performance of the model, and the data and
resources (computational and modeller’s time) availability.

Assessment of result uncertainty: stormwater quality modelling is
intrinsically affected by various sources of uncertainty that need to be
considered when looking at modelling results. Identification of
uncertainty sources and quantification of uncertainty is thus an essential
and crucial step to provide reliable and trustworthy results that can be
applied in real cases.

Flexibility of developed models: stormwater quality management is a
wide field that includes a broad range of substances, release processes
and control strategies. Models aiming to support management of
stormwater PP needs to be easily and promptly adaptable to the different
scenarios that need to be assessed (e.g. different substances, control
strategies, etc.).

Exploitation of available data: the general scarcity of measurements
regarding stormwater PP may represent an important barrier to model
application. Models can provide useful information without field
measurements (as commonly done, for example, in the chemical risk
modelling field), but their results becomes more reliable when they are
combined with field observations. The developed models should thus be
able to benefit from all the available data (e.g. flow measurements, data
regarding other water quality parameters) in order to improve the
reliability of the results in situations characterized by a significant level
of uncertainty.



— The knowledge about substance’s inherent chemical properties (tendency
to sorb, biodegradability, volatility, etc.) may often be the only available
information for a wide range of stormwater MP, and these properties thus
represent an obvious starting point for models targeting these substances.

These common principles ensure that the presented models represent optimal
state-of-the-art solutions, allowing their application in stormwater quality

management.

10



3. Context and methods

3.1. Stormwater quality

Stormwater pollutants

Stormwater quality depends on the environmental media and surfaces that the
runoff is in contact with. Rainwater additionally contains substances from long
distance atmospheric transport or scavenged from the atmosphere above urban
areas. The runoff generated during rain events flows across the urban surfaces,
where different substances are released and/or removed by runoff. The
substances that can be identified in stormwater, their concentrations and their
loads may vary significantly depending on the land use, the human activities and
the materials used in the catchment area (Figure 3.1). Stormwater pollution is
thus characterized by significant spatial variability across urban catchments.

The concentrations of stormwater pollutants are commonly lower than in
domestic wastewater (see some examples of stormwater concentration values in
Gobel et al., 2007), so that discharge of stormwater micropollutants rarely causes
acute effects on the receiving aquatic environment.

’ Dry
Pl Wet .- Deposition
i /1111 Deposition
1 :I':'l':@ Animal .
s . activities % .
l activities Building
Vehicles || materials

j\...%:* ﬁ% %ﬁ_"’i

Roads
| Basic Parameters \ J Pesticide/Herbicides |
{ Metals PAHs ]
| Pathogens Other organics |

Figure 3.1. Scheme of major stormwater pollutant sources in urban areas and main
group of water quality parameters.
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Nevertheless, as shown in Figure 3.2 stormwater from urban areas can cause
long-term effects (as documented by toxicity studies performed by e.g.
Kayhanian et al., 2008; McQueen et al., 2010) and negatively impact the quality
of natural ecosystems (e.g. Eriksson et al., 2007; Karlaviciene et al., 2009).

Stormwater quality monitoring

The stochastic nature of precipitation influences the temporal behaviour of
stormwater pollution, which is also affected by the temporal emission pattern of
the various sources. These factors generate a high temporal variability in the
concentrations and loads in stormwater, which is very difficult to monitor. In
fact, extensive sampling is needed to obtain a detailed and reliable description of
the pollutants’ behaviour during a rain event. Depending on the equipment (e.g.
the volume collected) and the sampling technique (e.g. flow proportional or time
proportional sampling), the data regarding stormwater quality can describe
stormwater pollutographs with different levels of detail.

Oxygen depletion (BOD, COD)

Suspended solids

Heavy metals and organic micropollutants

Bacterial pollution

Nutrients (N,P)

NH3 and st

Acute effects Long-term effects —

1 hour 1 day 1 week 1 month 1 year 10 year

Figure 3.2. Time scale for effects caused by stormwater discharge: stormwater priority
substances can cause both acute and long-term toxicity (from Hvitved-Jacobsen et al.,
1994).
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(a) Actual concentration b) Flow proportional sampling
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Figure 3.3. Representation of concentration data from the actual concentration down to
the Event Mean Concentration obtained through a flow proportional sampling procedure.

Figure 3.3 exemplifies the data collection process for a flow-proportional
sampler: the actual stormwater concentration (a) is sampled at discrete intervals
and collected in composite sample bottles (b). Samples from these bottles are
analyzed and it is possible to reconstruct a pollutograph (c) or to integrate the
measured concentrations with the flow data and calculate the Event Mean
Concentration (EMC) (d). The latter is calculated as the ratio between the total
mass discharged during the event and the total event volume.

From measurements collected during separate rain events it is possible to
calculate the Site Mean Concentration (SMC) as the ratio between the total mass
and volume discharged during several events, which provides information about
the stormwater quality in the study site over long time periods.
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Clearly, the information provided by samples is an approximation of reality.
While trying to reproduce reality, the modeller needs to consider that
observations may not be as detailed as the model would require. For example, a
dynamic model can generate continuous concentration data (reproducing the
natural pattern in (a)) that, however, can only be compared against the
measurements from bottle samples (¢) or event-based data (d).

This inherent data uncertainty needs to be considered when selecting the level of
detail of the model and when trying to quantify model uncertainty. In fact, the
models developed in this thesis are evaluated against data collected with different
sampling techniques (see Table 3.1).

3.2. Legal framework

Pollution caused by stormwater discharge is covered by the EU Water
Framework Directive (WFD) 2000/60/EC (European Commission, 2000). The
WEFD does not define precise technical requirements, but provides guidelines for
water quality management at the catchment level. This should be based on the
application of the Best Available Technologies and on establishing Best
Environmental Practices. A major objective of the WFD is the enhancement of
the status of the aquatic ecosystems through the progressive reduction of
discharges, emissions and loss of Priority Substances (PS) and the cessation or

phasing-out of discharges, emissions and losses of Priority Hazardous Substances
(PHS).

Among the criteria for a good ecological status, the directive lists the
Environmental Quality Standards (EQS), which define the maximum
concentrations of PS in water (defined as maximum allowable — MAC, and
annual average — AA), sediments and biota. EQS are further defined in the WFD
daughter  directive 2008/105/EC  (European Commission, 2008) on
Environmental Quality Standards. A great number of the substances listed in the
directives can be identified in stormwater from urban areas. The fulfilment of the
WFD water quality objectives thus requires the consideration of PS loads
discharged by stormwater.

Depending on the considered spatial scale, stormwater discharges can either be
regarded as point or diffuse sources, which are both regulated through the
implementation of emission control strategies. These are defined as a
combination of emission limitations (e.g. limits on the mass/concentration
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emission) or activities affecting the emission processes (e.g. source control, end-
of-pipe treatments, etc.). Emission control strategies should be cost-effective and
proportional: this thus requires the assessment and comparison of different
control strategies. Models can provide results that support the identification of
the most appropriate emission control strategy for a specific area.

The EQS directive 2008/105/EC also introduces the concept of mixing zones,
which are areas in proximity of the discharge point where exceedance of EQS for
one or more PP is allowed, given that this does not affect the compliance of the
rest of the water body with those standards.

The compliance of stormwater discharge with the EQS requirements might
potentially be assessed through the application of models (e.g. Gevaert et al.,
2009; Bach et al., 2010; Mouratiadou et al., 2010; Yang and Wang, 2010).

3.3. Modelling procedure

The implementation and application of models can be subdivided into general
steps (see for example the schemes presented in Carstensen et al., 1997;
Jargensen and Bendoricchio, 2001; Dochain and Vanrolleghem, 2001; Jakeman
et al., 2006; Refsgaard et al., 2007) where some can be neglected according to
specific situations (e.g. when a model is available, a modeller can directly jump
from the problem formulation to the model diagnosis). Hereafter a short
description of the various phases of model development that are performed in the
thesis is presented (Figure 3.4).

The starting point for the application of a model is the definition of the goal (e.g.
improved quality of natural waters) and the formulation of the questions that the
modeller should answer (defined in Section 2). Once clear objectives are defined,
relevant knowledge can be identified in the available literature. This information
can highlight relevant experiences and tools to solve the defined problem (e.g.
existing models, as described in Section 5.1 and 6.1).

The model formulation and implementation represents the core of the process of
model development. In this phase the general conditions under which the model
operates (e.g. main assumptions) are outlined, the model structure end equations
are selected and model parameters and the variables are defined (an example of
this step is the development of the treatment model presented in Paper II). The
model is then coded in the programming language and software selected
according to the choices made during model formulation.

16
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Figure 3.4. Procedure for model building (adapted from Carstensen et al., 1997;
Jakeman et al., 2006; Refsgaard et al., 2007). The coloured areas represent the steps
performed in the project for each element of the stormwater system.

Dynamic models (as the one presented in Section 5.2.2) require software with
proper numerical solvers. The use in integrated models should use platforms that
facilitate integration with other models (e.g. MATLAB/SIMULINK®, used in
Paper V, or WEST®, used for the stormwater treatment model - Paper I1, 111 —
and its integration with other models (De Keyser et al., 2010)).

Once the model is implemented, its behaviour is analyzed and problems, weak
points, and areas of improvements are diagnosed. This phase is also commonly
defined as sensitivity analysis (Saltelli, 2000) and it helps the modeller to (i)
identify the most influential and significant model factors (i.e. parameters, inputs,
variables) with respect to the model output, (ii) detect potential interactions
between the model factors and (iii) highlight regions of the parameter space that
ensure optimal results. The results of the sensitivity analysis may motivate
further studies and/or model re-formulation and provide the basis for the
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definition of the data needed to assess the performances of the model. An
example of the results from this stage can be found in Paper I and Paper IIL.

Subsequently the model is tested and its performance is analyzed by comparing
its results against measurements. This stage includes the estimation of the
parameters that ensure better performance (this phase is also defined as
calibration and some examples are presented in Paper I and IV). The evaluation
of the model also involves the quantification of the result uncertainty and the
testing against additional measurements (defined as validation, corroboration or
confirmation). These last stages are essential to increase the confidence in the
model before its final application and are illustrated in detail in the following
section.

3.4. Analysis of model performance

For a trustworthy application of models a comprehensive knowledge of the
model performance is necessary. The modeller should be aware of the most
influential model factors for the model outputs and their interactions. This allows
the identification of the major sources of uncertainty, i.e. the areas where
resources need to be focused to improve the model performance (Saltelli and
Annoni, 2010).

Models are a simplification of reality and multiple sources of uncertainty (inputs,
parameters, model structure, and measurements) make it impossible to exactly
simulate reality. The model results thus need to undergo an uncertainty analysis,
1.e. uncertainty bounds should quantify the level of confidence in the results.
Although this is valid for any field of environmental modelling, uncertainty
analysis is crucial when dealing with stormwater pollution. Modelling of
stormwater pollution is, in fact, affected by high uncertainty related to the
difficulties in monitoring, high variability and complexity of the processes, and
difficulties in estimating the model parameters, (Bertrand-Krajewski, 2007).

3.4.1.Identification of influential factors

Sensitivity analysis allows the identification of the major sources of uncertainty
without requiring measurements, as the focus is on the model behaviour rather
than on its performance. Sensitivity analysis has traditionally been performed by
applying “One-At-Time” (OAT) methods (also called local sensitivity analysis),
i.e. the response of the model output to the variation of one factor is calculated
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for each single model factor separately. The first-order sensitivity index S; is then
calculated for the i-th model factor X; according to the formula:

AM

_ M
S, =AY (3.1)

Xi

where the numerator expresses the relative variation of the model output M and
the denominator defines the relative variation of the model factor X;. This
approach is widely applied for its simplicity and low computational requirements
(for a k-dimensional model factor space only & simulations are needed), but it
fails to provide a complete overview of the model features (see the complete
discussion presented in Saltelli and Annoni, 2010). OAT methods, in fact,
provide information on the model behaviour only in a limited region of the model
factor space around the starting point of the analysis (Figure 3.5). Also, the fact
that model factors are assessed separately entails that OAT fails to identify
interactions between factors and thus neglects potential sources of uncertainty.

Several approaches (defined as Global Sensitivity Analysis — GSA - methods) are
available to overcome the limitation of OAT methods (Saltelli et al., 2006;
Saltelli and Annoni, 2010) and assess the model’s behaviour across the entire
parameter space. This study focused on the application of the Elementary Effects
and Variance Decomposition methods.

Figure 3.5. Example of the fraction of parameter space explored by OAT methods (dark
grey area) for a two factors (01,0,) model.
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Elementary effect method

The Elementary Effect method (also called the Morris method - Morris, 1991)
represents a compromise between the need to explore various regions of the
factors space and the computational burden required by highly detailed GSA
methods (and it is thus applied in Paper III and IV).

The Morris method is based on multiple OAT analyses performed in several
regions of the factor space. A number of R initial points are generated in the
factor space in order to achieve a better coverage of the entire space. Several
strategies are proposed to optimize the sampling across the factor space while
minimizing the computational burden (Campolongo et al., 2007; Pujol, 2009).
These are used as starting point for the development of R trajectories, 1.e. for the
application of R local analyses (Figure 3.6). For each r-th trajectory first order
sensitivity indices S;” are calculated according to Eq. 3.1. The Elementary
Effects are the statistics (mean and standard variation) of the sensitivity indices
(Campolongo et al., 2007):

(3.2)

_lZR:‘S(r)
R<!

. 1& 00 -1
,—=J;Z(S“ i) (3.3)

r=1

00

Figure 3.6. Example of four trajectories generated for the Morris method in a three
dimensional (X;,X> X3) factor space (adapted from Pujol, 2009).
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Figure 3.7. Scheme for assessing the influence and behaviour of model factors based on
the analysis of elementary effects.

Analysis of the elementary effects (see the scheme in Figure 3.7) enables the
identification of factors that have a significant influence on the model outputs
and/or interacts with other factors (with negative/positive correlation or
correlations that have different effects for different regions of the factor space).

Compared to OAT methods, the analysis of the elementary effects provides a
deeper understanding of the internal dynamics of the model. This is obtained
with limited computational requirements, as for a k-dimensional model factor
space an analysis with R trajectories requires R:(k+/) model runs are required.
Campolongo et al. (2007) and Gatelli et al. (2009) showed that the elementary
effects can be profitably employed as substitutes for more computationally
demanding indices (such as the Sobol’ indices — see next section).

Variance decomposition methods

A detailed GSA method that provides a deep insight in the model behaviour is
the variance-decomposition method proposed by Sobol’ (Chan et al., 2004). The
method essentially identifies the contribution to the output variance (V) of each
model factor when acting alone or interacting with other model factors.

As the detailed decomposition of the model output variance would be
computationally demanding, Sobol’ indices are commonly used to reduce the
number of calculations (Chan et al., 2004). Sobol’ indices are the first order
sensitivity indices S;, which express each factor’s direct influence on the output
variance, and the total sensitivity indices Syz; that lump all the interactions of the
factors into a single value (Figure 3.8).
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The two indices are calculated by generating n samples from the factors space for
each of the £ model factors. The model is run for each sample and the variance
of the model output is calculated. Subsequently, the sample is modified by
generating a new sample for the model factor X;. The model is run again and the
new variance V; is calculated, leading to the estimation of the first-order index
according to the formula:

S, = (3.4)

The original sample is then modified again by generating a new sample for all
the factors except i. The output variance is then calculated (V.;), leading to the
estimation of the fraction of variance that is related to all the factors except i:

V.
S, =— 3.5
7 (3.5)
The total variance V' (Figure 3.8) is the sum of the variance due exclusively to the
model factor X; (V;), the variance caused by the interactions between all the

factors (V; -;) and the variance caused by all the factors except X; (V -;):
1=§+S5_,+S, (3.6)

The total sensitivity index Sy; is then calculated by rearranging Eq. 3.6:
S;=8+8_,=1-8, (3.7)

Despite being less computationally demanding than a detailed variance
decomposition, the computational burden needed for the estimation of Sobol’
indices is higher than for the Elementary Effects method. In fact, for a model
with k£ factors and n samples, (2*k+7)*n model runs are necessary. The
dimension of the sample » is a crucial factor, as it should be able to provide a
good representation of the model output variance.

22



Sti

V= 2Vt tVia
1<j<i<k

Variance due to
interactions between
all the factors

Variance due interactions
between factor i and j

Figure 3.8. Scheme of the information provided by the Sobol’ indices.

The example presented in Paper I, for example, shows that for a simple
conceptual stormwater quality model a sample with dimension n=100,000 is not
entirely sufficient to achieve a complete overview of the output variance, as
negative indices are estimated for factors with almost negligible influence.
Variance decomposition methods are thus capable of exactly quantifying the
influence of each factor, but are not suitable for models with long simulation
time.

3.4.2.Estimation of model uncertainty

The last decade has seen an increasing focus on the estimation of model
uncertainty. This is generated by a philosophical shift in the modelling
community that acknowledged the limitations of models and recognized the need
for quantifying the result’s uncertainty. The general mathematical formulation
that accounts for model uncertainty is expressed by Eq. 3.8 (adapted from Beven,
2009):

0(x,t)+ 80(x,t):M(H,gg,l,g,,x,t)+ gM(H,gg,I,gl,x,t) (3.8)

where O is the observed variable in the real system, ¢, is the observation error, gg
is the error of model parameters, ¢, is the error in input and boundary conditions,
and ¢,, is the model structure error.

There is a great number of available uncertainty analysis methods for
environmental modelling (see the review in Matott et al., 2009) that try to infer
the model error term ¢, listed in Eq. 3.8. The scientific community has not
defined a common framework for the application of uncertainty estimation
techniques yet. Nevertheless, the inherent level of uncertainty affecting
stormwater quality modelling (Bertrand-Krajewski, 2007) renders uncertainty
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analysis essential for a reliable application of such models (an example of how
uncertainty can be integrated in stormwater quality management is shown in
Section 7.3).

This thesis focuses on the so-called pseudo-Bayesian methods (Freni et al.,
2009b), which require a smaller number of a priori assumptions than traditional
Bayesian approaches. Thanks to this feature they are thus regarded as more
suitable for the uncertain field of stormwater quality modelling. The uncertainty
analyses performed in this thesis are based on the Generalized Likelihood
Uncertainty method (GLUE - Beven and Binley, 1992), which is based on the
equifinality thesis (Beven, 2006), i.e. different parameter sets can achieve equally
good predictions.

The GLUE method can be summarized in the following steps (Beven, 2009):

1. Definition of an informal (or formal) likelihood measure L, i.e. the
measure that is used to evaluate the model performance.

2. Definition of the model parameters and inputs to include in the analysis.
This step can benefit from the results of sensitivity analysis.

3. Definition of prior distributions for the analyzed model factors. These are
used to generate n parameter sets. The prior distributions are defined
according to prior knowledge (e.g. literature values). Uniform
distributions are commonly chosen when little information is available.

4. The model is run for each parameter set (Monte Carlo simulations) and
the performance of the model is evaluated by using the likelihood
measure.

5. The behavioural parameter sets are selected according to an
acceptance/rejection criterion

6. The output generated by the behavioural parameter sets is used to create
model prediction bounds

There is lively debate in the environmental modelling community about the
applicability of GLUE (see for example Mantovan and Todini, 2006; Beven et
al., 2008; and the comparisons in Freni et al., 2009b; Dotto et al., in preparation;
Jin et al., 2010). This discussion deals with the width of the prediction bounds,
namely on the mathematical significance of the estimated model prediction
bounds, the posterior parameter distributions, etc. This study does not address
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these aspects, but focuses on some aspects of the GLUE methodology (choice of
the likelihood measure and generation of the parameter sample).

Likelihood measures

The GLUE methodology assesses the model performances by using informal (or
formal) likelihood measures (Beven and Freer, 2001). Commonly, these
measures are based on the deviation between simulated and measured data
(which 1s commonly assumed to have no error - e.g. Eq. 3.9 and 3.10), but new
measures have been proposed to reproduce measurements error (e.g. fuzzy
membership functions - Beven, 2009).

A widely applied informal likelihood measure is based on the inverse of the error
variance o° i

LMo,

1,0 )= (LZJN (3.9)

O

1

where L is the informal likelihood of the model output M estimated for the
parameter set 6,, conditional the input / and the observations O. The coefficient N
can be used to sharpen the likelihood response surface and to emphasize the
distinction between behavioural and not behavioural parameter sets (Beven and
Freer, 2001). Another measure is based on the Nash-Sutcliffe coefficient (Smith
et al., 2008), widely applied in hydrological field due to its easy interpretation, as
the perfect model provides an index equal to 1:

1,0 )]:(1— ";2 } (3.10)

o

L[m(o,

obs

where ¢ obs 18 the variance of the observed values. The advantages and limitations
of some likelihood measures have been investigated in Paper 1. Eq. 3.10, for
example, is not suitable for small datasets with significant internal variability,
such as pollutographs. For these data, the variance based equation (Eq. 3.9) is
more appropriate.

The flexibility of the GLUE methodology allows the use and the combination of
different informal likelihoods (see Beven and Freer, 2001) that can be defined
according to model, system and observations characteristics. The combination
used in the thesis is based on a weighted average of likelithood measures L (Eq.
3.11) for different outputs M; M, ...M,. The weights ®,;, w,... @, express the
relevance that each factor has for the modeller.
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=wy Ly to, L, +.+o,L, (3.11)

combined

Examples of these combinations can be found in Paper IV (likelihood on TSS
and Cu concentrations, and on simulated flow and total volume). These examples
illustrate  how modellers can choose different likelihood measures (or
combination hereof) depending on the model outputs they are interested in.
Compared to other uncertainty analysis techniques (e.g. Bayesian) this feature
allows modellers a wider degree of freedom.

Parameter sample generation

The application of uncertainty analysis techniques (including GLUE) requires the
assessment of model performances by using a great number of parameter sets
generated across the parameter space. The computational burden can represent a
significant obstacle to the estimation of model results uncertainty, especially for
complex model and long simulation time. To reduce the computational
requirements of GLUE in this thesis, this technique is combined with the
Shuffled Complex Evolution Metropolis algorithm (SCEM-UA - Vrugt et al.,
2003). This optimization algorithm identifies the region in the parameter space
with higher likelihood, i.e. the parameter sets that provide better performances.
The application of the SCEM-UA in conjunction with GLUE was initially
developed by Blasone et al. (2008a; 2008b) and applied in stormwater modelling
by Lindblom et al. (2007a).

In stormwater quality modelling, where the uncertainty linked to parameter
distributions is significant, the SCEM-UA can contribute to reduce the
computational requirements. The significant level of parameter uncertainty
(sometimes resembling ignorance) requires the use of wide parameter
distributions to generate the parameter sets. Obtaining a sufficient sampling
density across the entire parameter space with random methods (including Latin
hypercube sampling) would require a great number of samples, while the SCEM-
UA starts from a low-density sample (Figure 3.9a) and subsequently concentrates
the parameter sets in the higher likelihood regions (Figure 3.9b).
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Figure 3.9. Scheme of the application of the SCEM-UA algorithm to improve the
parameter sample performance: the algorithm moves the samples generated from wide
parameter intervals (a) towards the regions ensuring better performances (b), generating
the sample for the subsequent GLUE analysis (c).

This generates a sample with high density only in the regions of the parameter
space providing good model performances (Figure 3.9c). This sample can
subsequently be used to run the GLUE analysis.

In Appendix VII it is shown how the application of the SCEM-UA can result in
up to 70% saving of computational resources compared to random sampling
methods. When compared with other uncertainty estimation methods (Dotto et
al., in preparation), the SCEM-UA provided similar results in terms of prediction
bounds and parameters distribution with lower computational requirements. The
combination of SCEM-UA with GLUE thus represents a significant
improvement of efficiency in uncertainty analysis in stormwater quality
modelling.
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4. Source characterization
4.1. Theoretical background

Stormwater quality depends on the pollutant sources in the catchment. The
identification of potential PP sources in the area of interest is the first step to
model PP in stormwater systems. The characterization of catchments and
pollutant sources is commonly performed by utilization of Geographical
Information Systems (GIS), which provide support in the management of spatial
information about the study area and potential PP sources (e.g. land usage,
location of streets, etc.).

Stormwater pollutant loads are calculated by coupling hydrological models with
PP release data (measured or retrieved from databases). This information can
either be expressed as average concentrations (e.g. Site Mean Concentration) or
as release factors. In the first case the PP loads are function of the runoff volume,
while in the latter they are function of time or of the unit used to quantify the PP
source (e.g. km driven for PP released by traffic). Other factors affecting the
detail level of the catchment descriptions are the substances investigated, the size
of the catchment, the desired output of the model (load or concentration) and the
purpose of the model application (e.g. compliance with discharge limits -
concentrations or loads).

The estimation of stormwater pollutant loads from large catchments may require
a lumped description of the area, commonly based on land usage (for example
Park et al., 2008; Park and Stenstrom, 2009). The characterization of land usage
can rely on available data or can automatically be performed from aerial
observations (Park and Stenstrom, 2009; for example, presented examples based
on satellite imagery). The combination of land usage information with average
concentration data extends the approach commonly used at the river basin scale
for pollutants from agricultural runoff (e.g. the estimation of N and P loads
presented by Johnson et al., 2001; or the identification of potential pollution
sources for drinking water protection presented by Grayson et al., 2008). The
SMC-based methods have widely been applied at the urban scale in the U.S.,
boosted by the national stormwater legislation (based, for example, on the Total
Maximum Daily Loads; see also Park et al., 2008) and by the available SMC
databases (see for example Pitt and Maestre, 2005; and Park et al., 2009). These
applications mainly cover “traditional” water quality parameters and heavy
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metals, with some examples regarding pesticides (Qiu and Prato, 1999; Grayson
et al., 2008) and PAH (Mitchell, 2005).

Dynamic models for small catchments may use highly detailed description of the
PP sources in the study area (e.g. Ahlman, 2006), but field data collection might
be demanding. The initial catchment description based on GIS data, in fact, may
require a further refinement to achieve a more precise description of potential PP
sources (e.g. copper roofs). This additional investigations can be based on
analysis of aerial photos (e.g. Ekstrand et al., 2001) or on site inspections. SMC-
based methods are also applied with a detailed characterization of the catchment,
as presented by Modaresi et al.(2010).

GIS-based pollutant release models provides results that highlight the most
relevant pollution sources (Kim et al., 1993; Mitchell, 2005; Grayson et al.,
2008). Economic models for treatment options can furthermore be included in
the models and the integration of GIS models in Decision Support Systems
(DSS) provides support for the assessment of pollution control strategies
(Nordeidet et al., 2004; Hipp et al., 2006; Zheng et al., 2006).

4.2. Analyzed approaches

4.2.1.Research objectives

Various factors contribute to the definition of the approach chosen to characterize
and model pollutant sources in a catchment (data availability, size of the
catchment, legal requirements that need to be fulfilled). The quality of the results
is affected by this choice. The work presented in this thesis aims to compare
various approaches that can be used to model PP stormwater sources. The
comparison tries to identify the most suitable approaches for modelling of PP
fluxes across stormwater systems by considering the spatial distribution of PP
sources. This comparison of different catchment characterization methods
focuses on the estimation of three heavy metal loads (namely Cd, Cu and Zn),
which are chosen for the availability of information, in urban areas.

The study extends the work presented by Park et al. (2009) that investigated the
effect of different SMC datasets on the estimated annual loads for a large
catchment (over 200 km?). The focus in this thesis is on the level of detail of
urban catchment characterization (e.g. in small catchments of few squared
kilometres).
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4.2.2.Model description

Three approaches for the characterization of a small urban catchment are
compared: the first two (A,B) are based on SMC, while the third (C) employs
release factors. The three methods differ with respect to the level of detail of
catchment characterization, where the first (A) lumps the entire catchment into a

single area and the others (B,C) use a detailed representation of the catchment
(Table 4.1).

The comparison of different methods is performed for a small urban catchment in
Goteborg, Sweden (4,8 ha -see Paper I and Ahlman, 2006) and for an industrial-
residential catchment in Albertslund, Denmark (about 95 ha - see Paper V).
These two catchments are selected as the required information is available and
thus the application of the different approaches is not limited by data availability.
The Goteborg catchment was classified by Ahlman (2006), and the Albertslund
catchment was classified in this PhD project based on the information (road and
building cartography) provided by the Albertslund municipality.

The catchments are classified by using a combination of GIS data and aerial
photos into three impervious areas typologies (for example, see Figure 4.1 for
Goteborg): roofs (subdivided into copper, sheet steel and tile roofs), roads and
parking lots (areas in contact with motor vehicles), and other impervious areas
(e.g. yards and pavements).

Table 4.1. Characteristics of the three approaches for catchment characterization
included in the study.

Approach A B C

L=

Detail of E

classification F E F [H
Lumped Detailed Detailed

. . City centre Roof (with identif. of copper and zinc roofs)
Classification . .
. Residential Roads

categories ) . :
Industrial Other impervious areas

Pollutants loads SMC SMC Release factors

estimation
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Table 4.2. Pollutant source data used in the comparison.

Land Concentration values” [pg/1] Releas‘; facton;)s
usage/pollutant [mg/m"/year]
sources Cd Cu Zn Cd Cu Zn
City centre® 0.5 70 250
Y (0.3-0.9)  (25-110)  (120-400)
Residential 0.5 35 120
area’ (0.3-0.7) (20-70) (60 -200)
Industrial area* 0-5 70 250
(0.3-0.9)  (25-110)  (120-400)
Roads and 0.5 75 240 d d d
) c 0.150 4 15
parking lots (0.3-1.0)  (25-110)  (100-350)
Corrosion of 0.09 4000
zinc surfaces
Road wearing 0.04° 7° 15.8°
Vehicle
emission
(tyres, 0.5° 25° 1500°
brakes, oil
discharge)
0.8 35 140 b b b
Roof: A 4 1
0TS ©1-1)  (10-1000)° (50-1000) 10 >
Copper roofs 0.8% 2600% 3708 - 2600 -
Zinc roofs 1.0% 153% 6000 0.09 - 4000
Other
impervious 0.88 23¢ 585¢  0.150¢ 49 15¢
areas

“expressed as median value (minimum and maximum values are listed in brackets when
available). "Ahlman (2006). “Lindgren (2001). “Sum of dry and wet deposition. ‘Expressed as
ug/kilometre driven.'Modaresi et al. (2010). *Gobel et al. (2007)

Pollutant source data for European conditions (Table 4.2) are selected by using
the same sources listed in the studies by Modaresi et al. (2010) and Ahlman
(2006). Wide ranges are found in literature for some land uses (e.g. copper roof),
with distributions where the median commonly differs from the mean of the
interval.

The two SMC-based methods require the water volume to estimate pollutant
loads. As flow measurements in the catchments covered only limited periods of
time, a simple hydrological submodel (see the description in Section 5.2.2) is
used to estimate the annual stormwater volume discharged from the catchments.
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Figure 4.1. Distribution of land use in the Goteborg catchment.

The pollutant loads are estimated by using a simulated average runoff volume of
4.6:10* m’/yr for Goteborg (covering the period 2000-2010; see Paper I) and
2.58:10° m’/yr for Albertslund (period 1994-2004, see Section 7.3.2 and
Appendix VI). The uncertainty of volume predictions is not considered here: the
results uncertainty thus depends only on the ranges listed in Table 4.2.

4.3. Analysis of results

The heavy metal loads estimated by the three methods are shown in Figure 4.2
and compared with the loads calculated by using the measured SMC. The results
uncertainty varies for different substances, with copper loads underestimated by
all the three analyzed approaches. Measurements error is not considered in the
analysis.

The lumped description of the catchment area (method A) provides good
estimation of Cd loads (included within the estimated interval), but fails to
provide good estimation of Cu and Zn loads. In both the studied catchments the
SMC-based method combined with the detailed description of the catchment
(method B) succeeds in bracketing the observed loads within the calculated
interval for all the three metals. The release factor approach (method C)
significantly underestimates the loads for all the metals, with an error ranging
around 64-88% in Goteborg and 40-89% in Albertslund.
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Figure 4.2. Comparison of the calculated heavy metal loads (Cd, Cu and Zn) discharged
from the Vasastaden catchment in Goteborg for different estimation methods. The
interval of estimated values is illustrated by the error bars.

The ability of the three methods of providing good estimation of stormwater
loads clearly depends on the used dataset. Park et al (2009) demonstrated how
the estimated loads varies by using different datasets, with significant uncertainty
related to the spatial and temporal variability of stormwater pollutant sources
(e.g. old datasets overestimate lead loads, as emission of this metal decreased due
to its elimination from gasoline).

The use of different data from those listed in Table 4.2 (which may not fully
represent the modelled catchments, as some of the data were collected outside
Scandinavia and several years before the sampling campaigns in the study areas)
may change the estimated loads. The possibility of identifying the major sources
of uncertainty, i.e. the pollutant sources that require more attention, is an
important feature for stormwater quality management. In fact, it allows the
elaboration and evaluation of source control strategies, which is not possible with
method A.
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Figure 4.3. Distribution of Cu loads (mean values) for different areas (roads, roofs and
other impervious areas) estimated for the methods employing a detailed catchment
characterization.

The underestimation of Cu loads suggests that there are significant copper
sources in the catchments that are not commonly present in the urban areas used
to elaborate the wvalues listed in Table 4.2. The lumped -catchment
characterization used in method A prevents the identification of such individual
sources. Conversely, the detailed catchment characterization allows a substance
flow analysis of the catchment and the consequent identification of the major
copper sources. An example regarding the copper loads in the Goteborg
catchment is presented in Figure 4.3.

Both method B and C pinpoint roofs as the major copper source in the Giteborg
catchment. The ability of the SMC methods (A and B) to bracket the observation
is mainly due to the wide Cu concentration range found in literature, ranging
from 10 to 1000 pg/l. Furthermore, the two methods provide similar estimation
of the Cu loads from copper roofs: 1.21 kg/yr for the SMC method and 1.27
kg/yr for the emission factor based method. A likely cause for this result may be
(1) an underestimation of the Cu concentrations and release factors (i.e. the used
dataset does not represent the situation in the Goteborg catchment), or (ii)
erroneous classification of copper roofs and (iii) failure in the identification of all
the potential Cu sources. To reduce the uncertainty in the Cu loads calculations
can be necessary to focus the available resources on these two issues (estimation
of release factors and identification of Cu sources).
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This example shows that a lumped representation of the catchment (method A)
does not allow the identification of the major pollutant sources and consequently
cannot be used to assess potential pollution control strategies. Although requiring
a lower amount of data and resources (time required to classify the area), this
method decreases the possibility of modellers to improve their results.
Conversely, a detailed catchment classification (method B and C) enables the
modeller to identify the major sources of uncertainty in the estimation of PP
loads and carefully consider them when modelling the release of stormwater
pollutants. The latter approach is thus more suitable for assessing stormwater
pollution control strategies.
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5. Pollutant release and transport
5.1. Theoretical background

Modelling the release of stormwater pollutants from urban areas and across a
drainage system is the core element of an integrated model for stormwater
system. The model should account for the complex dynamic processes that affect
the quality of the runoff collected and routed across the catchment. Since the first
stormwater quality measurements in the 1970s, a great number of models have
been developed (Tsihrintzis and Hamid, 1997; Elliot and Trowsdale, 2007;
Obropta and Kardos, 2007). Different levels of complexity are used to model the
two main output of the model: the water and pollutants fluxes (see Table 5.1).
The hydrologic description of the system can adopt highly detailed, mechanistic
models that are based on the theoretical description of the physical process (e.g.
Saint Venants equations), or conceptual models, which reproduce hydrographs
by representing the system as a combination of simple elements such as
reservoirs. Conversely, stormwater quality models adopt lower level of
complexity and may neglect the hydrological description by directly estimating
pollutant loads (see Table 5.1).

The general difficulties in monitoring stormwater pollutants and in modelling the
processes affecting their release and transport (Bertrand-Krawjewski, 2007)
explain the lower level of complexity adopted in quality modelling compared to
the hydrologic models. Three model typologies are used to model the pollutant
concentrations and loads:

—  Conceptual dynamic models: explain the processes taking place in the
catchment with simplified formulations. The system is described through
parameters that do not necessarily have a direct physical meaning, trying
to represent the behaviour inferred from field observations (e.g.
asymptotic accumulation of particulate pollutants on street surfaces).

— Regression models: these models estimate pollutant loads or
concentrations based on regression of several parameters, which describe
the pollutant sources and the characteristics of the catchment (e.g. traffic
load) and the rainfall characteristics (volume, intensity, antecedent dry
period). These models commonly provide event-based results.
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—  Stochastic models: these models express the pollutant concentration and
loads as stochastic variables, so the results are expressed as probabilistic
distributions. These models commonly provide event-based results.

The majority of the available dynamic models are conceptual models that try to
represent the observed behaviour of particulate pollutants (such as TSS) on the
catchment surfaces (e.g. roads, roofs). These models can thus be extended to the
simulation of particulate PP or micropollutants with strong tendency to sorb (i.e.
their fate 1s linked to the particles they are bound to).

The pattern of particulate pollutants on catchment surfaces can be schematized as
follows (Figure 5.1): during dry weather pollutants accumulate on the surface
resembling an asymptotic behaviour; during a rain event the pollutants are
removed and washed off by runoff.

Table 5.1. Example of existing level of complexity for stormwater runoff quality
models.

Hydrologic model Quality model
. o = =
Level of complexity 7o << = s o =
= s = s
=
= 2 z e 7 2
& = = e e
= [ L} & - e
Example S ke 3 K 2 4
Barbé et al. (1996) X X
Behera et al. (2006) X X
Charbeneau and Barret (1998) X X
Chen and Adams (2006; 2007) X X
FLUPOL (Bujon et al., 1992) X X
HORUS (Zug et al., 1999a; 1999b) X X
Kim et al. (2005) X X
Opbher and Friedler (2009) X X
Osuch-Pajszinska and Zawilski (1998) X X
Robien et al. (1997) X X
Rossi et al. (2005) X X
SEWSIM (Ruan and Wiggers, 1997) X X
SWMM (Rossman, 2009) X X
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time
Figure 5.1. Behaviour of particulate pollutant loads on catchment surfaces (adapted
from Vaze and Chiew (2002) and Behera et al. (2006)).

These two distinct processes have been described by several mathematical
descriptions, which can be generalized by the following equation:

Cclz’_l;:el -0,L-6,R"L (5.1)

where L [M] is the mass of pollutant accumulated on the catchment surface. The
first term of the equation assume a constant pollutant accumulation on the
catchment that is expressed by the constant deposition rate 8; [M/T]. The second
term assumes a “dry weather” removal, which is proportional to the available
mass L and to the removal rate @ , [T"']. The latter accounts for the losses due to
resuspension of particles (due to traffic, wind, etc.), degradation of the pollutant,
and processes binding the particles (that are not available for washoff). The first
two terms mathematically try to reproduce the asymptotic behaviour that is
observed in real systems. This mathematical formulation has widely been applied
in several models in the last decades (starting from Alley and Smith, 1981).
Other formulations found in literature employ analytical solutions of Eq. 5.1 (e.g.
Sartor et al., 1974; Grottker, 1987) or rewrite Eq. 5.1 to explicate the maximum
mass of pollutant that can accumulate on the catchment (i.e. the asymptote L, in
Figure 5.1 is equal to the ratio 8;/6,) and to use it as calibration parameter. The
formulations are mathematically equivalent, but they imply a different
schematization of the modelled system and they depend on the available
information. Eq. 5.1 uses the pollutant accumulation rate as parameter, which can
be derived from source characterization: once the pollutant sources in the
catchment are identified, emission rates (similar to those applied in source-flux-
analysis and used in Section 4) can be estimated and applied in the model (e.g.
Ahlman, 2006). The maximum load available on the surface represents the
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equilibrium state in Eq. 5.1 and can be quantified by field measurements
(Grottker, 1987; Vaze and Chiew, 2002). Conversely, the removal rate 6 , can
only be estimated indirectly. Other mathematical formulations (e.g. Charbeneau
and Barret, 1998; Kim et al., 2006) are event-based and are thus less suitable for

implementation in a continuous dynamic model.

The third term of Eq. 5.1 describes the washoff of pollutants from the catchment
surface. Experimental data showed that the rainfall energy plays a role in the
early stage of the rain event, whereas the available load of pollutant becomes
important with the increasing duration of the event (Vaze and Chiew, 2003b).
Pollutant washoff has been described by different mathematical formulations
(e.g. Bertrand-Krawjewski et al., 1993; Vaze and Chiew, 2003a), with various
level of detail, ranging from the detailed physical model proposed by Shaw et al.
(20006), to the spatial distribution of pollutants modelled by Deletic et al. (1997).
Generally, these equations link the removal of particles to either rainfall intensity
or to runoff, both expressed by the term R [L/T]. In the first case the model
considers the raindrops’ kinetic energy as the cause of pollutant removal and use
the rainfall intensity (commonly one of the model inputs - e.g. Yuan et al., 2001)
as forcing function. In the second case the removal of pollutants is caused by the
stress caused by runoff flowing on the surface (Shaw et al., 2006) and R is
expressed as runoff rate (runoff flow divided by the catchment area, commonly
one of the model outputs - e.g. Alley, 1981).

The removal rate @; [T"'/L"] and the exponent n [-] are commonly considered as
calibration parameters (Yuan et al., 2001; Vaze and Chiew, 2003a; Dotto et al.,
2009; Kleidorfer et al., 2009; Avellaneda et al., 2009). The complexity of these
formulations can be increased by adding additional parameters (e.g. Egodawatta
et al., 2007), but all these equations can provide equally satisfactory results once
the parameters are calibrated (Vaze and Chiew, 2003a).

As stormwater quality models have originally been developed for traditional
pollutants such as TSS, the available models simulates the removal of particulate
pollutants but do not represent other potential PP release process, such as
corrosion or leaching from building materials (Clark et al., 2008; Schoknecht et
al., 2009). These processes have complex dynamics, depending on the material
and its use, rainfall characteristics, etc. (see for example the study on copper and
zinc roofs in He et al., 2002). At the event time scale (hours), an initial peak in
PP flux is observed, with a decrease to a constant value through time (Figure
5.2), which is independent from the rainfall intensity (Schoknecht et al., 2009).
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Figure 5.2. Schematic behaviour of release of soluble PP at different time scales
(adapted from Odnevall Wallinder et al., 2004).

At bigger time scale, the discharged PP loads resemble those observed for
particulate pollutants, with high inter-event variations that can be lumped into a
constant value when looking at a long time scale.

Modelling of dissolved stormwater micropollutants is still relatively an
unexplored area: few modelling examples are based on regression equations (e.g.
Odnevall Wallinder et al., 2004; 2007) and conceptual models have been used in
a risk assessment framework (Jungnickel et al., 2008; Burkhardt et al., 2009).

5.2. Developed approach

5.2.1.Research objectives

The previous section illustrates the wide choice of possibilities that are available
for modelling stormwater quality. The modeller can choose between different
levels of complexity for water and pollutant simulation (Table 5.1), selecting
different approaches to model the complex dynamic processes that drive release
and transport of PP. A trustworthy application of these models requires the
investigation of the performance of these models and the quantification of the
result uncertainty.

The research presented in this part of the thesis thus aims to investigate how
existing statistical methods can be used to (i) achieve a better knowledge of
stormwater quality models and (i1) estimate the model result uncertainty. These
results would enable a wider application of these models for practical purpose.
This research starts from conceptual stormwater quality models, which represent
a compromise between the maximum level of complexity in stormwater quality
modelling and the resources (computational and modeller’s time) needed for
running the simulation.
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The results can also be compared with the outcomes presented by several authors
that assessed the uncertainty of stormwater quality models with similar level of
complexity for traditional macropollutants (e.g. Gaume et al., 1998; Kanso et al.,
2005; 2006; Dotto et al., 2009; Kleidorfer et al., 2009) and micropollutants
(Lindblom et al., 2007b,submitted)

5.2.2.Model description

The stormwater quality model used in this thesis is based on the accumulation-
washoff model initially proposed by Alley and Smith (1981) and subsequently
applied in several models, such as the SEWSYS model (Ahlman, 2006) that was
used as starting point to simulate pollutant fluxes. The model implemented and
used in this thesis runs in the MATLAB/SIMULINK environment with
continuous time, differing from the discrete time step approach adopted in
SEWSYS (a similar continuous time model is used by Lindblom et al., 2007a;

2007b).
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Figure 5.3. Sketch of the conceptual stormwater quality model used in Paper 1.
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This conceptual model considers several pollutant sources present in the urban
environment (e.g. dry and wet deposition, traffic, building material corrosion,
etc.). The use of continuous time steps allows for the implementation of a novel
loss model (which neglects the “antecedent dry period” as model parameter and
introduces a time interval required by the catchment to return to dry conditions),
as well as an improvement in the simulation speed compared to discrete time
models. The model is subdivided into two submodels (Figure 5.3): hydrologic
(estimating the flow discharged from the catchment) and quality (calculating the
pollutant mass fluxes).

The hydrologic submodel estimates the outlet hydrograph by using the non-linear
reservoir approach. The catchment is represented as a reservoir with area
equivalent to the catchment reduced area A [m?]. The water balance of the
reservoir is described by the following equation:

d
W _o, -0, (5.2)

dt
where W [m’] is the volume of runoff stored in the reservoir; Q;, [m’/s] is the
inflow to the reservoir and Q,,, [m3/s] 1s the catchment outflow. The first term is
calculated by considering the hydrological reduction factors K,,,, [-] and R [m/s],
which is the effective rainfall intensity. This is equivalent to the rainfall input
after that the initial loss threshold (defined by % p,,.,. [m]) is exceeded:

Qin = O for R#O and hcumEhDunne
0, =K., AR if R#0 and hen>pume (5.3)

where 4., [m] is the cumulated rainfall height from the beginning of the rain
event. The initial loss accounts for the wetting processes that take place in the
catchment before runoff is observed. After the end of rainfall events, the model
simulates the drying processes by linearly decreasing /4., which returns to zero
after a time Tp,,.,. [S] (i.e. the catchment is back to dry conditions).

The outflow from the catchment (Q,,,) is calculated as:
O, =K, " (5:4)

3135711 expresses the physical characteristics of

where the routing parameter K, [m
the catchment and affects the shape of the outlet hydrograph and / [m] is the

fictitious water level in the catchment (calculated as the ratio between W and A4).
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The quality submodel simulates the accumulation-washoff of pollutants based on
Eq. 5.1. The pollutant deposition rate ; is calculated according to the stormwater
pollutant sources in the catchment (copper and zinc roofs, traffic loads, etc.),
while the contribution of wet deposition is modelled as a flux entering the
catchment during rain events.

The outputs of the hydrological submodel is the outlet flow Mg, [m?/s] (i.e. the
outlet from the non-linear reservoir), while the output from the quality submodel
is the mass flux M, [g/s] (i.e. the third term in Eq. 5.1). By combining these
two outputs it is possible to calculate the outlet concentration M, [g/m3 ].

5.3. Analysis of model performance

The model described in the previous paragraph has two submodels with specific
parameters and two inputs (rainfall and wet deposition fluxes, which can be
affected by error), for a total of nine model factors (Table 5.2) that can contribute
to the model results uncertainty. To include the uncertainty on the estimation of
pollutant source releases (i.e. the factors used for method C in Section 4), the
release factor 6, is here treated as a model parameter. When dealing with such
complex models it is necessary to gather a good knowledge of the model
behaviour, which allows focusing the available resources on the most sensitive
factors to estimate the model uncertainty bounds.

Regarding the interactions between model parameters, previous studies (Kanso et
al., 2006; Lindblom et al., 2007a; Dotto et al., 2009) showed correlations
between the parameters of the quality submodel. The application of GSA and
pseudo-Bayesian methods is thus straightforward, as these techniques are capable
of identifying the relationships between parameters (GSA) and do not require a
prior definition of the parameter correlation structure (GLUE). Also, the
hydrologic submodel can affect the concentration calculations and it might
compensate for the uncertainty of the accumulation-washoff parameters.
Generally, this aspect is neglected and the performances of the two sub-models
are assessed independently, with the quality submodel run by using observed
flows or the flow generated by the calibrated hydrological submodel (e.g.
Lindblom et al., 2007a; Dotto et al., 2009; Kleidorfer et al., 2009).

The examples presented in this thesis investigate the application of GSA in two
case studies. The model is applied to two catchments with similar size (4.8 ha
and 2.2 ha, respectively) located in Goteborg (Sweden — see the description in
Paper I) and Oslo (Norway - see description in Vollertsen et al., 2007).
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Table 5.2. List of model factors (inputs and parameters) for the stormwater quality
model (from Paper I)

l;“lz;c;loer Unit Description
K. 5 Hydrologic submodel  Routing qogfﬁcient related to catchment
parameter characteristics
Kn - Hydrological reduction factor
hpumne m Initial loss
T bunne hr Time required to dry the catchment
01 ng/m*/s  Quality submodel Pollutant deposition rate
0, 5! parameter Dry weather pollutants removal rate
05 mm’ Rain pollutant removal rate
err rain - Model inputs Error on rainfall intensity
wet dep - Error on rain pollutants concentration

The sampling techniques of these two datasets are representative of the
stormwater quality data that are available in literature: while the Goteborg data
provide detailed information for a short sampling period (57 samples for 13 rain
events over two months), the Oslo data give a longer overview of the system (20
samples for 65 rain events, covering a six-month period). Although several
stormwater micropollutants were measured in the mentioned case studies and can
be simulated by the model, this study focused only on copper to facilitate the
comparison of the results with previous studies (Lindblom et al., 2007a; 2007b).

5.3.1.Identification of important model factors

The important model factors are identified by applying the Variance
Decomposition Method described in Section 3.4.1. The results from Paper I
stress the high computational requirement needed by this method, as a total of
190,000 model runs are required to obtain a complete overview of the
interactions between parameters. Nevertheless, the GSA results provide a deep
insight in the model behaviour, which cannot be achieved by using traditional
OAT methods. The Sensitivity Index (S;) and Total Sensitivity Index (S7;) are
calculated for likelihood responses calculated for two different outputs of the
quality submodel (M,,,,, and M.,,.), but no major differences is noticed between
the two outputs (Figure 5.4).
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Figure 5.4. First order (S;) and total (S7;) sensitivity indices estimated for the likelihood
on concentration (M ¢,,.) and mass (M 4ss).

Both the sensitivity indices for the mass and the concentration highlight strong
interactions between the quality submodel parameters, confirming the correlation
found for TSS by Kanso et al. (2006) and Dotto et al. (2010), and for Cu by
Lindblom et al. (2007a). A traditional OAT method, or a sensitivity analysis
based only on the analysis of the S; would neglect the influence of the hydrologic
submodel on the output.

The Total Sensitivity indices, however, show that the parameters driving the
water volume (initial loss #4,,,,. and the hydrological reduction coefficient X,,,
and — at a lower level — the error on the rainfall input err rain) interact with other
parameters and thus affect the variance of the model output.

The influence of the hydrologic parameters (responsible for up 30-40% of the
output variance in some phases of the rain event) can be visualized by looking at
the sensitivity indices calculated at each simulation time step (Figure 5.5): while
the initial loss importance is high during the initial phase the of the rain event,
the runoff coefficient increases its relevance during the rain event, i.e. when the
majority of the pollutant mass has been removed and the discharged loads (and
concentrations) mainly depend on the water volume.
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Figure 5.5. Temporal behaviour of the normalized total sensitivity index (S7;) for Mcone
for a rain event recorded in Géteborg (from Paper I).

These results show how a comprehensive GSA method can fully investigate the
behaviour of a dynamic model and provide a detailed description of the
significance of the model factors and their interactions. This information is
relevant to identify the major sources of model uncertainty, to focus the available
resources on the significant factors and to quantify (and potentially reduce) the

model prediction bounds.

5.3.2.Uncer