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Abstract 
The increasing focus on management of stormwater Priority Pollutants (PP) 
enhances the role of mathematical models as support for the assessment of 
stormwater quality control strategies. This thesis investigates and presents 
modelling approaches that are suitable to simulate PP fluxes across stormwater 
systems, supporting the development of pollution control strategies. This is 
obtained by analyzing four study areas: (i) catchment characterization, (ii) 
pollutant release and transport models, (iii) stormwater treatment models, and 
(iv) combination of the above into an integrated model. Given the significant 
level of uncertainty affecting stormwater quality models, the identification of 
sources of uncertainty (based on Global Sensitivity Analysis - GSA) and 
quantification of model prediction bounds (based on pseudo-Bayesian methods, 
such as the Generalized Likelihood Uncertainty Estimation - GLUE) are 
presented as crucial elements in modelling of stormwater PP. Special focus is on 
assessing the use of combined informal likelihood measures assigning equal 
weights at different model outputs (flow and quality measurements). 

Management of the spatially heterogeneous sources of stormwater PP requires a 
detailed catchment characterization, based on land use and the use of information 
stored in Geographical Information System (GIS). The analysis carried out in the 
thesis, which compares different characterization approaches with different level 
of detail, suggests in fact that this approach allows the identification of the major 
pollutant sources (and sources of uncertainty) in the catchment and provides the 
basis for the development of source-control strategies.  

The thesis shows how conceptual continuous dynamic models, combined with 
uncertainty analysis, can provide estimation of PP loads that can be used for 
scenario analysis over long time periods. The combination of GSA with 
uncertainty analysis techniques enables the identification of interactions between 
model factors which are commonly ignored by traditional approaches. The 
analysis performed in the thesis shows how the use of different informal 
likelihood measures in GLUE can affect the estimation of model prediction 
bounds and the model applications for stormwater management. 

The fate of stormwater PP (dissolved and particulate) in treatment units is 
simulated by extending a dynamic multi compartmental stormwater treatment 
model with fate processes that are simulated based on the substance inherent 
properties (degradation rates, solid-water partition coefficient, Henry’s law 



 

 vi 

constant, molecular weight). The developed model (STUMP) thus applies 
concepts commonly used in chemical risk assessment at the scale of stormwater 
treatment facilities by providing a dynamic representation of the system. STUMP 
can simulate different substances (metals, organics) in various treatment units 
(e.g. ponds, biofilters). The uncertainty analysis performed in the thesis allows 
the identification of the major sources of uncertainty in different units, depending 
on the dominating PP fate processes. A reduction in STUMP uncertainty of PP 
fate estimation can be obtained by a good representation of the physical 
characteristic of the treatment unit, reducing the need for PP field measurements.  

The thesis shows how the integration of the investigated models provides results 
that can be used in the development, assessment, and comparison of different PP 
control strategies (e.g. source control or improvement of treatment facilities). The 
combination of the integrated model with uncertainty analysis identifies the 
information that is necessary to improve the scenario analysis and increase the 
reliability of the simulation results. The models developed and demonstrated in 
the thesis are applied in a real catchment to evaluate different scenarios for 
reduction of PP emissions to the aquatic environment, showing the potential of 
the proposed approaches as support tools in stormwater quality management.  

The thesis provides a framework for the trustworthy application of models to 
estimate PP fluxes from their sources, and through stormwater drainage systems, 
and to the sink. This fills a knowledge gap regarding stormwater PP and it 
supplies urban water managers with modelling tools for management of 
stormwater pollution. Examples in the thesis are focused on heavy metals (Cu, 
Zn) and selected organic substances (DEHP, Gliphosate, Pyrene, IPBC, Benzene) 
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Dansk sammenfatning 
Det voksende fokus på håndtering af miljøfremmede stoffer i afstrømmet 
regnvand øger nødvendigheden af matematiske modeller som støtte til udvikling 
og evaluering af strategier til kontrol af regnvandskvalitet. Denne afhandling 
udforsker og belyser modelleringsmetoder til simulering af stoftransport i 
regnvandssystemer og støtter dermed udviklingen af forureningsbegrænsende 
strategier. Dette gøres ved at analysere fire forskningsområder: (i) 
oplandskarakterisering, (ii) modellering af stofafstrømning, (iii) modellering af 
regnvandsrensning, og (iv) kombinering af overstående i en integreret model. På 
grund af de betydelige usikkerheder, der er forbundet med modellering af 
kvaliteten af regnvandsafstrømning, fremlægges identificering af de vigtigste 
kilder til usikkerhed (baseret på Global Sensitivitets Analyse - GSA) og 
kvantificering af usikkerhederne på modellens forudsigelser (baseret på pseudo-
Bayesianske metoder, så som Generalized Likelihood Uncertain Estimation - 
GLUE) som væsentlige elementer i modellering af miljøfremmede stoffer i 
regnvandsafstrømning. Der fokusere på uformelle kombinerede likelihood mål, 
som vægter forskellige output (flow og kvalitets målinger). 

Håndtering af de spatialt fordelte kilder til miljøfremmede stoffer kræver en 
detaljeret karakterisering af oplandet og arealanvendelsen ved brug af 
Geografiske Informations Systemer (GIS). Analysen udført i afhandlingen, som 
sammenligner forskellige tilgange til oplandskarakterisering med forskellige 
detaljeringsgrader, tyder på at et højt detaljeringsniveau kan medvirke til 
identifikation af de vigtigste forureningskilder (og kilder til usikkerheder) i 
oplandet og dermed danne grundlag for udvikling af kilde kontrol strategier. 

Afhandlingen viser hvordan konceptuelle dynamiske modeller kombineret med 
usikkerhedsanalyse kan bruges til at estimere afstrømning af miljøfremmede 
stoffer i forbindelse med scenarie analyser. Kombinationen af GSA med 
usikkerhedsanalyse gør det muligt at identificere interaktioner mellem model 
faktorer, hvilket ofte ignoreres af traditionelle metoder. Analysen udført i 
afhandlingen viser, hvordan forskellige uformelle likelihood mål i GLUE kan 
påvirke vurdering af usikkerhederne ved modellers forudsigelser og følgelig 
anvendelsen af modellerne indenfor regnvandshåndtering. 

Skæbnen af miljøfremmede stoffer (opløst og partikulært) i regnvands 
renseanlæg simuleres ved at kombinere en dynamisk multicelle 
regnvandsrensnings model med miljøskæbne processer, der modelleres ud fra 
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stoffernes iboende egenskaber. Den udviklede model (STUMP) overfører således 
koncepter, som normalt bruges i kemisk risikovurdering, til regnvands 
renseanlæg ved at tilføje en dynamisk repræsentation af systemet. STUMP kan 
simulere forskellige stoffer (tungmetaller, organiske stoffer) i forskelige typer 
anlæg (f.eks. bassiner og biofiltre). Usikkerhedsanalysen udført i afhandlingen 
gør det muligt at identificere de vigtigste kilder til usikkerhed i forskellige 
renseanlæg, afhængigt af de dominerende miljøskæbne processer. En reduktion 
af usikkerheden kan opnås med en korrekt beskrivelse af renseanlæggets fysiske 
karakteristika, hvilket reducerer behovet for feltmålinger af miljøfremmede 
stoffer.  

Afhandling vise hvorledes integration af de undersøgte modeller giver resultater, 
der kan bruges i udvikling, vurdering, og sammenligning af forskellige strategier 
til kontrol af miljøfremmede stoffer (f.eks. kilde kontrol eller forbedring af 
renseanlæg). Kombinationen af den integrerede model med usikkerhedsanalyse 
klarlægger hvilke data, der er nødvendige for at forbedre scenarieanalyser og 
forøger pålideligheden af simuleringsresultaterne. Modellerne udviklet og 
demonstreret i afhandling anvendes på et virkeligt opland til at vurdere 
forskellige scenarier til reduktion af udledningen af miljøfremmede stoffer til 
vandmiljøet. 

Afhandlingen fremlægger en pålidelig systematik for anvendelse af modeller til 
beregning af miljøfremmede stoffers transport fra deres kilder, gennem 
afløbssystemer og regnvandsrenseanlæg og til recipienten. Dette tilfører vigtig 
viden om miljøfremmede stoffer i regnvandsafstrømning og forsyner de 
ansvarlige for håndtering af regnvand i byerne med modelleringsværktøjer til 
brug i forbindelse med håndtering af forurening fra afstrømmende regnvand. 
Eksempler i denne afhandling fokuserer på tungmetaller (Cu, Zn) og udvalgte 
organiske stoffer (DEHP, Gliphosate, Pyrene, IPBC, Benzene). 
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1. Introduction 
Stormwater quality management is an issue of increasing concern on urban water 
managers’ agenda. The successes in reducing the acute and long-term negative 
impacts caused by point sources (e.g. wastewater discharge) have increased the 
attention to chronic impacts and diffuse sources affecting stormwater quality.  

Furthermore, recent environmental legislations (e.g. the EU Water Framework 
Directive (WFD) (European Commission, 2000) and the Environmental Quality 
Standard (EQS) directive (European Commission, 2008)) identify a wide range 
of substances (heavy metals, polyaromatic hydrocarbons, herbicides and other 
xenobiotic organic compounds – commonly named Micro Pollutants - MP) that 
need to be considered to achieve a good ecological status of natural waters. The 
focus has thus moved from addressing only traditional “macro” pollutants 
(overall organic matter, nutrients, suspended solids) to include also 
micropollutants. While the first are characterized by relatively high 
concentrations (in the level of mg/l) as well as acute and short time effects (e.g. 
oxygen depletion, eutrophication), the latter are commonly found in low 
concentrations (in the level of ng/l – μg/l) and mainly have chronic and long-term 
impacts on the natural environment. The fate of these substances in the 
environment can significantly differ from the behaviour of macro pollutants, and 
therefore the scientific tools that were developed to address macropollutants may 
be inadequate to deal with MP. 

Urban water managers should develop and implement strategies to reduce the 
non wanted biological impact due to discharge of stormwater MP. These actions 
require identification of the most critical and representative pollutants (also 
defined as Priority Pollutants – PP) and the quantification of the fluxes of these 
substances in stormwater systems. While there are examples of tools developed 
to select PP (see e.g. Eriksson et al., 2005; Baun et al., 2006), mathematical tools 
capable of estimating the dynamic fluxes of these specific pollutants in 
stormwater systems are lacking.  

Also, the implementation of extensive monitoring campaigns is limited by the 
complexity of the system, the high variability of stormwater pollution processes, 
the difficulties in measuring the low MP concentrations, and problems related to 
obtaining representative quality data. These limitations boost the role of 
mathematical models in integrating the monitoring data, providing a complete 
overview of the situation in the system and evaluating the effects of possible 
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modifications. Mathematical models can thus provide an important support in the 
control of stormwater micropollutants, but need to be specifically adapted to the 
characteristics of these substances. 

1.1. The elements in stormwater systems 
Separate stormwater systems can be subdivided into three basic parts: the 
catchment where runoff is generated and sources of pollutants are located, the 
drainage system which collects and routes stormwater away from the catchment, 
and, where adopted, a final treatment before discharge into the receiving water. 
Stormwater quality models can be structured with a similar scheme (Figure 1.1), 
as described by Ball et al. (1998). Pollutant sources and pollutant generation 
processes (accumulation on the catchment surfaces) are modelled by specific 
submodels. Pollutant release processes are modelled by collection submodels, 
which also estimate the stormwater volume entering the drainage system. 
Stormwater and pollutant flows are routed across the catchment by transport 
submodels. Finally, stormwater treatment before discharge in receiving waters is 
simulated by disposal models. 

 

Figure 1.1. Schematization of stormwater quality models (adapted from Ball et al., 
1998) and study areas investigated during the project.
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The stormwater system is subdivided and studied in this thesis into three areas 
(exemplified by the three coloured circles in Figure 1.1): the first study area deals 
with (i) source characterization, the second with (ii) modelling of pollution 
release and transport and the third with (iii) stormwater treatment. The outcomes 
from these three study areas are finally combined into an integrated model. 

1.2. Application of models in stormwater pollution 
management 

The issues and policies involved in the management of stormwater pollution and 
the interaction between the various elements of the stormwater system can be 
described by using the Driver-Pressure-State-Impact-Response (DPSIR - EEA, 
1999) framework, which enables an easy delineation of environmental systems 
and issues. Using this framework, the issues related to stormwater pollution 
management can be classified as shown in Figure 1.2. Models can play an 
important role in several phases of stormwater management: 

� Drivers. Rainfall is the natural process that leads to runoff, while the urban 
activities that are present within the catchment are potential pollutant 
sources. Models can be used to estimate the stormwater volume generated in 
the catchment and to identify the major potential pollutant sources by 
analyzing the catchment. 

� Pressures. Priority Pollutants are released from sources, enter stormwater 
and are transported in the drainage systems. Models can be used to quantify 
these releases and the loads entering the aquatic environment. 

� State. Stormwater quality is the environmental variable that expresses the 
situation in the analyzed system. Models can be employed to estimate 
stormwater quality, to integrate field measurement in the assessment of the 
environmental status and to evaluate the effects of stormwater discharge 
(which are estimated, for example, from simulations of concentrations in the 
outlet and in the receiving waters). 

� Impact. Stormwater discharges can have negative effects on the receiving 
aquatic environment. When dealing with Priority Pollutants, negative effects 
include acute and other non- time biological limited effects (endocrine 
disruption, cancer, etc.). Models can be employed to highlight potential 
problems (e.g. excessive concentrations) and to estimate the temporal scale 
of such impacts (e.g. frequency and duration of exposure to excessive 
concentrations). 
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� Response. Different control strategies can be employed to improve 
stormwater quality and to reduce the impact on the water environment. 
Source control options target the Drivers (e.g. substitution of building 
materials reduces the sources that can release PP) and Pressures (e.g. 
stormwater infiltration reduces the PP release to the drainage system). Other 
more technological approaches focus on stormwater treatment, reducing the 
emissions to the drainage network and to the receiving water. These options 
contribute to improve the state of the receiving water bodies. Models can be 
used for scenario analysis, assessing the efficiency of different pollution 
control strategies by simulating the changes in the PP fluxes across the 
system and the improvement of the state of the system caused by the 
implementation of the strategy. 

The role of models in the management of stormwater Priority Pollutants is 
magnified by the difficulties in monitoring these substances and by the 
complexity of stormwater systems (due to spatial and temporal variability of 
pollutant sources, hydraulics of the drainage system, etc.). Models can in fact 
supply information (e.g. long term statistics, data regarding non-monitored 
events) that can integrate the (commonly limited) monitoring data in the 
elaboration and assessment of stormwater quality management plans. 

 

Figure 1.2. DPSIR scheme for the emission of stormwater pollutants to the water 
environment. 
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1.3. Aim of the thesis 
This thesis aims to provide a framework for the trustworthy application of 
models to estimate the fluxes of Priority Pollutants across integrated stormwater 
systems from the source to the sink. These models can provide support in the 
development and evaluation of policies aiming to control emissions of 
stormwater PP to water bodies. The thesis investigates the application of models 
in the various contexts within the elements of the stormwater system described in 
the previous sections. For each element of the stormwater system listed in 
Section 1.1, the project aims to (a) identify the available modelling tools, their 
range of applicability and limitations with special focus on Priority Pollutants. 
When these tools are not available, (b) new tools are developed. Finally, the 
analyzed models are tested on real case studies, (c) assessing the model 
performance against measurements in terms of support for stormwater quality 
management. 

The thesis is based on the main hypothesis that a detailed estimation of PP fluxes 
in stormwater systems requires dynamic models capable of simulating the system 
over long time intervals. This is necessary due to the dynamics of the processes 
involved in stormwater pollution. These dynamic models can be integrated to 
provide support for stormwater quality management. The latter requires the 
analysis of highly spatially heterogeneous systems: in the thesis it is thus 
hypothesized that the pollutant sources in the catchment need to be characterized 
by using the information stored in Geographical Information Systems (GIS). 
Given the diverse properties of stormwater micropollutants, it is furthermore 
assumed that the different chemical properties of the modelled substances should 
be considered to estimate their fate in the environment. Finally, models are 
simplifications of reality; therefore a final assumption that is considered through 
the entire thesis asserts that model results cannot be employed for practical 
purpose without considering their uncertainty. 

1.4. Thesis outline 
Section 2 illustrates the research questions that are investigated in the thesis. 
After an introduction of the general context and methods employed during the 
project (Section 3), the thesis is structured to resemble the pollutant flow across 
the stormwater system. The thesis deals with the characterization of stormwater 
pollutant sources (Section 4), models for the generation and transport of 
stormwater pollutants (Section 5), and stormwater treatment (Section 6).  
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For each of the stormwater system elements the questions listed in Section 2 are 
addressed: by describing (a) the existing knowledge and (b) the models that have 
been considered/developed during the project; and by (c) assessing the model’s 
performances. Finally, the various parts of the stormwater systems are considered 
and holistically modelled in Section 7, showing an example of model application 
in stormwater quality management. The main results of the project and areas for 
future research are discussed in Section 8 and conclusions are drawn in Section 
9.
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2. Research questions 
To achieve the objectives of the thesis stated in the previous section, a modeller 
needs to investigate various issues that can be linked to basic research questions. 
These questions are addressed in the different sections of this thesis (see the 
scheme outlined in Table 2.1): 

− How can pollutant sources be characterized? How can the distribution 
of micropollutant sources across the catchment be represented? 

− Is it possible to simulate the complex dynamic processes that drive the 
release of micropollutants into stormwater and their transport across the 
stormwater system? 

− What are the fate processes that should be considered to quantify the PP 
removal in stormwater treatment systems? How can these processes be 
modelled in different stormwater treatment systems? 

− How can PP fluxes across stormwater systems be modelled? 

− Is it possible to simulate the effects of potential pollution control 
strategies on the existing system? Which information is sufficient? 

While formulating well documented responses to those questions, the following 
common principles guided the development of the thesis: 

− Expansion of existing models: several stormwater quality models have 
been developed in the past decades. There is a solid modelling 
background to dynamically represent the hydraulic and pollution 
generation and transport processes in stormwater (limited to 
macropollutants). Also, several mathematical approaches are available to 
describe the fate of micropollutants based on their chemical properties. 
This existing knowledge provides an essential starting point for the 
development of models that specifically target stormwater PP. 
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Table 2.1. Outline of the research questions addressed in the thesis.

Catchment characterization 
How can pollutant sources be characterized?  
How can the distribution of micropollutant sources across 
the catchment be represented? 

 
 Objectives Thesis section Appendices 

 Identification of existing models Section 4.1  

 Assessment of performance Section 4.3  
Pollution release and transport 
Is it possible to simulate the complex dynamic processes 
that drive the release of micropollutants into stormwater 
and their transport across the stormwater system? 

 
 Objectives Thesis section Appendices 
 Identification of existing models Section 5.1  
 Development of model Section 5.2 Paper I 
 Assessment of performance Section 5.3 Paper I 
Treatment 
What are the fate processes that should be considered to 
quantify the PP removal in stormwater treatment systems?  
How can these processes be modelled in different 
stormwater treatment systems?  
 Objectives Thesis section Appendices 
 Identification of existing models Section 6.1 Paper II 
 Development of model Section 6.2 Paper II 
 Assessment of performance Section 6.3 Paper III 

Paper IV 
Integrated system 
How can PP fluxes across stormwater systems be 
modelled? 
Is it possible to simulate the effects of potential pollution 
control strategies on the existing situation? 
Which information is sufficient? Which additional data are 
needed?  
 Objectives Thesis section Appendices 
 Assessment of performance Section 7 Paper IV 
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− Comparison of different modelling approaches: different modelling tools 
are available in the literature. These are based on different conceptual 
approaches that need to be compared (looking at their range of 
applicability and limitations) when identifying the most appropriate 
model to simulate PP fluxes in stormwater systems. 

− Evaluation of the appropriate model complexity: the complexity of the 
various available approaches needs to be considered in view of the 
general scarcity of available measurements regarding stormwater quality, 
and in particular stormwater PP. The chosen level of complexity should 
be a compromise between the need for a detailed description of the 
pollution processes, the performance of the model, and the data and 
resources (computational and modeller’s time) availability. 

− Assessment of result uncertainty: stormwater quality modelling is 
intrinsically affected by various sources of uncertainty that need to be 
considered when looking at modelling results. Identification of 
uncertainty sources and quantification of uncertainty is thus an essential 
and crucial step to provide reliable and trustworthy results that can be 
applied in real cases. 

− Flexibility of developed models: stormwater quality management is a 
wide field that includes a broad range of substances, release processes 
and control strategies. Models aiming to support management of 
stormwater PP needs to be easily and promptly adaptable to the different 
scenarios that need to be assessed (e.g. different substances, control 
strategies, etc.). 

− Exploitation of available data: the general scarcity of measurements 
regarding stormwater PP may represent an important barrier to model 
application. Models can provide useful information without field 
measurements (as commonly done, for example, in the chemical risk 
modelling field), but their results becomes more reliable when they are 
combined with field observations. The developed models should thus be 
able to benefit from all the available data (e.g. flow measurements, data 
regarding other water quality parameters) in order to improve the 
reliability of the results in situations characterized by a significant level 
of uncertainty.  
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− The knowledge about substance’s inherent chemical properties (tendency 
to sorb, biodegradability, volatility, etc.) may often be the only available 
information for a wide range of stormwater MP, and these properties thus 
represent an obvious starting point for models targeting these substances. 

These common principles ensure that the presented models represent optimal 
state-of-the-art solutions, allowing their application in stormwater quality 
management. 
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3. Context and methods 
3.1. Stormwater quality 
Stormwater pollutants 
Stormwater quality depends on the environmental media and surfaces that the 
runoff is in contact with. Rainwater additionally contains substances from long 
distance atmospheric transport or scavenged from the atmosphere above urban 
areas. The runoff generated during rain events flows across the urban surfaces, 
where different substances are released and/or removed by runoff. The 
substances that can be identified in stormwater, their concentrations and their 
loads may vary significantly depending on the land use, the human activities and 
the materials used in the catchment area (Figure 3.1). Stormwater pollution is 
thus characterized by significant spatial variability across urban catchments.  

The concentrations of stormwater pollutants are commonly lower than in 
domestic wastewater (see some examples of stormwater concentration values in 
Göbel et al., 2007), so that discharge of stormwater micropollutants rarely causes 
acute effects on the receiving aquatic environment. 

 

Figure 3.1. Scheme of major stormwater pollutant sources in urban areas and main 
group of water quality parameters.
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Nevertheless, as shown in Figure 3.2 stormwater from urban areas can cause 
long-term effects (as documented by toxicity studies performed by e.g. 
Kayhanian et al., 2008; McQueen et al., 2010) and negatively impact the quality 
of natural ecosystems (e.g. Eriksson et al., 2007; Karlaviciene et al., 2009).  

Stormwater quality monitoring 
The stochastic nature of precipitation influences the temporal behaviour of 
stormwater pollution, which is also affected by the temporal emission pattern of 
the various sources. These factors generate a high temporal variability in the 
concentrations and loads in stormwater, which is very difficult to monitor. In 
fact, extensive sampling is needed to obtain a detailed and reliable description of 
the pollutants’ behaviour during a rain event. Depending on the equipment (e.g. 
the volume collected) and the sampling technique (e.g. flow proportional or time 
proportional sampling), the data regarding stormwater quality can describe 
stormwater pollutographs with different levels of detail. 

 

Figure 3.2. Time scale for effects caused by stormwater discharge: stormwater priority 
substances can cause both acute and long-term toxicity (from Hvitved-Jacobsen et al., 
1994). 
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Figure 3.3. Representation of concentration data from the actual concentration down to 
the Event Mean Concentration obtained through a flow proportional sampling procedure. 

Figure 3.3 exemplifies the data collection process for a flow-proportional 
sampler: the actual stormwater concentration (a) is sampled at discrete intervals 
and collected in composite sample bottles (b). Samples from these bottles are 
analyzed and it is possible to reconstruct a pollutograph (c) or to integrate the 
measured concentrations with the flow data and calculate the Event Mean 
Concentration (EMC) (d). The latter is calculated as the ratio between the total 
mass discharged during the event and the total event volume.  

From measurements collected during separate rain events it is possible to 
calculate the Site Mean Concentration (SMC) as the ratio between the total mass 
and volume discharged during several events, which provides information about 
the stormwater quality in the study site over long time periods. 
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Clearly, the information provided by samples is an approximation of reality. 
While trying to reproduce reality, the modeller needs to consider that 
observations may not be as detailed as the model would require. For example, a 
dynamic model can generate continuous concentration data (reproducing the 
natural pattern in (a)) that, however, can only be compared against the 
measurements from bottle samples (c) or event-based data (d).  

This inherent data uncertainty needs to be considered when selecting the level of 
detail of the model and when trying to quantify model uncertainty. In fact, the 
models developed in this thesis are evaluated against data collected with different 
sampling techniques (see Table 3.1). 

3.2. Legal framework 
Pollution caused by stormwater discharge is covered by the EU Water 
Framework Directive (WFD) 2000/60/EC (European Commission, 2000). The 
WFD does not define precise technical requirements, but provides guidelines for 
water quality management at the catchment level. This should be based on the 
application of the Best Available Technologies and on establishing Best 
Environmental Practices. A major objective of the WFD is the enhancement of 
the status of the aquatic ecosystems through the progressive reduction of 
discharges, emissions and loss of Priority Substances (PS) and the cessation or 
phasing-out of discharges, emissions and losses of Priority Hazardous Substances 
(PHS). 

Among the criteria for a good ecological status, the directive lists the 
Environmental Quality Standards (EQS), which define the maximum 
concentrations of PS in water (defined as maximum allowable – MAC, and 
annual average – AA), sediments and biota. EQS are further defined in the WFD 
daughter directive 2008/105/EC (European Commission, 2008) on 
Environmental Quality Standards. A great number of the substances listed in the 
directives can be identified in stormwater from urban areas. The fulfilment of the 
WFD water quality objectives thus requires the consideration of PS loads 
discharged by stormwater. 

Depending on the considered spatial scale, stormwater discharges can either be 
regarded as point or diffuse sources, which are both regulated through the 
implementation of emission control strategies. These are defined as a 
combination of emission limitations (e.g. limits on the mass/concentration 
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emission) or activities affecting the emission processes (e.g. source control, end-
of-pipe treatments, etc.). Emission control strategies should be cost-effective and 
proportional: this thus requires the assessment and comparison of different 
control strategies. Models can provide results that support the identification of 
the most appropriate emission control strategy for a specific area. 

The EQS directive 2008/105/EC also introduces the concept of mixing zones, 
which are areas in proximity of the discharge point where exceedance of EQS for 
one or more PP is allowed, given that this does not affect the compliance of the 
rest of the water body with those standards.  

The compliance of stormwater discharge with the EQS requirements might 
potentially be assessed through the application of models (e.g. Gevaert et al., 
2009; Bach et al., 2010; Mouratiadou et al., 2010; Yang and Wang, 2010). 

3.3. Modelling procedure 
The implementation and application of models can be subdivided into general 
steps (see for example the schemes presented in Carstensen et al., 1997; 
Jørgensen and Bendoricchio, 2001; Dochain and Vanrolleghem, 2001; Jakeman 
et al., 2006; Refsgaard et al., 2007) where some can be neglected according to 
specific situations (e.g. when a model is available, a modeller can directly jump 
from the problem formulation to the model diagnosis). Hereafter a short 
description of the various phases of model development that are performed in the 
thesis is presented (Figure 3.4). 

The starting point for the application of a model is the definition of the goal (e.g. 
improved quality of natural waters) and the formulation of the questions that the 
modeller should answer (defined in Section 2). Once clear objectives are defined, 
relevant knowledge can be identified in the available literature. This information 
can highlight relevant experiences and tools to solve the defined problem (e.g. 
existing models, as described in Section 5.1 and 6.1).  

The model formulation and implementation represents the core of the process of 
model development. In this phase the general conditions under which the model 
operates (e.g. main assumptions) are outlined, the model structure end equations 
are selected and model parameters and the variables are defined (an example of 
this step is the development of the treatment model presented in Paper II). The 
model is then coded in the programming language and software selected 
according to the choices made during model formulation.  
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Figure 3.4. Procedure for model building (adapted from Carstensen et al., 1997; 
Jakeman et al., 2006; Refsgaard et al., 2007). The coloured areas represent the steps 
performed in the project for each element of the stormwater system. 

Dynamic models (as the one presented in Section 5.2.2) require software with 
proper numerical solvers. The use in integrated models should use platforms that 
facilitate integration with other models (e.g. MATLAB/SIMULINK®

V
, used in 

Paper ,  or WEST® II, used for the stormwater treatment model - Paper , III – 
and its integration with other models (De Keyser et al., 2010)). 

Once the model is implemented, its behaviour is analyzed and problems, weak 
points, and areas of improvements are diagnosed. This phase is also commonly 
defined as sensitivity analysis (Saltelli, 2000) and it helps the modeller to (i) 
identify the most influential and significant model factors (i.e. parameters, inputs, 
variables) with respect to the model output, (ii) detect potential interactions 
between the model factors and (iii) highlight regions of the parameter space that 
ensure optimal results. The results of the sensitivity analysis may motivate 
further studies and/or model re-formulation and provide the basis for the 
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definition of the data needed to assess the performances of the model. An 
example of the results from this stage can be found in Paper I and Paper III. 

Subsequently the model is tested and its performance is analyzed by comparing 
its results against measurements. This stage includes the estimation of the 
parameters that ensure better performance (this phase is also defined as 
calibration and some examples are presented in Paper I and IV). The evaluation 
of the model also involves the quantification of the result uncertainty and the 
testing against additional measurements (defined as validation, corroboration or 
confirmation). These last stages are essential to increase the confidence in the 
model before its final application and are illustrated in detail in the following 
section. 

3.4. Analysis of model performance 
For a trustworthy application of models a comprehensive knowledge of the 
model performance is necessary. The modeller should be aware of the most 
influential model factors for the model outputs and their interactions. This allows 
the identification of the major sources of uncertainty, i.e. the areas where 
resources need to be focused to improve the model performance (Saltelli and 
Annoni, 2010).  

Models are a simplification of reality and multiple sources of uncertainty (inputs, 
parameters, model structure, and measurements) make it impossible to exactly 
simulate reality. The model results thus need to undergo an uncertainty analysis, 
i.e. uncertainty bounds should quantify the level of confidence in the results. 
Although this is valid for any field of environmental modelling, uncertainty 
analysis is crucial when dealing with stormwater pollution. Modelling of 
stormwater pollution is, in fact, affected by high uncertainty related to the 
difficulties in monitoring, high variability and complexity of the processes, and 
difficulties in estimating the model parameters, (Bertrand-Krajewski, 2007). 

3.4.1. Identification of influential factors 
Sensitivity analysis allows the identification of the major sources of uncertainty 
without requiring measurements, as the focus is on the model behaviour rather 
than on its performance. Sensitivity analysis has traditionally been performed by 
applying “One-At-Time” (OAT) methods (also called local sensitivity analysis), 
i.e. the response of the model output to the variation of one factor is calculated 
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for each single model factor separately. The first-order sensitivity index Si is then 
calculated for the i-th model factor Xi

 

 according to the formula: 

i

i
i

X
X

M
M

S
∆

∆

=  (3.1) 

where the numerator expresses the relative variation of the model output M and 
the denominator defines the relative variation of the model factor Xi

Figure 3.5

. This 
approach is widely applied for its simplicity and low computational requirements 
(for a k-dimensional model factor space only k simulations are needed), but it 
fails to provide a complete overview of the model features (see the complete 
discussion presented in Saltelli and Annoni, 2010). OAT methods, in fact, 
provide information on the model behaviour only in a limited region of the model 
factor space around the starting point of the analysis ( ). Also, the fact 
that model factors are assessed separately entails that OAT fails to identify 
interactions between factors and thus neglects potential sources of uncertainty.  

Several approaches (defined as Global Sensitivity Analysis – GSA - methods) are 
available to overcome the limitation of OAT methods (Saltelli et al., 2006; 
Saltelli and Annoni, 2010) and assess the model’s behaviour across the entire 
parameter space. This study focused on the application of the Elementary Effects 
and Variance Decomposition methods. 

 

Figure 3.5. Example of the fraction of parameter space explored by OAT methods (dark 
grey area) for a two factors (θ1,θ2) model. 
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Elementary effect method 
The Elementary Effect method (also called the Morris method - Morris, 1991) 
represents a compromise between the need to explore various regions of the 
factors space and the computational burden required by highly detailed GSA 
methods (and it is thus applied in Paper III and IV).  

The Morris method is based on multiple OAT analyses performed in several 
regions of the factor space. A number of R initial points are generated in the 
factor space in order to achieve a better coverage of the entire space. Several 
strategies are proposed to optimize the sampling across the factor space while 
minimizing the computational burden (Campolongo et al., 2007; Pujol, 2009). 
These are used as starting point for the development of R trajectories, i.e. for the 
application of R local analyses (Figure 3.6). For each r-th trajectory first order 
sensitivity indices Si

(r) 3.1 are calculated according to Eq. . The Elementary 
Effects are the statistics (mean and standard variation) of the sensitivity indices 
(Campolongo et al., 2007): 

 ∑
=

=
R

r

r
ii S

Ri
1

)(* 1µ  (3.2) 

 ( )∑
=

−=
R

r
i

r
ii S

Ri
1

2)( ˆ1ˆ µσ  (3.3) 

 
Figure 3.6. Example of four trajectories generated for the Morris method in a three 
dimensional (X1,X2,X3) factor space (adapted from Pujol, 2009).  
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Figure 3.7. Scheme for assessing the influence and behaviour of model factors based on 
the analysis of elementary effects. 

Analysis of the elementary effects (see the scheme in Figure 3.7) enables the 
identification of factors that have a significant influence on the model outputs 
and/or interacts with other factors (with negative/positive correlation or 
correlations that have different effects for different regions of the factor space). 

Compared to OAT methods, the analysis of the elementary effects provides a 
deeper understanding of the internal dynamics of the model. This is obtained 
with limited computational requirements, as for a k-dimensional model factor 
space an analysis with R trajectories requires R·(k+1) model runs are required. 
Campolongo et al. (2007) and Gatelli et al. (2009) showed that the elementary 
effects can be profitably employed as substitutes for more computationally 
demanding indices (such as the Sobol’ indices – see next section). 

Variance decomposition methods 
A detailed GSA method that provides a deep insight in the model behaviour is 
the variance-decomposition method proposed by Sobol’ (Chan et al., 2004). The 
method essentially identifies the contribution to the output variance (V) of each 
model factor when acting alone or interacting with other model factors. 

As the detailed decomposition of the model output variance would be 
computationally demanding, Sobol’ indices are commonly used to reduce the 
number of calculations (Chan et al., 2004). Sobol’ indices are the first order 
sensitivity indices Si, which express each factor’s direct influence on the output 
variance, and the total sensitivity indices STi 

Figure 3.8
that lump all the interactions of the 

factors into a single value ( ). 
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The two indices are calculated by generating n samples from the factors space for 
each of the k model factors. The model is run for each sample and the variance V 
of the model output is calculated. Subsequently, the sample is modified by 
generating a new sample for the model factor Xi. The model is run again and the 
new variance Vi

 

 is calculated, leading to the estimation of the first-order index 
according to the formula: 

V
VS i

i =  (3.4) 

The original sample is then modified again by generating a new sample for all 
the factors except i. The output variance is then calculated (V~i

 

), leading to the 
estimation of the fraction of variance that is related to all the factors except i: 

V
VS i

i
~

~ =   (3.5) 

The total variance V (Figure 3.8) is the sum of the variance due exclusively to the 
model factor Xi (Vi), the variance caused by the interactions between all the 
factors (Vi, ~i) and the variance caused by all the factors except Xi (V ~i

 

): 

iii SSS ~~i,1 ++=   (3.6) 

The total sensitivity index STi 3.6 is then calculated by rearranging Eq. : 

 iiiTi SSSS ~~i, 1−=+=   (3.7) 

Despite being less computationally demanding than a detailed variance 
decomposition, the computational burden needed for the estimation of Sobol’ 
indices is higher than for the Elementary Effects method. In fact, for a model 
with k factors and n samples, (2*k+1)*n model runs are necessary. The 
dimension of the sample n is a crucial factor, as it should be able to provide a 
good representation of the model output variance.  
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Figure 3.8. Scheme of the information provided by the Sobol’ indices. 

The example presented in Paper I, for example, shows that for a simple 
conceptual stormwater quality model a sample with dimension n=100,000 is not 
entirely sufficient to achieve a complete overview of the output variance, as 
negative indices are estimated for factors with almost negligible influence. 
Variance decomposition methods are thus capable of exactly quantifying the 
influence of each factor, but are not suitable for models with long simulation 
time. 

3.4.2. Estimation of model uncertainty 
The last decade has seen an increasing focus on the estimation of model 
uncertainty. This is generated by a philosophical shift in the modelling 
community that acknowledged the limitations of models and recognized the need 
for quantifying the result’s uncertainty. The general mathematical formulation 
that accounts for model uncertainty is expressed by Eq. 3.8 (adapted from Beven, 
2009): 

 ( ) ( ) ( ) ( )txItxIMtxtxO IMIO ,,,,,,,,,,,, εεθεεεθε θθ +=+   (3.8) 

where O is the observed variable in the real system, εO is the observation error, εθ 
is the error of model parameters, εI is the error in input and boundary conditions, 
and εM

There is a great number of available uncertainty analysis methods for 
environmental modelling (see the review in Matott et al., 2009) that try to infer 
the model error term ε

 is the model structure error.  

M 3.8 listed in Eq. . The scientific community has not 
defined a common framework for the application of uncertainty estimation 
techniques yet. Nevertheless, the inherent level of uncertainty affecting 
stormwater quality modelling (Bertrand-Krajewski, 2007) renders uncertainty 
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analysis essential for a reliable application of such models (an example of how 
uncertainty can be integrated in stormwater quality management is shown in 
Section 7.3). 

This thesis focuses on the so-called pseudo-Bayesian methods (Freni et al., 
2009b), which require a smaller number of a priori assumptions than traditional 
Bayesian approaches. Thanks to this feature they are thus regarded as more 
suitable for the uncertain field of stormwater quality modelling. The uncertainty 
analyses performed in this thesis are based on the Generalized Likelihood 
Uncertainty method (GLUE - Beven and Binley, 1992), which is based on the 
equifinality thesis (Beven, 2006), i.e. different parameter sets can achieve equally 
good predictions. 

The GLUE method can be summarized in the following steps (Beven, 2009): 

1. Definition of an informal (or formal) likelihood measure L, i.e. the 
measure that is used to evaluate the model performance. 

2. Definition of the model parameters and inputs to include in the analysis. 
This step can benefit from the results of sensitivity analysis. 

3. Definition of prior distributions for the analyzed model factors. These are 
used to generate n parameter sets. The prior distributions are defined 
according to prior knowledge (e.g. literature values). Uniform 
distributions are commonly chosen when little information is available. 

4. The model is run for each parameter set (Monte Carlo simulations) and 
the performance of the model is evaluated by using the likelihood 
measure. 

5. The behavioural parameter sets are selected according to an 
acceptance/rejection criterion 

6. The output generated by the behavioural parameter sets is used to create 
model prediction bounds 

There is lively debate in the environmental modelling community about the 
applicability of GLUE (see for example Mantovan and Todini, 2006; Beven et 
al., 2008; and the comparisons in  Freni et al., 2009b; Dotto et al., in preparation; 
Jin et al., 2010). This discussion deals with the width of the prediction bounds, 
namely on the mathematical significance of the estimated model prediction 
bounds, the posterior parameter distributions, etc. This study does not address 
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these aspects, but focuses on some aspects of the GLUE methodology (choice of 
the likelihood measure and generation of the parameter sample). 

Likelihood measures 
The GLUE methodology assesses the model performances by using informal (or 
formal) likelihood measures (Beven and Freer, 2001). Commonly, these 
measures are based on the deviation between simulated and measured data 
(which is commonly assumed to have no error - e.g. Eq. 3.9 and 3.10), but new 
measures have been proposed to reproduce measurements error (e.g. fuzzy 
membership functions - Beven, 2009). 

A widely applied informal likelihood measure is based on the inverse of the error 
variance σ2

i

 

: 

( )[ ]
N

i
i OIML 








= 2

1,
σ

θ   (3.9) 

where L is the informal likelihood of the model output M estimated for the 
parameter set θi

 

, conditional the input I and the observations O. The coefficient N 
can be used to sharpen the likelihood response surface and to emphasize the 
distinction between behavioural and not behavioural parameter sets (Beven and 
Freer, 2001). Another measure is based on the Nash-Sutcliffe coefficient (Smith 
et al., 2008), widely applied in hydrological field due to its easy interpretation, as 
the perfect model provides an index equal to 1: 

( )[ ]
N

obs

i
i OIML 








−= 2

2

1,
σ
σ

θ   (3.10) 

where σ2
obs 

I
is the variance of the observed values. The advantages and limitations 

of some likelihood measures have been investigated in Paper . Eq. 3.10, for 
example, is not suitable for small datasets with significant internal variability, 
such as pollutographs. For these data, the variance based equation (Eq. 3.9) is 
more appropriate. 

The flexibility of the GLUE methodology allows the use and the combination of 
different informal likelihoods (see Beven and Freer, 2001) that can be defined 
according to model, system and observations characteristics. The combination 
used in the thesis is based on a weighted average of likelihood measures L (Eq. 
3.11) for different outputs M1,M2,…Mk. The weights ω1, ω2… ωk express the 
relevance that each factor has for the modeller. 
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kMMkMMMMcombined LLLL

1121211
... ωωω +++=  (3.11) 

Examples of these combinations can be found in Paper IV (likelihood on TSS 
and Cu concentrations, and on simulated flow and total volume). These examples 
illustrate how modellers can choose different likelihood measures (or 
combination hereof) depending on the model outputs they are interested in. 
Compared to other uncertainty analysis techniques (e.g. Bayesian) this feature 
allows modellers a wider degree of freedom. 

Parameter sample generation 
The application of uncertainty analysis techniques (including GLUE) requires the 
assessment of model performances by using a great number of parameter sets 
generated across the parameter space. The computational burden can represent a 
significant obstacle to the estimation of model results uncertainty, especially for 
complex model and long simulation time. To reduce the computational 
requirements of GLUE in this thesis, this technique is combined with the 
Shuffled Complex Evolution Metropolis algorithm (SCEM-UA - Vrugt et al., 
2003). This optimization algorithm identifies the region in the parameter space 
with higher likelihood, i.e. the parameter sets that provide better performances. 
The application of the SCEM-UA in conjunction with GLUE was initially 
developed by Blasone et al. (2008a; 2008b) and applied in stormwater modelling 
by Lindblom et al. (2007a). 

In stormwater quality modelling, where the uncertainty linked to parameter 
distributions is significant, the SCEM-UA can contribute to reduce the 
computational requirements. The significant level of parameter uncertainty 
(sometimes resembling ignorance) requires the use of wide parameter 
distributions to generate the parameter sets. Obtaining a sufficient sampling 
density across the entire parameter space with random methods (including Latin 
hypercube sampling) would require a great number of samples, while the SCEM-
UA starts from a low-density sample (Figure 3.9a) and subsequently concentrates 
the parameter sets in the higher likelihood regions (Figure 3.9b). 
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Figure 3.9. Scheme of the application of the SCEM-UA algorithm to improve the 
parameter sample performance: the algorithm moves the samples generated from wide 
parameter intervals (a) towards the regions ensuring better performances (b), generating 
the sample for the subsequent GLUE analysis (c). 

This generates a sample with high density only in the regions of the parameter 
space providing good model performances (Figure 3.9c). This sample can 
subsequently be used to run the GLUE analysis. 

In Appendix VII it is shown how the application of the SCEM-UA can result in 
up to 70% saving of computational resources compared to random sampling 
methods. When compared with other uncertainty estimation methods (Dotto et 
al., in preparation), the SCEM-UA provided similar results in terms of prediction 
bounds and parameters distribution with lower computational requirements. The 
combination of SCEM-UA with GLUE thus represents a significant 
improvement of efficiency in uncertainty analysis in stormwater quality 
modelling. 
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4. Source characterization 
4.1. Theoretical background 
Stormwater quality depends on the pollutant sources in the catchment. The 
identification of potential PP sources in the area of interest is the first step to 
model PP in stormwater systems. The characterization of catchments and 
pollutant sources is commonly performed by utilization of Geographical 
Information Systems (GIS), which provide support in the management of spatial 
information about the study area and potential PP sources (e.g. land usage, 
location of streets, etc.).  

Stormwater pollutant loads are calculated by coupling hydrological models with 
PP release data (measured or retrieved from databases). This information can 
either be expressed as average concentrations (e.g. Site Mean Concentration) or 
as release factors. In the first case the PP loads are function of the runoff volume, 
while in the latter they are function of time or of the unit used to quantify the PP 
source (e.g. km driven for PP released by traffic). Other factors affecting the 
detail level of the catchment descriptions are the substances investigated, the size 
of the catchment, the desired output of the model (load or concentration) and the 
purpose of the model application (e.g. compliance with discharge limits - 
concentrations or loads). 

The estimation of stormwater pollutant loads from large catchments may require 
a lumped description of the area, commonly based on land usage (for example 
Park et al., 2008; Park and Stenstrom, 2009). The characterization of land usage 
can rely on available data or can automatically be performed from aerial 
observations (Park and Stenstrom, 2009; for example, presented examples based 
on satellite imagery). The combination of land usage information with average 
concentration data extends the approach commonly used at the river basin scale 
for pollutants from agricultural runoff (e.g. the estimation of N and P loads 
presented by Johnson et al., 2001; or the identification of potential pollution 
sources for drinking water protection presented by Grayson et al., 2008). The 
SMC-based methods have widely been applied at the urban scale in the U.S., 
boosted by the national stormwater legislation (based, for example, on the Total 
Maximum Daily Loads; see also Park et al., 2008) and by the available SMC 
databases (see for example Pitt and Maestre, 2005; and Park et al., 2009). These 
applications mainly cover “traditional” water quality parameters and heavy 
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metals, with some examples regarding pesticides (Qiu and Prato, 1999; Grayson 
et al., 2008) and PAH (Mitchell, 2005). 

Dynamic models for small catchments may use highly detailed description of the 
PP sources in the study area (e.g. Ahlman, 2006), but field data collection might 
be demanding. The initial catchment description based on GIS data, in fact, may 
require a further refinement to achieve a more precise description of potential PP 
sources (e.g. copper roofs). This additional investigations can be based on 
analysis of aerial photos (e.g. Ekstrand et al., 2001) or on site inspections. SMC-
based methods are also applied with a detailed characterization of the catchment, 
as presented by Modaresi et al.(2010).  

GIS-based pollutant release models provides results that highlight the most 
relevant pollution sources (Kim et al., 1993; Mitchell, 2005; Grayson et al., 
2008). Economic models for treatment options can furthermore be included in 
the models and the integration of GIS models in Decision Support Systems 
(DSS) provides support for the assessment of pollution control strategies 
(Nordeidet et al., 2004; Hipp et al., 2006; Zheng et al., 2006). 

4.2. Analyzed approaches 
4.2.1. Research objectives 
Various factors contribute to the definition of the approach chosen to characterize 
and model pollutant sources in a catchment (data availability, size of the 
catchment, legal requirements that need to be fulfilled). The quality of the results 
is affected by this choice. The work presented in this thesis aims to compare 
various approaches that can be used to model PP stormwater sources. The 
comparison tries to identify the most suitable approaches for modelling of PP 
fluxes across stormwater systems by considering the spatial distribution of PP 
sources. This comparison of different catchment characterization methods 
focuses on the estimation of three heavy metal loads (namely Cd, Cu and Zn), 
which are chosen for the availability of information, in urban areas.  

The study extends the work presented by Park et al. (2009) that investigated the 
effect of different SMC datasets on the estimated annual loads for a large 
catchment (over 200 km2). The focus in this thesis is on the level of detail of 
urban catchment characterization (e.g. in small catchments of few squared 
kilometres). 
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4.2.2. Model description 
Three approaches for the characterization of a small urban catchment are 
compared: the first two (A,B) are based on SMC, while the third (C) employs 
release factors. The three methods differ with respect to the level of detail of 
catchment characterization, where the first (A) lumps the entire catchment into a 
single area and the others (B,C) use a detailed representation of the catchment 
(Table 4.1).  

The comparison of different methods is performed for a small urban catchment in 
Göteborg, Sweden (4,8 ha -see Paper I and Ahlman, 2006) and for an industrial-
residential catchment in Albertslund, Denmark (about 95 ha - see Paper V). 
These two catchments are selected as the required information is available and 
thus the application of the different approaches is not limited by data availability. 
The Göteborg catchment was classified by Ahlman (2006), and the Albertslund 
catchment was classified in this PhD project based on the information (road and 
building cartography) provided by the Albertslund municipality. 

The catchments are classified by using a combination of GIS data and aerial 
photos into three impervious areas typologies (for example, see Figure 4.1 for 
Göteborg): roofs (subdivided into copper, sheet steel and tile roofs), roads and 
parking lots (areas in contact with motor vehicles), and other impervious areas 
(e.g. yards and pavements). 

Table 4.1. Characteristics of the three approaches for catchment characterization 
included in the study. 

Approach A B C 

Detail of 
classification 

 
Lumped 

 
Detailed 

 
Detailed 

Classification 
categories 

City centre 
Residential 
Industrial 

Roof (with identif. of copper and zinc roofs) 
Roads 

Other impervious areas 
Pollutants loads 
estimation SMC SMC Release factors 
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Table 4.2. Pollutant source data used in the comparison. 

Land 
usage/pollutant 

sources 

Concentration valuesa Release factors 
[mg/m [μg/l] 2/year]

Cd 

b 

Cu Zn Cd Cu Zn 

City centre
0.5 c 

(0.3-0.9) 
70 

(25-110) 
250 

(120-400) 
   

Residential 
area

0.5 
c (0.3-0.7) 

35 
(20-70) 

120 
(60 -200) 

   

Industrial area
0.5 c 

(0.3-0.9) 
70 

(25 -110) 
250 

(120-400) 
   

Roads and 
parking lots

0.5 
c (0.3-1.0) 

75 
(25-110) 

240 
(100-350) 

0.150 4d 15d 

 

d 

Corrosion of 
zinc surfaces    0.09  4000 

 Road wearing    0.04 7e 15.8e 

 

e 

Vehicle 
emission 
(tyres, 
brakes, oil 
discharge) 

   0.5 25e 1500e 

Roofs 

e 

0.8 
(0.1-1)

35 
f (10-1000)

140 
f (50-1000) 0.150f 4b 15b 

 

b 

Copper roofs 0.8 2600g 370g - g 2600 - 
 Zinc roofs 1.0 153g 6000g 0.09 g - 4000 
Other 
impervious 
areas 

0.8 23g 585g 0.150g 4d 15d d 

aexpressed as median value (minimum and maximum values are listed in brackets when 
available). bAhlman (2006). cLindgren (2001). dSum of dry and wet deposition. eExpressed as 
μg/kilometre driven. fModaresi et al. (2010). g

Pollutant source data for European conditions (

Göbel et al. (2007) 

Table 4.2) are selected by using 
the same sources listed in the studies by Modaresi et al. (2010) and Ahlman 
(2006). Wide ranges are found in literature for some land uses (e.g. copper roof), 
with distributions where the median commonly differs from the mean of the 
interval. 

The two SMC-based methods require the water volume to estimate pollutant 
loads. As flow measurements in the catchments covered only limited periods of 
time, a simple hydrological submodel (see the description in Section 5.2.2) is 
used to estimate the annual stormwater volume discharged from the catchments.  
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Figure 4.1. Distribution of land use in the Göteborg catchment. 

The pollutant loads are estimated by using a simulated average runoff volume of 
4.6·104 m3 I/yr for Göteborg (covering the period 2000-2010; see Paper ) and 
2.58·105 m3 7.3.2/yr for Albertslund (period 1994-2004, see Section  and 
Appendix VI). The uncertainty of volume predictions is not considered here: the 
results uncertainty thus depends only on the ranges listed in Table 4.2. 

4.3. Analysis of results 
The heavy metal loads estimated by the three methods are shown in Figure 4.2 
and compared with the loads calculated by using the measured SMC. The results 
uncertainty varies for different substances, with copper loads underestimated by 
all the three analyzed approaches. Measurements error is not considered in the 
analysis.  

The lumped description of the catchment area (method A) provides good 
estimation of Cd loads (included within the estimated interval), but fails to 
provide good estimation of Cu and Zn loads. In both the studied catchments the 
SMC-based method combined with the detailed description of the catchment 
(method B) succeeds in bracketing the observed loads within the calculated 
interval for all the three metals. The release factor approach (method C) 
significantly underestimates the loads for all the metals, with an error ranging 
around 64-88% in Göteborg and 40-89% in Albertslund. 
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Figure 4.2. Comparison of the calculated heavy metal loads (Cd, Cu and Zn) discharged 
from the Vasastaden catchment in Göteborg for different estimation methods. The 
interval of estimated values is illustrated by the error bars. 

The ability of the three methods of providing good estimation of stormwater 
loads clearly depends on the used dataset. Park et al (2009) demonstrated how 
the estimated loads varies by using different datasets, with significant uncertainty 
related to the spatial and temporal variability of stormwater pollutant sources 
(e.g. old datasets overestimate lead loads, as emission of this metal decreased due 
to its elimination from gasoline).  

The use of different data from those listed in Table 4.2 (which may not fully 
represent the modelled catchments, as some of the data were collected outside 
Scandinavia and several years before the sampling campaigns in the study areas) 
may change the estimated loads. The possibility of identifying the major sources 
of uncertainty, i.e. the pollutant sources that require more attention, is an 
important feature for stormwater quality management. In fact, it allows the 
elaboration and evaluation of source control strategies, which is not possible with 
method A. 

 



 

 35 

 
Figure 4.3. Distribution of Cu loads (mean values) for different areas (roads, roofs and 
other impervious areas) estimated for the methods employing a detailed catchment 
characterization. 

The underestimation of Cu loads suggests that there are significant copper 
sources in the catchments that are not commonly present in the urban areas used 
to elaborate the values listed in Table 4.2. The lumped catchment 
characterization used in method A prevents the identification of such individual 
sources. Conversely, the detailed catchment characterization allows a substance 
flow analysis of the catchment and the consequent identification of the major 
copper sources. An example regarding the copper loads in the Göteborg 
catchment is presented in Figure 4.3. 

Both method B and C pinpoint roofs as the major copper source in the Göteborg 
catchment. The ability of the SMC methods (A and B) to bracket the observation 
is mainly due to the wide Cu concentration range found in literature, ranging 
from 10 to 1000 μg/l. Furthermore, the two methods provide similar estimation 
of the Cu loads from copper roofs: 1.21 kg/yr for the SMC method and 1.27 
kg/yr for the emission factor based method. A likely cause for this result may be 
(i) an underestimation of the Cu concentrations and release factors (i.e. the used 
dataset does not represent the situation in the Göteborg catchment), or (ii) 
erroneous classification of copper roofs and (iii) failure in the identification of all 
the potential Cu sources. To reduce the uncertainty in the Cu loads calculations 
can be necessary to focus the available resources on these two issues (estimation 
of release factors and identification of Cu sources). 
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This example shows that a lumped representation of the catchment (method A) 
does not allow the identification of the major pollutant sources and consequently 
cannot be used to assess potential pollution control strategies. Although requiring 
a lower amount of data and resources (time required to classify the area), this 
method decreases the possibility of modellers to improve their results. 
Conversely, a detailed catchment classification (method B and C) enables the 
modeller to identify the major sources of uncertainty in the estimation of PP 
loads and carefully consider them when modelling the release of stormwater 
pollutants. The latter approach is thus more suitable for assessing stormwater 
pollution control strategies. 
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5. Pollutant release and transport 
5.1. Theoretical background 
Modelling the release of stormwater pollutants from urban areas and across a 
drainage system is the core element of an integrated model for stormwater 
system. The model should account for the complex dynamic processes that affect 
the quality of the runoff collected and routed across the catchment. Since the first 
stormwater quality measurements in the 1970s, a great number of models have 
been developed (Tsihrintzis and Hamid, 1997; Elliot and Trowsdale, 2007; 
Obropta and Kardos, 2007). Different levels of complexity are used to model the 
two main output of the model: the water and pollutants fluxes (see Table 5.1). 
The hydrologic description of the system can adopt highly detailed, mechanistic 
models that are based on the theoretical description of the physical process (e.g. 
Saint Venants equations), or conceptual models, which reproduce hydrographs 
by representing the system as a combination of simple elements such as 
reservoirs. Conversely, stormwater quality models adopt lower level of 
complexity and may neglect the hydrological description by directly estimating 
pollutant loads (see Table 5.1). 

The general difficulties in monitoring stormwater pollutants and in modelling the 
processes affecting their release and transport (Bertrand-Krawjewski, 2007) 
explain the lower level of complexity adopted in quality modelling compared to 
the hydrologic models. Three model typologies are used to model the pollutant 
concentrations and loads: 

− Conceptual dynamic models: explain the processes taking place in the 
catchment with simplified formulations. The system is described through 
parameters that do not necessarily have a direct physical meaning, trying 
to represent the behaviour inferred from field observations (e.g. 
asymptotic accumulation of particulate pollutants on street surfaces).  

− Regression models: these models estimate pollutant loads or 
concentrations based on regression of several parameters, which describe 
the pollutant sources and the characteristics of the catchment (e.g. traffic 
load) and the rainfall characteristics (volume, intensity, antecedent dry 
period). These models commonly provide event-based results. 
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−  Stochastic models: these models express the pollutant concentration and 
loads as stochastic variables, so the results are expressed as probabilistic 
distributions. These models commonly provide event-based results. 

The majority of the available dynamic models are conceptual models that try to 
represent the observed behaviour of particulate pollutants (such as TSS) on the 
catchment surfaces (e.g. roads, roofs). These models can thus be extended to the 
simulation of particulate PP or micropollutants with strong tendency to sorb (i.e. 
their fate is linked to the particles they are bound to).  

The pattern of particulate pollutants on catchment surfaces can be schematized as 
follows (Figure 5.1): during dry weather pollutants accumulate on the surface 
resembling an asymptotic behaviour; during a rain event the pollutants are 
removed and washed off by runoff. 

Table 5.1. Example of existing level of complexity for stormwater runoff quality 
models. 

 Hydrologic model  Quality model 

Level of complexity 

H
igh  

L
ow

 
 

M
edium

 

 

L
ow

 

Example 

M
echanistic 

C
onceptual 

N
eglected 

 

C
onceptual 

R
egression 

Stochastic 

Barbé et al. (1996)  X   X   
Behera et al. (2006)   X    X 
Charbeneau and Barret (1998)   X   X  
Chen and Adams (2006; 2007)   X    X 
FLUPOL (Bujon et al., 1992)  X   X   
HORUS (Zug et al., 1999a; 1999b)  X   X   
Kim et al. (2005)   X   X  
Opher and Friedler (2009)   X   X  
Osuch-Pajszinska and Zawilski (1998)  X   X   
Robien et al. (1997)   X   X  
Rossi et al. (2005)   X    X 
SEWSIM (Ruan and Wiggers, 1997)  X   X   
SWMM (Rossman, 2009) X    X   
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Figure 5.1. Behaviour of particulate pollutant loads on catchment surfaces (adapted 
from Vaze and Chiew (2002) and Behera et al. (2006)). 

These two distinct processes have been described by several mathematical 
descriptions, which can be generalized by the following equation: 

 LRL
dt
dL n

321 θθθ −−=  (5.1) 

where L [M] is the mass of pollutant accumulated on the catchment surface. The 
first term of the equation assume a constant pollutant accumulation on the 
catchment that is expressed by the constant deposition rate θ1 [M/T]. The second 
term assumes a “dry weather” removal, which is proportional to the available 
mass L and to the removal rate θ 2 [T-1

5.1

]. The latter accounts for the losses due to 
resuspension of particles (due to traffic, wind, etc.), degradation of the pollutant, 
and processes binding the particles (that are not available for washoff). The first 
two terms mathematically try to reproduce the asymptotic behaviour that is 
observed in real systems. This mathematical formulation has widely been applied 
in several models in the last decades (starting from Alley and Smith, 1981). 
Other formulations found in literature employ analytical solutions of Eq.  (e.g. 
Sartor et al., 1974; Grottker, 1987) or rewrite Eq. 5.1 to explicate the maximum 
mass of pollutant that can accumulate on the catchment (i.e. the asymptote L0

Figure 5.1
 in 

 is equal to the ratio θ1/θ2

5.1

) and to use it as calibration parameter. The 
formulations are mathematically equivalent, but they imply a different 
schematization of the modelled system and they depend on the available 
information. Eq.  uses the pollutant accumulation rate as parameter, which can 
be derived from source characterization: once the pollutant sources in the 
catchment are identified, emission rates (similar to those applied in source-flux-
analysis and used in Section 4) can be estimated and applied in the model (e.g. 
Ahlman, 2006). The maximum load available on the surface represents the 
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equilibrium state in Eq. 5.1 and can be quantified by field measurements 
(Grottker, 1987; Vaze and Chiew, 2002). Conversely, the removal rate θ 2

The third term of Eq. 

 can 
only be estimated indirectly. Other mathematical formulations (e.g. Charbeneau 
and Barret, 1998; Kim et al., 2006) are event-based and are thus less suitable for 
implementation in a continuous dynamic model. 

5.1 describes the washoff of pollutants from the catchment 
surface. Experimental data showed that the rainfall energy plays a role in the 
early stage of the rain event, whereas the available load of pollutant becomes 
important with the increasing duration of the event (Vaze and Chiew, 2003b). 
Pollutant washoff has been described by different mathematical formulations 
(e.g. Bertrand-Krawjewski et al., 1993; Vaze and Chiew, 2003a), with various 
level of detail, ranging from the detailed physical model proposed by Shaw et al. 
(2006), to the spatial distribution of pollutants modelled by Deletic et al. (1997). 
Generally, these equations link the removal of particles to either rainfall intensity 
or to runoff, both expressed by the term R [L/T]. In the first case the model 
considers the raindrops’ kinetic energy as the cause of pollutant removal and use 
the rainfall intensity (commonly one of the model inputs - e.g. Yuan et al., 2001) 
as forcing function. In the second case the removal of pollutants is caused by the 
stress caused by runoff flowing on the surface (Shaw et al., 2006) and R is 
expressed as runoff rate (runoff flow divided by the catchment area, commonly 
one of the model outputs - e.g. Alley, 1981). 

The removal rate θ3 [Tn-1/Ln

As stormwater quality models have originally been developed for traditional 
pollutants such as TSS, the available models simulates the removal of particulate 
pollutants but do not represent other potential PP release process, such as 
corrosion or leaching from building materials (Clark et al., 2008; Schoknecht et 
al., 2009). These processes have complex dynamics, depending on the material 
and its use, rainfall characteristics, etc. (see for example the study on copper and 
zinc roofs in He et al., 2002). At the event time scale (hours), an initial peak in 
PP flux is observed, with a decrease to a constant value through time (

] and the exponent n [-] are commonly considered as 
calibration parameters (Yuan et al., 2001; Vaze and Chiew, 2003a; Dotto et al., 
2009; Kleidorfer et al., 2009; Avellaneda et al., 2009). The complexity of these 
formulations can be increased by adding additional parameters (e.g. Egodawatta 
et al., 2007), but all these equations can provide equally satisfactory results once 
the parameters are calibrated (Vaze and Chiew, 2003a). 

Figure 
5.2), which is independent from the rainfall intensity (Schoknecht et al., 2009).  
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Figure 5.2. Schematic behaviour of release of soluble PP at different time scales 
(adapted from Odnevall Wallinder et al., 2004). 

At bigger time scale, the discharged PP loads resemble those observed for 
particulate pollutants, with high inter-event variations that can be lumped into a 
constant value when looking at a long time scale. 

Modelling of dissolved stormwater micropollutants is still relatively an 
unexplored area: few modelling examples are based on regression equations (e.g. 
Odnevall Wallinder et al., 2004; 2007) and conceptual models have been used in 
a risk assessment framework (Jungnickel et al., 2008; Burkhardt et al., 2009).  

5.2. Developed approach 
5.2.1. Research objectives 
The previous section illustrates the wide choice of possibilities that are available 
for modelling stormwater quality. The modeller can choose between different 
levels of complexity for water and pollutant simulation (Table 5.1), selecting 
different approaches to model the complex dynamic processes that drive release 
and transport of PP. A trustworthy application of these models requires the 
investigation of the performance of these models and the quantification of the 
result uncertainty. 

The research presented in this part of the thesis thus aims to investigate how 
existing statistical methods can be used to (i) achieve a better knowledge of 
stormwater quality models and (ii) estimate the model result uncertainty. These 
results would enable a wider application of these models for practical purpose. 
This research starts from conceptual stormwater quality models, which represent 
a compromise between the maximum level of complexity in stormwater quality 
modelling and the resources (computational and modeller’s time) needed for 
running the simulation.  
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The results can also be compared with the outcomes presented by several authors 
that assessed the uncertainty of stormwater quality models with similar level of 
complexity for traditional macropollutants (e.g. Gaume et al., 1998; Kanso et al., 
2005; 2006; Dotto et al., 2009; Kleidorfer et al., 2009) and micropollutants 
(Lindblom et al., 2007b,submitted)  

5.2.2. Model description 
The stormwater quality model used in this thesis is based on the accumulation-
washoff model initially proposed by Alley and Smith (1981) and subsequently 
applied in several models, such as the SEWSYS model (Ahlman, 2006) that was 
used as starting point to simulate pollutant fluxes. The model implemented and 
used in this thesis runs in the MATLAB/SIMULINK environment with 
continuous time, differing from the discrete time step approach adopted in 
SEWSYS (a similar continuous time model is used by Lindblom et al., 2007a; 
2007b).  

 

Figure 5.3. Sketch of the conceptual stormwater quality model used in Paper I. 
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This conceptual model considers several pollutant sources present in the urban 
environment (e.g. dry and wet deposition, traffic, building material corrosion, 
etc.). The use of continuous time steps allows for the implementation of a novel 
loss model (which neglects the “antecedent dry period” as model parameter and 
introduces a time interval required by the catchment to return to dry conditions), 
as well as an improvement in the simulation speed compared to discrete time 
models. The model is subdivided into two submodels (Figure 5.3): hydrologic 
(estimating the flow discharged from the catchment) and quality (calculating the 
pollutant mass fluxes). 

The hydrologic submodel estimates the outlet hydrograph by using the non-linear 
reservoir approach. The catchment is represented as a reservoir with area 
equivalent to the catchment reduced area A [m2

 

]. The water balance of the 
reservoir is described by the following equation: 

outin QQ
dt

dW
−=  (5.2) 

where W [m3] is the volume of runoff stored in the reservoir; Qin  [m3/s] is the 
inflow to the reservoir and Qout  [m3/s] is the catchment outflow. The first term is 
calculated by considering the hydrological reduction factors Krun [-] and R [m/s], 
which is the effective rainfall intensity. This is equivalent to the rainfall input 
after that the initial loss threshold (defined by hDunne

 

 [m]) is exceeded:  

0=inQ  for R≠0 and hcum≤h

 

Dunne  

RAKQ runin ⋅⋅=  if R≠0 and hcum>hDunne 5 ( .3) 

where hcum [m] is the cumulated rainfall height from the beginning of the rain 
event. The initial loss accounts for the wetting processes that take place in the 
catchment before runoff is observed. After the end of rainfall events, the model 
simulates the drying processes by linearly decreasing hcum, which returns to zero 
after a time TDunne

The outflow from the catchment (Q

 [s] (i.e. the catchment is back to dry conditions). 

out

 

) is calculated as: 
35hKQ mout ⋅=  (5.4) 

where the routing parameter Km [m3/5s-1] expresses the physical characteristics of 
the catchment and affects the shape of the outlet hydrograph and h [m] is the 
fictitious water level in the catchment (calculated as the ratio between  W and A). 
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The quality submodel simulates the accumulation-washoff of pollutants based on 
Eq. 5.1. The pollutant deposition rate θ1

The outputs of the hydrological submodel is the outlet flow M

 is calculated according to the stormwater 
pollutant sources in the catchment (copper and zinc roofs, traffic loads, etc.), 
while the contribution of wet deposition is modelled as a flux entering the 
catchment during rain events.  

flow [m3/s] (i.e. the 
outlet from the non-linear reservoir), while the output from the quality submodel 
is the mass flux MMass 5.1[g/s] (i.e. the third term in Eq. ). By combining these 
two outputs it is possible to calculate the outlet concentration MConc [g/m3

5.3. Analysis of model performance 

]. 

The model described in the previous paragraph has two submodels with specific 
parameters and two inputs (rainfall and wet deposition fluxes, which can be 
affected by error), for a total of nine model factors (Table 5.2) that can contribute 
to the model results uncertainty. To include the uncertainty on the estimation of 
pollutant source releases (i.e. the factors used for method C in Section 4), the 
release factor θ1

Regarding the interactions between model parameters, previous studies (Kanso et 
al., 2006; Lindblom et al., 2007a; Dotto et al., 2009) showed correlations 
between the parameters of the quality submodel. The application of GSA and 
pseudo-Bayesian methods is thus straightforward, as these techniques are capable 
of identifying the relationships between parameters (GSA) and do not require a 
prior definition of the parameter correlation structure (GLUE). Also, the 
hydrologic submodel can affect the concentration calculations and it might 
compensate for the uncertainty of the accumulation-washoff parameters. 
Generally, this aspect is neglected and the performances of the two sub-models 
are assessed independently, with the quality submodel run by using observed 
flows or the flow generated by the calibrated hydrological submodel (e.g. 
Lindblom et al., 2007a; Dotto et al., 2009; Kleidorfer et al., 2009). 

 is here treated as a model parameter. When dealing with such 
complex models it is necessary to gather a good knowledge of the model 
behaviour, which allows focusing the available resources on the most sensitive 
factors to estimate the model uncertainty bounds.  

The examples presented in this thesis investigate the application of GSA in two 
case studies. The model is applied to two catchments with similar size (4.8 ha 
and 2.2 ha, respectively) located in Göteborg (Sweden – see the description in 
Paper I) and Oslo (Norway - see description in Vollertsen et al., 2007).  



 

 45 

Table 5.2. List of model factors (inputs and parameters) for the stormwater quality 
model (from Paper I) 

Factor 
name Unit Description 

K mm 
3/5s Hydrologic submodel 

parameter 
-1 Routing coefficient related to catchment 

characteristics 
K - run Hydrological reduction factor 
h m Dunne Initial loss 
T hr Dunne Time required to dry the catchment 
θ μg/m1 2 Quality submodel 

parameter 
/s  Pollutant deposition rate 

θ s2 Dry weather pollutants removal rate -1 
θ mm3 Rain pollutant removal rate  -1 
err rain - Model inputs Error on rainfall intensity 
wet dep - Error on rain pollutants concentration 

The sampling techniques of these two datasets are representative of the 
stormwater quality data that are available in literature: while the Göteborg data 
provide detailed information for a short sampling period (57 samples for 13 rain 
events over two months), the Oslo data give a longer overview of the system (20 
samples for 65 rain events, covering a six-month period). Although several 
stormwater micropollutants were measured in the mentioned case studies and can 
be simulated by the model, this study focused only on copper to facilitate the 
comparison of the results with previous studies (Lindblom et al., 2007a; 2007b). 

5.3.1. Identification of important model factors 
The important model factors are identified by applying the Variance 
Decomposition Method described in Section 3.4.1. The results from Paper I 
stress the high computational requirement needed by this method, as a total of 
190,000 model runs are required to obtain a complete overview of the 
interactions between parameters. Nevertheless, the GSA results provide a deep 
insight in the model behaviour, which cannot be achieved by using traditional 
OAT methods. The Sensitivity Index (SI) and Total Sensitivity Index (STi) are 
calculated for likelihood responses calculated for two different outputs of the 
quality submodel (Mmass and Mconc

Figure 5.4
), but no major differences is noticed between 

the two outputs ( ).  



 

 46 

 
Figure 5.4. First order (Si) and total (STi) sensitivity indices estimated for the likelihood 
on concentration (MConc) and mass (MMass

Both the sensitivity indices for the mass and the concentration highlight strong 
interactions between the quality submodel parameters, confirming the correlation 
found for TSS by Kanso et al. (2006) and Dotto et al. (2010), and for Cu by 
Lindblom et al. (2007a). A traditional OAT method, or a sensitivity analysis 
based only on the analysis of the S

). 

I

The Total Sensitivity indices, however, show that the parameters driving the 
water volume (initial loss h

 would neglect the influence of the hydrologic 
submodel on the output. 

dunne and the hydrological reduction coefficient Krun

The influence of the hydrologic parameters (responsible for up 30-40% of the 
output variance in some phases of the rain event) can be visualized by looking at 
the sensitivity indices calculated at each simulation time step (

 
and – at a lower level – the error on the rainfall input err rain) interact with other 
parameters and thus affect the variance of the model output. 

Figure 5.5): while 
the initial loss importance is high during the initial phase the of the rain event, 
the runoff coefficient increases its relevance during the rain event, i.e. when the 
majority of the pollutant mass has been removed and the discharged loads (and 
concentrations) mainly depend on the water volume.  
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Figure 5.5. Temporal behaviour of the normalized total sensitivity index (STi) for MConc

I
 

for a rain event recorded in Göteborg (from Paper ).  

These results show how a comprehensive GSA method can fully investigate the 
behaviour of a dynamic model and provide a detailed description of the 
significance of the model factors and their interactions. This information is 
relevant to identify the major sources of model uncertainty, to focus the available 
resources on the significant factors and to quantify (and potentially reduce) the 
model prediction bounds. 

5.3.2. Uncertainty analysis 
The GSA results provide the basis for the uncertainty analysis and the subsequent 
quantification of the model result uncertainty: non-sensitive factors are in fact 
disregarded, while the large number of simulations generated in the GSA can be 
recycled to estimate the model prediction bounds. Starting from the results 
presented in the previous section, GLUE is applied on the five most sensitive (�1, 
�2�� �3, hDunne, Krun

3.4.2
) parameters and model performance is evaluated for four 

different likelihood measures (see section  and Paper I) and two model 
outputs (MMass and MConc

The GLUE analysis generates outputs that can be presented in various ways, 
offering an overview about the model characteristics and its ability to represent 
the observed values. The behavioural parameter sets can be presented in cross-
correlation plots (as the one showed in 

).  

Figure 5.6). The analysis of this graph 
enables the identification of interactions between model factors, such as the 
relationship between �1 and �2. This result confirms the GSA findings, which 
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identified a relationship between those two parameters defining the mass of 
pollutant accumulated on the catchment surface. 

Some relationships, such as the one between the runoff coefficient Krun and the 
deposition rate θ1 depends on the model output that is used to calculate the 
informal likelihood (in this example Mconc Figure 5.7), as shown in . These 
relationships are explained by the model’s structure: as θ1 and θ2 

5.1
define the total 

mass that can be accumulated on the surface (as explained in Section ), the 
correlation with Krun is caused by the calculations used to estimate the 
concentration Mconc (in fact, such relationship is not seen when estimating the 
likelihood for MMass

These illustrated interactions between parameters stress the benefits deriving 
from the application of GLUE, which does not require a priori definition of the 
parameter correlation structure. In fact, this feature avoids the need for a model 
re-formulation, as conversely Bayesian methods would require (see the case 
described in Kanso et al., 2006). 

). 

 

Figure 5.6. Cross correlation plot of the behavioural parameters identified by using the 
Nash-Sutcliffe likelihood for Cu concentration. 
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Figure 5.7. Cross correlation plots between the pollutant deposition parameter θ1 and 
the runoff coefficient Krun for MMass (on the left) and MConc

The model performance analysis highlights the difficulties that stormwater 
quality models encounter in simulating the initial and the final phase of a rain 
event, i.e. the initial concentration peak and the final descending phase of the 
pollutograph (confirming the results obtained by, among others, Haiping and 
Yamada, 1998; and Avellaneda et al., 2009). These limitations can be 
compensated by the likelihood measure that is used to estimate the model 
prediction bounds: the Nash-based likelihood, for example, tends to focus on the 
average behaviour of the entire dataset and to treat the initial concentration peaks 
in the pollutograph as outliers. 

 (on the right). 

This phenomenon can be visualized by comparing the prediction bound for the 
pollutographs simulated in the Göteborg catchment and estimated by using 
different likelihood measures: Figure 5.8 shows the bounds estimated with the 
variance-based likelihood (Eq. 3.9 - above) and with the Nash-Sutcliffe based 
likelihood (Eq. 3.10 - below). Both prediction bounds are created by using the 
same acceptance criterion for behavioural models (91.2% of the observed values 
within the bounds).  

The Nash-Sutcliffe based likelihood bounds fails to cover the concentration 
peaks in the beginning of rain events (e.g. the samples identified by I and IV in 
the pictures), while the variance based likelihood includes those samples within 
the model prediction bounds (and this leads to wider prediction bounds). The 
variance based likelihood measure, in fact, tends to minimize the simulation error 
for all the samples without distinctions between samples that lie around the 
average value and those that present bigger deviation.  
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Figure 5.8. Prediction bounds for Cu concentration in Göteborg estimated by using 
variance-based likelihood (Eq. 3.9 – above) and Nash-Sutcliffe based likelihood (Eq. 
3.10 - below) on MConc

The variance-based likelihood thus looks more appropriate for the particular 
shape of pollutographs prediction bound, conversely to the Nash-Sutcliffe 
likelihood, which is more appropriate for outputs with great number of data and 
smoother patterns (e.g. flow data, for which the Nash-Sutcliffe criterion was 
originally developed). The choice of an appropriate likelihood measure does not 
hide the model structural deficiencies: regardless of the chosen likelihood 
measure, the model failed to simulate some events (identified by II and III in 

 (13 rain events). 

Figure 5.8). 
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Figure 5.9. Prediction bounds for Cu cumulative loads for Göteborg (on the left) and 
Oslo (on the right). Bounds are estimated by using the variance-based likelihood. 

Generally, the model shows better performances when looking at the cumulative 
loads discharged from the catchment: the average width of the prediction bounds 
for mass are about half of the width for concentration (see Paper I for further 
details). The uncertainty of the results are less affected by the choice of the 
likelihood or by the sampling technique used to obtain the measured data. Figure 
5.9 shows a comparison between the cumulative Cu loads estimated for Göteborg 
(where the 57 samples were collected during 13 rain events, with several inter-
event samples) and for Oslo (where several rain events were lumped in 20 
composite samples). 

Despite the different characteristics of the catchments, the number of available 
data and the different sampling techniques, the results shows comparable 
uncertainty: +38%/-21% for the mass discharged from Göteborg (during a 2 
months period) and +26%/-39% for Oslo (during a 6 months period). The 
magnitude of this error is comparable with the one estimated for measurement-
based load calculations (estimated around 30-40% by Bertrand-Krajewski and 
Bardin, 2002). The width of the prediction bounds for Cu mass in Göteborg (293-
513 g) is smaller than the bounds estimated by Lindblom et al. (2007a), which 
ranged in between 209-576 g. The smaller bounds obtained in this thesis are 
originated by the inclusion of the hydrologic submodel in the uncertainty analysis 
and by the use of a different likelihood measure. These outcomes show how the 
application of uncertainty analysis techniques allows the quantification of 
uncertainty for stormwater quality models, providing a basis for a practical 
application of these models. 
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5.3.3. Uncertainty in model application 
To demonstrate how the results from the uncertainty analysis can be used for 
practical purposes, the model is applied to perform long-term simulations for the 
Göteborg catchment. The model generates three outputs that can be used to 
evaluate the situation in the study area (Figure 5.10): 

A1. The pollutant loads discharged from the catchment (to assess the long 
term impact of stormwater on the receiving waters). 

A2. The frequency of exceedance of Emission Limit Values for copper (to 
assess the potential acute impact of stormwater on the water 
environment) 

B1. The potential frequency of overflow of a stormwater treatment unit to be 
placed at the catchment outlet (to assess the efficiency of strategies for 
reducing stormwater pollutants emissions). For this scenario the 
maximum flow capacity conveyed to the BMP is set to 250 l/s. 

To ensure that both flow and concentration predictions are realistic, the model is 
run by using the behavioural parameters selected with a combined likelihood 
measure including flow and concentration (Mflow and Mconc I - see Paper ). This 
also ensures good prediction of pollutant loads. 

 

Figure 5.10. Scheme representing the different model outputs (from Paper I). 
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Table 5.3. Results from 10-year simulations for the Göteborg catchment (these results 
integrate those presented in Paper I). 

Model output Mean value Prediction bounds (min 
and max) 

Average runoff volume [m3 4.61/yr] 
.10 2.744 .104 – 5.84.10

A1 

4 
Total pollutant discharge [kgCu/yr] 11.1 5.54 – 18.4 

A2 Fraction of discharges exceeding of 
Cu quality criteriona 96.5 [%] 93.0 – 99.8b 

B1 

b 

BMP overflow events  [yr-1 5.38 ] 1.10 – 9.00 

B2 Loads discharged by overflows 
[gCu/yr] 409 15.7 – 322 

B3 Fraction of overflows exceeding Cu 
quality criteriona 69.9 [%] 45.0b b – 100b 

a set to 12 μg/l for dissolved phase, according to Danish regulation (Danish Ministry of 
Environment, 2006).bDissolved phase estimated with kd

A 10-year rainfall series recorded in the period 2000-2010 is used as model 
input, and the simulation results are listed in 

 equal to 52500 l/kg (mean value from 
Shafer et al. (2004))and TSS concentration of 228 mg/l (Ahlman, 2006). 

Table 5.3 The table provides the 
final user with a mean value, which conveys the information about the simulated 
system, and with prediction bounds, which express the reliability of the model 
outcomes. 

The difference from the Cu load calculated by using the measured Site Mean 
Concentration (see Section 4.3) is lower than 10% (11.1 kg/yr for the dynamic 
model and 12.3 kg/yr for the static model, see Figure 4.2). As quality standards 
are commonly fixed only for the dissolved phase, the concentration of the Cu 
phases is calculated from the simulated total Cu value by using the water-soil 
partition coefficient kd

6.2.2
 (following the same assumptions made in the 

development of the treatment model – see Section  and Paper II). 

The estimated Cu loads vary in a -50/+60 % range from the median value. The 
model suggests that stormwater discharge from the study area may cause acute 
impacts on the receiving waters. In fact, the EMC for the majority of the rain 
events (over 92%) exceeds the ELV for dissolved copper. The model also shows 
that the installation of a BMP with a capacity of 250 l/s would intercept the 
majority of the copper loads. The loads discharged by flows bypassing the BMP, 
in fact, are generally below 2-3% of the total annual loads. The installation of a 
BMP would also reduce the acute impacts on the receiving body, as the fraction 
of discharges exceeding ELV for dissolved copper are reduced. 
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These results provide an understanding of the impact of stormwater pollution in 
the catchment. The listed uncertainty bounds convey information regarding the 
reliability of these results, providing the basis for a wider (and more reliable) 
application of dynamic models in stormwater pollution management. The 
combination of this model with stormwater treatment models (as the one 
presented in Section 6.2.2) would allow the complete evaluation of different 
pollution control strategies (see Section 7.3.2). 
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6. Treatment 
6.1. Theoretical background 
The existing software for stormwater quality simulation offers several options for 
modelling stormwater treatment units (see for example the review in Huber et al., 
2006). Compared to e.g. the IWA ASM models for wastewater treatment (Henze 
et al., 2000) or the RWMQ for river systems (Reichert et al., 2001), these models 
commonly present a low level of process complexity. The level of uncertainties 
affecting stormwater quality modelling is significant, and this leads modellers to 
commonly prefer highly lumped and conceptual models. 

The existing models (a brief list is presented in Table 6.1) can be classified 
according to several criteria and attributes (e.g. pollutants simulated, removal 
processes, model purpose, time steps, etc.). These models usually include 
“traditional” water quality pollutants and heavy metals. The latter, however, are 
commonly only related to suspended solids and their settling process through e.g. 
regression relationships, and other fate processes (e.g. adsorption, chemical 
transformation, bioaccumulation, etc.) are not included (see for example Walker 
and Hurl, 2002). The existing models do not allow the simulation of the fate of 
heavy metals without field data used to calibrate regression relationships, nor to 
simulate the fate of organic PPs with more complex behaviour and removal 
processes (such as hydrolysis, photolysis, and biodegradation). 

The lack of modelling tools capable of simulating the removal of Priority 
Pollutants in stormwater treatment units is partly caused by the novelty of the 
problem. Only in the last decade, in fact, Priority Pollutants from stormwater 
discharge has been recognised to pose an environmental risk (Eriksson et al., 
2007; Kayhanian et al., 2008; McQueen et al., 2010). The major challenge 
impeding the development of models in this area is however the general lack of 
PP measurements in stormwater treatment units. Data are available for some 
specific units (e.g. DiBlasi et al., 2009; Hatt et al., 2009a; 2009b), and existing 
databases (e.g. Wright Water Engineers, 2007) allow the application of simple 
removal efficiency-based models (e.g. Ackerman and Stein, 2008). 
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Based on the formulation of the removal processes, the available models can be 
divided into different classes (see also Table 6.1): 

− Removal efficiency based models: a detailed description of the removal 
processes and kinetics is neglected. The water quality improvement is 
simply estimated by using a reduction factor, which can be retrieved 
from available databases (Wright Water Engineers, 2007) or calculated 
by using empirical equations (like in SWMM). P8 and WMM, for 
example, apply this approach.  

− First order kinetics based models: the pollutant removal is modelled by a 
single first-order reaction, which lumps into a single coefficient all the 
different processes taking place in the treatment unit. This approach has 
been applied in MUSIC and PREWET. 

− Settling based models: settling of particles is considered as the main 
removal process. The removal of other pollutants is calculated by 
assuming sorption of the substance to the settled particles through 
partition coefficients. An example of this approach can be found in 
DMSTA (combined with a multi-CSTR approach) or in the wetland 
modelling applied in SLAMM. The VAFSWM model couples settling 
processes with adsorption of pollutants to particles. Mechanistic models 
based on settling processes are presented for example in Bentzen (2008) 
and Pathapati and Sansalone (2009).  

− Pollutant cycle based models: the cycle of the different pollutants are 
modelled by considering the transformations occurring in the unit (e.g. 
bacterial and vegetation growth, sorption, etc.). This formulation is 
characterized by a higher complexity level than the other models. These 
models are usually applied for nutrients in wetlands, where the quality of 
available information is sufficient to allow such complex models and 
realistic description of the system (e.g. Lee et al., 2002) 

Each model can be used to simulate a different number of BMP, with SWMM 
and MUSIC that can simulate the greater number of treatment facilities (Table 
6.1). The latter is characterized by a flexible approach, based on serial 
Continuously Stirred Tank Reactors (CSTR), which allows the simulation of 
facilities with different hydraulic behaviour.  
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The number of CSTR tanks (N) is in fact defined to reproduce the behaviour of 
the desired stormwater treatment unit (with an infinite number of tanks equal to a 
plug-flow reactor). This approach is widely applied in environmental modelling 
(e.g. Werner and Kadlec, 2000; Kadlec, 2000) and relies on several studies for 
the definition of the model parameters (e.g. the number of tanks N needed to 
simulate the system– see for example by Jansons et al., 2005). This feature 
reduces the need for field measurements for the calibration of the hydraulic 
parameters.  

The hydraulic performances of stormwater units and the deviations from the 
design flow conditions can be summarized by the hydraulic efficiency value λ 
(Persson et al., 1999): 

 
n

p
v N

e
τ
τ

λ =





 −=

11  (6.1) 

where ev [-] is the effective volume ratio (defined by the proportion of storage 
volume in the unit that is actively participating in the flow through the unit), τp 
[T] is the peak of the hydraulic residence time distribution in the real system (i.e. 
the time when the highest tracer concentration is passing through the outlet after 
a tracer impulse is emitted in the inlet) and τn

6.2. Developed approach 

 [T] is the nominal residence time in 
the unit (usually the design criterion). In models based on serial tanks, like 
MUSIC, the number N of CSTR is defined to obtain values of λ that are similar 
to those recorded (or simulated with detailed hydrodynamic models, e.g. Jansons 
et al., 2005) in BMP with comparable layout. 

6.2.1. Research objectives 

A flexible approach for estimating the fate (and thus the removal) of stormwater 
pollutants in a wide range of stormwater treatment units has been proposed by 
Scholes et al. (2008a) and Revitt et al. (2008), and subsequently extended to 
Priority Pollutants in Scholes et al. (2008b). This method combines an 
assessment of the potential fate processes taking place in stormwater units with 
the tendency to be affected by different fate processes of a given substance, based 
on its inherent properties. The method provides only a preference ranking of the 
BMPs for removing a specific substance (or a family of substances). 



 

 60 

However, the assessment of PP reduction strategies might also require 
quantitative information, i.e. data showing the expected PP emission reduction 
provided by a specific BMP (or combination of BMP). 

The results presented in this thesis illustrate the features of the Stormwater 
Treatment Unit model for MicroPollutants (STUMP - Paper II), where the term 
MicroPollutants (MP) is used as synonym for PP to avoid misunderstanding with 
the ASM terminology (where PP refers to polyphosphate - Corominas et al., 
2010). This model includes different fate processes that need to be accounted for 
simulating the fate (and removal) of a wide range of MP in stormwater treatment 
systems. STUMP is also built to model different stormwater treatment units 
under dynamic conditions, merging this characteristic with features that are 
common to large-scale multimedia models (such as the fate modelling based on 
the substance inherent properties). The model is developed based on three main 
criteria which aimed to: 

− Utilize all the available information on pollutants: given the general lack 
of field measurements, substance’s inherent properties can provide 
important information about the fate of a micropollutant. The equations 
used to model MP fate processes in STUMP are thus based on the 
substance’s inherent properties, with an approach similar to the one 
adopted in environmental chemical risk assessment (e.g. European 
Communities, 2003). This approach also enables the integration of 
STUMP with other models developed based on the same principle (e.g. 
sewer network, WWTP, receiving water - see for example Benedetti et 
al., 2009), allowing the simulation of integrated urban wastewater 
systems and their interactions with the surrounding environmental 
compartments (atmosphere and groundwater - see the example presented 
in De Keyser et al., 2010). 

− Benefit of existing knowledge: a wide range of modelling tools is already 
available to simulate “traditional” macro-pollutants (Table 6.1). The 
project thus extended this widely applied knowledge in STUMP by 
adding MP fate processes. 

− Provide a flexible tool: the same modelling tool should be able to 
simulate different BMPs, facilitating the assessment of PP control 
strategies. The STUMP model thus extends the Universal Stormwater 
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Treatment Model (Wong et al., 2006) implemented in MUSIC, which is 
capable of simulating different treatment units. 

− The quantification of result uncertainty is an essential step in order to 
define the range of applicability, the benefits, and the limitation of 
STUMP, enabling a reliable application of this model. This is also 
important to corroborate the main assumptions made in STUMP, which 
rely on general and non site-specific information (substance’s inherent 
properties) and non PP-related measurements (flow and TSS) to 
represent a specific treatment unit. 

6.2.2. Model description 
Hydraulic submodel 
STUMP is formed by several two-compartment (water and sediment) CSTR 
(Figure 6.1), extending the flexible approach implemented in MUSIC. Examples 
of this flexibility are presented in Paper IV and V, where STUMP is used to 
simulate systems with different hydraulic characteristics: a pond with a high 
length-width ratio in Lilla Essingen (Paper IV), a pond with a low length-width 
ratio, which promotes hydraulic short-circuiting, in Albertslund (Paper V), and a 
biofilter (Paper IV). 

 

Figure 6.1. Scheme of the multi-tank structure of STUMP and connection with other 
environmental compartments (from Paper IV). 
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Figure 6.2. Example of outlet concentration for Basin K with different number N of 
serial tanks (ev

The number of tanks N can be defined without the need of flow measurements, as 
exemplified for the Albertslund retention pond (simulated in Paper 

=0.6).  

V). The pond 
has a rectangular layout with a low length-width ratio that promotes hydraulic 
short-circuiting. Jansons et al. (2005)��������	
����
��������� �����������������
0.3 and an effective volume ratio of 0.6 for such layout, which can be reproduced 
by 2 serial tanks. The hydraulic efficiency for a STUMP model with 2 tanks is 
0.299, which is consistent with the theoretical value. 

The outlet from the tank is calculated by using the following formula: 

 � ��
outletout hhKQ ��  for h>houtlet  

 
0�outQ  for h<houtlet 6  ( .2) 

where K [m���] and � [-] are coefficients that can be defined according to the 
physical structure of the simulated unit (e.g. submerged outlet, weir outlet, etc.); 
h [m] is the water level in the unit and houtlet

 

 [m] is the threshold water level for 
discharge from the unit. STUMP can also simulate infiltration through the 
bottom of the unit by applying Darcy’s law: 

� �
bottom

bottom
bottom h

hhAkQ ��
��inf  (6.3) 

where kbottom [m/s] is the hydraulic conductivity of the bottom of the pond; A [m2] 
is the tank surface and hbottom [m] is the depth of the infiltration layer below the 
unit.  
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Figure 6.3. STUMP hydraulic conceptual model for a single two-compartment tank. 

The hydraulic conductivity of the unit bottom can change during the simulation 
due to sediment accumulation and clogging of the bottom layer. This feature 
allows long term simulation of stormwater infiltration systems, whose 
performances are affected by clogging processed (e.g. Le Coustumer and 
Barraud, 2007). 

Quality submodel 
Different processes are modelled in the two compartments (Figure 6.4) that 
compose each serial tank (e.g. sediments are commonly assumed in anaerobic 
conditions, while water is considered aerobic). The fate processes included in the 
model are selected according to their relevance, representing a compromise 
between wishing to simulate all relevant processes for a very large number of 
stormwater pollutants while avoiding an overly complicated model. The 
processes included in the model are: settling and resuspension, volatilization, 
sorption and desorption, hydrolysis, photodegradation, and aerobic and anaerobic 
degradation (see Table 1 in Paper II).  

The equations used to model these processes are selected according to the 
information generally available on the MPs inherent properties (Table 2 in Paper 
II). The volatilization process, for example, can be modelled by using parameters 
such as the substance diffusivity, the atomic diffusion volumes, the molal 
volume, etc.; but all these properties can be difficult to retrieve when dealing 
with substances that can potentially be found in stormwater. The volatilization 
process is thus modelled by using the relationship proposed by Trapp and 
Harland (1995), which is based on the substance molecular weight (easily 
available in existing databases). 



 

 64 

 
Figure 6.4. STUMP conceptual model for MP fate processes in a single two-
compartment tank (from Paper II). 

The majority of the fate processes are modelled by using pseudo-first order 
kinetics (as the majority of the process rates available in databases are expresses 
as half-lives), with the greater fraction affecting the dissolved phase (SMP) and 
only adsorption/desorption and settling/resuspension affecting the particulate 
phase (XMP

The equilibrium between the two phases is strongly related to the TSS fraction 
(X

). 

TSS

6.3. Analysis of model performance 

) and its processes (settling/resuspension): modelling of TSS is however 
eased by the knowledge from existing models (with several equations and 
modelling approaches proposed in literature to simulate these processes) and by 
the relatively high amount of available measurements. 

The model performance needs to be evaluated for substances with different 
properties and in different typologies of stormwater treatment systems. Two 
different types of stormwater treatment systems are modelled in the thesis and 
the fate of different substances is simulated (Table 6.2), ranging from heavy 
metals (with only settling/resuspension and adsorption/desorption processes 
included in the simulations) to organic substances (with a wider range of fate 
processes included in the simulations). The assessment of the STUMP 
performance is obviously affected by the scarcity of stormwater MP 
measurements, i.e. the organic substances are simulated by using literature values 
for concentrations in stormwater runoff. 
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Table 6.2. Scheme of the various situations where the STUMP model performance is 
assessed. 

Stormwater treatment 
unit 

Stormwater Pollutant 
Heavy metals Organic MP 

Biofilter Paper IV - 
Retention pond Paper IV Paper III 

6.3.1. Identification of important factors 
The STUMP model is characterized by a significant number of model factors 
(inputs and parameters) that can affect the estimation of MP fate in the treatment 
unit. To enable a wide application of this model it is necessary to investigate the 
behaviour of the model and the influence of the various model parameters.  

This information can be obtained by variance decomposition methods (see 
Section 3.4.1), but these approaches can be computationally demanding for 
STUMP, which is more complex than the runoff quality model assessed in 
Section 5.3. The important factors in STUMP are thus identified by using the 
Elementary Effects method, as the information provided by this method is 
regarded as sufficient to provide a good overview of the model behaviour. 

To ensure that the results are not influenced by the properties of the simulated 
substances (e.g. substance with high tendency to sorb will stress the importance 
of TSS-related processes), the analysis is performed on substances with distinctly 
different and clearly identifiable environmental fate. The results from this 
analysis can thus be generalized and ensures that STUMP can confidently be 
used to estimate MP fate (and thus removal) of a wide range of stormwater MP in 
stormwater BMPs.  

Table 6.3. Organic substances simulated and their expected fate in the environment 
based on their inherent properties. 

Substance CAS 
number Expected environmental fate Main source for 

stormwater  

IPBC 85045-09-6 Water phase (does not undergo 
relevant fate processes) 

Building materials 
(used as biocide) 

Benzene 71-73-2 Atmosphere (highly volatile) Combustion processes 

Glyphosate 1071-83-6 Biodegraded 
Gardening 

(used as biocide) 
Pyrene 129-00-0 Sediments (high tendency to sorb) Combustion processes 
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Figure 6.5. Elementary effect indices estimated for IPBC (from Paper III): comparison 
between μ* calculated for different model outputs (a), and comparison between μ* and 
σ* (b). 

The STUMP model is tested by simulating the fate of the organic substances 
listed in Table 6.3 (along with Cu and Zn) in a small retention pond located in 
Lilla Essingen, Stockholm (Sweden). An example of the results of the elementary 
effect analysis for IPBC is shown in Figure 6.5: the two parameters driving the 
settling/resuspension processes (the critical shear stresses τcrit,set and τcrit,set

Figure 6.5
) are 

the most sensitive (e.g. a) for all the simulated substances, and they 
show a non-linear behaviour (e.g. Figure 6.5b). 

The predominance of settling/resuspension parameters in the pond over the other 
parameters (driving MP fate processes) underlines the importance of TSS in the 
calculation of MP fate (and, consequently, in the model results uncertainty – 
expressed by the error bars in Figure 6.6). The estimation of MP fate in 
stormwater system thus requires the dynamic representation of the processes 
taking place in such systems.  

Furthermore, the GSA suggests that results uncertainty can be reduced by using 
TSS measurements for calibration, which are easier to obtain and more readily 
available than MP data. Methods for uncertainty analysis (such as GLUE) can be 
used to infer TSS-related parameters and thus reduce the uncertainty in MP fate 
estimations, as described in Paper III (an example for glyphosate is shown in 
Figure 6.6).  
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Figure 6.6. Comparison of the environmental fate for glyphosate calculated with default 
parameters and after the identification of parameter sets giving good TSS predictions 
(from Paper III). 

The importance of non MP related processes also emerges from the GSA of the 
biofilter, where a significant fraction of the water volume is lost trough 
hydrological processes (e.g. evapotranspiration, infiltration). The hydraulic 
parameters (hout, K, kbottom

IV

), which drive the outlet flow and account for hydraulic 
losses (using Darcy’s as proxy for the other processes as evapotranspiration), 
thus play a relevant role for the MP fate in this unit (as shown in Paper ). 
Result uncertainty can thus be reduced by proper simulations of the hydraulic 
behaviour of the unit. 

The results of the GSA underline the role that a good representation of the BMP 
physical characteristics and of the processes that are not directly related to MP 
(such as TSS-related processes and hydraulic losses) plays in the estimation of 
MP fate. These results show how reliable estimation of MP fate can be obtained 
with low data requirement (e.g. literature data about substance’s chemical 
properties), and how all the available information (e.g. TSS and flow 
measurements) can be exploited to reduce STUMP result uncertainty. 
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6.3.2. Uncertainty analysis 
The quantification of STUMP result uncertainty is necessary to provide a robust 
basis for the application of the model. The uncertainty analysis is performed by 
using the available measurements or, in alternative, literature values, resembling 
the approach applied in chemical risk assessment. The flexibility of STUMP is 
tested by simulating two different stormwater treatment systems: a detention 
pond and a biofilter. The quality data collected in the two systems differ for their 
temporal resolution, with EMC values available for the retention pond and 
pollutographs recorded at the biofilter (see Table 3.1). This enables the 
assessment of the influence of input data resolution on the model results.  

For both the systems the prediction bounds are estimated by using GLUE. Given 
the relevance of TSS processes for MP estimation identified by the GSA, a 
combined likelihood is used (calculated on TSS and total Cu). This ensures that 
behavioural parameters provide good estimation of both TSS and MP 
concentrations. Also, the importance of water losses in the biofilter is considered 
by using a combined likelihood calculated on the flow and discharged volume. 

For both the simulated systems the width of uncertainty bounds for concentration 
predicted by STUMP (Figure 6.7 and Figure 6.8) is about the same magnitude of 
measurements (i.e. the ratio between the width of bounds and the measured value 
is around 1-1.5). The influence of the temporal resolution of input data can thus 
be regarded as minimal. On the other hand, input data have a relevant influence 
on uncertainty bounds. 

 

Figure 6.7. Inlet flow and measured total Cu concentrations for the retention pond 
(above), and measured outlet concentrations and model prediction bounds (below). 
Hatched areas represents periods when no inlet concentrations are available. (Paper IV). 
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Figure 6.8. Inlet flow and measured total Zn concentrations for the biofilter (above), 
and measured outlet concentrations and model prediction bounds (below). (Paper IV). 

The inlet and outlet measurements from the retention pond, for example, show 
temporal discrepancies, with outlet measurements taken when no inlet data were 
recorded, and vice versa. When no inlet concentrations are available, STUMP 
runs with default values (calculated from the median of observed values). These 
periods correspond to the intervals where STUMP uncertainty bounds are wider 
(e.g. Figure 6.7), with overestimation of outlet concentrations up to 420% for Zn. 
The width of the prediction bounds in the simulated pond is thus strongly 
influenced by input data. 

The structural uncertainty of STUMP is highlighted by the specific 
characteristics of the biofilter, a system generally in dry conditions, with 
significant sorption processes to the biofilter medium and potential for 
precipitation of heavy metals.  

The importance of these processes is suggested by the outlet concentrations, with 
a significant reduction of inlet peaks to a constant outlet concentration. STUMP 
underestimates sorption (as the sorption capacity of the biofilter medium is not 
considered) and it neglects filtration and precipitation. This structural limitation 
explains the pattern of the concentration prediction bounds, which fail to cover a 
significant number of simulations (as exemplified by the Zn simulations shown 
in Figure 6.8) and the underestimation of the removal efficiencies.  
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Table 6.4. Summary of estimated removal efficiency, expressed as mean percentage 
(minimum and maximum values are in brackets - from Paper IV). 

MP 
Retention pond Biofilter 

Measured Simulated a Measured Simulated 

Cu 
80.7 

(60 – 99) 
39.5 

(0.54 – 99.9) 48.4 ± 22.7 
39.5 

(0.54 – 99.9) 

Zn 
81.8 

(57 – 99) 
78.7 

(0.01 – 99.9) 90.6 ± 1.89 
78.7 

(0.01 – 99.9) 
a expressed as monthly mean value (minimum and maximum are listed in brackets),  from 
Stockholm Vatten (2006); bExpressed as value from the best behavioural parameter set and 
minimum and maximum values of the uncertainty bounds; c

To improve the predictions of outlet concentration from the biofilter it is thus 
necessary to modify the STUMP conceptual model. Similarly to the findings for 
the runoff quality model discussed in Section 

 expressed as mean±standard 
deviation (Hatt et al., 2009a). 

5.3.2, uncertainty decreases when 
looking at MP mass fluxes. The simulated removal rates for the retention pond 
are comparable with the values calculated from measurements (Table 6.4), while 
the structural limits in simulating the removal processes in the biofilter are 
reflected by the wide range of the simulated removal efficiencies.  

The use of substance inherent properties in STUMP strengthens the application 
of the model also in the absence of field measurements, i.e. in a condition that is 
common to a great number of systems, where MP removal needs to be quantified 
but no measurements are available. The examples in Paper III (e.g. Figure 6.9) 
illustrate the ability of STUMP for estimating the environmental fate (and thus 
quantifying the potential removal) of substance with contrasting behaviour in the 
environment. The STUMP model provides more realistic estimations of MP 
removal by combining the approach commonly used in chemical risk assessment 
(other environmental field affected by lack of measurements) with the dynamic 
description of the processes taking place in stormwater treatment units. This 
dynamic approach can highlight and quantify potential shortcomings of treatment 
units (e.g. variation in the removal efficiency due to hydraulic short-circuiting, 
underestimation of fate processes) that could not be quantified by steady state 
models or by qualitative assessment.  
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Figure 6.9. Comparison between the environmental fate estimate by STUMP and two 
other multimedia fate models (EPI Suite and Simple Box) for Benzene (above) and 
Glyphosate (below) (from Paper III). 

The results presented in Paper III and IV show how STUMP enables the 
estimation of MP fate, filling a knowledge gap regarding the quantification of 
MP removal in stormwater treatment systems. This allows a better comparison 
between treatment options, allowing the identification of the most appropriate 
treatment for the stormwater discharged from a specific catchment. This potential 
application can be improved by the combination with the modelling tools 
described in Section 5, which can integrate missing data (reducing input data 
uncertainty – as in the case of the Lilla Essingen pond). Also, this integration 
would allow a complete assessment of different scenario for control and 
management of stormwater pollution caused by MP (improving e.g. the example 
presented in Section 5.3.3 by accounting for the BMP removal efficiency). 
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7. Integrated models  
7.1. Theoretical background 
The management of stormwater quality requires a holistic analysis and modelling 
of the elements of the stormwater system (as described in Sections 1.2 and 0). 
This requires the integration between the different models analyzed in the 
previous section, in order to provide a complete overview of the PP fluxes across 
a catchment. 

Examples of integrated stormwater system models (catchment model and 
treatment) can be found in several studies (e.g. Freni et al., 2010) and 
commercial applications (see for example the review in Elliott and Trowsdale, 
2007). These integrated models can provide important information that can 
support urban water managers, such as: 

− The estimation of the PP loads discharged into the receiving waters and 
the identification of the major pollution sources. 

− The evaluation of the pollutant loads removed by stormwater BMPs 
(existing or planned) and the consequent assessment of the maintenance 
requirements. 

− The assessment of possible pollution control strategies that can be 
implemented to improve the ecological status downstream the modelled 
system. 

Conversely to the increasing focus on uncertainty in integrated wastewater 
system models (Willems, 2008; Freni et al., 2009a; Schellart et al., 2010), the 
performance of integrated stormwater systems are seldom assessed. The 
importance that integrated models can play in the field stormwater quality 
management, chronically affected by lack of data, requires the consequent 
application of uncertainty analysis methods. 

7.2. Developed approach 
7.2.1. Research objectives 
This section illustrated how the various approached described in the thesis 
(Section 4, 5, and 6) can be merged into an integrated model. This model, 
combined with the statistical methods for uncertainty assessment, can be used to 
evaluate and compare stormwater PP control strategies. 
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The example presented in this section illustrates an application of the integrated 
model in a real context, described by data with different level of detail. This 
example thus represents a classical situation where some information is already 
available (e.g. GIS data), low-complexity measurements (e.g. flow 
measurements) allow an extensive description of the system, while other data 
(e.g. quality data) offer a limited view of the existing situation. The results of this 
section provide an insight on the potential and weak-points for the application of 
dynamic integrated models as support tools for the development and assessment 
of stormwater pollution control strategies. 

7.2.2. Model description 
The integrated model used in this example is a combination of (a) the detailed 
GIS catchment classification assessed in Section 4.2, (b) the stormwater quality 
model described in Section 5.2.2 and (c) STUMP (Section 6.2.2). The integrated 
model is applied in a residential-industrial catchment located in the Albertslund 
municipality (used also in Section 4). Stormwater is collected by a separated 
sewer system and discharged into a natural stream after being treated in a 
stormwater detention pond.  

 
Figure 7.1. Classification of the different areas in the simulated catchment (Paper V). 
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The municipality, as part of a plan for improving the quality of the receiving 
water body for recreational purposes, required an assessment of stormwater PP 
pollution. Thus, this case represents a typical situation where the models 
described in the thesis can be applied as support for stormwater quality 
management. The catchment is subdivided into the three categories used in 
Section 4.2: roads, roof and other impervious areas (Figure 7.1). The 
classification is performed by using GIS data that are available at the 
municipality level, exploiting the existing information and lowering the need for 
the acquisition of new data. 

7.3. Analysis of model performance 
7.3.1. Uncertainty analysis 
The behavioural parameters of the integrated model (catchment and STUMP) are 
identified by separately using GLUE (Section 3.4.2) for each submodel. The 
parameters of the hydrological submodels are identified by using flow 
measurements that were collected at the inlet and outlet of the pond in the period 
from September 2009 to October 2010 (the period from December to March is 
neglected as the model does not include snow melting processes). The 
parameters of the water quality submodels are estimated by using TSS and total 
Cu measurements collected at the catchment outlet for five different rain events 
recorded from May to October 2010.  

A combined likelihood for TSS and Cu is used to evaluate the performance of 
each parameter set (Section 3.4.2), and the acceptance/rejection criterion is based 
on the fraction of observations covered by the prediction bounds (see Appendix 
VI for the details about the likelihood measures and acceptance thresholds). 

The uncertainty of the integrated model outputs differs for the different 
submodels. Similarly to the results shown in Section 5.3, the catchment 
submodel shows significant uncertainty. The structural uncertainty of the 
accumulation/washoff model is emphasized by the particular characteristics of 
the measured data, with an intense rain event (with rainfall intensity up to about 
17 μm/s and a total precipitation of 6.4 mm) and high concentrations (up to about 
1400 mg/l for TSS and 840 μg/l for Cutot

5.1

), which are likely due to resuspension 
of sediments in the channels upstream to the pond inlet. To better simulate this 
process, the exponent n (Eq. ) is included in the GLUE analysis, i.e. the 
relationship between rainfall intensity and pollutant removal is not linear (as 
conversely it is assumed in Section 5.3).  
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Figure 7.2. Prediction bounds for TSS concentration at the pond inlet during the event 
recorded on 2010/05/28. 

 
Figure 7.3. Prediction bounds for total Cu concentration at the pond inlet during the 
event recorded on 2010/09/13. 
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Figure 7.4. Prediction bounds for TSS concentration at the pond outlet during the event 
recorded on 2010/09/12. 

The behavioural parameter sets are affected by this event (failing to cover all the 
observations - Figure 7.2) and the simulated concentrations in the runoff from the 
catchment are sensitive to short events with high intensity (as can be seen by the 
concentration bounds following the second rain event in Figure 7.3). 

The estimated prediction bounds for STUMP (Figure 7.4) show a delay in the 
simulated peak concentration compared to measurements. This suggests that the 
hydraulic efficiency in the real pond is lower than simulated, with significant 
short-circuiting taking place during rain events.  By simulating a higher hydraulic 
retention time τp than in the real system, the model is likely to overestimate the 
pond removal efficiency for both TSS and Cu. The efficiency of the simulated 
fate processes (settling and sorption), in fact, is directly proportional to τp, i.e. a 
greater fraction of untreated stormwater is discharged with shorter τ

7.3.2. Uncertainty analysis in model application 

p. 

Analysis of existing system 
The uncertainty analysis allows the estimation of parameter sets of the integrated 
model that provide good estimation of the measured values. These are then used 
to assess the stormwater pollutant loads in the analyzed system. The annual loads 
(Table 7.1) are calculated by running the model using rainfall data collected in 
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the period 1994-2004 as input. These are characterized by significant uncertainty 
in the estimation of the pollutant fluxes, which is directly dependent on the high 
uncertainty in the calibration of the catchment runoff quality model. The 
uncertainty bounds of the simulated Cu loads are comparable to those estimated 
by using a SMC method (Figure 4.2): the simulated values include model 
uncertainty (which is not considered in Section 4.3), but also the information 
added by field measurements. GLUE, in fact, compensates the significant 
underestimation which is observed for the release-factor based results (Method 
C, as defined in Section 4.2.2) by identifying the deposition rates θ1 Table 5.2( ) 
that ensure better representation of the observed data. 

The simulated removal efficiencies for TSS are slightly lower than those 
commonly reported in literature, probably due to the low hydraulic efficiency of 
the system. Nevertheless, the total Cu removal efficiency is within literature 
values (e.g. German, 2003; Bentzen, 2008; Vollertsen et al., 2009).  

The simulated concentrations discharged from the pond suggest that the ELV for 
dissolved copper may be exceeded with high frequency. As illustrated in Figure 
7.5, which shows the return period of simulated discharge event concentrations, 
more than 50% of the simulations exceed the ELV for dissolved Cu with a 
frequency higher than 10 times per year.  

The existing treatment thus seems not sufficient to completely avoid short term 
negative effects on the ecosystem downstream the pond due to the Cu dissolved 
fraction. This consideration should however take into account the significant 
uncertainty of the catchment runoff quality submodel, which tends to 
overestimate Cu inlet concentration to the pond (as discussed in the previous 
section – see also Figure 7.3). 

Table 7.1. Simulated pollutant fluxes in the catchment (minimum and maximum values 
are listed in brackets). 

Quality parameter Inlet to the pond Outlet from the 
pond 

Simulated removal 
efficiency [%] 

TSS load [tonTSS/yr] 36.2 
(7.93 – 71.9) 

15.0 
(3.70 – 29.5) 

55.8 
(40.3 – 68.7) 

Cu load [kgCu/yr] 14.8 
(5.36 – 37.6) 

7.98 
(2.21 – 23.7) 

49.0 
(26.5 – 59.6) 

Cudiss -  load [kgCu/yr] 2.53 
(0.31 – 17.1) 

- 
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Figure 7.5. Simulated return period for dissolved Cu concentration discharged from the 
detention pond (discharge events are defined as coherent periods where the simulated 
discharge exceeds 20 l/s). 

Scenario analysis 
The integrated model is used to simulate two different stormwater pollution 
control strategies: 

− Strategy A is based on source control and it consists of disconnection of 
impervious areas in the catchment (e.g. by infiltration). A disconnection 
of 50% of the roofs and 30% of roads and other impervious areas is 
assumed. This reduction corresponds to a total reduction of 40% of the 
catchment impervious area. 

− Strategy B is based on improving the existing treatment by doubling the 
pond volume (thus doubling the hydraulic retention time) and modifying 
the pond layout (increasing the hydraulic efficiency λ to 0.4). 

The comparison of the results for the two control strategies is presented in Table 
7.2 and Figure 7.6. 

The uncertainty bounds of the simulated loads (defined by the error bars in 
Figure 7.6) are important. Nevertheless, it is possible to analyze and compare the 
different scenarios. Scenario A leads to a reduction in the pollutant loads 
discharged to the pond.  
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Table 7.2. Simulated pollutant fluxes in the catchment (expressed as median - minimum 
and maximum values are listed in brackets). 

Quality 
parameter 

Inlet to the pond Outlet from the pond 

Load Variation Load a Variation Simulated removal 
efficiency [%] 

a 

Scenario A 
TSS 
[tonTSS/yr] 

29.9 
(6.54 – 59.2) -17% 

9.14 
(237 – 18.2) -39% 

65.70 
(53.5 – 77.9) 

Cu [kgCu/yr] 
12.7 

(4.61 – 32.3) -14% 
5.48 

(1.43 – 18.6) -31% 
58.7 

(32.6 – 69.4) 
Cudiss -  load 
[kgCu/yr] - 

1.96 
(0.24 – 13.7) -23% - 

Scenario B 
TSS 
[tonTSS/yr] 

36.2 
(7.93 – 71.9) 

0% 10.1 
(2.76 – 19.2) 

-33% 68.8 
(57.9 – 79.8) 

Cu [kgCu/yr] 14.8 
(5.36 – 37.6) 

0% 6.28 
(1.60 – 22.0) 

-21% 59.4 
(30.2 – 70.7) 

Cudiss -  load 
[kgCu/yr] - 2.56 

(0.32 – 17.0) 
+1% - 

a 

Also, the smaller impervious area reduces the hydraulic loads to the pond, 
improving the removal efficiency due higher hydraulic retention time τ

estimated from the median value of the baseline scenario 

p in the 
pond. Scenario B leads to about 20% reduction in the discharged Cu loads, due to 
an increase in the retention time τp

Figure 7.6

, Both the scenarios achieve similar reduction 
in TSS loads (around 30%) and higher reduction of Cu loads (both total and 
dissolved) is obtained for Scenario A ( ). This reduction is mainly due 
to source control: in fact Scenario B, which focuses on the improvement of 
settling conditions in the pond, fails to reduce the Cu dissolved fraction load. The 
frequency of exceedance of ELV for Cu dissolved is slightly decreased in 
Scenario B (see Appendix VI), mainly due to the higher hydraulic efficiency λ 
which decreases the outlet peaks (see for example Figure 6.2). Conversely, 
Scenario A causes a slight increase in the frequency of ELV exceedance. The 
reduction in the catchment area decreases the small discharge events, but does 
not affect extreme events, which are also characterized by higher Cu 
concentrations.  
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Figure 7.6. Scenario comparison for simulated pollutant loads. Hatched areas represent 
the dissolved fraction. 

Overall, both the scenarios fail to significantly reduce the concentration peaks in 
the pond outlet compared to the baseline scenario. To decrease the potential risk 
for the aquatic environment it is thus necessary to consider additional treatments 
targeting the dissolved fraction (e.g. addition of flocculants or installation 
adsorption filters at the pond outlet). 

When looking at the uncertainty bounds for the two scenarios, Scenario A shows 
a slight reduction in their width. This is likely to be caused by the reduction in 
the impervious area: the uncertainty of the catchment runoff quality submodel 
thus has a lower influence on the overall result uncertainty when runoff volume 
is reduced. Nevertheless, the significant uncertainty of the loads from the 
catchment prevents a clear distinction between the results of the two simulated 
scenarios. This stresses the need for additional measurement that would improve 
the identification of behavioural parameter sets while decreasing the impact of 
events that could be regarded as outliers. The application of integrated models for 
stormwater quality management thus requires an extensive description of the 
system, covering all the different elements of the systems (sources, drainage 
networks, treatment units). The limited number of quality measurements in fact 
strongly limits the scenario comparison The results from Section 5.3.2 suggest 
that these additional runoff quality data do not necessarily require high level of 
detail (i.e. pollutographs), but lumped information (i.e. composite samples over 
long time intervals, data passive samplers) may be sufficient to reduce the 
uncertainty in the simulated runoff quality. These measurement techniques may 
also be useful to evaluate the pollution control strategies ex-post, i.e. to monitor 
the implementation and the outcomes of the chosen control strategy. 
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Conversely, the potential sediment resuspension processes observed in the 
catchment upstream the pond (Figure 7.2) may require a re-formulation of the 
model (e.g. by extending the use of STUMP to simulate the channel upstream the 
pond), with an increase in model complexity.  

The results from the scenario analysis can be summarized as follows: 

− Strategy A reduces the release of pollutants from the catchment and 
improves the removal efficiency of the pond. Both particulate and 
dissolved copper loads are reduced, but extreme concentration peaks are 
not affected. 

− Strategy B improves the settling conditions in the pond, but this affects 
only the particulate fraction. The load of dissolved Cu is in fact 
unaffected compared to the baseline scenario. Extreme concentration 
peaks are slightly reduced due to higher dilution in the pond.  

− Both the scenarios fail to satisfactorily reduce the potential risk for the 
aquatic environment linked to the pollutant dissolved phases. This should 
thus be addressed by additional solutions. 

− Possible actions aiming to improve the removal in the pond should focus 
on sensibly improving the hydraulic efficiency λ (i.e. reducing the 
hydraulic short-circuiting) rather than increasing the volume of the 
treatment unit. 

− The simulated pond removal efficiency is similar for both the analyzed 
scenarios, but the source reduction applied in Scenario A implies lower 
sediment loads accumulated in the pond (with consequent lower pond 
maintenance costs). 

− Overall, the source control strategy (Scenario A) seems to obtain greater 
improvements in terms of Cu loads discharged from the Albertslund 
catchment with lower uncertainty.  

The example presented in this Section illustrates how the integrated model can be 
used for comparing different scenario in stormwater quality management.  

The combination with uncertainty analysis methods highlights the major sources 
of uncertainty and recognizes the areas which require additional data. This 
demonstrates how the various modelling approaches presented in the thesis and 
integrated in this section can support urban water managers. 
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8. Discussion 
This thesis presents a great number of results covering different elements of the 
stormwater system, and techniques and methodologies used to model stormwater 
micropollutants. These results are below synthesized and discussed in respect of 
the basic research questions that are listed in Section 2.  

How can pollutant sources be characterized? How can the distribution of 
micropollutant sources across the catchment be represented? 
Stormwater PP sources are characterized by a significant spatial variability, 
which can only be represented by using a detailed representation of the study 
area. The detail of source characterization is clearly conditional on data 
availability, and a more detailed representation of the land usage ensures a better 
representation of PP sources. Although the major source of uncertainty in the 
calculation of loads is on the representativeness of the used dataset with respect 
to the study area and sampling period (i.e. the ability to represent the pollutant 
sources in the catchment), rather than the level of detail of catchment 
characterization, a higher detail allows the identification of the major PP sources. 
However, the presence of non-identified PP sources in the catchment can 
represent a significant source of uncertainty. In the study area shown in Section 
4, for example, a clear underestimation of copper loads released from roofs is 
suggested by comparing measurements with calculated loads. These results 
highlight the need for a better classification of pollutant sources or a better 
quantification of release factors from these sources. 

Is it possible to simulate the complex dynamic processes that drive the release of 
micropollutants into stormwater and their transport across the stormwater 
system? 
The complexity of the processes driving PP release and transport in stormwater 
systems is such that all the available models encounter difficulties in providing 
robust and reliable estimation of PP loads and concentrations. However, the 
results of this project show that the combination of statistical methods for 
uncertainty analysis with a simple conceptual dynamic model can provide results 
that can be used as support for the elaboration of stormwater pollution control 
strategies (e.g. Section 5.3.3 and 7.3.2). These statistical methods are necessary 
to gain a complete knowledge about the behaviour of the model and its 
parameters. This information is subsequently used to estimate the model result 
uncertainty by using a limited number of prior assumptions. This is relevant in 
the stormwater quality field, which is characterized by a significant uncertainty 
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level (which according to the terminology introduced by Walker et al. (2003), 
sometimes resembles ignorance). However, the application of these uncertainty 
estimation techniques may require important computational resources and good 
modelling and mathematical skills. The techniques applied in the project aimed 
to reduce the computational resources (e.g. the SCEM-UA algorithm) and to 
reduce the need for complex mathematical formulations (e.g. the use of informal 
likelihood measures). The uncertainty of pollution loads estimated in the 
examples is in the range of 50-60%. This uncertainty is comparable with the 
magnitude of measurement errors (e.g. stormwater sampling error) and it does 
not seem to depend on the time resolution of the measured data. Thus, the 
combination of the analyzed models with uncertainty estimation methods allows 
their use for estimating PP fluxes. 

What are the fate processes that should be considered to quantify the PP removal 
in stormwater treatment systems? How can these processes be modelled in 
different stormwater treatment systems? 
The fate (and the removal) of micropollutants in stormwater treatment systems 
can be represented by modelling the processes that are commonly included in 
chemical fate models (e.g. volatilization, biodegradation, hydrolysis, sorption, 
photodegradation) and affect the particulate and dissolved phase of the pollutant. 
This approach is based on the chemical properties of the modelled substance and 
it thus exploits information that is commonly accessible (and that sometimes 
represent the only available information). The peculiar characteristics of 
stormwater treatment systems, with highly dynamic processes depending on the 
rainfall pattern, require the application of dynamic models that are capable of 
representing the specific behaviour of the modelled system (e.g. the 
hydrodynamic of the system and its influence on TSS). The STUMP model 
includes these issues by coupling chemical fate models with widely applied 
stormwater treatment models that are capable of simulating macropollutants. 
This developed approach benefits of all the available information (chemical 
properties, flow and macropollutant measurements) and reduces the need for 
extensive monitoring campaigns by decreasing the dependence on PP field 
measurements. This feature, combined with the ability of representing different 
typologies of stormwater treatment facilities, enables a wide application of 
models as tools to assess the performance of various BMP. 
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How can PP fluxes across stormwater systems be modelled? 
The combination of the modelling approaches investigated and developed in the 
thesis allows the estimation of PP fluxes across the entire stormwater system. 
The integration of these models is conditional on the assessment of model result 
uncertainty. Uncertainty analysis can highlight the issues that need to be 
addressed to improve the reliability of the results (e.g. measurement of additional 
environmental parameters). The analysis of the simulated PP fluxes can support 
the elaboration of pollution control strategies by underlining the areas for 
potential improvements (e.g. source control, improvement of existing treatment 
facilities, additional removal processes that need to be included in the system). 
The flexibility of the model allows the identification of these strategies according 
to the different characteristics of each modelled substance (sources, 
environmental behaviour, etc.). 

Is it possible to simulate the effects of potential pollution control strategies on the 
existing situation? 
The integrated stormwater quality model illustrated in Section 7 can simulate the 
PP fluxes in the actual system and can also be used to simulate the modifications 
entailed in possible pollution control strategies. The parameters and the inputs 
used in the various submodels (e.g. rainfall intensity, chemical properties, release 
factors, etc.) allow the simulation of different scenarios. The inclusion of 
uncertainty in the scenario comparison allows a more reliable comparison of the 
different options.  

The results from the integrated model can also be used to plan monitoring 
campaigns and to define the optimal sampling design (location, sampling 
methodology, etc.). The example presented in Section 7.3.2 shows how the 
integrated dynamic models developed during the project can represent an 
important tool in stormwater quality management aiming to control stormwater 
micropollutants. 
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9. Conclusions 
The work presented in this thesis is the first example of development and 
application of integrated dynamic models (simulating sources, transport and 
treatment) for management of stormwater Priority Pollutants which address the 
high spatial variability of pollutant sources, the different behaviour of stormwater 
PP in the environment, the wide range of choices for stormwater treatment, and 
the inherent uncertainty affecting model results. The thesis fills a knowledge gap 
due to the previous absence of modelling tools targeting these substances. The 
results of this thesis provide a framework for a trustworthy estimation of Priority 
Pollutants fluxes from the sources to the sink and it will potentially support urban 
water managers in their decision making processes. The main conclusions of the 
thesis are: 

− Uncertainty analysis improves the confidence in any modelling tools, 
including those developed in this thesis for stormwater quality 
management. The identification of uncertainty source (by using GSA) 
and the quantification of result uncertainty (by using methods which 
requires a limited number of assumptions, such as GLUE) is an essential 
procedure to rationalize the modeller’s resources and to provide 
trustworthy results when dealing with stormwater PP. The final users 
(urban water managers) are able to interpret the model results based on 
the estimated level of uncertainty. Thus, modelling of stormwater PP 
cannot be detached from uncertainty analysis. 

− Among the possible approaches, a detailed level of catchment 
characterization, which can employ information stored in Geographical 
Information Systems, is more suitable to deal with the high spatial 
variability of PP sources. This characterization enables the detection of 
significant sources of PP and highlight potential investigations that could 
reduce results uncertainty (additional estimation of release factors, 
improved characterization of the catchment) but it does not reduce the 
uncertainty linked to non-identified sources. 

− Dynamic continuous models can be used to estimate PP loads. The 
combination with uncertainty analysis techniques, which identify the 
major sources of uncertainty and quantify model prediction bounds, 
allows the use of these models for scenario analysis in practice despite 
their significant level of uncertainty (around 60% of the measured 
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values). It is thus possible to employ these tools to simulate the dynamic 
processes behind stormwater pollution over long time periods, while at 
the same time being aware of the involved uncertainty. 

− The fate of stormwater PP in stormwater treatment systems can be 
modelled by considering the inherent properties of the modelled 
substances. The developed model (STUMP), based on the combination 
of existing dynamic conceptual models for stormwater treatment with the 
mathematical formulations commonly applied in chemical risk 
assessment, provides reliable estimation of PP removal. This is 
confirmed by the simulated width of prediction bounds in the outlet 
concentrations, which are of similar magnitude of observed values. Also, 
the use of substance’s inherent properties reduces the need for PP 
measurements, as the major sources of uncertainty are related to a correct 
simulation of the physical characteristic of the treatment unit. Thus, 
results uncertainty can be reduced by using easily obtainable 
measurements. 

− Integrated conceptual dynamic models allow the quantification of PP 
fluxes across stormwater systems. The proposed approach (detailed 
catchment characterization based on GIS data, dynamic conceptual 
models, and use of substance’s inherent properties to estimate the fate of 
micropollutants) represents a compromise between model complexity, 
available information, level of uncertainty and purpose of the model. 
Also, the integration of submodels allows the evaluation of the potential 
impact of stormwater discharge on the aquatic environment, and the 
evaluation of different scenarios for reduction of PP discharges. The 
integrated model is thus a useful tool for the subjects (urban water 
managers) involved in stormwater quality management. 
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10. Suggestions for future work 
Researchers try to find answers and solutions to scientific problems, but they 
often raise more questions and highlight new areas that need to be investigated. 
This thesis does not represent an exception, as the presented results cover only a 
limited area of the wide and complex field of stormwater quality modelling.  

The investigation of the study areas during the project leaves several open 
questions: 

− What information is necessary to reproduce the spatial variability of PP 
sources and reduce the uncertainty in the pollutant loads estimation? 
This is mostly relevant for organic substances (as the thesis mainly 
addresses pollutants in the particulate form) released from point sources 
and spread across the catchment (e.g. from industrial activities, etc.). 
Ideally, a detailed field investigation (e.g. on-site inspection) should be 
able to map and catalogue all the PP sources in the study area, but this 
operation is very time consuming. The results from this thesis highlight 
how a detailed characterization provides better results for diffuse 
sources, such as traffic and building materials. Future research should 
investigate if a similar approach can be extended to other sources (point 
and diffuse) and which information (maps, list of activities, etc.) is 
necessary to obtain a reliable estimation of PP release in the catchment. 

− What is the optimal level of complexity necessary to simulate PP release 
and transport? The project investigated the ability of dynamic 
conceptual models to simulate stormwater quality. Future research 
should compare these results (including their uncertainty) with those 
generated by model with different level of complexity identified in 
Section 5.1 (e.g. stochastic models, regression models, etc.). 

− Are the current models capable of representing the release and transport 
of dissolved pollutants? The current accumulation/washoff formulation 
applied in a great number of stormwater quality models (including those 
investigated in this study) represents pollutants as particles. Future 
research should identify the mathematical formulation that ensures a 
better representation of the release of dissolved substances (e.g. release 
of metals from corrosion of metal roofs, leaching of organic biocides 
from building material, etc.) and of their transport (considering e.g. 
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speciation into particulate and dissolved phase in the drainage network), 
similarly to the approach applied in STUMP. 

− What level of detail in measurements is necessary to optimize model 
performance? The performance of the various water quality models 
developed during the project were usually compared against flow- or 
time-proportional composite samples. The collection of these samples 
commonly encounters several difficulties (technical, financial, etc.) and 
results from this thesis suggest that the time resolution of the 
measurements does not significantly affect the uncertainty bounds. 
Future research should address the use of information with a lower level 
of detail (e.g. EMC, observation from passive samplers covering several 
events, etc.) for the identification of model parameters and their effect on 
model prediction bounds. 

− What is the uncertainty in the prediction of loads and removal of organic 
micropollutants in stormwater BMPs? The quantification of the 
uncertainty in prediction of organic MP in stormwater treatment systems 
was limited by the number of available measurements. Future research, 
based on additional field measurements, should complete the work 
presented in this study by quantifying STUMP results uncertainty for 
these substances. 

− What is the uncertainty of STUMP when applied in different BMPs? The 
lack of data did not only impede the assessment of STUMP performance 
for organic substance, but also limited the evaluation of STUMP 
performance in different treatment units to a couple of BMP (retention 
ponds and biofilter). Future research should expand the results obtained 
during the project by simulating a wider range of stormwater treatment 
typologies (e.g. settling tanks, infiltration basins, filtration systems, etc.). 

− Is it possible to validate the calculated prediction bounds? The 
prediction bounds that are estimated throughout the thesis are based on 
the ability of covering the available observations. Additional independent 
data (i.e. not used in the uncertainty analysis) should be used to 
“validate” the prediction bounds, i.e. the ability of prediction bounds to 
cover independent observations should be assessed. Also, the definition 
of the acceptability threshold (i.e. how many observations a “good” 
model needs to cover?) requires a robust framework which, 
acknowledging the impossibility of stormwater quality models to cover 
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all the observed data, aims to reduce the subjectivity in this step of 
GLUE. This research can be extended to other fields of environmental 
modelling. 

− What are all the sources of uncertainty affecting the application of 
models for stormwater quality management? The uncertainty 
investigated in this thesis include only a part of the locations, levels and 
natures (according to the classification introduced by Walker et al., 2003; 
and further extended by Warmink et al., 2010) potentially involved in 
model-based stormwater quality management. Future research should 
integrate the results of this thesis by finalizing the identification and 
classification of the various sources of uncertainty neglected in this 
study. 

− How can the models developed in the thesis be integrated in a user-
friendly interface? The models developed in the thesis are developed by 
using licensed software (MATLAB® and WEST®): this strongly limits 
their application to the academic world, given the limited diffusion of 
this licensed software among practitioners. To allow a wider application 
of the developed models, these should be coded in other simulation 
platforms (e.g. existing software for stormwater modelling, or in an open 
source language). This is a key point to allow the subjects involved in 
stormwater management (practitioners, urban water managers) to fully 
benefit from the outcomes of this thesis. 
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