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Abstract

A high-order finite difference method to predict flow-generated noise is in-
troduced in this thesis. The technique consists of solving the viscous in-
compressible flow equations and inviscid acoustic equations using an incom-
pressible/acoustic splitting technique. The incompressible flow equations
are solved using the in-house flow solver EllipSys2D/3D which is a second-
order finite volume code. The acoustic equations are solved using high-order
finite difference schemes. The incompressible flow equations and the acous-
tic equations are solved at the same time levels where the pressure and the
velocities obtained from the incompressible equations form the input to the
acoustic equations. To achieve low dissipation and dispersion errors, either
Dispersion-Relation-Preserving (DRP) schemes or optimized compact finite
difference schemes are used for spatial discretizations of the acoustic equa-
tions. The acoustic solver consists of numerical schemes from fourth-order
up to tenth-order accuracy, the use of different schemes are case depen-
dent. In practice, at high Reynolds numbers when flow becomes turbulent,
schemes with the highest order of accuracy are always used to resolve the
small waves. For time integration, the classical 4-stage Runge-Kutta scheme
is applied. Non-centered high-order schemes at numerical boundaries and
high-order filter schemes are also discussed due to their importance.

The method was validated against a few test cases and further applied for
flows around a cylinder and an airfoil both for laminar and turbulent flows.
Results have shown that sound generation is due to the unsteadiness of the
flow field and the spectrum of sound has a strong relation with fluctuating
forces on the solid body. Flow and acoustic simulation were also carried out
for a wind turbine where general trends of sound generation from blades was
found.
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Dansk resumé

En høj-ordens finite difference metode til forudsigelse af strømnings-genereret
støj bliver introduceret i denne afhandling. Teknikken best̊ar i at løse de
viskøse ikke-kompressible ligninger for strømningen ved brug af en ikke-
kompressibel/akustisk splitting teknik. De ikke-kompressible ligninger for
strømningen løses med EllipSys2D/3D der er en anden-ordens finite volume
løser udviklet her p̊a MEK. De akustiske ligninger løses med høj-ordens
finite difference metoder. De ikke-kompressible ligninger for strømningen
og de akustiske ligninger sammenkobles p̊a hvert skridt ved at trykket og
hastighederne fra EllipSys bruges som input til de akustiske ligninger. For at
opn̊a sm̊a dissipations og dispersions fejl, bruges enten Dispersion-Relation-
Preserving (DRP) eller optimerede kompakte finite difference metoder til
rumlig diskretisering af de akustiske ligninger. Den akustiske løser best̊ar af
numeriske metoder fra fjerde-ordens op til tiende-ordens nøjagtighed. Bru-
gen af de forskellige metoder afhænger af problemet. I praksis bruges den
højest mulige orden altid ved høje Reynolds tal med turbulent strømning, for
at opløse de sm̊a bølger. Til integration bruges den klassiske fjerde-ordens
Runge-Kutta metode. Ikke-centrerede høj-ordens metoder ved numeriske
grænser og høj-ordens filter metoder diskuteres grundet deres vigtighed.

Metoden blev valideret p̊a et par test problemer og videre anvendt for
strømning om en cylinder og et bæreplan, b̊ade for laminære og turbulente
strømninger. Resultater har vist at lyd kilder skabes ved ustabiliteter i
strømnings feltet og at lyd-spektret har en stærk relation til fluktuerende
kræfter p̊a objektet i strømningen. Strømnings- og akustik-simulering blev
ogs̊a udført for en vindmølle, hvor generelle tendenser for lyd generering p̊a
bladene blev fundet.
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in Figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 CFL numbers. (a) second-order finite difference; (b) fourth-
order finite difference; (c) sixth-order finite difference; (d)
fourth-order DRP; (e) sixth-order DRP; (f) eighth-order DRP;
(g) tenth-order DRP; (h) twelfth-order DRP; (i) fourteenth-
order DRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 CFL numbers. (a) fourth-order compact; (b) sixth-order com-
pact; (c) eighth-order compact; (d) tenth-order compact; (e)
twelfth-order compact; (f) fourth-order optimized compact;
(g) sixth-order optimized compact; (h) eighth-order optimized
compact; (i) tenth-order optimized compact. . . . . . . . . . . 48

6.1 Standard octave (bold numbers) and 1/3-octave band center
frequencies (in hertz). . . . . . . . . . . . . . . . . . . . . . . 104

B.1 Coefficients for high-order optimized finite difference schemes.
aj = −a−j . Stencil width: 7-point(4th-order) up to 17-
point(14th-order). . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Coefficients for original tridiagonal high-order compact finite
difference schemes. Stencil width on the right hand side: 3-
point(4th-order) up to 11-point(12th-order). . . . . . . . . . . 117

B.3 Coefficients for optimized tridiagonal high-order compact fi-
nite difference schemes. Stencil width on right hand side:
5-point(4th-order) up to 11-point(10th-order). . . . . . . . . . 118

B.4 Coefficients of explicit backward schemes for boundary clo-
sures. aNM

j = −aMN
−j . N is the number of points to the left

and M is the number of points to the right. . . . . . . . . . . 118
B.5 Coefficients for standard high-order explicit filters. dj = d−j .

Stencil width: 9-point(8th-order) up to 13-point(12th-order).
[50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

x



LIST OF TABLES xi

B.6 Coefficients for optimized high-order explicit filters. dj = d−j .
Stencil width: 9-point(6th-order) up to 13-point(10th-order).
[50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.7 Coefficients for high-order compact filters. 0 <| αf |≤ 0.5.
Stencil width on right hand side: 5-point(4th-order) up to
11-point(10th-order). [51] . . . . . . . . . . . . . . . . . . . . 120



List of Symbols

Roman letters

A Amplitude
c0, c Sound speed / Chord length
Cd, Cl Drag and lift coefficients
cp Specific heat capacity /

Phase speed
Cp Pressure coefficient
f, fe, fo Frequency
fi Acoustic co-variable
k Coefficient of thermal con-

ductivity / Wave number
li, lj Vector pointing from source

to observer
Li Characteristic waves
M Mach number
O High-order terms
p, P Incompressible pressure
p′ Fluctuating pressure
p′L Loading component of p′

p′Q Quadrupole component of p′

p′S Surface component of p′

p′T Thickness component of p′

p′V Volume component of p′

r Radius
R Radius / Gas constant
R Real part of a complex num-

ber
S Entropy / Integration area
t Time
t′ Retarded time
T Temperature
Tij Lighthill’s stress tensor
u, v, w Velocity components in

cartesian system
vθ, vr Velocity components in polar

system
U, V, W Flow velocity components
u′, v′, w′ Acoustic velocity compo-

nents
Vθ Group velocity
W Weighting function
x, y, z Cartesian coordinate system
x,y Receiver and Observer

points

Greek letters

α Angle of attack / Wave num-
ber

β Coefficient of thermal expan-
sion

δd Filter coefficient
δ(f) Dirac delta function
δij Kronecker delta

φ Viscous dissipation
γ Specific heat ratio / Grid

stretching rate
λ Wave length
ε Error tolerance
σ Damping coefficient
ϕ The mean flow angle

xii



LIST OF TABLES xiii

η Integral limit
θ Azimuthal angle
µ Viscosity
ν Kinematic viscosity
νt Eddy viscosity
Γ Vortex strength

ρ Flow density
ρ′ Fluctuating density
τij Stress tensor
ω Angular rotor velocity /

Wave number
Ω Integration area

Indices

∞ Farfield

o Free stream / flow at rest
′ Fluctuation / Space deriva-

tive
′′ Second-order space deriva-

tive
n Normal direction
ˆ Vector pointing outwards

r In radiation direction

˙ Time differentiation
¯ Mean value / Matrix
˜ Laplace or Fourier transform

/ Filter / Matrix

e External oscillation

ret At retarded time

ref At reference position

Special numbers

CFL Courant - Friedrichs - Lewy
number

Re Reynolds number

St Strouhal number

Acronyms

2D,3D Two, three-dimensional
BPM Brooks, Pope and Marcolini
CAA Computational aeroacous-

tics
CFD Computational fluid dynam-

ics
CPU Central processing unit
DES Detached eddy simulation
DNS Direct numerical simulation
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Chapter 1

Introduction

The practical interest of this thesis is the use of high-order numerical meth-
ods to predict sound generation due to unsteady flow field around solid bod-
ies such as airfoils. Computational Aeroacoustics (CAA) is such a technique
developed for solving flow induced noise. Within this technique, incom-
pressible/acoustic splitting methods[1, 2] is used in the current study. Wave
number optimized high-order numerical schemes are used to discretize the
acoustic equations.

In recent years, the vast development of High Performance Computing
(HPC) technology provides the possibility for numerical aerodynamics to
effectively resolve complex flows with reasonably large meshes. Computa-
tional Fluid Dynamics (CFD) has reached a very mature state since its early
beginning in the middle of last century. However, CAA has been separated
as an individual research area only since 1990s. It might be a bit confusing to
separate aeroacoustics from aerodynamics since aeroacoustics is also motion
of air. The same argument might hold for CFD and CAA which use simi-
lar numerical approaches. The major distinction between them is the small
length scale and magnitude of CAA quantities relative to the quantities of
the flow. In addition, however, CFD deals with algorithms. Problems occur
by utilizing standard CFD procedures for aeroacoustic problems. The first
difficulty is due to the extremely small magnitude of waves. For noise level
up to 100 dB which is terrifyingly loud and not supposed to happen very of-
ten, the magnitude of the fluctuating sound pressure is only less than 10−4

of the ambient atmospheric pressure. Another issue for CAA is that the
resolvable high frequency components are related to the order of numerical
schemes, the grid density and quality. CAA has a few distinct characteris-
tics as compared to CFD, and therefore more attention needs to be drawn.

Efforts have been done during last few decades in the area of CAA. The
aeroacoustic computation of flow generated noise was pioneered by Lighthill

2



CHAPTER 1. INTRODUCTION 3

[3] in the 1950th. Soon after that, Lighthill’s equation, the acoustic anal-
ogy, became widely used. The acoustic analogy is applied for flow generated
noise in many situations, typically for predicting jet noise. Improvements of
Lighthill’s acoustic equation are still going on and much effort is still made
to generalize the theoretical description. Among those, Curle [4] extended
the theory by including the influence of static boundaries. Subsequently,
Ffowcs Williams et al. [5] extended it further by including the influence
of boundaries in arbitrary motion. In all the approaches, the key issue is
to compute the sound sources generated by the flow that relates exactly
to integrals of surface and volume source terms. These source terms can
be obtained by solving the incompressible/compressible Navier-Stokes (NS)
equations in the near-field. Once the source terms are known, the acoustic
far-field can be solved by using the acoustic analogy.

The most accurate way of simulating aerodynamically generated noise
is Direct Numerical Simulation (DNS) where both fluid flow and sound are
obtained directly from solving the compressible NS equations. With this
method, it is possible to accurately predict near-field sound generation. To
solve the problem, however, a very fine mesh and highly accurate schemes
both in space and time are needed. Studies that make use of DNS can be
found in [6, 7, 8] where a few typical computational cases were shown. To
obtain time series of acoustic signals and determine the acoustic spectra dis-
tribution, the computational time has to be long enough which is a realistic
problem for DNS. The method is straight forward, however, studies using
DNS to simulate aeroacoustics are so far limited due to requirement of a
large amount of computer resource.

Another method also is a newly developed method, called incompress-
ible/acoustic splitting method, was proposed by Hardin and Pope [1] in
1994. Shen and Sørensen [2] remedied the original splitting technique by
changing slightly the basic decomposition of the variables. The decomposi-
tion technique proposed by Shen and Sørensen is used in the present work.
The first part of the splitting approach is the viscous flow part which is
simulated from the incompressible NS equations. The variables obtained
from the incompressible solver are used in the second part of the calculation
where the acoustic or perturbed equations are solved. Under the assumption
of low Mach number, the perturbed quantities represent the difference be-
tween compressible flow and incompressible flow. Therefore, the perturbed
variables are solved in the compressible equations by knowing all incompress-
ible quantities. The modified splitting method has been applied by Shen and
Sørensen [9, 10, 11] for flows past a cylinder and an airfoil for both laminar
and turbulent flow cases where second-order finite volume/finite difference
methods are used for the flow and the acoustic computations. The results
obtained from previous computations are encouraging and may possibly be
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an effective and convenient method of near field acoustic simulation for low
Mach number flows. As an extension to previous work, in the present work,
high-order finite difference schemes are used to solve acoustic equations. The
use of high-order schemes is due to the large disparity between the length
and time scales of the flow and acoustics. A high-order wave number opti-
mized scheme was developed by Tam and Webb [12] which is the so-called
Dispersion-Relation-Preserving (DRP) scheme. Using the strategy of de-
veloping DRP scheme and apply on the original high-order compact finite
difference schemes of Lele [13], Kim and Lee [14] derived an wave number op-
timized compact scheme. Both the high-order DRP schemes and optimized
compact schemes have the characteristic of low dissipation and dispersion
error which are designed for wave propagation problems.

The thesis is structured as follows: Chapter 2 and Chapter 3 are the
theoretical parts where acoustic models are discussed in Chapter 2 and
high-order numerical methods of solving those acoustic models are given
in Chapter 3. Applications of acoustic theory are shown in Chapter 4, 5 and
6. Finally, the conclusions of the present work are given in Chapter 7.



Chapter 2

The CAA methods

This chapter provides a brief review of some commonly used computational
methods in the field of computational aeroacoustics. Numerical prediction
of noise can be classified into two groups: the direct method and hybrid ap-
proaches. A schematic diagram of CAA methods is given in Figure 2.1. It is
seen that there are quite a few numerical approaches to simulate flow gener-
ated noise. The direct method solves the compressible NS equations which
compute both sound and flow field together. The hybrid approach computes
flow and acoustic field separately where solution from flow computation is
used to start acoustic computation. Among the hybrid methods the incom-
pressible/acoustic splitting technique is used in our numerical simulation
and therefore it is given in more details.

2.1 Flow induced noise

Noise radiation is directly associated with flow unsteadiness. The more un-
steady the flow is, the louder the noise level will be. The energy of the
generated sound is proportional to the turbulence energy, but sound energy
is negligible small compared to flow energy. Figure 2.2 is an illustration of
noise generation by a turbulent flow around a symmetric airfoil. It is worth
mentioning that at moderate Reynolds number, it will be extremely difficult
or even not possible to resolve the acoustic generation from a symmetric air-
foil. The reason is that the flow is fully attached to the airfoil and flow field
becomes very steady while doing unsteady flow computation. Separation
starts while increasing the Reynolds number, as seen in Figure 2.2. The
flow is fully attached to the airfoil until half of the airfoil chord, then the
boundary layer starts to become unstable and finally separation bubbles are
generated near the trailing edge. The acoustic energy is concentrated at the
trailing edge where the flow is most unstable. The figure shows a typical
trailing edge noise generation. There could be more noise sources on airfoil
while increasing Reynolds number or at larger angle of attacks where sepa-
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DNS

Acoustic Simulation

IncompressibleCompressible

DNS

DES, NLDE

Turbulence models:
LES, RANS, URANS 

Hybrid methods
No modeling

Direct method

Incomp./acoustic split

Acoustic fluctuations: ’ρ , p’, u’, v’, w’

e.g. Lighthill’s analogy
LEE 

Flow Simulation

Integral method:

Figure 2.1: A diagram of CAA methods.

ration point moves towards leading edge.

Challenges exist while resolving such flow and acoustic fields. First,
from a flow point of view, since it is the unsteady flow that makes noise
the turbulent flow structure should be well represented by the flow simula-
tion. The unsteady Reynolds averaged Navier-Stokes (URANS) method is
normally not always good enough because small turbulence structures are
difficult to capture due to the time average. Other models such as large eddy
simulation (LES) or detached eddy simulation (DES) are better to model
small turbulent structures. But still the uncertainty of turbulence model
will effect acoustic prediction, this is an important issue for future discus-
sion. Secondly, the acoustic wave length at low Mach number has large
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disparities. Unfortunately, the small waves or waves at high frequencies are
often of our interest. On the other hand, the disparity of magnitudes of
flow and acoustic solutions requires high accuracy of acoustic simulation.
Hybrid methods have the advantages of separating flow and acoustic sim-
ulations where numerical accuracy for flow simulation is less critical. The
numerical accuracy of flow simulation was studied by Hixon et al. [15]. In
their study, four solvers with different numerical accuracies are used for both
flow and acoustic simulations. The difference in mean flow simulated with
sixth-order and second-order schemes is within 0.1%. For acoustic simu-
lations the second-order scheme obtains a very different solution from the
high accuracy schemes and even produced spurious acoustic waves. Further,
there is a need of a large computational domain and use of non-reflecting
boundary conditions since we can not solve the problem with an infinitely
large domain. Finally, the required computational time for acoustic compu-
tation is much longer than for flow simulations. The time step for acoustic
calculation is much smaller and depends on the Mach number. Also, the
spectral solution is very important which requires a long time series result.

Most unsteady
region

Trailing edge
noise emission

Attached flow region
Growing
of instability

Turbulent airfoil flow

Stream lines

Small wave length

NACA 0012

Figure 2.2: Example of noise generation due to unsteady flow.

2.2 Lighthill’s acoustic analogy

The comprehensive study of computational aeroacoustics was started in the
early 1950s when Lighthill [3] developed his acoustic analogy with the pur-
pose of reducing noise from jet engines. The acoustic equation is derived
from the momentum and continuity equations. Equations of arbitrary fluid
motion can be rewritten by grouping the nonlinear terms into a source term
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which is the so-called Lighthill stress tensor. The wave equation is described
by a scalar partial differential equation (PDE) with fluctuating density as
the only primary variable.

The mass and momentum equations for compressible fluid motion with-
out external forces are written as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂τij

∂xj
(2.2)

where ρ, u, p are fluid density, velocity and pressure, respectively. The
viscous stress tensor is

τij = µ

[

∂ui

∂xj
+

∂uj

∂xi
− 2

3

(

∂uk

∂xk

)

δij

]

(2.3)

where δij is the Kronecker symbol, δij = 1 for i = j otherwise 0. Combining
the mass and momentum Equations (2.1) and (2.2), Lighthill’s analogy can
be found as

∂2ρ′

∂t2
− c2

0

∂2ρ′

∂x2
i

=
∂2Tij

∂xi∂xj
(2.4)

where the fluctuation density is equivalent to ρ′ = ρ − ρ0 with ρ0 denotes
the fluid density at rest. And the Lighthill stress tensor is expressed as

Tij = ρuiuj +
(

(p − p0) − c2
0(ρ − ρ0)

)

δij − τij (2.5)

where µ is the viscosity and the pressure p = ρRT , R is the gas constant
and T is the temperature.

The viscosity is often neglected in case of low Mach number air flow.
Therefore the Lighthill’s stress tensor is much simplified by ignoring the vis-
cous stress tensor τij . If the right hand side of Equation (2.4) is known from
flow simulation, the Lighthill’s equation can be written in an integral form:

4πc2
0ρ

′ =
∂2

∂xi∂xj

∫

∞

Tij(y, t′)

| x − y | dΩ(y) (2.6)

where x is the observation point and y is the source location, Ω is the
integration domain. The acoustic source term Tij is related to the source
position and the retarded time t′ = t− |x−y|/c0. The acoustic source term
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can be obtained from an unsteady flow solution based on incompressible or
compressible equations. The noise source region needs to be acoustically
compact and no significant source close to computational boundary.

2.3 Ffowcs Williams and Hawkings’ equation

The Lighthill’s theory was further developed by Ffowcs Williams & Hawk-
ings [5] and Farassat & Brentner [16, 17] who introduced the effect from
arbitrary moving surfaces. This became a more generalized approach for
noise prediction based on Lighthill’s acoustic analogy. The Ffowcs Williams
and Hawkings’ integral approach has some resemblance with the Kirchhoff’s
theory [18] which was proposed in 1882. In Kirchhoff’s theory the wave equa-
tion is represented by a surface integral and was originally applied for light
diffraction and electromagnetic problems. An extension of Kirchhoff’s the-
ory for sound propagation was proposed by Farassat and Myers [19]. The
attempt of Ffowcs Williams and Hawkings was to formulate the governing
equations using generalized Green’s function to express the solution of the
wave equation. The resulted wave equation has both a surface source term
and a volume source term on the right hand side.

The surface of the solid body divides the computational domain into two
parts. The moving or stationary surface S is defined by a function f(x, t)
which is zero on the surface, negative inside the surface and positive in the
surrounding fluid, see also [20]. The Ffowcs Williams and Hawkings’ equa-
tion can be written in the form followed by Brentner and Farassat [17], as
shown in Equation (2.7). The same authors have also shown examples of
helicopter noise [21, 22] by using the equation

�
2p′(x, t) =

∂2

∂xi∂xj
[TijH(f)] − ∂

∂xi
{[Pijn̂j + ρui(un − vn)] δ(f)}

+
∂

∂t
{[ρ0vn + ρ(un − vn)] δ(f)} (2.7)

where the wave operator is written as �
2 = [(1/c2

0)(∂
2/∂t2)]−∇2, p′(x, t) is

the acoustic pressure at observer position, the function H(f) = 0 for f < 0
and H(f) = 1 for f > 0, Pij = p′δij for inviscid fluid, n̂i is the unit vector
pointing out of surface, ui is fluid velocity component, un = uin̂i is the fluid
velocity normal to the surface, vn is the normal velocity on the surface, ρ
and ρ0 are fluid density and density at rest, and δ(f) is the Dirac delta
function.

The integral representation of the acoustic equation is followed by [22]
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p′(x, t) = p′T (x, t) + p′L(x, t) + p′Q(x, t). (2.8)

Equation (2.8) separates the noise sources into three parts, namely p′T ,
p′L and p′Q which denote the thickness noise component (monopoles sur-
face source), the loading noise component (dipoles surface source) and the
quadrupole volume noise component, respectively. Their integral forms are

4πp′T (x, t) =

∫

f=0

[

ρ0(U̇n + Uṅ)

r(1 − Mr)2

]

ret

dS

+

∫

f=0

[

ρ0Un(rṀr + c0(Mr − M2))

r2(1 − Mr)3

]

ret

dS (2.9)

4πp′L(x, t) =
1

c0

∫

f=0

[

L̇r

r(1 − Mr)2

]

ret

dS

+

∫

f=0

[

Lr − LM

r2(1 − Mr)2

]

ret

dS

+
1

c0

∫

f=0

[

Lr(rṀr + c0(Mr − M2))

r2(1 − Mr)3

]

ret

dS (2.10)

where a dot over a symbol indicates time differentiation. M is the Mach
number, Mr = Mir̂i is the Mach number of the sources in radiation direction.
In Equation (2.9) and (2.10), Un = Uin̂, Lr = Lir̂i and LM = LiMi where
Ui = [1 − (ρ/ρ0)vi + ρui/ρ0] and Li = Pijn̂j+ρui(un−vn). In the equations,
the subscript ret indicates the retarded time t′ = t − r/c0 as mentioned
earlier. The quadrupole component is often neglected in case the noise
sources are mainly generated at surfaces, it is able to be determined by
various methods, such as [23, 24].

2.4 Curle’s equation

The acoustic analogy between Curle and Ffowcs Williams and Hawkings
are very similar since both of the approaches considered the presence of
solid bodies. However, it is worth mentioning the work done by Curle [4]
since his theory was developed earlier than Ffowcs Williams and Hawkings
but without considering the effect of surface motion. The method was also
widely used for many applications, such as noise generation from open cav-
ities [25, 26] and flow induced cylinder noise in a uniform inflow [27, 8]. In
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[27], Curle’s formulation is compared analytically and numerically with a
formulation based on Green’s function. Inoue et al. [8] compared acoustic
results at a Reynolds number of 150 using DNS and Curle’s approach where
the results showed good agreement.

The starting point of deriving Curle’s equation is similar to the one by
Ffowcs Williams and Hawkings. Assume the fluid is divided by the station-
ary solid body S and the fluid is at rest at infinity and at surface S. Curle
wrote the solution of Lighthill’s equation with surface and volume sources as

p′(x, t) = p′S(x, t) + p′V (x, t) (2.11)

where the surface term is

p′S(x, t) =
1

4π

∫

S
linj

[

ṗδij − τ̇ij

c0r
+

pδij − τij

r2

]

dS(y) (2.12)

and the volume source is

p′V (x, t) =
1

4π

∫

V

[

lilj
c2
0r

T̈ij +
3lilj − δij

c0r2
Ṫij +

3lilj − δij

r3
Tij

]

dV (y) (2.13)

where variables such as y, r, τij are the same as defined in previous sections
and li is the unit vector pointing out from the source to the observer.

2.5 Direct simulation

Direct simulation is defined as the numerical approach of solving the NS
equations without modeling or approximations. DNS requires use of suffi-
cient high numerical accuracy and reasonably fine mesh, the technique is
able to describe all details of flow and associated sound. Therefore the
method is straightforward and it provides a possibility of comprehensive
study of aerodynamic sound phenomena. The disadvantage of the method
is the Reynolds number limitation. The computational cost of direct sim-
ulation is large, and previous studies have seen limited to relatively simple
flows problems and ideal cases.

Sound generation from a circular cylinder at a low Reynolds number was
proposed by Inoue et al. [8] and general agreement was found by comparing
with acoustic analogy. Sound generation from a compressible co-rotating
vortex pair was studied by Mitchell et al. [28, 29] using DNS. The sound
frequency was found at twice of the rotational frequency. Studies at modest
high Reynolds number are direct computations of sound generation from jet
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[30, 31], turbulent vortex ring [32], turbulent cavity flow [33].

Assuming that very small turbulence scales have less effect on sound
generation, the cost of direct simulation of compressible equation can be
reduced by introducing turbulence models. Turbulence models such as LES
and URANS can be used in the full or a part of the domain and sound field is
still computed directly. Noise from a 3D airfoil at a Reynolds number of 500
000 was computed by Marsden et al.[34] in a relatively small computational
domain. Another example concerns sound generation from a wind turbine
tip [35] where the simulation was carried out with 320 million computational
cells on the Earth Simulator.1

2.6 Linearized Euler equations with source terms

In this section, acoustic analogy combined with linearized euler equations
(LEE) is introduced based on Bogey and Bailly [36, 37, 38, 39], which is
an alternative method of simulating aerodynamic sound. The background
for proposing this method is due to the drawbacks of direct simulation and
acoustic analogy. Direct simulation is known to be expensive for flows of
practical interest at high Reynolds numbers and Mach numbers. To solve
the Lighthill’s acoustic equation, one needs to find a compact region contain-
ing source terms and then evaluating integrals around the domain. However,
Lighthill’s equation is the representation of the source terms where the effect
of mean flow to acoustic field is considered [40, 38]. This makes it difficult
to take into account all the effects where the source region is not only the
compact turbulence region [38] but also containing all acoustic-flow interac-
tions. As stated by Bogey et al., the velocity field used to build all source
terms needs to be compressible.

The source term based on the previous work by Bailly et al.[39] is com-
bined with a stochastic velocity field [36]. The expression of the velocity
source terms is obtained by directly solving the unsteady compressible NS
equations. Consider an unsteady flow with mean density ρ̄, velocities ū1, ū2

and pressure p̄, the small perturbation above the mean quantities are gov-
erned by the LEE [36]

∂U

∂t
+

∂E

∂x1
+

∂F

∂x2
+ H = S (2.14)

where the vectors U, E, F, H and S are given as follows

1The Earth Simulator (ES) is one of the world fastest supercomputer system of today.
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U =









ρ′

ρ̄u′
1

ρ̄u′
2

p′









, E =









ρ′ū1 + ρ̄u′
1

ū1ρ̄u′
1 + p′

ū1ρ̄u′
2

ū1p
′ + γp̄u′

1









F =









ρ′ū2 + ρ̄u′
2

ū2ρ̄u′
1

ū2ρ̄u′
2 + p′

ū2p
′ + γp̄u′

2









,

H =









0

(ρ̄u′
1 + ρ′ū1)

∂ū1

∂x1
+ (ρ̄u′

2 + ρ′ū2)
∂ū1

∂x2

(ρ̄u′
1 + ρ′ū1)

∂ū2

∂x1
+ (ρ̄u′

2 + ρ′ū2)
∂ū2

∂x2

(γ − 1)p′∇ · ū − (γ − 1)u′ · ∇p̃









, S =









0
S1 − S̄1

S2 − S̄2

0









. (2.15)

The term H is zero for uniform mean flow. The right hand side is the source

term S where Si = −∂ρu′

iu
′

j

∂xj
and Si = −∂ρu′

iu
′

j

∂xj
.

Test cases have shown that LEE is able to provide reasonable solutions
for aerodynamic noise. However, as discussed by Colonius and Lele [41,
48], the numerical difficulty of solving the LEE is due to the fact that the
equations admit non-trivial instability waves to appear in the solutions of the
homogenous equations. These instability waves will effect both the source
region and computational boundaries.

2.7 Incompressible/acoustic splitting method

In this section, the incompressible/acoustic splitting method, sometimes also
called acoustic/viscous splitting technique or expansion about incompress-
ible flow (EIF) is introduced. This approach was first proposed by Hardin
and Pope [1] as an alternative to full-blown direct simulations of the sound
field. The acoustic equations are fully non-linear without the artifice of ana-
log approaches.

The incompressible/acoustic splitting method proposed by Hardin and
Pope is a novel approach which is distinct from previously introduced meth-
ods. The first step of the approach is to solve the unsteady incompressible
flow where the density is a constant. Secondly, a hydrodynamic density
correction to the constant incompressible density is calculated from the in-
compressible pressure fluctuations. Finally, the compressible flow solution
is obtained by superimposing the perturbations to incompressible flow.

Consider a viscous compressible flow in the absence of external forces.
The fluid motion is governed by the complete set of compressible NS equa-
tions [42]
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∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2.16)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pij) = 0 (2.17)

p = p(ρ, S) (2.18)

T
DS

Dt
= cp

DT

Dt
− βT

ρ

Dp

Dt
= φ +

1

ρ

∂

∂xi

(

k
∂T

∂xi

)

(2.19)

where ρ, p, T and S are density, pressure, temperature and entropy per unit
mass, respectively. cp, β, k and φ are the specific heat capacity at constant
pressure, the coefficient of thermal expansion, the coefficient of thermal con-
ductivity and the viscous dissipation respectively. The velocity ui is defined
in a reference coordinate system xi and as defined in Lighthill’s equation,

pij = pδij − µ

[

∂ui

∂xj
+

∂uj

∂xi
− 2

3

(

∂uk

∂xk

)

δij

]

(2.20)

where µ is the dynamic viscosity and δij is the Kronecker function.

Consider the incompressible flow with a constant density ρ0. The incom-
pressible solution is written as

∂Ui

∂t
+

∂(UiUj)

∂xj
= − 1

ρ0

∂P

∂xi
+ ν

∂2Ui

∂xi∂xj
(2.21)

∂Ui

∂xi
= 0 (2.22)

where P (xi, t) and Ui(xi, t) are time dependent unsteady incompressible
pressure and velocity components. The pressure change for the ambient
pressure p0 is dp = P − p0. Returning to the compressible Equation (2.18)
and differentiating both sides of this equation, we then get a new relation
as follows

dp =

(

∂p

∂ρ

)

S

dρ +

(

∂p

∂S

)

ρ

dS. (2.23)

Since the sound speed is defined as c =
√

(∂p/∂ρ)S , the pressure change
can be expressed as

dp = c2dρ +

(

∂p

∂S

)

ρ

dS. (2.24)
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This relation tells that it is the density and entropy changes that are
responsible for pressure changes. The next is to determine which of the two
terms is the most important. The formulation of entropy change already
exists as part of the compressible Equations (2.19) given by Batchelor [42].
As noted by Batchelor that in terms of solving the magnitude of pressure
fluctuation the flow can be assumed to be isentropic. The viscous and heat
conduction have only little effect on the pressure magnitude, more effects
are normally to the pressure distributions. Therefore, these effect are slow
on an acoustic timescale. The time-averaged incompressible pressure distri-
bution is given

P̄ (xi) = lim
T→∞

1

T

∫ T

0
P (xi, t)dt. (2.25)

The pressure fluctuation in time can be proved to be a function of den-
sity fluctuations. The incompressible pressure can be divided into two parts
as

p(ρ, S) = p′(ρ) + P̄ (S) (2.26)

where the time-averaged pressure P̄ is related to the entropy effect and the
fluctuating pressure is assumed isentropic. The time derivative of the total
pressure p results

∂p

∂t
=

∂p′

∂t
=

dp′

dρ

∂ρ

∂t
=

(

∂p

∂ρ

)

S

∂ρ

∂t
= c2 ∂ρ

∂t
. (2.27)

To derive the acoustic equations, the compressible variables are first de-
composed into two parts, the mean flow and the perturbed flow.

ui = Ui + u′
i (2.28)

p = P + p′ (2.29)

ρ = ρ0 + ρ1 + ρ′ (2.30)

where ui and p′ are velocity and pressure perturbations, ρ′ is the perturbed
density about the corrected incompressible density ρ0 + ρ1, the hydrody-
namic density correction ρ1 to the ambient density ρ0 is given as
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ρ1(xi, t) =
P (xi, t) − P̄ (xi)

c2
0

(2.31)

where P is the incompressible pressure and P̄ is the time-averaged incom-
pressible pressure distribution. Inserting Equations (2.28-2.30) into (2.16),
(2.17) and (2.27) and neglecting the effect of viscosity on the fluctuations,
the non-linear equations set for acoustic perturbations is obtained as

∂ρ′

∂t
+

∂fi

∂xi
= −∂ρ1

∂t
− Ui

∂ρ1

∂xi
(2.32)

∂fi

∂t
+

∂

∂xj
[fi(Uj + u′

j) + (ρ0 + ρ1)Uiu
′
j + p′δij ] =

−∂(ρ1Ui)

∂t
− Uj

∂(ρ1Ui)

∂xj
(2.33)

∂p′

∂t
− c2 ∂ρ′

∂t
= c2 ∂ρ1

∂t
(2.34)

where fi = (ρ0 + ρ1)u
′
i + ρ′(Ui + u′

i) and sound speed is calculated by

c2 =
γp

ρ
=

γ(P + p′)

ρ0 + ρ1 + ρ′
(2.35)

where γ = 1.4 is the specific heat ratio for standard atmospheric condition.
Here the sound speed needs to be computed at each iteration based on the
known pressure and velocity field. Equations (2.32)-(2.34) are the result-
ing nonlinear acoustic equations proposed by Hardin and Pope [1] with a
closed set of five equations for five unknowns. The acoustic equations are
solved at each iteration after the incompressible solutions are obtained. It
is noticed that different numerical schemes can be used for acoustic and
incompressible solvers which provides the freedom to treat them with differ-
ent accuracy. The set of equations were applied for sound generation from
a pulsating sphere and cavity flow [1, 43, 46].

A careful examination of the equations was done by Shen and Sørensen
[2] who argued that the equations contain no sources. If one introduces new
variables ρ̄ = ρ1 + ρ′ and f̄i = ρu′

i + ρ̄Ui instead of using ρ′ and fi. The
Hardin and Pope’s acoustic equations are reconstructed into
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∂ρ̄

∂t
+

∂f̄i

∂xi
= 0 (2.36)

∂f̄i

∂t
+

∂

∂xj
[f̄i(Uj + u′

j) + ρ0Uiu
′
j + p′δij ] = 0 (2.37)

∂p′

∂t
− c2 ∂ρ̄

∂t
= 0 (2.38)

where no source terms were contained in the systems. Since the introduc-
tion of a hydrodynamic density correction did not contain new information
therefore there it is not necessary to do the correction. The remedy of the
original system is to use a new decomposition for the compressible equations:

ui = Ui + u′
i (2.39)

p = P + p′ (2.40)

ρ = ρ0 + ρ′ (2.41)

where the density correction is omitted. Insert them into compressible equa-
tions and ignore the viscous terms we have a modified acoustic formulation

∂ρ′

∂t
+

∂fi

∂xi
= 0 (2.42)

∂fi

∂t
+

∂

∂xj
[fi(Uj + u′

j) + ρ0Uiu
′
j + p′δij ] = 0 (2.43)

∂p′

∂t
− c2 ∂ρ′

∂t
= −dP

dt
(2.44)

where fi = ρu′
i + ρ′Ui. The system is closed by introducing the of sound

speed as

c2 =
γp

ρ
=

γ(P + p′)

ρ0 + ρ′
. (2.45)

This new formulation by Shen and Sørensen was used in the present
study. Some examples of flow and noise computations will be shown in the
second part of this thesis. Previous analysis on cylinder and airfoil noise
have shown good results by Shen and Sørensen, see [9, 10, 11]. The present
study is considered as an extension of their previous work by introducing
high-order finite difference schemes.
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The 3D acoustic Equations (2.42)-(2.44) can be rewritten in vector form
such that

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= S (2.46)

where matrices Q, E, F, G and S are

Q =













ρ′

ρu′ + ρ′U
ρv′ + ρ′V
ρw′ + ρ′W

p′













, E =













ρu′ + ρ′U

ρ(2Uu′ + u′2) + ρ′U2 + p′

ρ(V u′ + Uv′ + u′v′) + ρ′UV
ρ(Wu′ + Uw′ + u′w′) + ρ′UW

c2(ρu′ + ρ′U)













,

F =













ρv′ + ρ′V
ρ(V u′ + Uv′ + u′v′) + ρ′UV

ρ(2V v′ + v′2) + ρ′V 2 + p′

ρ(V w′ + Wv′ + v′w′) + ρ′V W
c2(ρv′ + ρ′V )













,

G =













ρw′ + ρ′W
ρ(Wu′ + Uw′ + u′w′) + ρ′UW
ρ(Wv′ + V w′ + v′w′) + ρ′V W

ρ(2Ww′ + w′2) + ρ′W 2 + p′

c2(ρw′ + ρ′W )













, S =













0
0
0
0

−∂P
∂t













. (2.47)

A similar vector formulation has been given by Ekaterinaris [44, 45] who
performed 2D aeroacoustic simulations on a co-rotating vortex pair and the
results fits well with analytic solution. The vector formulation can be alter-
natively written in a form with primitive variables as shown by Ekaterinaris
[44, 45]. Such a formulation can be seen in Appendix A where the 3D
acoustic equations of Shen and Sørensen are written in a form of primitive
variables.

2.8 Summary

A few commonly used techniques of solving flow generated noise have been
introduced in this chapter: (1) acoustic analogy combined with turbulence
models when flow is turbulent; (2) direct simulation of compressible equa-
tions, turbulence models can be applied in part of or full computational
domain; (3) the approaches solving systems of equations, the LEE(with
source terms from acoustic analogy) and (4) incompressible/acoustic split-
ting methods. Generally, the large length scale difference for low Mach
number flows makes direct simulation of sound very difficult, while hybrid
methods are ideal for today’s computer power. Hybrid methods based on
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Lighthill’s theory are more like postprocessing of flow field. The incompress-
ible/acoustic splitting method is the direction toward direct simulation of
sound generation where compressible equations are solved in two steps: the
incompressible flow part and acoustic part. The computational cost of the
splitting technique is in between the direct method and acoustic analogy
and the only assumption made is the neglect of viscosity which is nature for
sound propagation in the atmosphere.

Some recent reviews on CAA can be found by Wells et al. [47], Wang et
al. [49] and Colonius et al. [41, 48].



Chapter 3

Numerical study

Some essential details of numerical issues for CAA are presented in this
chapter. The issues arise from a host of difficulties involved when solving
flow generated noise. Small amplitude and large disparity of wavelengths are
the basic characteristics of sound waves. High-order spatial and temporal
numerical schemes are used to minimize numerical errors, e.g., little atten-
uation and distortion of waves after travelling for a long distance. Together
with high-order schemes, sufficient number of grid points need to be provided
to resolve waves at given wavelengths, see Figure 3.1 for a schematic dia-
gram of numerical features. For a given wave, a minimum number of mesh
points per wavelength is required [52] depending on the accuracy of numer-
ical scheme. The use of high-order schemes make it favorable to use fewer
grid points per wavelength and still achieve the desired resolution. Non-
physical waves resulting from centered schemes and wall boundaries needs
to be suppressed at each time iteration. In some cases, the solutions diverge
quickly without a suitable filter scheme. Only high-order filter schemes are
allowed to be used since physical waves can easily be deteriorated by low-
order filters after some thousand iterations. In some cases, a damping zone
can be designed together with filtering techniques, see illustration in Figure
3.1. If the vortical disturbance near the out boundary is still too strong, the
damping zone can effectively absorb most of the energy and decrease the
amplitude of vortical waves before they reach the outer boundary. Bound-
ary formulation and numerical schemes near boundary are also discussed
which are issues relate to the numerical stability. The requirement for the
radiation and outflow boundary conditions are quite simple, that is no re-
flection of acoustic waves back to the computational domain. However, all
numerical boundary conditions are reflective and what we can do is to min-
imize the effect of reflection as much as possible. It is very often that the
computational grids are stretched such that they are coarser near outer do-
main which automatically smooth out waves. Most of the issues discussed
below are highly relevant for our present study which were implemented into

20
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the aeroacoustic solver. The over all solver structure is discussed in the final
section of this chapter.
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radiated acoustic wave

incoming flow

solid wall boundary

reflected acoustic wave

non−physical wave
acoustic radiation boundary

radiated acoustic wave

reflected acoustic wave

number of grids per wavelength

outflow boundary

damping zone

vortical disturbance near boundary

Figure 3.1: Numerical issues involved for solving flow generated noise.

3.1 Spatial discretization

One of the most important issues of CAA is the numerical discretization
methods. In CAA simulations, a large number of grid points and small
time steps are typically required. High-order schemes are thus commonly
used for realistic CAA simulations to reduce the number of grid points
per wavelength. The numerical schemes are usually originated from tra-
ditional schemes and further developed for CAA problems. Among those
schemes, Dispersion-Relation-Preserving (DRP)[12] schemes and compact
schemes [13, 14] are discussed in detail and these two schemes are used in
the present study.

3.1.1 High-order explicit schemes and the optimizations

The idea of using a finite-difference representation for derivatives can be
introduced by a weighted summation of the value at its neighboring points.
For sufficient small but finite ∆x, a standard central difference scheme with
a (2N + 1)-point stencil can be written as
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∂f

∂x
(x) ≈ 1

∆x

N
∑

j=−N

ajf(x + j∆x) (3.1)

The standard way of determining the coefficients is two steps: the first
step is to perform Taylor expansion at x = 0 of each point fi where i ∈
[−N, N ]; the second step is to eliminate high-order terms obtained from
Taylor series such that the maximum accuracy of 2N th-order is obtained.
An example of using Taylor expansion at each point using Mathematica is
given in Figure 3.2.

Figure 3.2: Taylor expansion.

We require that the exact derivative f ′
i is identical to the finite differ-

ence approximation as shown in Equation (3.1). The difference between the
exact and the approximated derivative is the Truncation Error (TE) which
represents the accuracy of the approximation. Coefficients for a fourth-order
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standard finite difference scheme can be determined using the script shown
in Figure 3.3. The equations are set up in the manner that all terms lower
than fifth-orders must vanish in the TE. Since a symmetric stencil is used,
only two equations are needed for solving two unknowns.

Figure 3.3: Finite difference approximation.

Finite difference approximation such as Equation (3.1) can be alterna-
tively designed to have a minimal dispersion and dissipation errors. Tam
and Webb [12] derived a new scheme with fourth-order accuracy using 7-
point stencils. The spatial derivatives are approximated in an optimized way
such that the new scheme resolves a wider range of wavenumbers which is
essential for solving wave equations. In this work, following the technique of
Tam and Webb, a series of optimized schemes are constructed using stencil
of maximum 17 points.

As an example, here we consider the 7-point scheme which originally is
of sixth-order accuracy. The optimized scheme has fourth-order accuracy
which is the so called DRP scheme where a 7-point stencil is used. As seen
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previously in Figure 3.1, fourth-order scheme can be derived using 5-point
stencil, therefore the use of 7-point stencil will give us a free parameter aj .
The value aj is the one to be optimized and the new scheme will have less
dispersion error. The starting point is still the same finite difference approx-
imation given in Equation (3.1). By doing Fourier transformation of f(x)
and its inverse one gets

f̃(α) =
1

2π

∫ ∞

−∞
f(x)e−iαxdx, f(x) =

∫ ∞

−∞
f̃(α)e−iαxdα. (3.2)

Applying the Fourier transformation to the finite difference approximation
of Equation (3.1) we have

iαf̃ ∼= 1

∆x

[

N
∑

−N

aje
ijα∆x

]

f̃ , (3.3)

and after a little arrangement the relation becomes

ᾱ∆x ∼= −i

[

N
∑

−N

aje
ijα∆x

]

(3.4)

where it has to be noticed that i =
√
−1 and j is the index. In fact there

is nothing new in Equation (3.4) except that the finite difference approxi-
mation in physical space is transformed into the wave space. In this way,
the left hand side ᾱ∆x is denoted as the modified wavenumber which is a
function of exact wavenumber α∆x shown on the right hand side. One of
the key issues of solving a wave problem is that the numerical solution in
the resolvable wavenumber range should be as close as possible to the exact
solution. In other words, the physical shape of a wave should be well repre-
sented by numerical simulations. Thus, ᾱ∆x should be as much as possible
equal to the exact wavenumber α∆x. Similar as we define the truncation
error, we define an integral error between ᾱ∆x and α∆x which reads

E =

∫ η

−η
| α∆x − ᾱ∆x |2d(α∆x) (3.5)

where η is the integral range with η = π/2 representing the full wavenum-
ber range. Recall that we have a free parameter aj which is used here to
minimize the integral E. This is done by taking the derivative of E with
respect to the only unknown aj and force the derivative to be zero.

∂E

∂aj
= 0, j ∈ [−N, N ]. (3.6)
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By now, we shall see the last procedure of deriving the wavenumber
optimized scheme which is the third step after Step 2. The procedure of
deriving aj is shown as Step 3 in Figure 3.4. We see that the leading TE
is accurate to order of (h)4 implying fourth-order accuracy of the new 7-
point scheme. Using such optimization method, schemes with higher order
accuracy are also derived, optimized coefficients for up to fourteenth-order
are given by Table B.1 in Appendix B.

Figure 3.4: Optimization of finite difference scheme.

Figure 3.5 shows the plots of modified wavenumbers versus exact wavenum-
ber for schemes with different order of accuracy. For the fourth-order opti-
mized scheme, the modified wavenumber ᾱ∆x follows well with the straight
line ᾱ∆x = α∆x in the range of ᾱ∆x < 1.5. At ᾱ∆x greater than 1.5, the
modified wavenumber starts to deviate increasingly from the exact line which
produces dispersion error to the original PDEs. This limited wavenumber
corresponds to a smallest wavelength that can be solved by a given mesh.
By noticing that the wavelength λ is calculated as λ = 2π/α and use the
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relation that ᾱ∆x < 1.5, one immediately finds that the resolvable wave-
length is limited at λ > 4.2∆x. To resolve waves with smaller wavelength,
either the mesh size needs to be reduced or higher-order schemes have to be
employed. Different schemes have different limitations of resolvable short
wave components. Here we compare them qualitatively by introducing a
new concept: the resolving efficiency. First, it is defined that ε ≥ |ᾱ∆x−α∆x|

α∆x
where ε is the error tolerance such as ε = 0.01. This tolerance represents the
error between the wavenumber of the scheme and the exact wavenumber.
Each tolerance ε corresponds to a highest modified wavenumber that can
be solved by the numerical scheme. For example, if we allow a slightly large
error ε = 0.1, the maximum wavenumber can be solved by a fourth-order
DRP scheme is ᾱ∆x = 1.717, see Table 3.1. For different schemes shown in
Figure 3.5, their resolving efficiencies are quantified and tabulated in Table
3.1. It is evident that the optimized schemes stay close to the exact solution
over a wider range of wavenumbers. Also, as the order of accuracy increases
the scheme is able to resolve shorter waves (larger wavenumbers). As seen
in Table 3.1, in case ε = 0.001 the schemes of fourteenth-order accuracy
(curve i) resolves the maximum wavenumber about 1.68 which is about 22
times higher than the second-order scheme (curve a).

Schemes ε = 0.1 ε = 0.01 ε = 0.001

(a) 2nd FD 0.707 0.243 0.075
(b) 4th FD 1.254 0.743 0.417
(c) 6th FD 1.536 1.089 0.731
(d) 4th DRP 1.717 1.509 1.431
(e) 6th DRP 1.834 1.605 1.481
(f) 8th DRP 1.921 1.695 1.525
(g) 10th DRP 1.990 1.776 1.576
(h) 12th DRP 2.045 1.848 1.629
(i) 14th DRP 2.091 1.913 1.682

Table 3.1: Maximum resolvable wavenumber (ᾱ∆x) of the schemes shown
in Figure 3.5.

The dispersion error can be alternatively described in terms of phase
speed error [13, 53]. The phase speed for a given wavenumber ᾱ∆x is de-
fined as cp = ᾱ∆x/α∆x. The phase speed of PDEs for all wavenumbers is
one. Therefore cp − 1 is a measure of the phase error. Figure 3.6 is a plot
of phase speed from finite difference approximations versus the exact phase
speed. Similar as before, the optimized schemes have the improved phase
error in a wider range.
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Figure 3.5: Wavenumber versus modified wavenumber for standard and op-
timized finite difference schemes. Dashed lines: original schemes; Solid lines:
optimized schemes. (a) second-order finite difference; (b) fourth-order finite
difference; (c) sixth-order finite difference; (d) fourth-order DRP; (e) sixth-
order DRP; (f) eighth-order DRP; (g) tenth-order DRP; (h) twelfth-order
DRP; (i) fourteenth-order DRP; (j) exact solution.

3.1.2 High-order compact schemes and the optimizations

The Padé type or compact finite difference schemes are different from the
explicit schemes. One of the important difference between the two schemes
is that the compact schemes approximate derivatives implicitly where the
values of f ′

i are solved together in the matrix form. Another difference, also
is the advantage of compact scheme is that the compact schemes use less
stencil points and have less dispersion errors compared to explicit schemes
of same order of accuracy. Higher computational costs is the disadvantage
of compact schemes since extra efforts are put on solving the matrix which
contains all the derivatives. Lele [13] in 1992 showed the spectral-like reso-
lution of the compact schemes for the evaluation of spatial derivatives. The
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Figure 3.6: Phase speed versus modified wavenumber for standard and opti-
mized finite difference schemes. Dashed lines: original schemes; Solid lines:
optimized schemes. (a) second-order finite difference; (b) fourth-order finite
difference; (c) sixth-order finite difference; (d) fourth-order DRP; (e) sixth-
order DRP; (f) eighth-order DRP; (g) tenth-order DRP; (h) twelfth-order
DRP; (i) fourteenth-order DRP; (j) exact solution.

emphasis was on improving a wide range of wavenumbers rather than simply
increasing the order of accuracy. A family of compact schemes were derived
by matching the Taylor series coefficients of various orders. The first un-
matched coefficient is the formal truncation error of the scheme. This is
very similar to what was shown in Figure 3.2 and Figure 3.3.

In the present study, following the work of Tam [12], Lele [13] and Kim
[14], a series of high-order standard and optimized compact schemes are
derived. The schemes are constructed as the following equation

αf ′
j−1 + f ′

j + αf ′
j+1 = a

fi+1 − fi−1

∆x
+ b

fi+2 − fi−2

∆x
+ c

fi+3 − fi−3

∆x

+ d
fi+4 − fi−4

∆x
+ e

fi+5 − fi−5

∆x
. (3.7)
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This classical compact scheme has a maximum accuracy of twelfth-order
and a maximum 11-point stencil on the right hand side. To derive the co-
efficients for the compact scheme, an example is shown for a sixth-order
scheme. As before, the first step is to carry out Taylor expansion for the
finite difference approximation. This time, the derivatives on the left hand
side of Equation (3.7) also needs to be expanded into Taylor series. This
procedure is shown in Figure 3.7 where all fi and f ′

i in Equation (3.7) are
approximated into an eighth-order Taylor series. The next step is to derive
a standard sixth-order compact finite difference scheme. As shown in Figure
3.8 the derivatives on the left hand side of Equation (3.7) is moved to the
right hand side. Therefore TE contains terms from zeroth to eighth-order.
To achieve sixth-order accuracy of the scheme, all terms less than sixth-
order in TE should vanish and the rest terms of TE represent higher-order
truncation error. As calculated in Figure 3.8 the leading term of TE in this
case is − h6

1260 yields sixth-order accuracy of the scheme.

Figure 3.7: Taylor expansion.
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Figure 3.8: Finite difference approximation.

The way to obtain an optimized compact scheme is to use the strategy of
Tam and Webb [12]. Considering the finite difference approximation in the
x-direction, the Fourier transform of the left and right hand side of Equation
(3.7) yields

(iαe−iω̄∆x + 1 + iαeiω̄∆x)iω̄∆x =

a(eiω∆x − e−iω∆x) + b(e2iω∆x − e−2iω∆x)+

c(e3iω∆x − e−3iω∆x) + d(e4iω∆x − e−4iω∆x) + e(e5iω∆x − e−5iω∆x)

(3.8)

where i =
√
−1 and α∆x is replaced by ω∆x simply because α is now used

as a coefficient. Solving the wavenumber ω̄∆x in Equation (3.8) and sim-
plify the result with trigonometric expression gives

ω̄∆x =
2(a sin(ω∆x) + b sin(2ω∆x) + c sin(3ω∆x) + d sin(4ω∆x) + e sin(5ω∆x))

1 + 2α cos(ω∆x)
.

(3.9)

As already defined in Equation (3.4), the modified wavenumber ω∆x is used
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to minimize the integral error. The compact finite difference approximation
produces an error between the exact and modified wavenumbers. Such an
error can be written in an integrated form

E =

∫ rπ

0
| ω∆x − ω̄∆x |2W (ω∆x)d(ω∆x). (3.10)

In Equation (3.10), r is a factor between 0 and 1 which decides the opti-
mization range, W (ω∆x) is the weighting function. The weighting function
is not required for optimization of explicit schemes as this was already done
before. However, as the integral term becomes much more complicated it is
feasible to introduce the weighting function to make the equation analyti-
cally integrable. Such kind of a weighting function was introduced by Kim
and Lee [14]. The idea is to eliminate the divisor of the fraction (denomi-
nator) in Equation (3.9). Therefore, the weighing function in this case can
be written as

W (ω∆x) = (1 + 2α cos(ω∆x))2. (3.11)

By now the standard compact scheme is ready to be optimized. Con-
tinue from the second step of Figure 3.8, instead of forcing the leading TE
error to be sixth-order accurate we require it only to be fourth-order. This
gives us an arbitrary free parameter among a, b and α. The optimization
step is briefly shown in Figure 3.9, and it is seen that after matching the
Taylor series coefficients of various orders, the coefficients α and a are found
as function of b. Hence b is left for optimization using the relation that
∂E
∂b = 0. Following these steps, coefficients for other high-order optimized
compact schemes are shown in Table B.2 and B.3 in Appendix B.

Inserting the coefficients of Table B.2 and B.3 into Equation (3.9) results
in Figure 3.10 which shows the plots of modified wavenumber versus exact
wavenumber for various standard and optimized compact schemes. Recall
that the fourth-order optimized explicit scheme (7-point DRP) is not able
to solve wavenumber more than 1.5 (page 25). It can be seen in Figure 3.10
that the fourth-order optimized compact scheme (solid line d) has a better
resolving ability. The resolvable wavenumber is approximately up to ω̄∆x =
2 which means that the scheme can resolve waves with minimum wavelength
of 3.2∆x. Thus the use of a high-order optimized scheme has advantageous
in problems involving waves at higher frequencies. The resolving efficiency is
compared for different compact schemes which is shown in Table 3.2. Once
again the optimized schemes are seen to cover a wider range of wavenumbers.
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Figure 3.9: Optimization of compact scheme.

The same trend is seen in Figure 3.11 where the phase errors of different
schemes are shown. It is apparent that as the scheme goes to higher-order it
increases its ability of solving short waves. However, one might notice from
Figure 3.10, 3.11 and Table 3.2 that the resolving efficiency does not increase
linearly with the order of accuracy. For example, in Table 3.2 if we look at
the column where ε = 0.001 the tenth-order optimized scheme is just slightly
better than the sixth-order optimized scheme, say, 2.231/2.170 − 1 = 2.8%
is gained by increasing the order from six to ten. On the other hand the
sixth-order optimized compact scheme is a lot better than the standard
sixth-order compact scheme, 2.170/1.009−1 = 115% is gained by extending
only two points of the stencil width. There is no doubt that high-order
schemes have better performance, however it is reasonable to find a balance
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between accuracy and computational cost. The number of stencil points
decides both the accuracy of the scheme and the computing time, therefore
the use of high-order schemes should be case dependent. In the present
study, the sixth-order optimized scheme is normally used for two- and three-
dimensional problems.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Wavenumber

M
od

ifi
ed

 W
av

en
um

be
r

a

b

c
d e
f

gh
i

j

Figure 3.10: Wavenumber versus modified wavenumber for original and op-
timized compact finite difference schemes. Dashed lines: original schemes;
Solid lines: optimized schemes. (a) fourth-order compact; (b) sixth-order
compact; (c) eighth-order compact; (d) tenth-order compact; (e) twelfth-
order compact; (f) fourth-order optimized compact; (g) sixth-order opti-
mized compact; (h) eighth-order optimized compact; (i) tenth-order opti-
mized compact; (j) exact solution.

3.1.3 Stencils for closures of high-order schemes

The previously introduced schemes are all symmetric and are implemented
for the interior numerical domain. One difficulty of applying high-order
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Figure 3.11: Phase speed versus modified wavenumber for original and op-
timized compact finite difference schemes. Dashed lines: original schemes;
Solid lines: optimized schemes. (a) fourth-order compact; (b) sixth-order
compact; (c) eighth-order compact; (d) tenth-order compact; (e) twelfth-
order compact; (f) fourth-order optimized compact; (g) sixth-order opti-
mized compact; (h) eighth-order optimized compact; (i) tenth-order opti-
mized compact; (j) exact solution.

schemes is to find stable boundary closures which still preserve their formal
accuracy. Here it has to be noticed that the boundary closures are differed
from the physical boundary conditions which will be discussed in later sec-
tions. One typical way to build the boundary schemes is to use non-centered
schemes at the edges of the computational domain. Tam et al. [12, 52, 54]
applied 7-point backward stencils at the boundaries which have same order
of accuracy as the interior schemes (see the backward coefficients in Table
B.4, Appendix B). The backward DRP schemes are derived in the same
way as those centered schemes. Zhuang et al. [55, 56] derived fourth-order
upwind DRP schemes which can alternatively be treated as boundary clo-
sures. Other applications of such non-centered optimized boundary schemes
are illustrated by Bogey et al. [58], Berland et al. [57] and Marsden et al.
[34] where they simulated noise from turbulent jets and airfoils etc. Another
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Schemes ε = 0.1 ε = 0.01 ε = 0.001

(a) 4th-classical 1.674 1.089 0.628
(b) 6th-classical 1.983 1.556 1.099
(c) 8th-classical 2.133 1.805 1.381
(d) 10th-classical 2.229 1.961 1.601
(e) 12th-classical 2.297 2.085 1.726
(f) 4th-optimized 2.242 2.181 2.136
(g) 6th-optimized 2.330 2.246 2.170
(h) 8th-optimized 2.380 2.306 2.228
(i) 10th-optimized 2.425 2.364 2.231

Table 3.2: Maximum resolvable wavenumber (ᾱ∆x) of the schemes shown
in Figure 3.10.

common practice is to use schemes with less stencil points near the bound-
aries in order to provide stable centered schemes. In the work of Bogey and
Bailly [50], the size of the stencil at the boundary is decreased progressively,
e.g, from 11 points in the inner domain to 3 or 5 points at the boundary.
Djambazov et al. [60] simulated aerodynamic sound on a staggered mesh
where centered schemes are still used on the boundary. To use the same
high-order schemes at a boundary, e.g., on a solid wall, the mirroring proce-
dure is applied: symmetry of pressure and parallel velocity components and
antisymmetry of perpendicular velocity values.

The use of compact schemes may have the advantage of reducing the
number of mesh points near the boundary where different formulations are
required. The boundary closures for compact schemes were studied by Car-
penter et al. [59] in terms of stability characteristics. The stability analysis
of compact schemes and their corresponding boundary closures were carried
out using the theory of Gustafsson, Kreiss and Sundstrom [61, 62] which is
referred to as GKS stability theory. It is difficult to analyze the stability
property for a fully discrete partial differential equations system, especially
when non-centered boundary schemes are involved. Based on the GKS the-
ory, Carpenter et al. [59] developed a series of stabilized compact boundary
schemes. An example of such a boundary formulation for a sixth-order com-
pact scheme is given in Appendix B. Some other compact near boundary for-
mulations can be found in [13] where Lele proposed a set of compact schemes
with spectral-like resolution both for inner and boundary region. Very re-
cently, a new set of optimised boundary closure schemes was presented by
Kim [63]. These boundary closures are given in a non-centered compact
finite differences form. The near boundary schemes were optimised in the
frequency domain and the newly developed schemes achieved the better res-
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olution characteristics than traditional compact schemes. The optimized
boundary schemes were derived from extrapolation beyond boundaries from
which extra control variables were obtained for use of optimization.

3.1.4 Other high-order schemes

From above, the optimized explicit and compact finite difference schemes
were studied and a series of coefficients for those two types of schemes were
derived and their coefficients were appended. However, many other high-
order finite difference schemes exist and it is therefore worthwhile to mention
some of those schemes.

In addition to centered finite difference schemes, upwinding schemes
are also very popular. For aeroacoustic simulations, first-order upwind
schemes are too dissipative and dispersive, and therefore traditional up-
winding schemes have been extended to higher orders using larger stencils.
Ekaterinaris [45] used fifth-order upwind schemes to simulate sound field due
to a pair of spinning vortices and showed that the solutions exhibited low
dissipation and dispersion errors. The upwind finite difference schemes were
optimized by Zhuang and Chen [55] based on the strategy of Tam and Webb
[12]. The optimized upwind schemes were developed to improve the quality
for solving short waves without adding a explicitly artificial damping terms
to the finite difference equations. Following the idea of the DRP schemes,
the upwind finite difference scheme can be written as

∂f

∂x
(x0) =

1

∆x

M
∑

j=−N

ajf(x0 + j∆x) (3.12)

where M is the value to the right and N is the value to the left (M 6= N).
The optimization procedure followed the same as for the standard DRP
schemes, except that the integrated error E now is defined as

E =

∫ π/2

−π/2
| ᾱr∆x − α∆x | d(α∆x) − λ

∫ π/2

−π/2
| ᾱi∆x +

sgn(c)exp

[

− ln 2

(

α∆x − π

σ

)2
]

|2 d(α∆x) (3.13)

where λ and σ are adjustable positive constants, ᾱr and ᾱi are real and
imaginary parts of the wavenumber, and sgn(c) defines the wave propaga-
tion direction. The integral error has real and imaginary parts which should
both approach zero. By setting ∂E

∂aj
= 0, the optimized upwind schemes are
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derived for pairs of M and N . A similar work was done by Li [64] using a
different approach for optimization. Some other types of upwind high-order
schemes can be seen in [65] and [66].

The pre-factored compact finite difference scheme developed by Hixon
[67, 68, 69] is a member of compact schemes family. The new type of com-
pact schemes maintain high-order accuracy while using a very small stencil
size. Also the smaller boundary stencils make it easier to implement bound-
ary conditions. The general compact finite difference scheme can be written
as

[B]{Di} =
1

∆x
[C]{fi} (3.14)

where Di is the spatial derivative of fi, [B] and [C] are coefficient matrices.
The forward (DF

i ) and backward (DB
i ) derivative operators are introduced

to the classical compact scheme of Equation (3.14) which satisfies

Di =
1

2
(DF

i + DB
i ). (3.15)

Inserting Equation (3.15) into (3.14), two sets of schemes with forward
and backward derivative operators are obtained as

αF DF
i+1 + βF DF

i =
1

∆x
(aF fi+2 + bF fi+1 + cF fi + dF fi−1 + eF fi−2)(3.16)

βBDB
i + γBDB

i−1 =
1

∆x
(aBfi+2 + bBfi+1 + cBfi + dBfi−1 + eBfi−2).(3.17)

When the two schemes are added the original central compact scheme
(Equation (3.14)) must be recovered. The forward and backward coefficients
are derived in such a way that the real parts of the numerical wavenumber
in Equations (3.16) and (3.17) are identical to the wavenumber of classical
compact scheme as Equation (3.14) and the imaginary parts of Equations
(3.16) and (3.17) are equal and opposite to Equation (3.14). Followed the
work of Hixon, Ashcroft and Zhang [70] optimized the pre-factored schemes
using the strategy similar as shown in Equations (3.8-3.11). The modified
wavenumber is obtained both for forward and backward schemes. For the
forward compact scheme of Equation (3.16), the modified wavenumber sat-
isfies
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Re(ω̄∆x) =
(aF αF + bF βF − cF αF − dF βF ) sin(ω∆x)

α2
F + β2

F + 2αF βF cos(ω∆x)
+

(aF βF − dF αF − eF βF ) sin(2ω∆x) − eF αF sin(3ω∆x)

α2
F + β2

F + 2αF βF cos(ω∆x)
. (3.18)

Im(ω̄∆x) =
−(bF αF + cF βF ) − (aF αF + bF βF + cF αF + dF βF ) cos(ω∆x)

α2
F + β2

F + 2αF βF cos(ω∆x)

− (aF βF + dF αF + eF βF ) cos(2ω∆x) + eF αF cos(3ω∆x)

α2
F + β2

F + 2αF βF cos(ω∆x)

(3.19)

Similar relations can be obtained for the backward scheme, as given by
Equation (3.17). The integration error is defined in the same way for Equa-
tion (3.10) where the weighting function is properly selected to eliminate
the divisor of the fraction in Equation (3.18) and (3.19). The optimization
is finished by setting ∂E/∂φ = 0 where φ is one of the free coefficient to be
optimized.

The third type of high-order schemes to be introduced here is the com-
bined compact finite difference scheme which was developed by Chu and Fan
[71, 72]. The novelty of the combined compact difference scheme is due to its
combination of the first and second derivatives. The new scheme becomes
more compact and more accurate, compared to traditional compact finite
difference schemes. Using the same notation as before, let f ′

i , f
′′
i denote the

first and second derivatives of fi in x-direction. The general combined com-
pact scheme are written as

f ′
i + α1(f

′
i+1 + f ′

i−1) + β1∆x(f ′′
i+1 − f ′′

i−1) =
a1

2∆x
(fi+1 − fi−1) (3.20)

f ′′
i + α2(f

′′
i+1 + f ′′

i−1) +
1

2∆x
β2(f

′
i+1 − f ′

i−1) =
a2

∆x2
(fi+1 − 2fi + fi−1).

(3.21)

As can be seen in Equation (3.20) and (3.21), the first and second deriva-
tives are coupled which yield a combined compact scheme. This scheme
turns out to have a wider range for solving higher wavenumbers. Since
the second derivatives are also found together with the first derivatives, the
combined compact scheme is interesting for problem involved viscous calcu-
lations. The scheme was originally developed for numerically solving flow
problems which was not yet applied for aeroacoustic simulations. It is at-
tractive to optimize the scheme to obtain lower dispersion error such as those
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optimized compact schemes. To derive and optimize such schemes towards
higher-orders could be an interesting future work.

3.1.5 The effect of grid non-uniformity

In many cases, grid stretching can not be avoided for simulating flow or
acoustic problems, typically for problems involved with turbulence. The
standard and optimized high-order schemes are derived on a uniformly
spaced computational grid. These schemes are widely used for numerical
simulations for non-uniform grids. Therefore it is necessary to investigate
the discretization errors introduced by grid stretching.

There exist many different stretching functions for mesh generation, here
we select one of them to perform our analysis. Assume that the mesh spacing
is ∆x at point xi and the grid is stretched with a ratio γ. Therefore at other
neighboring points we have xi+1 = xi + γ∆xi.

Taking an example of 7-point DRP scheme, to derive the coefficients in
this case we first perform Taylor expansion on a non-uniform mesh as shown
in Figure 3.12. Then the slightly complicated expression is inserted to the
finite difference approximation. Once the stretching rate γ is specified, the
coefficients can be solved by minimizing the integral error.

The solution is plotted in Figure 3.13 with different stretching rate. The
schemes derived on a non-uniform mesh are compared with standard 7-point
schemes on a uniform mesh. It is observed that at a reasonable stretching
rate, the schemes on a non-uniform mesh still perform better than a stan-
dard finite difference scheme. This case shows that for the stretching rate γ
below 10%, the optimized schemes keep better accuracy than the standard
ones. A similar study was carried out by Bogey and Bailly [50] where the
same trend was found. A study of grid stretching effect was also performed
for the optimized compact finite difference schemes. The results are shown in
Figure 3.14. It turns out that the optimized compact schemes behave similar
as DRP schemes. A more detailed study shows that the compact schemes
are more sensitive to grid stretching. Figure 3.15 is the plot of truncation
errors and dispersion errors for DRP and compact schemes. Both fourth
and sixth-order schemes are shown in order to see the effect of increasing
the order of accuracy. It can be seen from Figure 3.15(a) that the truncation
error for all schemes is eventually increased to a higher level as the stretch-
ing rate increased to 1.2. From this plot, no evident difference can be found
between DRP and compact schemes. For Figure 3.15(b) it is clearly seen
that as γ increases, the integral of dispersion errors of the compact schemes
increases faster than the explicit schemes. This means compact schemes are
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Figure 3.12: Optimization of explicit finite difference scheme on non-uniform
mesh.

more deteriorated than DRP schemes on the same non-uniform mesh. To
sum up, the use of high-order schemes still maintain advantages for regu-
larly stretched grids with not too high stretching rate. With the maximum
stretching rate about 10%, the present optimized schemes are shown to be
more accurate than the standard schemes with the same stencil size.
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Figure 3.13: Wavenumber versus modified wavenumber. (a) Standard sixth-
order finite difference scheme γ = 1.0; (b) 7-point DRP scheme γ = 1.15;
(c) 7-point DRP scheme γ = 1.075; (d) 7-point DRP scheme γ = 1.025; (e)
7-point DRP scheme γ = 1.0; (f) Exact solution.

3.2 Time integration

Time marching schemes determine the accuracy of propagation character-
istic of the governing PDEs. For computational aeroacoustics, an accurate
time advancing scheme ensures better numerical solutions over a long time
integration. In some cases, the space and time discretization are proceeded
directly in the target equations. There are many examples of such meth-
ods, for example, Warming-Kutler-Lomax method, two-steps Lax-Wendroff
method , MacCormack method and so on. Among the classical methods,
the most common schemes are those of low order accuracy, particularly in
space discretization. As shown before that we have already spend much
effort to derive high-order schemes in space. The next is to find an accu-
rate time marching scheme and then complete the semi-discrete formulation.



CHAPTER 3. NUMERICAL STUDY 42

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Wavenumber

M
od

ifi
ed

 W
av

en
um

be
r

0 1 2 3
0

0.5

1

1.5

2

2.5

3

a

b
c

d

e
f

Figure 3.14: Wavenumber versus modified wavenumber. (a) Standard
eighth-order compact scheme γ = 1.0; (b) sixth-order optimized compact
scheme γ = 1.15; (c) sixth-order optimized compact scheme γ = 1.075; (d)
sixth-order optimized compact scheme γ = 1.025; (e) sixth-order optimized
compact scheme γ = 1.0; (f) Exact solution.

The first time discretization technique to be considered here is the one-
step DRP time marching scheme. In the work of Tam and Webb [12], an
explicit time integration method was also derived which followed the same
idea of deriving space derivatives. Assuming that the solution of a variable
f is known up to a time level t = n∆t, at time step n + 1 the solution is
advanced by a four-level finite difference approximation which takes the form

f(n+1) ≃ f(n) + ∆t
3
∑

j=0

bj

[

df

dt

]

(n−j)

. (3.22)

The formulation is fully explicit which is based on the knowledge at previous
three time levels. At t = 0, f(0) = finitial and f(−1), f(−2), f(−3) are set to
zero. The coefficients bj (j = 0, 1, 2, 3) are determined by Taylor expansion
and ensure that Equation (3.22) is accurate to order (∆t)3. After matching
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Figure 3.15: Truncation errors and integrated dispersion errors on a non-
uniform grid with different stretching rates.

the coefficients of the Taylor expansion and solving the system of equations,
one free parameter is left for optimization. For example, if b0 is the free
parameter the relations of the coefficients are

b1 = −3b0 +
53

12
, b2 = 3b0 −

16

3
, b3 = −b0 +

23

12
. (3.23)

Applying Laplace transform f(t) =
∫∞
0 f̃(ω) exp(iωt)dω to Equation (3.22),

the following relation can be obtained

df̃

dt
≃ −i

i(e−iω∆t − 1)

∆t
∑3

j=0 bje
ijω∆t

f̃ (3.24)

where the tilde represents the Laplace transform. Using the knowledge that
the Laplace transform of the time derivative is identical to −iωf̃ , the above
equation is rearranged as

ω̄ = i
i(e−iω∆t − 1)

∆t
∑3

j=0 bje
ijω∆t

(3.25)
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where ω̄ is the effective angular frequency of the finite difference approxi-
mation shown in Equation (3.22).

The last procedure is to determine the minimum integral error. Unlike
those symmetric schemes, both real and imaginary part of the error appear
in the integrated equation.

E =

∫ η

−η
{σ[Re(ω̄∆t − ω∆t)]2 + (1 − σ)[Im(ω̄∆t − ω∆t)]2}d(ω∆t) (3.26)

By setting the integral rage η = 0.5 and the weighting parameter σ =
0.36, the root of equation ∂E/∂b0 = 0 is found to be b0 = 2.30255809. The
full set of coefficients are thus known from Equation (3.23).

Another time integration method received a lot of the attention in com-
putational aeroacoustic is the Runge-Kutta (RK) method. The method
was originally proposed by Runge in 1895 and further developed by Kutta
in 1901. Due to the high-order accuracy, even after hundred years, the
RK method is still popularly used in many applications. The classical RK
method has the order of accuracy equal or less to the number of stages.
Consider the time derivative ∂f

∂t = R(f), a p-stage RK method advance the
solution from tn to tn + ∆t can be written as

f(0) = f(n) (3.27)

f(l) = f(n) + αl∆tR(f(l−1)) (l = 1, ..., p) (3.28)

f(n+1) = f(p). (3.29)

The standard p-stage RK method can be obtained with Taylor series expan-
sion of f(tn + ∆t). To illustrate the method, we derive in the following the
two-stage RK scheme.

Using the notation f(n+1) to represent the value f at time tn + ∆t and
h = ∆t, the Taylor series expansion of f(n+1) gives

f(n+1) = f(n) + hf ′
(n) +

1

2
h2f ′′

(n) + ... +
1

q!
hqf

(q)
(n) + O(hq+1). (3.30)

Since f ′ = ∂f
∂t = R(f), Equation (3.30) is identical to

f(n+1) = f(n) + hR(n) +
1

2
h2R′

(n) + ... +
1

q!
hqR

(q−1)
(n) + O(hq+1). (3.31)
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To derive a second-order scheme we truncate Equation (3.31) up to third-
order such that

f(n+1) = f(n) + hR(n) +
1

2
h2R′

(n) + O(h3). (3.32)

By noticing that R is a function of t and f , the time derivative of R is

R′
(n) =

(

∂R

∂t

)

(n)

+

(

∂R

∂f

)

(n)

(

∂f

∂t

)

(n)

=

(

∂R

∂t

)

(n)

+

(

∂R

∂f

)

(n)

R(n). (3.33)

Inserting Equation (3.33) into Equation (3.32) gives the Taylor series ex-
pansion of f(n+1) which will be compared to the result obtained from the
RK method.

f(n+1) = f(n) + hR(n) +
1

2
h2

(

(

∂R

∂t

)

(n)

+

(

∂R

∂f

)

(n)

R(n)

)

+O(h3). (3.34)

A two-step RK method is formulated as

f(n+1) = f(n) + h(ω1k1 + ω2k2) (3.35)

where ω1, ω2 are unkown coefficients and k1, k2 are given as

k1 = R(t(n), f(n)) (3.36)

k2 = R(t(n) + αh, f(n) + βhk1) (3.37)

To determine the four unknowns ω1, ω2, α and β, we first expand k2 as
following

k2 = R(t(n) + αh, f(n) + βhk1)

= R(t(n), f(n) + βhk1) + αh
∂

∂t
R(t(n), f(n) + βhk1) + O(h2)

= R(n) + αh

(

∂R

∂t

)

(n)

+ βh

(

∂R

∂f

)

(n)

R(n) + O(h2).

(3.38)

Inserting Equation (3.36) and (3.38) into Equation (3.35) the final two-stage
RK approximation is obtained
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f(n+1) = f(n) + (ω1 + ω2)hR(n) + ω2h
2

(

α

(

∂R

∂t

)

(n)

+ β

(

∂R

∂f

)

(n)

R(n)

)

+ O(h3).

(3.39)

By comparing Equation (3.39) with the exact Taylor expansion of Equation
(3.34), it is not hard to find the following relations







ω1 + ω2 = 1
αω2 = 1

2
βω2 = 1

2

. (3.40)

It is seen that the equation system is over-determined since there are four
unknowns and only three equations. Theoretically, one of those four coeffi-
cients can be given with an arbitrary real value. The worst case occurs when
ω2 becomes zero since the two-step scheme returns to traditional first-order
Euler forward method.

Since RK time marching methods cause additional dispersion and dissi-
pation errors, it is attractive to do optimizations. As shown before for the
two-stage RK scheme, it is possible to utilize the free coefficient(s). The
optimization usually decreases the formal order of accuracy as compared to
the classical RK schemes using the same number of stages, but it will be
more accurate in terms of wave propagation over a wide range of frequencies.
The optimization of time marching scheme is very similar to optimization
of spatial schemes. A typical example has been previously shown in this
section for deriving DRP time advancing scheme. Hu et al. [73] optimized
a series of RK schemes with 4, 5 and 6 stages by minimizing the numerical
error in the RK schemes. Some similar work can be seen from Bogey et
al. [50] and Berland et al. [74]. For RK schemes with a maximum stage
of p ≤ 4, it holds true that the order of accuracy is equal to the number of
stages. However, to achieve fifth-order accuracy one has to add two more
stages and seven stages are required for a sixth-order RK scheme. This ex-
plains why the fourth-order RK time advancing method is the most popular
one.

To ensure that the time integration is stable, the time step needs to be
carefully selected. For the classical RK schemes, the maximal time step is de-
termined by the eigenvalues of R(f). If the centered finite difference spatial
discretization method is used and we disregard the effect from boundary
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schemes, the maximum time step is related to the well-known Courant-
Friedrichs-Levy (CFL) condition

CFL =
c0∆t

h
<

c1

Kmax
(3.41)

where c0 is the wave propagation speed, c1 is a constant specified by the RK
scheme and Kmax is the maximum effective wavenumber of a given finite dif-
ference scheme. The constant for c1 is 1.73 and 2.83 for three- and four-stage
RK schemes [73, 48]. The maximum resolvable wavenumbers Kmax of finite
difference schemes are already obtained, see Table 3.1 for DRP schemes and
Table 3.2 for optimized compact schemes. Therefore, the CFL numbers can
be readily calculated. Consider three- and four-stage RK time advancing
schemes and combine Kmax of DRP and compact schemes, the CFL num-
bers can be shown in a matrix form, as seen in Table 3.3 and 3.4. From the
CFL numbers listed in the tables, it is seen that for finite difference schemes,
a smaller time step is required as the order of accuracy increases. And it is
in general such that time steps for compact schemes (Table 3.4) are more
restricted than for explicit schemes (Table 3.3).

Explicit RK3 RK4
Schemes ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.1 ε = 0.01 ε = 0.001

(a) 2.45 7.12 23.07 4.00 11.65 37.73
(b) 1.38 2.33 4.15 2.26 3.81 6.79
(c) 1.13 1.59 2.37 1.84 2.60 3.87
(d) 1.01 1.15 1.21 1.65 1.88 1.98
(e) 0.94 1.08 1.17 1.54 1.76 1.91
(f) 0.90 1.02 1.13 1.47 1.67 1.86
(g) 0.87 0.97 1.10 1.42 1.59 1.80
(h) 0.85 0.94 1.06 1.38 1.53 1.74
(i) 0.83 0.90 1.03 1.35 1.48 1.68

Table 3.3: CFL numbers. (a) second-order finite difference; (b) fourth-order
finite difference; (c) sixth-order finite difference; (d) fourth-order DRP; (e)
sixth-order DRP; (f) eighth-order DRP; (g) tenth-order DRP; (h) twelfth-
order DRP; (i) fourteenth-order DRP.

We close this section by briefly noting the CFL restrictions of Tam and
Webb’s [12] time marching scheme. It is attractive to know the time step
limits for the DRP time marching method since it evaluates variables only
once per time level and therefore it might be more effective. The CFL cri-
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Compact RK3 RK4
Schemes ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.1 ε = 0.01 ε = 0.001

(a) 1.03 1.59 2.75 1.09 1.68 2.91
(b) 0.87 1.11 1.57 0.92 1.18 1.67
(c) 0.81 0.96 1.25 0.86 1.01 1.33
(d) 0.78 0.88 1.08 0.82 0.93 1.14
(e) 0.75 0.83 1.00 0.80 0.88 1.06
(f) 0.77 0.79 0.81 0.82 0.84 0.86
(g) 0.74 0.77 0.80 0.79 0.81 0.84
(h) 0.73 0.75 0.78 0.77 0.79 0.82
(i) 0.71 0.73 0.77 0.75 0.77 0.82

Table 3.4: CFL numbers. (a) fourth-order compact; (b) sixth-order com-
pact; (c) eighth-order compact; (d) tenth-order compact; (e) twelfth-order
compact; (f) fourth-order optimized compact; (g) sixth-order optimized
compact; (h) eighth-order optimized compact; (i) tenth-order optimized
compact.

terion of the one-stage four-level time advancing scheme plus seven-point
DRP space discretization method was studied by Tam and Webb [12]. As
proposed in [12], the time step criterion was originally written as

∆t =
Ω

1.75[M + (1 + (∆x/∆y)2)1/2]

∆x

c0
. (3.42)

In case that the denominator 1.75[M +(1+(∆x/∆y)2)1/2] = 1.75, ∆t has its
maximum value. The maximum value of Ω proposed in [12] is 0.4, therefore
the DRP scheme has a up limit of CFL = 0.4/1.75 = 0.23. If one uses a
four-stage RK scheme plus seven-point DRP space discretization method,
the maximum CFL number can be seen from Table 3.3. For instance, if we
fix the tolerance ε = |ᾱ∆x−α∆x|

α∆x = 0.1 and find the seven-point DRP scheme
(at row (d)), the criterion is CFL= 1.65. From this point of view, the one-
stage DRP time marching method is still more costly than a four-stage RK
method.

3.3 Numerical filters and artificial damping

In numerical simulations of fluid dynamics and aeroacoustics, numerical os-
cillations are often experienced which comes as spurious solutions. These
spurious oscillations are directly responsible for numerical convergence and
usually lead to failure of the simulation. Centered finite difference schemes
are dissipation free which yield spurious solutions with high frequencies. The
use of high-order schemes or larger stencils will not reduce such numerical
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errors. The remedy is based on smoothing of the spurious waves by us-
ing filtering schemes or artificial damping (artificial dissipation) techniques.
High-order filtering method ought to be used for aeroacoustic simulations
to prevent extra damping of physical waves after thousands of time itera-
tions. We shall see the effect of using high-order filtering schemes during
the following discussions.

3.3.1 Explicit filters

In principle, the amount of damping depends on the wavenumbers such that
only short waves are damped out. In aeroacoustic simulations time depen-
dent signals are often recorded during the numerical simulation which is
used to analyze the sound spectrum at given receiver locations. The use of
filtering schemes should not smooth out the time dependence of variables af-
ter long time simulation. High-order filter schemes are used for such purpose.

For a centered filter scheme containsing 2N+1 points, the equations is
written as

uf (x0) = u(x0) − σD(x0) (3.43)

with

D(x0) =
N
∑

j=−N

dju(x0 + j∆x) (3.44)

where uf is the filtered value and u is the value at previous time level.
The coefficients dj are such that dj = d−j and σ is the damping coefficient
between 0 and 1. For determining coefficients of high-order explicit filter
schemes, the standard approach [75] is to use Taylor series of Equations
(3.43) and matching the corresponding coefficients. Based on the standard
centered explicit high-order filters and the optimization strategy of Tam
and Webb [12], a series of optimized selective filters were developed by Bo-
gey and Bailly [50]. The coefficients of optimized explicit filter schemes
are given in Table B.6 of Appendix B. For the boundaries, non-centered
high-order optimized schemes with seven- and eleven-point stencils were
proposed by Berland et al. [76]. The non-centered filters were tested with
a two-dimensional benchmark problem of waves scattering by a cylinder.
They showed that for reflection problems the non-centered filters provided
better results than the centered filters.

An example is shown to highlight the influence of difference filter schemes.
Consider a Gaussian type function as in Equation (3.45). We define two type
of waves in this function, a short wave (b1 = 2) and a long wave (b2 = 10).
Let the initial locations x1 = 50 and x2 = 150, we apply explicit second-,
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fourth- and twelfth-order filters to the two waves.

u = exp(−(ln 2)(x − x1)
2/b2

1) + exp(−(ln 2)(x − x2)
2/b2

2). (3.45)

As plotted in Figure 3.16, the filtered solutions are obtained after one
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Figure 3.16: Effect of filtering schemes.

thousand iterations. The effect of the twelfth-order filter scheme is almost
negligible to the original function. The fourth-order filter scheme has a weak
effect on the longer wave (the right one) but the short wave (the left one)
is apparently damped for almost thirty percent of the amplitude. The be-
havior of the second-order filter scheme is unfortunately not satisfactory for
both short and long waves.

3.3.2 Implicit filters

The standard formulation of compact finite difference filters can be seen in
Lele [13] where pentadiagonal filter schemes were formulated. The compact
filters considered in the work of Visbal and Gaitonde [51] are based on Padé-
type formulations which are tridiagonal systems of equations. The centered
interior filtering scheme in compact form is written as
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αf f̃j−1 + f̃j + αf f̃j+1 =
N
∑

n=0

an

2
(fj+n + fj−n) (3.46)

where f̃ is the value after filtering, αf is the free parameter and an are the
coefficients determining the order of accuracy. These compact filters are de-
rived up to tenth-order of accuracy and their coefficients are listed in Table
B.7, Appendix B. A few test cases were carried out by Visbal and Gaitonde
[51, 78] using Padé-type spatial differencing formulas and filters. The com-
putations were performed on stretched grid and high-frequency oscillations
were successfully eliminated by high-order filters. At near boundary points,
high-order non-centered compact filters were developed by Gaitonde and
Visbal [77] which retain the tridiagonal form of the filters. The formulation
of the boundary filters are given by

αf f̃j−1 + f̃j + αf f̃j+1 =
N
∑

n=0

anfn. (3.47)

Numerous steady and unsteady, viscous and invicid flow computations were
performed on curvilinear meshes using domain-decomposition strategies which
demonstrated the accuracy of new type of boundary filter schemes.

3.3.3 The artificial damping zone

Another technique called damping zone (sponge zone) can be used in com-
bination with the high-order filtering schemes. In aeroacoustic simulations,
this method is often favorable to be applied together with the far field bound-
ary conditions to decrease the amount of reflection. As it can be seen some-
times in numerical simulations, the amplitude of turbulent structures are
still large at outflow boundaries (See Figure 3.1 for example). The reason
could be that the computational domain is not large enough or that the
grid density at the outflow boundary were not coarse enough to numerically
dissipate the small structures. In case the outflow area is not of our interest
and numerical problems arise from there, a sponge zone can be defined and
waves travel into this area will be heavily damped. Damping zones of this
kind can be seen from Bogey and Bailly [79] and it is formulated as follows

fi = fi − α

(

x(i) − x1

x2 − x1

)β

[3d0fi + d1(fi+1 + fi−1)] (3.48)

where α defines the amplitude of the filtering, β takes values between 1 and
2 and d0 = 0.5, d1 = −0.25. The sponge zone has a length of x1 ≤ x ≤ x2.
The second type of damping function we introduce here is seen from Israeli
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et al. [80] and Adams [81]

fi = fi − σ(i)fi (3.49)

σ(i) = As(Ns + 1)(Ns + 2)
(x(i) − x1)

Ns(x2 − x(i))

(x2 − x1)Ns+2
(3.50)

where the sponge region is again x1 ≤ x ≤ x2 and As, Ns are adjustable
parameters such as As = 4 and Ns = 3.

To show the impact of the sponge zone, we let a sinusoidal wave travel
into the sponge zone. The sponge zone is depicted in Figure 3.17 with a
length about 1/3 of the domain. The above mentioned two types of damp-
ing methods applied in this case are named as damping1 and damping2.
Both of the damping functions effectively absorbed waves in the defined
damping region while a smooth connection between filtered and non-filtered
parts are still maintained.
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Figure 3.17: Damping effects at out boundary.
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3.4 Acoustic boundary conditions

Boundary conditions play an important role in CAA. Any waves reflected by
the computational boundaries will travel back and forth in the domain and
interact with other physical waves until they dissipate after long time period.
The desire to develop stable and accurate boundary conditions makes it an
interesting research area. In the following, solid wall and far field conditions
will be studied. The acoustic radiation and outflow boundary conditions are
focused in this section since in the present work we consider exterior flow
and CAA problems.

3.4.1 Wall conditions

In this part, a few methods that treat solid wall boundary conditions are
introduced and tested in our numerical simulations to be stable. There exist
many other methods and the common difficulty is the proper use of ghost
points extended outside of the computational domain.

The DRP schemes proposed by Tam and Webb [12] provide a wide op-
portunity to build high-order boundary schemes as those we introduced
before. In connection with the backward DRP schemes, Tam and Dong
[82] proposed a set of numerical wall boundary conditions using a minimum
number of ghost values. Any of the numerical values outside the physical
domain are ghost values. These ghost values are often calculated by extrap-
olation, mirroring of inner points or from other physical conditions. The
idea of Tam and Dong [82] is to use one ghost point inside the wall sur-
face and use the backward schemes to simulate the normal derivatives on
the wall. The near boundary stencils are sketched in Figure 3.18. Assume
that the inviscid fluid is bounded by the wall at x = 0 (see Figure 3.18)
and seven-point DRP schemes are used for calculating derivatives ∂/∂x and
∂/∂y. If u, v are velocity components in x and y directions, the wall condi-
tion for the normal velocity component is u = 0 at x = 0. In the work of
Tam and Dong the condition u = 0 is implicitly used to calculate the ghost
value of pressure p inside the wall. All normal derivatives near the wall are
calculated by non-centered DRP schemes (see Table B.4). The quantities
∂u/∂x, ∂v/∂x and ∂ρ/∂x are computed using values lying inside the domain
and ∂p/∂x is found by using the stencil extend to the ghost point below the
wall.

In case of using compact finite difference schemes, the same inviscid wall
condition is employed. Non-centered compact boundary stencils are applied
at near wall region. The u-velocity is set to zero on the wall and the pres-
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Figure 3.18: Stencils used in interior, wall and farfield regions.

sure, density and tangential velocity components are extrapolated. Their
normal derivatives near the wall are approximated to high-order accuracy
using non-centered high-order compact formulas. Application of such type
of wall boundary treatment can be found in Visbal et al. [51] where a few
acoustic scattering problems were studied. To achieve even lower dispersive
error, the boundary derivatives can be alternatively calculated using opti-
mized non-centered compact schemes as proposed by Kim [63].

Another wall boundary condition was discussed by Djambazov et al. [60].
A body-fitted staggered mesh was used in their numerical simulations. For
invisid problems, solid walls are modeled as symmetric surfaces. Therefore,
on the wall surface normal component of velocity is zero and the normal
derivatives of pressure and other velocity component are set to zero. The
centered finite difference scheme is used on the wall with a number of ghost
points in the wall. The cell-centered ghost points are found in the way that
the pressure and parallel velocity values are mirrored with the values in the
fluid, and the normal velocities take the antisymmetric value in the fluid.
This method is convenient for staggered mesh since the same differencing
schemes can be used all over the domain. However, this method may not
keep the same high-order accuracy on the wall boundary as in the inner
domain since mirroring procedure is a non-physical model.
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3.4.2 Acoustic farfield conditions

Since the domain for numerical computation is finite, appropriate bound-
ary conditions must be supplied at farfield boundaries. The inflow/outflow
conditions are developed to produce a non-reflective boundary or smoothly
radiate out the waves. These boundary conditions are derived as a combina-
tion of physical models and mathematical approximations. In this section,
three types of inflow/outflow boundary conditions are introduced. The first
class of farfield conditions is called characteristic boundary conditions which
was developed by Thompson [83, 84]. The second group uses the asymp-
totic solutions to the exterior problems and assumes that the boundaries are
located far from the sources or disturbances. This kind radiation boundary
condition was suggested by Bayliss et al. [85] and Tam et al. [12]. The third
type of condition is the perfectly matched layer (PML) boundary condition.
The method was proposed by Hu [86, 87] where spacial PML equations are
solved in a buffer zone to minimize the reflections at outflow.

Characteristic boundary conditions:
The characteristic boundary condition is one of the popular methods in
computational fluid dynamics. The method is based on the decomposition
of hyperbolic equations into different wave modes. The resulting system
contains incoming and outgoing waves. Here we first look at the Thomp-
son’s approach [83, 84] which is based on analyzing the Euler equations.
One dimensional analysis is performed on the Euler equations to distinguish
which are the directions of wave propagation on the farfield boundaries. The
amplitude of the outgoing waves is determined from the values inside the
domain by using non-centered schemes (see Figure 3.18). The amplitude of
the incoming waves is set to zero for nonreflective case. Let’s consider the
non-linear Euler equations in cylindrical coordinates and to demonstrate the
Thompson’s approach.

∂Q

∂t
+ A

∂Q

∂r
+ B

∂Q

∂x
+ C = 0 (3.51)

where Q = [ρ, u, v, p]′ is the primitive variables and matrices A, B and C are
given as

A =









v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 γp v









, B =









u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 γp 0 u









, C =









ρv
r
0
0

γpv
r









(3.52)

If we focus boundaries only along the x-axis, Equation (3.52) can be written
in another form
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∂Q

∂t
+ B

∂Q

∂x
+ K = 0 (3.53)

where the radial derivatives and the source term C are grouped together as a
new term K. The matrix B can be diagonalized such that SBS−1 = Λ with
the diagonal element Λ = diag(u − 1, 1, u + 1). Applying this to Equation
(3.53) gives

S
∂Q

∂t
+ Li + SK = 0 (3.54)

where

Li =

{

ΛS ∂Q
∂x for outgoing waves

0 for incoming waves
(3.55)

To understand these characteristic waves Li, Equation (3.54) can be ex-
panded as

∂p

∂t
− ρc0

∂u

∂t
= −L1 − K4 + ρc0K2 = R1 (3.56)

c2
0

∂ρ

∂t
− ∂p

∂t
= −L2 − c2

0K1 + K4 = R2 (3.57)

∂v

∂t
= −L3 − K2 = R3 (3.58)

∂p

∂t
+ ρc0

∂u

∂t
= −L4 − K4 − ρc0K2 = R4. (3.59)

The time derivatives (∂ρ
∂t ,

∂u
∂t ,

∂v
∂t ,

∂p
∂t ) are therefore obtained by

∂ρ

∂t
=

1

c2
0

(

1

2
(R1 + R4) + R2

)

(3.60)

∂u

∂t
=

1

2
ρc0(R4 − R1) (3.61)

∂v

∂t
= R3 (3.62)

∂p

∂t
=

1

2
(R1 + R4) (3.63)

and the boundary points are updated using these time derivatives. The
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same procedure can be repeated for the radial direction. If the L1 wave is
the incoming wave (velocity=u-c < 0) and L2,L3,L4 are outgoing waves,
the amplitude of these characteristic waves given by Thompson [83, 84] are

L1 = 0 (3.64)

L2 = u(c2
0

∂ρ

∂x
− ∂p

∂x
) (3.65)

L3 = u
∂v

∂x
(3.66)

L4 = (u + c0)(
∂p

∂x
+ c0ρ

∂u

∂x
). (3.67)

The Thompson’s approach is intrinsically one-dimensional and is suited
for flow perpendicularly reaching the outer boundaries. Giles [88] improved
the Thompson’s approach by considering the more generalized case of oblique
incidences. The first step of Giles approach is to perform the Fourier analy-
sis in space and Laplace transform in time along boundary directions. The
second step is to decompose the resulting system into incoming and outgo-
ing waves. The last step is to inverse the transformed boundary equations
back to real space and determine the amplitudes of the characteristic waves
Li. A similar improvement was done by Kim and Lee [89] where soft inflow
boundary conditions are implemented to maintain the mean flow velocity at
the inlet boundary. The improved boundary conditions were tested by Kim
and Lee where flow and sound field around cylinder was simulated by using
high-order compact schemes.

Radiation and outflow boundary conditions:
The second class of boundary conditions are based on asymptotic analysis
of the linearized Euler equations. This approach was originally proposed in
a uniform mean flow condition [85, 90, 12]. In the work of Tam and Webb
[12] the Fourier and Laplace transforms were performed on linearized Euler
equations for the disturbances in two dimensions. The transformed equa-
tions are decomposed into solutions of the entropy wave (only consisting of
density fluctuations, u = v = 0), the vorticity wave (only consisting of ve-
locity fluctuations p = ρ = 0) and the acoustic wave (including all physical
variables). At inflow boundaries only outgoing acoustic waves are presented,
the boundary condition is written as

(

1

V (θ)

∂

∂t
+

∂

∂r
+

1

2r

)









ρ
u
v
p









= 0 + O(r−5/2) (3.68)
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where V (θ) = c0

(

M cos(θ − ϕ) + (1 − M2 sin2(θ − ϕ))
1

2

)

, M =

√
u2

0
+v2

0

c0
,

c0 =
√

γp0/ρ0 is the sound speed and ϕ is the mean flow angle. The ac-
curacy of the boundary condition is proportional to the radial length of
the computational domain. In cartesian coordinates the equations at inflow
boundaries are

1

V (θ)

∂ρ

∂t
+ cos(θ)

∂ρ

∂x
+ sin(θ)

∂ρ

∂y
+

ρ

2r
= 0 (3.69)
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∂u
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u
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= 0 (3.70)
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∂p

∂t
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∂p

∂x
+ sin(θ)

∂p

∂y
+

p

2r
= 0. (3.72)

Equations (3.69-3.72) are modified at outflow boundary since the outgoing
disturbances contain acoustic, entropy and vorticity waves. It appears that
the total pressure fluctuation comes only from the acoustic disturbances,
thus the outgoing boundary condition for pressure is the same as radiation
boundary condition. The complete set of outflow boundary conditions are
given as

∂ρ

∂t
+ u0

∂ρ

∂x
+ v0

∂ρ

∂y
=

1

c2
0

(

∂p

∂t
+ u0

∂p

∂x
+ v0

∂p

∂y

)

(3.73)

∂u

∂t
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∂u

∂x
+ v0

∂u

∂y
= − 1

ρ0

∂p

∂x
(3.74)

∂v
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∂x
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∂v

∂y
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ρ0

∂p

∂y
(3.75)

1

V (θ)

∂p

∂t
+ cos(θ)

∂p

∂x
+ sin(θ)

∂p

∂y
+

p

2r
= 0. (3.76)

The asymptotic boundary conditions of Tam and Webb [12] are used
to develop the non-uniform [92] and non-homogeneous [93] radiation, inflow
and outflow boundary conditions which produce more accurate incoming
acoustic and vorticity waves. From our numerical experiences, in case that
the disturbance at the outflow region is not strong the difference of inflow
and outflow conditions is found to be very little. It was also shown that a
larger computational domain with a relative coarser mesh at farfield bound-
aries produces better results.
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Absorbing boundary conditions using PML:
The PML method proposed by Hu [86, 87] was originally formulated for
electromagnetic problems [91]. The idea of PML approach is to divide the
computational domain into two parts, the interior part and a PML (buffer
layer) area around the computational edges. The acoustic, vorticity and en-
tropy waves are supposed to be absorbed in this buffer layer. The amount of
absorption depends on the thickness of the PML domain and the absorption
coefficients. The theory behind the PML method is also based on analyzing
the linearized Euler equation. Assume a two-dimensional uniform flow of
Mach number M in the x-axis direction, buffer layers are defined at the four
edges of a rectangular computational domain. For the buffer layers in x-
and y-directions, the absorption coefficients are defined as σx and σy, re-
spectively. At the four corners of computational domain, buffer layers in x-
and y-directions are overlapped and the effect of σx and σy are all taken into
account. In the linearized Euler equations, the primitive variables u, v, p and
ρ are split into two parts (u1, v1, p1, ρ1) and (u2, v2, p2, ρ2). The equations
for PML domains are defined as

∂
(

u1

v1

)

∂t
+

(

σx

σy

)(

u1

v1

)

= −∂(p1 + p2)

∂
(

x
y

) (3.77)
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∂
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(3.78)
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ρ1

)

= −∂(u1 + u2)
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∂
(

p2

ρ2

)

∂t
+

(

σy

σy

)(

p2

ρ2

)

= −∂(v1 + v2)

∂y
. (3.80)

It is noted that these equations are reduced to the Euler equations when
σx = σy = 0 and the spatial derivative in these equations involve only total
variables u, v, p and ρ which ensure smooth connection at interfaces. As-
suming that a plane wave propagates into the PML domain, then the wave
can be written as an exponential function. For example, the u1 component
is written as u1 = u0 exp(i(xkx + yky − ωt)) where u0 is the amplitude. In-
serting such plane waves into the PML Equations (3.77 - 3.80) yields plane
wave solutions for (u1, v1, p1, ρ1) and (u2, v2, p2, ρ2).

As a closure of this section, we review some previous works where nu-
merical experiments were done for different boundary conditions. Hixon et
al. [94] investigated the characteristic boundary conditions of Thompson
and Giles, and the radiation boundary conditions from Tam and Webb in
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uniform flow. According to their comparative performance some conclu-
sions were drawn: The Tam and Webb’s approach is the most acceptable
performance for outflow boundary treatment; The performance of character-
istic boundary conditions might be acceptable only when the flow is nearly
one-dimensional and normal to the boundary. For inflow boundaries, Giles
boundary condition and Tam and Webb’s approach were acceptable. The
Thompson’s approach resulted some reflection near the inflow boundary.
Colonius and Lele [41] performed a study on the boundary conditions of
Thompson, Giles, Tam and Webb, and PML. Results showed that Tam and
Webb’s radiation boundary condition are the best at early times which has
a maximum error about half of PML methods. Further, they reported that
there is a slow long-time instability of Tam and Webb’s radiation bound-
ary condition. The characteristic boundary conditions are about an order
of magnitude higher than Tam and Webb’s radiation condition. The PML
layers with more points produce less error.

3.5 Numerical features applied for current study

The in-house CFD code EllipSys has been used for flow simulations. The
code was developed in co-operation between DTU1 [95] and RISØ2 [96].
The EllipSys code is based on a multi-block and cell-centered finite vol-
ume discretization of the steady and unsteady incompressible NS equations
in primitive variables (pressure-velocity coupling). A predictor-corrector
method is used. In the predictor step, the momentum equations are dis-
cretized using a second-order backward differentiation scheme in time and
second-order central differences in space, except for the convective terms
that are discretized by the QUICK upwind scheme. In the corrector step,
the improved Rhie-Chow interpolation developed by Shen et al. [97] and the
modified SIMPLEC scheme on the collocated grids [98] are used in order to
avoid numerical oscillations from pressure decoupling. The obtained pres-
sure Poisson equation can be solved by a five-level multigrid technique. Since
the EllipSys3D code is programmed using a multi-block topology, it can be
parallelized relatively easy using the Message Passing Interface (MPI).

The acoustic code is one of the auxiliary model of the EllipSys program.
In EllipSys, each auxiliary model has its interface. The interface routines
are called from the main program. The acoustic model is solved in the main
iteration loop which solves the flow field. The flow solution obtained after
each iteration will be used for acoustic simulation. At the same time level,
the acoustic variables are solved by acoustic equations using high-order finite

1Fluid Mechanical Section, Department of Mechanical Engineering, Technical Univer-
sity of Denmark, Lyngby, Denmark.

2Department of Wind Energy, Risø National Laboratory, Roskilde, Denmark.
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difference schemes. In the input data, explicit/implicit schemes from second-
order up to tenth-order can be selected for solving the acoustic equations.
The filter schemes are also specified in the same way in the input file. At
walls, standard inviscid conditions are employed together with necessary
backward high-order schemes. The Tam and Webb’s radiation and outflow
conditions are applied at outer boundary. The multi-block topology was
also used for acoustic computation but a special routine was built such that
each blocks can receive necessary information from their neighboring blocks.
Considering a stencil width of 2N+1 points, such a scheme at its block
interfaces (not including the physical boundaries) has N points extending
outside which is in its neighboring blocks. The MPI routine was so created
that there is a N-point overlapping at each block interfaces such that Nth-
order accuracy is maintained everywhere.
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Chapter 4

Validation Cases

A few numerical test cases are shown in this chapter. The first case is
the one-dimensional wave convection problem which is used to validate the
optimized explicit and implicit finite difference schemes. The second case
concerns sound scattering problem from a circular cylinder and it’s used to
test DRP schemes and the wall, farfield boundary conditions on curvilinear
mesh. In the last case, sound field generated by a pair of co-rotating vortex
is simulated with optimized compact schemes.

4.1 Wave convection problem

In this example a one-dimensional convective wave equation is solved by
explicit and compact finite difference schemes. The one-dimensional wave
equation is given as

∂u

∂t
+

∂u

∂x
= 0. (4.1)

In this case, we consider the initial disturbance at t = 0 as a Gaussian type
equation such as

u = exp
(

− ln(2)(x − x0)
2/b2

)

. (4.2)

The value b in Equation (4.2) defines the wavelength. The wavelength in-
creases as b increases. In the present case, b = 3 and b = 1.5 are selected as
long and short waves respectively. The wave is initially located at x0 = 50.
All simulations are performed using an equally spaced mesh with ∆x = 1.0
and a CFL number of 0.1. The standard fourth-order Runge-Kutta scheme
is used for time integration. The space discretization is performed by four
different schemes: 7-point central difference scheme (sixth-order), 7-point
DRP scheme (fourth-order), 5-point standard compact scheme (sixth-order)

63
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and 5-point optimized compact scheme (fourth-order). These schemes are
selected such that they are comparable in terms of stencil points and order
of accuracy.
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Figure 4.1: Propagation of waves at three time instant, T = 20, 50 and 80.
Simulated by sixth-order standard center difference scheme and fourth-order
DRP scheme. (a) b=3; (b) b=1.5.

In Figure 4.1 (a) and (b), results from 7-point explicit schemes are com-
pared for long and short wave cases. For the long wave case of b = 3, result
from the fourth-order DRP scheme fits well with exact data after some dis-
tance of propagation, as seen from Figure 4.1 (a). In general, result from the
standard scheme performs well until T = 80 where it becomes less accurate
as compared to DRP scheme. Larger difference are seen in the short wave
case for b = 1.5 where both of the two explicit schemes are not acceptable.
As seen in Figure 4.1 (b), the considerably strong oscillations are produced
by the two explicit schemes but DRP scheme still performs better. Examples
of using standard and optimized compact scheme are also shown in Figure
4.2 (a) and (b). For the long waves case, the results are well-fitted with
exact data by using the two types of compact schemes. In Figure 4.2 (b)
for the short wave case, it can be noticed from the plot that the optimized
compact scheme produce more accurate result with less dispersion error as
compared to standard compact scheme. The one-dimensional test cases has
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Figure 4.2: Propagation of waves at three time instant, T = 20, 50 and
80. Simulated by sixth-order standard compact scheme and fourth-order
optimized compact scheme. (a) b=3; (b) b=1.5.

shown that compact schemes are able to provide more accurate solutions
with the cost of longer computational time.

This one dimensional test case clearly demonstrated that compact schemes
perform better than explicit schemes at the same order of accuracy. And
more importantly, for both explicit and compact schemes, better solution
can be achieved by using the optimized schemes where computational cost
remains the same since the same stencil size is kept. However, at the same
order of accuracy, the price of using compact schemes is usually higher than
the explicit schemes. Some extra time is spent on inverting the matrix.
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4.2 Sound scattering from circular cylinder

The second test case is selected from the second computational aeroacoustic
workshop on benchmark problems [99] (problem 2 in Category I). The prob-
lem is considered as a simplified model in which the sound source generated
by a propeller is scattered off by the fuselage of an aircraft. The problem is
two-dimensional based on the assumption that the fuselage has a cylindrical
shape and the noise from propeller is a line source. This problem requires
finding the time history of acoustic pressure fluctuation p(t) at three points
A(r = 5, θ = 900), B(r = 5, θ = 1350), C(r = 5, θ = 1800).

The circular cylinder has a radius of r = 0.5 and is located at the center
of computational domain. The numerical calculation is carried out in a do-
main between two concentrical cylinders of r = 0.5 and r = 10.5. Since the
problem is symmetric, only half of the computational plane (θ = 0 → π) is
considered instead of using the entire azimuthal plane. The computational
grid contains 201×201 cells that are equidistant both in the radial and az-
imuthal direction. This is also a good case to test both wall and far field
boundary conditions on a curvilinear mesh.

At time T = 0, the initial pressure pulse is located at the position x = 4,
y = 0 and generated by Equation (4.3).

p(x, y, 0) = exp

[

− ln(2)
(x − 4)2 + y2

0.22

]

(4.3)

The initial velocities in the radial and azimuthal directions are set to
zero such as vr = vθ = 0. The linearized Euler equations in a polar frame
of reference is written as

∂
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
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1

r





0
0
vr



 = 0 (4.4)

In this example, the spatial derivatives are calculated using the fourth-
order DRP schemes with seven-point stencils. At the farfield and wall
boundaries, the seven-point backward difference DRP schemes are applied.
The farfield radiation boundary condition is written as

∂
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
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p



+
∂
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


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p


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1

2r





vr

vθ

p



 = 0 (4.5)
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The radiation boundary conditions are used for three layers of the com-
putational mesh near the farfield boundary, see Figure 3.18. No-slip bound-
ary conditions are applied on the wall boundary where the normal velocity
on the wall is set equal to zero. The normal derivatives ∂vr/∂r near the
wall are also computed by backward schemes. Instead of using entire in-
terior values for evaluating the derivatives, one ghost point is included for
each backward scheme near the wall. The computational domain is therefore
extended to one ghost point inside the physical wall. The ghost values are
calculated by extrapolation using the physical conditions that the normal
component of velocity on the wall and the pressure gradient normal to the
wall are zero. At the plane θ = 0 and θ = π symmetric conditions are used
such as

∂vr

∂θ
= 0 (4.6)

vθ = 0 (4.7)

∂p

∂θ
= 0 (4.8)

Their derivatives near the symmetric plane are treated as interior points with





vr

vθ

p





−j

=





vr

−vθ

p





+j

. (4.9)

where j represents the azimuthal direction. The instantaneous snapshots of
this simulation are shown in Figure 4.3. At time T = 2 and T = 3 waves
propagate in free space without touching any boundary. At time T = 4
the wave front reaches the cylinder surface and generates a smaller reflected
wave which propagates in the opposite direction as the main wave front. At
T = 6 the reflected wave is clearly seen, and besides this a third wave is
observed near the cylinder which is due to the diffraction of the first wave.
At T = 8 and T = 10 the initial pulse has already reached the out boundary
and as expected a smooth transition towards outside is seen.

The time history data of the pressure is compared to the analytical solu-
tion from the second CAA workshop [99] at three locations. To obtain the
analytical solution of the problem, the velocity potential φ(x, y, t) is intro-
duced

u =
∂φ

∂x
, v =

∂φ

∂y
, p = −∂φ

∂t
. (4.10)
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Figure 4.3: Instantaneous acoustic pressure contours at time T = 2, 3, 4, 6,
8 and 10. Contour level ± 0.025.
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Figure 4.4: Comparisons between computed and exact data. (a) Acoustic
pressure at point A (r = 5, θ = 900). (b) Acoustic pressure at point B
(r = 5, θ = 1350). (c) Acoustic pressure at point C (r = 5, θ = 1800).

By using this relation to the governing equation in a polar frame ( Equa-
tion (4.4)), the wave equation based on the velocity potential is obtained

∂2φ

∂t2
−
(

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

)

= 0. (4.11)

The equation was solved by the method of superposition by letting

φ(r, θ, t) = φi(r, θ, t) + φr(r, θ, t). (4.12)

where φi and φr are the incident wave and the reflected waves. The solu-
tion of the velocity potential is given in [99] and the sound pressure field is
calculated as p(r, θ, t) = −∂φ

∂t .

In Figure 4.4, it is seen that at the three reference points A, B and C,
good agreement is obtained between the simulated and the exact data. In
Figure 4.4 (a), the wave crest indicates the arrival of the incident wave from
the initial position x = 4 and y = 0. At time about T = 8.2, the reflected
wave arrives at the receiver point A. Very similar situation is shown in
Figure 4.4 (b) where the receiver is located at θ = 1350. In Figure 4.4 (c),
one might observe that the wave amplitude is much decreased as compared
to point A and B. This is due to the effect of wave reflection and diffraction
while the initial wave approaches the cylinder. Since the total sound energy
must be conserved, the incident wave (at θ = 180) will lost part of energy
to produce the other two smaller waves.
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4.3 Sound generation by a co-rotating vortex pair

In this test case, sound generation from co-rotating vortices is simulated.
The co-rotating vortices constitute a simple model of sound generation from
vortical flows. Vortical flows such as vortex shedding behind cylinders and
airfoils are typical examples of noise sources. For instance, wake behind a
circular cylinder contains vortex pairs and they are noise sources.

Since it is the vortical flow which is responsible for the sound generation,
the flow field needs to be studied first. The schematic of two point vortices
is given in Figure 4.5. The circulation of the vortices is Γ which indicates
the strength of the vortices. The vortices are spinning around each other on
a circle with a radius of r0. The angular rotational speed is ω = Γ/(4πr2

0),
the period of rotation is T = 8π2r2

0/Γ, and the rotating Mach number is
Ma = Γ/(4πr0c0).

Figure 4.5: Sketch of the vortex pair.

The theory of vortex induced sound has been studied by Powell [100]
early in 1964. Later on, the analytical solution of acoustic pressure field was
given by Müller and Obermeier [101] using the method of matched asymp-
totic expansions (MAE). Some numerical simulations were carried out in
recent years, among those, Lee et al. [102] and Ekaterinaris [103] did the
calculation using MacCormack’s predictor corrector scheme and high-order
upwind scheme, respectively. In the present numerical study, sixth-order
optimized compact schemes are applied for two dimensional acoustic equa-
tions which is given as
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. (4.13)

The acoustic equations were derived by incompressible/acoustic split-
ting technique [1, 2], see also Section 2.7. Therefore the present study is
a numerical test for both high-order compact schemes and the incompress-
ible/acoustic splitting method. In Equations (4.13) , U, V and P are incom-
pressible parameters that are required as input for the acoustic equations.
These flow variables are usually obtained by solving the incompressible flow
field. However, in this case the incompressible flow field is described analyt-
ically as shown below

U − iV =
Γ

iπ

z

z2 − b2
(4.14)

P = P0 + ρ0
Γω

π
ℜ
(

b2

z2 − b2

)

− 1

2
ρ0(U

2 + V 2). (4.15)

The incompressible velocities and pressure field are given in Equations
(4.14-4.15) and they are used as the inputs to the acoustic Equation (4.13)
at each time iterations. In Equation (4.14) and (4.15), z = x + iy = reiθ,
b = reiωt are complex functions and ℜ indicates the real part of the complex
number.

A plot of the incompressible U velocity field is shown in Figure 4.6 and
the plots for V and P are quite similar to U . Figure 4.7 is the resulting
sound pressure field. It is seen that there is a large extend of acoustic field
compare to the flow field. It is natural that the flow field is solved with a
mesh that clustered to the vortex pairs. However, it can be seen from sound
pressure plot that sound waves extended throughout the computational do-
main and nearly have same order of magnitudes. Therefore, the mesh should
not be too coarse in the farfield region to maintain wave propagation. Also
what can be seen in the acoustic pressure plot is that the amount of energy
of sound field is relatively small. Errors can easily arise due to numerical
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discretization or boundary conditions which may become new sound source.
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Figure 4.6: Incompressible velocity U .
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Figure 4.7: Sound pressure p′.

The computational domain is covered with a equi-distant Cartesian mesh,
as shown in Figure 4.5. In this case, farfield boundaries are located at the
four edges of the computational domain. At the far field boundaries, the
radiation boundary conditions of Tam and Webb [12] are used, see Equation
(3.69) to Equation (3.72). The group velocity in this case is

Vθ = (U + u′) cos(θ) + (V + v′) sin(θ) + c0 (4.16)

where θ is the polar angle and c0 is the sound speed.

The analytic solution by Müller and Obermeier [101] are used to validate
the numerical simulation, the fluctuating pressure is given by

p′ =
ρ0Γ

4

64π3r4
0c

2
0

[J2(kr) cos(2(ωt − θ)) − Y2(kr) sin(2(ωt − θ))] (4.17)

where k is the wave number, J2 and Y2 are the second-order Bessel function
of first and second kind, respectively. In the present numerical simulation,
the circulation of the vortices Γ is chosen as 2π/10, and both the sound speed
c0 and the core radius r0 are set to one. The numerical and analytic solutions
are plotted together in Figure 4.8 which shows data along the diagonal
direction. General agreement is found between simulated and analytic data
except at locations near vortex core where a singular point exists (1/r → ∞).
However, the near core region can not be accurately simulated due to the
singularities of flow field and the analytical solution (Equation (4.17)) is
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p′ = −∞ at the core center, see Figure 4.8. In some other numerical studies,
vortex core models are used to simulate the core region to obtain smooth
solutions, such core models are referred to in [104, 105]. Another comparison
is shown in Figure 4.9 where the sound pressure plot shows good agreement
between simulated (lower half the domain) and analytic results (upper half
of the domain) both in magnitude and phase.
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Figure 4.8: Comparison of acoustic perturbation between simulation and
analytic data along diagonal direction.

Figure 4.9: Comparison of the analytic (upper) and computed (lower) sound
pressure field.



Chapter 5

2D flow and acoustic analysis

In this chapter, the two-dimensional flows and acoustic wave generation for
flow past a circular cylinder are solved with EllipSys2D code. Both circular
cylinder in a uniform mean flow and in an oscillatory flow are studied sepa-
rately. The study is continued with noise generation from a two-dimensional
NACA 0012 airfoil due to both laminar and turbulent flows.

5.1 Circular cylinder in a uniform mean flow

The flow around a circular cylinder is a problem of interest in fundamen-
tal fluid mechanics and experimental studies of cylinder flow are still one
of the popular topics. Study of the flow and acoustic field around cylinder
was pioneered by Strouhal [106] early in 1878. It was found in his experi-
ments that the sound frequency from the cylinder is related to the Strouhal
number defined as St = fD/U∞. If the cylinder diameter D = 1 and free
stream velocity U∞ = 1, the sound frequency f should take the same value
as Strouhal number. Later in this section it will be shown that the sound
generation of a circular cylinder is mainly due to the fluctuating lift which
has the same frequency as the Kármán vortex street. Recent studies of
low Reynolds number flow and acoustics around a circular cylinder have
been carried out by Shen and Sørensen [9, 11], Kim and Lee [89], Inoue and
Hatakeyama [8], Ewert and Schröder [108], Seo and Moon [109, 110].

In the present numerical simulation, flow past a circular cylinder at a
Reynolds number Re = 200 and a Mach number M = 0.2 is considered. The
computational domain extends radially away from the cylinder walls about
50 cylinder diameters. The O-mesh consists of 256 cells in the circumferen-
tial direction and 128 cells in the radial direction given a total 32768 grid
points. The mesh is equally spaced in the circumferential direction and
exponentially stretched in the radial direction. Time integration method
for the acoustic field is fixed to a fourth-order Runge-Kutta method for all

74
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simulations and various high-order spatial schemes are analyzed. For con-
venience both the cylinder diameter, the free stream velocity in x-direction
and fluid density is set to unity.
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Figure 5.1: Incompressible pressure (left) and vorticity field (right).

The resulting flow field is shown in Figure 5.1 which are the incom-
pressible pressure and vorticity contours. The forces acting on the cylinder
surface are shown in Figure 5.2 in terms of lift and drag as function of time,
these are calculated by integrating the pressure and shear stress distribu-
tions along the cylinder surface. The vortex shedding does not occur for a
considerable long time. At non-dimensional time about 100 the shedding
initiated and flow entered into a periodic state. After the periodic mode is
set in, the Strouhal number is found to be St = 0.1936. For vortex shedding
from a circular cylinder, an empirical relation was proposed by Fey et al.
[107] which is given as

St = 0.2684 − 1.0356/
√

Re. (5.1)

From this relation the Strouhal number is found to be 0.195 at Re = 200
which is quite close to the computed value.

The instantaneous contour plot of the fluctuating pressure p′ is shown
in Figure 5.3 at T = 200. The acoustic waves are seen to propagate in
the direction normal to the mean flow which is related to the lift force on
the cylinder. Time histories of the acoustic pressure are shown in Figure
5.4. The signal with higher magnitude (solid line) is measured at about 10
diameters away from cylinder along the y-direction. The dashed line has
smaller magnitude which is measured at the same distance but an angle



CHAPTER 5. 2D FLOW AND ACOUSTIC ANALYSIS 76

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

1.5

2

Time

Li
ft 

an
d 

D
ra

g

Lift
Drag

Figure 5.2: Time history data of lift and drag for flow past a circular cylinder
at Re=200.

Figure 5.3: Snapshot of fluctuating pressure p′ for flow past a circular cylin-
der at Re=200, M=0.2.

of 45 degrees with respect to y-axis. It is seen that the recorded acoustic
signals propagate periodically and conserves the amplitude even after quite
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long time. The time series data are used for Fourier analysis to investigate
their relation with unsteady forces. Figure 5.5 shows the spectra for lift,
drag and acoustic signal. For comparison purposes, the magnitudes are nor-
malized and it is the frequency band of interest here. First we see that the
frequency of lift (shedding frequency) is about 0.194 and the drag frequency
is about 0.385. The drag frequency is double of the frequency of lift force
which is consistent with theory. Secondly, for the acoustic signal, the first
two frequency modes clearly match the frequency of lift and drag signal.
According to Strouhal [106], the dominant frequency of acoustic radiation
is the Strouhal number which is verified in the present simulation. More-
over, the contribution of drag force is negligibly small as depicted in Figure
5.5. The solution obtained with the sixth-order optimized compact scheme
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Figure 5.4: Time history of acoustic pressure for flow past a circular cylinder
at Re=200, M=0.2.

is compared with a second-order finite difference/finite volume solution by
Shen and Sørensen [9, 11]. In Figure 5.6, it is seen that solution of the
high-order scheme has a amplitude about 5% higher than the second-order
scheme. Also there is a phase difference of the two solutions due to the
use of different time marching schemes (RK4 for the high-order scheme and
Crank-Nicolson for the second-order method). A comparison using differ-
ent high-order finite difference schemes are also compared, see Figure 5.7.
Three schemes are selected for comparison, the fourth-order DRP schemes
(7-point stencil), the tridiagonal eighth-order standard compact scheme (7-
point stencil on right hand side) and the tridiagonal optimized sixth-order
compact scheme (7-point stencil on right hand side). The performance of
three schemes is similar where advantage of higher-order scheme can be seen.
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Figure 5.5: Aerodynamic force and acoustic pressure spectrum.

The dimensionless time step ∆t = 0.001 is generally used in the present
simulation. The effect of using different time step is shown in Figure 5.8
where solutions obtained by ∆t = 0.002 and ∆t = 0.0005 are compared.
The effect of increasing time step by four times larger does not significantly
affect the solution, the amplitude of the acoustic wave is decreased about
2.5%.

In case of high Reynolds number flow, the grid size can be significantly
smaller, so the time step for acoustic simulation also becomes quite small.
One way to make the simulation more efficient is to use a few subiterations
for the acoustic simulation. For example, a time step ∆t is used for flow
simulation and n-iteration is performed for acoustic calculation with a time
step ∆t/n. In this way the flow equations does not need to be solved with
the same time step as for the acoustic equations. The assumption is made
that the required flow quantities at time t + ∆t/n are calculated by linear
interpolations. The application of using acoustic subiteration is seen in
Figure 5.9 where solutions from the two cases are very close. Different high-
order filter schemes are available in the acoustic solver, the acoustic time
history data show that the wave amplitudes are weakly affected by filter
schemes. A closer look of filter schemes is shown in Figure 5.10 where both
the sixth-order and tenth-order filters produce very similar results. Finally,
the directivity pattern of cylinder noise is measured at a radius of about
r = 15. From the figure, the radiation is mainly in y-direction and the effect
from the fluctuating drag is small.
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Figure 5.6: Time history acoustic pressure calculated with: (1) sixth-order
optimized compact schemes and (2) second-order finite volume method.
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5.2 Circular cylinder in an oscillatory flow

In this section, flow and acoustic simulations are carried out by considering
a two-dimensional flow past a cross-flow oscillating circular cylinder (inflow
direction is orthogonal to the oscillating direction). The study is an exten-
sion of previous section and the relation of excitation frequency and acoustic
spectra are of our interest here.

Low-Reynolds-number flow around an oscillating circular cylinder has
been a popular fluid mechanics topic for the last few years. A physical
model could be involved with the offshore engineering, such as tower-water
interaction of an offshore wind turbine tower. It has been recognized for
many years that the frequency of the external oscillation has a significant
influence on the vortex shedding frequency on the cylinder and therefore
changes the dynamic force behavior on the cylinder. These phenomena
were documented by many researchers such as numerical study by Gu et al.
[111], Lu & Dalton [112], Blackburn & Henderson [113] and Uzunoǧlu et al.
[114], and experimental study by Ongoren & Rockwell [115], Williamson &
Roshko [116] and Blackburn & Melbourne [117]. The focus of the present
study is the associated sound generation of oscillating cylinder, a subject
that has not been treated in the previous studies.

Here we consider a flow at a Reynolds number of 500 and with a fix
motion of amplitude of Ae = 0.25D where D = 1 is the cylinder diameter.
The simple harmonic cross-flow oscillation is given as

ye = Ae cos(2πfet) (5.2)

where fe is the oscillating frequency. Therefore, the excitation velocity is
defined as

Ue = dye/dt (5.3)

For a body moving in an incompressible fluid, Price and Tan [118] showed
that the Navier-Stokes equations formulated in a moving frame reference
attached to the body are given in terms of disturbed fluid velocity and the
mean pressure such as

∂Ui

∂t
+

(∂UiŨj)

∂xj
= − 1

ρ0

∂P

∂xi
+ ν

∂2Ui

∂xi∂xj
(5.4)

∂Ui

∂xi
= 0. (5.5)
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This formulation is quite similar as the standard incompressible equation
such as Equation (2.21). In Equation (5.2), P, ρ0 and Ui are the incom-
pressible pressure, the density and the velocity components, respectively.
And Ũj = Uj − Ue is the relative velocity seen from the body.

First, flow around a stationary cylinder at Re = 500 is simulated and a
Strouhal number of fo = 0.218 is found. Next, flow around an oscillating
cylinder is simulated for three oscillating frequencies, fe = 0.22, 0.23 and
0.25, corresponds to fo/fe = 1.009, 1.055, 1.147. If in such cases the Strouhal
frequency is not the dominant frequency, then we shall see the changes of
acoustic spectra. The results of the flow simulations are presented by time
history data of lift and drag. These flow simulations were performed for
a dimensionless time of 1000 which is quite long. The long time period of
simulations are necessary since Cd and Cl never appear periodic, see Figure
5.12 and Figure 5.13. In the case that the oscillating frequency is very close
to the vortex shedding frequency (fo/fe = 1.009), the fluctuation of lift
and drag is most distinguishable. For all the three cases, the flow fields
are slightly chaotic seen by the force signals. As the oscillating frequency
increases, lift and drag signals tend to be periodic since the external force
becomes the driving force.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

Time

C
D

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

Time

C
D

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

Time

C
D

case 3

case 2

case 1

Figure 5.12: Time history drag. case 1: fe = 0.22 Hz; case 2: fe = 0.23 Hz;
case 3: fe = 0.25 Hz.

The acoustic pressure signals are recorded at 10 diameters way from
cylinder along the y-direction for three oscillating cylinder cases. The time
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Figure 5.13: Time history lift. case 1: fe = 0.22 Hz; case 2: fe = 0.23 Hz;
case 3: fe = 0.25 Hz.

history acoustic pressure values are plotted in Figure 5.14. Again the acous-
tic signals are non-periodic as expected. The acoustic signals are in the same
range while in the case fe = 0.23 the amplitude is slightly higher which im-
plies stronger second harmonics as compared to other two cases.

As an example, the acoustic pressure contour at fe = 0.25 is shown in
Figure 5.15. The sound still propagates radially away from the cylinder and
new contribution is the down wash and up wash of the waves which can
be seen from the plot. The vorticity contours are shown in Figure 5.16 at
the maximum and minimum excursion positions of the cylinder. It can be
seen that with the external excitation the wake vorticity moved closer to the
cylinder which was also discussed by [112]. It may also be noted that the vor-
ticity are not alined in the wake such as in a classical Kármán vortex streets.

We also look at acoustic spectra to see the effects of external oscilla-
tion. Such an example is given at fe = 0.25 where acoustic signals at four
positions (θ = 0, π/2, π, 3π/2) are recorded. The frequency distribution is
the same for all the four signals, see Figure 5.17. The figure clearly shows
that the first harmonic has the same frequency as the oscillation frequency,
and that the second and the third harmonic exists at a frequency of 0.5 Hz
and 0.75 Hz, respectively. Therefore it can be concluded that the dominant
frequency is not the Strouhal frequency but the oscillating frequency.
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Figure 5.14: Time history acoustic pressure. case 1: fe = 0.22 Hz; case 2:
fe = 0.23 Hz; case 3: fe = 0.25 Hz.
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Figure 5.17: Acoustic pressure spectra at four receiver points with external
oscillation fe = 0.25 Hz.

Figures 5.18, 5.19 and 5.20 show more information about the correla-
tion between the spectra of forces and acoustic signals. The general trend
is that the oscillating frequency dominates both the flow and the acoustics
behavior. Moreover, the second harmonics are quite strong, as compared to
the non-oscillating case (see Figure 5.5 for comparison). Since the second
harmonic of the flow is not negligible, the influence must be shown on the
acoustic solution. In Figure 5.18, we see that at frequency of 0.44 Hz the
second harmonic of acoustic signal has the energy about nearly 60% of the
first harmonic which produced a totally different acoustic field.

A short conclusion from two-dimensional flow and acoustic study is that
the acoustic solution is closely correlated with unsteady forces on the cylin-
der. The dominant unsteady forces (lift or drag) created by the flow field
also dominate the acoustic field. The main part of the acoustic energy
comes from the dominant force and the rest of the energy is from other
sub-harmonics. The magnitude of sub-harmonics were negligible in the case
of a flow over a stationary cylinder (see Figure 5.5). By introducing an
external oscillation to the cylinder, the second harmonic can be easily dis-
tinguished on the sound spectrum (see Figure 5.17). The reason was found
by comparing the force spectra to the sound spectra (see Figure 5.18-5.20)
where the magnitudes of drag forces have increased significantly. There-
fore the distribution of sound energy is proportional to the energy of force
distribution.
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Figure 5.18: Comparison of lift, drag and acoustic pressure spectra with
external oscillation fe = 0.22 Hz.
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Figure 5.19: Comparison of lift, drag and acoustic pressure spectra with
external oscillation fe = 0.23 Hz.
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Figure 5.20: Comparison of lift, drag and acoustic pressure spectra with
external oscillation fe = 0.25 Hz.
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5.3 Low Reynolds number airfoil flow

Airfoil noise prediction is generally of more interests in practice. Numerical
simulations of noise from aircraft, wind turbine and turbo-machinery are
based on information of sound generation from single airfoils. The com-
putational case considered in this section is flow past a 2D NACA 0012
airfoil at a Reynolds number 200. The angle of attack is 20 degrees and
the flow Mach number is 0.2. The flow solver is again a second-order finite
volume method. The acoustic computations are performed with the sixth-
order optimized compact finite difference scheme and for time advancement
the fourth-order Runge-Kutta method is used. A 2D structured body-fitted
O-mesh is generated with 9 blocks and 64×64 mesh points in each block.
The computational domain extends 50-chord length radially away from the
airfoil. The computational grids in the radial direction are exponentially
clustered on the airfoil surface and the orthogonal O-grid is constructed by
using a conformal mapping, see Shen and Sørensen [119].

The development of the acoustic pressure field is shown in Figure 5.21.
Figure 5.21 (a-c) show the initial state of sound fields. The acoustic com-
putation was started at a certain time when flow around the airfoil was
fully established. In such a way, the initial acoustic pattern was produced
by the sudden impact of flow field. The periodic acoustic waves appear in
Figure 5.21 (c) where a positive and a negative noise sources are seen on
the airfoil surface. This is due to waves which propagate at opposite phase
on the upper and lower side. Figure 5.21 (d) illustrates the fully developed
acoustic pressure field at T=20. There are about four wave crests in the
computational domain and each wave has a wavelength approximately of 14
chord lengths (see also [11]).

The time history of acoustic pressure signals are plotted in Figure 5.22
at two receiver points (θ = 0, 90 degrees and r = 10). After a short period of
transients, the acoustic signals became periodic, as also seen in the former
case of flow past a circular cylinder. A guess could be that the acoustic
frequency is close to or identical with the vortex shedding frequency. This
is proved in Figure 5.23 where the non-dimensional lift and acoustic signals
are plotted together. Even without performing Fourier transform, it is seen
that the two signals have a same frequency (f=0.35). One can also see a
small phase lag between the force and the acoustic signals. Since the forces
are measured on the airfoil surface, while the acoustic signal are recorded
a few chord lengths away from the surface, therefore the time delay (phase
lag) is exactly the distance (from the receiver to airfoil surface) divide by
the sound speed.

The sound directivity in Figure 5.24 shows that the current directivity
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Figure 5.21: Development of acoustic field of NACA 0012 airfoil at Re =
200, M = 0.2. (a) t=2; (b) t=4; (c) t=6; (d) t=20.

pattern is skewed about 20 degrees due to the effect of angle of attack.
In Figure 5.25, we show the sound pressure along a straight line x = 0. As
mentioned earlier there are four wave crests visible and at y = 0 the pressure
data is discontinues where the airfoil is located. The purpose is to show that
the wave amplitudes decay as a function of r−

1

2 which fits quite well with
the two-dimensional acoustic propagation theory. This figure alternatively
shows that the acoustic prediction is accurate in the farfield with the present
mesh quality. For example, at the region between r = −40 and r = −50
there are about 10 mesh points supplying one acoustic wave and the wave
amplitude still obeys the acoustic theory (the peak fits well with the dashed
line).
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Figure 5.22: Time history of acoustic pressure for flow past NACA 0012 at
Re=200, M=0.2.
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Figure 5.24: Sound directivity of NACA 0012 airfoil.
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5.4 Turbulent airfoil flow

The second case concerns the flow at a Reynolds number 100 000. The an-
gle of attack is 5 degrees and the Mach number is 0.2. The two-dimensional
O-mesh is about 20-chord length in radius and contains 96×64×64 mesh
points where 96 is the number of blocks, with 64×64 mesh points in each
block. There are 8 blocks in the radial direction with the grids clustered on
the airfoil surface. The first point way from the airfoil is approximately 10−5

of the chord length. The number of blocks in the circumferential direction
is 12 with equidistantly distributed meshes. The attempt is first to use a
very fine mesh which makes it possible to apply direct simulation of the
incompressible NS equations instead of using a turbulence model. Also it
ensures that the mesh quality fits the requirement of acoustic computations.
As a comparison, another computation was performed on a mesh with only
half as many cells and use LES turbulence model. The resulted flow field is
almost the same and the acoustic spectra are found similar.
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Figure 5.26: Incompressible pressure (left) and vorticity field (right).

The incompressible pressure and vorticity plots are shown in Figure 5.26.
It can be noticed that the separation from laminar state to turbulent oc-
curs at the region between x/c = 0.3 and x/c = 0.4. From the left plot of
Figure 5.27 it is seen that the acoustic source regions are closely matched
with the separation region where flow is most unsteady. The right hand side
of Figure 5.27 shows the snapshot of fully developed acoustic pressure field.
The color scale shown in 5.27 is between −10−3 and 10−3. Comparing the
results to the laminar flow, it is found that there are more wave crests in
the turbulent case, indicates noise is generated at higher frequency band. A
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three-dimensional contour plot of acoustic pressure is shown in Figure 5.28.
Noise sources can be seen near the center of the domain and acoustic waves
propagate radially towards the outer boundary. Both flow and acoustic

Figure 5.27: Acoustic pressure contour at initial time (left) and after fully
developed (right).

simulations are carried out in a non-dimensional way, with the Reynolds
number and Mach number as input information and other quantities set
equal to unit. Fourier transformation of the acoustic signal is performed at
a selected receiver point with real dimensions. Assuming that sound speed
is known, e.g. 340m/s, the dimensional inflow speed U is known based on
the given Mach number. The actual chord length is therefore calculated
with c = Re · ν/U . Finally, dimensional time is obtained by scaling with a
factor of U/c. In such a way the sound pressure level can be computed as

SPL = 20 log 10(S/N/Pconst · 1bar/
√

2/Pref ) (5.6)

where S is the magnitude obtained from Fourier transform of the acoustic
time history signal at a receiver point, N is the number of sampling points,
Pref = 2×10−5 is the reference pressure for noise propagation in a standard
atmosphere and Pconst = ρ/(γ ·M2), where γ denotes the specific heat ratio.
In the frequency domain, the acoustic spectrum (recorded at a position of
x = 0.5 and y = 2.5) is compared with the force spectrum, see Figure 5.29.
In order to compare the spectra in the same plot, the noise and force am-
plitudes are non-dimensionalized with their maximum values, respectively.
Although the lift and acoustic signals are obtained by different sets of equa-
tions: the incompressible NS equations and the acoustic equations, their
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Figure 5.28: Three-dimensional view of acoustic pressure field for flow past
NACA 0012 at Re=100 000, M=0.2.

spectra are quite similar, indicating that the dependence between the force
fluctuation and the sound generation. It is possible to see from Figure 5.29
that the energy distribution in the acoustic spectrum is very close to that
in the lift spectrum particularly at those highest peaks. This proves that in
this case the generation of noise is due to the lift force fluctuation on the
body surface. According to the theories of Curle [4], turbulent flow produces
fluctuating lift on solid bodies and should result in the generation of sound.
It is noted that if the unsteady loading acting on a solid body is known as
a function of time, the sound frequency distribution can be also estimated.
In the present case the drag force is rather small compared to the lift force,
therefore the fluctuating lift is the dominant noise source and the contribu-
tion from the drag force is negligible small.

The computation was also performed on a coarser mesh with 48×64×64
grid cells, with 6 blocks in the radial direction and 8 blocks in the circumfer-
ential direction. The flow field was found to be extremely close for two mesh
types where the time average of aerodynamic lift is Cl = 0.608. However, in
Figure 5.30 difference can be found from acoustic solutions where the dashed
line indicates the spectrum obtained by using coarser mesh. The difference
is smaller at low frequencies and becomes more significant as frequency in-
creases. The knowledge behind this is that the finer the computational
mesh, the more accurate solutions are expected. However, for flows at high
Reynolds numbers it is hard to create a mesh that resolves all structures in
detail. For three-dimensional acoustic simulations, a balance between grid
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size and computational costs need to be found.
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Figure 5.29: Comparison of non-dimensional noise spectrum with lift and
drag spectrum (α = 50).
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Figure 5.30: Acoustic spectra obtained from two meshes (α = 50).

In the previous section it has been found that at Re = 200 and α = 200,
only tonal noise is generated by the vortex shedding. And in the present
turbulent case, we observed a broad band noise distribution as shown in
Figure 5.29 and Figure 5.30. It is understood that the broad band noise
was contributed by unsteady flows at different airfoil locations (see Figure
5.26). However, for turbulent flow over a symmetric airfoil at zero inci-
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dent angle the noise generation was found to be different. We repeat the
computation with an angle of attack zero degree instead of five degrees and
still keep the same Reynolds number. The sound pressure field is plotted
in a square domain of five chord lengths, see Figure 5.31. The sound waves
propagate radially away from the airfoil and the wave patterns are seen to
be symmetric. The FFT analysis proved that there is only one tonal noise
observed from the sound spectrum. In Figure 5.32, the dashed line indicates
the scaled lift spectrum and the line with square markers was obtained from
the experimental data of Brooks et al. [125]. There is a coincidence of vor-
tex shedding frequency (the lift spectrum) and the acoustic tonal frequency
(at 8.2 kHz). This indicates that the mechanism of sound generation in
this case is purely due to the vortex shedding and there is no other source
which contributes to noise generation. The solution was also compared with
experimental data (in ref. [125], Figure 71(b)) with similar conditions (Re
= 96000) as our numerical simulation. By comparing the two sound spec-
tra in Figure 5.32, it is seen that there is a general agreement of the peak
frequencies. The predicted tonal noise has a very narrow frequency band
width and the experimental data covered a wider frequency range. The tur-
bulent inflow is known to be able to generate broad band noise which might
be the reason that the experimental data has a wider band width. Such

Figure 5.31: Acoustic pressure field (α = 00).
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Figure 5.32: Comparison of acoustic spectra to lift spectrum (α = 00).

kind of tonal noise was reported by Brooks et al. [125] which was named
as laminar boundary layer vortex shedding (LBLVS) noise. The tonal noise
was discovered for a untripped (smooth) airfoil as shown in reference [125],
Figure 71. However, the sound spectrum was found broadband for a tripped
(with a strip at 30% chord) airfoil seen in Figure 38, reference [125]. The
numerical and experimental studies indicate that sound generation is very
sensitive to the flow field. There might be significant changes of sound field
even by changing a little of the attack angle or the surface roughness.



Chapter 6

3D flow and acoustic analysis

In this chapter, three-dimensional flow and acoustic simulations are carried
out for three cases. The first simulation is the low Reynolds number flow
around circular cylinder. The second case studies the turbulent airfoil flow
at Reynolds number of 105 using LES. Finally, flow and acoustic analysis
were performed for a large wind turbine using RANS.

6.1 Low Reynolds number cylinder flow

Simulation of a three-dimensional cylinder will be considered as a check of
the three-dimensional code for flow and acoustics. At a Reynolds number
of 200, there should be no three-dimensional effect or their effect would be
extremely weak. If the flow appears only two-dimensional we can expect
that the acoustic solution is also two-dimensional.

The cylinder diameter is D = 1 and the length of the cylinder is L = 5D.
The computational domain extends radially outwards and the outer bound-
ary is bounded at r = 50. The total number of grid point is about 0.88
million with 192 points in the circumferential direction, 96 points in the
radial direction and 48 points in the spanwise direction. The flow Mach
number of is 0.2. The periodic boundary conditions is set in the spanwise
direction. Dimensionless time step of 0.001 is used for the acoustic simula-
tion. In order to make the computation more efficient, the flow simulation
was carried out without the acoustic part until flow is stabilized. Flow and
acoustic computation were then restarted based on the stabilized flow so-
lution till dimensionless time of about 30. The iso-surface plot of acoustic
pressure is shown in Figure 6.1. The sound sources are generated from the
top and bottom side of the cylinder surface and they are opposite in phase.
More importantly, the sound waves are in fact purely two-dimensional as can
be seen in Figure 6.1 that it is constant along the spanwise direction. The
acoustic signals of two- and three-dimensional simulations are compared and

99
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Figure 6.1: Iso-surface plot of acoustic pressure distribution from a 3D cir-
cular cylinder at Re=200, M=0.2.

results are shown in Figure 6.2. In the ideal case we should see that the two
acoustic signals fit together since the third velocity component (in spanwise
direction) of flow and acoustic are expected to be zero. This is almost true
as demonstrated in Figure 6.2 where the difference is quite small. Our expe-
rience is that at Reynolds number up to a few thousands even though flow
is fully three-dimensional the acoustic solution still has two-dimensional be-
havior. However, in the next simulation we shall see that for the turbulent
case, the acoustic field is strongly affected in the spanwise direction.
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Figure 6.2: Comparison of the acoustic pressure signals for 2D and 3D case
flows past a circular cylinder at Re = 200, M = 0.2.
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6.2 High Reynolds number airfoil flow

In this case, flow past a NACA 0012 airfoil at a Reynolds number of 105 is
considered. The angle of attack is set at 50 and flow Mach number is 0.2.
The total number of grid points is 2.6 million and the O-type domain is di-
vided into 24 blocks. There are 192 points in the circumferential direction,
96 points in the radial direction and 48 points in the spanwise direction.
The size of the smallest grid near the wall surface is about 10−4 of the air-
foil chord. The dimensionless time step for acoustic simulation is set to be
10−4 which corresponds to a CFL number of one. The trend is that as the
Reynolds number goes higher, the grid size needs to be smaller therefore the
time step for acoustic simulation is more restricted. Since the number of
grids are also increased, the computational cost becomes much higher. The
present flow and acoustic simulation took about one and half months with
24 processors at 2.4GHz and the CPU efficiency is around 85%.

Figure 6.3: Iso-surface plot of streamwise vorticity Ωx for flow past a NACA
0012 airfoil at Re=100 000, M=0.2 and α = 50.

Flow simulation was first run until dimensionless time about 45. The three-
dimensional NS equations were solved together with LES turbulence model.
The eddy viscosity νt is determined by the mixed turbulent model developed
by Ta Phuoc [120]

νt = C | ~ω |α k(1−α)/2∆(1+α). (6.1)

In Equation (6.1), C is a constant which is set to 0.02 in the present nu-
merical study, ~ω is the curl of velocity (i.e. the vorticity), k is the turbulent
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kinetic energy, ∆ is the grid size and α is a free parameter taken a value in
the range between 0 and 1. The mixed model of Ta Phuoc [120] reduces to
the vorticity model in the case when α = 1 and becomes the Bardina model
[121] as α = 0. In the present study, α = 0.5 is used which was also proved
to be an optimum value [120, 122]. The resulted vorticity iso-surface plot
is shown in Figure 6.3. The small turbulence scales are seen on the airfoil
surface and the eddy size becomes larger in the wake which is affected by
the coarser mesh. These small eddies are never seen by two-dimensional
simulations for lack of mixing of positive and negative vorticies. The mean
lift coefficient is found to be Cl = 0.586 and the two-dimensional computa-
tion gives over predicted result of Cl = 0.608. As shown in Figure 6.4, the
computed Cl value is very close to the experimental data by Sheldahl and
Klimas [123]. Validations of the present turbulence model were performed
by Shen and Sørensen [124]. By comparing the calculated lift and drag co-
efficients to the experiment data, good agreement was obtained for angle of
attacks below 100, see Figure 6.4.
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Figure 6.4: Comparison of lift and drag coefficients to the data from Sheldahl
and Klimas [123].

The acoustic pressure field is shown in Figure 6.5 at dimensionless time
about 10. The propagation is still in the radial direction and the phases of
the waves are opposite on the pressure and suction sides of the airfoil. The
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Figure 6.5: Iso-surface plot of acoustic pressure distribution from a NACA
0012 airfoil at Re=100 000, M=0.2 and α = 50.

three-dimensional calculation shows that the acoustic waves are more irreg-
ular. This is because that the turbulent eddies on the airfoil have different
size and strength which are all contributed as noise sources. All the small
noise sources contribute to the overall noise generation from the airfoil and
the dominant sources are located near the trailing edge where the strength
of the vortices are known to be stronger.

In Figure 6.6, a comparison of acoustic spectrum against measurements
is also performed. The simulation was carried out in a dimensionless form
with unit inlet velocity and unit chord length. The present numerical result
needs to be re-scaled to dimensional data. For a given Mach number 0.2 and
sound speed 340 m/s, we obtain the free stream velocity of U∞ = 68 m/s.
The real chord length is therefore calculated as Chord = Re · ν/U∞ = 2.2
cm. Experiments for noise generation from low Reynolds number flow is very
difficult and experiments done by Brooks et al. [125] provided us an opportu-
nity to make a comparison at the modest Reynolds number around 105. The
experimental noise spectrum was obtained for flow past a NACA 0012 airfoil
with chord length of 2.54 cm and an angle of attack of 4.80 at the observer
positioned perpendicular to, and 1.22 m from the trailing edge. The receiver
point of the present numerical simulation was also positioned perpendicular
to the trailing edge but only two chord length away from the trailing edge.
In practice, the numerical test point can be selected at the same position as
used in the experiment which is around 48 chord length away from trailing
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Figure 6.6: Comparison of acoustic sprectra in 1/3-octave band. The mea-
surement data is obtained from ref. [125].

edge. Our computational domain in the present case is only 20 chord lengths
and to increase the size of domain will make the mesh even coarser. There-
fore, the acoustic signal was recorded at the position of two chord lengths
with a large grid density. Assuming a cylindrical propagation the correc-
tion to the recorded acoustic signal is 10 log(1/48) − 10 log(1/2) = −13.8
dB. In Figure 6.6 four spectra were compared in the 1/3-octave band (see
Table 6.1 for the center frequencies): the experimental data, the data from
semi-empirical model [125], two- and three-dimensional numerical simula-
tions. The narrow band numerical data were averaged in 1/3-octave band
to follow the same format as experiment data. Neither the semi-empirical
data nor the numerical data fit well with the experimental data. The nu-

20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000

1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000

Table 6.1: Standard octave (bold numbers) and 1/3-octave band center
frequencies (in hertz).

merical simulations over predicted the sound pressure level especially for the
two-dimensional calculation. The three-dimensional simulation seems to be
closer to the experimental data except at the lower frequency range where
predicted value is apparently higher. However, it is never easy to make such
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Figure 6.7: Rotor description of the NREL5MW virtual wind turbine.

comparisons since there are several issues that affect results from experi-
ment and numerical simulations. For example, the smoothness of the airfoil
makes sense for stability and transition therefore the generation of sound
will be different. This phenomena was reported by Nash et al. [126] where
they repeated a same set of experiment for a smooth and a further smoothed
NACA airfoil. The smoother airfoil showed tonal acoustic response over a
wide range of speeds and angles of attack. For the numerical simulations, a
uniform inflow condition was applied at the inlet of computational boundary
which is not the same case for wind tunnel measurement. Also only limited
number of grid points are employed for numerical computation and the grid
dependency study is expensive.

6.3 Flow over a wind turbine blade

In this section the numerical simulation is continued for a large wind turbine
blade. The wind turbine was designed by the National Renewable Energy
Laboratory (NREL) as a test wind turbine. The wind turbine is three bladed
and supposed to be rated at 5 MW or higher. Each blade is 63 m long and
with a quite smooth twist distribution, see Figure 6.7.

The configuration of the computational mesh is shown in Figure 6.8. The
blade surface mesh was generated by Matlab together with Gridgen. The
surface mesh was made very orthogonal since it will influence the overall
mesh quality. The in-house hyperbolic mesh generation code was applied to
create the body-fitted structured grid. The mesh was created for one blade
and assuming periodic boundary condition at the two azimuthal surfaces.
The wind goes through z-direction and the blades rotate in clockwise di-
rection seen from the upwind direction. The total number of grid points is
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Figure 6.8: Mesh configuration of the NREL5MW virtual wind turbine.

2.62 million and the domain was divided into 10 blocks each consists 643

grid points. The domain consists two parts: the inner part with 5 blocks
surrounding the blade and the outer part with another 5 blocks surrounding
the inner part. In Appendix C, more details of the grid generation for a
wind turbine blade are given.

Figure 6.9: A slice of mesh near tip region.

In the present simulation, the inlet wind speed is at 10 m/s and rotor
speed is at 12.1 rpm. The corresponding maximum Reynolds number based
on chord is between 7 and 8 million. The flow simulation was carried out
with EllipSys3D. The conventional RANS turbulence model was utilized
since LES turbulence model for such a high Reynolds number becomes too
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Figure 6.10: Surface pressure and streamlines on suction side and pressure
side.

expensive. The plots of surface pressure and streamlines on the suction and
pressure sides are shown in Figure 6.10. It is as usual that negative and
positive pressures are distributed on the suction and pressure sides of the
airfoil, respectively. Also the streamlines are fully attached on the pressure
side as expected. On the suction side, the streamlines indicate that the
flow is well attached in the outer part of the blade close to the tip. The
incompressible pressure is shown together with streamlines at three span-
wise blade stations: r = 15 m, 35 m and 55 m, see Figure 6.11 on the left
column. Separation is seen in the inner part of the blade, e.g. at r = 15 m
the flow is separated near trailing edge. At r = 15 m, DU35 airfoil is used
and NACA64 airfoil profile is used at r = 35 m and 55 m. The pressure
coefficients at the same spanwise blade locations were computed by both
steady and unsteady computations. The pressure coefficients were found by
the following definition

Cp =
P − P∞

1
2ρ∞ [W 2

∞ + (Ωr)2]
(6.2)

where W∞ = 10 m/s is the inlet wind velocity. Difference by using steady
and unsteady computations was mainly found at the suction side of the
blade inner part. The agreement of Cp curve is better at the outer parts of
the blade. At the inner parts of the blade, angles of incidence are usually
large and due to the neglect of transition from laminar to turbulent flow,
the predicted pressure coefficient must be influenced for both steady and
unsteady computations.

The unsteady flow computation was first carried out as a preparation
for acoustic simulation. The flow was simulated for 40 000 iterations with a
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Figure 6.11: Left column: pressure contour and streamlines at 15 m, 35 m
and 55 m blade positions; right column: the corresponding pressure coeffi-
cients obtained by steady and unsteady computations.
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Figure 6.12: r = 15m. Figure 6.13: r = 35m.

Figure 6.14: r = 55m. Figure 6.15: Sound sources on blade.

time step 0.0001 second which corresponds to two blade revolutions. The air
density and dynamic viscosity is set at 1.225 kg ·m−3 and 1.788 kg ·m−1 ·s−1,
respectively. The flow Mach number is about 0.03 based on the free stream
velocity of 10 m/s and a sound speed of 340 m/s. Assuming the specific
heat ratio is γ = 1.4, the ambient pressure is computed at P0 = c2

0ρ/γ =
1.01 × 105 Pa. The time step for acoustic simulation is very small, in this
case ∆t = 10−6 second is used since the sound speed is more than 30 times
faster than the free stream velocity. The acoustic computation was per-
formed for a time period of 0.2 seconds with the number of iterations about
200 000. Although time period is relatively short, the computation is still
very expensive in terms of computational time.

In Figure 6.12, 6.13 and 6.14 the sound pressure contours were shown
at different spanwise stations: r = 15 m, 35 m and 55 m, respectively. The
maximum sound pressure is around 1 Pa corresponds to sound pressure level
at 94 dB. It is seen that the sound pressure increases from the root of the
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Figure 6.16: Plot of sound pressure level at two test points.

blade towards the tip. Also it may be noticed that the sound sources moved
towards the leading edge from r = 55 m to r = 35 m as the angle of attack
also increased. Figure 6.15 also shows the location of the sound sources on
the suction and pressure surfaces of the blade. The sources are basically seen
on the suction side where flow is generally more unstable than the pressure
side, this indicates that the sound generation has strong dependency on flow
unsteadiness.

The sound spectra is shown in Figure 6.16 where spectrum 1 was recorded
at 1 m way just on top of the blade tip and spectrum 2 was recorded at the
station of r = 60 m and 1m away from the trailing edge in the direction
normal to the suction surface. The test points are selected very close to
the blade since the mesh becomes too coarse at further positions which will
introduce much larger dissipation and dispersion errors. An example of the
mesh can be seen from Figure 6.9. The overall noise level is 84 dB for
spectrum 1 and 96 dB for spectrum 2. It can be seen from the plot that
the high frequencies were not well represented. This is basically due to two
reasons: the use of RANS turbulence model and the low grid density. For
solving wind turbine flow problems, a RANS model is the most popular one
to low cost and good performance in practice. For solving acoustic problems,
we might first consider DNS method which resolves all small turbulence
structures without any modeling. However, this method is not considered for
wind turbine cases due to the huge amount of computational cost. Following
the suggestion of Piomelli and Balaras [127], the typical number of grid
points for solving a three dimensional flow is in the order of Re9/4. Therefore
the total number of grid points for the present blade would be around 1015.
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The next possibility is to use a LES model which has lower cost than a DNS
method and is able to model small turbulent structures to a certain level.
The question is that for Reynolds number higher than 100 millon, the LES
model is not very suitable. On the other hand, a high number of grid points
is also demanded. An example was shown by Arakawa et al. [35] where they
carried out LES simulation for a small wind turbine blade. The Reynolds
number based on chord was 1 million. The simulation was performed by
using up to 320 million grid points on 112 processors. The time step was
restricted at 1.4×10−7 seconds and the simulation was performed only for
a time period of 50 millisecond with the blade rotation of 20.4 degrees and
the tip movement of 2.6 m. It is seen that the time period is possibly too
short to obtain a reliable sound spectrum. Also the computation is still too
heavy for such a small wind turbine. Our present simulation is considered
as a trade off which shows the possibility to predict wind turbine noise.
The use of a RANS model has an evident drawback to smooth out small
turbulence structures. This leads to the acoustic solution which is absent of
high frequency components, as shown in Figure 6.16. The day of using DNS
will eventually arrive, consider the yearly increment of computer power, it
will still take more than 20 years to make such computation to the real
stage. While waiting, our work of simulating wind turbine noise will go
on and the idea is to apply accurate method with low computational cost.
Using a different mesh for acoustic computation could be a good strategy
where time step will not be restricted by small grid size on the wall surface.
This yields the further development of our in-house EllipSys3D code with a
grid over-lapping method. Another issue is the choice of turbulence model,
an hybrid turbulence model might be a better choice such as the DES model
(the mixing of RANS and LES models).



Chapter 7

Closure and Outlook

This chapter summarizes methods and results shown in previous chapters
and presents an outlook for future work.

High-order finite difference aeroacoustic code based on the incompressible/acoustic
splitting method has been implemented into the in-house incompressible
Navier-Stokes flow solver. The incompressible flow equations and the acous-
tic equations are solved at the same time levels where the pressure and the
velocities obtained from the incompressible equations form the input to the
acoustic equations at each time step.

The development of high-order schemes for solving CAA problems has been
studied in details. A series of optimized explicit and implicit finite differ-
ence schemes were derived using the DRP (Dispersion-Relation-Preserving)
strategy. It was found that the optimized schemes are more suitable for
solving acoustic equations since they keep lower dispersion errors at higher
frequency region than the traditional schemes. Study of numerical schemes
was also extended to the non-centered boundary stencils and the high-order
explicit/implicit filters. The use of acoustic radiation and outflow boundary
conditions together with non-centered schemes has shown good performance.

Numerical results have been first presented for two test cases: the acoustic
wave scattering from a circular cylinder and sound generation due to a spin-
ning vortex pair. The numerical solutions were validated with analytical
data and good agreement was obtained. To understand the mechanisms of
flow generated sound, two dimensional aeroacoustic simulations of flow past
a stationary circular cylinder and an oscillating circular cylinder was carried
out and we focused in details. For flow over a stationary cylinder, it was
found that the sound frequency was dominated by the Strouhal frequency
which is the frequency of fluctuating lift force whereas the drag produces
little noise. For flow over an oscillating cylinder, the sound frequency was
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dominated by the frequency from external force and also there are more con-
tributions from the drag force which is not negligible for sound generation.
Further numerical study was focused on airfoil flow and noise simulation in
two- and three-dimensions. For turbulent cases, the use of a LES model
provided reasonable good results where high-frequency components on the
sound spectra were resolved. The general trend was found that it was still
the unsteady lift force that is responsible for sound generation. The sound
directivity patterns showed the same property for both cylinder and airfoil.
The last attempt was made for CAA simulation of a large wind turbine. The
results showed some general properties of sound generation from a wind tur-
bine blade where the blade tip is the most noisy region. Due to a limited
number of grid points and the use of a RANS turbulence model, the solution
was limited in the low frequency range.

In the future, further improvement of the EllipSys3D code will be carried
out. The use of a high-order grid over-lapping technique for coupling in
CFD/CAA is seen to be very necessary. In such a way, the acoustic mesh
can be constructed in different way such as a simple cartesian mesh. The
advantage is to use much larger time step for acoustic simulation, also high-
order finite difference schemes often require high quality of computational
mesh. The choice of turbulence model is another issue to be discussed in
the future. The hope is to apply LES model for wind turbine simulation in
the inner part where sound sources are located.



Appendix A

Coefficient matrices of
acoustic equations

The acoustic equations in 3D matrix form are written as:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= S (A.1)

where matrices Q, E, F, G and S are

Q =













ρ′

ρu′ + ρ′U
ρv′ + ρ′V
ρw′ + ρ′W

p′













, E =













ρu′ + ρ′U

ρ(2Uu′ + u′2) + ρ′U2 + p′

ρ(V u′ + Uv′ + u′v′) + ρ′UV
ρ(Wu′ + Uw′ + u′w′) + ρ′UW

c2(ρu′ + ρ′U)













,

F =













ρv′ + ρ′V
ρ(V u′ + Uv′ + u′v′) + ρ′UV

ρ(2V v′ + v′2) + ρ′V 2 + p′

ρ(V w′ + Wv′ + v′w′) + ρ′V W
c2(ρv′ + ρ′V )













,

G =













ρw′ + ρ′W
ρ(Wu′ + Uw′ + u′w′) + ρ′UW
ρ(Wv′ + V w′ + v′w′) + ρ′V W

ρ(2Ww′ + w′2) + ρ′W 2 + p′

c2(ρw′ + ρ′W )













, S =













0
0
0
0

−∂P
∂t













. (A.2)

Equation A.1 is identical to the following equation

Ĉ
∂Q̂

∂t
+ Â

∂Q̂

∂x
+ B̂

∂Q̂

∂y
+ D̂

∂Q̂

∂z
= S (A.3)

with the condition that Ĉ = ∂Q/∂Q̂. Defining the new vector Q̂ = (ρ′, u′, v′, w′, p′)T ,
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the coefficient matrix Ĉ, Â, B̂, D̂ are determined as

Ĉ =













1 0 0 0 0
U ρ 0 0 0
V 0 ρ 0 0
W 0 0 ρ 0
0 0 0 0 1













, Â =













U ρ 0 0 0
U2 2ρU 0 0 1
UV ρV ρU 0 0
UW ρW 0 ρU 0
c2U c2ρ 0 0 0













,

B̂ =













V 0 ρ 0 0
UV ρV 0 0 0
V 2 0 2ρV 0 1
V W 0 ρW ρV 0
c2V 0 c2ρ 0 0













, D̂ =













W 0 0 ρ 0
UW ρW 0 ρU 0
V W 0 ρW ρV 0
W 2 0 0 2ρW 1
c2W 0 0 c2ρ 0













(A.4)

Dividing matrix Ĉ at both sides of Equation A.3 yields

∂Q̂

∂t
+ Ā

∂Q̂

∂x
+ B̄

∂Q̂

∂y
+ D̄

∂Q̂

∂z
= Ŝ (A.5)

where new coefficients Ā, B̄ and D̄ are computed and the source term turns
out to be the same

Ā =













U ρ 0 0 0
0 U 0 0 1/ρ
0 v′ U 0 0
0 w′ 0 U 0

c2U c2ρ 0 0 0













, B̄ =













V 0 ρ 0 0
0 V u′ 0 0
0 0 V 0 1/ρ
0 0 w′ V 0

c2V 0 c2ρ 0 0













,

D̄ =













W 0 0 ρ 0
0 W 0 u′ 0
0 0 W v′ 0
0 0 0 W 1/ρ

c2W 0 0 c2ρ 0













, Ŝ =













0
0
0
0

−∂P/∂t













(A.6)



Appendix B

Coefficients of the high-order
schemes

Coefficients for DRP and compact schemes

Consider spatial derivative ∂f/∂x, the derivative can be approximated by
central explicit 2N+1 point stencil finite difference scheme, such as

∂f

∂x
(x0) =

1

∆x

N
∑

j=−N

ajf(x0 + j∆x) (B.1)

Table B.1 gives the coefficients for aj .

To approximate ∂f/∂x, compact finite difference schemes can be used
alternatively. Using f ′ instead of ∂f/∂x, the scheme reads

αf ′
j−1 + f ′

j + αf ′
j+1 = a

fi+1 − fi−1

∆x
+ b

fi+2 − fi−2

∆x
+ c

fi+3 − fi−3

∆x

+ d
fi+4 − fi−4

∆x
+ e

fi+5 − fi−5

∆x
(B.2)

Table B.2 gives coefficients for standard tridiagonal high-order compact fi-
nite difference schemes. Coefficients for the optimized compact finite differ-
ence schemes are shown in Table B.3.
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4th-order 6th-order 8th-order

a1 0.7992664269741557 0.8331572598964366 0.8571043984185199
a2 -0.1894131415793246 -0.2331572598964366 -0.2652621696211656
a3 0.0265199520614978 0.0523054923365680 0.0748052085071437
a4 0 -0.0059398042783169 -0.0144484568416228
a5 0 0 0.0013596285337742
a6 0 0 0
a7 0 0 0
a8 0 0 0

10th-order 12th-order 14th-order

a1 0.8749994731879014 0.8888984093343903 0.9000111291581978
a2 -0.2901779129134481 -0.3101978791125205 -0.3266822474881437
a3 0.0942455927359495 0.1111206315566125 0.1258713338034306
a4 -0.0238093482054909 -0.0332537742227347 -0.0424313246158228
a5 0.0039501765402089 0.0074088498991500 0.0114246353417500
a6 -0.0003156525746558 -0.0010686423745439 -0.0022540026898321
a7 0 0.0000740222661807 0.0002864892431738
a8 0 0 -0.0000174903001106

Table B.1: Coefficients for high-order optimized finite difference schemes.
aj = −a−j . Stencil width: 7-point(4th-order) up to 17-point(14th-order).

4th-order 6th-order 8th-order 10th-order 12th-order

α 1/4 1/3 3/8 2/5 5/12
a 3/4 7/9 25/32 39/50 7/9
b 0 1/36 1/20 1/15 5/63
c 0 0 -1/480 -1/210 -5/672
d 0 0 0 1/4200 1/1512
e 0 0 0 0 -1/30240

Table B.2: Coefficients for original tridiagonal high-order compact finite
difference schemes. Stencil width on the right hand side: 3-point(4th-order)
up to 11-point(12th-order).

Coefficients for boundary schemes

Consider non-centered DRP schemes as

∂f

∂x
(x0) =

1

∆x

M
∑

j=−N

ajf(x0 + j∆x) (B.3)
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4th-order 6th-order

α 0.3821038098462933 0.4111403764203249
a 0.7940346032820977 0.7842616980350271
b 0.0440346032820977 0.0692748674241733
c 0 -0.0038903521543495
d 0 0
e 0 0

8th-order 10th-order

α 0.4278627893013504 0.4388871532438393
a 0.7786068605349324 0.7748150462341548
b 0.0852418595342336 0.0962949739000680
c -0.0077472036156208 -0.0110116258189503
d 0.0005034551362033 0.0012257054792086
e 0 -0.0000771570500869

Table B.3: Coefficients for optimized tridiagonal high-order compact finite
difference schemes. Stencil width on right hand side: 5-point(4th-order) up
to 11-point(10th-order).

where M 6= N . An example of the backward stencil coefficients aMN
j pro-

posed by Tam is listed in Table B.4.

aNM
j N = 0, M = 6 aNM

j N = 1, M = 5 aNM
j N = 2, M = 4

a06
0 -2.192280339 a15

−1 -0.209337622 a24
−2 0.049041958

a06
1 4.748611401 a15

0 -1.084875676 a24
−1 -0.468840357

a06
2 -5.108851915 a15

1 2.147776050 a24
0 -0.474760914

a06
3 4.461567104 a15

2 -1.388928322 a24
1 1.273274737

a06
4 -2.833498741 a15

3 0.768949766 a24
2 -0.518484526

a06
5 1.128328861 a15

4 -0.281814650 a24
3 0.166138533

a06
6 -0.203876371 a15

5 0.048230454 a24
4 -0.026369431

Table B.4: Coefficients of explicit backward schemes for boundary closures.
aNM

j = −aMN
−j . N is the number of points to the left and M is the number

of points to the right.

An example of a sixth-order compact scheme, a set of stable boundary
scheme is written as

6f ′
1 + 18f ′

2 = 1
∆x(−17f1 + 9f2 + 9f3 − f4) fourth-order at j = 1

3f ′
1+18f ′

2+9f ′
3 = 1

∆x(−10f1−9f2+18f3+f4) fifth-order at j = 2

More combinations of compact boundary schemes are referred to Carpenter
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et al. [59] where they performed stability analysis for difference boundary
schemes.

Coefficients of filter schemes

The explicit type selective filter with 2N + 1 point stencil reads

f̃(x0) = f(x0) − δdDu(x0) (B.4)

where f̃ is the filtered value, δd is the damping coefficient from 0 to 1 and
the term Du(x0) is given as

Du(x0) =

j=N
∑

j=−N

djf(x0 + j∆x) (B.5)

The coefficients dj for standard and optimized filters are listed in Table B.5
and B.6.

8th-order 10th-order 12th-order

d0 35/128 63/256 231/1024
d1 -7/32 -105/512 -99/512
d2 7/64 15/128 495/4096
d3 -1/32 -45/1024 -55/1024
d4 1/256 5/512 33/2048
d5 0 -1/1024 -3/1024
d6 0 0 1/4096

Table B.5: Coefficients for standard high-order explicit filters. dj = d−j .
Stencil width: 9-point(8th-order) up to 13-point(12th-order). [50]

Instead of using explicit high-order filters, the compact high-order filtering
schemes can be used also. The compact filter form is written as

αf f̃j−1 + f̃j + αf f̃j+1 =
N
∑

n=0

an

2
(fj+n + fj−n) (B.6)

where f̃ is the value after filtering, αf is the free parameter and an are the
coefficients which are listed in Table B.7.
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6th-order 8th-order 10th-order

d0 0.243527493120 0.215044884112 0.190899511506
d1 -0.204788880640 -0.187772883589 -0.171503832236
d2 0.120007591680 0.123755948787 0.123632891797
d3 -0.045211119360 -0.059227575576 -0.069975429105
d4 0.008228661760 0.018721609157 0.029662754736
d5 0 -0.002999540835 -0.008520738659
d6 0 0 0.001254597714

Table B.6: Coefficients for optimized high-order explicit filters. dj = d−j .
Stencil width: 9-point(6th-order) up to 13-point(10th-order). [50]

4th-order 6th-order 8th-order 10th-order

a0
5
8 +

3αf

4
11
16 +

5αf

8
93+70αf

128
193+126αf

256

a1
1
2 + αf

15
32 +

17αf

16
7+18αf

16
105+302αf

256

a2 −1
8 +

αf

4 − 3
16 +

3αf

8
−7+14αf

32
−15+30αf

64

a3 0 1
32 − αf

16
1−2αf

16
45−90αf

512

a4 0 0
−1+2αf

128
−5+10αf

256

a5 0 0 0
1−2αf

512

Table B.7: Coefficients for high-order compact filters. 0 <| αf |≤ 0.5.
Stencil width on right hand side: 5-point(4th-order) up to 11-point(10th-
order). [51]



Appendix C

Wind turbine mesh
generation

The aim of this chapter is to illustrate some guide lines of generating struc-
tured meshes for wind turbine blades in connection of our in-house Hyper-
Mesh generator developed by Jess A. Michelsen. Three different mesh con-
figurations will be shown by using different kind of wind turbine blades.

Case 1: Spherical-mesh of a two-blade turbine

We first consider the case of the two-blade NREL phase VI rotor. The ra-
dius of blade is about 5.3 m and the maximum twist angle is 20.4 degrees.
In general, a smoothly distributed twist angle will make the mesh genera-
tion easier, and in this case the large twist angle at blade inner part will
slightly increase the difficulty of generating a volume mesh. For a two-blade
wind turbine, we wish to generate a mesh for one blade and apply symmet-
ric (non-rotational case) or periodic boundary condition (rotational case) at
the middle plane of the two blades. The desired mesh will be a half sphere
with a radius of R = 50 m.

The present mesh generator is able to generate a mesh by self-extruding
from the surface mesh (blade surface) with or without giving an outer
bounded surface mesh. The first thing to do is to generate a blade sur-
face mesh. The surface mesh for the present NREL phase VI blade is shown
in Figure C.1 and C.2. There are five blocks on blade and each has number
of grid points 64 × 64. The mesh is smoothly stretched towards tip where
flow Reynolds number becomes higher. The tip has a nearly squared shape
and there is one block representing the tip, see Figure C.2. The general re-
quirement for surface mesh is the orthogonality. The surface mesh is saved
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with a name blade.x2d where .x2d is the mesh format of EllipSys2D. The
next thing is to create an outer surface with the same number of blocks and
grid points. The mesh is seen as the outer part (in black) of Figure C.3
where the radius of the half sphere is 50. The outer surface must be named
as blade.x2d.outer which is written in the same format as .x2d file. The
surface mesh must be created in the way that it obeys the right hand rule
and the third dimension must be pointing outwards.

The last thing is to create the volume mesh in between the blade surface
and the outer surface. Before running the hyper mesh generator a input
script must be specified. The file with the name blade.hyp is shown below

0 1 0 0.d0 ! a b c d

601 ! attrib

0.5d0 ! relax

1 0 0 ! u v w

2 ! nb

1.d-4 50 1.025 ! dx R0 stretch

The input is short but it contains quite a lot of information. In order to
make it easier for explanation, we listed the corresponding variable names
on the right hand side of those numbers. There are four values defined
in the first line which define the boundary planes: a,b,c,d. The boundary
planes satisfy the condition that ax + by + cz + d = 0. Here we want the
y = 0 to be the symmetric plane and this is satisfied by putting a = 0,
b = 1, c = 0 and d = 0. In the second line we put the attribution of the
symmetric plane which is 601 as defined in EllipSys code. The third line is
the relaxation value which is between 0 and 1. The relaxation value defines
the interpolation/extroplation factor which is case dependent and there is
no optimum value that can be suggested here. The fourth line provides the
farfield velocity components. In this case, u = 1 indicates the inlet wind
direction is on the x-axis. Based on the information of this line, the at-
tributions for inlet and outlet boundary conditions will be determined and
finally written in the output data. The next line with nb = 2 allows us
to generate two blocks way from the surface and the number of grid is 64
(default) for each block in the extruding direction. The last line has three
numbers, the first one dx = 1.d − 4 defines the height of the first cell away
from the blade surface. This value is chosen such that the boundary layer
can be well-resolved. The next value R0 = 50 is active only when the outer
boundary is absent (the absent of file blade.x2d.outer). In such a case the
outer boundary will be generated automatically with the last mesh layer at
approximately R = 50. The automatically generated outer surface is also a
near sphere in the present case. Here we proved a more generalized method
with a pre-specified outer geometry, so the value R0 = 50 is redundant in
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the present case. The very last value specifies the stretching rate which en-
sures the meshes are clustered on blade surface. This is the most sensitive
value for the mesh generation. The only way is to choose it by practicing.

Figure C.1: Surface mesh on blade. Figure C.2: Mesh on blade tip.

The mesh structure is shown in Figure C.3 and C.4. In Figure C.3, the blade
is located at the center and we see that the half sphere is bounded by the
symmetric plane (blue) at y = 0 and the in/out-flow boundary (black) at
r = 50. Figure C.4 shows the block interfaces where the five numbers depict
block numbers. The other five blocks are not visible in the plot since they
are very closely attached on the blade.

Figure C.3: Outer boundaries. Figure C.4: Block interfaces.
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Case 2: Spherical-mesh of a three-blade turbine

The second example is shown for a three-blade LM blade. The length of
the blade is about 19 m and the maximum twist angle is about 13 degrees.
We still choose to make a spherical mesh and only a sector of 120 degrees is
considered since the turbine has three blades.

The surface mesh for this blade is shown in Figure C.5 and C.6. There
are five blocks on blade surface and each block has number of grid points
64×64. The blade tip is rounded and shaper. The tip geometry is described
by 64×64 grid points, see Figure C.6. The blade surface mesh is saved with
a file named blade.x2d. In the next step we will create an intermediate outer
surface. This surface mesh is shown in Figure C.7. There are five surface
blocks defined for the intermediate outer surface which forms a sector of 120
degrees. They are two cyclic surfaces, the front and the back surfaces and
the curved surface on top. The file name for this intermediate outer surface
is blade.x2d.outer. The aim is to create volume mesh between the blade
surface and the intermediate outer surface. The file blade.hyp listed below
is used to generate five volume blocks with 643 mesh points each.

0 0 0 2.d0

601

0.d0

0 0 1

1

1.d-5 20 1.005

As it is mentioned that the first command line satisfies the condition:
ax + by + cz + d = 0. And it is found to be not consistent in the present
case where a = b = c = 0 and d = 2. In fact there is a special meaning in
this case where an rotational axis is defined. Here d = 2 is the radius from
the rotational axis (x=0, y=0) to the cylindrical surface (the white area in
Figure C.7). The surface will be generated automatically by the command
lines and a symmetric condition is provided. The thing needs to be drawn
attention is the root of the blade. All the mesh points describe the last slice
of the blade root must lay on the cylindrical surface (such as the intersection
area of two circular pipes). Other commands in file blade.hyp are similar as
described before. By now we have the inner volume mesh of five blocks.

The following task is to extend the domain larger which shall have a
spherical outer boundary with a sector of 120 degrees. The shell of the
outer surface is seen in Figure C.8 which has three blocks (the green one).
Three volume blocks will be filled in between the intermediate outer surface
and the outer surface. The two cyclic surfaces of intermediate outer sur-
face are not used for extruding meshes since they are already part of the
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outer boundaries. Therefore volume meshes are extruded from the remain-
ing three intermediate outer surfaces and the mesh generation is stopped at
the pre-defined outer surface. The command lines are shown below with a
few more lines describing the cyclic boundaries.

0 0 0 2.d0

601

0.577 1 0 0

501

-0.577 1 0 0

501

0.d0

0 0 1

1

0.15 100 1.001

The first two lines are the same as before which forms a sector of cylindri-
cal surface. The third line indicates one cyclic plane such that 0.577x+y = 0.
Another cyclic plane is defined as −0.577x+y = 0. The attribution for these
two planes is 501 by the definition of EllipSys code. The inflow direction is
w = 1 which follows the z-axis. Number of blocks in the extruding direction
is 1. The first cell height is 0.15 which needs to be smoothly connected with
the previous cell. The previous cell is in fact the last cell we created before
for the inner blocks. Therefore the mesh with a total number of 8 blocks
are constructed.

Figure C.5: Surface mesh on blade. Figure C.6: Mesh on blade tip.
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Figure C.7: Inner part of the mesh. Figure C.8: The over all structure.

Case 3: Cylindrical-mesh of a three-blade turbine

In the last example we look at a three-blade large wind turbine. The length
of the blade is 63 m and the maximum twist angle is 13.3 degrees. The
surface mesh for this blade is shown in Figure C.9 and C.10. There are five
blocks on blade surface and each has number of grid points 64 × 64. The
blade tip is sharp and its geometry is described by 64 × 64 grid points, see
Figure C.10. The cylindrical mesh is easier to create once the inner blocks
are created. The first procedure is the same as before which does not need
to be repeated. The command lines below shows that the radius of the
rotational hole is 5 since the turbine is much larger.

0 0 0 5.d0

601

0.25d0

0 0 1

1

1.d-5 50 1.001

The structure of the mesh is given in Figure C.11 and C.12. The inner
part of the blocks are shown in Figure C.11 where the blade is sitting on the
surface of the rotational hole. In this case, the outer blocks are very easy
to create since they have very regular geometries. Figure C.12 shows the
overall structure the mesh where the blocks are separated by the red lines.
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Figure C.9: Surface mesh on blade. Figure C.10: Mesh on blade tip.

Figure C.11: Inner part of the mesh. Figure C.12: The over all structure.
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