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Abstract

The present thesis is an attempt to use classical hydrodynamic stability theory based on a
Fourier decomposition of a perturbation around a steady flow solution denoted as the baseflow,
and investigate its implications for laminar-turbulent transition modelling. We aim at further
bridging the gap that has existed in fluid dynamics for many decades between stability theory
and the development of Navier-Stokes solvers. A gap which has been narrowed during the
last decade due to advances in nonlinear stability analysis on one side and direct numerical
solutions on the other. In particular the nonlinear Parabolized Stability Equations (PSE) will
be applied to capture secondary instability waves, the last distinct feature of many unsteady
boundary layer flows prior to transition to turbulence.

The historical singularity of parabolic boundary layer solvers that is encountered at a
boundary separation point, will affect the PSE in a likewise manner leading to failure of the
solution procedure. We try to remedy this shortcoming and shed light into the mechanism that
governs the transition in a boundary layer recirculation bubble, introducing for that purpose the
Elliptic Stability Equations (ESE).

As a prerequisite to the work outlined above powerful discretization tools must be available.
For this purpose a suite of novel 6’th order accurate coupled compact finite difference and finite
volume based solvers have been developed in one and two dimensions.
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Dansk resumé

Nærværende thesis forsøger at udvide anvendelsesområdet for klassisk hydrodynamisk sta-
bilitetsteori baseret på en Fourier dekomposition af en perturbation omkring en jævn strømning,
kaldet basis-strømningen, samt at undersøge de nye muligheder for laminar-turbulent omslags-
modellering. Som et mål bidrages til at indsnævre den kløft der indenfor fluid dynamik har
eksisteret i mange årtier mellem stabilitetsteori og udviklingen af strømningsløsere. En kløft
der allerede er blevet mindre gennem det sidste årti som følge af fremskridt indenfor ulineær
stabilitetsteori på een side, og direkte numeriske løsere (DNS) på den anden. Specielt vil de
ulineære Paraboliserede StabilitetsLigninger (PSE) blive anvendt til at beregne sekundære
ustabilitetsbølger, som i mange omslagsscenarier optræder som et distinkt karakteristikum
umiddelbart før det egentlige omslag til turbulens.

Den historiske singularitet som optræder i parabolske grænselagsløsere ved et separa-
tionspunkt, vil påvirke PSE på en lignende måde og føre til et stop i løsningsproceduren. Vi
prøver at overkomme denne begrænsning og kaste lys over de mekanismer der er bestemmende
for omslagsscenariet i en grænselags recirkulations-bobbel, og introducerer til dette formål de
Elliptiske StabilitetsLigninger (ESE).

Som en forudsætning for det ovenfor skitserede arbejde, må der findes effektive diskretiser-
ingsværktøjer. Til dette brug har vi udviklet et sæt af nye 6. ordens nøjagtige koblede kompakte
finite difference og finite volume baserede løsere i en og to dimensioner.
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Chapter 1

Introduction

1.1 Motivation

Ever since the discovery of turbulence by O. Reynolds in 1883, the intricacy of the to the
observer often chaotic behavior of an unsteady flow has continued to challenge the scientific
world, and at present it can still be viewed as the main unsolved problem in classic mechanical
physics. Turbulent flows as opposed to laminar flows are the rule rather than the exception,
which can be evidenced by many daily life observations: Gusts of wind playing with the dead
leaves at fall, stirring the cream in the coffee with a spoon, the trail of hot smoke particles
emanating from a lit cigarette just to mention a few. The latter example actually gives the
passionate smoke observer a glimpse of enlightening into the chain of events preceding and
proceeding transition: From the cigarette tip a smooth laminar buoyancy driven flow is revealed.
At some point further up the flow becomes clearly oscillating and soon thereafter breaks down
into turbulent eddies, which will cascade into yet smaller eddies, until the size of them become
so small that the strain of the fluid will be damped by viscous forces. The British meteorologist
Lewis F. Richardson, backed up by experimental evidence, described this process in verse:

Big whorls have little whorls,
Which feed on their velocity,

And little whorls have lesser whorls,
And so on to viscosity.

Knowledge on the occurrence of transition is crucial in aerodynamic applications. In a bound-
ary layer turbulence is characterized by increased skin friction, increased transport of heat and
momentum and thus a change of transition location will greatly affect the performance of e.g.
an airfoil or a turbine blade. From a commercial point of view, boundary layer turbulence
can act co- and counter-productively as well. The boundary layer flow over the wings of a
passenger aircraft at free flight is to remain laminar to the extent possible as to minimize skin
friction and form drag, thus reducing fuel consumption. Laminar Flow Control is an active
field of research. A counter-example of suppressing turbulence is found in the industry of wind
turbines. A higher torque on the turbine axis can be generated if turbulence is triggered at an
early stage of the boundary layer flow over the turbine blades. Due to increased mixing of
momentum, a turbulent boundary layer is more resistant to separation than a laminar one, and
stall will then occur at a larger angle of attack.

1



2 Introduction

Whether transition should be suppressed or promoted is not the key issue. The key issue is
that transition can be used to enhance the aerodynamic performance in general with respect to
one or more parameters. In other words there exists a need to know the mechanisms leading
to transition, and to compute the point of transition by adequate computational means. One
could rightly argue that the task is conceptually easy since the Navier-Stokes equations that
govern the motion of newtonian fluids have been derived more than a century ago. However,
integration in time of the fully resolved Navier-Stokes equations (DNS) is an overwhelmingly
cpu-intensive challenge. Of course the advent of ever more potent computers following Moore’s
law on exponential increase in processor power and memory resources allows for optimism, but
even so DNS for high Reynolds number flows is not expected to take over before the end of the
twenty-first century, according to a recent survey article by Spalart (2000). As of today DNS is a
research tool, but not of engineering interest. Other tools have been and still need to be designed
in the ongoing endeavor initiated by Osborne Reynolds. This thesis is a modest attempt to
remove yet another pebble from the stony road towards fully resolved unsteady convectively
dominated boundary layer flows of engineering interest.

1.2 Flow Description

From this early point on we would like to decompose the unsteady boundary layer solution into
Fourier modes, at least conceptually. Think of the flow as the sum of Fourier modes each of
which has a discrete constant temporal frequency in time and slightly varying spatial frequen-
cies, or wavenumbers, in the wall-parallel directions. These modes will either amplify or decay
exponentially in space, but given homogenous boundary conditions at the wall and in the free
stream they will evolve with a fixed relative amplitude distribution in the wall normal direction.
Also bear in mind that the boundary layer equations are parabolic in nature, which causes the
boundary layer to propagate in the downstream direction only. Analogously, the disturbances
in the flow are parabolic also, or rather parabolizable as will be shown: They propagate only in
the direction of convection and are named convective disturbances. This is in contrast to abso-
lute disturbances which propagate in both up- and downstream direction. In what follows we
adopt the term disturbance for any flow-variation superposed to the laminar baseflow solution,
and modal disturbance for a Fourier mode or a set of Fourier modes. A non-modal disturbance
is typically induced in the boundary layer by inhomogeneties either at the wall or in the free
stream. The chain of events that comprises the change of a boundary layer from being laminar
to being turbulent is often categorized using 5 stages:

• 1st stage: Receptivity.
This initial stage deals with how disturbances are introduced into the boundary layer.
There are various types of noise: Wall roughness, wall vibration and free stream tur-
bulence are the most common mechanisms, but also sound and body forcing e.g. by
magnetism will generate a disturbance. In the ideal and rather unrealistic case of total ab-
sence of noise, modal disturbances will grow in an unstable boundary layer from a very
small but finite level of disturbance, which is always present in the flow. If the initial dis-
turbance level is low, the non-modal noise will become modal as it grows evolving into
the 2nd stage.
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• 2nd stage: Linear Instability.
The modal disturbances evolve according to linear stability theory (LST) with an ex-
ponentially growing or decaying amplitude and very slow streamwise variation of the
wall-normal amplitude distribution. Due to small amplitudes (less than one percent of
free stream velocity) the interaction between different modes is negligible.

• 3rd stage: Nonlinear Instability.
The amplitudes are now large, more than one percent of free stream velocity, and the
different modes interact, eventually saturate at high amplitudes up to 25 percent free
stream velocity, and cause a change, the Mean Flow Correction (MFC), in the mean flow,
which was up to this stage the laminar solution only.

• 4th stage: Secondary Instability.
The often highly distorted corrected mean flow is prone to a new array of unstable fre-
quencies, often with very high growth rates and wavenumbers. Experiments have shown
that these secondary instabilities precede the final stage.

• 5th stage: Transition to Turbulence.
The predominantly streamwise wavy nature of the dominating instabilities break down
into a broad band of frequencies in time and space which characterizes the onset of tur-
bulence.

An important exception to the above so-called natural transition scenario is by-pass transition.
As the name indicates one or various stages are in this case simply by-passed and transition
occurs directly from the linear stage or even the receptivity stage. By-pass transition can be
observed as a consequence of an absolute instability in the boundary layer, which can lead to
self-induction. A separation bubble or a blocking object in the boundary layer could be such
examples. Another by-pass mechanism can result from early appearances of turbulent spots
probably induced by large-scale receptivity, either at the wall or in the free stream. The present
thesis deals with the stages 1-4 for a series of testcases featuring different transition scenarios.

1.3 Literature Survey

Local Methods

The first attempt to explain hydrodynamic instability in the framework of the incompressible
Navier-Stokes equations was done by Orr (1907) and Sommerfeld (1908) who derived the
famous Orr-Sommerfeld (OS) equation, which constitutes a one-dimensional eigenvalue
problem for parallel boundary layer flows. The parallel assumption is generally very good,
and the OS equation is heavily used today for LST calculations and transitional modelling
based on theeN method. The first solutions to the OS-equation were presented by Tollmien
(1929) followed by Schlichting (1933) who discovered plane convective 2D instabilities, later
to be termed Tollmien-Schlichting (TS) waves. Experimental validation of the linear stability
results was not reported until Liepmann (1943) and Schubauer& Skramstad (1947) conducted
an experiment with vibrating ribbon induced disturbances detected by hotwire anemometry.
A summary of local LST is given by Mack (1984), and on its use for transition prediction by
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Figure 1.1:Stages of a transitional boundary layer flow.

Arnal (1994).

Over time the shortcomings of the OS-equation became increasingly apparent as the inappropri-
ateness and empiricism of especially theeN method for transition point location was evidenced
by experiments, showing dependence on the factors not taken into account by the OS-equations:
1) The normal velocity of the mean flow profile; 2) The upstream conditions. The problem is
mainly parabolic, but is solved locally; 3) Wall and free stream disturbances; 4) Nonlinear mode
interaction for large amplitude disturbances and mean flow distortion. The parallel assumption
can be replaced by weakly nonparallel approaches using the method of multiple scales within
the perturbation theory for the modal disturbance. Bouthier (1972, 1973), Saric& NayFeh
(1975) investigated the improvement of nonparallelism on the Blasius boundary. They found
critical stability curves (neutral curves) in better agreement with Shubauer& Skramstadt, and
later the experiment conducted by Kachanow, Kozlow& Levchenko (1977) further consolidated
the relative importance of nonparallelism. Herbert (1974) and Itoh (1974) applied perturbation
methods to include modest nonlinear mode interaction assuming once again a strictly parallel
boundary layer. Smith (1979) and Goldstein& Durbin (1986) used asymptotic theories valid for
very large Reynolds numbers to include nonlinearity and nonparallelism simultaneously.

Nonlocal parabolized Methods

The first nonlocal treatment of a discrete Fourier mode was done by Hall (1983) who considered
the spatial evolution of steady spanwise periodic disturbances (Görtler vortices) by solving a
set of parabolic equations. Herbert (1994) and Bertolotti (1991) later presented the Parabolized
Stability Equations (PSE) of which Hall’s Gortler vortex simulation is a special case. In short
the PSE circumvent the limitations of LST and compare very well with DNS calculations,
though at a fractional computational cost. It exploits fully the close to parabolic nature of the
spatially evolving Fourier modes, and linear PSE can be extended to incorporate nonlinearity
including the Mean Flow Correction (MFC) in a consistent manner. Independently of Herbert
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& Bertolotti, Simen (1992) developed a nonlocal instability theory based on the method of
multiple scales. This theory leads to equations identical to the PSE.

Since their appearance the PSE have been used in various contexts by many researchers. Chang
et al. (1991) extended PSE into the compressible domain, Wang (1994) applied PSE to the
rotating disc flow using cylindrical coordinates, Malik& Li (1994) examined the swept wing
crossflow instability, Airiau& Casalis (1994) compared succesfully nonlinear PSE with DNS,
Schrauf et al. (1996) used nonlinear PSE for transition prediction comparison with a real
flight test boundary layer, Yen& Messersmith (1998) investigated a jet using PSE, Day et al.
(1999) applied linear and nonlinear PSE to compute compressible mixing layers and posterior
validation with DNS showing excellent agreement, and we have just picked a few. The review
by Herbert (1997) summarizes PSE and its applications.

The only drawback of PSE is fundamental: Due to parabolicity in space only convective insta-
bilities can be treated. On the other hand a large group of technologically important flows such
as non-separated boundary layers and jets are unidirectional and therefore fully applicable for
PSE.

Nonlocal Elliptic Methods

Within the framework of Fourier mode decomposition a spatially elliptic approach is still to be
discovered. If we wish to simulate pressure and velocity instability in physical space as op-
posed to Fourier space the method is spatial DNS. Despite the huge computational resources
already mentioned, Fourier modes in physical space, their nonlinear interaction, and transition
have been successfully simulated for two- and three-dimensional boundary layers. DNS of
two-dimensional Fourier modes in the Blasius boundary layer was performed by Spalart and
compared with nonlinear PSE results in Bertolotti et al. (1992). Fundamental K-type transi-
tion in a decelerated Falkner-Skan boundary layer was simulated by Kloker (1998) . Brandt&
Henningson (2002) were the first to simulate convective by-pass transition using optimal initial
disturbances for transient energy amplification. Spalart& Strelets (2000) studied a separation
bubble triggering another example of by-pass transition.



Chapter 2

Numerical Methods

Wave phenomena can be modelled using standard lower order discretization techniques. How-
ever, high resolution must be used to keep the error below a certain threshold. In contrast,
higher order discretization schemes might increase the computational work per meshpoint con-
siderably, but most often the higher order method allows for a much lower resolution, i.e.
fewer meshpoints, so that even one-dimensional problems are solved more effectively. In multi-
dimensional problems the benefit of lower resolution requirements multiplies.

2.1 Pseudo-Spectral ODE Solver

Also known as the spectral collocation method. In contrast to differentiation schemes involving
local interpolants such as finite differences, the unknown solution to the differential equation
is expanded as a global interpolant. As a consequence the accuracy of the spectral method is
superior: For problems with smooth solutions exponential convergence rates ofO(e−cN) are
common. In comparison, the second order finite difference scheme converges of the order
O(N−2). The price to pay for exponential convergence is the increased bandwidth of the result-
ing linear system. Full matrices replace sparse matrices, which means that the computational
work for solving the ODE(s) scales likeO(N3) as opposed toO(N) for the local interpolant
method. In general the pseudo-spectral method is the method of choice for small to moderate
sized one-dimensional boundary value and eigenvalue problems with smooth solutions up to
N of the order 100. Much larger values of N, on the other hand, will prove the method catas-
trophically uneconomical, at least for boundary value problems, due to theO(N3) scaling of
the dense linear system.
For the set of trial functions we choose a basis of Chebyshev polynomials and a set of colloca-
tion points spanning the domain

Tn(y) = cos (n arccos(y)) n ∈ {0; N − 1} (2.1)

yj = cos

(
jπ

N − 1

)
j ∈ {0; N − 1}, (2.2)

over which the Chebychev polynomial basis satisfies a discrete orthogonality relation. The
dependent variables are expressed globally as

f(y) =
N−1∑
n=0

anTn(y) (2.3)

6
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The derivatives of the dependent variables must also be expressed in terms of Chebyshev poly-
nomials. The following recursive formula, from Schmid& Henningson (2001), can be used in
conjunction with (2.1). Polynomial subscript and superscript denote the order of polynomial
and differentiation respectively.

T
(k)
0 (yj) = 0

T
(k)
1 (yj) = T

(k−1)
0 (yj)

T
(k)
2 (yj) = 4T

(k−1)
1 (yj)

T (k)
n (yj) = 2nT

(k−1)
n−1 (yj) +

n

n− 1
T

(k)
n−1(yj) n ∈ {3; N − 1} (2.4)

Dirichlet boundary conditions are applied in a straightforward way. For all but the channel
poiseuille flow, the domain must be mapped into a semi-infinite domain[0;∞] suitable for
boundary layer calculations. Infinity is set to the non-disturbed farfield, typically 20-50 bound-
ary layer thicknesses away from the wall.

2.2 Coupled Compact Schemes

The drawback of spectral methods is their global dependence, which leads to a dense matrix,
amenable to direct Gauss-elimination. This solution method for a linear system is costly as it
scales O(N3) with size, whereN is the number of DOFs. Traditional finite difference schemes,
in contrast, have compact support, and the resulting matrix to be solved will be banded with a
bandwidth,b. Direct Gauss-elimination of this type of matrix scales O(Nb2) in terms of cpu or
floating point operations (flops). For 1D problemsb is independent ofN . For multi-dimensional
problems this is not the case, and even the comparative ease of dealing with a banded matrix
instead of a dense matrix might not be reduction enough. For sparse (non-dense) matrices
the option of using iterative non-direct solvers is very important. The applicability of iterative
solvers depends mostly on the strength of the matrix diagonal, the degree of diagonal domi-
nance. If2|a(i, i)| ≥ ∑N

j=1 |a(i, j)| for all rows, i, the matrix is strictly diagonally dominant
and can be solved by iterative solution methods. Less degrees of diagonal dominance will af-
fect the convergence rate until, at some lower limit of diagonal dominance, the iterative solution
process diverges. The advantage of iterative versus direct solvers is generally a better scalability
for multidimensional problems. Using multigrid many iterative methods can be accelerated to
achieve optimal scalability, O(N ), for uni- and multi-dimensional problems.
Thus, the motivation to employ difference schemes with small stencils (i.e. compact support)
is well justified. The drawback of these schemes is their lower accuracy and limited resolution
power. The concept of resolution power addresses the scheme ability to capture wavy solutions
with the least number of mesh points, and will be treated in Chapter 3. However, traditional
difference schemes can be improved by adding unknowns, while maintaining the small sten-
cil, typically 3-point. These improved difference schemes are referred to as compact difference
schemes, due to their compactness despite higher order of accuracy. A multitude of schemes
have been proposed over the last 3-4 decades: Ordinary difference schemes, Mitchell& Grif-
fiths (1980), compact difference schemes, Lele (1992), coupled compact difference schemes,
Mahesh (1998), compact volumes schemes, Kobayashi (1999), and coupled compact volume
schemes, Chapter 3. The above sequence of scheme types is ordered by increasing complexity,
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the less complex being special cases of the more complex. Throughout the present thesis higher
order schemes are employed. Therefore this chapter will focus on the development of these,
and present the specific schemes to be used in subsequent chapters. A small software package
to derive all these one- or two-dimensional schemes symbolically will be explained.
The basis for scheme development is the Taylor series expansion around a known point in space
of any dimensionality.

f(r + r
′
) =

∞∑
n=0

(r
′ · ∇)n

n!
f(r) (2.5)

For one- and two-dimensional cases (2.5) reduces to

r = x0, r
′
= ∆x

f(x) =
1

0!
f (0)(x0)∆x0 +

1

1!
f (1)(x0)∆x1 +

1

2!
f (2)(x0)∆x2 + . . . (H.O.T ) (2.6)

r = (x0, y0), r
′
= (∆x, ∆y)

f(x, y) =
1

0!
f (0,0)(x0, y0)∆x0∆y0

+
1

1!
f (1,0)(x0, y0)∆x1∆y0 +

1

1!
f (0,1)(x0, y0)∆x0∆y1

+
1

2!
f (2,0)(x0, y0)∆x2∆y0 +

2

2!
f (1,1)(x0, y0)∆x1∆y1 +

1

2!
f (0,2)(x0, y0)∆x0∆y2

+ . . . (H.O.T ) (2.7)

(2.5-2.7) refer to point values. In a finite volume framework average edge values and average
volume values will become the dependent variables to trace, e.g. in a Navier-Stokes simulation.
The averaging is done by integrating over the local domain, either an edge or a volume, and
division by the domain size. The path of integration is indicated by the index pointsP1 and
P2. In a structured mesh, cartesian or curvilinear, averaging over anx- (or ξ-) aligned edge will
result whenP1 andP2 share the samey- (or η-) coordinate,P1 = Pi,j andP2 = Pi+1,j. Vice
versa for averaging over ay- (or η-) aligned edge. Volume integration will result whenP1 and
P2 do not share neitherx- (ξ-) coordinate nory- (η-) coordinate,P1 = Pi,j andP2 = Pi+1,j+1.
In the case of edge- and volume-averaging respectively Taylor series expansion will lead to the
following. Point indications refer to Fig.2.1 and barred quantities indicate averaging along the
specified direction,x, y or both.
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(x0,y0)

Pi,j

Pi,j+1 Pi+1,j+1

∆x

∆y

Figure 2.1:Grid schematic of edge- and volume based variables. Cell volume averages are
crossed, cell edge averages are marked with a bold line.

r = y0, r
′
= ∆y

f(y)
y

= fPi,j→Pi,j+1
(y)

=
1

∆y

∫ ∆y/2

−∆y/2

f(y0 + η)dη

= f (0,0)(y0)

+
1

24
f (0,2)(y0)∆y2

+
1

1920
f (0,4)(y0)∆y4

+ . . . (H.O.T ) (2.8)

r = (x0, y0), r
′
= (∆x, ∆y)

f(x, y)
xy

= fPi,j→Pi+1,j+1
(x, y)

=
1

∆x∆y

∫ ∆x

0

∫ ∆y/2

−∆y/2

f(x0 + ξ, y0 + η)dξdη

= f (0,0)(x0, y0)

+
1

2
f (1,0)(x0, y0)∆x

+
1

6
f (2,0)(x0, y0)∆x2 +

1

24
f (0,2)(x0, y0)∆y2

+
1

24
f (3,0)(x0, y0)∆x3 +

1

48
f (1,2)(x0, y0)∆x∆y2

+
1

120
f (4,0)(x0, y0)∆x4 +

1

144
f (2,2)(x0, y0)∆x2∆y2 +

1

1920
f (0,4)(x0, y0)∆y4

+
1

720
f (5,0)(x0, y0)∆x5 +

1

576
f (3,2)(x0, y0)∆x3∆y2 +

1

3840
f (1,4)(x0, y0)∆x∆y4

+ . . . (H.O.T ) (2.9)
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y-aligned, point y-aligned, volume

x-aligned, point

x-aligned, volume

Figure 2.2:Point- and volume-based stencils.

In the lower domain size limit whereP1 = P2, point based expansions are recovered.
Now, equipped with the equations (2.8-2.9) of which we consider point based schemes special
cases, we define our scheme generically as either point-based or edge/volume-based. Making
distinction between x- and y-aligned schemes leads to four cases as sketched in Fig.2.2. X-
aligned point-based 3-point schemes with up tommax-order x-derivative terms are now found
from the relation below. Note here thatP1 = P2 simply implies the degenerate case, where the
volume-based stencil based on edge- and/or volume-averages has collapsed into points.

mmax∑
m=0

0∑
n=0

(A
(m,n)
Pi−1,j→Pi−1,j

f(x, y)
(m,n)
Pi−1,j→Pi−1,j

+A
(m,n)
Pi,j→Pi,j

f(x, y)
(m,n)
Pi,j→Pi,j

+A
(m,n)
Pi+1,j→Pi+1,j

f(x, y)
(m,n)
Pi+1,j→Pi+1,j

) = 0 (2.10)

, wheremmax is normally set to the highest order derivative in the governing equations, i.e. two
for the Navier-Stokes equations. Analogously for the x-aligned volume-based 3-cell schemes.

mmax∑
m=0

0∑
n=0

(A
(m,n)
Pi−1,j−1/2→Pi−1,j+1/2

f(x, y)
(m,n)
Pi−1,j−1/2→Pi−1,j+1/2

+A
(m,n)
Pi,j−1/2→Pi,j+1/2

f(x, y)
(m,n)
Pi,j−1/2→Pi,j+1/2

+A
(m,n)
Pi+1,j−1/2→Pi+1,j+1/2

f(x, y)
(m,n)
Pi+1,j−1/2→Pi+1,j+1/2

)

+A
(0,0)
Pi−1,j−1/2→Pi,j+1/2

f(x, y)
(0,0)
Pi−1,j−1/2→Pi,j+1/2

+A
(0,0)
Pi,j−1/2→Pi+1,j+1/2

f(x, y)
(0,0)
Pi,j−1/2→Pi+1,j+1/2

= 0 (2.11)

Heremmax will usually be set to 1 if the governing equations are the Navier-Stokes equations
on integral form. The heavily indexed notation of (2.10-2.11) is used to encompass many dif-
ferent types of schemes and to stress their generic nature. Without further ado (2.10-2.11) are
trivially satisfied to any degree of accuracy by means of the zero-solution for the set of coef-
ficients,A. Schemes are constructed by imposing at least one coefficient, and solving for the
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Table 2.1:Scheme coefficients

Scheme A
(0,0)
−1 A

(1,0)
−1 A

(2,0)
−1 A

(0,0)
0 A

(1,0)
0 A

(2,0)
0 A

(0,0)
1 A

(1,0)
1 A

(2,0)
1 A

(0,0)
−1→0 A

(0,0)
0→1 Error

FD2 −1
2

0 0 0 −1 0 1
2

0 0 - - ∆x2

6
f (3,0)

1 0 0 −2 0 −1 1 0 0 - - ∆x2

12
f (4,0)

FV2 0 0 - −1 0 - 0 0 - 1
2

1
2

∆x2

6
f (2,0)

0 0 - 0 −1 - 0 0 - −1 1 ∆x2

12
f (3,0)

CD4 −3
4

−1
4

0 0 −1 0 3
4

−1
4

0 - - ∆x4

120
f (5,0)

6
5

0 −1
10

−12
5

0 −1 6
5

0 −1
10

- - ∆x4

200
f (6,0)

CV4 −1
4

0 - −1 0 - −1
4

0 - 3
4

3
4

∆x4

120
f (4,0)

0 −1
10

- 0 −1 - 0 −1
10

- −6
5

6
5

∆x4

200
f (5,0)

CCD6 −15
16

−7
16

−1
16

0 −1 0 15
16

−7
16

1
16

- - ∆x6

5040
f (7,0)

3 9
8

1
8

−6 0 −1 3 −9
8

1
8

- - ∆x6

20160
f (8,0)

CCV6 −7
16

−1
16

- −1 0 - −7
16

1
16

- 15
16

15
16

∆x6

5040
f (6,0)

9
8

1
8

- 0 −1 - −9
8

1
8

- −3 3 ∆x6

20160
f (7,0)

remaining coefficients to obtain the highest possible formal degree of accuracy. In table 2.1
the coefficients of ordinary explicit, compact and coupled compact finite difference and finite
volume schemes are listed. All the boldly typed coefficient values are the imposed ones. The
truncation error for each scheme indicates the order of accuracy. The resolution capabilities
of a scheme generally improves as the truncation error decreases, and this also holds for the
presented schemes. However, a rigid scheme resolution analysis is not performed here, in order
not to overlap the analysis given in Chapter 3. For each scheme two derivative evaluations are
given for the advection and diffusion operator respectively. In a finite difference framework this
corresponds to the first and second derivatives. In a finite volume framework it corresponds to
the zeroth and first derivatives. The schemes are:

• FD2: Explicit (ordinary) 2nd order accurate finite difference schemes

• FV2: Explicit (ordinary) 2nd order accurate finite volume schemes

• CD4 : Implicit 4th order accurate compact difference schemes, a.k.a. Padé schemes, e.g.
Lele (1992).

• CV4: Implicit 4th order accurate compact volume schemes as presented by Kobayashi
(1999).

• CCD6: Implicit 6th order accurate coupled compact difference schemes as presented by
Mahesh (1998). Chu& Fan (1997) analyzed the same schemes using the term ’combined’
instead of coupled. Chu& Fan also published a non-uniform version of the scheme,
(1999), which is pretty much the scheme used for the stability calculations in the present
thesis. The only difference is for the upwinded boundary schemes adjacent to the wall,
where Chu& Fan proposed a 5th order polynomial. In the present work the 6th order
accuracy has been maintained.

• CCV6: Implicit 6th order accurate coupled compact volume schemes. These combine
the coupled derivative evaluation from the CCD6 schemes with Kobayashis use of sliding
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Table 2.2:Example of 1D Taylor series expansions for the CCD6 schemes

Deriv. LHS RHS1 RHS2
coeffs. A

(0,0)
−1 A

(0,0)
0 A

(0,0)
1 A

(1,0)
−1 A

(1,0)
1 A

(2,0)
−1 A

(2,0)
1 A

(1,0)
0 A

(2,0)
0

f(x0)(0) 1 1 1 0 0 0 0 0 0

f(x0)(1) −∆x 0 ∆x 1 1 0 0 1 0

f(x0)(2) ∆x2

2!
0 ∆x2

2!
−∆x ∆x 1 1 0 1

f(x0)(3) −∆x3

3!
0 ∆x3

3!
∆x2

2!
∆x2

2!
−∆x ∆x 0 0

f(x0)(4) ∆x4

4!
0 ∆x4

4!
−∆x3

3!
∆x3

3!
∆x2

2!
∆x2

2!
0 0

f(x0)(5) −∆x5

5!
0 ∆x5

5!
∆x4

4!
∆x4

4!
−∆x3

3!
∆x3

3!
0 0

f(x0)(6) ∆x6

6!
0 ∆x6

6!
−∆x5

5!
∆x5

5!
∆x4

4!
∆x4

4!
0 0

f(x0)(7) −∆x7

7!
0 ∆x7

7!
∆x6

6!
∆x6

6!
−∆x5

5!
∆x5

5!
0 0

f(x0)(8) ∆x8

8!
0 ∆x8

8!
−∆x7

7!
∆x7

7!
∆x6

6!
∆x6

6!
0 0

average variables in a finite volume setting. As to the extent of our knowledge these
schemes have not been presented earlier in literature. A variant of the CCV6 schemes are
used for the multigrid accelerated 2D Navier-Stokes solver to be presented in Chapter 3.

The non-uniform 3-point CCD6 scheme is used in all subsequent stability calculations along
the wall-normal direction unless otherwise stated. The scheme coefficients for first and second
order derivative evaluations are given below.∆x1 = xi − xi−1 and∆x2 = xi+1 − xi.

A
(2,0)
−1 = −1/2

∆x1∆x2
3

(∆x1 + ∆x2)
3

A
(2,0)
0 = 0

A
(2,0)
1 = 1/2

∆x1
3∆x2

(∆x1 + ∆x2)
3

A
(1,0)
−1 = −∆x2

3(5∆x1 + 2∆x2)

(∆x1 + ∆x2)
4

A
(1,0)
0 = −1

A
(1,0)
1 = −∆x1

3(2∆x1 + 5∆x2)

(∆x1 + ∆x2)
4

A
(0,0)
−1 = −3

∆x2
3(5∆x1

2 + 4∆x1∆x2 + ∆x2
2)

∆x1(∆x1 + ∆x2)
5

A
(0,0)
0 = 3

∆x2 −∆x1

∆x1∆x2

A
(0,0)
1 = 3

∆x1
3(∆x1

2 + 4∆x1∆x2 + 5∆x2
2)

∆x2(∆x1 + ∆x2)
5 (2.12)
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A
(2,0)
−1 =

∆x2
2(3∆x1 − 2∆x2)

(∆x1 + ∆x2)
3

A
(2,0)
0 = −1

A
(2,0)
1 =

∆x1
2(−2∆x1 + 3∆x2)

(∆x1 + ∆x2)
3

A
(1,0)
−1 = 6

∆x2
2(5∆x1

2 −∆x1∆x2 −∆x2
2)

∆x1(∆x1 + ∆x2)
4

A
(1,0)
0 = 0

A
(1,0)
1 = −6

∆x1
2(−∆x1

2 −∆x1∆x2 + 5∆x2
2)

∆x2(∆x1 + ∆x2)
4

A
(0,0)
−1 = 6

∆x2
2(15∆x1

3 + 4∆x1
2∆x2 − 2∆x1∆x2

2 −∆x2
3)

∆x1
2(∆x1 + ∆x2)

5

A
(0,0)
0 = 6

∆x1
2 − 3∆x1∆x2 + ∆x2

2

∆x1
2∆x2

2

A
(0,0)
1 = 6

∆x1
2(−∆x1

3 − 2∆x1
2∆x2 + 4∆x1∆x2

2 + 15∆x2
3)

∆x2
2(∆x1 + ∆x2)

5 (2.13)

At the wall a 4-point non-uniform upwinded scheme is used, which is very lengthy and not
reducible to anything nice. Hence, it is not presented. These lengthy boundary schemes,
counting in the order of 100 flops to calculate the coefficients given the grid spacing, are only
computationally economic if the same set of coefficients can be used many times. For the
cpu-intensive (nonlinear) stability calculations to be presented this is fortunately the case.

For local stability analysis the Orr-Sommerfeld equation is to be solved yielding derivative
orders of up to four. Extending the ideas from coupled compact difference schemes and Chu
& Fan’s non-uniform CCD6 scheme, we propose a three-point non-uniform CCD8 scheme
with 10’th order accuracy for the first and second order derivative evaluations and 8’th order
accuracy for the third and fourth order derivatives. The CCD6 schemes emerged from setting
mmax = 2 in (2.10). Settingmmax = 4 will lead to the CCD8 schemes. Coefficients are for the
first, second, third and fourth order derivatives are given in (2.14-2.17).

Again a 4-point upwinded scheme is used at the boundaries for Dirichlet conditions or in the
absence of boundary conditions. Enlarging the stencil size enables the order of accuracy to
be maintained. In general these boundary schemes are not only algebraically lengthy, they
also suffer from a reduced orthogonality of the coefficient matrix, leading to a large condition
number. In practice this means that the remaining residual after solving a differential equation
will be larger than if the boundary scheme were orthogonal to the same degree as the central
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CCD schemes used for the interior domain discretization.

A
(4,0)
−1 =−∆x1

3∆x2
5/(24(∆x1 + ∆x2)

5)

A
(4,0)
1 =∆x1

5∆x2
3/(24(∆x1 + ∆x2)

5)

A
(3,0)
−1 =−∆x1

2∆x2
5(7∆x1 + 2∆x2)/(6(∆x1 + ∆x2)

6)

A
(3,0)
1 =−∆x1

5∆x2
2(2∆x1 + 7∆x2)/(6(∆x1 + ∆x2)

6)

A
(2,0)
−1 =−∆x1∆x2

5(28∆x1
2 + 16∆x1∆x2 + 3∆x2

2)/(2(∆x1 + ∆x2)
7)

A
(2,0)
1 =∆x1

5∆x2(3∆x1
2 + 16∆x1∆x2 + 28∆x2

2)/(2(∆x1 + ∆x2)
7)

A
(1,0)
−1 =−∆x2

5(84∆x1
3 + 72∆x1

2∆x2 + 27∆x1∆x2
2 + 4∆x2

3)/((∆x1 + ∆x2)
8)

A
(1,0)
1 =−∆x1

5(4∆x1
3 + 27∆x1

2∆x2 + 72∆x1∆x2
2 + 84∆x2

3)/((∆x1 + ∆x2)
8)

A
(0,0)
−1 =− 5∆x2

5(42∆x1
4 + 48∆x1

3∆x2 + 27∆x1
2∆x2

2 + 8∆x1∆x2
3 + ∆x2

4)/

(∆x1(∆x1 + ∆x2)
9)

A
(0,0)
0 =5(∆x2 −∆x1)/(∆x1∆x2)

A
(0,0)
1 =5∆x1

5(∆x1
4 + 8∆x1

3∆x2 + 27∆x1
2∆x2

2 + 48∆x1∆x2
3 + 42∆x2

4)/

(∆x2(∆x1 + ∆x2)
9)

A
(4,0)
0 =A

(3,0)
0 = A

(2,0)
0 = 0, A

(1,0)
0 = −1 (2.14)

A
(4,0)
−1 =∆x1

2∆x2
4(5∆x1 − 4∆x2)/(12(∆x1 + ∆x2)

5)

A
(4,0)
1 =∆x1

4∆x2
2(−4∆x1 + 5∆x2)/(12(∆x1 + ∆x2)

5)

A
(3,0)
−1 =∆x1∆x2

4(35∆x1
2 − 17∆x1∆x2 − 7∆x2

2)/(3(∆x1 + ∆x2)
6)

A
(3,0)
1 =−∆x1

4∆x2(−7∆x1
2 − 17∆x1∆x2 + 35∆x2

2)/(3(∆x1 + ∆x2)
6)

A
(2,0)
−1 =∆x2

4(140∆x1
3 − 24∆x1

2∆x2 − 38∆x1∆x2
2 − 9∆x2

3)/((∆x1 + ∆x2)
7)

A
(2,0)
1 =∆x1

4(−9∆x1
3 − 38∆x1

2∆x2 − 24∆x1∆x2
2 + 140∆x2

3)/((∆x1 + ∆x2)
7)

A
(1,0)
−1 =10∆x2

4(84∆x1
4 + 12∆x1

3∆x2 − 18∆x1
2∆x2

2 − 11∆x1∆x2
3 − 2∆x2

4)/

(∆x1(∆x1 + ∆x2)
8)

A
(1,0)
1 =− 10∆x1

4(−2∆x1
4 − 11∆x1

3∆x2 − 18∆x1
2∆x2

2 + 12∆x1∆x2
3 + 84∆x2

4)/

(∆x2(∆x1 + ∆x2)
8)

A
(0,0)
−1 =10∆x2

4(210∆x1
5 + 96∆x1

4∆x2 − 6∆x1
3∆x2

2 − 29∆x1
2∆x2

3−
13∆x1∆x2

4 − 2∆x2
5)/(∆x1

2(∆x1 + ∆x2)
9)

A
(0,0)
0 =10(2∆x1

2 − 5∆x1∆x2 + 2∆x2
2)/(∆x1

2∆x2
2)

A
(0,0)
1 =10∆x1

4(−2∆x1
5 − 13∆x1

4∆x2 − 29∆x1
3∆x2

2 − 6∆x1
2∆x2

3+

96∆x1∆x2
4 + 210∆x2

5)/(∆x2
2(∆x1 + ∆x2)

9)

A
(4,0)
0 =A

(3,0)
0 = A

(1,0)
0 = 0, A

(2,0)
0 = −1 (2.15)
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A
(4,0)
−1 =−∆x1∆x2

3(5∆x1
2 − 10∆x1∆x2 + 3∆x2

2)/(2(∆x1 + ∆x2)
5)

A
(4,0)
1 =∆x1

3∆x2(3∆x1
2 − 10∆x1∆x2 + 5∆x2

2)/(2(∆x1 + ∆x2)
5)

A
(3,0)
−1 =−∆x2

3(70∆x1
3 − 115∆x1

2∆x2 + 4∆x1∆x2
2 + 9∆x2

3)/((∆x1 + ∆x2)
6)

A
(3,0)
1 =−∆x1

3(9∆x1
3 + 4∆x1

2∆x2 − 115∆x1∆x2
2 + 70∆x2

3)/((∆x1 + ∆x2)
6)

A
(2,0)
−1 =− 30∆x2

3(28∆x1
4 − 36∆x1

3∆x2 − 9∆x1
2∆x2

2 + 2∆x1∆x2
3 + ∆x2

4)/

(∆x1(∆x1 + ∆x2)
7)

A
(2,0)
1 =30∆x1

3(∆x1
4 + 2∆x1

3∆x2 − 9∆x1
2∆x2

2 − 36∆x1∆x2
3 + 28∆x2

4)/

(∆x2(∆x1 + ∆x2)
7)

A
(1,0)
−1 =− 60∆x2

3(84∆x1
5 − 78∆x1

4∆x2 − 45∆x1
3∆x2

2 − 7∆x1
2∆x2

3 + 3∆x1∆x2
4+

∆x2
5)/(∆x1

2(∆x1 + ∆x2)
8)

A
(1,0)
1 =− 60∆x1

3(∆x1
5 + 3∆x1

4∆x2 − 7∆x1
3∆x2

2 − 45∆x1
2∆x2

3 − 78∆x1∆x2
4+

84∆x2
5)/(∆x2

2(∆x1 + ∆x2)
8)

A
(0,0)
−1 =− 60∆x2

3(210∆x1
6 − 120∆x1

5∆x2 − 123∆x1
4∆x2

2 − 52∆x1
3∆x2

3−
4∆x1

2∆x2
4 + 4∆x1∆x2

5 + 1∆x2
6)/(∆x1

3(∆x1 + ∆x2)
9)

A
(0,0)
0 =− 60(∆x1

3 − 5∆x1
2∆x2 + 5∆x1∆x2

2 −∆x2
3)/(∆x1

3∆x2
3)

A
(0,0)
1 =60∆x1

3(∆x1
6 + 4∆x1

5∆x2 − 4∆x1
4∆x2

2 − 52∆x1
3∆x2

3−
123∆x1

2∆x2
4 − 120∆x1∆x2

5 + 210∆x2
6)/(∆x2

3(∆x1 + ∆x2)
9)

A
(4,0)
0 =A

(2,0)
0 = A

(1,0)
0 = 0, A

(3,0)
0 = −1 (2.16)

The CCD8 scheme can be used to discretize a linear system. For 1D scalar problems this
leads to a 5x5 block tri-diagonal system, which can be solved directly and efficiently. For
1D scalar eigenvalue problems such as the Orr-Sommerfeld equation, we can use standard
global eigenvalue solvers in conjunction with dense differentiation matrices as known from
the pseudo-spectral method. To do so, we discretize the 1D domain using the CCD8 scheme.
This leads to 4 equations, one for each derivative order, and 5 unknowns at each mesh point.
This system is then solved with respect tof (1), f (2), f (3) andf (4). f (0), whose equation is the
governing Orr-Sommerfeld equation, goes on the RHS such that after inversion each derivative
operator is expressed as a dense matrix for the dependent variable,f = f (0), exactly as for the
pseudo-spectral method. The advantage of using the CCD8 scheme to obtain differentiation
matrices instead of the spectral method is that the mesh can be defined arbitrarily and hence not
by a fixed set of collocation points. A comparison of pseudo-spectral and CCD8 discretization
for solving the O-S eigenvalue problem is presented in a proceeding chapter for linear stability
calculations.

Symbolic derivation of the schemes is done using the Matlab 5.2 Symbolic Toolbox as
follows. Scheme terms of e.g (2.10), (2.11) or any other imposed stencil in 2D are expanded
in Taylor series using (2.7). The unknown discretization spacings andA-coefficients are
treated symbolically. Derivative terms are collected according to the derivative order. For each
orderLHS andRHS must cancel out up to the obtainable order of accuracy, where the residual,
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A
(4,0)
−1 =2∆x2

2(5∆x1
3 − 20∆x1

2∆x2 + 15∆x1∆x2
2 − 2∆x2

3)/((∆x1 + ∆x2)
5)

A
(4,0)
1 =2∆x1

2(−2∆x1
3 + 15∆x1

2∆x2 − 20∆x1∆x2
2 + 5∆x2

3)/((∆x1 + ∆x2)
5)

A
(3,0)
−1 =20∆x2

2(14∆x1
4 − 50∆x1

3∆x2 + 25∆x1
2∆x2

2 + 4∆x1∆x2
3 −∆x2

4)/

(∆x1(∆x1 + ∆x2)
6)

A
(3,0)
1 =− 20∆x1

2(−∆x1
4 + 4∆x1

3∆x2 + 25∆x1
2∆x2

2 − 50∆x1∆x2
3 + 14∆x2

4)/

(∆x2(∆x1 + ∆x2)
6)

A
(2,0)
−1 =60∆x2

2(56∆x1
5 − 176∆x1

4∆x2 + 45∆x1
3∆x2

2 + 29∆x1
2∆x2

3 + 3∆x1∆x2
4−

∆x2
5)/(∆x1

2(∆x1 + ∆x2)
7)

A
(2,0)
1 =60∆x1

2(−∆x1
5 + 3∆x1

4∆x2 + 29∆x1
3∆x2

2 + 45∆x1
2∆x2

3 − 176∆x1∆x2
4+

56∆x2
5)/(∆x2

2(∆x1 + ∆x2)
7)

A
(1,0)
−1 =120∆x2

2(168∆x1
6 − 456∆x1

5∆x2 + 9∆x1
4∆x2

2 + 74∆x1
3∆x2

3+

32∆x1
2∆x2

4 + 2∆x1∆x2
5 −∆x2

6)/(∆x1
3(∆x1 + ∆x2)

8)

A
(1,0)
1 =− 120∆x1

2(−∆x1
6 + 2∆x1

5∆x2 + 32∆x1
4∆x2

2 + 74∆x1
3∆x2

3+

9∆x1
2∆x2

4 − 456∆x1∆x2
5 + 168∆x2

6)/(∆x2
3(∆x1 + ∆x2)

8)

A
(0,0)
−1 =120∆x2

2(420∆x1
7 − 960∆x1

6∆x2 − 195∆x1
5∆x2

2 + 83∆x1
4∆x2

3+

106∆x1
3∆x2

4 + 34∆x1
2∆x2

5 + ∆x1∆x2
6 −∆x2

7)/(∆x1
4(∆x1 + ∆x2)

9)

A
(0,0)
0 =120(∆x1

4 − 10∆x1
3∆x2 + 20∆x1

2∆x2
2 − 10∆x1∆x2

3 + ∆x2
4)/(∆x1

4∆x2
4)

A
(0,0)
1 =120∆x1

2(−∆x1
7 + ∆x1

6∆x2 + 34∆x1
5∆x2

2 + 106∆x1
4∆x2

3+

83∆x1
3∆x2

4 − 195∆x1
2∆x2

5 − 960∆x1∆x2
6 + 420∆x2

7)/(∆x2
4(∆x1 + ∆x2)

9)

A
(3,0)
0 =A

(2,0)
0 = A

(1,0)
0 = 0, A

(4,0)
0 = −1 (2.17)

LHS − RHS, equals the leading truncation error. A 1D example is shown in Table 2.2 for
the sixth order accurate CCD6 schemes.RHS1 andRHS2 lead to the implicit expressions for
the first and second derivative respectively, given in Table 2.1. The number of columns on the
LHS matrix is given by the number of non-imposed coefficients in the stencil. Prior to sym-
bolic inversion of the matrix, the rank has been checked successively from the first row of the
LHS-matrix. Whenever the next row does not increment the rank this row is discarded, since
it is a linear combination of the earlier rank-contributing rows, and so on. Matrix inversion
proceeds when full rank has been attained, and the unknown scheme coefficients are thereby
computed. The leading truncation error is found as the non-zero residual,LHS − RHS, of
the least order derivative of the rows below the inverted system. The rank checking is not nec-
essary for most 1D expansions. In Table 2.2 The first 7 rows contribute to the rank and thus
form the matrix to be inverted. ForRHS1 the leading truncation error is encountered in row
8 (7th derivative terms), whereas forRHS2 the leading truncation error is encountered in row
9 (8th derivative terms). For multi-dimensional Taylor series expansions rank checking is es-
sential. An example is the sixth order accurate CCV6 scheme. The ordered derivative terms
are given in Table 2.3. Full rank is not exceeded until row 22, which is the leading truncation
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error row forRHS1 (zeroth order edge derivatives). ForRHS2 (first order edge derivatives)
the row-number of the leading truncation error is 29.
For uniform schemes the above outlined procedure for the symbolic derivation of finite differ-

ence and finite volume schemes in one and two dimensions is very reliable. The same holds of
course for all explicit schemes. For non-uniform implicit (i.e. compact) schemes the increased
complexity of the symbolic arithmetic operations during matrix inversion might hamper the
derivation of large-stencil finite difference schemes and almost certainly will in case of the
intrinsically multi-dimensional implicit finite volume schemes.

Table 2.3:Example of 2D Taylor series expansions for the CCV6 schemes

Deriv. LHS RHS1 RHS2
coeffs. A

(0,0)
−1 A

(0,0)
1 A

(1,0)
−1 A

(1,0)
1 A

(0,0)
−1→0 A

(0,0)
0→1 A

(0,0)
0 A

(1,0)
0

f(x0, y0)(0,0) 1 1 0 0 1 1 1 0

f(x0, y0)(1,0) −∆x ∆x 1 1 −∆x
2

∆x
2

0 1

f(x0, y0)(0,1) 0 0 0 0 0 0 0 0

f(x0, y0)(2,0) ∆x2

2
∆x2

2
−∆x ∆x ∆x2

6
∆x2

6
0 0

f(x0, y0)(1,1) 0 0 0 0 0 0 0 0

f(x0, y0)(0,2) ∆y2

24
∆y2

24
0 0 ∆y2

24
∆y2

24
∆y2

24
0

f(x0, y0)(3,0) −∆x3

6
∆x3

6
∆x2

2
∆x2

2
−∆x3

24
∆x3

24
0 0

f(x0, y0)(2,1) 0 0 0 0 0 0 0 0

f(x0, y0)(1,2) −∆x∆y2

24
∆x∆y2

24
∆y2

24
∆y2

24
−∆x∆y2

48
∆x∆y2

48
0 ∆y2

24

f(x0, y0)(0,3) 0 0 0 0 0 0 0 0

f(x0, y0)(4,0) ∆x4

24
∆x4

24
−∆x3

6
∆x3

6
∆x4

120
∆x4

120
0 0

f(x0, y0)(3,1) 0 0 0 0 0 0 0 0

f(x0, y0)(2,2) ∆x2∆y2

48
∆x2∆y2

48
−∆x∆y2

24
∆x∆y2

24
∆x2∆y2

144
∆x2∆y2

144
0 0

f(x0, y0)(1,3) 0 0 0 0 0 0 0 0

f(x0, y0)(0,4) ∆y4

1920
∆y4

1920
0 0 ∆y4

1920
∆y4

1920
∆y4

1920
0

f(x0, y0)(5,0) −∆x5

120
∆x5

120
∆x4

24
∆x4

24
−∆x5

720
∆x5

720
0 0

f(x0, y0)(4,1) 0 0 0 0 0 0 0 0

f(x0, y0)(3,2) −∆x3∆y2

144
∆x3∆y2

144
∆x2∆y2

48
∆x2∆y2

48
−∆x3∆y2

576
∆x3∆y2

576
0 0

f(x0, y0)(2,3) 0 0 0 0 0 0 0 0

f(x0, y0)(1,4) −∆x∆y4

1920
∆x∆y4

1920
∆y4

1920
∆y4

1920
−∆x∆y4

3840
∆x∆y4

3840
0 ∆y4

1920

f(x0, y0)(0,5) 0 0 0 0 0 0 0 0

f(x0, y0)(6,0) ∆x6

720
∆x6

720
−∆x5

120
∆x5

120
∆x6

5040
∆x6

5040
0 0

f(x0, y0)(5,1) 0 0 0 0 0 0 0 0

f(x0, y0)(4,2) ∆x4∆y2

576
∆x4∆y2

576
−∆x3∆y2

144
∆x3∆y2

144
∆x4∆y2

2880
∆x4∆y2

2880
0 0

f(x0, y0)(3,3) 0 0 0 0 0 0 0 0

f(x0, y0)(2,4) ∆x2∆y4

3840
∆x2∆y4

3840
−∆x∆y4

1920
∆x∆y4

1920
∆x2∆y4

11520
∆x2∆y4

11520
0 0

f(x0, y0)(1,5) 0 0 0 0 0 0 0 0

f(x0, y0)(0,6) ∆y6

322560
∆y6

322560
0 0 ∆y6

322560
∆y6

322560
∆y6

322560
0

f(x0, y0)(7,0) −∆x7

5040
∆x7

5040
∆x6

720
∆x6

720
− ∆x7

40320
∆x7

40320
0 0



Chapter 3

Baseflow Solvers

Stability analysis has its roots in perturbation methods. We are faced with a problem, the full
Navier-Stokes equations, that cannot be solved readily. Regarded as an initial value problem,
there exists an infinity of solutions. Fortunately there is one particular solution, the steady so-
lution which from this point on will be termed baseflow, that might be easier to calculate. A
solution to the original problem can be decomposed into the baseflow plus a perturbation. The
latter will be linear in a vicinity around the steady baseflow, and consequently can be decom-
posed into a basis of linearly independent parts, e.g. in Fourier space. This enables a successive
solution strategy. Three baseflow solution methods of increasing complexity are presented in
this chapter. The remaining chapters will deal with solution methods for the disturbances.

3.1 Selfsimilarity Solutions

For convectively dominated flows(Re À 1) viscous stresses are important only in thin layers
around solid bodies: The boundary layers. An order of magnitude analysis reveals that the
displacement thicknessδ of the viscous layer relates to a characteristic length of the bodyL as

δ

L
= O

(
Re

− 1
2

L

)
(3.1)

This allows to simplify considerably the governing flow equations, the steady incompressible
Navier-Stokes equations, which become the incompressible boundary layer equations. Assum-
ing uniformity in the spanwise direction these are:

Ux + Vy = 0 continuity

UUx + V Uy − 1

Re
Uyy = −Px x-momentum

Py = 0 y-momentum

UWx + V Wy − 1

Re
Wyy = 0 z-momentum (3.2)

Note that pressure is constant throughout the boundary layer, thus imposed by the pressure
distribution of the outer inviscid flow, obtainable either numerically from potential theory e.g.
a panel method, or experimentally from a carefully conducted laminar flow. Given the external

18
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pressure distribution, the inviscid flowfield at the outer edge of the boundary layer is calculated
from the Bernoulli equation.

Ue(x) = Q∞ cos ϕ∞
√

1− cp(x)

We = Q∞ sin ϕ∞ (3.3)

The boundary equations of (3.2) are known.

y = 0 : U = V = W = 0 y = ∞ : U = Ue, W = We (3.4)

Introducing a stream function that inherently satisfies continuity

U =
∂ψ

∂y
V = −∂ψ

∂x
, (3.5)

and assuming the existence of a local similarity variable

χ =

√
Ue(x)Re

x
y , (3.6)

we arrive after some manipulation at a partially uncoupled set of nonlinear ordinary differential
equations

F ′′′ +
1 + m

2
FF ′′ + m(1− F ′2) = 0 (3.7)

G′′ +
1 + m

2
FG′ = 0 , (3.8)

where

F (x, χ)

√
xUe

Re
= Ψ(x, χ) (3.9)

G(x, χ)We = W (x, χ) (3.10)

m =
x

Ue

∂Ue

∂x
(3.11)

For the chosen similarity variable,χ, the assumption of self-similarity is valid if and only if
m is constant. OtherwiseF andG will also depend on the streamwise positionx. For two-
dimensional boundary layers (3.8) will vanish. Ifm = 0 andWe = 0 (3.7) leads to the flat plate
Blasius solution. Same case withm = 1 leads to a two-dimensional stagnation line flow, and if
We 6= 0 the solution of (3.7-3.8) is the three-dimensional swept Hiemenz stagnation line flow.
The set of ODEs (3.7-3.8) are to be solved sequentially due to the partial coupling. One can
either apply an implicit line-solver with Newton iteration to cope with the nonlinearities, or use
an explicit shooting method with Newton iteration on start values forF andG at the wall. The
latter approach was adopted by the author using standard 4’th order Runge-Kutta integration in
the wall normal direction of the local similarity variable.
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3.2 Parabolic Boundary Layer Solver

In the more common case of non-similarity (3.7-3.8) take on some terms on the right-hand-side,
and become a transformed replicate of the set of boundary equations (3.2).

F ′′′ +
1 + m

2
FF ′′ + m(1− F ′2) = x

(
F ′∂F ′

∂x
− F ′′∂F

∂x

)
(3.12)

G′′ +
1 + m

2
FG′ = x

(
F ′∂G

∂x
−G′∂F

∂x

)
(3.13)

The boundary value problem has now become an initial value problem amenable to parabolic
marching in the streamwise direction. The newly added non-similarity terms will in most cases
have a rather slow streamwise variation and the x-derivatives can be implemented adequately
using a first-order implicit Euler discretization. The modification of the shooting method to
account for the upwind history of the boundary layer flow is straightforward. As initial condition
for the marching procedure in the vicinity of the leading edge, one must resort to the similarity
equations (3.7-3.8), in most cases either the Blasius, Hiemenz or swept hiemenz solution.

3.3 A Sixth-Order-Accurate Combined Compact Finite Vol-
ume Multigrid Solver

Relying on two recent developments in the field of higher order numerics, combined (a.k.a.
coupled) compact differencing and compact finite volume, a unifying discretization scheme for
the solution of the incompressible Navier-Stokes equations is presented and its resolution power
quantified and compared. For the solver we use multigrid with a time preconditioned explicit
smoother. The stability issue is addressed using Fourier analysis. Usability is extended by al-
lowing anisotropic grids. A small series of testcases serves to illustrate the overall performance
of the method.
In the quest for ever more efficient Navier-Stokes solvers there has been for the last decades
a continuing interest towards higher order differencing, where by ‘higher’ we mean a formal
order of accuracy in terms of Taylor series expansions of more than two. The implications of
increasing the order of accuracy, measured in computer memory (storage) and processing time
(cpu), are:

• Increased cpu and in many cases storage per Degree of Freedom (DoF).

• Decreased number of DoFs necessary to obtain a given error threshold for a given test
case.

If we by ‘efficient’ mean low-resource our criterion for a more efficient Navier-Stokes solver
as compared to lower order solvers can be formulated in plain words: Decrease the necessary
number of DoFs relatively more than you increase the computer resources (storage,cpu) per
DoF. Whether this criterion is fulfilled for a particular higher-order scheme is highly applica-
tion and error threshold dependent. Higher-order schemes have been particularly useful in areas
of fluid dynamics where the flow features to be resolved are of wavy nature such as linear- and
non-linear instability, transition and turbulence, which are all characterized by spatial waves.
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Most efforts concerning higher-order schemes have been applied in a finite difference frame-
work. The first compact finite volume schemes were recently formulated by Kobayashi (1999),
and an implicit Newton-Krylow fourth-order method for incompressible Navier-Stokes equa-
tions was then constructed by Pereira et. al. (2001) based on these schemes. Strong conserva-
tion was enforced due to strict edge-based flux evaluation.
Multigrid strategies are still the most reliable, if not the only, means of ensuring linear scale-up
for fluid problems of increasing size. The achievable O(N) scaling between size (DoFs) and
computational work is optimal, and thus desirable, if large fluid problems are to be addressed.
Different aspects of robustness concern grid anisotropy and Reynolds number insensitivity. For
this purpose we propose a smoother with time preconditioning to eliminate stiffness associated
with multiple scale eigenvalues motivated by Vierendeels et al (1999), and defect correction
using lower/higher order discretization for prediction/correction respectively.
Briefly outlining, the new sixth-order schemes are analyzed and compared with existing higher-
order compact schemes, as they have emerged over the last two decades. Next, the governing
equations are presented, proceeded by the details of the multigrid approach. In particular the
smoother is given special attention, the robustness of which is to be demonstrated using 2D
Fourier analysis, followed by testcases and a summary.

Scheme Analysis

Most known among higher order finite difference schemes are the compact difference schemes
as presented by Lele (1992) in his influential paper. Here the virtues of compact differenc-
ing are laid out clear: Low truncation and dispersion error of the schemes compared to their
non-compact analogous schemes. Low dispersion is equivalent to a high resolution of waves.
Except for the different approach taken by Spotz (1995), most compact schemes express the
n’th derivative as a combination of 0’th derivatives as in standard finite differencing plus n’th
derivatives in neighboring points included by the chosen stencil. Hence the name ‘compact’,
since a smaller stencil is needed than for standard differencing to achieve a certain order of
accuracy. The Hermite formula for a 3-point stencil using standard finite difference (FD), com-
pact finite difference (CD) and combined compact finite difference (CCD) respectively for a
first derivative are given by

u
(1)
0 = h−1a

(0)
0 u

(0)
0 +

1∑

k=−1,2

h−1a
(0)
k u

(0)
k (3.14)

u
(1)
0 = h−1a

(0)
0 u

(0)
0 +

1∑

k=−1,2

(h−1a
(0)
k u

(0)
k + a

(1)
k u

(1)
k ) (3.15)

u
(1)
0 = h−1a

(0)
0 u

(0)
0 +

1∑

k=−1,2

(h−1a
(0)
k u

(0)
k + a

(1)
k u

(1)
k + ha

(2)
k u

(2)
k ) (3.16)

h denotes the grid spacing, bracketed superscripts denote derivative order and subscripts the
discretization mesh index.a is the coefficient set,u is the dependent variable. The summa-
tion operator sums over the indices -1,1 in accordance with the 3-point stencil. We note the
conceptual ease of extending CD into CCD. Mahesh (1998) gives an extensive introduction
to combined compact finite differencing. The maximum obtainable order of accuracy for first
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Table 3.1:Difference scheme coefficients
Scheme Eq. Derivative n0 a

(0)
−1 a

(1)
−1 a

(2)
−1 a

(0)
0 a

(0)
1 a

(1)
1 a

(2)
1 a

(0)
−1→0 a

(0)
0→1

FD1 (3.18) First 1 -1 0 0 1 0 0 0 - -

FD2 (3.18) First 1 −1
2

0 0 0 1
2

0 0 - -

(3.18) Second 2 1 0 0 -2 1 0 0 - -

CD4 (3.18) First 1 −3
4

−1
4

0 0 3
4

−1
4

0 - -

(3.18) Second 2 6
5

0 −1
10

−12
5

6
5

0 −1
10

- -

CV4 (3.20) Zeroth 0 −1
4

0 0 - −1
4

0 0 3
4

3
4

(3.20) First 1 0 −1
10

0 - 0 −1
10

0 −6
5

6
5

CCD6 (3.18) First 1 −15
16

−7
16

−1
16

0 15
16

−7
16

1
16

- -

(3.18) Second 2 3 9
8

1
8

-6 3 −9
8

1
8

- -

CCV6 (3.20) Zeroth 0 −7
16

−1
16

0 - −7
16

1
16

0 15
16

15
16

(3.20) First 1 9
8

1
8

0 - −9
8

1
8

0 -3 3

a
(0)
−1 a

(1)

− 1
2

a
(1)
1
2

a
(0)
1 a

(0)

− 1
2→ 1

2

CCV6s (3.35) Zeroth 0 7
254

17
254

−17
254

7
254

120
127

a
(1)
−1 a

(0)

− 1
2

a
(0)
1
2

a
(1)
1 a

(0)
−1→0 a

(0)
0→1

(3.36) First 1 5
94

−144
47

144
47

5
94

102
47

−102
47

derivatives using (3.14),(3.15) and (3.16) is 2, 4 and 6. If the 0’th derivatives are available at the
time of derivative evaluation, these are found either directly (3.14), solving a tridiagonal system
(3.15), or solving a 2x2 block-tridiagonal system (3.16).
In Table 3.1 scheme coefficients for 3-point central schemes of increasing accuracy are given.
’FD’, ’CD’ and ’CV’ stand for ’Finite Difference’, ’Compact Difference’ and ’Compact Vol-
ume’. A preceding ’C’ refers to the ’Coupled’ discretization method, and the proceeding num-
ber indicates the accuracy order of the method. The two sixth order coupled compact volume
schemes have, as to the extent of our knowledge, not been treated in literature. The latter CCV6s
scheme is a staggered variant of the CCV6 scheme, where the 0’th order derivative fluxes of the
dependent variables are evaluated at mid-cell instead of at the cell edges. 3-point Families of
CD and CCD schemes respectively can be constructed generically:

u
(n)
0 =

1∑

k=−1,2

(h−na
(0)
k u

(0)
k + a

(n)
k u

(n)
k ) + h−na

(0)
0 u

(0)
0 (3.17)

u
(n)
0 =

1∑

k=−1,2

Nmax∑
N=0

(hN−na
(N)
k u

(N)
k ) + h−na

(0)
0 u

(0)
0 , (3.18)

wheren ≥ 0 is the derivative order to be evaluated in point indexed 0.Nmax is the largest
derivative order. The casen = 0 leads to an interpolation scheme.
We now introduce the compact finite volume (CV) and combined compact finite volume (CCV)
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Table 3.2:Dispersion- and truncation-error
Scheme Equation PPW (ε = 10−2) PPW (ε = 10−3) PPW (ε = 10−4) Truncation error

FD1 Advection 25.6 81.1 256 −1
2

u(2)h

FD2 Advection 25.6 81.1 256 1
6
u(3)h2

Diffusion 12.8 40.5 128 1
12

u(4)h2

CD4/CV4 Advection 5.63 9.77 17.2 −1
120

u(5)h4

Diffusion 4.32 7.58 13.5 −1
200

u(6)h4

CCD6/CCV6 Advection 3.50 4.76 6.67 1
5040

u(7)h6

Diffusion 3.13 4.54 6.59 1
20160

u(8)h6

CCD6s Advection 4.88 7.19 10.6 31
20160

u(7)h6

Diffusion 3.13 4.48 6.46 1
20160

u(8)h6

schemes generically:

[
ūy,(n)

]
0

=
1∑

k=−1,2

(h−na
(0)
k

[
ūy,(0)

]
k
+ a

(n)
k

[
ūy,(n)

]
k
)

+

1
2∑

k=− 1
2

h−na
(0)

k− 1
2
→k+ 1

2

[
ūxy,(0)

]
k− 1

2
→k+ 1

2

(3.19)

[
ūy,(n)

]
0

=
1∑

k=−1,2

Nmax∑
N=0

hN−na
(n)
k

[
ūy,(n)

]
k

+

1/2∑

k=−1/2

h−na0
k− 1

2
→k+ 1

2

[
ūxy,(0)

]
k− 1

2
→k+ 1

2

, (3.20)

wheren ≥ 0 is the derivative order to be evaluated in point indexed 0. The hermite polynomia
(3.19), (3.20) for finite volume discretization are functions of compound variables indicated
by bars to distinguish from the point variables used for the finite difference equivalents (3.17),
(3.18). These compound variables are the averages over either cell faces or cell volumes. In 2D
we have

ūy,(n) =

∫ ∆y/2

−∆y/2
u(n)(x, y + η)dη

∆y
(3.21)

ūxy,(n) =

∫ ∆x/2

−∆x/2

∫ ∆y/2

−∆y/2
u(n)(x + ξ, y + η)dξdη

∆x∆y
(3.22)

n ≥ 0 denotes the derivative order perpendicular to the cell face. Expansion of (3.21), (3.22)
into Taylor series and calculation of scheme coefficients, truncation error and formal order of
accuracy is a lengthy algebraic exercise even for small three-point CV or CCV schemes. Hence,
the use of symbolic arithmetic software becomes helpful, even crucial in the design of upwinded
schemes for domain boundaries and correction terms for nonlinearities to be presented.
In Table 3.2 different schemes from Table 3.1 are evaluated for their dispersion- and truncation-

error. The resolution power of a scheme can be quantified as the least Points Per Wavelength
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Figure 3.1:Plot of phase speed versus grid wave number for advection/diffusion using differ-
ent schemes: (a) FD1/FD2 (not FD1 for diffusion), (b) CD4/CV4, (c) CCV6s, (d)
CCD6/CCV6, (e) exact.

(PPW) necessary to reduce the relative phase-velocity error, i.e. the dispersion error, below
a given threshold,ε , when a pure 1D wave in a periodic domain is introduced into a model
equation in fourier space. The chosen model equations are the advection and diffusion scalar
equations with unity phase-speed.

ut + ux = 0 (3.23)

ut + uxx = 0 (3.24)

The dispersion errors displayed in Fig.3.1 can then be viewed as the phase-speed discrepancy
from unity for the discretized model equation. See Lele (1992) for further details. Overall the
dispersive error analysis shows that the higher order schemes have superior resolution power,
and that the relative benefit of the compact schemes in terms ofPPW (ε) increases significantly
as the threshold error,ε, decreases. The advective dispersion error of the CCV6s scheme is
somewhat larger than for the CCV6 scheme, but still clearly superior to the CV4 scheme for
low error thresholds, see Table 3.2. The mid-cell evaluation of the averaged 0’th derivative flux



3.3 A Sixth-Order-Accurate Combined Compact Finite Volume Multigrid Solver 25

is insufficient in a finite volume context if strong conservation is to be enforced. Cell-edge flux
evaluations are therefore performed a posteriori as will be shown, which inevitably introduces
additional error into the discretization, the formal order of accuracy remaining unchanged. If
the CCV6s mid-cell evaluation had been used directly in the dispersion analysis, this scheme
would have superseded the non-staggered CCV6 equivalent in resolution power. The benefit
of staggering the coupled derivatives will become clear in the stability analysis of the coupled
compact volume multigrid smoother.

Discretization of Governing Equations

The steady incompressible Navier-Stokes equations in 2D are

div(v) = 0 (3.25)
∂v
∂t

+ div(v⊗ v− ν(grad v + (grad v)T )) + grad p = 0, (3.26)

wherev denotes the velocity vector field,p the specific pressure andν the kinematic viscosity
assumed to be constant. Integrating over a control volume for an infinitesimal volume applying
the Gauss divergence theorem, eqs. (3.25) and (3.26) become

∫

∂θ

v · n = 0 (3.27)
∫

∂θ

(
∂v
∂t

+ (v · n)v− ν(grad v + (grad v)T ) · n + pn) = 0 (3.28)

which conserve the physical quantities of mass and momentum inside the boundary∂θ of an
infinitesimal control volumeθ. (3.27), (3.28) can be represented as a system of acoustic, con-
vective and diffusive fluxes. In the steady limit the temporal term will vanish.

Cacu(v, p) + Cconv(v) + Cvisc(v) = 0 (3.29)

Introducing finite sized control volumes, the discretized system listed in the order of equations,
continuity, x-momentum, y-momentum takes the form

[Cacu(v, p)]i+ 1
2
,j+ 1

2
=




diff(ū, x) + diff(v̄, y)
diff(p̄, x)
diff(p̄, y)


 (3.30)

[Cconv(v)]i+ 1
2
,j+ 1

2
=




0
diff(uu, x) + diff(vu, y)
diff(uv, x) + diff(vv, y)


 (3.31)

[Cvisc(v)]i+ 1
2
,j+ 1

2
=




0
diff(ūx, x) + diff(ūy, y)
diff(v̄x, x) + diff(v̄y, y)


 (3.32)

The flux-difference of a quantity, saȳu, over a finite volume in either direction is

diff(ū, x) =
(
[ūy]i+1 − [ūy]i

)
∆y (3.33)

diff(ū, y) =
(
[ūx]j+1 − [ūx]j

)
∆x (3.34)
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Edge-averaged scalars,p̄, ū andv̄, and their first-order derivatives are calculated using a differ-
ence scheme. The zeroth and first derivative line-averages, e.g.[ūx]j and[ūx

x]j are unknowns to
be evaluated implicitly. Omitting truncation error the CCV6s schemes from Table 3.1 for zeroth
and first derivative edge averages are

[ūy]i+ 1
2

=
17

254
∆x

(
[ūy

x]i − [ūy
x]i+1

)
+

7

254

(
[ūy]i− 1

2
+ [ūy]i+ 3

2

)

+
120

127
[ūxy]i+ 1

2
(3.35)

[ūy
x]i =

5

94

(
[ūy

x]i−1 + [ūy
x]i+1

)
+

144

47∆x

(
−[ūy]i− 1

2
+ [ūy]i+ 1

2

)

+
102

47∆x

(
[ūxy]i− 1

2
− [ūxy]i+ 1

2

)
(3.36)

Note that the zeroth derivative line is located at mid-cell, indexedi + 1
2
. The zeroth derivative

average on the edge, indexedi + 1, can a posteriori be computed explicitly as

[ūy]i =
1

4
∆x

(−[ūy
x]i−1 + [ūy

x]i+1

)
+ 8

(
[ūy]i− 1

2
+ [ūy]i+ 1

2

)

− 15

2

(
[ūxy]i− 1

2
+ [ūxy]i+ 1

2

)
(3.37)

The CCV6 schemes contain all line averages on the edge:

[ūy]i =
1

16
∆x

(−[ūy
x]i−1 + [ūy

x]i+1

)− 7

16

(
[ūy]i−1 + [ūy]i+1

)

+
15

16

(
[ūxy]i− 1

2
+ [ūxy]i+ 1

2

)
(3.38)

[ūy
x]i =

1

8

(
[ūy

x]i−1 + [ūy
x]i+1

)
+

9

8∆x

(
[ūy]i−1 − [ūy]i+1

)

+
3

∆x

(
−[ūxy]i− 1

2
+ [ūxy]i+ 1

2

)
(3.39)

At this point the necessary equations for the linear part of the system are given. The convec-
tive terms, however, require some care. The edge-averaged products,uu, vu, uv andvv, are
calculated using the product of edge-averaged scalars,ū andv̄. This results in the second order
accuracy known from the vast majority of existing finite volume solvers. Examination of the
truncation error foruv:

[uvy]i,j+ 1
2
− [ūy]i,j+ 1

2
[v̄y]i,j+ 1

2
= E(h2), (3.40)

where

E(h2) =
1

12
∆y2u
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2

v
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u
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2
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i,j+ 1
2

+
1
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u

(0,3)
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2

v
(0,1)

i,j+ 1
2

)
(3.41)

The punctual derivatives that constitute the second order truncation error up to sixth order are
given below. Note that sixth order accuracy is not needed for these terms since they already
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Figure 3.2:compact stencils. Crossed volumes are included in the stencil as well as edges
numerated for the derivative, 0 and/or 1.

appear in (3.41) with a multiplicity of∆y4.
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ūx

y

]
i+ 1

2
,j−1

) (3.42)
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figure 3.2 illustrates the combined compact stencils for the above expresions.

Solution Strategy

The overall solution process includes three steps.
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Preprocessing

In order to solve (3.29) the initial flowfield and boundary conditions are needed. For non-
homogenous boundary conditions care must be taken to specify the edge-averaged value of e.g.
a Dirichlet value.

Iterative solver

The governing equations (3.25), (3.26) constitute a spatially elliptic system with parabolicity
along the temporal dimension. As demonstrated in a following section, time-preconditioning
will alter the nature of the system to become purely hyperbolic, thus amenable to explicit
single/multi-stage pseudotime-marching. The effect of multi-staging is to expand the domain
of stability to include all eigenvalues of the iterative operator. Note that the order of accuracy
in time is of no interest. Only the steady solution matters, since the transient behavior becomes
non-physical due to artificial compressibility (time-preconditioning). We use a first-order six-
stage scheme.

Q0 = Qn

Qi = Q0 + αicfl∆Qi−1 i = 1 : 6

Qn+1 = Q6, (3.45)

whereα = [0.15 0.28 0.39 0.63 1.04 1]T . This scheme works on the system

P∆Q + CQ = 0 (3.46)

The first matrix defines the iterative strategy, the smoother. This term vanishes upon conver-
gence. The second matrix is the system to be solved, see (3.29). Solution of one stage involves
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Figure 3.3:One V-cycle for 5 mesh levels. The number of pre- and post-smoothings for each
level during restriction/prolongation respectively is indicated.
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two steps. First: The iteration matrix,P, must be inverted to find the update of the volume-
averaged primitive variables. ifN = m · n is the number of nodes in the structured mesh, this
means N inversions of a 3x3 subsystem (point-implicit). For anisotropic meshes line-implicity
across high-aspect-ratio cells perpendicular to the boundary layer leads ton inversions of a
3x3 block-tridiagonal system of lengthm blocks. Second: Once the volume-averaged updates
are available, the edge-averaged variables must be updated. The combined compact volume
schemes are solved along each spatial direction. In totalm pentadiagonal banded matrices of
length3n for edge-averages over vertical edges (y), and vice versa for the horizontal edges (x).
Using the CCV6 scheme instead of CCV6s would have led to 2x2 block-tridiagonal systems
instead of the banded ones. A full approximation scheme using V-cycles with as many levels
as the problem size allows is employed. For better estimating the initial solution full multigrid
(FMG) is implemented where the converged coarse grid solution serves to offer a qualified ini-
tial solution on the next finer mesh in a repeated fashion until V-cycles are initiated on the finest
mesh. Minimum 2x2 finite volumes are needed on the coarse mesh. All prolongation uses sim-
ple bilinear interpolation. Half weighting is used for the restriction operator. The number of
pre- and post-smoothings increases exponentially with the number of levels in the V-cycles as
depicted on Fig.3.3. This rapid increase of smoothings on the coarser meshes lead to a compu-
tational cost increase. Making the simplified, but almost correct, assumption that all cpu work
originates from the smoothings during the iterative solution process, the cost increase per V-
cycle as compared to a single grid computation is unbounded for 1D problems as the number of
levels increases, 100% for 2D problems and 33.3% for 3D problems.

Postprocessing

The primitive parametersp, u andv at the nodal points of the mesh must be calculated from the
resolved flowfield, given by the edge- or volume-averaged parametersp̄y, p̄x, p̄y

x, p̄x
y andp̄xy and

likewise foru andv. One can adopt the implicit recovery of punctual values used by Pereira et.
al. [57] with the coupled derivative extension additionally. However, for sixth order accuracy
the following explicit interpolation scheme is a simpler choice.
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Boundary proximity causes the stencil to become non-centered, but the size remains the same.

Multigrid Smoother

The smoother is of the generic type given by (3.46). The iteration matrix,P, is in the simple
case just a diagonal of temporal coefficients. In the present approach stiffness associated with
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infinite acoustic speeds is alleviated by scaling the acoustic speed to match the convective speed.
Next we introduce defect correction to further enhance the eigenvalue spectrum of the iterative
operator.

Time-preconditioning

Also labelled ‘artificial compressibility’ this method is of ancient origin, Chorin (1967). Con-
sider the inviscid subsystem of the incompressible Navier-Stokes equations (3.25), (3.26) with
a time derivative of pressure added to the otherwise static continuity equation.




p
u
v




t

+




0 β2 0
1 2u 0
0 v 0




︸ ︷︷ ︸
A




p
u
v




x

+




0 0 β2

0 v u
1 0 2v




︸ ︷︷ ︸
B




p
u
v




y

= 0 (3.48)

The eigenvalues of the spatial part,Anx + Bny, are real, and according to theory of character-
istics we have a hyperbolic system with propagation speeds (eigenvalues)

λ =





v · n
v · n +

√
v2 + β2

v · n−
√

v2 + β2

(3.49)

n is the unit vector of arbitrary direction. Increasingβ towards infinity makes (3.48) become less
and less compressible until the incompressible limit, characterized by infinite acoustic speeds,
and thus: Infinite numerical stiffness. The choice ofβ is therefore based on reducing the stiff-
ness. Settingβ = max(|v|) makes the acoustic speeds equal or faster than the convective speeds
in any direction, and ensures acoustic propagation in any direction, which must be satisfied for
incompressible flows. The local timestep can be defined conveniently as

∆t =
1

u+
√

u2+β2

∆x
+

v+
√

v2+β2

∆y

(3.50)

∆t =
1

u+
√

u2+β2

∆x

, (3.51)

for the point- and line-implicit method respectively. The dependence of∆y on the allowable
timestep disappears when this direction is treated implicitly. In the case of a very low cell
Reynolds number, either caused by high viscosity or very small edge lengths (including high
anisotropy), the viscous terms dominate. Neumann stability analysis on the diffusion equation
with explicit time-integration reveals a timestep maximum limit of∆y2/2ν. Taking this into
account, the local artificial compressibility parameter,β, for a mesh point becomes, for the
point- and line-implicit method

β = max(|v|) +
∆x2

2ν
+

∆y2

2ν
(3.52)

β = max(|v|) +
∆x2

2ν
(3.53)
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Defect correction

The iteration matrix, see (3.46), from pure time integration of the volume-averaged variables
p̄xy, ūxy and v̄xy would be a 3x3 block-diagonal matrix of size 3N, each block being in fact
diagonal

P3x3 = ∆x∆y




1
β2∆t

0 0

0 1
∆t

0
0 0 1

∆t


 (3.54)

A less scattered eigenvalue spectrum, significantly in the line-implicit case, allowing a larger
cfl-number, results from using an iteration matrix that resembles the higher order system better,
such as the lower order equivalent. Using the volume-averaged set of primitive variables we in-
clude a part of the time-preconditioned lower order discretized version of (3.46) in the iteration
matrix, namely the subsystem that is contained in the volume-averaged variables that we treat
implicitly: An array of all single cells for the point method, or vectors of aligned cells for the
line method. This subsystem is based on standard second order central differences for acous-
tic and diffusive terms, and first order upwinding on convective terms. For the point-implicit
method the diagonal blocks have more entries
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(3.55)

The line-implicit method leads to the 3x3 block-tridiagonal iteration matrix. The sub-off-
diagonal block is
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(3.56)

The convective upwinding terms are included in (3.56) for clarity purposes, but could of course
have been oppositely upwinded as well, depending on the direction ofu, v. The defect cor-
rection presented here can be successfully applied for any of the higher order schemes, CV4,
CCV6 or CCV6s.

Stability Analysis

In this section the linearized version of the governing equations (3.25,3.26) with constant con-
vective speeds, is decomposed into Fourier modes in 2D. The steady part of the decomposition
with zero wavenumbers,ωx, ωy = (0, 0) in both spatial directions, is the solution, which we
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assume constant and periodic in space to facilitate the analysis. Nonzero wavenumbers are as-
sociated with disturbances (Fourier modes), which fluctuate in time and space, that must reduce
in temporal fluctuation magnitude for each multistage timestep in order to converge. Due to the
superposition principle it suffices to consider each disturbance separately:

Q̂′(x, y, t) = Q̂0,0 + Q̂ωx,ωy(t)e
i(ωxx+ωyy) (3.57)

The hat superscript denotes Fourier space. Insertion of (3.57) into the iterative solver (3.46)
leads to a Fourier space equivalent system for a given modeωx, ωy. After subtraction of the
steady part, the fluctuating error amplitude can be expressed.

P̂∆Q̂ + ĈQ̂ = 0 (3.58)

Applying the multistage timescheme (3.45) to (3.58) the amplitude ratio between the solution
at two subsequent timesteps can be quantified from

Q̂n+1 = AFQ̂n , (3.59)

where

AF = I − α6F + α6α5F2 − α6α5α4F3
+ ... ,

F = cflP̂
−1

Ĉ (3.60)

I being the identity matrix andF the Fourier symbol for the solver. Now, if follows that
the iteration scheme is convergent if and only if|λi| < 1 for all eigenvalues ofAF . In the
complex plane the stability domain is found as a function of proposed eigenvalues ofF for
which the modulus of all eigenvalues of the resulting scheme matrix,AF , are less than unity. If
a posteriori all eigenvalues ofF turn out to be inside the domain bounded by the contour of unity
eigenvalues forAF , then the solver is stable. This domain is optimized by tuningαi , i = 1 : 6,
such that the eigenvalues of the Fourier symbol are well contained within the stable domain for
as large acfl-number as possible. Theα-vector optimized for the CCV schemes is given in
(3.45). The associated region of stability, e.g. on Fig.3.4, is characterized by extending more
into the right half-plane than normally seen for explicit time-schemes. The eigenvalues of the
CCV solvers for a series of 9 generic cases is presented on Figs.3.4-3.8 These cases are:

1. Inviscid flow aligned to the x-axis, AR=1.

2. Viscous flow aligned to the x-axis, AR=1, Re=1.

3. Viscous stagnation (vanishing convection), AR=1.

4. Inviscid flow aligned to the y-axis, AR=1.

5. Inviscid flow aligned to the y-axis, AR=1000.

6. Inviscid flow aligned to the x-axis, AR=1000.

7. Viscous flow aligned to the x-axis, AR=1000, Re=1.

8. Viscous flow aligned to the y-axis, AR=1000, Re=1.
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9. Viscous stagnation (vanishing convection), AR=1000.

where AR is the cell aspect ratio. For cases with uniform meshes the point-implicit solver is
used to calculateF . For the anisotropic cases withAR = 1000 stretched inx-wise direction the
line-implicit solver is used. Fig.3.4 shows the CCV6s eigenvalue spectra and error amplification
rate for cases 1-3. The mesh is uniform,AR = 1, andcfl = 1. For the viscous cases the error
is well damped. For the inviscid case 1, the lack of upwinding and/or artificial dissipation
refrains the eigenvalue spectrum to curve into the left half-plane. It mainly coincides with
the imaginary axis, and it is to this end that the multistage time-scheme has been optimized.
This is further emphasized in Fig.3.5, same scheme andcfl-number, where the eigenvalue
spectrum of case 4 even extends into the right half-plane. The anisotropic mesh used for case
5-6 leads to reasonable error damping when implicitness is applied in the direction of high
cell-density. The pseudo-time-step limit for the point-implicit solver would otherwise render a
virtually undamped solver. Fig.3.6 for cases 7-9 ends the fourier results for the CCV6s scheme.
The beneficial effect of staggering the zeroth and first-order edge-derivatives is quantified in
Fig.3.7, where eigenvalue spectra for the non-staggered CCV6 scheme are presented. Note
the much lower maximum allowablecfl = 0, 5 leading to less damping of the error. Fourier
analysis for the CV4 scheme are depicted in Fig.3.8. The spectra and allowablecfl-number are
quite similar to those of the CCV6s solver.
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Figure 3.4:Stability results for CCV6s.cfl = 1.0. From left to right are the cases 1-3.
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Figure 3.5:Stability results for CCV6s.cfl = 1.0. From left to right are the cases 4-6.
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Figure 3.6:Stability results for CCV6s.cfl = 1.0. From left to right are the cases 7-9.



3.3 A Sixth-Order-Accurate Combined Compact Finite Volume Multigrid Solver 35

−4 −2  0

−2

 0

 2

Inviscid, u=1, AR=1

−4 −2  0

−2

 0

 2

Viscous, u=1, Re=1, AR=1

−4 −2  0

−2

 0

 2

Viscous stagnation, AR=1

−4 −2  0

−2

 0

 2

Inviscid, v=1, AR=1

−4 −2  0

−2

 0

 2

Inviscid, v=1, AR=1000

−4 −2  0

−2

 0

 2

Inviscid, u=1, AR=1000

Figure 3.7:Stability results for CCV6.cfl = 0.5. From left to right are the cases 1-3 upper
row, and 4-6 lower row.
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Figure 3.8:Stability results for CV4.cfl = 0.9. From left to right are the cases 1-3 upper row,
and 4-6 lower row.
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Testcases

The accuracy of the CCV6s schemes and the efficiency of the multigrid method is demonstrated
through a few testcases.

Analytical Cavity

An analytical variant of the better known driven cavity flow is obtained by imposing a vertical
body force on the governing Navier-Stokes equation. This case was originally presented by
Shih et al. [66]. In contrast to the driven cavity flow it has a bounded solution for the pressure,
and the analytical solution is Reynolds number independent. The body force to go on the RHS
of the y-aligned momentum equation is given by

B(x, y, Re) =
8

Re

[
24

∫ (
ζ1(x) + 2ζ

′
1(x)ζ

′′
2 (y) + ζ

′′′
1 (x)ζ2(y)

)]

− 64
[
Y2(x)Y3(y) + ζ2(y)ζ

′
2(y)Y1(x)

]

where

ζ1(x) = x4 − 2x3 + x2

ζ2(y) = y4 − y2

Y1(x) = ζ1(x)ζ
′′
1 (x)−

[
ζ
′
1(x)

]2

Y2(x) =

∫
ζ1(x)ζ

′
1(x)

Y3(y) = ζ2(y)ζ
′′′
2 (y)− ζ

′
2(y)ζ

′′
2 (y)

The domain is the square cavity,(x, y) ∈ Ω ≡ [0, 1]2. Homogenous Dirichlet boundary condi-
tions are imposed for the velocities, except on the upper boundary where

u(x, 1) = 16ζ1(x), x ∈ [0, 1]

Table 3.3:Residual error reduction for converged solutions on different meshes.Re = 1.
Grid 8x8 16x16 32x32 64x64

p Max. residual error 1.52e-3 1.83e-4 5.10e-6 1.43e-6
Order of accuracy 3.05 5.16

Mean residual error 2.26e-4 1.47e-5 3.11e-7 7.87e-7
Order of accuracy 3.94 5.56

u Max. residual error 7.53e-6 5.90e-7 7.74e-9 3.47e-9
Order of accuracy 3.67 6.25

Mean residual error 9.33e-7 7.80e-8 3.30e-9 1.10e-9
Order of accuracy 3.58 4.56

v Max. residual error 5.54e-6 1.95e-7 4.21e-9 3.20e-9
Order of accuracy 4.83 5.53

Mean residual error 1.70e-6 4.56e-8 1.12e-9 1.03e-9
Order of accuracy 5.22 5.35
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Figure 3.9:Multigrid convergence for analytical cavity testcase. Left:Re = 1, right: Re =
1000. Mesh level 1: 64x64, mesh level 5: 4x4.

An analytical solution for the problem is known to exist

u(x, y) = 8ζ1(x)ζ
′
2(y)

v(x, y) = −8ζ
′
1(x)ζ2(y)

p(x, y, Re) =
8

Re

[(∫
ζ1(x)

)
ζ
′′′
2 (y) + ζ

′
1(x)ζ

′
2(y)

]

+ 64Y2(x)

(
ζ2(y)ζ

′′
2 (y)−

[
ζ
′
2(y)

]2
)

The testcase has been solved on four uniform meshes as can be seen from table 3. The error
between the analytical reference and the converged solution is composed of the discretization
error and the machine precision error for 8 byte doubles,2.22e−16. How early the accumu-
lated effect of the latter comes into play, when successively refining the mesh, depends on the
orthogonality of the linear system. The upwinded CCV6s boundary schemes have limited or-
thogonality, which is the reason why the machine precision limit halts the error reduction from
the 32x32 to the 64x64 mesh. The high order accuracy is confirmed, although sixth order error
reduction is not fully achieved. We attribute this to the early onset of the machine precision
limit.
Fig.3.9 shows the multigrid acceleration for two Reynolds numbers,Re = 1 andRe = 1000.

The viscous dominated problem for unity Reynolds number exhibits the highest convergence
rates, but also a pronounced decline in convergence rate when exceeding four mesh levels.
Hardly any penalty for using more levels is encountered in the convectively dominated case
for Re = 1000. IncreasingRe by another three orders of magnitude will lead to a roughly
unchanged convergence rate. Numerically stability in the inviscid limit was expected from
the fourier analysis, but physical instability will refrain the pseudo-time integration to reach a
steady state. It should be noted that all multigrid convergence tests consist of five levels, the
three coarsest being computed without the higher order correction, and the two finest levels
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with the higher order correction. Using the first-order upwind prediction for the convective
terms without correction leads to a computational speed-up, but will not have a positive effect
on the convergence rate. Thus, the observed penalty for using five or more meshes for viscous
dominated problems is an artefact of the low order predictor method rather than the higher order
correction. Both for low and highRe-numbers, the convergence speed-up from a single grid
(SG) computation is very significant, and for the high Re computation the number of iterations
is nearly independent of the mesh size. Although full multigrid (FMG) is implemented, the
coarse mesh solution is not used to find a qualified initial solution on the next finer mesh in the
convergence tests shown. This is in order to better show the capability of the V-cycles alone.

0 1
0

1

Figure 3.10:Streamlines for analytical cavity testcase.
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With the FMG option disabled the convergence problem for each mesh level is independent of
that of the preceding level. Inclusion of each convergence history merely shows how the multi-
grid method scales with increasing size.
Fig.3.10 shows the converged solution on the 64x64 mesh. The superposed grey contour stream-
lines are from the similar solution without higher order correction. The discrepancy is notable.

Driven Cavity

The classical driven cavity flow is our next testcase. The domain is unchanged from the pre-
ceeding testcase. The only non-homogenous Dirichlet boundary condition is for the x-aligned
velocity of the upper domain boundary which is unity. The physics is governed by the in-
compressible 2D Navier-Stokes equations. No analytical solution is known to exist. Particular
features of the flow are the counter-rotating recirculation zones at the lower corners and the
viscosity-related unboundedness of the pressure in the vicinity of the upper corners where the
driving lid interacts with the stationary walls. The multigrid convergence on Fig.3.11 is quite
similar to that of the analytical testcase, and seemingly not adversely affected by the singularity
points for the pressure at the upper corners. Again, the highRe-number computation shows
the most consistent convergence behavior as the mesh is refined and the number of levels in
the V-cycle increased. Here, optimal O(N) scaling is obtained for all but the next-finest mesh.
The stream-function contour lines of Fig.3.12 shows the flow pattern. After deconvolution of
the converged solution on the 64x64 mesh the punctual values of a 256x256 mesh is obtained
through coupled compact interpolation, and finally the streamfunction is found from standard
integration over the domain. Overall these post-processing steps add complexity to the method
from an application viewpoint, but the computational cost is negligible.
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Figure 3.11:Multigrid convergence for driven cavity testcase. Left:Re = 1, right: Re = 1000.
Mesh level 1: 64x64, mesh level 5: 4x4.
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Figure 3.12:Streamlines for driven cavity testcase.

Summary

An edge-based strongly conservative coupled compact volume sixth order accurate scheme with
multigrid acceleration has been developed for the incompressible Navier-Stokes equations in
2D. The contribution compared to earlier investigations on compact volume applications con-
sists in the coupled derivative evaluation leading to an even higher order of accuracy, and the
artificial compressibility modification of continuity enabling explicit multistage pseudo-time
marching. The absence of artificial dissipation and upwinding is made possible by enlarging
the stability region of the time marching scheme, which suppresses oscillatory behavior often
encountered for central and/or higher order schemes, if the region of stability only marginally
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includes the eigenvalues of convective origin clustered around the imaginary axis. Through
fourier analysis a defect-correction approach with the staggered coupled compact scheme be-
ing contained exclusively in the explicit correction terms is found to yield convergence for all
Re-numbers. Scheme accuracy and satisfactory multigrid convergence is assessed through test-
cases. Future research for the method will aim at improving the residual error reduction of the
smoother leading to faster convergence, and to pinpoint the mechanism that hampers further
multigrid acceleration for viscous dominated problems when the number of grid levels in the
V-cycle increases.



Chapter 4

Linear Stability Theory (LST)

Assuming that a baseflow solution is available, it remains to solve the perturbed remainder of
the governing equations. This chapter brifly introduces the concept of LST, the underlying
assumtions and the possibilities for transitional modelling based on LST. We limit our attention
to spatial analysis, where instability amplitudes evolve along the streamwise dimension. In
temporal analysis disturbance amplitudes are allowed to evolve along the temporal dimension
only, thus assuming uniform disturbance amplitudes in both streamwise and spanwise direction.
For this reason spatial analysis is by far the most interesting from an engineering point of view.

4.1 Disturbance Equations

The non-dimensionalized incompressible Navier-Stokes equations for mass and momentum in
a cartesian reference have the form

U
′
x + V

′
y + W

′
z = 0 (4.1)

U
′
t + U

′
xU

′
+ U

′
yV

′
+ U

′
zW

′ − 1

Re
(U

′
xx + U

′
yy + U

′
zz ) + P

′
x = 0

V
′
t + V

′
xU

′
+ V

′
yV

′
+ V

′
z W

′ − 1

Re
(V

′
xx + V

′
yy + V

′
zz ) + P

′
y = 0

W
′
t + W

′
xU

′
+ W

′
yV

′
+ W

′
zW

′− 1

Re
(W

′
xx+ W

′
yy+ W

′
zz) + P

′
z = 0 (4.2)

As anticipated in the introduction we now decompose the primitive variables into a steady
baseflow and a fluctuating part

P
′
= P + p

′

U
′
= U + u

′

V
′
= V + v

′

W
′
= W + w

′
(4.3)

Insertion of decomposed variables (4.3) into the Navier-Stokes equations (4.1-4.2) and subse-
quent subtraction of the baseflow solution yields a set of perturbation equations

u
′
x + v

′
y + w

′
z = 0 (4.4)

42
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u
′
t + Uxu

′
+ Uu

′
x + Uyv

′
+ V u

′
y + Wu

′
z−

1

Re
(u

′
xx + u

′
yy + u

′
zz ) + p

′
x = − u

′
u
′
x− v

′
u
′
y−w

′
u
′
z

v
′
t + Vxu

′
+ Uv

′
x + Vyv

′
+ V v

′
y + Wv

′
z −

1

Re
(v

′
xx + v

′
yy + v

′
zz ) + p

′
y = − u

′
v
′
x − v

′
v
′
y −w

′
v
′
z

w
′
t+ Wxu

′
+ Uw

′
x+ Wyv

′
+ V w

′
y+ Ww

′
z−

1

Re
(w

′
xx+ w

′
yy+ w

′
zz) + p

′
z = − u

′
w
′
x− v

′
w
′
y−w

′
w
′
z

(4.5)

Baseflow z-derivatives vanish due to spanwise uniformity. For a given baseflow the system
(4.4-4.5) is equivalent to the 2.5D Navier-Stokes equations. The LHSs of the fluctuating mo-
mentum equations (4.5) are linear with respect to the fluctuating variables. The nonlinearities
are the quadratic convective terms collected on the RHSs.

Next step in the analysis concerns the choice of a proper "wave ansatz" to describe the distur-
bances. The form of the wave ansatz is the main feature to differentiate LST, PSE and ESE.
Traditional LST assumes an ansatz based on a fixed amplitude distribution in the wall-normal
direction and periodicity along the streamwise, spanwise and temporal dimension.

q
′
(x, y, z, t) =

∞∑

l=−∞

∞∑
n=−∞

∞∑
m=−∞

qlmn(y)ei(lα1x+nβ1z−mω1t) , (4.6)

where the amplitude vectorqlmn = [plmn, ulmn, vlmn, wlmn]T is complex and the triple Fourier

sumq
′

= [p
′
, u

′
, v

′
, w

′
]
T

must be real as the physical perturbation flowfield. This is ensured
by the symmetric inclusion of temporal frequencies in the Fourier sum, since the mode for a
negative frequency is the complex conjugate of its positive frequency counter-mode.α1, β1 and
ω1 are the primary wavenumbers and simply represent a discretization size in Fourier space.
Due to spanwise and temporal periodicity this type of decomposition is a natural choice along
these dimensions. In streamwise direction the wavenumber,α, is normally solved for such that
it will not necessarily coincide with any integer multiple ofα1, lα1. In this case the perturbation
q
′
from (4.6) takes the form

q
′
(x, y, z, t) =

∞∑

l=−∞

∞∑
n=−∞

∞∑
m=−∞

qlmn(y)ei(αlx+nβ1z−mω1t) , (4.7)

where in generalαl 6= lα1. For a given temporal and spanwise wavenumber,m,n, α1 corre-
sponds to the fundamental viscous mode andα2, α3 etc. correspond to the higher harmon-
ics. For linear analysis this does not pose any problem, since the modes are independent.
For non-linear analysis, however, the mode interaction between the discrete wavenumbers will
cause nonlinear forcing on integer multiples of these wavenumbers. The non-periodicity of the
streamwise direction will cause some degree ofα’s not coinciding with the Fourier discretiza-
tion. To remedy this Fourier space interpolation is one work-around, another is simply to allow
αl 6= lα1, and still distribute the nonlinear forcing between the modes as ifαl = lα1, thus
abandoning the strict integer multiplicity between the streamwise wavenumbers and hope that
the committed error is small. This will generally be the case when there is one dominant unsta-
ble mode that initiates the cascading of excited modes, which is the physical scenario normally
observed. The issue will be pursued later. To enable solutions of (4.4-4.5) we further assume:

• No streamwise changes of baseflow solution (the parallel baseflow assumption).
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• Nonlinearities are small and hence negligible.

• Homogenous boundary conditions for the fluctuating velocities at wall and outer bound-
ary layer edge.

The perturbed momentum equations (4.5) then simplify to

u
′
t + Uu

′
x + U

′
yv + V u

′
y + Wu

′
z−

1

Re
(u

′
xx + u

′
yy + u

′
zz ) + p

′
x = 0

v
′
t + Uv

′
x + V

′
yv + V v

′
y + Wv

′
z −

1

Re
(v

′
xx + v

′
yy + v

′
zz ) + p

′
y = 0

w
′
t+ Uw

′
x+ W

′
yv+ V w

′
y+ Ww

′
z−

1

Re
(w

′
xx+ w

′
yy+ w

′
zz) + p

′
z = 0 (4.8)

The linearity assumption allows us to treat individual Fourier modes independently, since mode
interaction only can occur through the neglected nonlinear terms. Insertion of a single Fourier
mode from (4.6) in (4.4) and (4.8) leads to the normal-mode equations for mass and momentum.
For an arbitrary mode(l,m, n) we have

iαu + iβw + Dv = 0 (4.9)

i(αU + βW − ω)u + (DU)v + iαp − 1

Re
(D2 − α2 − β2)u = 0

i(αU + βW − ω)v + Dp − 1

Re
(D2 − α2 − β2)v = 0

i(αU + βW − ω)w+ (DW )v + iβp− 1

Re
(D2 − α2 − β2)w = 0 (4.10)

whereD = d/dy and the homogenous boundary conditions are

y = 0 : u = v = w = 0 y = ∞ : u = v = w = 0 (4.11)

4.2 The Local Eigenvalue Problem

From the LST normal-mode equations some algebraic manipulation leads to the Orr-
Sommerfeld equation

{(
D2 − α2 − β2

Re
− i (αU + βW − ω)

) (
D2 − α2 − β2

)
+ i

(
αD2U + βD2W

)}
v = 0

(4.12)

with the clamped boundary conditions forv

y = 0 : v = Dv = 0 y = ∞ : v = Dv = 0 (4.13)

to be solved solved locally as an eigenvalue problem for the streamwise wavenumverα since
streamwise baseflow changes have been neglected. The real part of the eigenvalue is the
spatial frequency of the Fourier wave, whereas the imaginary part is the exponential rate of
amplification. Note that due to the the LST wave ansatz, streamwise amplitude changes can
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only occur through this mechanism, since the amplitude vectorq has no dependency of the
chord positionx.

Numerically (4.12) can be solved using either a local or a global eigenvalue solver. The local
solver will need a suitable initial guess, often found by a global approach for a similar problem,
and then Newton-iterate on the eigensolution until convergence. Each iteration scalesO(N )
and will for a good initial guess converge quadratically requiring only a few iterations. In
contrast the global eigen-spectrum is obtained by solving the entire linear system as a general
eigenvalue-problem

AV = BV λ (4.14)

whereV is the matrix of eigensolutions andλ is the diagonal matrix of eigenvalues forω
(temporal analysis) orα (spatial analysis). For temporal analysisA andB are

A =

(
D2 − α2 − β2

Re
− i (αU + βW )

) (
D2 − α2 − β2

)
+ i

(
αD2U + βD2W

)

B = −i
(
D2 − α2 − β2

)
(4.15)

For spatial analysis the occurrence in (4.12) ofα in powers up to four complicates matters a
little. Auxiliary equations are therefore introducedα4 = α3α, α3 = α2α andα2 = αα. With
the new unknownsα4, α3 andα2 the expanded system for spatial analysis becomes

A =




A11 A12 A13 A14

I
I

I


 , B =




−iI
I

I
I


 , (4.16)

whereI is an identity NxN submatrix and

A11 = iD4 − 2iβ2D2 + ReβWD2 −ReωD2 + iβ4 −Reβ3W −ReβW + Reωβ2

A12 = ReUD2 −ReUyy + Reβ2U

A13 = −2iD2 + 2iβ2 + Reω −ReβW

A14 = −ReU (4.17)

Due to the one-dimensionality of the OS-equation, opting for the global method is easily af-
fordable in terms of cpu. Using the pseudo-spectral ODE-discretization described earlier, a
moderateN of 60-70 will suffice. Solving the eigen-spectrum for (4.15) scalesO(N3) and
O((4N)3) for (4.16), where the multiplicity ofα makes it necessary to treatα2, α3 andα4 as
auxiliary eigenvalues. It takes a fraction of a second and a few seconds respectively using e.g.
Matlab on a 500MHz Pentium III processor. Once the eigensolution of interest has been iden-
tified - the fundamental mode, one of the higher harmonics, or simply the least stable mode,
which in most cases is the fundamental eigenmode - the remaining amplitude vectorsu, w and
p are calculated from the normal-mode equations (4.9-4.10).

4.3 Transition Modelling using LST

Despite the total inability of LST, based on the OS-equation (4.12), to cope with all but one
of the five stages comprising the non-by-passed route to transition, fact remains that the semi-
empiricaleN -method, Smith (1956) and independently Van Ingen (1956), is the most employed
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transition prediction method in use today for boundary layer flows. The idea is to integrate
the growth of the unstable modes in the streamwise direction by solving the local OS-equation
at a number of chord positions sufficient to resolve the gradient in baseflow and eigenvalues.
The modelled transition point,xt where the most amplified Fourier-mode reaches a streamwise
accumulated modulus amplification ofeN is then used as criterion for transition onset.

N = max
ω

n (xt; ω) , n (x; ω) = −
∫ x

x0

αi (x; ω) dx (4.18)

The empirically based value ofN is dependent on receptivity impacts like roughness, vibration
and free-stream turbulence. The less noise, the higher the value ofN , typically in the range
7-11. Most successful is the method for transition scenarios where modal linear instability
plays a dominant role, e.g. 2D boundary layers. 3D boundary layers, e.g for swept wings, are
prone to trigger 3D instability: a) Stationary crossflow vortices, a roughness induced steady
disturbance that impede the development of unsteady modes in the nonlinear stage, and makes
theeN -method very case dependent. b) Travelling crossflow vortices which in many cases are
more unstable than the most unstable 2D disturbance giving motivation for the introduction
of two N values:NTS (or justN ) for two-dimensional Tollmien-Schlichting modes andNCF

for crossflow modes. Furthermore the path for integration of theN -factor introduces another
ambiguity: Is one to integrate along the inviscid streamline, along the chord or in the direction
of the group velocity (the velocity at which energy propagates in conservative systems) for the
particular Fourier mode. Arnal (1994) provides an extensive review on the LSTeN -method. In
case of by-pass transition the use of the method becomes highly questionable.



Chapter 5

Parabolized Stability Equations (PSE)

By allowing for streamwise changes of the baseflow, non-homogenous boundary conditions
and enabling an effective methodology for nonlinear mode interaction, the PSE considerably
extend the usefulness of stability analysis based on a wave ansatz. This chapter adds to the
LST concepts introduced earlier by formulating the PSE and explains the prospects for a less
empirical, and thus wider applicable, transition model.

5.1 Disturbance Equations

The perturbed momentum equations that we set out to solve are given by (4.5). Let us restate
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This is a vast improvement from (4.8) used in the LST analysis, since no terms are neglected.
The PSE "wave ansatz" is

q
′
(x, y, z, t) =

∞∑

l=−∞

∞∑
n=−∞

∞∑
m=−∞

qlmn(x, y)ei(θlmn(x)+nβ1z−mω1t)

θlmn(x) =

∫ x

x0

αlmn (ξ) dξ (5.1)

We note that our solution procedure can no longer be local: The streamwise dependency on
α andqlmn implies that a nonlocal method must be devised, that can account for the upstream
history. We also note an ambiguity: amplitude growth can now be assimilated into the expo-
nential growth through the imaginary part of the streamwise phaseθlmn as in LST, or directly
into the amplitude vectorqlmn. A closure equation is required. First, however, we obtain the set

47



48 Parabolized Stability Equations (PSE)

of elliptic stability equations for mass and momentum by insertion of a single wave ansatz (5.1)
mode into the linear LHS of (4.4-4.5)

iαu + Dv + iβw + ux = 0 (5.2)
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5.2 Linear PSE

The key to obtain a parabolized set of stability equations consists in selectingα such that the
elliptic terms of (5.2-5.3) become negligibly small. We identify the primary source of ellipticity
to be the RHS of (5.3) and proceed by defining a closure equation forα such that the streamwise
change∂q/∂x of the amplitude distribution is minimized. Various possibilities exist. A first
attempt could be the imposition ofα such that the vector sum ofqx at some normal position,y =
yp, equals zero. To avoid the dependence on a rather arbitrarily chosen normal position,yp, we
imply no streamwise amplitude change in an averaged sense across the domain by integration:∫
Ω

qxdy = 0. Further improvement can be obtained by multiplying a weight on the integrant
that renders satisfactory convergence and minimizes the effect of the PSE approximation. By
far the most used weight is the complex conjugate amplitude,q†, proposed by Herbert (1994)
leading to

∫

Ω

q†qxdy = 0 (5.4)

Under the constraint (5.4) the streamwise derivatives of the amplitude functions,ux, vx, wx, px,
will scale withRe in accordance with Prandtl’s boundary layer assumptions for the baseflow,
i.e. ∂

∂x
∼ V ∼ O(Re−1). Hence, the RHS of (5.3) scalesO(Re−3) while the LHS scales

O(Re−2) or larger, indicating that the PSE assumption is well justified for flows governed by
the boundary layer equations or other nearly parallel flows e.g. jets. These scaling assumptions
also explain why the low order backward Euler marching scheme performs very well despite
the high truncation error, since the streamwise amplitude derivatives scaleO(Re−1), which is
orders of magnitudes less than the dominatingO(1) terms. The linear PSE for incompressible
flow is then given by the equations (5.2-5.4) where the elliptic terms of viscous origin on the
RHSs of (5.3) are minimized upon completion of the constraint (5.4) and neglected. Are the



5.3 Nonlinear PSE 49

PSE parabolic? The answer is no. There exists a residual ellipticity mainly of acoustic nature,
which will cause numerical instability for very small streamwise steps in the parabolic marching
procedure. The critical stepsize is normally small, only a fraction of the streamwise wavelength,
and will not be encountered in the computation, but in some occasions it might be necessary to
further reduce ellipticity. This can be done in at least two ways:

• Ignore the streamwise change of the pressure amplitudepx from the x-momentum. This
will reduce the minimum stepsize by orders of magnitude, which will be sufficient for all
practical purposes. Still, the PSE are not parabolic, and are in theory ill posed.

• Introduce a stabilization term, Andersson et al. (1998), that totally removes the ellipticity
and leads to a well posed parabolic set of stability equations.

Both approaches are good with minimal impact on the result. The former is chosen in this work
due to its particular ease of implementation.

As implied in (5.1) by the linear independency of modes, the closure equation, and thusα, must
be satisfied independently for each Fourier mode contained in the calculation. Each mode is
solved by marching an initial solution in the streamwise direction. The initial solution is an
LST eigensolution that will adapt to the PSE after a slightly transient response during the first
marching steps. The solution strategy for a mode is the following

1. Advancex-position one step.

2. Update the solution forq(x) (5.2-5.3) by solving a linear system.

3. Updateα(x) by satisfying (5.4) using e.g. a secant method.

4. Check for convergence onα(x). If not converged go to 2). Otherwise go to 1)

The secant method exhibits nearly quadratic convergence, and will converge after 4-6 iterations.
As opposed to the global eigensolver used for LST, the PSE linear solve can benefit greatly
from a local discretization method yieldingO(N)-efficiency due the resulting matrix sparsity.
As demonstrated coupled compact differencing has nearly spectral resolution capabilities and
can be applied directly to a non-uniformy-discretization. The schemes (2.12-2.13) are used for
all PSE computations. The (12x12) block tri-diagonal linear system can be solved fast using
a customized block-solver, that takes into account the sparsity of the lower block-diagonal.
Partial pivoting on a block level only, must be used to invert the dense diagonal blocks during
the forward sweep.
Boundary conditions foru, v andw are of Dirichlet type as for LST but can be non-homogenous
and therefore incorporate receptivity mechanisms like vibrations, roughness and free-stream
turbulence.

5.3 Nonlinear PSE

The nonlinear terms of (4.5) can be maintained in the PSE method, but they must be decom-
posed into Fourier modes prior to inclusion as RHS forcing on the array of linear modes con-
tained in the calculation. The mechanism is often self-inductive: The dominant primary Fourier
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mode will interact with itself and generate two new mode frequencies given as the sum and the
difference of the interacting mode wavenumbers. In the self-inductive case the result will be
a new mode with double frequency, and another new mode with no frequency: A mean flow
distortion. This qualitatively explains the cascading effect of high-amplitude disturbances, and
gives a hint of why highly disturbed flows exhibit fundamental changes. The only mode that
affects e.g. drag and lift coefficients is the zero-frequency mean flow distortion modeq000,
which is generated by nonlinearity. All other modes average out due to their periodic nature.
Fourier decomposition of the nonlinear forcing is applied in the directions of full periodicity,
the spanwise and temporal dimension

2nmax∑
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2mmax∑
m=−2mmax−1
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i(nβ1z−mω1t) = FFT(RHS)
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where FFT is the Fast Fourier Transformation operator andRHS is the total nonlinear forcing in
physical space, whose individual terms are evaluated by summation of modes. To exemplify, the
streamwise disturbance velocity,u

′
, and its streamwise gradient,u

′
x, are found at each normal

discretization point as

u
′
=

nmax∑
n=−nmax

mmax∑
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umnei(θmnx+nβ1z−mω1t)

u
′
x =

nmax∑
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mmax∑
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(
∂umn
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+ iαmnumn

)
ei(θmn+nβ1z−mω1t) (5.6)

The expansion along the periodic dimensions must span the largest period

t = [ 0;
2π

ω1

[ z = [ 0;
2π

β1

[ (5.7)

To prevent aliasing, the number of points int andz must be at least twice the number of modes
in temporal and spanwise direction respectively, as indicated by (5.5).The FFT coefficients from
(5.5) are then distributed to the respective modes as RHS force terms. The nonlinear PSE for a
random mode assume the form

lin(PSE)mn = Fmne−i(θmn) , (5.8)

for continuity, x-, y-, and z-momentum, wherelin(PSE)mn is the LHS linear PSE from (5.2-
5.3). Again, all modes are subject to the parabolizing closure equation for the local streamwise
wavenumber

∫

Ω

q†mn

∂qmn

∂x
dy = 0 (5.9)

Note that for the nonlinear analysis the subscriptl has been excluded from the expansion (5.6).
This implies that for a temporal and spanwise wavenumber indexm,n we only consider the
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Figure 5.1:Schematic of modes.

dominating fundamental modeαmn with fixed streamwise wavenumber index,l. Otherwise the
Fourier decomposition of the nonlinear terms would not be straightforward, since neither the
mode amplitudes nor the wavenumbers are uniform in the chordwise direction, but the effect
on the physical solution is assumed to be very small. The selection ofω1, β1, m andn is largely
based on trial and error. LST and linear PSE can provide a good overview of the instability
region, andω1, β1 are then chosen accordingly.m and n must be chosen large enough to
contain all relevant mode interaction.

Symmetric inclusion of positive and negative temporal modes in the nonlinear PSE computation
ensures that the FFT operand is real and physical. Only the temporal modes for non-negative
m need to be explicitly calculated in the marching procedure. Symmetry properties can be
derived from the PSE equations (5.2-5.3), (5.5) and are summerized below for two- and three-
dimesional baseflows.

2D:
ω y −ω ⇒ real(α) y −real(α) , β y −β , q y q†

β y −β ⇒ ω y −ω , if spanwise symmetric modes only

3D: ω y −ω ⇒ real(α) y −real(α) , β y −β , q y q†

The modes in the dashed frame of Fig. 5.1 constitute the physical disturbance flowfield. The
crosshatched modes are always excluded from the computation, while the linehatched modes
can be excluded only if the baseflow and the initial disturbances are physically 2D, thus
assuming symmetric inclusion of oblique modes.

The nonlinearities can be calulated either explicitly or implicitly in the solution procedure, the
latter being more stable, which allows for larger marching steps. An outline of the strategy for
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nonlinear PSE is

1. Advancex-position one step.

2. Outer loop: Calculate the FFT nonlinear forcing coefficients (5.5).

3. For each mode, perform inner loop:

a Update the solution forq(x) (5.8) by solving a linear system.

b Updateα(x) by satisfying (5.9) using e.g. a secant method.

c Check for convergence onα(x) from previous linear solve. If not converged go to a).

4. If explicit nonlinearity, proceed to 1). Else if implicit nonlinearity, check for convergence
onα(x) from previous FFT: If not converged go to 2), otherwise go to 1)

For implicit nonlinearity, the issue of having a nested iteration for each marching step is not
serious. One outer loop will give a clear improvement to the maximum allowable stepsize, so
that more than two FFT evaluations per marching step will have limited effect only.

The remaining issue concerning nonlinear PSE is how far it can be marched into the last stages
of transition. Successful PSE runs have been extended far into the strongly nonlinear stage
with significant Mean-Flow-Distortion (MFD). Extension into turbulence has not been reported
and is not very likely to happen either. In turbulence the predominant unidirectional flow of
discrete frequencies from the transition stages is superseded by a sudden broadening of the
Fourier spectrum, random directions of wave propagation and increased streamwise variation
of the amplitude distribution vectorq. This affects the validity of the PSE approximation.
Furthermore regions of absolute instability are probably inherent turbulent features, certainly
not suitable for a parabolized approach.

Some remarks on the Meanflow Distortion and Meanflow Correction

The central role of the MFD mode from a physical point of view has been mentioned. Numeri-
cally, the mode is essentially governed by the boundary layer equations. All oscillatory behavior
is filtered out due to the fourier decomposition, and the closure equation becomes needless since
α00 ≡ 0. The streamwise pressure amplitude derivative,px, accounts for upstream acoustic pro-
pagation, which can not be parabolized by multiple scaling, because the MFD mode by nature
is non-oscillatory. Hence,px must be neglected.
The MFD mode will not vanish far from the wall as the oscillatory modes, but maintain the
wall-normal velocity offset from the baseflow value accumulated by non-linear mode interac-
tion inside the boundary layer. This is easiest accomplished by replacing the farfield homoge-
nous Dirichlet condition forv with a homogenous Neumann condition in the special MFD case.
Furthermore the MFD is unique in that it has the same zero wavenumber as the baseflow. This
enables an alternative treatment of the mode with enhanced coupling between the modes as will
be demonstrated. The original approach mostly used in PSE-codes perform the decomposition
of linear and nonlinear terms respectively as
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Figure 5.2:Two types of mode-coupling. Left: Without MFC. Right: With MFC. The black
mode is an example of a primary mode, which will generate and interact with modes
along the Fourier line atn = 0 in both cases. The right figure cross-hatching
indicates modes only interacting with the Mean Flow Distortion (MFD). The left
figure blank modes do not feel the disturbance modes and will hence not initiate a
modal interaction.

U
′
= U +

∞∑
n=−∞

une
−inωt (5.10)

U
′
V
′
= UV + U

∞∑
n=−∞

vne−inωt + V

∞∑
n=−∞

une
−inωt +

∞∑
n=−∞

vne
−inωt

∞∑
n=−∞

une−inωt (5.11)

whereun = un(x, y, z). For simplicity only the temporal fluctuation has been assimilated into
the exponential fast-varying scale. Attempting to unify the baseflow component with the MFD
mode in the decomposition we arrive at

U
′
= (U + u0) +

∞,n6=0∑
n=−∞

une
−inωt (5.12)

U
′
V
′
= UV − u0v0

+ (U + u0)
∞∑

n=−∞
une

−inωt

+ (V + v0)
∞∑

n=−∞
vne

−inωt

+

∞,n6=0∑
n=−∞

une−inωt

∞,n6=0∑
n=−∞

vne−inωt (5.13)

This decomposition is the one implemented in our PSE-code. We note the difference: The MFD
component forms part of the steady coefficients, formerly the baseflow coefficients alone, now
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with the MFD mode added on. Day et al. (1999) use the term ’Mean Flow Correction’, MFC.
In (5.11) all modes contributed to the nonlinear terms to be evaluated in physical space, FFT’ed
and distributed to the corresponding RHSs. In (5.13) the MFD part has been extracted from the
nonlinear summation. The advantage of (5.12), (5.13), over (5.10), (5.11) is the stronger cou-
pling of the steady mode with the oscillatory ones. This is clearly felt as a changed receptivity
for modes not directly affected by the nonlinear interaction of the oscillatory mode. Thus, any
mode nonlinearity will instantly be felt in the entire fourier space included in the computation.
The improved coupling is illustrated in Fig.5.2.
A variation of (5.12), (5.13) is

U
′
= U0 +

∞,n6=0∑
n=−∞

une
−inωt, U0 = U + u0 (5.14)

U
′
V
′
= U0V0

+ U0

∞,n6=0∑
n=−∞

une
−inωt

+ V0

∞,n6=0∑
n=−∞

vne−inωt

+

∞,n6=0∑
n=−∞

une
−inωt

∞,n6=0∑
n=−∞

vne
−inωt, (5.15)

for linear and nonlinear decomposition respectively. The sole difference from (5.12), (5.13) lies
in the treatment of the 0’th mode as the sum of baseflow and MFD. This leads to a solution
procedure for the Navier-Stokes equations, not just the perturbation equations. (5.14), (5.15) is
beneficial when a steady baseflow solution is not easily obtainable. For general flows around
airfoils this is often the case, since time marching methods at someRe will mimic the unstable
nature of the flow of interest, and flow solvers that do not employ time marching (e.g. Newton
solvers or parabolic boundary layer solvers) are only applicable either to very small problems
or to flows with attached boundary layers with no or very limited recirculation. Usage of this
decomposition method is not employed in the present work, but seems to be the only alternative
when/if PSE or related methods are to be used for general engineering applications.

5.4 Transition Modelling using PSE

TheeN -method can be based on linear PSE as well as LST. The PSE-based version will due to
its nature incorporate non-parallel and eventually receptivity effects, both of which were absent
using LST. Whether this improvement is substantial or rather insignificant in comparison with
the neglected nonlinearity and the empiricism of the determination of theN factor will be
investigated.

The potential of nonlinear PSE can be used to simulate directly some of the last flow mecha-
nisms prior to the final breakdown into turbulence. This would eliminate the empirical input and
promise a new era of transition prediction. Some of these very-close-to-turbulence indicators
are:
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• Increased average wall shear.
This turbulence indicator has ample experimental evidence, and is a consequence of the
nonlinear MFD mode. Chang& Malik (1994) used compressible PSE with this transition
point indicator for a supersonic flat-plate boundary layer. Stolte et al. (1995) used com-
pressible PSE on the subsonic real case boundary layer data from the VFW 614/ATTAS
flight test, and could successfully predict transition based on increased wall shear. This in
turn would emphasize the not fulfilled need for reliable receptivity data and computation
of nonmodal transient growth.

• High frequency secondary instability.
Although this mechanism has not been used as a stand-alone indicator of break-down
to turbulence, experimental evidence suggests that these higher order modes, possibly
in conjunction with other mechanisms, lead to transition shortly downstream of their ap-
pearance. For low-amplitude receptivity this has been confirmed for the channel Poiseulle
flow by Nishioka et al. (1975) and for the Blasius flow by Corke& Mangano (1989). The
suggestion that secondary instability leads to final breakdown once the mean flow profile
becomes inflectional, seems to be case dependent and does not motivate general conclu-
sions

• Detection of absolute instability regions.
Due to the ellipticity of such regions, PSE is arguably not a very strong tool for this. Nev-
ertheless nonlinear PSE solutions may reveal boundary layer regions where computed in-
stantaneous velocity profiles have negative streamwise velocity-components, either away
from the wall, or in its vicinity leading to negative wall shear, indicating an unsteady flow
separation, Chang& Malik (1994).

An all-encompassing nonlinear PSE based transition model does not exist, but further develop-
ment is likely to offset from the above outlined mechanisms.



Chapter 6

Elliptic Stability Equations (ESE)

If we abandon the streamwise parabolic assumption of the baseflow and its perturbation, up-
stream propagation of both becomes admissible. The PSE wave ansatz will be extended rather
than modified, such that PSE forms a subset of ESE in the same way as LST forms a subset
of PSE. The equations to solve are the perturbed Navier-Stokes equations (4.4-4.5) where the
nonlinear terms are neglected for the linear analysis. The ESE solution strategy will still be a
marching procedure, but along another dimension. Two alternatives exist, which will both be
presented.

6.1 Temporal ESE

"Temporal" refers to the marching direction. The temporal wavenumber of each mode is fixed
as for PSE, whereas a temporal amplitude derivative is introduced to direct the evolution in
time. The temporal ESE wave ansatz used to decompose the physical disturbance is

q
′
(x, y, z, t) =

∞∑

l=−∞

∞∑
n=−∞

∞∑
m=−∞

qlmn(x, y, t)ei(θlmn(x,t)+nβ1z−mω1t)

θlmn(x, t) =

∫ x

x0

αlmn (ξ) dξ (6.1)

, applicable for 2D and 2.5D flows. The extension from the PSE wave ansatz (5.1) consists
of the temporal dependence of the ESE amplitude functionq(x, y, t) and the phaseθ. For the
linear analysis the modes decouple. Insertion of a single mode of (6.1) into (4.4-4.5) leads to
the temporal ESE

iαu + Dv + iβw + ux = 0 (6.2)
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Re
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The same closure equation for the streamwise wavenumber,α, is used for ESE as for PSE
(5.4). However, in the case of ESE, the purpose is not to parabolize along the x-direction by
neglecting the second derivatives of the amplitude functions. In ESE all terms are included, and
the purpose off minimizing the streamwise variation of the amplitudes is only to enable a low-
order difference method on a coarse x-discretization. This has proven adequate and effective
for PSE and the same holds for ESE. The solution strategy is

• Part 1: Initial solution for the(x, y)-domain att = t0. Use the PSE algorithm. If the
baseflow is partly upstream propagating by the presence of a reversed flow region, the
PSE method might become ill posed. In this case replace the baseflow with another non-
reversed baseflow. It can then be gradually converted back to its original during the first
temporal ESE marching steps in Part 2. This correction procedure will not affect the
converged solution.

• Part 2: Temporal marching.

1. Advance one timestep.

2. March the new solution downstream using the PSE algorithm for the ESE equations
(5.4,6.2-6.3) at each x-position. For each(x, t)-position indexed(i, j) in space and
time respectively, the solution is updated usingαi−1,j, vi−1,j−1, vi,j−1 andvi+1,j−1.

3. if convergence problem steady amplitude analysis, check for temporal convergence
on α(x, t) andv against a given threshold. If not converged go to 1). If transient
problem check ift >= tmax. If not go to 1).

A few implementation issues are worth noting. As to the normal discretization a higher order
method is preferable. The 6’th order coupled compact difference scheme for non-uniform 1D
meshes is used. In streamwise direction the ordinary 2nd order central difference scheme is a
good choice. The time-integration can be performed in two ways: Either as a convergence prob-
lem, where only the final solution is of interest, or as a transient problem, where also the time
history must be captured. For the former, 1st order implicit Euler should be applied in time. In
addition the termsiαtv can be neglected. This eliminates the need to update the phase at each
x-position at each timestep, and significantly speeds up convergence, since only the slowly vary-
ing amplitude remains time-dependent. For the latter, a three-point 2nd order implicit scheme
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could be applied. Transient problems of interest are e.g. those of slightly frequency modulated
waves reported by Shaikh& Gaster (1994) to have a large impact on instability growth and the
onset of non-linear mode interaction. In this work only the convergence problem will be exem-
plified.
Strictly speaking the introduced streamwise ellipticity is for the slow scales, the amplitudes,
only, since the fast scale, the streamwise wavenumber, is updated prarabolically as for PSE.
This agrees well with the nature of both scales. The ESE solution process will break down
when the flow ceases to be convectively unstable. The motivation of our temporal ESE testcase
to be presented is to investigate the onset of absolute instability as the reverse flow magnitude
increases in a laminar separation bubble.

6.2 Spanwise ESE

is conceptually analog to the temporal ESE and yet different. Again we march the solution
along a "new" direction, this time the spanwise. In contrast to time marching, parabolicity is
not granted from physics, and the closure equation serves to parabolize the equations along
the marching direction just as for PSE. As for temporal ESE, the ellipticity is introduced for
the slow scale perturbation amplitude. Spanwise parabolicity implies that only baseflows that
are uniformly convected in one spanwise direction are applicable for spanwise ESE. To this
class of flows belong 3D boundary layers over swept wings due to a sweep angle, e.g. the
DLR swept plate flow, and boundary layers over rotating airfoils, where the spanwise motion
is induced primarily by centrifugal forces. Spanwise ESE is fully 3D in space and exhibits
similarities to true 3D PSE (not 2.5D PSE often erroneously referred to as 3D PSE) of which
only one reference exists, Herbert (1997). Herbert prescribes two directions, streamwise and
spanwise, along which initial solutions are to be applied. The solution of the flowfield spanned
by the lines of initial data is found by parabolic marching in two dimensions. In addition
to the PSE closure equation, a uniqueness condition for the wave phase closes the 3D PSE
formulation. Spanwise ESE can be viewed as Herbert’s 3D PSE method with ellipticity instead
of parabolicity in streamwise direction. The physical disturbance is composed of modes with a
wave ansatz extended from PSE:

q
′
(x, y, z, t) =

∞∑

l=−∞

∞∑
n=−∞

∞∑
m=−∞

qlmn(x, y, z)ei(θlmn(x,z)−mω1t)

θlmn(x, z) =

∫ x

x0

α (ξ) dξ (6.4)

The perturbed momentum equations are now fully 3D maintaining spanwise baseflow deriva-
tives, which have been neglected for LST, PSE and temporal ESE. Nonlinear terms are neglected
below, but can be included with similar additional effort as for 2D or 2.5D nonlinear PSE.
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After insertion of a single mode of (6.4) into (4.4,6.5) we arrive at

iαu + Dv + iβw + ux + wz = 0 (6.6)
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(6.7)

The uniqueness condition of the phase,θ, simply states

∂2θ

∂x∂z
=

∂2θ

∂z∂x
(6.8)

meaning that the integration of the phase from the phase derivatives,α = ∂θ
∂x

andβ = ∂θ
∂z

, is
independent of the path of integration. The spanwise amplitude variations are minimized by a
PSE closure equation

∫

Ω

q†qzdy = 0 (6.9)

which closes the formulation. (6.9, 6.6-6.8) constitute the spanwise ESE. As for PSE, the
second derivatives of the amplitude functions (RHS of (6.7)) are neglected in the direction of
parabolization. These terms scaleO(Re−3) compared toO(Re−2) or larger for the remaining
terms on the LHS. The solution strategy and implementation issues are very similar to temporal
ESE. The spanwise wavenumber,β(x, z), is found from (6.9) and subsequently the streamwise
wavenumber,α(x, z), from the condition (6.8). As to which wavenumber to compute from the
PSE closure equation and which to compute from the imposition of uniqueness, there is no
choice since the spanwise amplitude variation must be minimized for the parabolization to be
fully valid, and hence, the spanwise wavenumber must be computed accordingly. The stream-
wise wavenumber does not impact the validity of any approximation, since the x-ellipticity
allows all x-derivative terms to be included.

6.3 Towards a Bigger Challenge

For the complete nonlocal stability analysis of the rotating airfoil the combination of LST,PSE
and ESE forms a viable suite of tools adequate for the task. For the linear analysis one might



60 Elliptic Stability Equations (ESE)

rightly argue if local LST based on Orr-Sommerfeld is not sufficient - despite its shortcomings
- to obtain useful results. However, both PSE and ESE lend itself readily for inclusion of
nonlinearity. Examples of PSE nonlinearity will be given in a proceeding chapter. The solution
strategy of the complete nonlocal stability analysis shall be briefly outlined, to put the ESE
results, that will be presented, into a larger context:
Rotating airfoils on large wind turbines often experience laminar separation close to the leading
edge and a uniform chordwise direction for the convection cannot be assumed. On the other
hand, the centrifugal effects will force the flow over the airfoils outwards along the span and
no spanwise reverse flow will occur. The effective sweep angle is low compared to the swept
boundary layer flow on a delta wing combat aircraft, so stagnation line contamination from
upspan/upstream instabilities will be low and not impede the assumption of an initial solution
line in the vicinity of stagnation. These solutions can be calculated using LST, eventually
supplied with frozen coefficient PSE in 2.5D . In chordwise direction another initial solution
line must be defined. In the case of chordwise reverse flow 2.5D temporal ESE could be used
to obtain a converged initial solution along the chord. The(x, z) domain is marched using
spanwise ESE. The analysis can be either linear or nonlinear.



Chapter 7

Linear Stability Results

The four examples of linear stability to be presented in this chapter range from well known
testcases, of which the first is included only for reasons of validation and gentle introduction, to
a testcase for the newly proposed ESE. TheeN transition prediciton method will be used based
on LST, PSE, ESE and a local PSE, the latter being a hybrid LST-PSE version, the motivation
for which will be given.

7.1 Poiseuille Flow

The class of analytical parallel incompressible boundary layer flows in 2D is limited. It con-
sists of the Couette flow and the plane Poiseuille flow. The parallel feature leads to cancellation
of the nonlinear convective baseflow terms, so any combination of Couette and Poiseuille flow
will be a valid parallel solution also. If we imply uniform convective propagation also, only
the Poiseuille flow meets the criteria, which makes it the unique testcase, where LST for down-
stream propagating small-amplitude linear modes will provide exact eigensolutions to within
mashine- and/or discretization-accuracy.
The flow is restricted between two parallel plates, as depicted in Fig.7.1, and driven by a con-
stant pressure gradient in streamwise direction.

U (y) = 1− y2, Px = const., (7.1)

with no-slip boundary conditions at the walls. The flow is nondimensionalized by half the
channel width, centerline velocity and kinematic viscosity.

Re =
U∗

clh
∗

2ν∗
, (7.2)

where superscripts∗ denote dimensional quantities. Orszag (1971) launched the use of spec-
tral methods in hydrodynamic stability, and calculated a critical Reynolds number for instabil-
ity of 5772.22, below which all eigenmodes will decay. Fig.7.3 shows the fundamental viscous
eigensolution of temporal LST (4.14),(4.15) forRe = 104 andα = 1.0. Orszag obtained the
eigenvalueω = 0.2375265 + 0.00373967i for this slightly unstable mode. The convergence be-
havior of this eigenvalue for increasing the number of pointsN along the 1D domain, using the
numerical techniques presented in Chapter 2, is presented in Fig.7.2. For comparison reasons
the same discretization has been used, although the nonuniform 8’th order coupled compact
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Figure 7.1:Laminar baseflow: Plane Poiseuille flow.

scheme might benefit slightly from a less dense point-distribution in the vicinity of the walls. It
is clearly demonstrated that both methods can effectively solve the Orr-Sommerfeld equation,
and that the pseudo-spectral method is superior. The converged eigenvalue for largeN using
the pseudo-spectral method agrees perfectly with reference and is chosen as reference. The
straight line in Fig.7.2 for the spectral method marks exponential convergence. For the CCD8
scheme it marks convergence of a constant order of accuracy. The slope of this line corresponds
to the order 8.06, well in agreement with theory. The initially steeper slope of the points for
20 < N < 30 could be due to the formal 10’th order accuracy of the 1st and 2nd derivative
evaluations in the CCD8 scheme. The other less steep line in the upper right corner is for a 2nd
order discretization. Its insufficiency for global eigenvalue problems is obvious.
The converged eigenvalue spectrum is displayed in Fig.7.3 forRe = 10000, α = 1 andβ = 0.
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Figure 7.3:Upper left: Poiseuille eigenvalue spectrum,Re = 10000. The unsteady mode
eigenvalue is circled. Upper right, lower: Modulus of pressure, streamwise and
normal amplitude functions for the unstable mode.

c = ω
α

is the streamwise phase-speed of the corresponding eigenmodes. This Orr-Sommerfeld
solution was also computed by Schmid& Henningson (2001) p.64, with identical result. The
existence of an unsteady mode (encircled), despite the absence of an inflection point for the
streamwise velocity profile, leads one to conclude that the mode is of viscous origin. In fact,
these viscous instabilities are the first to appear in most boundary layers, due to the Rayleigh
inflection point criterion stating that inviscid instability will only occur if the baseflow profile
has an inflection point. In a boundary layer this will normally happen further downstream of
the onset of viscous instability, either in the presence of an adverse pressure gradient causing
inflection of the laminar profile, or as a consequence of the mean flow distortion (MFD) from
high-amplitude nonlinearly interacting modes. The linear instabilities of interest for the base-
flows treated in the present work will all be of viscous type.
The eigenvalue spectrum constituted by the three branches, named A, P and S by Mack (1976),
is common for viscous boundary layers. Branch A contains two sub-branches, one for even
modes (e.g. the unstable one) and one for uneven modes. If the baseflow profile is symmetric,
say for the plane Poiseuille flow, even/uneven modes will be symmetric/antisymmetric respec-
tively. Type A modes have low phase-speeds and peak amplitude magnitudes in areas of large
shear close to the wall, hence the notion ’viscous modes’. In contrast the P branch modes, of
which even and uneven mode eigenvalues are practically indistinguishable, have their highest
amplitude magnitudes away from the wall in areas of low shear. The phase-speeds,cr, of these
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’inviscid modes’ approach the unity centerline stream velocity. Only a discrete number of A-
and P-modes exists, whereas the heavily damped S-mode branch extends towards−∞ for in-
finitely damped modes. Increasing the number of DOFs in the discretization thus leads to an
increasing number of ever more damped modes. S-modes all have the same phase-speed,cr,
coinciding with the mean velocity of the flow, which is2

3
in the plane Poiseuille case.

7.2 Blasius Flow

The 2D flat-plate Blasius boundary layer flow is the self-similar solution to (3.7) form = 0
corresponding to a vanishing streamwise pressure gradient. This provides the baseflow. The
starting point of the analysis is chosen atR̂e = 400 just upstream of the critical local Reynolds
number,R̂ecrit, at 519.4, Schmid& Henningson (2001), where the first eigenmode becomes lin-
early unstable. Throughout this thesis all calculations are carried out with non-dimensionalized
variables. The non-local methods are scaled according to the displacement thickness at the
starting point, where the inflow conditions for the perturbation(s) are specified.

Re =
U∞δ∗0

ν∗
(7.3)

For self-similarity baseflows the conversion relations between local and non-local (global)
scales are

R̂e =
√

xRe, α̂ = α
R̂e

Re
, β̂ = β

R̂e

Re
, ω̂ = ω

R̂e

Re
, (7.4)

where the caret indicates local scaling.
Fig.7.4 illustrates the Blasius solution for the constant global scaling and the linearly distorted

2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

x

y

Global scaling

500 1000 1500 2000 2500
0

1

2

3

4

5

6

                     (xRe)0.5 

y

Local scaling

Figure 7.4:Blasius streamlines for global and local scaling of the x-axis. The two domains are
identical.
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Figure 7.5:eN -method for Blasius boundary layer. Left: N-factors for distinct frequencies.
Right: Containing envelope lines.

local scaling respectively. The accumulated N-factors for distinct frequencies,ω, are presented
in Fig.7.5. AsR̂e increases, so do the spatial scales of the disturbances, causing the most
unstable frequency to decrease in streamwise direction. The annotated frequencies refer to
the global scale. Three methods have been employed to calculate the amplifications: LST,
PSE and a hybrid method termed local PSE. It is similar to the PSE, except that the streamwise
amplitude gradient terms,px, ux andvx, are decimated by several orders of magnitude, such that
the upstream history of each mode is eliminated, rendering a local method, which still accounts
fully for the non-parallelism of the baseflow. The local PSE is relevant in situations where the
upstream dependence adds unwanted complexity to the task to be undertaken. An example
is a growth rate database for classes of boundary layer profiles, where upstream dependence
would introduce an ambiguity in the determination ofα. The containing envelope curves for the
three methods show that the upstream dependence only has a negligible impact on the growth
rates, since the PSE and local PSE curves virtually coincide. The physical eigenmodes are thus
almost exclusively governed by the local baseflow. Note that this is only the case for spatially
oscillating modes. Nonlinear PSE results will reveal the mean flow distortion (MFD) with zero
streamwise wavenumber to be profoundly influenced by the upstream history. The PSE methods
also calculate the Blasius flow to be slightly more unstable than under the LST parallel baseflow
assumption. The offset between the PSE and LST containing envelope lines is mainly created
upstream closer to the leading edge atR̂e < 500, where the LST parallel assumption becomes
less valid. The linear nature of the envelope curves when plotted againstR̂e is an artifact of
the baseflow self-similarity. The envelopes agree well with literature, Schmid& Henningson
(2001). The finding that LST-based growth rates are underestimated for the Blasius flow has
been confirmed experimentally by Klingmann et al. (1993) and numerically by Berlin et al.
(1998).
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Figure 7.6:Test section of DLR swept plate experiment.

7.3 The DLR Experiment

This laminar baseflow has been used in many numerical studies of perturbations around the
steady state of the flow. The setup is sketched in Fig.7.6 and a schematic of domain and coor-
dinate system in Fig.7.7. The experimentally measured input to the parabolic boundary layer
solver, (3.12-3.13), is the pressure distribution, which can be accurately approximated by the
piecewise analytical expressions, continuous across the pieces up to the 2nd derivative

Region I (x∗ ≤ 0.02) : cp(x
∗) = a(x∗ − 0.01)2 + 1

Region II (0.02 ≤ x∗ ≤ 0.05) : cp(x
∗) = bx∗4 + cx∗3 + dx∗2 + ex∗ + f

Region III (x∗ ≥ 0.05) : cp(x
∗) = 0.941− 1.690x∗ , (7.5)

where

a = −214.818, b = −167610, c = 25852, d = −1363.7, e = 24.592, f = 0.852153
(7.6)

Other measured quantities are:ρ∗∞ = 1.21 kg
m3 , ν∗∞ = 1.51 · 10−5 m2

s
, c∗ = 0.5m, Q∗

∞ = 19.0m
s

andϕ∞ = 42.5o. As viewed in Fig.7.8 the stagnation line atx∗ = 0.01m is slightly offset
from origin of the chord-aligned x-axis at the leading edge. The initial position for parabolic
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Figure 7.7:Coordinate system for boundary layer flow over DLR swept plate.

marching of the boundary layer solver is in the vicinity of the stagnation line atx∗0 = 0.02m,
where the swept Hiemenz self-similarity solution to (3.7-3.8) form = 1 andWe given by (3.3)
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Figure 7.8:Left: Pressure distribution along DLR swept plate. Right: Close-up near the stag-
nation line atx∗ = 0.01m
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provides the initial steady solution. Global non-dimensionalization of the variables for the PSE
is based on the boundary displacement thickness,δ∗0 = 1.5441 · 10−4m, at the initial point. This
leads to

Re =
Q∗
∞δ∗0
ν∗∞

, ω =
ω∗δ∗0
Q∗∞

, β = β∗δ∗0 (7.7)

The computed baseflow is shown in Fig.7.9 for different chord positions. The negative value
of the normal velocity at the boundary layer edge and beyond indicates that the boundary layer
is accelerated throughout the chord-length, as also seen from the negative slope of the pressure
distribution on Fig.7.8.
The initial perturbation atx0 is found from an iterative procedure termed ’the frozen coeffi-
cient method’. It simply consists of a fundamental viscous mode found by LST, which is then
pseudo-marched with the PSE-method using the constant ’frozen’ baseflow coefficients given at
x0 until convergence. When the actual PSE marching is started the initial transients often seen,
e.g. when an LST initial solution is suddenly marched with a different set of equations, will no
longer be present. For wider applicability reasons, the frozen coefficient method has been ex-
tended, such that the baseflow coefficients, Reynolds number,Re, and the wavenumbersω and
β can be varied smoothly during the pseudo-marching iterations. Experience has shown that
perturbations belonging to the same family of modes, such as the branch A family of viscous
modes from Fig.7.3, can be easily tracked across wavenumbers andRe from one baseflow to an-
other through smooth iterative variation. Throughout the present thesis this procedure has been
favored over the more direct computation of LST eigenmodes as initial solutions. The main
advantage, apart from avoiding initial numerical transients, is its robustness, which enables
trouble-free calculation of all initial solutions including the heavily damped viscous fundamen-
tals for high wavenumbers and the steady MFD disturbance (both used in nonlinear PSE). In fact
all initial solutions have been generated by the extended ’frozen coefficient method’ from just
one spatial viscous LST mode: The fundamental Blasius disturbance atR̂e = 400, ω̂ = 0.0344.
Due to the three-dimensionality of the DLR swept plate boundary layer flow, the assumption
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Figure 7.9:DLR swept plate baseflow velocity profiles. Solid lines:x∗ = 0.05, dotted lines:
x∗ = 0.1, dash-dot lines:x∗ = 0.2, dashed lines:x∗ = 0.5.
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Figure 7.10:N-factors at end of the plate. Right: Stationary crossflow vortices. Left: Travelling
vortices forβ = 0.081. Lines: Present results, circles: Stolte (1999)

from the 2D Blasius flow of maximum instability for plane TS waves propagating in the chord-
wise direction with zero spanwise wavenumber is no longer valid. Numerous experiments have
illustrated another route to transition for 3D (swept) boundary layers, caused by another type of
mode being the most linearly unstable. These modes are referred to as cross-flow (CF) instabili-
ties due to non-zeroβ. Such oblique perturbations with wavefronts propagating in a skew angle,
arctan( β

αreal
), to the chord-aligned x-axis, can be either steady or unsteady termed ’stationary’

and ’travelling’ crossflow vortices respectively. Similarly to TS waves, crossflow instabilities
are of viscous type and will coincide with the TS waves upon gradual reduction of the spanwise
baseflow velocity component.
In pursuit of the most unstable mode over the swept plate, the N-factor has been integrated
along the chord for a range ofβ at zero frequency,ω. Fig.7.10 (right) shows that the most
unstable steady crossflow mode in an average sense over the chord occurs atβ = 0.0721
(β∗ = 74.3periods

m
) with N = 12.60. Forβ = 0.081 (β∗ = 83.3periods

m
) the temporal wavenum-

ber,ω, has been varied and the N-factors integrated in Fig.7.10 (left), where the most unstable
frequency is encountered forω = 0.0088 (f ∗ = 172.3Hz) with N = 18.39. These finding
match well those of Stolte (1998) for the same baseflow. Discrepancies are attributed to differ-
ent methods for calculating the initial upstream modes, where our ’frozen coefficients method’
is opposed to a semi-non-parallel method employed by Stolte (1999). For the nonlinear analysis
to be presented in the proceeding chapter, the most unstable mode should be used as initial seed.
This so-called primary instability is chosen forβ = 0.081 , ω = 0.0069 (f ∗ = 135Hz) in ac-
cordance with Stolte. This will enable strict comparison and validation of the nonlinear PSE
code.
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7.4 The Laminar Separation Bubble

The formation of separation bubbles in boundary layers has almost inevitably a decremental ef-
fect on the airfoil performance. Its presence on the suction side leads to a reduced pressure peak
magnitude, and thus a reduced lift. The boundary layer can separate under the influence of an
adverse pressure gradient, undergo transition, and eventually reattach forming the recirculation
bubble. A multitude of unsteady bubble scenarios exists. Common for all is the receptivity to
Tollmien-Schlichting (TS) wave instability, the wave-length of which is small compared to the
bubble length. In some instances either separation or reattachment is not firmly defined, and
the whole bubble might engage in oscillatory motion of long wave-length. This phenomenon is
clearly undesirable from an engineering viewpoint, since slow large-scale oscillations are more
prone to interact with the structural eigenmodes of the airfoil, at worst endangering the entire
structure. These kind of instabilities are probably global in nature. Or more precisely: A global
bubble instability will affect the bubble as a whole due to upstream propagating wave amplifi-
cation, and violent large-scale boundary layer motion of some sort is certain to follow.
This motivates our bubble analysis, in particular under which circumstances global instability

will occur. To the present much research has been undertaken: Michalke (1990), Gaster (1991),
Allen & Riley (1995), Hammond& Redekopp (1998), Alam& Sandham (2000), Rist& Maucher
(2002) all use local Linear Stability Theory (LST) applied to different reverse flow velocity pro-
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Figure 7.11:Streamlines for different maximum magnitudes of reverse flow. Upper row from
left: UR = 0.0, UR = −0.1, UR = −0.2. Lower row from left: UR = −0.3,
UR = −0.4, UR = −0.5.
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Figure 7.12:Reversed flow velocity profiles forUR = 0.0, UR = 0.1, ... ,UR = 0.5.

files. The key parameter is the maximum magnitude of the reverse flow,UR, found to be in the
interval between 15% free stream velocity in the inviscid limit up to beyond 30% at lower Re,
for absolute unstable modes to exist.
The analytical velocity profiles proposed by Alam& Sandham are used.

U(y) = tanh(y)− 2
tanh(y/C)

cosh(y/C)2 (7.8)

, where the tuning parameter,C, is adjusted iteratively using a secant method to comply with
the requiredUR. C = 2 for UR = 0 andC = 0.466 for UR = 0.5. A sample of profiles is shown
in Fig.7.12.
For reference purpose these profiles are analyzed locally using LST based on the O-S equation
(4.12). For the nonlocal temporal ESE approach, the reverse flow profiles (7.8) are smoothly
blended into the Blasius boundary layer as depicted on Fig.7.11. Prior to this, the reverse flow
profiles are stretched iny as to equal the99% free stream velocity position for the Blasius curve.
The initial point of the ESE-computations is atx0 = 400 and the scaled reverse flow profile is
mixed into the boundary layer for500 < x < 1000. The blending function is an offset cosine
valued0 at the ends of the mixing intervalx ∈ [500 : 1000], and1 in the symmetric middle
x = 750.

The Navier-Stokes system is violated by merging the reverse flow profiles into the Blasius
solution.U is given by the profiles andV is computed by reinforcing continuity. For momentum
the concept of an externally applied body force to balance the equations can offer a physical
justification, and most importantly then: The temporal ESE still govern the linear perturbed
remainder after subtraction of the steady solution.
The propagation direction of the disturbance energy is given by the group velocity.

cg =
∂ω

∂α
(7.9)
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Figure 7.13:Mapping of the complexα-plane into the complexω-plane forUR = 0.25. The
two ’cusps’ are encircled.

A disturbance mode will be absolutely unstable ifcg = 0 andωi > 0, such that the unconvected
mode is temporally unstable. The cusp map procedure, e.g. Schmid& Henningson pp 280-
281 (2001), is applied to detect global instability. The Figs.7.13-7.14 show the mapping of
the complexα-plane into the complexω-plane atx = 750, where the most unstable eigen-
frequency,ω, identifiesω(α). Note thatR̂ex=750 =

√
xRe0 = 548 for the local analysis. The

singularity from vanishing group velocity will be manifested by a slope discontinuity, a "cusp",
of the mapped line trajectories. The value ofωi at the cusp determines if the unconvected
energy from that mode(α, ω) increases or decreases in time. The figures reveal the critical
reverse flow magnitude where absolute instability can exist atUR less than 26% and larger than
25% free stream velocity. In order to enable proper comparison with temporal ESE where only
real frequencies,ω, are considered, the casesUR = 0.25U∞, UR = 0.26U∞ are displayed as
frequency isolines forωr andωi on theα-domain, Fig.7.15.
This is the Briggs’ method where vanishing mode propagation is identified as saddle points. The
spatial branches of neutral temporal stability are marked with bold dashes. The upper branch for
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Figure 7.14:Mapping of the complexα-plane into the complexω-plane forUR = 0.26. The
two ’cusps’ are encircled.
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Figure 7.15:Saddle pointsUR = 0.25 (left) andUR = 0.26 (right).

UR = 0.25U∞ is the one encountered in spatial analysis for convected instabilities or physical
experiments. These are to be compared with the ESE analysis. As the absolute instability
is encountered the spatial branches reconnect. Beyond the onset of absolute instability the
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Figure 7.16:Curves off neutral temporal stability (red line: LST, blue line: ESE) for a range of
reverse flow magnitudes,UR, at the bubble center position,x = 750, (R̂ex=750 =
548). UR is annotated each curve.
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Figure 7.17:N-factors most unstable frequency atx = 750 (R̂e = 548) for different baseflows
(see annotation). The temporal frequencies,ω, are0.0402, 0.1205, 0.1132 and
0.1132 in order of incresed N-factors

spatial branches for neutral spatial stability whereωi = 0 are not encountered physically, since
they violate the temporal instability encompassed in the absolute instability. On Fig.7.16 the
spatial branches for a larger range of reverse flow magnitudes are presented for LST and ESE.
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Figure 7.18:Amplitude distributions. Most unstable frequency for different baseflow profiles
atx = 750.
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Each blue point represents a converged ESE computation, where the temporal and streamwise
wavenumbers have been scaled a posteriori to the local LST domain and modified according to
(7.4) because of the streamwise amplitude variation . Several observations are to be made:

• Increasing levels of baseflow non-parallelism leads to increasing discrepancy between the
non-approximated ESE and the LST for which the parallel baseflow assumption apply.
Thus, the nearly parallel Blasius flow shows excellent agreement with coinciding neutral
stability lines on Fig.7.16, while the reversed flow calculations differ significantly.

• It seems that ESE encounters absolute instability forUR > 0.20U∞, but the saddle point
and spatial branch reconnection are not clearly detectable. Upstream wave amplification
will have to "compete" with downstream propagating convected instability and vanishing
absolute instability away from the reverse flow peak atx = 750. This might smear the
distinct saddle observed for the local LST analysis.

• The convective wave amplification of both LST- and ESE-modes reveals growth rates for
the reversed flow approximately two orders of magnitude larger than for the Blasius flow
as seen on Fig.7.17. The N-factor will integrate up to the criticalNcrit over a fraction of
the bubble length and transition to turbulence inside the bubble seems inevitable. Whether
reverse flow magnitude of more than 20% are obtainable for common flows of medium
to high Re is questionable. Alam& Sandham conducted direct numerical simulations
of ’short’ laminar separation bubbles and found the transition to turbulence to refrain
the reverse flow magnitude to obtain levels of more than 8%, and concluded that the
basic instability mechanism for these bubbles is convective in nature. Fig.7.17 further
suggests that even for the tiniest bubble withUR ≈ 0+, the integrated N-factor peak at
approx. 20 will lead the flow into turbulent transition. This observation only holds for
the applied baseflow, but it seems plausible to assume that most boundary layer flows
are substantially destabilized already at the separation point and regardless of the bubble
length. Several baseflow parameters, primarilyRe and the adverse pressure gradient
chordwise distribution, must be varied systematically to allow firm conclusions.

• The very highUR-threshold for absolute instability, renders temporal ESE an effective
tool to deal with elliptic convectively unstable eigenmodes.

The mode shapes of the streamwise disturbance velocities for differentUR are presented on
Fig.7.18. The stronger the bubble and the wall shear, the more ’viscous’ the mode shape, in
the sense that the amplitude peak location moves closer to the wall and decays faster in the
wall-normal direction.



Chapter 8

Nonlinear Stability Results

Prior to a nonlinear PSE calculation choices have to be made for the vector of discrete fre-
quencies to include along the chordwise, spanwise and temporal directions. For the latter
two,−nmaxβ1:β1:nmaxβ1, and0:ω1:mmaxω1 the considerations for the 2D fourier space to be
spanned are:

• The most unstable mode(s) should be included.

• The most unstable mode(s) should be located in the 2D fourier space as to allow sub-
and/or superharmonic modal interactions to be included in the computation.

• mmax,nmax determine the number of modes. The more modes the better the chance of
capturing the real physics of the flow.

The chordwise frequency vector, will normally contain only 1 element to be calculated for each
mode at each marching step. The inherent assumption that modal interaction will be confined
to the fourier plane spanned by the wavenumber vectors(l(m = mmax, n = 0),mmax, 0) and
(l(m = 0, n = nmax), 0, nmax) is good in most cases, and the associated error can be quantified
a posteriori as will be demonstrated.

8.1 Blasius Flow

2D Waves

A logical extension of the linear Blasius testcase from the preceding chapter is the self-induction
of the primary wave into superharmonics and a Mean Flow Deflection (MFD). The testcase has
been amply computed in literature and serves for validation purpose. The point/line of initial
solution is atx0 = Rex0 = 400. The r.m.s of the initial u-amplitude is 0.0025,ω1 = 0.0344,
β1 = 0, marching stepsize∆x = 10. Infinity boundary conditions are imposed aty∞ =
20δ(x). 400 non-uniformly distributed mesh points are used for the 6’th order coupled compact
difference scheme. This number is well in excess of what is necessary for grid convergence,
but the above configuration is kept constant through all the subsequent Blasius sessions, unless
otherwise stated, and higher resolution will ensure proper capturing of the physics in areas of
strong nonlinear interaction. The 6 modes considered are (l,m,n) = (0,0,0), (1,1,0) ... (5,5,0).
On Fig.8.1 we recognize the linear result. For r.m.s values of the of the maximum streamwise

76
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Figure 8.1:Linear (thin dotted line) and nonlinear (full lines) evolution of 2D TS-wave. MFD
mode is the thick dotted line. Reference comparisons are: Crosses : Bertolotti et al.
(1992), asterices : Joslin et al. (1993) and circles : Herbert (1994)

velocity for the primary wave, mode (1,1,0), above0.5% nonlinear effects come into play: The
higher harmonic (2,2,0) emerges as well as the (0,0,0) Mean Flow Deviation (MFD) mode.
For r.m.s. values above1.5% the nonlinear prediction of the primary wave clearly exceeds
that of the linear one. It peaks at2.34% for x = 1900 (Rex = 872). Mode (2,2,0) peaks at
0.20% for x = 1765 (Rex = 840) slightly upstream of the primary wave peak, which indicates
that the mode is only sustained through nonlinear forcing, and stable to the MFD-corrected
baseflow. In contrast the MFD mode continues to grow and peaks at0.57% for x = 2280 (Rex =
955) proceeded by a rather slow decline, even when all other modes have practically vanished
at the end of the computation. This illustrates the pronounced upstream dependence of the
MFD mode in contrast to unsteady modes which are largely governed by the local conditions,
i.e. baseflow and nonlinear forcing. A peculiarity of the MFD mode evolution is the slope
discontinuity forx = 1618 (Rex = 820), which is on artifact of plotting only the maximum
u-value of the physical mode. Different local maxima of the mode are associated with different
y-positions. If a local maximum suddenly becomes the global maximum for that mode, then a
slope discontinuity in the plot foru

′
max will be the evidence. This testcase is in agreement with

identical testcases by Bertolotti et al. (1992), Joslin et al. (1993) and Herbert (1994). Small
discrepancies are attributed to the location of the infinity boundary condition, the numerical
stabilization strategy for enabling small stepsizes and the PSE formulation (primitive variable
or vorticity based).
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Figure 8.2:Projection of the 2D-plane of (l,m,n) modes onto the 2D-plane spanned by the m-,
and n-axis.

3D Waves, Fourier Space

The exclusion of oblique waves in the fourier subspace for instabilities in blasius flow is
mostly of academic interest. All experimental evidence demonstrate profound 3D effects of
the nonlinearly distorted boundary layer flow that precede the final breakdown to turbulence.
That there is no such thing as 2D turbulence is common wisdom. Hence, we expand our fourier
subspace to a 2D plane, the projection of which is shown in Fig.8.2.ω1 = 0.011, β1 = 1.43,
mmax = nmax = 4 leading to a total of 41 modes. The primary temporal frequency is chosen
as to enable tracing the envelope of TS-waves all the way to transition even for small initial
amplitudes. The choice of primary spanwise frequency is based on theoretical predictions,
Craik (1971), and experimental observations, Corke& Mangano (1989) , of resonant growth
between plane 2D waves with spatial wavenumbers(α, 0) and subharmonic oblique waves
with wavenumbers(1

2
α,±β). While the Craik model favors this so-called resonant triad of

modes, experiments suggest that many modal interactions between the most amplified plane
wave and a subharmonic oblique wave or pair of waves exhibit resonance, including the steady
modes(0,±β). Determination of theβ

α
ratio is based on trial and error. Our value of 1.43

agrees well with findings in literature, i.e. Herbert& Bertolotti (1985), and is not a unique
value. Deviations of the spanwise wavenumber vector of up to40% will lead to qualitatively
similar results.

We aim the present investigation on the influence of the initial upstream conditions on the
downstream evolution of modes, with special attention to the onset of three-dimensionality,
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the structural properties of the flow and the final stage of transition until the x-location where
the PSE-method will no longer converge and the marching procedure halts. The 9 Blasius
computations are organized as follows.

• Session 1-4:
Dependence of initial amplitude magnitude on all modes. For session 2,3 and 4 the initial
amplitude magnitudes from the previous session, i.e. session 1, 2 and 3 respectively, are
increased by one order of magnitude. The primary disturbances are unsteady and an order
of magnitude larger than the remaining modes

• Session 5-8:
Dependence of initial amplitude magnitude on steady modes only. For session 6,7 and 8
the initial steady mode amplitude magnitudes from the previous session are increased by
one order of magnitude.

• Session 9:
Dependence of 3D single oblique unsteady modes versus 2D pairs of unsteady modes.

Initial data is given as Fourier modes using the frozen coefficients technique on a harmonic
viscous mode obtained by the Orr-Sommerfeld equation. Thus, the receptivity stage is not
modelled. However, The choice of initial data reflects some aspects of the nature of the phys-
ical receptivity. Steady disturbances such as roughness lead to steady modes. In a contrary
manner, unsteady disturbances such as especially free stream turbulence but also localized wall
vibrations or sound, will lead to unsteady modes. The ratio of unsteady modal energy to steady
modal energy at the initial line determines if the initial receptivity was governed by roughness or
by free stream turbulence, vibration and/or sound. The application of boundary inhomogeneties
has not been employed, so that downstream of the point of initiation the Blasius boundary layer
flow propagates in an ideal smooth environment.
On Fig.8.3 the primary nine modes are form = 4 with initial u

′
max 4.0 · 10−5. All other modes

are initiated with initialu
′
max 1.0 · 10−5. The background noise is set to1.0 · 10−6 and no mode

can decay to au
′
max below this value. Infinity is extended fromy∞ = 20δ(x) to y∞ = 40δ(x).

One observes the fans of mode evolutions form = 4, m = 3 andm = 2. The most amplified in
each fan is always the plane 2D wave for a 2D baseflow, the less amplified are the eight oblique
waves (of which four coincide due to symmetry). The linear evolution of the plane waves are
seen to coincide with the nonlinear analysis form = 4, m = 3 andm = 2. Form = 1 the first
discrepancy with nonlinear predictions occurs atu

′
max 0.4% for x = 8100 (Rex = 1800). In

this case nonlinearity stabilizes the growth of the 2D wave. Overall the situation is not so: For
x > 6000 the steady modes with spanwise fourier indexn = 1–4 experience a rapid growth
that exceeds that of any modal linear prediction. This growth continues and also affects the less
amplified oblique waves form = 1. We cannot depict a distinct modal resonnace, but rather a
self-induced growth between the linearly unstable waves and the steady oblique disturbances.
For x > 10000 the baseflow has become highly disturbed by the steady oblique modes with
streamwise velocity magnitudes peaking at17% for mode (0, 3). This changes the receptivity
of the baseflow to higher frequency waves (the waves that were linearly unstable at the start
of the plate) and together with nonlinear forcing these waves amplify rapidly, then couple and
finally cause a breakdown of the marching procedure atx = 10900 (Rex = 2088).
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Figure 8.3:Session 1. Linear and nonlinear evolution of disturbances of initial amplitude of
primary modes4 · 10−5. The thick dotted line denotes the MFD mode(m,n) =
(0, 0), normal dotted lines are the other steady modes(m,n) = (0, 1), (0, 2)...(0, 4).
Annotations 0-4 refer to the value of n in fourier space for these steady disturbances.
Full lines are the non-steady modes. The first fan of unsteady modes that become
dominant are the 9 modes(m,n) = (4,−4), (4,−3), ...(4, 4). The second fan of
9 modes are(m,n) = (3,−4), (3,−3), ...(3, 4) and so on. The last fan of modes
is (m,n) = (1,−4), (1,−3), ...(1, 4). For each fan of modes the most amplified
is the plane wave, the least amplified are the most oblique waves, at least until the
onset of nonlinear effects. The thin dotted lines are the linear calculations of modes
(m, n) = (1, 0), (2, 0), ...(4, 0). They serve to illustrate the nonlinear impact.

One more thing to note is the slight amplification of the steady oblique waves right after
initiation atx0 = 400. Although the inhomogenities that cause the amplification is of nonlin-
ear origin, the underlying mechanism must be linear. The magnitude of the first fan of waves
(m = 4) peaks aroundu

′
max = 1.0 ∗ 10−4 which creates nonlinear forcing in the order of

1.0 ∗ 10−8. At these magnitudes linear PSE is fully adequate and govern the disturbance flow.
What we have encountered is an example of nonmodal growth. The steady modes are slightly
damped according to Orr-Sommerfeld based LST, but will respond to nonmodal forcing by tran-
sient growth, which can be considerable, before the amplitude settles and decays in accordance
with the modal behavior. Reddy& Henningson (1993) accredited the phenomenon to the non-
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Figure 8.4:Session 2. Linear and nonlinear evolution of disturbances of initial amplitude of
primary modes4 · 10−4. For lines and annotations, see Fig.8.3.

orthogonality of the Orr-Sommerfeld operator in cases where the non-orthogonal eigenmodes
that comprise a given physical disturbance experience different exponential decay. Also Her-
bert (1994) identified these u-dominated streamwise counter-rotating steady modes to hold the
largest potential for transient growth, and noted their close resemblance with Görtler vortices
known from centrifugal instability on concave surfaces. Experimentally these modes were first
discovered by Klebanoff (1971) whose name they bear. As we shall see longitudinal vorticity,
either as steady or unsteady modes, have a key role to play in most transition scenarios. Some-
times the term ’streaks’ is used to distinguish these free-stream aligned rotating structures from
Tollmien-Schlichting plane or oblique waves.
The initial three-dimensionality of session 1–8 is provided by the steady spanwise modes only:
(m,n)=(0, 1),(0, 2),(0, 3) and (0, 4) on Fig.8.2. The unsteady three-dimensional modes for
n 6= 0 are all mirrored across the m-axis, so that the spanwise velocity fluctuations for these
modes cancel out in pairs (1, 1) with (1,−1) etc. The growth of Klebanoff modes marks the
onset of steady spanwise velocity fluctuation. The onset of unsteady spanwise fluctuations is
indicated in fourier space by the amplitude splitting of the modes (m,n), (m,−n) and by grad-
ual counter-phasing of the paired oblique modes. On Fig.8.3 these modes coincide in amplitude
until x = 9000 (Rex = 1897) from where they depart from each other, but still following simi-
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Figure 8.5:Session 3. Linear and nonlinear evolution of disturbances of initial amplitude of
primary modes4 · 10−3. For lines and annotations, see Fig.8.3.

lar trends in the streamwise evolution.
On Fig.8.4 all the initial amplitudes of primary modes, other modes and background noise

level are increased ten-fold. Only minor changes from session 1 are noted. The initial tran-
sient growth of the Klebanoff modes exceeds that of the TS plane and oblique waves and peaks
locally atx = 1550 (Rex = 787). Following a near-modal decay the Klebanoff modes once
again start to accumulate momentum as they interact with TS-waves of higher amplitude and
lead the flow into transition as they couple with the dominant TS-waves and cause strong cou-
pled amplification of higher frequency modes. Atx = 8050 maximum u-velocity of the steady
oblique mode (0, 3) peaks at18% of the free-stream. As for session 1, the linear prediction
(dotted lines) of the plane waves is seen to be valid up to the nonlinear stage whenu

′
max of the

dominant modes approach1%.
Increasing once again all initial amplitudes by one order of magnitude, similar to lowering

the critical N-factorNcrit by 2.3, Fig.8.5 shows how the linear instability stage from session
1–2 is almost entirely bypassed: Only forx < 959 (Rex = 619), is the growth by the dom-
inant mode given by that of TS-amplfication. Downstream of this position Orr-Sommerfeld
LST or linear PSE does not even remotely approximate the physics of the flow, and any use
of a linear transition prediction model such as theeN -method ought to be abandoned. In con-
trast to the very much independent development of linearly governed TS-waves, we note a clear
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Figure 8.6:Session 4. Linear and nonlinear evolution of disturbances of initial amplitude of
primary modes4 · 10−2. For lines and annotations, see Fig.8.3.

indication of coupling between certain modes. Three groups of coupling modes are present:
The steady oblique modes (Klebanoff modes), the higher frequency primary modes along the
line m = 4 in the fourier plane and finally all the other unsteady modes. To ease subsequent
formulations we adopt the term ’mode clusters’ for the nonlinearly interacting clearly visible
group of modes in fourier space. The dominating Klebanoff mode cluster interacts internally
along the linem = 0 in a self-contained way due to the zero frequency. In anticipation of the
trend to be demonstrated, one should note the alignment in fourier space of the non-dominating
mode clusters with the dominating mode cluster. The higher frequency mode cluster cannot
interact internally. On the other hand its main modal forcing will occur under the influence of
the dominating mode cluster. Examples are(0, 0) + (4, 0) ⇒ (4, 0), (0, 1) + (4, 1) ⇒ (4, 1),
(0, 2) + (4, 2) ⇒ (4, 2) etc. The mode cluster of the remaining part of unsteady frequencies is
the least energetic, and shows a similar tendency of mode cluster alignment with the dominating
mode cluster. This session seemingly ends when the unsteady mode clusters synchronize their
streamwise phase-speed (see Fig.8.8) and evolves into strong amplification. The largest distur-
bance is once again a Klebanoff mode. It peaks twice, atx = 2280 (Rex = 955) andx = 4890
(Rex = 1399) with maximum streamwise velocity magnitudes of u-velocities of20% and24%
respectively. The long-wave streamwise coupled spatial oscillation of the Klebanoff modes is a
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noteworthy feature, characteristic of dominant steady mode clusters as we shall see.
Further increase of the initial level, Fig.8.6, leads to very high initial disturbances where full
by-pass transition occurs. The scenario is very similar to the former, but more pronounced. The
initial growth of Klebanoff modes is an order of magnitude higher than any TS-wave. The dot-
ted line of linear prediction is in error right from the initial point atx0 = 400. The oblique pairs
of primary waves(4, n 6= 0) outgrow the plane primary wave(4, 0) for x < 640 and split before
decaying into a high frequency mode cluster. The long wave steady oscillation is qualitatively
unchanged from session 3, but has moved upstream due to stronger initial growth of the Kle-
banoff modes and increased the period by22%. The peaks are atx = 1450 (Rex = 761) and
x = 4150 (Rex = 1288) with maximum streamwise velocity magnitudes of u-velocities of24%
and22% respectively. It should be noted that the sessions 3-4 are somewhat under-resolved due
to the violent initial growth of the high wavenumber Fourier modes(0, 3), (0, 4). Their non-
linear interaction into higher order modes is outside the truncated Fourier space, and hence not
accounted for in the PSE computations. Qualitatively this should not affect the overall scenario,
but to obtain quantitative agreement with DNS more spanwise modes ought to be included.

Session 5–8 deal with initial uniformly distributed unsteady amplitudes and varying steady
amplitudes. Session 5 resembles session 2 concerning the initial data. Only change is that all
unsteady modes are now primary modes with initialu

′
max 4.0·10−4 and background noise rather

high at2.0 · 10−4 Steady modes are unchanged atu
′
max 4.0 · 10−5 at x0. Subsequent sessions

6–8 increase the steady mode initial amplitudes by one order of magnitude successively. In
session 9 the symmetric distribution of oblique unsteady modes leading to a pairwise cancel-
lation of unsteady spanwise oscillation is abandoned. Instead, the 16 unsteady oblique modes
(m > 0, n < 0) from session 6 are marginalized at initial amplitudes two orders of magnitudes
lower, while the 16 opposite modes (m > 0, n > 0) are doubled in initial amplitude in order
to maintain approximately the same initial disturbance energy. Thus session 9 of single oblique
modes is to be compared with session 6 of oblique pairs.
The results in fourier space are presented in Fig.8.7. The scenarios are those of natural (non-
bypassed) transition as for session 1–2. Note that in the calculation ofu

′
max a physical mode

is the sum of mode (m,n) and the complex conjugate mode (−m,−n). the MFD mode (0,0)
is real and the only mode not to have a complex conjugate mode in fourier space. This is why
the initial level of the MFD is only half that of the other steady modes. The initial level of
steady disturbances leading to fastest flow distortion and transition is for session 6 where all
initial mode amplitudes are equal. Lower and higher initial steady amplitudes slightly delay
the process, despite higher initial disturbance energy in session 7. Session 8 is the only of all
sessions where the nonlinear forcing on the steady oblique modes is too small to influence the
low modal damping of these modes. From a physical point of view, the high initial level of the
steady modes in session 8 is probably not obtainable due to their potential for transient growth.
Session 9 reveals that imposing 3D single oblique waves at the initial line instead of 2D sym-
metric oblique pairs delays transition rather than promoting a 3D-effect that could precipitate
transition.
The streamwise phase-speeds depicted in Fig.8.8 for natural and by-pass transition reflect the

different nature of the two scenarios. The former is characterized by the linear amplification
stage where modes propagate the phases independently, followed by the nonlinear stage with
phase coupling of all the modes, and finally the transition stage where the phase-lock gradu-
ally loosens up and allow the modes to convey the phases at different speeds. The streamwise
phase-speeds for by-pass transition are much higher, which could indicate that the disturbances
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Figure 8.7:From above: Session 5–9. nonlinear evolution of disturbances.
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are located in the upper boundary layer, and maybe because of the nearly instant onset of non-
linearity all modes never phase-lock. Four mode clusters of which only one exhibits strong
internal phase-lock can be observed. The phase coupling of two mode clusters seems to mark
the start of the transition phase.

The single most important mode is the MFD (0, 0) mode. Unlike any other mode, it has a
direct influence on all modes, and the change of physical quantities like skin friction, pressure
coefficient, displacement- and momentum-thickness in the distorted flow field is solely gov-
erned by the MFD. Contributions from the steady oblique modes (0, n 6= 0) cancel out along
the spanwise dimension, while contributions from the unsteady modes (m 6= 0, n) cancel out in
time also. An indication of transition to turbulence in a boundary layer is the sudden rise of skin
friction on the wall as one moves downstream. Fig.8.9 shows the MFD velocity distribution for
uMFD andvMFD across the boundary layer for session 1–4 in the transition stage. The very high
normal gradient of the streamwise velocity in the vicinity of the wall, indicates the sharpening
of the laminar profile towards a ’more turbulent’ one. The effect on the skin friction can be
seen on Fig.8.10. for session 1–4. In session 1 the skin friction starts to rise atx = 9000, when
the dominating mode streamwise velocity amplitudes exceed approximately1.0% (see Fig.8.3).
Increasing the initial amplitudes in session 2–4 causes the position of skin friction rise to move
upstream succesively. In the natural transition cases (session 1–2) the rise is smooth, while
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Figure 8.8:Streamwise phase-speed,uθ, for unsteady modes in session 1 (natural transition,
below) and session 4 (by-pass transition, above).
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Figure 8.9:MFD-modes at transition stage for session 1–4.

the by-pass transition scenarios (session 3-4) experience an early elevation of the skin friction
which is maintained at a level well beyond the laminar level during the nonlinear stage until it
rises sharply and continue to rise until the end of the computation. These observations compare
qualitatively well with reference, e.g. Chang& Malik (1994), despite that they investigate com-
pressible flat plate boundary layers. The other end of the normal domain is very little affected by
the MFD for obvious reasons. The streamwise velocity MFD component vanishes completely
for y/δ exceeding 6 in the natural transition sessions 1–2, whereas the streak-dominated bypass
scenarios, especially session 4, has an MFD-mode extending far up in the boundary layer. For
y/δ larger than 10 the baseflow profile of the streamwise velocity has settled at the free-stream
value of unity. Therefore, the appearance of a positiveuMFD-component for19 < y/δ < 26
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implies a localized super-free-stream mean velocity in this region. The wall normal MFD ve-
locity component is two orders of magnitude lower. The sign ofvMFD at the upper end of the
normal domain indicates whether the displacement thickness streamwise evolution is larger or
smaller than predicted by the Blasius laminar baseflow solution. Fig.8.9 does not enable a con-
clusive answer. In fact, plot ofx versusvMFD for sessions 1–4 would reveal subtle oscillations
during the nonlinear stage, but no general pattern appear, although the displacement thickness
evolution for the by-pass sessions shows increase during the nonlinear stage in comparison with
the laminar evolution.

3D Waves, Physical Space

Evaluation of the results in physical space does not offer the possibility of detecting wave phe-
nomena as mode interaction, phase-coupling, clustering and resonance. In exchange for that it
enables the visualization of coherent structures and a general contextualization by the human
mind of the physical procession of events contained in the flow. Besides, flow representations
in physical space relate better to experimental flow visualizations, thus serving an important
purpose of validation. Of the two kinds of displaying the flow none is the better one, rather they
complement each other.
On figures 8.11–8.17 are shown the isosurfaces in x-y-z space where the streamwise velocity
u(t = 0) = 0.5U , i.e. where the u-component of the physical flow equals50% of the free
stream velocity at t=0. The ’virtual snapshot’ is taken from above in direction perpendicular
to the wall with the light source placed directly over the flow. It’s a little like looking at a dis-
turbed water surface at high daylight right from above, except that this is an iso-surface, not a
physical surface. Figs.8.11–15 present isosurfaces for the natural transition sesssions 5-9. Dif-
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Figure 8.10:Normal gradient of wall-parallel mean-velocity magnitude for sessions 1–4 and
undisturbed Blasius baseflow.
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fuse light reflections indicate a plane surface due to small perturbation amplitudes. On the other
hand, large perturbation amplitudes creates a distinct 3D effect to be observed. In the x-z plane
only one spanwise period is shown for better resolution. The largest spanwise wavelength is
β1/2π = 399.4. The x-domain is shown on each figure. All snapshots are fort = 0. The
general observation is the staggered pattern of low speed momentum which appears as small
tilted mountains on the surface. This is the classical H-type instability theoretically found by
Herbert& Morkovin (1980). H-type transition a.k.a. sub-fundamental transition is the natural
transition that will occur in a low disturbance (modally dominated) environment, as evidenced
experimentally by Corke& Mangano (1989). Its characteristic feature is the peak-valley distri-
bution of streamwise velocity in the x-z plane. smoke-visualizations show alternating lines of
peaks in a staggered order which creates the peak-valley pattern. The streamwise wavenumber
of the streamwise aligned peaks is half that of the dominating TS-wave, hence the name sub-
fundamental. According to experimental observations, the final breakdown to turbulence is not
violent, preceded by streamwise velocity spikes (impulses of low speed) and then the gradual
increase in concentration of high frequency turbulent spot formations. Visual measurements
at a peak location,xpeak, of the streamwise peak-period,λpeak, in the peak-valley regions of
sessions 5-9 (Figs.8.11–15) are presented below and compared with the period of the dominant
TS-wave,λTS. Which TS-mode dominates at3000 < x < 3400 for each of the sessions 5-9 is
determined from Fig.8.7 to be(m,n) = (3, 0). The experimental and theoretical value of the
ratio λTS

λpeak
is 0.5. This prediction is accurately met by our numerical experiments, even though

the initial seed of unsteady modes at the inflow was kept uniform. This confirms suggestions in
recent literature that sub-fundamental H-type transition is the natural transition for the Blasius
layer in low disturbance environments.

Session xpeak λTS λpeak Ratio
5 3391 119.2 222.0 0.540
6 3010 107.0 212.4 0.504
7 3014 106.9 209.0 0.512
8 3273 110.8 212.2 0.522
9 3059 136.9 296.3 0.462

The early onset of unsteady three-dimensionality at streamwise positions where the pairwise
oblique mode amplitudes still coincide, is explained by counter-phasing of the pairing oblique
modes (α,±β).

The Klebanoff disturbances, though crucial for the peak-valley instability to develop,
are not very notable, and heavily superposed by unsteady disturbances. In Fig.8.13 another
feature from experimental observations of natural transition has been captured by the nonlinear
PSE-method: The small dark objects on the surface forx ≈ 4000 are very elongated peninsulas
of low-speed streamwise momentum protruding up in the boundary layer some 5–10 times
higher than the peak-valley normal height difference. Neither their spatial convective, nor their
temporal behavior can be depicted from a virtual snapshot: In the transition stage the phase-
speeds vary between the modes, so in contrast to the phase-coupled nonlinear stage, the flow
features do not simply propagate downstream, but exhibit very irregular oscillations in time
and space. Nevertheless, these formations will probably appear as the experimentally reported
velocity spikes for a virtual hot-wire placed correctly in the flow. Due to the phase-decoupling
of the modes in the transition stage, Figs.8.11–15 only allow us to conclude that fort = 0 only
session 7 has these very localized far-protruding peninsulas of low-speed momentum lifted into
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Figure 8.11:Session 5: Natural transition scenario.

Figure 8.12:Session 6: Natural transition scenario.
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Figure 8.13:Session 7: Natural transition scenario.

Figure 8.14:Session 8: Natural transition scenario.
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Figure 8.15:Session 9: Natural transition scenario.

the boundary layer at transition. At other positions in the temporal period, this might very well
change.
Figs.8.16–17 are the by-pass scenarios, session 3–4. One spanwise period of length399.4 is
shown as it develops in space from the initial pointx0 = 400 to the breakdown at transition for
t = 0. In Fig.8.17 the spanwise phase of the period has been offset byπ to position the main
feature along the centerline of the domain. The two sessions are very similar, session 4 being
the most spectacular due to its higher initial amplitude, and it will receive the attention in the
following.

In Fig.8.17 the only reminiscence of influential TS-instability is immediate downstream of
the initial line. As it decays prominent Klebanoff modes take over, mode (0, 4) dominating
as also displayed by Fig.8.6. betweenx = 2500 andx = 3000 a peculiar restructuring of the
streaks seems to take place. This is the long-wave oscillation of the streaks noted in fourier
space. Towards the end, the50% isosurface for theu-velocity becomes wiggly under the
influence of unsteady perturbations and the computation breaks down. The MFD-mode for this
by-pass transition (session 4) extends very far into the flow, see Fig.8.9, which motivates us to
search for coherent fluid motion in the upper part of the boundary layer. Figs.8.18–19 show
from different angles the same50% u-isosurface from Fig.8.17 plus a102% super-free-stream
speedu-isosurface. The latter consists of two streamwise columns of accelerated fluid at equal
heights symmetrically positioned above the centerline. These high-speed columns gain size
in downstream direction and are periodically connected or nearly connected by inter-column
bridges of high velocity. Vertical tongues of high speed fluid are lifted up from the columns
periodically and alternating between them. These tongues grow farther and farther into the
boundary layer as one advances downstream, some loosing connection with the column from
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Figure 8.16:Session 3: By-pass transition scenario.

Figure 8.17:Session 4: By-pass transition scenario.
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Figure 8.18:Session 4: By-pass transition scenario. Orange and red iso-surfaces are for
U(x, y, z, t = 0) = 0.50 · U andU(x, y, z, t = 0) = 1.02 · U respectively.

where they emanated, others maintaining a connected volume of high speed fluid with their
respective column of origin. The connected tongues are the most accelerated also. At110%, the
overall structure of the high speed surfaced volume is still apparent (not shown) and volumes of
u-velocities in excess of125% free-stream velocity is present in most downstream part of the
columns as well as in the very upper part of the last and most protruding tongue atx ≈ 4200.
Before attempting to explain the observed series of events in the by-pass transition, Fig.8.21 of
iso-surfaces for positive and negative normal vorticity of magnitude 0.001 reveals the tongues
to be hairpin vortices with accelerated fluid in the middle due to counter-rotation. On Fig.8.20
the colored shades indicate streamwise velocity in the z-y plane atx = 2000. The dark red
regions mark the columns of accelerated fluid clearly visible atz ≈ 330 andz ≈ 420. The
streamlines reveal 8 more or less distorted streamwise counter-rotating vortices, where the
pair centered aboutz ≈ 380 dominates and actually contains the high-speed columns in their
upper part. A strong sink in the dividing line between these vortices feeds on the above flow
and forces a massive downward motion of fluid betweenz ≈ 310 andz ≈ 460 up toy ≈ 23
where the natural evolution of the undisturbed Blasius layer gradually takes over. Fluid sources
are located on the outer sides of the super-free-stream columns. Sinks and sources mark the
streamwise acceleration and deceleration of fluid passing the plane. This correlates well to
phase-change of the long-wave spatial oscillation of the Klebanoff modes physically visible on
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Figure 8.19:Session 4: By-pass transition scenario. Orange and red iso-surfaces are for
U(x, y, z, t = 0) = 0.50 · U andU(x, y, z, t = 0) = 1.02 · U respectively.

Fig.8.17 and in fourier space on Fig.8.6. The high-speed columns are clearly nurtured by the
outer layer fluid sucked in by the streamwise counter-rotating vortex pair and the streamwise
acceleration. At the initial line the four vortex pairs create four high-speed columns of which
only a pair of two amplifies downstream. After the Klebanoff phase-change atx ≈ 2500 this
column pair continues to exist, although ejections of high-speed tongues in the upper layer tend
to evolve more from the middle space between the columns and less from the columns. This is
because most upper layer high-speed fluid is sucked down in the middle part of the spanwise
domain (see Fig.8.18), and not as upstream of the Klebanoff phase change, where fluid was
sucked down on each side of the center iso-surface ridge of uplifted low-speed momentum.
The unsteady motion is initially dwarfed by the dominating Klebanoff modes. Nevertheless the
regular ejections of these tongues of accelerated fluid, that further downstream can be identified
as hairpin vortices, seems to be the main role of the TS-waves. The fact that they release modal
energy into the upper boundary layer, where it is passively convected downstream, might be
the reason why these modes are so effectively damped: They break apart. The key elements
for these vorticity ejections to occur are strong streamwise counter-rotating streaks (Klebanoff
modes) and minor TS-instabilities, which must deviate the paired vorticity contained in the
streaks enough to release portions of it in the upward normal direction.
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Figure 8.20:Session 4: Stream trajectories in yz-plane at x=2000 and t=0.

The computation halts before the end of the transition stage. The hairpin scenario is well
known from literature, see e.g Haidari& Smith (1994), Asai& Nishioka (1995). The top of the
hairpin vortex, its ’head’, will start to bend forward as it grows. Finally the head will induce
high frequency disturbances, and the whole vortex will break down. At supercritical Reynolds
number for the flat plate, the break down is most likely to initiate turbulence. A vague sign
of imminent head tilting can be observed on Fig.8.21. The purely numerical departure mode
observed the final marching steps of the PSE procedure, could indicate that the outer boundary
conditions imposed at40δ is not sufficient to reach an undisturbed state. Increasing this number
might extend the computation even further.

3D Waves, Error Assessment

The error introduced by distributing the FFT’ed nonlinear terms on the corresponding spanwise-
temporal modes, is negligible when the streamwise wavenumbers vary linearly with the
spanwise-temporal wavenumbers. When this is not the case, RHS nonlinear forcing will be
applied to modes with streamwise wavenumbers that deviate from the streamwise wavenum-
bers of the forcing terms. This deviation is easy to quantify as the relative error between the
computed streamwise wavenumbers in 3D fourier space for all modes, and the best planar fit to
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Figure 8.21:Session 4: By-pass transition scenario. Wall-normal vorticity iso-surface,ωy =
±0.001.

these streamwise wavenumbers. The table below present the results for sessions 1–9.

Ses- Transition x = 1000 x = xend − 100
sion type max(abs(εrel)) mean(abs(εrel)) max(abs(εrel)) mean(abs(εrel))

1 Natural 13.3 2.1 19.7 7.0
2 Natural 16.7 1.9 21.3 6.6
3 By-pass 18.6 4.6 24.1 6.2
4 By-pass 13.8 2.9 21.0 5.1
5 Natural 25.2 3.7 37.9 5.8
6 Natural 17.4 2.0 33.0 6.0
7 Natural 17.9 2.0 32.4 4.7
8 Natural 21.5 3.3 32.9 5.3
9 Natural 13.7 3.1 31.5 5.5

The percentage error is computed atx = 1000 and atx = xend − 100. The overall assump-
tion of modal interaction of modes in a 3D fourier plane is good in all sessions, also in the
highly distorted areas preceding the failure to march the solution further atxend. The maximum
deviations are somewhat high, but still acceptable.



98 Nonlinear Stability Results

500 1000 1500 2000 2500 3000
10

−4

10
−3

10
−2

10
−1

x

u’ m
ax

Figure 8.22:Nonlinear evolution of disturbances of initial primary mode amplitude1.0 · 10−4,
the higher harmonics and the MFD (bold dotted line).

8.2 The DLR Experiment

The nonlinear effects of the DLR swept plate flow will be illustrated through a series of exam-
ples differing through the choice of inflow conditions atx0. Focus will be on the development
of mode clusters and their implications on the physical flow. The nondimensionalized domain
corresponds to the0.5m chord fromx∗0 = 0.01m to the trailing edge at0.5m. Rex0 = 194.3

Steady Vortices

The swept plate at baseflow conditions unchanged from the treatment in the chapter of linear
PSE, is susceptible to steady three-dimensional co-rotating crossflow vortices. The isolated
nonlinear interaction between these steady modes without the influence of unsteady waves is
investigated by considering the modes along then-axis form = 0 in Fig.8.2. The Fourier space
included is (m,n)=(0, 0), (0, 1) ... (0, 32) with β1 = 0.0808, as found from the parameter study
in the linear results chapter. The negative part of then-axis is implicitly contained as complex
conjugate counterparts for the included modes on the positive part of then-axis, since the
physical flow is real. The primary disturbance is the unstable (0, 1) stationary crossflow mode,
initiated at streamwise velocity amplitude1.0 · 10−4. The background noise level at which all
other modes are initiated is1.0 · 10−6. ∆x = 5. Infinity boundary conditions are imposed at
y∞ = 40δ(x) and the normal domain consists of 400 non-uniformly distributed mesh points.
These settings, except for the inflow amplitudes, are kept constant through all swept plate ses-
sions. As one observes on Fig.8.22 the linear prediction of the maximum streamwise velocity
amplitude,u

′
max, is followed by the primary mode until it gradually saturates at21%. The

higher modes (0, 2), (0, 3) etc, are induced succesively from nonlinear interaction, but do not
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Figure 8.23:Session 1: Dominant crossflow vortices at low primary mode initial amplitude
1.0 · 10−3. Dotted lines denote the steady vortices, the thick dotted line is the
MFD mode. Annotations 0-4 refer to the value of n in fourier space for the steady
disturbances.

encounter any instability mechanism of their own. The predominant cascading of modal energy
from low to higher wavenumbers is a characteristic of most instability mechanisms. The lack of
stronger instability mechanisms is a consequence of neglecting all temporal instabilities. This
testcase is in perfect agreement with the similar one considered by Stolte (1999) including the
modes (0, 0), (0, 1) ... (0, 16), which is still sufficient, although the introduction of initial modes
is different. His use of a local non-parallel method leads to a transient response immediately
downstream ofx0, whereas our use of the frozen coefficient pseudo-marching technique seems
to give a smoother introduction of modes. Notice also how the highest modes on Fig.8.22
are damped towards the end. This precipitates a long-wave spatial oscillation, somewhat
like the one encountered for the Klebanoff modes in the Blasius testcase. Stolte pursued the
phenomenon by pseudo-marching the solution at fixed streamwise points, and attributed the
behavior to the existence of a spatial Hopf-bifurcation beyond a certain streamwise position.
The nonlinearly perturbed high-amplitude steady saturated state with regions of pronounced
shear has motivated the hydrodynamic instability community to investigate its receptivity
properties to high-frequency modes. This task is so far performed only by use of Floquet
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Figure 8.24:Session 2: Dominant crossflow vortices at very low primary mode initial amplitude
1.0 · 10−5. For lines and annotations, see Fig.8.23.

theory, see e.g. Herbert (1988), Stolte (1999). The possibility of using PSE for the task appears
attractive, but would lead to a huge number of modes. The implications are briefly discussed
later in this chapter.

Fourier Space

As discovered in the preceding chapter, the DLR swept plate boundary layer flow is unstable
to stationary crossflow vortices as well as traveling waves. Thus, inclusion of both makes for
realistic initial conditions. Six sessions will be demonstrated, all of which have rather low ini-
tial amplitudes, thereby excluding by-pass transition scenarios. Experimental evidence, Müller
(1990), leads us to anticipate the downstream dominant perturbations to depend on the initial
ratio between free-stream turbulence/perturbation and surface roughness, as well as the magni-
tudes of both. This has been confirmed numerically by DNS, Wagner (1992), Müller (1995),
by Large-eddy simulation, Huai et al. (1999), and by earlier PSE studies, Malik et al. (1994),
Bertolotti (1996), Stolte (1999). Our sessions are:
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Figure 8.25:Session 3: Co-dominant crossflow vortices and unsteady waves at low primary
mode initial amplitude1.0 · 10−3. For lines and annotations, see Fig.8.23.

• Session 1-2:
Stationary vortex dominance at inflow for low and very low initial amplitudes.

• Session 3-4:
Stationary vortex and travelling wave co-dominance at inflow for low and very low initial
amplitudes.

• Session 5-6:
Travelling wave dominance at inflow for low and very low initial amplitudes.

The reason for the engineering interest in crossflow instabilities is its occurrence on swept wings
at sonic, transonic and supersonic conditions. At free flight the natural noise level is low, which
explains our choice of low initial amplitudes for the nonlinear PSE-method. For all sessions 1-6
the primary modes are (0, 1) and (1, 1). In accordance with our previous findings from linear
PSE, we setω1 = 0.00689.
Before commenting session 1 on Fig.8.23 the employed colors call for a few words. The modes
are colored in clusters, for reasons that will become apparent. The location of these clusters
in the (m,n) fourier space is presented on the right drawing of Fig.8.29. For clarity the upper
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Figure 8.26:Session 4: Co-dominant crossflow vortices and unsteady waves at very low pri-
mary mode initial amplitude1.0 · 10−5. For lines and annotations, see Fig.8.23.

left triangular part of the domain has been relocated to their physically identical but complex
conjugate position in the mirrored lower left part, in order to highlight the alignment of these
clusters. Fig.8.23 shows the initial linear growth of the primary vortex, its saturation at12%
for x = 1774, and slightly oscillatory evolution towards the end of the plate. We recall our
linear PSE result that the unstable wave (1, 1) exhibits larger linear growth rates than the vortex.
Nevertheless its growth is suppressed by nonlinear forcing and it peaks substantially lower than
the vortex. The tendency for the higher harmonics are similar. The waves are suppressed for
the benefit of the vortices. Clearly the modes do not cluster according to colors or in any other
way. Due to high amplitudes the dominant line of interaction in fourier space ism = 0, i.e the
stationary crossflow vortices.
A reduction of the initial amplitudes by two orders of magnitude leads to another scenario.
Session 2 on Fig.8.24 once again shows unsteady suppression by the steady vortices, and even
clearer. Note how the delayed saturation, caused by lower initial disturbance, leads to higher
amplitudes of the vortex that grows monotonically to20% of the free-stream magnitude at the
end of the plate. Anticipating the physical space visualizations, the reason for this seems to
be the better alignment of the crossflow vortices with the undisturbed free-stream before sat-
uration, which causes stronger suppression of competing modes or mode clusters. The steady
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Figure 8.27:Session 5: Dominant unsteady waves at low primary mode initial amplitude1.0 ·
10−3. For lines and annotations, see Fig.8.23.

modes do not cluster, but form the dominant line of nonlinear interaction. The unsteady modes
don’t either, but narrow their amplitude magnitudes at the outflow of the domain, displaying
increased modal attraction.
Session 3 on Fig.8.25 of co-dominating wave/vortex interaction offers a different picture. The
wave gains dominance due to its higher linear growth, saturates and peaks at9.4% for x = 1854.
A few observations: First, the clustering of modes according to colors. The dominant cluster,
although scattered, is the blue one consisting of the MFD (0, 0) mode, the primary (1, 1) mode
and the higher harmonics (2, 2), (3, 3) etc. As for the by-pass transitions in the Blasius testcase,
the non-dominant clusters align in fourier space with the dominant one. Second, the repeated
co-alignment of clusters leads to a capturing of the steady modes, the semibold dotted lines, in
different clusters with one crossflow vortex mode in each. In other words, the steady modes are
disrupted from one another with no or very little modal attraction between them. This excludes
them from gaining the dominant line of interaction. The computation ends prematurely before
the end of the plate atx = 2194 due to fast spectral broadening in the saturated nonlinear stage.

A two-decade lowering of initial amplitudes has similar effects as for the crossflow dominated
sessions: The dominating mode peaks higher (14%), the dominating cluster is tighter bundled
and the suppression of non-dominant clusters is stronger. Fig.8.26 is the natural scenario for
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Figure 8.28:Session 6: Dominant unsteady waves at very low primary mode initial amplitude
1.0 · 10−5. For lines and annotations, see Fig.8.23.

swept plate boundary layers in very quiet environments. The natural selection of modes favors
the most linearly unstable travelling wave mode (1, 1), and the pattern of clusters arrange ac-
cordingly. The transition stage, as seen on Fig.8.25 follows that of spectral broadening as all
modes grow beyond approximatelyu

′
max > 1% where nonlinearity starts to govern the modes.

The last two sessions 5-6 are heavily dominated by travelling waves. The effect of later satu-
ration is repeated:11% for the the low initial amplitude session 5 versus14% for the very low
initial amplitude session 6. Surprisingly the very regular pattern of mode clusters from ses-
sions 3-4 is not encountered. The clusters will form, but not according to the cascading recipe,
where the dominant cluster feeds the next dominant cluster and so on. Rather than that a distinct
growth of the cluster containing the steady vortex (0, 4) especially in session 5 indicates a more
complex mechanism. This session also ends prematurely when that cluster grows beyond the
nonlinear threshold,u

′
max ≈ 1%, interacts mutually with the dominant cluster forx > 1700,

and brings lower energy clusters into strongly amplified resonance.
The observations of wave suppression, the effect of early saturation on the peak maximum
streamwise velocity amplitude and the general modal histories of session 1-6 agree very well
with the findings of Stolte (1999). As for the steady vortex example the only notable discrep-
ancy is at the inflow, where our use of the frozen coefficients method, leads to a non-transient
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Figure 8.29:The thick straight lines connecting some modes in the discrete Fourier domain
mark possible directions of dominating modal interaction in the DLR swept flow.
Left: Dominating line of interaction for stationary vortex dominated transition.
Right: Dominating lines of interaction for travelling vortex dominated transition.
Note the color code used for the interacting lines (clusters) used for Fig.8.23-28

introduction of modes.

Physical Space

The virtual snapshots, Fig.8.30–32, fort = 0 of sessions 1, 3 and 5 are aligned with the free
stream and thus rotatedϕ∞ = 42.5o with respect to the cartesian reference. To ease compar-
ison with fourier space results, the original cartesian x-axis is maintained on the figures. In
the rotated spanwise direction slightly more than one period,(2π/β1)

√
1 + sin2ϕ∞ = 93.8, is

included. Common for all snapshots is the initial constant phase alignment of wave/vortices
perpendicular to the free stream, and its downstream gradual alignment with the free stream.
This is caused by the non-zero spanwise velocity profile of the baseflow in the rotated cartesian
reference aligned with the free stream. For the stationary crossflow dominated session 1, the
dominating mode (0, 1) will not move in time. The higher wavenumber modes that superpose
the flow downstream ofx = 2000 are the unsteady modes (1, 2) and (2, 2) with phases propa-
gating upstream at a skew angle in time. The dominating mode of Figs.8.31–32 is the primary
unsteady mode (1, 1), also with upstream propagating phases. In the hybrid session 3 the steady
crossflow vortex (0, 1) becomes visible downstream ofx = 600. The onset of co-dominant
higher wavenumber modes leading the flow into the transition stage and early computational
break down are of different origin. For session 3 practically all modes come into play in the
end with phases propagating in random directions. For session 5 the high wavenumber modes
emerging downstream ofx = 1400 are all from the cluster of modes (0, 3), (1, 4), (1,−2),
(2,−1), (3, 0) and (4, 1) most of them propagating the constant phase lines in downstream di-
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Figure 8.30:Session 1: Stationary vortex dominated transition. Snapshot aligned with free
stream.

Figure 8.31:Session 3: Vortex/wave co-dominated transition. Snapshot aligned with free
stream.



8.2 The DLR Experiment 107

Figure 8.32:Session 5: Travelling wave dominated transition. Snapshot aligned with free
stream.

rection.

High Frequency Secondary Instabilities

As to the exact nature of the breakdown to turbulence, the marching procedure is not extended
far enough. However, plots of the MFD mode close to the numerical breakdown of session 3 and
5 indicate a calm upper layer, as for natural transition in a Blasius flow. Experimental observa-
tions, Kohama et al. (1991), report explosive growth of high-frequency secondary instabilities
of inviscid type. This correlates well with the inflectional meanflow profile in the distorted area.
The possibility for inclusion of the high-frequency secondary instabilities in the non-linear PSE
procedure has been investigated. The idea of an all-encompassing method, which it would then
be, is obviously appealing. Nevertheless it faces a series hurdles to be circumvented. The in-
vestigation performed on high-frequency modes is only briefly outlined below, as the findings
do not motivate further analysis.
A testcase is designed with 2113 modes(!). The vector of spanwise wavenumbers is that of
the steady vortex example, Fig.8.22. The vector of temporal wavenumbers is (0ω1, 0), (1ω1, 0),
(2ω1, 0), ... (32ω1, 0). This should enable us to find a large part of the unstable secondary insta-
bilities although not the most high-frequent for the most distorted areas of the baseflow, Stolte
(1999). We define the initial 2080 unsteady amplitudes to be vanishing small. The initial steady
amplitudes are exactly as the steady vortex example of Fig.8.22. Initial data is succesfully
found by the frozen coefficients technique for all modes, which here prove to be very robust
for localizing the heavily damped high-frequency viscous modes. Due to the high initial steady
amplitudes compared to the very very small initial amplitudes of the unsteady modes, the non-
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linear interaction between steady oblique and unsteady modes vanish. The internal nonlinear
interaction between the unsteady modes is negligible also. The nonlinear interaction between
the steady modes become that of the already calculated steady vortex example. The remaining
nonlinear interaction between the MFD mode and the unsteady modes decouples and becomes
uni-directional: The MFD-mode affects the receptivity of all the unsteady modes, but the un-
steady modes have very low amplitudes incapable of contributing to the MFD mode. Now the
task becomes clear. It consists of investigating the linear PSE evolution of the unsteady modes
to the MFD-corrected baseflow, where the MFD mode is available from the steady vortex ex-
ample. We would expect the unstable mode (1, 1) to be accompanied by a whole array of more
unstable modes as the pre-calculated MFD mode grows and affects the effective baseflow upon
marching downstream. However, The PSE method fails completely to gradually convey some
of the considered modes into high-frequency secondary instability, as the MFD correction be-
comes more prominent in the downstream marching direction. The considered modes located in
a fourier plane only change minimally and new instabilities do not appear. The lessons learned
are:

• Although the MFD correction to the baseflow ensures an impact on the receptivity for all
other modes, high-frequency secondary instability modes are not likely to be encountered.
A plot of the corrected baseflow profiles reveals an inflection point in the outer part of the
boundary layer. Hence, the sought-after new instabilities are probably not of the inner
layer viscous type, but rather belongs to one or more different inviscid family/families of
modes.

• A succesful PSE computation of high-frequency secondary modes should therefore be
able to include more than one (viscous) family of modes. This requirement would force us
to abandon the Fourier plane domain in favour of a complete 3D Fourier volume domain
spanned by the temporal, spanwise and streamwise wavenumber-vectors. Even so, the
identification of the high-frequency instabilities is far from granted by the standard PSE-
method alone. It must be doubted if such a complex PSE computation would be worth
the effort, since the cpu cost increase by adding one dimension to the considered Fourier
space is considerable.



Chapter 9

Concluding Remarks

9.1 Summary

High-order numerical schemes have been derived and implemented in a suite of tools for ana-
lyzing hydrodynamic instability in the incompressible regime. It consists of baseflow solvers
in physical space and perturbation solvers in Fourier space. All solvers deal with convergence
problems, either in pursuit of a steady flow or an array of oscillatory convectively dominated
modes with steady amplitudes. These modes can be uncoupled or coupled for linear and non-
linear analysis respectively.
The baseflow solvers for 2D or 2.5D are: A local self-similarity boundary profile solver, a non-
local parabolic boundary layer solver and a novel 6’th order accurate coupled compact volume
Navier-Stokes solver with multigrid acceleration. Stability analysis revealed that among several
compact volume solvers, the staggered CCV6s scheme had the best behavior in terms of numer-
ical stability. Optimal complexity, i.e. O(N)-scaling with size, was obtained for some testcases,
which all demonstrated good multigrid acceleration.
The perturbation solvers are:

• A local LST eigenvalue solver based on the Orr-Sommerfeld equation for temporal or
spatial analysis. The matrix system is obtained using differentiation matrices that are
constructed either from the well-known pseudo-spectral method using Chebyshev poly-
nomials, or from a novel non-uniform 8’th order accurate coupled compact difference
scheme (CCD8). Both schemes performed well, the CCD8 scheme not quite as efficient
in error reduction as the spectral discretization, but with full flexibility in the choice of
1D point distribution.

• A non-local linear/nonlinear 2.5D PSE implementation employing the non-uniform
CCD6 scheme in the wall-normal direction. The linear PSE results mainly served to
validate against literature references, and to enable comparison between the LST- and
the PSE-basedeN -method, which exhibited only minor differences. Improved nonlin-
ear mode-interaction was obtained through Mean Flow Correction (MFC) and examples
of natural and bypass transition scenarios were presented. The appearance of hairpin-
vortices in the late stages of by-pass transition on a flat plate is, to the extent of our
knowledge, a result not previously obtained with PSE. Another observation for the swept
plate flow is the ordering of nonlinear interaction along lines in Fourier space along the
direction of the primary instability for travelling wave dominated transition scenarios,
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or only along the steady spanwise mode axis in the case of stationary vortex dominated
scenarios.

• A non-local linear 2.5D ESE solver using the same compact discretization as the PSE
solver. It was applied to a semi-analytically derived bubble baseflow, and compared to
LST for the same testcase. In contrast to the PSE-LST comparison, much larger dis-
crepancies were encountered for the spatial amplification, which were attributed to the
large non-parallelism of the reversed boundary layer flow. Overall, the very high spatial
growth rates agreed well with LST, as did the reverse flow magnitude at which absolute
or global instability would occur. The high N-factors even at low reverse-flow magni-
tudes make us conclude that the transition onset from convected instabilities will precede
global instability of the laminar bubble.

9.2 Outlook

For the linear analysis it would be appealing to use spatial spanwise ESE to track modes over a
rotating turbine blade. The baseflow solution should be obtained from a 3D boundary layer code
with strong viscous-inviscid interaction capable of marching through zones of recirculation, and
the transition criterion based on theeN -method.
For the non-linear analysis the PSE method has reached a state of maturity from where further
advances seem cumbersome. The unavoidable failure of nonlinear PSE to converge at the late
stages of transition causing the marching procedure to halt could be avoided by abandoning the
Fourier decomposition in the streamwise direction altogether, and use a higher-order scheme
to resolve this dimension. This leaves us with a Fourier space consisting of theω-β plane.
Each mode in the plane should then be marched in pseudo-time and the nonlinear interaction
between the modes updated at each timestep until convergence, using artificial compressibility
and multigrid acceleration in the physical plane spanned by the streamwise and wall-normal
directions, e.g. as demonstrated for the CCV6s baseflow solver. This approach would in many
ways be a trade-off between non-linear PSE and full DNS, and might prove powerful for 2.5D
analysis of airfoil sections.
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