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Abstract

The unsteady two-dimensional aerodynamic forces acting on a NACA 0015 airfoil un-
dergoing harmonic translatory motions have been investigated experimentally and the-
oretically/numerically.

The focus of the experimental investigations was to determine the factors that
influence the aerodynamic damping of harmonic translatory motion. Specifically, mea-
surements of unsteady pressure distributions were undertaken at a range of incidences,
movement directions, amplitudes and reduced frequencies matching real life conditions
for the flap and lead-lag motion of wind turbine rotors.
From the experimental results it was seen that the maximum negative aerodynamic
damping take place at moderate stall at an incidence of about 15o, at a movement
direction close to the chordwise direction, and that the aerodynamic damping at 150

and 20o for the stalling cases decreases as the reduced frequency is decreased. The
dependance on the amplitude of the motion was weak.
Up to three distinctively different stall modes occurring in both steady and unsteady
experiments at incidences 15o ≤ α ≤ 20o was observed. Both the mean and dynamic
characteristics was found to differ from mode to mode.

As a part of the theoretical work an unsteady panel code was implemented. This
code was used to investigate the differences in the dynamic response of an airfoil un-
dergoing heaving motion and pitching motion.
Another application of the panel code was to compute the effect of the imposition of
wind tunnel walls on the dynamic response of the airfoil. From these results dynamic
tunnel corrections was derived.

A different part of the theoretical work concerned the development of a new heuristic
stall model, which can be considered an ‘interpolation’ between quasi-stationary theory
and unsteady potential theory. Comparison with the experimental results shows very
good agreement in the attached cases, but the new model fails to reproduce the features
of the moderately and deeply stalled flows due to the assumption of similarity between
the dynamics in the attached and stalling cases.

Comparison of results obtained with a Navier-Stokes solver showed excellent agree-
ment with the experimental data for incidences up to 8o. Fully turbulent flow was
assumed in the Navier-Stokes simulations. The differences between the results for inci-
dences 12o and above were caused by too late predicted onset of stall in the simulations,
and that the Navier-Stokes solver predicted a strong effect from vortex shedding at in-
cidence 20o, which was not found in the experiments.
The overall features of the aerodynamic damping was captured correctly for incidences
up to 15o. The discrepancies at 20o was caused by the strong vortex dynamics in the
predictions.





Synopsis

De instationære to-dimensionelle aerodynamiske kræfter p̊a et NACA 0015 vingeprofil
som udfører harmoniske translatoriske bevægelser er blevet undersøgt eksperimentelt
og teoretiskt/numeriskt.

I de eksperimentelle undersøgelser har fokus været p̊a at bestemme de faktorer som
influerer p̊a den aerodynamiske dæmpning af harmoniske translatoriske bevægelser.
Målinger af instationære trykfordelinger er blevet udført for en række indfaldsvinkler,
bevægelsesretninger, amplituder og reducerede frekvenser for værdier som svarer til
typiskt forekommende for en vindmøllerotors flap- og kantvise svingninger.
Fra de eksperimentelle resultater s̊as, at den maksimale, negative aerodynamiske dæmp-
ning forekommer ved moderat afløst strømning ved cirka 15o indfaldsvinkel, med en
bevægelsesretining tæt p̊a den kantvise retning, og at den aerodynamiske dæmpning
for de afløste strømninger ved indfaldsviklerne 15o og 20o aftager for aftagende reduc-
eret frekvens. Afhængigheden af amplituden af bevægelsen viste sig at være svag.
Der blev observeret op til tre forskellige afløsningsniveauer for b̊ade stationære og in-
stationære eksperimenter for indfaldsvinkler i omr̊adet 15o ≤ α ≤ 20o. B̊ade middel- og
dynamiske karakteristika for de aerodynamiske kræfter afviger fra tilsvarende størrelser
for de andre afløsningsniveauer.

Som en del af de teoretiske undersøgelser blev der implementeret en instationær
panel kode. Denne blev brugt til at undersøge forskellen i den dynamiske respons af et
vingeprofil under translatorisk og roterende bevægelse.
I en anden applikation af panel koden, blev den anvendt til at beregne effekten af
vindtunnel vægge p̊a det dynamiske respons af vingeprofilet. Disse resultater dannede
basis for udledningen af dynamiske vindtunnelkorrektioner.

En anden del af de teoretiske undersøgelser omhandlede udviklingen af en ny heuris-
tisk stall model. Den nye stall model kan opfattes som en ‘interpolation’ mellem kva-
sistationær teori og instationær potential teori. Sammenligning med eksperimentelle
resultater viste for de ikke-afløste strømninger en god overensstemmelse, hvorimod
modellen ikke kunne reproducere de dynamiske karakteristika for de moderate eller
massivt afløste strømninger p̊a grund af antagelsen om lighed mellem strømnings dy-
namikken i den afløste og den ikke-afløste strømning.

Sammenligninger af resultater beregnet med en Navier-Stokes kode viste meget
god overensstemmelse med de eksperimentelle data for indfaldsvinkler op til α = 8o.
Navier-Stokes beregningerne antog en fuldt turbulent strømning. Forskellen mellem
resultaterne for indfaldsvinkler fra 12o og derover skyldes at den beregnede strømning
afløser senere end den målte, og at Navier-Stokes beregningerne viste en kraftig effekt
fra hvirvelafkastning ved indfaldsvinklen 20o, som ikke forekom i de eksperimentelle
resultater.



viii

De overordnede karakteristika for den aerodynamiske dæmpning blev beregnet kor-
rekt for indfaldsvinkler op til 15o. Uoverensstemmelserne ved 20o skyldes den kraftige
hvirveldynamik i de beregnede resultater.
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Chapter 1

Introduction

The task of simulating the flow field around the rotors of a wind turbine is not a simple
one. Not only is the flow for a wide range of free stream velocities massively stalled
at the inner part of the blades and therefore strongly three dimensional and unsteady,
it is also influenced by a combination of complex effects such as rotational effects,
turbulence, surface roughness effects, and the effects caused by the highly complex
inflow conditions due to operation in yaw and tilt, gusts, tower effects, atmospheric
boundary layer and coupled fluid-structure interaction.
Due to this inherent complexity of the flow around a wind turbine, the development in
the design of wind turbine rotors has to a large extent relied on empirical correlations,
acquired through systematic model testings and simplified theoretical considerations,
as well as on the intuition and experience of the designer. Over the years, this has
resulted in reliable and efficient aerodynamic and structural designs of wind turbines.
However, as the design of a component is gradually changed, new problems or phe-
nomena may arise that has to be understood in order to be taken into consideration
in the design phase.
An example of this is stall-induced vibrations, which arose for horizontal axis stall re-
gulated wind turbines in the 1990’s [47] [37], as the rotor diameters increased. Possible
ways to circumvent these vibrations include modification of the stall characteristics
of the rotors, or modification of the structural dynamics of the rotors. It can be
shown, that the aerodynamic damping of a wind turbine rotor is highly dependent on
the direction of the vibrational motion of the blades [41]. If this dependence can be
predicted correctly, then one way of avoiding the unwanted vibrations can be tailoring
of the structural dynamics of the turbine such that the direction of the vibrational
modes are in the directions which have a sufficiently high aerodynamic damping to
assure that the total damping of the combined aerodynamic and structural system is
positive.
In many cases, the direction of the vibrations which lead to failure, or a drastic
reduction in the life-time of the rotor, is in the chordwise direction. This particular
phenomena is referred to as lead-lag instability. Experimental investigations on full
scale turbines have shown that the aerodynamic damping of motions in the chordwise
direction is less damped that the flapwise counterpart [56].
Besides causing a dramatic reduction in lifetime, chordwise motions are difficult to
incorporate into aerodynamic prediction codes.
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Several models aimed at describing the fluid forces on wind turbine rotors exist.
The standard designing tools among wind turbine manufacturers are methods based
on Blade Element Momentum (BEM) theory [21] [64], but a wealth of other methods
exist. Among more sophisticated models capable of determining both steady and
unsteady forces on rotors undergoing relative motion are potential methods [58],
actuator disc models [62] [49], acceleration potential models [8] and Navier-Stokes
models, such as Reynolds Averaged Navier Stokes (RANS) models [52] and Detached
Eddy Simulation (DES) [48] [24] [25].
The latter of the models mentioned are very computationally expensive.

It is of the utmost importance for the manufacturers to be able to determine
wether a certain vibrational mode of a blade is prone to be amplified or damped by
interaction with the air-flow, or how time varying inflow conditions affect the forces
on the rotor. If the simpler and faster models based on the BEM theory need to
describe the response from the fluid forces for unsteady inflow conditions, they have
to be extended to deal with phenomena occurring when the rotor is vibrating or
experiencing time varying inflow conditions.
Many of the models that describe the unsteady interaction between motion and
forces on a blade were developed with helicopter rotors in mind. Specifically, the
dynamic stall models of Beddoes and Leishman [29] and Tran and Petot [57] should be
mentioned. Dynamic stall is a complex fluid dynamic phenomenon, which refers to the
unsteady stall behavior of airfoils moving transiently with respect to the free-stream.
This unsteady stall behavior typically involves massive unsteady separation and large
scale vortices. The effect of these unsteady phenomena is hysteresis in separation and
reattachment, which can cause the forces in the dynamic case to greatly exceed their
static counterparts.
Dynamic stall models specifically designed for wind turbine applications exist. A
simple, but very practical and in many cases sufficiently accurate, dynamic stall
model was proposed by Øye [63], in which the dynamic stall phenomenon is simulated
as a time-lag of the separation. This model is widely used in the wind-turbine industry.

Most experimental investigations of unsteady airfoil aerodynamics concern helicop-
ters in forward flight, as for instance Piziali [42] or McCroskey et. al. [31], and focus
on airfoils in pure pitching or combined pitching and heaving motions.
One of the main differences in the flow situation between a wind turbine and a
helicopter is that the change in relative angle of attack of the airfoil in a rotor-fixed
coordinate system is less evident in the wind turbine case. In fact, if the turbine is
working under ideal conditions, the relative angle of attack of the airfoil in a rotor-fixed
coordinate system is close to constant over the cycle of the rotor.

With the rapid increase in computer performance, computational fluid dynamics
(CFD) is possible in three dimensions at reasonably low costs. This can be employed
to investigate complex dynamic three-dimensional effects, such as the aerodynamic
damping of a full three dimensional wind turbine rotor [5].
However, there is still need to study two-dimensional flows to gain fundamental
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knowledge about phenomena such as two dimensional dynamic stall.

Fully coupled fluid-structure problems are still computationally very costly using
three-dimensional CFD, but two-dimensional versions of these, as for example the ones
by Johansen [23] or Gaunaa [16] [17] exist.
Previous comparative studies with several different fully coupled two-dimensional fluid-
structure interaction codes, performing computations on airfoils undergoing both trans-
latory and pitching motion have shown a great scatter of the results [9]. The aeroelastic
codes were all based on state of the art 2D Reynolds Averaged Navier Stokes (RANS)
solvers coupled to simple models for the motion of the airfoil. The conclusion were
that substantial differences in the predicted aerodynamic damping and frequencies
were present, indicating big differences in the forces from the RANS solvers. This was
evident from both stalling and non stalling simulations, albeit differences were clearly
greatest for stalling flows.
These results clearly show the need for validation of the used models, not only with
respect to pitching motion, but also with respect to translatory motion.

1.1 Objectives of the present work

The objectives of the present work falls into two categories, namely experimental and
theoretical. In the first category the objectives are:

• to provide detailed instantaneous data of the dynamic behavior of the pressure
on an airfoil undergoing translatory motion

• to determine the choice of parameters of the 1 Degree Of Freedom (DOF) motion
that minimizes the damping forces from the flow on the airfoil

• to investigate the isolated unsteady flow phenomena leading to lead-lag instabi-
lities

• to establish a detailed database that allows the evaluation of numerical techniques
and dynamic stall models

In the second category the objectives are:

• to investigate the differences between the dynamic forces from pitching motions
and translatory motions

• to propose, develop and evaluate new heuristic model for prediction of dynamic
forces from the flow, taking into account the inherent differences in the response
from angular and translatory motion

• to investigate the performance of a two-dimensional RANS algorithm against the
experimentally obtained data
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1.2 Outline of the dissertation

The dissertation is organized into five chapters. Following this introduction is chapter
2, in which the experimental setup, data processing and the main experimental results
are shown.
Chapter 3 concerns the description of the five theoretical models for prediction of un-
steady forces from two dimensional flow. The first three models are analytical in nature,
and the two last, an inviscid panel code and a Navier-Stokes code, are numerical in
nature.
Chapter 4 presents the results obtained with the theoretical models. The results in-
clude derivation of unsteady tunnel corrections for the experiments, investigation of
the difference between pitching translating airfoils, and comparison of the experimen-
tal and theoretical results. The main focus in the investigation of the performance of
the dynamic features of the theoretical models is the prediction of aerodynamic dam-
ping, which is a critical parameter in prediction of fluid-structure stability.
Finally, chapter 5 draws general conclusions and discusses the future perspectives of
the study.



Chapter 2

Experiments

This chapter describes the experimental setup and shows the results of the pressure
measurements performed on a NACA 0015 airfoil undergoing harmonic one-degree of
freedom (DOF) translatory motion. Following a brief survey of previous studies in the
field, the experimental objectives are stated and the test rig is presented along with
the instrumentation. Subsequently, the data processing and analysis is described, after
which the measurement accuracy is assessed. Due to the occurrence of multiple stall in
the experiments, the phenomenon is described in section 2.7. Finally, the experimental
results are shown.

2.1 Previous studies

Most measurements on airfoils in dynamic oscillatory motion have been performed
with helicopter rotors in mind. Therefore, most tests have been performed for
pitching motion of the airfoil, as noted in a review by McCroskey [30]. In the majority
of the existing tests the airfoil is oscillated sinusoidally in pitch about the quarter chord.

An investigation of the effect of varying Reynolds number, oscillation amplitude,
reduced frequency, and leading edge geometry of a NACA 0012 airfoil was undertaken
by McCroskey [31]. It was found that oscillation amplitude, reduced frequency and
leading edge geometry, including leading edge trip tape, had major influence on
dynamic stall. Variation of the Reynolds number from Re = 1 · 106 to Re = 3.5 · 106,
on the other hand, had only a weak influence on the phenomenon.
Leishman [28] carried out dynamic stall investigations on a NACA 23012 airfoil
at Re = 1.5 · 106. One of the conclusions of this work was that the static stall
characteristics are not necessarily useful indicators as to how an airfoil will behave
under dynamic stall conditions.

A number of works presents results from extensive pitch oscillating airfoil experi-
ments suitable for evaluating unsteady viscous theories and computational methods.
Three specific works should be mentioned.
McCroskey [32] presented the key features of the dynamic stall phenomenon by ten
specific test cases for Re = 4 · 106.
Piziali [42] presented a comprehensive experimental investigation of the pressure
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distribution of a wing undergoing pitching motions. In this work data for both
2-D and 3-D cases are shown. The 3-D cases are measurements of dynamic stall
characteristics for an airfoil including tip effects.
Galbraith [14] has carried out numerous dynamic stall experiments which are collected
in the extensive Glasgow University database on the dynamic loops of 13 different
airfoils.

Another type of experiments that has been investigated is constant pitch rate of an
airfoil. Walker [59] conducted large amplitude pitch oscillations with constant pitch
rates for Re = 4.5 · 104. The non-dimensional pitch rate, α+ = α̇c/V , show a dramatic
effect on flow structure in dynamic stall. As the pitch rate was increased, the large
scale vortical structures appeared later, and were of a different form.
Recent development in optical measuring technique has rendered possible the use of
Particle Image Velocimetry (PIV) to obtain planar instaneous velocity measurements.
Such data can yield information about flow and vorticity structures. Oshima [39] used
this technique for obtaining quantiative information on the evolution of flow structures
on the suction side of a NACA 0015 airfoil pitching at constant angular velocity for
Reynolds numbers Re = 5.4 · 104 and Re = 1.5 · 105.

In the case of wind turbine rotors, the relative pitching motion is less evident than
in the helicopter case. Since the torsional stiffness of wind turbine blades are generally
very high, the relative pitching motion is caused by turbine misalignment and spatial
and temporal changes in wind velocity such as gusts, tower effects and atmospheric
boundary layer.
Problems with chordwise vibrations related to negative aerodynamic damping have
been observed for wind turbine rotors in recent years [41], which calls for an experi-
mental investigation of the effects of unsteady translatory motion of an airfoil.

2.2 Experimental targets

The target of setting up an experiment that allows accurate measurements of the
unsteady pressure acting on an airfoil in motion poses experimental challenges of a
higher complexity than in the static case. Issues that require special attention is model
stiffness, sensitivity of pressure transducers to fictitious forces, precise measurement of
the airfoil motion, to name a few.

In the light of the limited work done in the field of detailed instantaneous pressure
measurements on an airfoil in translatory motion, the main objectives of the present
study were formulated as follows (as stated already in chapter 1):

• to provide detailed instantaneous data of the dynamic behavior of the pressure
on an airfoil undergoing translatory motion

• to determine the choice of parameters of the 1DOF motion that minimizes the
damping forces from the flow on the airfoil
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• to investigate the isolated unsteady flow phenomena leading to lead-lag instabi-
lities

• to establish a detailed database that allows the evaluation of numerical techniques
and dynamic stall models

2.2.1 Design considerations

With the experimental objectives in mind, the test rig for the present experiments was
designed to accommodate the following requirements:

• enable high resolution of the pressure measurements in time.

• the experimental setup should allow the direction of the translatory motion to be
changed independently of the geometrical angle of attack of the free-stream wind
on the airfoil.

• enable the frequency and amplitude of the motion to be varied.

The profile chosen for the airfoil test section was a NACA 0015 airfoil, because that
type of airfoil is known to be predicted well using RANS Navier-Stokes codes, as noted
by Bertagnolio et. al. [6].
Due to the physical constraints of the wind tunnel and pressure transducers, some
considerations had to be made considering the construction of the model.
For the purpose of determining the dimensionless quantities that match real life data
for a standard wind turbine, the following standard dimensional case was proposed.

• rrotor = 20m. Rotor radius.

• reff = 0.75 · rrotor = 15m. Effective lumped radius.

• Ω = 3rad/s. Angular velocity.

• Vwind = 15m/s. Wind velocity.

• Vrel =
√
V 2

wind + (Ωreff)2 = 47.5m/s. Relative velocity.

• feig. 1.805/2.963 Hz ∼ 2/3Hz Flap/Chordwise eigenfrequency.

• creal = 1m. Chord length.

The reduced frequencies are comparable to real rotor data in the lead-lag instability
case [41]. The dimensional quantities correspond to the following dimensionless velocity
and frequency

• Re= Vrelρc
µ

= 3.2 · 106

• fred = fmovc
2Vrel

= 0.02/0.03 in the flap/chordwise direction.
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As a reasonable tradeoff between blockage and Reynolds number effects, the chord
length of the model was set to c = 0.38m. Since the wind tunnel at Danish Maritime
Institute is capable of wind velocities up to ∼ 22m/s, the maximum Reynolds number
for the model was Re∼ 0.55 · 106.
In order to match the dimensionless frequency for the model, the frequency for the
experiments should be set in the range

fmodel =
fred2V

c
= 2.3/3.4 Hz.

Unsteady motion of the test airfoil induces fictitious forces which influence the amount
of unwanted vibration in the flexible test airfoil. Another aspect of unsteady fictitious
forces in this respect is that the pressure transducers interpret fictitious forces as a
pressure signal. In order to keep the above effects at a minimum, it was chosen to
settle for a maximum frequency of 2.4 Hz and a maximum amplitude of the motion of
A/c = 0.05/0.38 = 0.132. Reduced frequencies higher than fred = 0.02 were obtained
by reducing the free-stream velocity below 22 m/s.
When using pressure transducers in a moving frame of reference, special attention
has to be paid to the orientation of these, since the induced signals from the ficti-
tious forces are dependant on the orientation of the transducers. By keeping the
same orientation on all pressure transducers, the signal from the fictitious forces
were identical for all pressure taps. This causes the effect of the fictitious forces to
vanish in computations of integral quantities such as lift, drag and moment coefficients.

Another issue that requires special attention is the stiffness of the airfoil test section.
The construction of the airfoil test section should be rigid enough to endure the fictitious
forces and the forces from the air. Furthermore, the eigenfrequency of the relatively
slender structure should be kept as high as possible to have a big gap between the
frequency of the motion of the airfoil and the eigenfrequency of the wing.

2.3 Test rig

The NACA 0015 airfoil model used for the measurements in this work was built in the
workshop at Danish Maritime Institute. The construction is based around a rectangu-
lar aluminum cylinder/beam providing stiffness to the model. The measuring section,
which was manufactured in plexiglass, is located in the mid-span position. A total of
117 pressure taps are distributed over three spanwise positions, as shown in figure 2.1.
The spanwise distances from the center measuring cross-section are 8% and 16% of the
chord length placed on each side of the center measuring span. The chord-length of
the airfoil is 0.38 m, and the span-width of the model is 2.55 m, which is identical to
the width of the open-loop wind tunnel at Danish Maritime Institute.
In order to keep the stiffness to mass ratio high, the outer parts of the airfoil were ma-
nufactured in a light material, to make the cross-section identical trough out the span
without adding considerably to the mass of the system. Measurement of the eigen-
frequency of the airfoil using accelerometers showed that the lowest eigenfrequency of
the airfoil including the pressure transducers was approximately 16 Hz, which is safely
above the frequency of the prescribed oscillations, 2.4 Hz.
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Figure 2.1: The 117 pressure taps are distributed over three spanwise measuring sec-
tions. The placement of the three spanwise measuring sections are not to scale.

The chordwise distribution of the pressure taps on each measuring section were distri-
buted after the cosine function to ensure refined resolution of the leading and trailing
edges of the airfoil. Identical distributions were employed on the upper and lower sides
of the airfoil. The 117 pressure taps were distributed on the three measuring sections
with 29 taps each on the outer measuring spans and 59 taps on the center measuring
span, as shown in figure 2.2.

Figure 2.2: Chordwise distribution of pressure taps. The upper figure shows the coarse
distribution for the outer measuring spans, span 1 and span 3. The lower figure shows
the distribution of the pressure taps in the middle measuring span.

All pressure measurements were carried out in the 1.80m× 2.55m open loop wind tun-
nel at Danish Maritime Institute using the PSI 8400 pressure system. The PSI 8400
pressure system is a set of differential pressure measurement units consisting of arrays
of silicon piezoresistive pressure sensors. The pressure sensors were located inside the
airfoil to minimize the distance from the pressure measurement units to the pressure
taps on the measuring sections, thereby allowing higher resolution of the pressure sig-
nal in time. The static pressure measured 3.05 m upstream from the airfoil was used
as reference pressure. This was measured with a pitot tube that was connected to the
pressure sensors inside the airfoil using rubber tubing.
Trip tape was used at the leading edge of the profile to ensure a turbulent boundary
layer, as depicted in figure 2.3. The trip tape consisted of 4 mm wide strips of 0.45 mm
high self-adhesive sand paper. Investigation of the airfoil test section after the measure-
ments were carried out revealed, that there was a difference in the position of the trip
tape on the upper and lower sides of the airfoil. The upper trip tape was located 3.7%
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Figure 2.3: Location of the trip tape on the leading edge of the airfoil. The upper trip
tape is located 3.7% chord-lengths from the leading edge , whereas the lower trip tape is
located at 4.2% chord-lengths from the leading edge. The difference is approximately 2
mm.

chord-lengths from the leading edge, whereas the lower trip tape was located at 4.2%
chord-lengths from the leading edge. The difference is approximately 2 mm. Despite
the efforts to minimize the Reynolds number effects, some sensitivity to the Reynolds
number should be expected near maximum lift and in the moderately stalled region.
The drag forces are often an order of magnitude lower than their lift counterparts,
and therefore harder to obtain accurate measurements for. Especially so in the case of
determining the drag forces at low incidences by integration of the surface pressures,
where a big part of the drag force is integrated from relatively few pressure taps. Ne-
vertheless, it was chosen to obtain both the lift and drag forces from integration of the
surface forces, since the dynamic nature of the experiment would complicate or even
render impossible the use of force measurement units and wake rakes.
The motion of the profile was generated by transforming the rotational motion from a
servo motor to a harmonic linear motion with a with a movement mechanism, such that
the direction of the motions, β, could be changed independently of the angle of attack,
α, of the airfoil. The geometric definitions used throughout this work are defined in

z

α

Direction of 1
DOF movement

x

y

β

V

Figure 2.4: Definitions and positive directions of the angle of attack, α, the angle of
movement, β, which are defined with respect to the free stream velocity, V. The z-axis
defines the positive direction for the motion of the profile.

figure 2.4.
The movement mechanism was constructed and built by Mogens Pettersen of IMP En-
gineering. In appendix A figures showing the details regarding the airfoil test section
and the movement mechanism is located.
The position of the 1 DOF motion was measured in each side of the movement mecha-
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nism using potentiometers.
Sampling frequencies up to 600 Hz was possible with the pressure measuring system
used. A minimum sampling frequency of 250 Hz was employed to ensure more than
100 samples per period while limiting the amount of data to a tolerable level. Pressures
and positions were both sampled at this frequency to obtain accurately the phase of
the motion.

2.4 Instrumentation

The instrumentation used in the experimental setup is summarized below.

Pressure Transducers The pressure transducers used for measurement of the pres-
sures acting on the airfoil in the experimental setup is the PSI 8400 pressure
system, which is a set of differential pressure measurement units consisting of an
array of sillicon piezoresistive pressure sensors, one for each pressure port. The
pressure transducers were located inside the airfoil to minimize the the distances
from the pressure transducers to the pressure taps on the measuring sections,
thereby allowing higher resolution of the pressure signal in time. The static pres-
sure measured 3.05m upstream from the airfoil was used as reference pressure for
the differential pressure measurement units.
Calibration of the pressure transducers is automated. When placed in the cali-
brate position, all sensors are automatically connected to a common calibration
pressure port. A series of accurately measured pressures is applied through this
port to characterize the sensors, in place, at the condition to which they are
subjected. The calibration pressures are supplied by an in-house built reference
pressure unit.
Periodic calibration maintains static errors within ±0.05% of the full scale pres-
sure range, which corresponds to worst case errors on the static CP values of
∆CP = 0.05.

Angle of attack The angle of attack of the airfoil was measured using an inclinometer
attached to an inverse mold, which was manufactured to fit on the airfoil such
that the top of the inverse mold, where the inclinometer was attached, is parallel
to the chord-line. The inclinometer used was a Wedge Smart Level, with an
angular resolution of 0.1o.

Position measurement Consists of one high precision Bourns 65745-001-102 poten-
tiometer in each side of the movement mechanism. The potentiometers are linear
±2.5%. The potentiometers were used for determination of the phase of the mo-
tion of the airfoil only, since the amplitude was set on the movement mechanism.

Thermometer The test section air temperature was obtained with a Wilhelm Lam-
brecht thermometer located in the recirculation room of the open loop wind
tunnel.

Barometer The atmospheric pressure was obtained with a Wilhelm Lambrecht baro-
meter located in the recirculation room.
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Dynamic pressure The test section dynamic pressure was determined from the diffe-
rence between the static and stagnation pressures measured with a Furness FC-
012 micromanometer. The accuracy is ±1% of the reading.

2.5 Data processing and analysis

The experimental setup produces a vast quantity of data that has to be processed to
obtain various levels of information about the flow. The sample time for all data series
in this work was 60 seconds, leading to 1.8 · 106 real numbers for each of the runs in
the experiment.

The pressures are measured by sweeping through all pressure taps one at a
time. This means that the pressures have to be corrected in order to obtain data
corresponding to the same time for all pressure taps. This is done by the in-house
data logging program at DMI before the data is written to the hard disk.
The finest level of information in the flow can be investigated by viewing the raw
non-dimensional pressure distribution on which noise from for instance turbulence
appears.
From the information on the motion of the airfoil section, it is possible to compute
a mean period, such that noise is reduced significantly whilst still showing the mean
period flow details. For example; if a vortex is shed at the same time of the movement
period, it will appear in the mean period without the noise that appears in the
raw pressure distribution. Linear interpolation in time combined with a weighted
summation procedure was used to compute the mean period data.

Moving a level up in processing, lift and drag forces were computed by integrating
the measured surface pressure using the trapezoidal rule.
It should be noted that the terms lift and drag throughout this work corresponds to
the forces perpendicular and parallel to the free-stream direction. Analogously, all lift,
drag and moment coefficients are obtained by non-dimensionalizing the forces using
the free-stream velocity.

Throughout this work the integral quantities aerodynamic damping and aerody-
namic added mass are used to gain insight into the dynamic response of the forces
from the flow on the airfoil. It can be shown, that the work carried out by the forces
from the flow is closely related to the aerodynamic damping. If the motion of the airfoil
is given by

z = A sin(ωt), (2.1)

then the velocity and acceleration can be obtained by differentiation

ż = Aω cos(ωt) (2.2)

z̈ = −Aω2 sin(ωt). (2.3)

If furthermore the mean period unit-span force in the direction of the movement, Fz(t),
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is expressed as a fourier-series in time

Fz = C +
∞∑
n=1

(an cos(nωt) + bn sin(nωt)) , (2.4)

then it seen that the work carried out during one period of the motion for a unit-span
is

w =

∮
Fzdz =

∫ 2π/ω

0

Fz(t)Aω cos(ωt)dt = πAa1. (2.5)

Introducing the force related to aerodynamic damping as an ordinary damping term

Fz,da = D · ż = DAω cos(ωt), (2.6)

the relation between the aerodynamic damping and a1 is

a1 = DAω. (2.7)

Combining equation 2.7 with equation 2.5 yields the relation between the work and the
aerodynamic damping

w = DA2ωπ. (2.8)

From this it is seen that the work associated with aerodynamic forces is proportional
to the aerodynamic damping. The damping forces are the component of the forces in
phase with the velocity of the airfoil, or 90o out of phase with the displacement of the
airfoil.
Analogous arguments lead to the conclusion that the forces in phase with the accele-
ration of the airfoil,

Fz,ma = M · z̈, (2.9)

the aerodynamic added mass, arises from the b1 term in equation 2.4 exclusively.
On the basis of these observations, the aerodynamic damping and added mass is com-
puted from the mean period force, Fz, by a least squares fit of D and M to


...

...
...

z̈ ż 1
...

...
...





 M

−D
C


 =




...

F z
...


 . (2.10)

The negative sign on the damping signifies that the aerodynamic acts as structural
damping, meaning that the force from a positive damping acts in the opposite direction
of the velocity, thus damping the motion. What is interesting in terms of dynamic
stability is the areas with negative aerodynamic damping.
By use of the Buckingham Pi theorem, the non-dimensional groups corresponding to
the aerodynamic damping and added mass can be found

CDA =
D

1/2 ρcV
(2.11)

CMA =
M

π/4 c2ρ
. (2.12)
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The reason for the factor 1/2 in the expression for the non-dimensional aerodynamic
damping is that the term 1/2 ρcV appears in the quasi-steady model presented in chap-
ter 3. Analogous, the factor π/4 in the expression for the non-dimensional added mass
is chosen because the term π/4 c2ρ appears in the virtual mass terms of the unsteady
potential flow solutions presented in chapter 3. The quantity with which the added
mass term is non-dimensionalized is the mass of the fluid of a unit-depth circular cylin-
der with the same diameter as the chord of the airfoil.
The non-dimensional parameters on which the non-dimensional aerodynamic damping
and added mass depend are reduced frequency, fred, Reynolds number, Re, non-
dimensional amplitude of the motion, Ã, and the angle of attack and direction of
movement, α and β:

fred =
fmovc

2V
(2.13)

Re =
ρV c

µ
(2.14)

Ã =
A

c
(2.15)

α (2.16)

β (2.17)

The density used for non-dimensionalization of the quantities was obtained using
the ideal gas law

ρ =
p

mRT
, (2.18)

with temperature and atmospheric pressure obtained from a thermometer and a baro-
meter located in the wind tunnel room. Due to heating of the tunnel air under tunnel
operation, temperature and atmospheric pressure was noted each 10 minutes.
The viscosity of the air was calculated using the empirical Sutherland correlation [12]

µ =
bT 0.5

1 + S/T
(2.19)

where the constants b and S are

b = 1.458 · 10−6 kg

m · s ·K0.5

S = 110.4K

for standard air.

2.6 Measurement accuracy

The accuracy of the measured quantities are influenced by numerous factors in an
experiment as complex as the present one. A list of factors that determine the accu-
racy of the experimental results is given below, after which the key elements of the
measurement accuracy are assessed.
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Model shape The machining tolerance of the airfoil cross section shape was not de-
termined.

Pressure outtake positions The accuracy of the locations of the pressure tap posi-
tions was not determined.

Model rigidity The lowest eigenfrequency of the airfoil fully equipped with pressure
transducers and tubing was feig = 15 Hz. The eigenfrequency was measured using
accelerometers. Since the maximum frequency of the excitations was fmov = 2.4
Hz, it was concluded that the model structural response would be negligible.

Inflow conditions The rms1 value of the velocity in the wind tunnel was determined
from pitot measurements to 0.04 m/s, which is negligible compared to the free-
stream velocities in the experiments (∼ 0.2%). The uniformity of the wind profile
in the wind tunnel was not investigated.

Movement mechanism Error on determination of the position of the model. Me-
chanical free-play in the movement mechanism. Initial test data indicated that
the motion produced by the movement mechanism could be measured with a high
precision.

Dynamic Pressure The accuracy of the used differential pressure measurement unit
was ±1% of the reading.

Pressure transducers The accuracy of the differential pressure measurement unit is
discussed in section 2.6.1 below. The influence of the acceleration of the trans-
ducers in the test airfoil are assessed in section 2.6.3.

Dysfunctional pressure tap From investigation of the pressure coefficients it was
found that one pressure tap was not working correctly. Linear interpolation in
surface distance was employed to assign a value from the neighboring pressure
taps upstream and downstream from the defect pressure tap.

Trip tape Errors connected to presence of the trip tape. Errors connected to difference
in position of trip tape on upper and lower sides of the airfoil.

Incidence The accuracy in determining the angle of attack is investigated in section
2.6.2 below.

Pressure outtakes The pressure outtakes are located downwind of each other, cau-
sing a disturbance in the flow as compared with a cross section without pressure
outtakes. Burrs in the pressure tap outtakes can introduce additional errors in
the measured pressures.

Pressure tube length The time-lag connected with the length of the tubes from
pressure outtake to transducer was estimated to 4 ·10−4, which is small compared
to the time between the samples.

1Root Mean Square:
√
()2.
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Data processing errors For instance errors connected with integration of the pres-
sure forces or the discretization of the airfoil surface.

Tunnel effects The imposition of the wind tunnel walls causes the flow around a
body to differ from the flow as it would have been in an unlimited stream. The
corrections proposed in chapter 4 are summarized in section 2.6.4 below.

Statistical Uncertainty The statistical uncertainty connected to the experimental
results is investigated in section 2.6.5.

In the sections below key elements from the factors mentioned above are elaborated.

2.6.1 Pressure measuring system

According to the specifications of the electronic pressure scanners, the static errors are
within ±0.05% of the full-scale pressure range, which corresponded to worst-case errors
on the static CP values of ∆CP = 0.05.
In order to minimize zero drift of the pressure transducers with temperature, calibration
of the transducers was performed such that a calibration has been performed within
half an hour prior to all measurements.

2.6.2 Angle of attack

One of the crucial quantities in any experimental airfoil setup is the angle of attack.
Changing the angle of attack required mechanical adjustment to the airfoil suspension.
Determination of the angle of attack was done using an inclinometer attached to an
inverse mold. The inverse mold was manufactured to fit on the airfoil such that the
top of the inverse mold was parallel to the chord of the airfoil. The inclinometer had
an angular resolution of 0.1o.
The consistency of the read-outs from the inclinometer was investigated by measuring
the angle of attack before and after running a measurement. The difference in the
read-out from the inclinometer before and after the expreimental run never exceeded
0.1o.
Based on the above discussion, the uncertainty in the measurement of the angle of
attack was estimated to no more than 0.2o.

2.6.3 Acceleration of pressure transducers

The systematic errors from acceleration of the pressure transducers were measured by
blocking the pressure holes on the airfoil using tape and measure a variety of directions
of motion. The results from these initial tests are shown in figure 2.5, where the signal
is non-dimensionalized using the two main wind velocities 22m/s and 15m/s, shown
in the right and left figures, respectively. It is seen that the systematic errors on the
force coefficients connected to the acceleration of the pressure transducers are below
0.0016 and 0.0036 in the case of V = 22m/s and V = 15m/s, respectively. Due to the
very low level of these errors, a correction for these were not carried out.
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Figure 2.5: Non dimensional force-amplitudes from systematic errors due to accelera-
tion of the pressure transducers. The amplitudes are shown as functions of the direction
of motion relative to the airfoil, βrel = β − α. The signal is non-dimensionalized using
the wind velocities 22m/s and 15m/s, shown in the right and left figures, respectively.

2.6.4 Wind tunnel corrections

Another type of errors in wind tunnel testing that may be classified as systematic er-
rors arise due to the presence of the tunnel walls. The imposition of the wind tunnel
walls causes the flow around a body to differ from the flow as it would have been in an
unlimited stream. The boundary conditions do not match free flow conditions because
the velocity component normal to the walls must be zero, and therefore a variety of
phenomena occurs.
The effects of wind tunnel blockage can be accounted for with wind tunnel correcti-
ons. Wall corrections for steady two dimensional testing can be found in for example
Pankhurst and Holder [40], Selig et. al. [46] or Rae and Pope [43].
Due to the unsteady character of the majority of the experiments in the present work,
and the lack of wind tunnel corrections for unsteady two dimensional experiments in
the literature, unsteady corrections based on results from unsteady panel code calcula-
tions are proposed in section 4.1. Summarizing the results for the combined unsteady
solid body correction, streamline curvature, and effect of motion, the corrections read

C�
L = CLTF1 + (CLT − CLT )F2 (2.20)

C�
M = CMTF3 + (CMT − CMT )F4, (2.21)

where the functions F1 to F4 are determined from the potential code simulations. In
the general case F1 and F3 are functions of the height to chord ratio only, whereas the
corrections to the dynamic quantities, F2 and F4 depend on the height to chord ratio
and reduced frequency. If we restrict ourselves to the experimental set-up of this work,
with h/c = 4.47, F1 and F3 are constants with the values

F1 =
CL

CLT

= 0.9722 (2.22)

F3 =
CM

CMT

= 0.8616 (2.23)
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The dynamic correction terms, F2 and F4, are functions of reduced frequency

F2 =
CL Amplitude

CLT Amplitude
= −3862f 3

red + 346.1f 2
red − 7.400fred + 0.9466 (2.24)

F4 =
CM Amplitude

CMT Amplitude
= −4412f 3

red + 340.8f 2
red − 4.508fred + 0.9227. (2.25)

The additional correction for the wake blockage is essentially the steady wake blockage
correction applied on the corrected unsteady values

CL = C�
L(1− 2εwb) (2.26)

CM = C�
M(1− 2εwb). (2.27)

The unsteady drag is corrected using the same approach, but including the analytical
correction for the solid blocking

CD = CDT (1− 3εsb − 2εwb). (2.28)

In equations 2.26 to 2.28, the values of εwb and εsb are given by

εwb =
∆Vwb

VT

=
c/h

4
CDT (2.29)

and

εsb =
∆Vsb

VT

=
K1VolModel

(AT)3/2
, (2.30)

where the mean value of the drag coefficient during the movement cycle is used in
equation 2.29 to determine the wake blockage parameter εwb.

2.6.5 Statistical Uncertainty

The uncertainties in an experiment can be classified as random errors or systematic
errors. The random errors give rise to uncertainty which can be quantified by statistical
methods.
If N discrete measured samples of a quantity, x, is measured

xi, i = 1..N

then the mean and variance is given by

X =
N∑
i=1

xi
N

(2.31)

x′2 =
N∑
i=1

x′2i
N

	 σ2, (2.32)

where the fluctuating part, x′i, of the quantity is given by

x′i = xi −X. (2.33)
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The standard deviation of the mean value is

s(X) =
σ√
Neff

. (2.34)

In equation 2.34 Neff signifies the effective number of statistically independent samples
in the samples. This is given by

Neff =
N/(2τfs) for 2τfs > 1

N for 2τfs ≤ 1
. (2.35)

In the equation above, fs and τ signifies the sampling frequency and integral time
scale, respectively. Equation 2.35 is based on the assumption that two samples are
considered statistically independent if the time between these equals, or is greater
than, 2τ . The integral time scale, τ , can be estimated from an autocorrelation as the
time to the first zero.
If a gaussian distribution is assumed for x′i, then the 95% confidence interval is given
by X ± 2s(X).

A worst-case 95% confidence interval was computed for the steady experiments.
The computations were based on the most unfavourable combinations of σ and Neff

in the steady experiments.

Conf95%(CL) = CL ± 0.01 (2.36)

Conf95%(CD) = CD ± 0.004 (2.37)

These result shows that the level of the statistical uncertainty in the steady experi-
ments is very low.
The corresponding statistical confidence level for the force loops in the unsteady expe-
riments was obtained by assuming, that the force level at one instant in the oscillation
cycle is statistically independent of the force level the previous oscillation cycle at the
same position. This was assumed because 2τfmov < 1 for all computed τ from the
steady experiments, leading to Neff = ∆Tfmov = 144. Based on these results and the
variance of the forces at fixed positions in the oscillation cycle, the statistical worst-case
95% confidence interval for the unsteady experiments is

Conf95%(CL,mov) = CL,mov ± 0.014 (2.38)

Conf95%(CD,mov) = CD,mov ± 0.0033 (2.39)

These result shows that the level of the statistical uncertainty in the unsteady expe-
riments is of the same order of magnitude as the static results. However, it should
be noted that the statistical uncertainty for some specific stall modes which appeared
for a small number of oscillation cycles, may be up to four times higher than for the
quantities which are computed from oscillation cycles through an entire time-span of
the experimental run.
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2.7 Multiple stall

As mentioned in the introduction to this chapter, the phenomenon known as multiple
stall occurred in the experiments. Multiple stall, also known as double stall, is cha-
racterized by at least two different distinct stall modes for identical inflow conditions.
According to McCullough et. al. [33], three different types of stall exist

• Trailing-Edge Stall. Typically appearing on thick airfoils. An increase in the
angle of attack moves the turbulent separation point towards the leading-edge.

• Leading-Edge Stall. Typically appearing on airfoils of moderate thickness.

• Thin-Airfoil Stall. Appears on sharp-edge airfoils and airfoils with small leading-
edge radius, generally airfoils less than 9% thickness.

Figure 2.6 shows a sketch of the lift characteristics of the three stall types. For some
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Figure 2.6: Stall characteristics of the three types of stall. From [4].

airfoils of intermediate thickness ratios, both leading-edge and trailing-edge stall can
occur. This was was investigated by Gault [15], who correlated the different types of
stall with Reynolds number and a single airfoil ordinate at the leading edge, y0.0125c,
defined as the upper-surface ordinate at 1.25% cord-length from the leading edge me-
asured in chord-lengths. For the NACA 0015 airfoil, this quantity is y0.0125c = 0.0237.
The stalling characteristics of NACA airfoil sections are shown in figure 2.7 correlated
with Reynolds number and y0.0125c.
From the figure it seems likely that a NACA 0015 profile should experience trailing
edge stall only. The investigations by Gault, however, were focusing on Reynolds num-
bers above 106, and therefore did not have any measurements on airfoils in the range
of Reynolds numbers below 0.7 · 106. The maximum obtainable Reynolds number for
the current experiment is Re = 0.55 · 106, which falls in the region not investigated by
Gault.
In recent years, attention has been given multiple stall again because of the implica-
tions it may have on in particular the stall regulated wind turbines. Observations of
the power production on a number of stall regulated wind turbines have shown that
several distinct power levels can occur for identical inflow conditions. This involves
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y0.0125c. From [4].

significant uncertainty on power production and loads. In some cases, the difference in
loads for the different levels can be up to 25% [2].
Bak et al. [4] suggests that the cause for the different levels in the power production
on the wind turbine is linked to a laminar separation bubble at the leading edge of the
rotors. Figure 2.8 show the laminar separation bubble on a NACA 632-215 airfoil at
15o incidence computed using a Navier-Stokes code. According to Bak et. al., three
different levels of the lift is possible for identical inflow conditions. The first level is
characterized by a very high lift. In this case the flow is fully turbulent and no laminar
separation bubble exist. The second level has a moderately high lift, but this time
the flow at the leading edge of the airfoil is laminar, and a laminar separation bubble
exist near the suction peak of the airfoil. The transition to turbulent flow occurs on
top of the separation bubble which ensures that the flow reattaches. The lift of the
second mode is slightly lower due to the presence of the laminar separation bubble.
According to Bak et .al. bursting of this bubble can appear if the transition point
moves downstream of the critical transition point, which is the point where the flow
cannot reattach to the surface but separates from the leading edge. For both high lift
levels trailing-edge stall is present. The third lift level is significantly lower than the
two other levels due to the massive separation starting from the leading edge.
Figure 2.9 shows CP curves associated with the three different stall modes. The fully
turbulent Cp-curve (solid line) in figure 2.9 corresponds to the situation with a fully
attached flow, resulting in a high suction peak and high lift. The free transition curve,
shown with a dashed line, corresponds to a laminar separation bubble at the leading
edge, as shown in figure 2.8. The effect of this laminar separation bubble is the reduc-
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Figure 2.8: Streamlines showing a laminar separation bubble on a NACA 632-215 air-
foil. α = 15o and Re = 1.15 · 106. From [3].
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Figure 2.9: Cp-curves for a NACA 63-215 airfoil at α = 15o and Re = 1.15 ·106. From
[4].
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tion of the suction peak and the level of the −Cp curve on the suction side, reducing
the lift on the airfoil. Finally, the fixed transition curve (dotted line) corresponds to
leading edge stall.
Experimental results showing at least three distinct different levels for a stationary
airfoil have been reported by Bak and Fuglsang [2].

2.8 Results

In this section the main results from the steady and unsteady experiments are pre-
sented. Preliminary results from the experiments have been shown previously in [18]
and [19]. The presentation is split up in three parts. The first part concerns determi-
nation of the different stall modes. After this the results from the static experiments
are presented. Finally, the results from the main part of the experimental work, the
unsteady experiments, are shown.
The unsteady experiments consist of three parts:

• Influence of angle of attack and direction of movement on the dynamic loads at
Re = 555000 and Re = 383000.

• Influence of the amplitude of the motion on the dynamic loads for four different
combinations of reduced requency and angle of attack.

• Influence of the reduced frequency on the dynamic loads for four different com-
binations of angle of attack and direction of movement.

As mentioned above, only the main experimental results are shown in this section.
More detailed experimental results are shown in chapter 4, in the comparison of results
obtained with theoretical models with the experimentally obtained results.

2.8.1 Determination of distinct stall modes

As mentioned previously, the phenomenon known as multiple stall occurred in some of
the experiments where the incidence of the airfoil was between α = 15o and α = 20o.
The upper graphs in figure 2.10 show the time-series of the non-dimensional forces per-
pendicular to the chord, CY , and in the chordwise direction, CX , as well as the velocity
in the tunnel. Note that the positive direction for CX is towards the trailing edge.
It is seen that (at least) three distinctly different levels, or modes, are present in the
forces. Three periods where different levels occur are outlined in the figure with the
letters A, B and C.
Figure 2.10 shows that the flow velocity during the experiment was fairly constant,
slightly above 22 m/s. It is clear that the drastic jump in the forces is not caused by
changes in the free-stream velocity.
The lower graph in figure 2.10 show the non-dimensional pressure coefficients corre-
sponding to the stall modes labelled A, B and C in the upper part of the figure.

Stall mode A is characterized by a low CY -value and a clearly positive CX-value.
The CP curve shows a constant value on the suction side of the airfoil. This indicates
massive stalling from the leading edge, so-called leading edge stall.
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555000. The upper graphs show the measured non-dimensional forces perpendicular to,
and in the chordwise direction, as well as the velocity in the tunnel. The lower figure
show the pressure coefficients corresponding to the three distinct levels.
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The pressure coefficient for the next stall mode, labelled B in the figure, has a suction
peak approximately 1% from the leading edge which dramatically increases the forces
perpendicular to the chord, CY , and reduces the forces in the direction of the chord,
CX , compared to stall mode A. The mean value of CX in this case is close to zero, and
the fluctuations of CX are much greater than for the other two stall modes.
The last stall mode, level C, has an even stronger suction peak than stall mode B,
which further increase the level of CY and decrease the level of CX to strictly negative
values.

On the basis of these results it is clear that (at least) three distinct different
stall modes are present for identical inflow conditions. This corresponds well to the
explanation of the phenomenon given in section 2.7.
When computing the lift for the three different stall modes, it was seen that stall
mode A corresponds to a fairly low lift, whereas stall modes B and C corresponds to a
high and a very high lift level, respectively. The lift levels of the three different stall
modes are used to name the modes. With this nomenclature, stall modes A, B and
C are referred to as the low, high and very high stall mode in the remainder of this work.

A comparison of the dynamic behavior of the forces for the three different stall
modes show that the fluctuation in the forces are greatest for the high stall mode.
According to the findings of Bak et. al. [3], this level corresponds to the case with a
separation bubble at the leading edge of the airfoil. It seems likely that the location
of such a separation bubble might influence the forces on the airfoil a great deal, such
that the greater oscillations of the forces in this case could be explained by movement
of this bubble due to interaction with the trailing edge stall or imperfections in the
inflow.

The characteristics of CX and CY for the different stall modes explained above were
used to classify the stall modes occurring in all steady and unsteady experiments for
incidences in the interval between α = 15o and α = 20o.

Figure 2.11 show an example where multiple stall occur for unsteady 1 DOF trans-
latory motion of the airfoil. In the upper graphs, where CL, CD and CM are shown as
functions of time, three distinct levels are recognized. It is seen that the disturbance
from the motion of the airfoil does not cause the stall modes to shift with the frequency
of the motion. This indicate that the stall modes are fairly insensitive to perturbations
in the sense that it is not easy to force the flow from one stall mode to another by
disturbing the flow.
What triggers the shift from one stall mode to another is unknown to the author.
From the figure it is seen that the low stall mode can be found for instance from t = 33
s to t = 37 s, the high stall mode from t = 40 s to t = 50 s, and the very high stall
mode from t = 4 s to t = 12 s. The level of the lift for the different stall modes are
in agreement with the names of the stall modes, whereas the mean drag levels are in
opposite order, i.e. the drag of the very high stall mode is lowest, and the drag level
of the low stall mode is highest. It is noted that the mean moment coefficients for the
low and high stall modes are almost identical, close to CM = −0.05, whereas the mean
moment coefficient for the very high stall mode is positive, CM = 0.02. This is caused
by the difference in the distribution of the forces on the airfoil.
Analogous to the non-moving case, the oscillations of the high stall mode forces are



26 Experiments

0 10 20 30 40 50 60
0.4

0.6

0.8

1
C

L [−
]

0 10 20 30 40 50 60

0.1

0.2

C
D

 [−
]

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

C
M

 [−
]

t [s]

−0.1 −0.05 0 0.05 0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

z/c [−]

C
z [−

]

Raw
Low
Hi
VHi

Figure 2.11: Multiple stall occurring in a unsteady experiment. Upper graphs show
histories of lift, drag and moment coefficients in time. The lower graph show the non-
dimensional force component in the direction of the motion versus non-dimensional
displacement. α = 15o, β = 110, fred = 0.02 and Re = 555000.
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Figure 2.12: Lift coefficient versus relative angle of attack for the results shown in figure
2.11.

greater than the oscillations of the forces in the other stall modes.

In the lowest graph of figure 2.11, the time-series are shown as the force coefficient
in the direction of the motion, CZ , versus the non-dimensional displacement of
the airfoil. The thin curve corresponds to the instantaneous non-dimensional force
component, whereas the thicker curves correspond to the mean non-dimensional force
loops for the different stall modes. Since the direction of the force-component and the
direction of the motion are identical, the direction and openness of the hysteresis loops
show the sign and magnitude of the work carried out during one oscillation cycle. As
shown previously, the work carried out during one oscillation cycle is proportional to
the aerodynamic damping. The clockwise direction of the hysteresis loops indicate
that energy is pumped into the airfoil system by the fluid. From this it is seen that the
aerodynamic damping of the three different stall modes differ significantly in this case.
The aerodynamic damping of the low stall mode is close to zero, whereas the damping
of the high and very high stall modes is negative. The most negative aerodynamic
damping is obtained for the high stall mode.
The lift coefficient for the same case is shown in figure 2.12 as function of the rela-
tive incidence, αrel. Here it is seen that the mean slopes of these curves are all different.

The conclusions that can be drawn from the investigations is that both mean and
dynamic characteristics differ from one stall mode to another in spite of the identical
boundary conditions.
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2.8.2 Stationary airfoil

Even though this work focuses on the behavior of the flow about a translatory
moving airfoil, measurements on a stationary airfoil was carried out as well to obtain
information on the steady characteristics of the NACA 0015 airfoil with the current
experimental setup.
Non-dimensional pressure coefficients for the NACA 0015 airfoil at incidences α = 3o,
5o, 8o, 10o, 12o, 15o, 20o and 25o are shown in figure 2.13 for Re = 555000. It is seen
that a bump is located on the suction side of the airfoil for incidences up to α = 12o.
The location of the bump corresponds to the position of the trip-tape, and is probably
caused by the local disturbance in the flow by the trip-tape. Likewise, there is a bump
on the pressure side of the CP curves for α = 20o and α = 25o, which could also be
explained by the disturbing effect of the trip-tape.
Multiple stall modes were observed in the α = 15o and α = 20o cases. In the α = 25o

case, only one stall mode exist. This is a massively separated leading edge stall,
corresponding to the low stall mode found in both the α = 15o and α = 20o cases. The
pressure coefficient profiles of the high stall modes at these incidences does not look
similar, but the characteristics of the CX and CY values in these cases were similar.
The characteristics of the CX and CY values for incidences below α = 12o corresponds
to the very high stall mode.
The mean pressure coefficient curves shown in the cases where multiple stall occur
are connected with a very high degree of uncertainty. The sampling time for all the
experiments carried out were 60 seconds. As shown in the previous section, this is not
long compared to the time one specific stall mode exist in the measurements. This
implies that the total sampling time needed in determining the mean CP values with
a higher level of accuracy would be somewhat longer than 60 seconds.

Figure 2.14 show the lift, drag and moment coefficients for incidences ranging from
α = 0o to α = 30o.
In the figure, the force and moment coefficients corresponding to the different stall
modes are shown. The blue, red and black curves corresponds to the low, high and
very high stall modes, whereas the green curve corresponds to the mean level of the
entire measured run, ∆t = 60 s. The curves shown to the left are at Reynolds number
Re = 383000, whereas the right curves are at Re = 555000.

The slope of the lift curves in the linear region is 75% (Re = 383000) and 81%
(Re = 555000) of π2/90, as predicted by potential flow theory. This is attributed to
the relatively low Reynolds number. Similar effects are observed in other experiments
at similar Reynolds numbers, for example Selig et. al. [46].
Multiple stall modes occurred at α = 15o for the case with Re = 383000. This effect
was more pronounced in the Re = 555000 case, where multiple stall modes occurred
between α = 15o and α = 20o.
The mean lift reaches a local minimum at α = 20o at both investigated Reynolds
numbers, and in both cases the maximum lift was obtained at α = 15o, with the actual
maximum value of the lift coefficient being slightly higher for Re = 555000 than for
Re = 383000.
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Figure 2.13: Mean −CP curves for a stationary NACA 0015 airfoil at various inci-
dences, α. Re = 555000.
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Figure 2.14: Steady CL(upper), CD(middle) and CM(lower) curves for Re =
383000(left) and Re = 555000(right). The green curves corresponds to the mean me-
asured level, whereas the blue, red and black curves corresponds to the low, high and
very high stall modes, respectively.
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The measured lift coefficient at zero incidence, α = 0o, was CL = 0.12 for Re = 383000
and CL = 0.04 for Re = 555000. Since the NACA 0015 airfoil is symmetric, the
lift coefficient should be zero at zero incidence. The deviation from this, which in
the Re = 383000 case is quite substantial, could be attributed to a number of the
factors listed in the section on measurement accuracy. Since the forces on the airfoil
are non-dimensionalized using the squared wind velocity, any error due to drift of the
zero level of the transducers give rise to errors 222/152 = 2.15 times greater in the
Re = 383000 (15 m/s) case than in the Re = 555000 (22 m/s) case. This indicate that
a substantial part of the error in the measured forces are due to drift of the zero of the
pressure transducers.
Another error that could cause an apparent offset in the lift curves would be inaccurate
measurement of the angle of attack, α. The offset corresponding to the errors in the
Re = 383000 and Re = 555000 cases would be 1.06o and 0.36o, which on an airfoil
is not detectable by eye. According to the inclinometer used in the experiments, the
angle of attack did not change more than 0.1o during any of the runs in the experiment
including the unsteady ones. This is an indication that the measured values of the
angle of attack were consistent. However, this does not guarantee that there was no
systematic errors biasing the values to one side throughout the measurements.
The last of the three circumstances which the author believes to be the main causes
of the offset of the lift curve at α = 0o is the difference in positions of the trip-tape.
The disturbances from the trip tape may be very different on different sides of
the airfoil on the pressure taps near the tape due to the difference in the position
of it. It is not known wether this effect increases or decreases with the Reynolds number.

When the drag curves for the two different Reynolds numbers are compared, it is
seen that the level of the drag coefficients are quite similar for both Reynolds numbers
in the attached region, from α = 0o to α = 10o, and in the deeply stalling region, from
α = 25o. Comparison of the results between these regions show that the increase in the
mean drag coefficient occur earlier in at the lower Reynolds number. The increase in
the drag corresponds to the onset of stall, indicating that the onset of stall is reached
slightly earlier at the lower Reynolds number than at the higher one.
From the cases where multiple stall modes occur, it is seen that the drag of the high
stall mode is higher than the drag of the low and very high stall modes.
Since the forces obtained from these measurements are the pressure forces only, it
should be noted that the true drag is slightly higher than the shown values at small
incidences due to viscous forces. The effect of this is investigated in section 4.4.1 using
a Navier-Stokes code.

The moment curves, shown in the lower graphs in figure 2.14, show an offset at
α = 0o in the case where Re = 383000. The explanation to this could be two of the
three circumstances believed to be the main causes of the offset of the lift curves at
α = 0o, namely drifting of the pressure levels from the pressure transducers and errors
connected to the difference in position of the trip tape.
In general, the moment curve for the Re = 383000 case seems more noisy than for the
Re = 555000 case. This is attributed to the drifting problem as well.
The offset in the moment curve at α = 0o for the Re = 555000 case is very close to
zero.
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A comparison of the moments connected with the different stall modes show that the
moment of the high stall mode is lower (more negative) than for the low and very high
stall modes.

It should be stressed that the force levels of the different stall modes are not deter-
mined with as high certainty as in the cases where multiple stall did not occur. This
is especially true for the mean values in these cases.

2.8.3 1 DOF translatory oscillatory motion

The detailed information from the pressure distribution in time yields valuable insight
into the physics of the flow, but due to the vast amounts of data in the raw signals,
they have to be processed to extract information about the dynamic features of the
flow.
In order to give an impression of the force loops in the attached case, figure 2.15 and
2.16 show the time histories and force loops at α = 5o, β = 0o, Re = 555000 and
fred = 0.02. The figures show the same quantities as the figures showing the time
series and force coefficient loops for the case with double stall, figures 2.11 and 2.12.
From figures 2.15 and 2.16 it is seen that the fluctuations of the forces around the
mean period force on the airfoil in the attached case are quite small. Furthermore, it is
observed that the aerodynamic damping in this case is positive because the direction
of the loop shown in the lowest graph of figure 2.15 is counter-clockwise. This means
that the fluid in this case is transferring energy from the motion of the airfoil into the
flow, corresponding to a positive aerodynamic damping. The integral of the curve is
proportional to the amount of work produced by the fluid on the wing per oscillation,
which is proportional to the aerodynamic damping.
Figure 2.16 shows the non-dimensional force component in the direction of the motion
versus the relative angle of attack. The non-dimensional force component is in this case
is identical to the lift coefficient since the motion of the airfoil is perpendicular to the
free-stream. It is seen that the value of the lift coefficient is lagging the relative angle
of attack. This hysteresis effect is caused by the unsteady wake shed from the trailing
edge of the airfoil. This effect is investigated later in this thesis, and comparison of
various hysteresis loops with theoretical models are undertaken in chapter 4.

Despite the relatively big uncertainties on the mean quantities in the steady case,
it is seen that the scatter of the dynamic values are quite low. On the basis of this,
it is suspected that the dynamics of the flow can be captured quite well using the
present experimental setup.

One of the main objectives of the experimental investigation concerns localization
of the minimum aerodynamic damping for parameters of the motion similar to the
ones encountered by real wind turbines.
An investigation of the influence of the angle of attack and direction of movement
on the aerodynamic damping and added mass was undertaken by carrying out the
experiments in the test matrix shown graphically in figure 2.17. All experiments in this
test matrix was carried out for reduced frequencies fred = 0.02 and fred = 0.03, corre-
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lift, drag and moment coefficients in time. The lower graph show the non-dimensional
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α = 5o, β = 0o, fred = 0.02 and Re = 555000.



34 Experiments

3 3.5 4 4.5 5 5.5 6 6.5 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

α
rel

 [degrees]

C
z [−

]
Raw
Mean

Figure 2.16: Force coefficient in the direction of the motion versus relative angle of
attack for the results shown in figure 2.15. Note that in this case, where β = 0o, this is
identical to the lift coefficient.

0 5 10 15 20

0

20

40

60

80

100

120

140

160

α

β

Figure 2.17: Test matrix for investigation of the influence of movement direction, β,
and angle of attack, α, on the aerodynamic characteristics.



2.8 Results 35

sponding to Reynolds numbers Re = 555000 and Re = 383000. The non-dimensional
amplitude of the motion was set to A/c = 0.1316. An overview of the dynamic
characteristics of the flow is shown in figure 2.18. The non-dimensional aerodynamic
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Figure 2.18: Non-dimensional aerodynamic damping (upper) and non-dimensional
added-mass (lower) as functions of α and β. The left graphs are at reduced frequency
fred = 0.02, corresponding to Reynolds number Re = 555000. The right graphs are at
fred = 0.03 corresponding to Reynolds number Re = 383000. The shown coefficients
for α ≥ 15o are based on the mean period forces of the flow. The chordwise direction
is inferred by the dashed line.

damping, CDA, and the non-dimensional added-mass, CMA, are shown as functions of
α and β at reduced frequencies fred = 0.02 and fred = 0.03.
It should be noted, that the coefficients for α ≥ 15o are based on the mean period
forces of the flow in the measured time-span, and does not account for effects of the
multiple stall modes encountered in several of the data-points. The effect of this is
investigated later.
Inspection of the features of the non-dimensional aerodynamic damping reveals that
the minimum in the aerodynamic damping at both reduced frequencies occurs close
to the chordwise direction just after stall at 15o incidence, in agreement with full scale
observations on real wind turbines [41].
The aerodynamic damping is positive for incidences below α = 10o at both reduced



36 Experiments

frequencies, with the maximum value of the damping in the direction perpendicular to
the free-stream.
Except for the positive peak at α = 15o and β = 160o for fred = 0.03, the general shape
of the non-dimensional aerodynamic damping is quite similar at the two different
reduced frequencies, with the values generally slightly lower in the case of fred = 0.03.
The details regarding the peak value in the aerodynamic damping is linked to the
multiple stall modes, which is investigated later.

The non-dimensional added mass is shown in the lower graphs of figure 2.18. It is
seen that positive values are found at low incidences, and negative values at the high
angles of attack, where the flow is stalling. Generally, the absolute value of the added
mass increases with the component of the motion perpendicular to the free-stream.
The absolute value of the non-dimensional added mass is higher at fred = 0.02 than it
is at fred = 0.03.
Analog to the non-dimensional aerodynamic damping, the general shape of the
non-dimensional added mass is similar for the two reduced frequencies except for the
location of the lower negative peak at the high angles of attack.

It was shown previously that the dynamics of the multiple stall modes can differ
considerably for the different stall modes even though the geometric angle of attack is
identical. Therefore non-dimensional dynamic coefficients of the flow for α ≥ 15o are
shown in figures 2.19 and 2.20.
From figure 2.19 which shows the non-dimensional aerodynamic damping as a function
of direction of the motion for α = 15o(upper) and α = 20o(lower), it is seen that the
damping characteristics of the different stall modes are practically identical at α = 20o.
However, there is a dependence on the stall modes at α = 15o. In the fred = 0.02
case, the aerodynamic damping of the high stall mode is significantly lower than the
aerodynamic damping of the other stall modes, which are comparable in magnitudes.
Since this particular stall mode only appeared in two data-points, it is not possible to
determine if this is a general feature of this stall mode at this incidence. As seen in the
previous figure, the minimum aerodynamic damping occurs at α = 15o and β = 110o

at both reduced frequencies. The most negatively damped stall mode is the high stall
mode.
In the case of α = 15o and fred = 0.03 it is seen that the maximum non-dimensional
aerodynamic damping occur at β = 160o, caused by the high stall mode.

The data-set is too limited to determine wether the direction of the motion
determines which stall modes are present.

By viewing the pressure profile histories for the cases with negative aerodynamic
damping it was observed that the negative aerodynamic damping was not caused by
large-scale vortices being shed from the leading edge at some fixed time in the period
of the oscillation cycle. It was observed that the negative aerodynamic damping was
not caused by shifting from stall mode to stall mode at up/down-stroke either.

Figure 2.20 shows the non-dimensional added mass corresponding to the non-
dimensional aerodynamic damping shown in the previous figure. It is seen, that except
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Figure 2.19: Non-dimensional aerodynamic damping, CAD, at α = 15o (upper) and
α = 20o (lower). The damping is shown as function of the movement direction, β. The
reduced frequencies are fred = 0.02 (left) and fred = 0.03 (right). The green curves
show the damping of the entire measured time-span, whereas the black, red and blue
curves show the non dimensional aerodynamic damping from the low, high and very
high lift stall modes.
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Figure 2.20: Non-dimensional aerodynamic added mass, CAM , at α = 15o (upper) and
α = 20o (lower). The added mass is shown as function of the movement direction, β.
The reduced frequencies are fred = 0.02 (left) and fred = 0.03 (right). The green curves
show the added mass of the entire measured time-span, whereas the black, red and blue
curves show the non dimensional aerodynamic added mass from the low, high and very
high lift stall modes.
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for β = 0o, the values are independent on stall mode at α = 20o. Analogous to the
damping, the added mass shows a big influence of the stall mode, especially in the
fred = 0.02 case.

In order to determine the influence of the amplitude of the motion on the aerody-
namic damping and added mass, experiments were carried out at four different combi-
nations of incidence, α, and reduced frequency, fred

• α = 5o and fred = 0.02

• α = 5o and fred = 0.03

• α = 15o and fred = 0.02

• α = 15o and fred = 0.03

for three different amplitudes each

• A/c = 0.0526

• A/c = 0.1053

• A/c = 0.1316.

The direction of the movement was in all these cases perpendicular to the free-stream
flow, β = 0o. The outcome of these investigations is shown in figure 2.21. The
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Figure 2.21: Non dimensional aerodynamic damping (left) and added mass (right)
versus the non dimensional amplitude of the motion, A/c, at β = 0o.

results indicate that the non-dimensional aerodynamic damping and added mass are
practically independent of the amplitude of the motion.
The results indicate that the measured phenomenon is in essence linear for these
relatively small oscillations. This would probably not have been the case if the
oscillations, measured in relative angle of attack, had been more violent.
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In order to investigate the effect of the reduced frequency on the non-dimensional
aerodynamic damping, four different measuring series were undertaken at different ang-
les of attack and angles of movement. In each of these measuring series, the reduced
frequency was varied. The angles of attack and angles of movement for the four mea-
suring series was

• α = 5o and β = 0o

• α = 8o and β = 160o

• α = 15o and β = 135o

• α = 20o and β = 0o.

The reduced amplitude for all experiments was A/c = 0.1316.
As explained earlier, the construction of the airfoil and the pressure transducers
limited the frequency of the motion to values up to fmov = 2.4Hz. Therefore, increase
in reduced frequency above fred = 0.02 was achieved through a decrease in free-stream
velocity, and thereby Reynolds number.
In order to investigate a wider spectrum of reduced frequencies, some of the
measuring points were taken at quite low Reynolds numbers, as shown in the table
below, where the Reynolds-numbers corresponding to the reduced frequencies are given.

fred < 0.0225 0.024 0.031 0.035 0.041

Re 555.000 470.000 383.000 330.000 270.000

Deviation in the characteristics of the flow from the Re = 555000 data points may be
evident in the low Reynolds number data points for the stalling cases. This is further
investigated in chapter 4 in the comparison with theoretical models.
Figure 2.22 shows non-dimensional aerodynamic damping and non-dimensional added
mass as function of reduced frequency for these series.
The non-dimensional aerodynamic damping is shown to obtain more extreme values as
the reduced frequency is lowered. Especially so for the motion close to the chordwise
direction at α = 15o, where the aerodynamic damping has its minimum. The results
show that slower oscillations are more prone to negative aerodynamic damping for all
stall modes.
Furthermore it is seen that there is quite big difference in the aerodynamic damping
associated with the different stall modes. It is seen that in the regions most dangerous
in terms of negative aerodynamic damping, the high stall mode has considerably lower
damping than the other two modes. However, it is seen that the high stall mode is
more damped when the reduced frequency is increased above fred = 0.03, but this may
be attributed to Reynolds number effects.
Generally, the high stall mode shows considerably more sensitivity to the reduced
frequency in terms of aerodynamic damping than any of the other stall modes.

The lower graph in figure 2.22 shows the non-dimensional added mass as function of
the reduced frequency. In this case, the same trend is observed as in the aerodynamic
damping. The non-dimensional added mass is shown to obtain more extreme values
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Figure 2.22: Non dimensional aerodynamic damping (upper) and added mass (lower)
versus reduced frequency at four different configurations of incidence and movement
direction. The full lines show the mean damping over the whole measured time-span,
whereas the dashed, dash-dotted and dotted curves correspond to the low, high and very
high stall modes in the multiple stall cases. A/c = 0.1316.
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as the reduced frequency is lowered, and the non-dimensional added mass obtains the
highest absolute values for the high stall mode in the cases where multiple stall modes
occur.
From dimensional analysis it was shown that the Reynolds number was one of the
non-dimensional parameters influencing the non dimensional aerodynamic damping
and added mass. Note that the Reynolds number is not kept constant in the data
shown in figure 2.22, which could have an effect on the non-dimensional added mass.
This is investigated in chapter 4, where the present data is compared to results
obtained with a Navier-Stokes solver.



Chapter 3

Theoretical Models

Despite the fact that the flow-fields around wind turbine rotors are highly three-
dimensional, and that complex three dimensional effects of rotation are present, most
practical models describing the forces on a wind turbine rotor use two dimensional
theory as a basis for the analysis.
The objective of this chapter is to present the five different theoretical models used
for prediction of the unsteady forces from two dimensional flow in the present work.
The first three models presented are analytical models, of which the first two, Analytic
Unsteady Potential Theory and Quasi-Stationary Theory, build the basis for the new
heuristic analytical stall model presented in section 3.4.
The last two theoretical models presented, the panel code, which is an incompressible
inviscid code, and the RANS1 code, are numerical in nature.
The chapter starts out with a overview of the basic theory which is a foundation for
the theoretical models to follow.

3.1 Background

The general continuity and momentum equations for a newtonian fluid can be expressed
in differential form [27] as

∂ρ

∂t
+∇ · ρU = 0 (3.1)

ρ

(
∂Ui

∂t
+U · ∇Ui

)
= ρfi − ∂

∂xi
(p+

2

3
µ∇ ·U) +

∂

∂xj
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(3.2)

The boundary condition for these equations on a solid surface is the no-slip condition,
implying that the relative velocity of the fluid reduces to zero on the solid surface.
From dimensional analysis it can be shown [27], that density changes caused by pressure
changes are negligible if the Mach, Froude and Reynolds numbers obey

M << 1
M2

F 2
<< 1

M2

Re
<< 1, (3.3)

1Reynolds Averaged Navier-Stokes
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where the Mach number, M , is given by the ratio of the free-stream velocity, V , to the
speed of sound, a:

M =
V

a
.

The ratio of inertial force to gravitational force, known as the Froude number, F , is
given by:

F =
V√
cg
,

where c and g denote the airfoil chord and gravitational constant, respectively. The
last non dimensional number in the requirements for negligibly density changes due to
pressure changes is the well known Reynolds number, which expresses the ratio between
the inertial and viscous forces

Re =
ρV c

µ
,

where density and viscosity is denoted by ρ and µ, respectively. If the requirements
of equation 3.3 are met, the fluid can be assumed incompressible. If, furthermore, the
fluid is isothermal, the fluid elements cannot experience volume change, implying that
the fluid elements must have constant density. Therefore the continuity and momentum
equations reduce to

∇ ·U = 0 (3.4)

ρ

(
∂U

∂t
+ (U · ∇)U

)
= ρf −∇p+ µ∇2U (3.5)

The boundary conditions on solid surfaces for the governing fluid equations, 3.4 and
3.5, is the no-slip condition, meaning that the velocity relative to any solid surface
should drop to zero at the surface.
Dimensional analysis of the general momentum equation, equation 3.2, shows that for
high Reynolds number flows, Re >> 1, the viscous terms outside the boundary layer
of the airfoil and wake are negligible. Under the assumption of incompressible, inviscid
and irrotational flow with negligible body forces, the momentum equation reduce to
what is known as the Euler equation

∂U

∂t
+ (U · ∇)U+

∇p
ρ

= 0. (3.6)

The Euler equation is valid throughout the fluid under the given assumptions. Since
the flow described by the Euler equation is inviscid, there is no physical reason for
the tangential velocity component to be zero on a solid surface. What remains of the
no-slip boundary condition is that the relative normal component of the flow should
be equal to zero.
When using solutions of the inviscid equations, it is important to be aware of the li-
mitations of the method. Since viscous effects are disregarded, phenomena driven by
viscous effects, such as stall and separation, cannot be modelled using these equations
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without modification. Therefore the applicability of basic inviscid solutions to airfoil
flow is limited to low angles of attack, at below approximately 8o, depending on the
characteristics of the airfoil profile.
In the boundary layer on the airfoil, the viscous momentum equation, equation 3.2,
can be reduced to the classical boundary layer equations [60]. An important feature of
the boundary layer theory is that the pressure does not vary in the direction normal to
the surface. Solving the inviscid airfoil flow without taking into account the boundary
layer introduces some errors. Firstly, the boundary layer, with the no slip condition on
the tangential velocity, introduces a displacement thickness that should be accounted
for in the inviscid part of a coupled computation. Secondly, the friction forces from the
shear stress distribution computed from the viscous boundary layer is disregarded.
For high Reynolds number flows, however, the thickness of the boundary layer is ne-
gligible when viewed on the scale of the airfoil [27]. This implies that quite reasonable
results can be obtained by solving only the incompressible, inviscid flow equations for
attached airfoil flows, since the forces from the pressure distribution is an order of
magnitude greater than the friction forces that could be provided from solution of the
boundary layer equations.
The means by which pressure forces are computed in potential theory is the Bernoulli
equation, which is derived from the momentum (Euler) equation 3.6, by integration
along a path

∂

∂t

(∫ 2

1

Usds

)
+

(
p2
ρ

+
U2

2

2

)
−

(
p1
ρ

+
U2

1

2

)
= 0 (3.7)

Note that Us is the velocity component along the integration path s. The Bernoulli
equation is valid throughout the fluid, and is not confined to integration along stream-
lines. It links the velocities to the pressures, providing a tool for evaluating the pressure,
and thus the forces, from the fluid on the airfoil.
A theorem used extensively in unsteady potential theory is Kelvin’s Theorem, after the
British scientist Lord Kelvin, which states that ’the time rate of change of circulation
around a closed curve containing the same fluid elements is zero.’ [27]
Kelvin’s theorem is used to determine the strength of the unsteady wake shed after an
airfoil.

3.2 Analytic Unsteady Potential Theory

In this section the two dimensional unsteady potential theory solution for a thin wing
will be summarized. Theodore Theodorsen [55] solved this problem analytically in
1935, and his solution of the problem is aiming at determining flutter stability for air-
craft airfoils, and does not concern motion of, or forces on the airfoil in the direction
of the free-stream.
This section will be following the lines of Øye [65], which in addition to the pitching
and cross-flow motion investigated in Theodorsen’s formulation, incorporates motion
and forces in the along-wind direction.
As mentioned previously, the viscous nature of separated flows does not allow for mo-
delling by inviscid theory, limiting the range of applicability for the analytic unsteady



46 Theoretical Models

potential theory to fairly low incidences, below approximately 8o, depending on the
characteristics of the airfoil profile.
At the heart of the analytical potential theory solutions are singularity elements which
in this case are lines of concentrated vorticity. These singularities are solutions to
the incompressible, inviscid Navier-Stokes equations. In the general solution of the
potential problem superposition is used because the disturbance from the singularity
elements are linear in nature.
The solution of the unsteady two dimensional potential flow problem is based on three
basic ‘building blocks’ :

• Kelvin’s Theorem. Kelvin’s theorem states that the time rate of change of
circulation around a closed curve consisting of the same fluid elements is zero
[27]. From this follows that if a certain amount of vorticity is generated, an equal
amount of the opposite sign must be created at the same time.

• Kutta-Joukowski Condition. Boundary-layer theory shows that the fluid out-
side the boundary layer of a thin airfoil at a small angle of attack may be regarded
as inviscid. The Kutta-Joukowski condition is a phenomenological rule stating
that the velocity must remain finite and tangent to the airfoil at the sharp trailing
edge due to the effect of viscosity in the boundary layer [13].

• Neumann Boundary Condition. The Neumann boundary condition states
that there can be no flow through a solid surface, which in the general unsteady
case is moving.

Kelvins theorem in combination with the Kutta-Joukowski condition implies that the
change in vorticity on a body will be reflected in the wake of the body, which is shed
from the trailing edge. Since free vortices in incompressible, inviscid fluid remain
constant in circulation and are always composed of the same fluid particles [7], the
strength of the wake vortices are constant in time once they are shed.
The singularity solution used in this case is a vortex line. The general effect of a vortex
line on the velocity field is expressed by Biot-Savart’s law, which in the two dimensional
version reads [27]

2U =

∫
γ

2π

2̂r

r2
ds (3.8)

It is noted that a two dimensional point vortex only induces tangential velocities as seen
from the location of the vortex. The magnitude of the induced velocity is proportional
to the vortex strength and inversely proportional to the distance from the vortex.
In order to compute the forces on the airfoil the Bernoulli equation formulated in a
moving frame of reference is used [7]

p+
ρ

2
U2 + ρ

∂φ

∂t
= ρF (t) (3.9)

3.2.1 Normal Force and Moment

In addition to the standard potential theory assumptions, it is assumed that the airfoil
cross-section is a straight line of infinitesimal thickness. This is known to give sur-
prisingly good results for fully attached flows around thin uncambered airfoils at high
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Reynolds numbers [65]. The definitions and positive directions used in the present
derivation are shown in figure 3.1. The coordinates are non-dimensionalized by the

ξ

η

ẋ, ẍ

ẏ, ÿ

α, α̇, α̈

ξ = −1

ξ = 1O

b

b
ba

Figure 3.1: Definitions and positive directions used in the derivations of the unsteady
potential theory. b is the half-chord of the profile, with which the length parameter ξ
is normalized. ξ = 0 in the half-chord point, such that the leading and trailing edge
corresponds to ξ = −1 and ξ = 1, respectively. The direction perpendicular to the
profile is denoted by η. The angle of attack, α, and its derivatives are determined with
respect to the free stream velocity V , and is positive ‘nose up’. The translatory motion
of the profile is given by x, y, and the derivatives of these, which defines the translatory
motion of the hinge-point O, defined by the non dimensional parameter, a, for which
the positive direction is towards the trailing edge.

profile half-chord b such that the leading and trailing edge of the profile is given by
ξ = −1 and ξ = 1 respectively. The position, motion and acceleration of the profile is
fully described by α, x, y, and the derivatives of these. Note that ξ is a length para-
meter, following the chord and extending into the wake as depicted in figure 3.1.
According to Glauert the bound continuous vorticity on the profile is given by [1]

γ(ξ, t) = A0(t) tan
Θ

2
+

∞∑
n=1

An(t) sinnΘ (3.10)

ξ = cosΘ (3.11)

Figure 3.2 shows the basis functions of the fourier coefficients in equation 3.10. This
expression automatically obeys the Kutta-Joukowski condition that the induced velo-
city at the trailing edge should be finite.
The induced flow velocity perpendicular to the profile, vη, from the bound vortex
strength is found from the two dimensional version of Biot-Savart’s law 3.8.

vη(ξ, t) = −
∫ 1

−1

γ(ξ1)

2π(ξ − ξ1)
dξ1 = −1/2A0(t)−

∞∑
n=1

1/2An(t) cosnΘ (3.12)

The bound vortex strength changes in time due to the motion of the profile. To fulfill
Kelvin’s theorem, that the universal vorticity should be zero, the change in bound
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Figure 3.2: The five first basis functions in Glauert’s fourier series of the bound vortex
strength, equation 3.10, as function of length parameter, ξ.

vorticity on the airfoil, dγ, is reflected in the wake vorticity. Due to the change in
the bound vorticity, an amount of vorticity with the opposite sign, −dγ, is shed at
the trailing edge. The wake vortices are convected downstream with the free-stream
velocity V.
The wake vortices induce a flow velocity, wη(ξ), perpendicular to the profile, that under
the assumption of small angles of attack is given by

wη(ξ, t) =

∫ ∞

1

γ(ξ1)

2π(ξ1 − ξ)
dξ1 (3.13)

The ‘memory’, in the time dependant sense, of this model is manifested through the
shed vortices in wake, which feed back to the solution.
The component of the free stream and the relative motion of the profile in the direction
perpendicular to the profile is, still under the assumption of small angles of attack,

uη(ξ, t) = −ẏ + (V − ẋ)α+ b(ξ − a)α̇ (3.14)

The Neumann boundary condition dictates that there be no flow through the solid
surface, such that

vη(ξ, t) + wη(ξ, t) + uη(ξ, t) = 0 (3.15)

Inserting equations 3.12-3.14 into the Neumann boundary condition, 3.15, yields

−1/2A0 −
∞∑
n=1

1/2An cosnΘ+

∫ 1

−1

γ(ξ1)

2π(ξ1 − ξ)
dξ1

−ẏ + (V − ẋ)α+ b(ξ − a)α̇ = 0 (3.16)
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According to Øye [65], the time dependant coefficients An(t) are determined from
equation 3.16

A0 = 2{(V − ẋ)α− ẏ − baα̇}+ 1

π

∫ ∞

1

γ(ξ)√
ξ2 − 1

dξ (3.17)

A1 = 2bα̇+
2

π

∫ ∞

1

(
γ(ξ)√
ξ2 − 1

− 1)γ(ξ) dξ (3.18)

An =
2

π

∫ ∞

1

(ξ − √
ξ2 − 1)n√

ξ2 − 1
γ(ξ) dξ (3.19)

The forces are integrated from the pressure on the profile, which is given by Bernoulli’s
equation in the moving frame of reference, equation 3.9.
Since the profile representation is infinitely thin, the induced velocity in the chordwise
direction, ξ, on the profile line due to the bound vorticity reduces to

wξ(x) = ±1/2γ(ξ). (3.20)

The plus and minus sign refers to the upper and lower side of the profile, respectively. If,
apart from the assumption of small angles of attack wξ is assumed small in comparison
with the free stream velocity, the total tangential velocity relative to the profile can be
expressed as

V 2
T = (V − ẋ+ wξ)

2 	 (V − ẋ)2 + 2(V − ẋ)wξ (3.21)

The potential from the bound vorticity is [65]

φ(ξ) = ±1/2b

∫ ξ

−1

γ(ξ)dξ (3.22)

Again, the plus and minus sign refers to the upper and lower side of the profile. Inserting
equations 3.21-3.22 into the Bernoulli equation 3.9, and subtracting the pressures on
the upper side of the airfoil from the pressures on the lower side of the airfoil, an
expression for the pressure difference over the profile is obtained

∆p = pl − pu = ρ(V − ẋ)γ + ρb
∂

∂t

∫ ξ

−1

γ dξ. (3.23)

From this, the normal force and moment is obtained by integration over the airfoil

N = b

∫ 1

−1

∆p dx = ρb

∫ 1

−1

{(V − ẋ)γ + b
∂

∂t

∫ ξ

−1

γdξ} dξ (3.24)

M = b2
∫ 1

−1

(a− ξ)∆p dξ

= ρb2
∫ 1

−1

(a− ξ)

(
(V − ẋ)γ + b

∂

∂t

∫ ξ

−1

γ dξ

)
dξ (3.25)
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Inserting γ from equation 3.10 and the An coefficients from equations 3.17-3.19 yields
after considerable reduction [65]

N = 2πρb(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇]

+ρb(V − ẋ)

∫ ∞

1

γ√
ξ2 − 1

dξ + πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (3.26)

M = (a+ 0.5)b{2πρb(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇]

+ρb(V − ẋ)

∫ ∞

1

γ√
ξ2 − 1

dξ} − 0.5πρb3(V − ẋ)α̇

+πρb3a [(V − ẋ)α̇− ẍα− ÿ − abα̈]− 1/8πρb4α̈ (3.27)

After labelling the terms in equations 3.26 and 3.27 the equations read

N = NQS +NW +NVM (3.28)

M = (a+ 0.5)b{NQS +NW}+MQS

+abNVM +MVM (3.29)

The terms are given by

NQS = 2πρb(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇] (3.30)

NW = ρb(V − ẋ)

∫ ∞

1

γ√
ξ2 − 1

dξ (3.31)

NVM = πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (3.32)

MQS = −0.5πρb3(V − ẋ)α̇ (3.33)

MVM = −1/8πρb4α̈ (3.34)

The normal force, equation 3.28, consists of three parts. The first part, NQS , is
the quasi-steady potential normal force. The second term, NW, is the normal force
induced by the unsteady wake. Apart from these terms an additional virtual mass
term, NVM, is present. The virtual mass term can be interpreted as the force from the
acceleration of a virtual mass of air, πρb2.
By comparing equations 3.28 and 3.29 it is seen that the quasi-steady normal
forces, NQS, and the normal forces induced by the unsteady wake, NW, act on the
quarter-chord of the profile line, whereas the virtual mass normal force, NVM, acts on
the half-chord point.
Apart from the contributions to the moment from the three terms in the normal force,
there exist two additional terms. One of these is the quasi-steady moment, MQS,
which arises due to the angular velocity of the profile. The physical interpretation of
this term is given in Øye [65] as the analogy to a linear profile in a rotating flow, which
in its turn is analog to a cambered profile in a linear flow. The last additional term in
the moment equation is a virtual mass term, MVM, due to the angular acceleration of
the profile.
It is seen from the equations, that the relative motion of the 3/4 chord point, b(a−0.5)
in the equations, that determines the forces on the airfoil from the bound vorticity.
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In order to arrive at the final expressions for the normal force and moment, further
manipulation is required.
As a consequence of Kelvin’s theorem, the circulation on the profile must be matched
by the opposite amount of circulation in the flow

Γ = b

∫ 1

−1

γ dξ = −b
∫ ∞

1

γ dξ. (3.35)

From integration of the bound vorticity, equation 3.10, we get

Γ = b

∫ 1

−1

γ dξ = bπ(A0 + 0.5A1) (3.36)

Inserting A0 and A1 from equations 3.17 and 3.18, and using the result from Kelvin’s
Theorem, equation 3.35, the following relation is obtained

2πb [(V − ẋ)α− ẏ − b(a− 0.5)α̇] = −b
∫ ∞

1

ξ + 1√
ξ2 − 1

γ dξ (3.37)

Rewriting the expression for the quasi-steady normal force, equation 3.30, with the
above expression

NQS = −ρb(V − ẋ)

∫ ∞

1

ξ + 1√
ξ2 − 1

γ dξ, (3.38)

results in the possibility of rewriting the expressions for the quasi-steady and wake
normal forces as

NQS +NW = −ρb(V − ẋ)

∫ ∞

1

ξ + 1√
ξ2 − 1

γ dξ + ρb(V − ẋ)

∫ ∞

1

γ√
ξ2 − 1

dξ

= NQS ·C, (3.39)

where

C = 1−
∫ ∞
1

γ√
ξ2−1

dξ∫ ∞
1

ξ+1√
ξ2−1

γ dξ
=

∫ ∞
1

ξ√
ξ2−1

γ dξ

∫ ∞
1

√
ξ+1
ξ−1

γ dξ
. (3.40)

The introduction of C is an alternative way of expressing the forces from the unsteady
wake on the profile, like a re-normalization factor from quasi-steady to unsteady flow
including effects from the wake. This formulation will show its usefulness later.
The final expressions for the normal force and the moment acting on the profile is
obtained using equation 3.39 to rewrite equations 3.28-3.34.

N = 2πρb(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇] ·C
+πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (3.41)

M = (a+ 0.5)2πρb2(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇] ·C
−0.5πρb3(V − ẋ)α̇+ πρb3a [(V − ẋ)α̇− ẍα− ÿ − abα̈]

−1/8πρb4α̈ (3.42)
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or in other terms

N = NQS ·C+NVM (3.43)

M = (a+ 0.5)bNQS ·C+MQS + abNVM +MVM (3.44)

By inspection of the expression for the vorticity of the profile, equation 3.10, it is seen
that a singularity exist at the leading edge, where the vorticity approaches infinity. The
non-physical state of having an infinite vorticity on the leading edge of the airfoil is the
penalty for using the simplification of an infinitely thin airfoil. However, the singularity
at the leading edge of the infinitely thin airfoil may be regarded as the limiting form
for the airfoil leading edge radius approaching zero. The analytical results compare
very favorably with the chordwise distribution of measured pressure difference at small
angles of attack [65]. The only significant discrepancies come from within a few percent
chord lengths of the singularity.

3.2.2 Tangential Force

According to Øye [65], the leading edge suction force, which is equal to the negative
tangential force can be determined by

−T = πρS2 (3.45)

where S is given by

S = lim
ξ→−1

(√
b

2
γ
√
ξ + 1

)
(3.46)

Integration of equation 3.10 yields

S =

√
b

2
A0 (3.47)

By combining equations 3.17, 3.30, 3.31 and 3.39 it is possible to express A0 in terms
of

A0 =
NQS ·C

πρb(V − ẋ)2
− bα̇. (3.48)

This can be used to rewrite the tangential force as

T = −πρb

2

(
NQS +NW

πρb(V − ẋ)2
− bα̇

)2

= −πρb

2

(
NQS ·C

πρb(V − ẋ)2
− bα̇

)2

, (3.49)

or fully written out,

T = 2πρb [(V − ẋ)αẏ + b(a− 1/2)α̇]2C2

−2πρb2 [(V − ẋ)αẏ + b(a− 1/2)α̇]Cα̇− 1/2πρb3α̇2. (3.50)

The tangential force does not contribute to the moment because the forces are tangen-
tial to the infinitely thin airfoil.
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3.2.3 Lift and Drag Forces

The lift and drag forces are obtained from a projection of the normal and tangential
forces.

L = N cosα− T sinα (3.51)

D = N sinα+ T cosα (3.52)

which, assuming small angles of attack and N >> T

L = N (3.53)

D = Nα+ T (3.54)

From this the general analytical results can be stated

L = 2πρb(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇] ·C
+πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (3.55)

D = 2πρb [(V − ẋ)α− ẏ − b(a− 0.5)α̇] ·C
·{[ẏ + b(a+ 0.5)α̇] + [(V − ẋ)α− ẏ − b(a− 0.5)α̇] (1−C)}
−1

2
πρb3α̇2 + πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈]α (3.56)

M = (a+ 0.5)2πρb2(V − ẋ) [(V − ẋ)α− ẏ − b(a− 0.5)α̇] ·C
−0.5πρb3(V − ẋ)α̇+ πρb3a [(V − ẋ)α̇− ẍα− ÿ − abα̈]− 1/8πρb4α̈ (3.57)

In the static case, where all derivatives with respect to time is zero and C = 1, the
above expressions reduces to

Lstatic = 2πρbV 2α

Dstatic = 0

Mstatic = (a+ 1/2)2πρb2V 2α

which is the well known results from steady potential theory, as found in for example
Fung [13].
For later use, the drag forces will be interpreted below.
The quasi-steady drag, where positions, velocities and accelerations generally are not
zero, and C = 1, is seen to consist of three parts. The first part is recognized as the
quasi-static result, equal to the lift multiplied with the effective change in angle of
attack in the quarter chord point due to the motion parallel to the free stream. The
two other terms of the quasi-steady drag are of virtual mass type.
In the general instationary case, where C �= 1, an additional term arise. From equation
3.51 and 3.39

LW = NW = −NQS(1−C)

In quasi-stationary terminology, this reduction in the lift corresponds to a reduction of
effective angle of attack.

∆α =
−LW

2πρb(V − ẋ)2
=

1

V − ẋ
[(V − ẋ)α− ẏ − b(a− 0.5)α̇] (1−C)
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Since ∆α is a change in the effective angle of attack, the direction of the lift is changed
the angle ∆α as well. This induces a component in the direction of the static drag
direction

∆D = LQSC∆α = 2πρb [(V − ẋ)α− ẏ − b(a− 0.5)α̇]2C(1−C) (3.58)

It is noted that ∆D is exactly the part of the drag that vanishes in the quasi-steady case.

The physics of the unsteady potential drag can thus be stated:
The unsteady drag in an unsteady potential flow is a sum of three parts. The first part
is the quasi-stationary term, equal to the lift multiplied with the change in effective
angle of attack in the three-quarter chord point due to the motion of the airfoil. The
second part of the unsteady drag forces is a virtual mass term, and the last part comes
from the change in relative angle of attack due to the unsteady wake. This addition
to the drag can be computed by assuming that the lift from the bound vorticity and
the wake acts perpendicular to the relative direction of the flow in the quarter-chord
point angled ∆α, where ∆α expresses the angular change corresponding to the lift due
to the unsteady wake influence.

3.2.4 Oscillatory Motion

An important subcase of the general unsteady motion of the airfoil is oscillation of
the profile with angular frequency ω. Introducing complex notation the motion of the
airfoil can be expressed as

x = x1 e
iωt

y = y1 e
iωt

α = α0 + α1

α1 = α′
1e

iωt

The amplitude and phase of the motion is given by the modulus and argument of the
complex amplitudes, x1, y1 and α′

1. The physical position of the airfoil is given by the
real part of the complex quantities.
The derivation of the expressions for lift, drag, moment and Theodorsen’s function,
C(k), in the oscillatory case, is located in appendix B, where it is shown, that the
forces due to the oscillatory motion of the airfoil is expressed as

L = 2πρb(V − ẋ){Vα0 + [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇] ·C(k)}
+πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (3.59)

D = 2πρb{Vα0 + (Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇) ·C(k)}
·{[ẏ + b(a+ 1/2)α̇] + [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇] (1−C(k))}
−0.5πρb3α̇2 + πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈]α (3.60)

M = (a+ 0.5)2πρb2(V − ẋ){Vα0 + (Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇) ·C(k)}
−0.5πρb3(V − ẋ)α̇+ πρb3a [(V − ẋ)α̇− ẍα− ÿ − abα̈]− 1/8πρb4α̈, (3.61)
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and the complex C(k), which is a function of k, or reduced frequency, fred, is given by

C(k) =

∫ ∞
1

ξ√
ξ2−1

e−ikξ dξ

∫ ∞
1

√
ξ+1
ξ−1

e−ikξ dξ
. (3.62)

The non-dimensional wavenumber, k, is defined as

k =
ωb

V
= 2πfred. (3.63)

According to [13], C(k) can be expressed using Bessel functions of the first and second
kind

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + i ·H(2)

0 (k)
(3.64)

H(2)
n (k) = Jn(k)− i · Yn(k) (3.65)

From the equation for the oscillatory lift, equation 3.59, it is noted that the complex
C(k) acts like a renormalization factor acting on the quasi-stationary lift, taking into
account the effect of the wake. Looking more closely into the values from equation
(3.64) yields valuable insight into the effects of the unsteadiness of the flow.
The basic geometric representation of a complex multiplication is that the product of
two complex numbers is the complex number that has a length equal to the product
of the lengths of the two complex numbers, and an argument equal to the sum of the
arguments of those numbers.
The effect of the complex multiplication with C(k) can be visualized by plotting the
length and the argument of C(k) as function of fred, as shown in figure 3.3. It is seen
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Figure 3.3: Length (left) and argument (right) of the complex C(k) as function of
fred = fmovc/(2V ) = k/(2π).

that the effect of the unsteady wake on the lift, is a reduction of the lift amplitude as
well as a phase-shift, or, since the shift is negative, a phase-lag, of the lift forces. The
functions depicted in figure 3.3 are known as Theodorsen’s lift deficiency and phase-lag
functions, respectively.
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Since potential flow theory is only valid in the fully attached region, the above expres-
sions are only expected to perform well for angles of attack below approximately 8o.
Figure 3.4 shows an example of non-dimensional force loops for α = 5o and β = 0o.
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Figure 3.4: Analytic unsteady potential flow force coefficient loops. The angle of attack
is α = 5o. The other parameters for this example is A/c = 0.1316, fred = 0.02 and
β = 0o.

The direction of the lift loop in is counter-clockwise, indicating a positive aerodynamic
damping. Note, that the extremum values for the lift is lagging the extremum values
for the relative angle of attach, which is at z/c = 0. The drag loop, shown in the right
hand side, shows a similar lagging effect. The only contribution to the quarter chord
moment coefficient comes from the virtual mass terms, making the moment a function
of z because z ∝ z̈.

3.3 Quasi-steady Theory

In this section the relationships between static force coefficients and linear quasi-
stationary lift, drag and aerodynamic damping will be derived. The results from the
quasi-steady theory is valid not only in the attached region as the unsteady potential
theory presented in the previous section, but remains valid at any angle of attack, as-
suming the validity of the assumption of quasi-stationarity.
The lift and drag forces from the flow on a two dimensional body can be characterized
by the lift and drag coefficients

CL =
FL

0.5ρcV 2
(3.66)

CD =
FD

0.5ρcV 2
(3.67)

In equations (3.66) and (3.67) ρ is the density of the fluid, c is the chord of the airfoil,
V is the magnitude of the free-stream velocity. Notice that the forces FL and FD are
in direction perpendicular and parallel to the free-stream flow direction.
Assuming quasi-stationarity, the lift- and drag coefficients in a relative, or moving,
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coordinate system, CLrel and CDrel are functions of the relative angle of attack

CLrel = f1(αrel) (3.68)

CDrel = f2(αrel) (3.69)

and the forces corresponding to these coefficients are perpendicular and parallel to the
relative free-stream flow direction.
Consider general translation of an airfoil in the 2D plane as shown in figure 3.5. The

.

.

α

y

x

V

Figure 3.5: Definitions and positive directions of the angle of attack, α, and the x and
y directions. All quantities are defined with respect to the free stream velocity V .

.

.

y

Vrel

x V

γ

Figure 3.6: Velocity triangle for the general 2D translating case. Vrel is the relative
velocity as seen from the moving airfoil. Vrel is changed the angle γ clockwise from the
free stream velocity V .

vectorial expression for the relative velocity is

2Vrel = (V − ẋ,−ẏ), (3.70)

The magnitude of the relative velocity Vrel can be expressed as

| Vrel | =
√

(V − ẋ)2 + (ẏ)2

=
√
V 2 + ẋ2 − 2V ẋ+ ẏ. (3.71)

Simple geometric considerations from the velocity triangle, figure 3.6, yield the relative
angle of attack

αrel = α− γ, (3.72)

where

γ = arctan
ẏ

V − ẋ
. (3.73)
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Considering only small oscillations in ẋ and ẏ, local linearity of CLrel and CDrel with
respect to αrel can be assumed

CLrel = CLα − γC ′
Lα (3.74)

CDrel = CDα − γC ′
Dα (3.75)

CLα and CDα refers to static lift and drag coefficients at the angle of attack α, whereas
C ′

Lα and C ′
Dα denotes the derivative of these with respect to the angle of attack.

Projecting the forces in the relative system onto the directions of the global lift and
drag yields for the global lift and drag coefficients

CL =
V 2

rel

V 2
{CLrel cos γ − CDrel sin γ} (3.76)

CD =
V 2

rel

V 2
{CLrel sin γ + CDrel cos γ} (3.77)

Inserting equations 3.71, 3.73, 3.74 and 3.75 into 3.76 and 3.77 the general expressions
for the force coefficients are obtained after a first order Taylor expansion in ẋ and ẏ.

CL = (1− 2
ẋ

V
){CLα − ẏ

V
(CDα + C ′

Lα)} (3.78)

CD = (1− 2
ẋ

V
){CDα − ẏ

V
(−CLα + C ′

Dα)} (3.79)

Now consider the subcase of the general translatory case described above, the one
degree translatory motion of an airfoil as outlined in figure 3.7. For this motion the

z
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Direction of 1
DOF movement

x

y

β

V

Figure 3.7: Definitions and positive directions of the angle of attack, α, the angle of
movement, β, and the x and y axes. All quantities are defined with respect to the free
stream velocity, V. The z-axis defines the positive direction for the motion of the profile.

expressions for the relative velocity is

2Vrel = (V − ż sin β,−ż cos β) (3.80)

| Vrel |2 = V 2 + ż2 − 2V ż sin β. (3.81)
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In this case ẋ and ẏ are given by

ẋ = ż sin β and (3.82)

ẏ = ż cos β. (3.83)

Inserting equations 3.81 to 3.83 into the general expressions for the lift and drag coef-
ficients, equations 3.78 and 3.79

CL = CLα + ż{−2 sin β

V
CLα − cos β

V
(C ′

Lα + CDα)} (3.84)

CD = CDα + ż{−cos β

V
(C ′

Dα − CLα)− 2
sin β

V
CDα} (3.85)

Projection of the forces in the z-direction yields for the force coefficient in the z-
direction

Cz = CLα cos β + CDα sin β

− ż

V
{sin β cos β(CLα + C ′

Dα) + cos2 βC ′
Lα + (1 + sin2 β)CDα} (3.86)

If the positive sign for the aerodynamic damping is chosen such that a positive damping
is damping the motion, corresponding to general structural damping of the airfoil, the
the final expression for the quasi-static aerodynamic damping is

DA = 0.5ρcV {sin β cos β(CLα + C ′
Dα) + cos2 βC ′

Lα + (1 + sin2 β)CDα} (3.87)

Note that in equation (3.87), the terms CLα, CDα and their derivatives with respect to
α denote the values for the geometrical, static incidence α. This allows for evaluation
of the aerodynamic damping from static measurements of the lift and drag coefficients.
For DA > 0 energy is taken out of the moving system and for DA < 0 energy is put
into the system, leading to increasing oscillations if the aerodynamic damping exceeds
the structural damping of the rotor in the aeroelastic case.
It is possible to get an indication of how good the quasi-steady assumption is by eva-
luating the phase lag and the lift deficiency function introduced in section 3.2. The
phase lag and lift deficiency function are derived from unsteady potential flow theory,
and therefore only valid in the attached region. However, the values give an indication
as to how well the quasi-stationary assumption should work.
Figure 3.8 shows an example of non-dimensional force loops for CL and CD for two

cases having the same stationary lift, CLα = 0.6. One case, low-α, in attached flow,
and the other case, high-α, in stalling flow. The direction in which the airfoil oscillates
is perpendicular to the airfoil, β = 0.
Notice in the left graph, that the direction of the lift loop in the low-α case is counter-
clockwise, indicating a positive aerodynamic damping, whereas the high-α lift loop is
clockwise, indicating a negative aerodynamic damping. The mechanism determining
the direction of the loops is evident from equation 3.78. It is seen that the sign of
CDα +C ′

Lα determines the direction of the lift loop in the purely heaving case, β = 0o.
The right graph shows the non dimensional drag loops. As before, the direction in
which the loops revolve are different in the two cases. The low-α drag coefficient loop
is clockwise, whereas the high-α drag coefficient loop is counter-clockwise.
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Figure 3.8: Quasi-stationary force coefficient loops. The high-α curves are computed
from CLα = 0.6, C ′

Lα = −3.5, CDα = 0.3 and C ′
Lα = 1.1, corresponding to a stalling

airfoil at approximately α = 20o. The low-α curves are computed from CLα = 0.6,
C ′

Lα = 4.5, CDα = 0.04 and C ′
Lα = 0.5, corresponding to an airfoil at approximately

α = 7o. The other parameters for this example were A/c = 0.1316, fred = 0.02 and
β = 0o.

All curves have horizontal symmetry axis, in contrast to the analytical unsteady po-
tential results shown in figure 3.4. This follows from the geometrical basis on which
the quasi stationary theory is founded. In other words this difference underlines the
fact that quasi-stationary theory has no memory.
It is evident from equation 3.79, that the effect of the stationary lift, CLα, and the
effect of the slope of the stationary drag, C ′

Dα, acts in opposite directions. It is the
difference between these two terms that determines the direction of the drag loops in
the pure heave case, β = 0o.
Investigation of equation 3.87, yields important information into the driving mecha-
nisms behind quasi-stationary aerodynamic damping for one dimensional translatory
motion of an airfoil. The drag term, CDα, is always positive, as is 1 + sin2 β. This
implies that the drag in a quasi-stationary computation is increasing the aerodynamic
damping. The term related to the slope of the lift curve involves a cos2 β, which is po-
sitive or zero for all values of β. This implies that the effect of this term is greatest in
the direction perpendicular to the free stream, β = 0o, and that the sign of the aerody-
namic damping is given by the slope of the lift curve, C ′

Lα. The last term involves the
sum of the lift coefficient, and the slope of the drag coefficient, which are both positive
for α between 0o and 180o. This implies that the sign of the damping from these is
dictated by sin β cos β = 0.5 sin 2β, which is negative from α = 90o to α = 180o, and
has minimum for α = 135o.
It should be stressed that the results from this analysis is valid only if the assumption of
quasi-stationarity is obeyed. However, the results from this analysis give an indication
as to how the different terms affect the loops and the aerodynamic damping.
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3.4 New Stall Model

In this section a heuristic dynamic model for prediction of the dynamic loads on an
two dimensional airfoil undergoing oscillatory motion is proposed. The foundation on
which the model is based is the theory presented in the previous two sections.
The new stall model could be considered an ‘interpolation’ between Quasi-Stationary
and Unsteady Potential theory. The model is identical to Unsteady Potential Theory
when airfoil characteristics from steady potential theory is used as input to the model,
and except from the terms arising from acceleration of a virtual mass, the new model
is identical to Quasi-Stationary theory as fred → 0.
Since the validation of the model will be against translatory experimental data only,
focus will be on the translatory sub-case. The only inputs to the model are the oscil-
lation frequency and the steady lift and drag coefficients, and their derivatives with
respect to angle of attack, which is available for practically all airfoils. The fact that
no other model constants are needed means that no tuning of the model is required or
possible.

3.4.1 Motivation

The motivation for this model is the obvious similarity between the expressions for the
lift coefficients in the general translatory quasi-stationary case, as derived in section
3.3,

CL = (1− 2
ẋ

V
)

(
CLα − ẏ

V
(CDα + C ′

Lα)

)
(3.88)

and the lift coefficients from unsteady potential flow theory in the case of no angular
motion, α̇ = α̈ = 0,

CL = 2π

[
(1− ẋ

V
)2α− ẏ(V − ẋ)

V 2

]
C(k)− πb

V 2
(ẍα + ÿ). (3.89)

The similarity between the expressions become more evident after a linearization of
the potential theory expressions

CL =

[
(1− 2

ẋ

V
)2πα− ẏ

V
2π

]
C(k)− πb

V 2
(ẍα + ÿ). (3.90)

If the general steady state potential flow theory results for the force coefficients on an
infinitely thin airfoil

CL pot = 2πα (3.91)

CD pot = 0 (3.92)

are inserted in the quasi-steady expression, equation 3.88, it is noted that the result
after a linearization

CL = (1− 2
ẋ

V
)CLα − ẏ

V
C ′

Lα, (3.93)
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is identical to the quasi-steady term in the unsteady potential flow theory expression.
The additional term in the unsteady potential flow theory is the virtual mass term,
which does not appear in the quasi-stationary expressions because the derivation of the
quasi-steady theory is based on velocity triangles only, and therefore does not include
accelerations.

3.4.2 The Model

The main assumption behind the model to be proposed is that the flow can be de-
scribed by a model similar to the unsteady potential flow case for both attached and
stalling flows. Potential flow theory describes fully attached flows, and is thus only
valid at small angles of attack. The new model is similar to the unsteady potential
flow theory in the sense that the quasi-steady forces arising from the steady lift, and
the corresponding wake effect are assumed to act in the quarter chord point and to be
governed by the same variables. Moreover, the virtual mass effect is assumed to have
the same form as in the unsteady potential flow theory, and act in the same point on
the chord, namely the half-chord. As in the case of the analytic unsteady potential flow
solution in section 3.2, it is assumed that the airfoil is undergoing small oscillations in
translation and pitch, x, y and α, with the restriction that the frequency of the three
motions are identical.
The drag from a steady potential flow solution is zero, a fact which is known as
d’Alembert’s Paradox. Therefore, the drag in an unsteady potential flow computa-
tion basically consists of two parts. The first part is induced from the effect of the lift
forces in combination with the change in relative angle of attack from the unsteady
wake and the motion of the airfoil, as elaborated in section 3.2. The second part is a
contribution from the acceleration of a virtual mass, which can be thought of as the
mass of the fluid surrounding the airfoil.
In order to model the characteristics of a real viscous flow-field around an airfoil, addi-
tional terms describing the effects of the non-zero steady drag coefficients are required.
At high angles of attack, when the airfoil is stalling, the drag forces are of the same
order of magnitude as the lift forces, and therefore important to model. In this work
the drag forces will be treated analogous to the lift forces in the sense that the force
from the experimentally obtained static drag coefficients are modified using the same
renormalization coefficient, C(k), as will be used in the lift expression, and that these
terms induce forces in the lift direction, analogous to the induced drag term in un-
steady potential theory.
The forces in the present model can be split up into three categories

• Force terms related to static CL values and derivatives

• Force terms related to acceleration of virtual mass

• Force terms related to static CD values and derivatives

The contribution to the forces from the separate effects are shown below, after which
the complete model is stated and discussed.
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Force Terms Related to Static CL

If the force expressions from unsteady potential theory are interpreted along the lines
suggested in section 3.4.1, meaning that 2πα terms are interpreted as CLα, and 2π
terms are interpreted as C ′

Lα, the following force terms related to the static CL curve
arise

CL
L = (1− ẋ

V
){CLα −

[
ẏ

V
C ′
Lα +

ẋ

V
CLα +

b(a − 0.5)
V

α̇C ′
Lα − α1C

′
Lα

]
C(k)} (3.94)

CL
D =

[
ẏ

V − ẋ
+

CL,QS
L − CL

L

sign(C ′
Lα)max(abs(C ′

Lα), π/8)

]
CL
L (3.95)

CL
M = 0.5CL

L (a + 0.5) cosα + 0.5CL
D(a + 0.5) sinα (3.96)

where the quasi-static lift coefficient, CL,QS
L , is given by

CL,QS
L = (1− ẋ

V
){CLα −

[
ẏ

V
C ′
Lα +

ẋ

V
CLα +

b(a − 0.5)
V

α̇C ′
Lα − α1C

′
Lα

]
} (3.97)

The subscripts refer to the direction of the force terms, whereas the superscripts refer
to the source of the terms.
Note in the above formulation for the drag coefficient, equation 3.95, that an indirect
formulation of CL

D based on the interpretation of the unsteady potential drag given in
section 3.2 is used. The drag in an unsteady potential flow is induced from the lift
due to the change in relative angle of attack from the motion of the profile and the
induced velocities from the wake. The manipulation with the last term in the bracketed
expression in equation 3.95 is effectively a limiter to the size of the term if C ′

Lα is close
to zero. This avoids the problems that may occur if the local slope of the lift coefficient
is zero.
The forces arising from the static lift forces are assumed to act in the quarter chord
point, as in unsteady potential theory, for all angles of attack. The validity of this
assumption is questionable for separated flows, since the separated regions looses its
lift, hence moving the point in which the forces act towards the leading edge. This,
however, only affects the moment coefficient.

Force Terms Related to Acceleration of Virtual Mass

The force terms arising from acceleration of the mass of air surrounding the airfoil are
a generalized version of the virtual mass terms from unsteady potential theory, taking
into account that the angles of attack are not necessarily small. This results in the
following contributions from the acceleration of the virtual mass

CVM
L = − πc

2V 2
(ẍ sinα+ ÿ cosα+ abα̈− (V − ẋ)α̇) cosα (3.98)

CVM
D = CVM

L tanα− πc2

2V 2
α̇2 (3.99)

CVM
M = 0.5aCVM

L cosα+ 0.5aCVM
D sinα− πc(V − ẋ)

8V 2
α̇− πc2

64V 2
α̈ (3.100)
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Force Terms Related to Static CD

Since real viscous flows separates and stalls, the model should include that a conside-
rable part of the total forces can be in the stream-wise direction in both stationary
and moving airfoils. Therefore additional assumptions have to be made regarding the
modelling of the forces related to the non-zero stationary drag coefficients and their
unsteady counterpart. The basic assumption of the drag related forces, is that the drag
and lift are behaving the same way. The instantaneous forces arising from the steady
drag is given by the quasi steady drag modified analogous to the quasi-stationary lift in
equation 3.94, through the constant C, taking into account phase lag and magnitude
deficiency effects due to wake interaction. Also the drag induced lift, the drag analog
to equation 3.95, is included in the model. It is assumed that the drag related forces
act in the half-chord point. This is used for calculating the moment from the flow. The
forces arising from the steady drag coefficient are given below

CD
L = −CDα

ẏ

V − ẋ
C(k) (3.101)

CD
D = CDα − ẏ

V − ẋ
C ′

DαC(k) (3.102)

CD
M = 0.5aCD

L cosα+ 0.5aCD
D sinα (3.103)

Note that the assumption that the drag forces act in the half-chord point at all inci-
dences are based on sheer guessing, rendering the moment expression very uncertain
at high incidences.

The Complete Model

Adding the contributions from the lift, virtual mass and drag, equations 3.94 to 3.103,
yields the full form of the new dynamic model for the lift, drag and moment coefficients

CL = CL
L + CVM

L + CD
L (3.104)

CD = CL
D + CVM

D + CD
D (3.105)

CM = CL
M + CVM

M + CD
M (3.106)
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Since the model will be validated using translatory data, the simpler translatory sub-
case, where α̇ = α̈ = 0, is given below :

CL
LT = (1− ẋ

V
){CLα −

[
ẏ

V
C ′

Lα +
ẋ

V
CLα

]
C(k)} (3.107)

CL,QS
LT = (1− ẋ

V
){CLα −

[
ẏ

V
C ′

Lα +
ẋ

V
CLα

]
} (3.108)

CVM
LT = − πc

2V 2
(ẍ sinα+ ÿ cosα) cosα (3.109)

CD
LT = −CDα

ẏ

V − ẋ
C(k) (3.110)

CLT = CL
LT + CVM

LT + CD
LT (3.111)

CL
DT = CL

LT

ẏ

V − ẋ
+

CL,QS
LT − CL

LT

sign(C ′
Lα)max(abs(C ′

Lα), π/8)
CL

LT (3.112)

CVM
DT = CVM

LT tanα (3.113)

CD
DT = CDα − ẏ

V − ẋ
C ′

DαC(k) (3.114)

CDT = CL
DT + CVM

DT + CD
DT (3.115)

CL
MT = 0.5CL

LT (a+ 0.5) cosα+ 0.5CL
DT (a+ 0.5) sinα (3.116)

CVM
MT = 0.5aCVM

LT cosα+ 0.5aCVM
DT sinα (3.117)

CD
MT = 0.5aCD

LT cosα+ 0.5aCD
DT sinα (3.118)

CMT = CL
MT + CVM

MT + CD
MT (3.119)

The T in the subscripts of equations 3.107 to 3.119 refer to the translatory motion. As
mentioned earlier, the model can be considered an extension of the quasi-steady theory
to take into account the unsteady interaction as explained by unsteady potential theory.
In the limit of fred → 0, the proposed model is equal to the quasi-stationary theory
with the addition of the virtual mass terms from the unsteady potential flow theory.
If, on the other hand, lift and drag coefficients from steady potential theory,

CLpot = 2πα (3.120)

CDpot = 0, (3.121)

are used as input to the new model, the model is identical to the expressions from the
unsteady potential theory for small angles of attack.

In order to give an impression of the relative importance of the different terms in
the model, figure 3.9 shows the non dimensional force terms as function of position
coordinate, z, for translatory motion of an stalling airfoil oscillating in the direction
perpendicular to the free-stream. The values of the lift, drag and reduced frequency
corresponds to values in the experimental measurements described in chapter 2. The
left figures show the non dimensional terms related to the lift forces. On the upper
figure the phase shifting effect of the unsteady wake is observed when comparing the
quasi-steady lift term, CL,QS

LT , with the term including the effect from the unsteady
wake, CL

LT . The direction of all three loops in the upper left figure is clockwise, in-
dicating a negative aerodynamic damping. It is seen that the aerodynamic damping
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Figure 3.9: Force terms for translatory motion in stall. Non-dimensional force terms
versus z/c. The data shown are based on α = 20o, β = 0o, fred = 0.03, A/c = 0.1316,
CLα = 0.87, C ′

Lα = −1.67, CDα = 0.38 and C ′
Dα = 1.62. Upper left : Lift coefficient

terms CL,QS
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LT and CLT . Lower left : Lift coefficient terms CVM
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LT . Upper
right : Drag coefficient terms CL
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DT and CDT . Lower right : Quarter chord
moment coefficient terms CL
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D
MT and CMT .
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from the full model lift forces is less than for the terms from the unsteady lift forces,
CL

LT . The difference in damping comes from the forces induced from the damping,
CD

LT , shown in the lower left figure together with the contribution from the virtual
mass, CVM

LT . It is seen that the contribution to the aerodynamic damping from the
forces induced by the drag, CD

LT , are positive, acting in the opposite direction of the
damping from the lift contribution, CL

LT . The phase shifting effect is evident from this
term as well, as a pure quasi-steady induced drag would have maximum at z/c = 0.
The aerodynamic damping of the virtual mass lift terms, CVM

LT , is zero, as suspected.
The upper right figure show the non dimensional drag terms. These forces do not con-
tribute to aerodynamic damping because the direction of the motion is perpendicular
to these forces in this case. The hysteresis loops of the drag terms from the lift, CL

DT ,
and the drag, CD

DT , are in opposite directions as for the lift. The direction of the hys-
teresis loops for the full model is the same as for the terms from the drag, CD

DT , which
is counter-clockwise. Again, the virtual mass loop, CVM

DT , is a line with positive slope,
in agreement with the nature of the virtual mass terms.
The contributions to the dimensionless quarter-chord moment loop are shown in the
lower right figure. There is no contribution from the lift, CL

MT , since these forces act
in the quarter chord point. The slope of the virtual mass force-line in this case is ne-
gative due to the fact that the forces from acceleration of the virtual mass act in the
half-chord point. The major contribution to the moment, CD

MT , comes from the drag
which act in the half-chord point. The direction of the full model hysteresis loop is
clockwise.

As a side note it should be mentioned that the term mainly responsible for the
negative aerodynamic damping is the term involving the slope of the static lift, C ′

Lα,
analogous to quasi-steady theory. Unsteady potential theory always predicts a positive
aerodynamic damping because the flow is always attached, corresponding to a positive
lift slope. The effect of the terms from the drag are an added aerodynamic damping
in the lift direction, whereas the effect of the drag terms on the aerodynamic damping
in the drag direction depends on the direction of the motion, β, analogous to the
quasi-steady case.

The present formulation of the model concerns oscillatory motion only. It is, how-
ever, possible to rewrite equations 3.107 to 3.119 to include arbitrary motion of the
airfoil. The method is outlined for a standard unsteady potential theory solution in
section 5-7 of Bisplinghoff [7], but is applicable to the present model with minor mo-
difications only.

The questionable issues and simplifications regarding this model are summarized
below.

• The assumptions on which the expression for the moment is based on are very
crude. The mean value as well as the amplitude of the moment coefficient will
most likely not be correct at high incidences.

• It is dubious that the complex dynamics of the flow at deep stall are captured
accurately due to the assumption of similarity with the unsteady potential flow
solution.

• The model cannot deal with big oscillations due to the fact that it is based on a
linearization around a single angle of attack.
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The effect of the assumptions made is studied in the comparison with experimental
data in chapter 4.

3.5 Panel Code

Solution of the unsteady inviscid, incompressible flow equations by means of analytical
approaches are only possible in very few cases, mostly by use of coarse simplifications
and crude assumptions. The use of numerical modelling allows treatment of more re-
alistic geometries, such as specific airfoils, flaps, or, as it will be shown in this section,
a complete system of an airfoil in a wind tunnel.
The solution of incompressible, inviscid flows can be obtained by distributing elemen-
tary solutions of the continuity equation

∇ ·U = 0, (3.122)

on the problem boundaries, such that the Neumann condition is fulfilled on the solid
surfaces. The additional condition in the formulation of the general potential problem
is automatically fulfilled when using elementary solutions. This additional requirement
is that the difference between the undisturbed flow velocity and the actual flow
velocity should decay far from the body [27].
Since each elementary solution affects the whole fluid field, the general solution of
the potential flow problem requires integration over all the elementary solutions. The
velocity components of the elementary solutions are incremental, and can be added up
according to the principle of superposition. The problem is then reduced to finding
the singularity element distribution satisfying the Neumann boundary condition.
For a given set of boundary conditions, the solution of the problem using superposition
of singular elements is not unique. This means that some freedom is allowed, as will
become evident later in this section.

The panel method used in the present work was proposed by Hess [22]. Hess’
method uses constant strength source and vortex distributions, and overcomes the
problems with pressure coefficient fluctuations at the thin trailing edge associated with
solutions using constant strengths doublets, see figure 3.10.
Validation of the implemented panel code are found in appendix C, along with dis-
cretization independence studies.

3.5.1 Singularity Elements

The singularity elements used in this work are two dimensional point vortices, constant
strength source distributions, and constant strength vortex distributions. The distri-
buted elements are used on the solid bodies, whereas the point vortices are used in the
unsteady wake.
The velocity induced at (x, y) from a point vortex located in (x0, y0) with circulation
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Figure 3.10: Chordwise pressure distribution computed by a constant-strength doublet
method. Symmetric airfoil at α = 0o (left) and α = 5o (right). From Katz et. al. [27].

Γ is given by [27]

U =
Γ

2π

y − y0
(x− x0)2 + (y − y0)2

(3.123)

V =
−Γ

2π

x− x0

(x− x0)2 + (y − y0)2
. (3.124)

The most straightforward way to use the two dimensional constant strength singularity
elements is in a panel attached coordinate system as shown in figure 3.11. In this local

xpanel

ypanel

x1 x2

P (x, y)

Figure 3.11: Panel-attached coordinate system.

system, the velocities induced at point P from the panel of constant source strength
per length is

Upanel =
σ

2π

∫ x2

x1

x− x0

(x− x0)2 + y2
dx0 (3.125)

Vpanel =
σ

2π

∫ x2

x1

y

(x− x0)2 + z2
dx0. (3.126)
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It can be shown [27], that this is equal to

Upanel =
σ

4π
ln
(x− x1)

2 − y2

(x− x2)2 − y2
(3.127)

Vpanel =
σ

2π

(
arctan

y

x− x2

− arctan
y

x− x1

)
. (3.128)

When P is on the center of the panel the velocities are

Upanel = 0 (3.129)

Vpanel = ±σ

2
, (3.130)

where the ± refer to the upper and the lower side of the panel, respectively.
Since the velocities and coordinates in equations 3.125-3.130 are given in panel coordi-
nates, the coordinates for P have to be transformed from global coordinates to panel
coordinates

xpanel = (x− x0) cosαi − (y − y0) sinαi (3.131)

ypanel = (x− x0) sinαi + (y − y0) cosαi, (3.132)

where αi is the angle the panel system is rotated with respect to the global system,
positive clockwise. The velocities from equation 3.127-3.130 has to be transformed
from panel coordinates to global coordinates

U = Upanel cosαi + Vpanel sinαi (3.133)

V = −Upanel sinαi + Vpanel cosαi. (3.134)

Since the induced velocities from a point vortex and a point source are identical, except
that the velocity induced from the point vortex is rotated 90o clockwise with respect to
the velocity induced by the point source, it follows from the principle of superposition,
that the same feature is evident for the two dimensional constant strength singular-
ity elements. Therefore it follows from equations 3.127 and 3.128, that the induced
velocities from a constant-strength vortex distribution is

Upanel =
γ

2π

(
arctan

y

x− x2

− arctan
y

x− x1

)
, (3.135)

Vpanel = − γ

4π
ln
(x− x1)

2 − y2

(x− x2)2 − y2
(3.136)

in panel coordinates. Analogous to equations 3.129 and 3.130, the local velocities at
the center of the panel are

Upanel = ±γ

2
(3.137)

Vpanel = 0. (3.138)

As previously, the ± refer to the upper and the lower side of the panel.
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3.5.2 Steady Solution

As explained in the beginning of this section, the principle of superposition is used for
computation of the total velocities from the singularity elements. Since the velocity
increments depend linearly on the strength of the elements, a linear system of equations
has to be solved to determine the panel code solution.
The panel code method used in the present work was proposed by Hess [22], and uses
distributed source and vorticity on the airfoil. If the airfoil is discretized usingN panels,
then N collocation points are defined on the mid-panel points, on the side of the panel
facing outward. The Neumann condition is enforced in these points. However, one
additional constraint on the solution is needed.
The trailing edge condition known as the Kutta-Joukowski condition is a consequence
of viscosity. The effect of the thin viscous dominated boundary layer on an airfoil in
attached flow, is that the velocity must remain finite and tangent to the airfoil at the
sharp trailing edge. This implies that the total tangential velocity on the upper and
lower side of the airfoil should be identical in steady flows.
The total sum of constraints is N + 1, but there are 2N independently adjustable
source and vortex strengths. Hess [22] used this freedom to specify that all vortex
panels should keep the same strength relative to each other, such that the strength of
all vortex elements is controlled by one parameter. The strength of the vortex panels
is a parabolic function of surface length, zero on the trailing edge, and maximum at
the leading edge of the airfoil,

γu(s) = C1

(
s

smax

−
(

s

smax

)2
)
. (3.139)

In the above equation, the surface length parameter is denoted by s. The value of the
’unit-level’ vorticity, γu, is scaled using the constant C1, such that the total circulation
of the airfoil is one.

C1 =
6

smax

(3.140)

In the numerical code, the continuous γu is approximated with the constant strength
vorticity panels. Linking all vortex strengths together reduces the number of variables
to N + 1, and the linear system for the steady case can thus be stated
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The first N equations in the linear system above is the enforcement of the Neumann
boundary condition, meaning that the total normal component of the velocity relative
to the solid surface should be zero. The last equation expresses the Kutta-Joukowski
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condition. The σi’s are the source strengths of the panels, and Γ is the total circulation
on the airfoil from the vortex panels. The influence coefficient, aij, expresses the
normal velocity induced on collocation point i from source strength 1 on panel j. bi
is the normal velocity induced on collocation point i, induced by a strength of the
vortex panels with total circulation Γ = 1. ci expresses the addition to the difference
in tangential velocity at the upper and lower trailing edge panels from source panel i.
The term cΓ expresses the difference in tangential velocity induced by a strength of the
vortex panels with total circulation Γ = 1. The right hand side terms, RHSi, is the
negative normal component of the free stream on panel i at the given incidence of the
airfoil. The last term, RHS∆T , is the negative difference in tangential components at
the trailing edge from the free stream velocity.
Once this linear system is set up, it is straightforward to solve for the source and vortex
strengths, after which the velocity distribution can be evaluated. From these the forces
can be found using Bernoulli’s equation, 3.7, noting that the time dependant terms
vanish in this case.
It should be pointed out that the steady solution is not in conflict with the Kelvin
theorem. It is assumed that the unsteady starting vortex corresponding to the steady
lift is convected very far downstream, such that the influence of it is negligible. Since
there is no change in the bound vorticity, no wake is shed.

3.5.3 Unsteady Solution

The incompressible continuity equation does not directly include time-dependant terms.
The time dependency in unsteady panel codes is introduced through the boundary
conditions. It could be stated that the ‘memory’ of panel methods lies in the unsteady
wake.
The strength of the unsteady wake is determined from Kelvin’s theorem, which states
that the total vorticity of in a closed amount of fluid cannot change in time. This
implies that any change in bound vorticity on the airfoil is reflected in the wake of the
airfoil. From Kelvin’s theorem it follows that, for time-step i, the circulation of the
shed vorticity, Γw1, is

Γw1 = Γi−1 − Γi. (3.142)

From the Kutta-Joukowski condition, it follows that the vortex-sheet, which in the
present work is discretized using point vortices, is shed from the trailing edge of the
airfoil. Since there is a jump in the velocity over the vortex-sheet, the unsteady version
of the Kutta-Joukowski condition implies that this velocity-difference should be equal
to the difference in the tangential velocities at the upper and lower trailing edge panels.
The velocity jump over the part of the wake-sheet closest to the airfoil can be deter-
mined by considering a vortex panel with the same circulation as the first wake vortex,
with a length equal to the distance a fluid particle would travel in one time-step,

l = VKutta∆t. (3.143)

The velocity difference over such a vortex panel is equal to

∆V = γ =
Γw1

l
(3.144)
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at mid-panel.
The direction of the first vortex sheet is in the trailing-edge half-angle-direction, which
for symmetric airfoils equals the centerline of the airfoil. This direction will be referred
to as the kutta-direction. The magnitude of the velocity at the trailing edge, VKutta, is
determined as

VKutta =

(
1

2
(2VTE,u + 2VTE,l) + 2Vmov + 2Vfreestr + 2Vwake

)
· 2nKutta, (3.145)

where ’TE,u’ and ’TE,l’ refer to the upper and lower trailing edge panels, ’mov’ refer to
relative motion at the trailing edge, ’freestr’ to free-stream flow and ’wake’ to induced
velocities from the wake. 2nKutta is a unit vector in the kutta-direction.
The first wake vortex is positioned the distance CWV VKutta∆t from the trailing edge
in the kutta-direction, where the value of CWV in the present work was set to 0.25.
According to Katz et. al. [27], values of the wake constant, CWV , should be set in the
range CWV = 0.2to CWV = 0.3. This is done because the lumped vortex approach with
CWV = 0.5 underestimates the induced velocities close to the trailing edge compared
to a continuous constant strength vortex sheet with the same circulation.
The unsteady wake is integrated in time in the global coordinate-system, with the
local flow velocities obtained from vectorial summation of free-stream velocity, induced
velocity from solid body source panels, induced velocity from solid body vortex panels
and induced velocity from the unsteady wake. Euler integration was employed in
the present work, since the evaluation of the wake velocity is among the more time
consuming steps in an unsteady panel code.
Below, the linear system of equations in the unsteady case is given
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The meaning of the terms in the above equation are identical to the steady case, but
some additional terms exist. First, the added equation, the last row in the equations,
expresses Kelvin’s theorem directly from equation 3.142. The terms d1 to dN is the
influence coefficients for the nearest wake vortex on the normal velocities on the panels.
These are equal to the induced normal velocity on the panels from the nearest wake
vortex with unit strength. The last influence coefficient, cΓw1, consist of two parts. The
fist part is the induced tangential velocity difference on the upper and lower trailing
edge collocation points, the other part arise because the strength of the first wake
vortex determines the difference in tangential velocity at the trailing edge, shown in
equation 3.144. In a more mathematical formulation this corresponds to

cΓw1 = 2VTE,u · 2TTE,u − 2VTE,l · 2TTE,l +
1

VKutta∆t
. (3.147)
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2TTE,u and 2TTE,l denotes unit vectors in the airfoil-fixed relative system, positive in the
attached flow direction, in the tangential direction on the upper and lower panels at
the trailing edge. Note that in the above expression, the result from equation 3.143
and 3.144 is used to link the first wake vortex strength to the difference in tangential
velocity on the trailing edge upper and lower sides.
Note that the linear system of equations is formulated in the relative, airfoil-fixed,
coordinate-system. Since the position of the first wake-vortex is not constant in the
relative frame of reference, d1 to dN , and cΓw1 has to be re-computed each time-step.
This is true also for all right-hand side terms, since these terms reflect the influence
of free-stream, relative motion and unsteady wake on the airfoil system. The relative
velocity due to the motion of the airfoil is determined from simple geometric vectorial
expressions, and the induced velocities from the unsteady wake is integrated from the
wake vortices, not including the first one, Γw1, which is included in the computations.

Once the linear system is solved for a time-step, the forces can be derived from the
velocities on the profile by use of the unsteady Bernoulli equation, equation 3.7.

∂

∂t

(∫ 2

1

Usds

)
+

(
p2
ρ

+
U2

2

2

)
−

(
p1
ρ

+
U2

1

2

)
= 0 (3.7)

The unsteady term is discretized in the numerical code as

∂

∂t

(∫ 2

1

Usds

)
	

(∫ 2

1
Usds

)
t
−

(∫ 2

1
Usds

)
t−∆t

∆t
, (3.148)

where the indexes 1 and 2 refer to points on the surface of the airfoil. In this way the
information about the velocities at the present and previous time-step, and the value
of the time-step, are used to compute the unsteady term in the Bernoulli equation.
Thereby the unsteady pressure distribution, and the integral forces can be found.
The schematic flow chart for one step of the numerical solution of the unsteady airfoil
problem is

• Assign positions and derivatives. The position of the airfoil is assigned, as
is the derivative of the positions.

• Calculation of influence coefficients. The main part of the influence coeffi-
cients does not change in time, and are computed before the time loop is started.
In the time loop only d1 to dN , and cΓw1 have to be updated each time-step.

• Calculate RHS vector. The RHS vector is a function of momentary position
and velocity, free-stream velocity, and induced velocities from the wake. All terms
are updated each time-step.

• Solution of linear system. In the present work the resulting linear system was
solved using the standard solver for linear equations in Matlab.

• Calculate loads. The velocities on the airfoil are calculated. From these the
pressures are calculated using the Bernoulli equation. The pressures are used to
compute the integral forces.
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• Wake roll-up. The position of the wake vortices are updated in the global
frame of reference using the total velocities, which are vectorial sums of the free-
stream velocity, the induced velocities from the solid body panels, and the induced
velocity from the wake itself.

The panel code was implemented using Matlab.

3.5.4 Reduction of Computational Cost Linked to Evaluation
of the Unsteady Wake

Since the computational cost of evaluating the flow velocities from the wake on the air-
foil and the wake itself grows rapidly with the number of wake vortices, approximately
proportional to N(N − 1) for big N , measures were taken to reduce the amount of
computations linked to evaluation of the unsteady wake.
One way of reducing the computational cost is to reduce the number of vortices. In
order to reduce the number of actual vortices in the wake, the wake vortices are split
up in zones, as shown in figure 3.12. The general idea behind the zonal concept is that

Zone
0

Zone
1

Zone
2

N
Z0

∆ L 21N
Z1

∆ L 22N
Z2

∆ L

Figure 3.12: Zonal concept for reducing the number of wake vortices. Zone i has a
maximum of NZi vortices. If a new vortex enters the zone, the two last vortices in the
zone are merged, and put into the next zone. The shown example has NZi = 10.

each zone has a maximum number of allowed vortices, NZi. If the actual number of
vortices at any time is greater that this number, then the two last vortices of the zone
are merged together and put into the next zone. The zonal concept is based on the
index of the vortices and not on length parameters.
In order to fulfill Kelvin’s Theorem at all times, the circulation of the new vortex by
merging of the two wake vortices, indexed 1 and 2, has to fulfill

Γnew = Γ1 + Γ2. (3.149)

The position of the new vortex is computed such that the induced velocity from the
new vortex is identical to the induced velocity from wake vortices 1 and 2 at a specified
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point, (x, y)ind :

r2i = (xind − xi)
2 + (yind − yi)

2 (3.150)

Unew =
Γ1

2π

yind − y1
r21

+
Γ2

2π

yind − y2
r22

(3.151)

Vnew = −Γ1

2π

xind − x1

r21
− Γ2

2π

xind − x2

r22
(3.152)

xnew =
Γnew

2π

Vnew

U2
new + V 2

new

+ xind (3.153)

ynew = −Γnew

2π

Unew

U2
new + V 2

new

+ yind. (3.154)

(x, y)ind is set to the three quarter chord point in all computations because it was shown
in section 3.2 that the response of the airfoil in the analytical expression is determined
by the state of this point.
The effect on the total number of vortices from this approach is shown in the left of
figure 3.13. The right graph shows N2/N2

V versus N , where N and NV is the number
of time-steps and wake vortices, respectively. This quantity is an approximate measure
of the relative speed-up of the wake computations by use of the zonal approach for
large numbers of N . Further speed up of the unsteady calculations were achieved by
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Figure 3.13: Effect of the reduction of wake vortices from the zonal concept. Left :
Number of vortices, NV , as function of number of time-steps, N , for different NZi.
Right : N2/N2

V versus N . This quantity is a measure of the relative speed-up of the
wake computations by use of the zonal approach for large N .

introducing a vortex-limit, NWWI , after which the the full wake-wake interaction is
abandoned in favor of a frozen wake approach. This means that the nearest NWWI

wake vortices are updated with the full velocity field from all panels and wake vortices.
The frozen wake approach for the convection of the rest of the wake means that the
wake vortices in this part of the wake are moved only with the free-stream velocity,
∆L = ∆t · V .
The final moderation for speed-up of the computationally heavy wake is an x-limit,
xPV , after which the effect of the airfoil is reduced to a point vortex located in the
quarter chord point. The circulation of the equivalent point vortex is equal to the sum
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of all vortex panels on the airfoil.
The influence from all wake vortices on all collocation points are always computed.
This is done to maximize the accuracy of the flow prediction on the airfoil.
The effect of the modifications for reduction of the computational time are shown
in figure 3.14. Lift, drag and quarter-chord moment coefficients, computed with and
without the wake modifications, are shown as a function of time.
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Figure 3.14: Comparison of lift (left), drag and moment-histories (right) computed with
the wake modifications for reduction of computational time. The lower graph shows the
difference between the computations with and without the wake modifications. The
NACA 0015 airfoil was discretized using 100 panels. Harmonically oscillating motion
in the heave direction, β = 0o, at α = 5o. fred = 0.04, ∆t̃ = 0.05. The speed-
up of the wake computations were obtained by employing the following parameters :
NZ = [40 20 10 5], NWWI = 70 and xPV /c = 6. The total speed-up ratio of the
computation for 500 time-steps was tFull/tSpeedUp = 4.91.

It is evident from the figure, that the error introduced by the speed-up of the wake
computations is very small. The total speed-up ratio of the computation for 500 time-
steps was tFull/tSpeedUp = 4.91, which is somewhat lower than the mean value of the
corresponding speed-up factor up to N = 500 in the right graph of figure 3.13. The
discrepancy is attibuted to the relatively few wake vortices. Thereby, the relative cost
of evaluating the induced velocities on, and from the solid surfaces are not negligible,
as assumed in the approximate expression for the speed-up, N2/N2

V . The set-up of the
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unsteady wake speed-up parameters used for the computations in figure 3.14 were used
for all unsteady panel computations in this work.
In the applications of the code in this work it was found that the predicted forces were
very close to periodic after four oscillations if the steady solution was used as the initial
state. Therefore four oscillation cycles were simulated prior to the oscillation cycle for
which the periodic force loops were saved.

3.5.5 Tunnel effect modelling

One of the apparent forces of panel codes is the fact that no discretization of the fluid
domain is required, making computations in complex and time dependant geometries
much simpler than in the case of methods where fluid domain discretization is required.
In the present case, simulation of tunnel walls around the moving airfoil was imple-
mented using flat, constant strength source panels on the tunnel walls to enforce the
Neumann boundary condition on the tunnel walls. Figure 3.15 shows the airfoil and

Figure 3.15: Discretization of the tunnel walls using 2 × 50 constant strength source
panels.

tunnel panels used in the present computations.
The modification of the solution procedure to take into account tunnel walls is fairly
straightforward. The linear system of equations for the combined airfoil/tunnel system
is


b1 d1

A1N×N A2N×M
...

...

bN dN
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RHS∆T

Γi−1



.

(3.155)

Analog to the unsteady set of equations for the airfoil without tunnel walls, equation
3.146, the first N linear equations is the Neumann boundary condition for the airfoil
panels. The next M equations are the Neumann boundary condition for the tunnel
walls. As in the free-flow airfoil system, the last two equations are the Kutta-Joukowski
and Kelvin conditions, respectively.
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Due to the relative motion of the airfoil with respect to the tunnel walls, several in-
fluence coefficients must be updated each time-step : A2N×M , A3M×N , bT1 to bTM ,
d1 to dN , dT1 to dTM , cΓw1 and cT1 to cTM . The fact that a relatively big part of the
influence matrix has to be updated each time-step in combination with the general
added number of panels makes the solution of the tunnel-airfoil problem computatio-
nally more demanding than the free-flow airfoil case. However, since panel-methods in
general are not computationally heavy compared to for instance Navier-Stokes solvers,
solution of the airfoil-tunnel system using this method is still many times faster than
solving a free-flow airfoil flow using a RANS code.
The effect of the tunnel on the airfoil flow is a fairly complex process even in the sta-
tionary case. On one hand, the blocking of the airfoil in the tunnel augments the local
velocity around the airfoil. On the other hand the walls influence the curvature of the
streamlines, and thereby the pressure on the airfoil. These effects are evident also from
the coupling effect of the wall panels with the tunnel walls. The disturbance velocities
from the airfoil panels is balanced by the source strengths on the tunnel walls, which
again effects the strengths on the airfoil (and opposite tunnel wall), so the implications
of adding tunnel walls are not simple even when the airfoil is not moving.
In the case of a moving airfoil, the disturbance velocities normal to the wind tunnel
walls vary due to the motion of the profile, and due to the unsteady wake. These add
even more to the already complex airfoil-tunnel feedback system.
Another effect of the tunnel walls in the unsteady case is the change of geometry of
the wake. The influence from the tunnel wall boundary conditions affects the strength
and geometry of the wake, which in its turn modifies the dynamic characteristics of
the airfoil.
In the case of attached flows, | α |≤ 8o, the developed code can be used directly to in-
vestigate the effect of the tunnel walls. For all experimental runs in the range | α |≤ 8o,
corresponding panel code results were computed with and without tunnel to investigate
the differences, in steady as well as oscillating cases.
For all unsteady computations carried out in this work, the number of panels on the
airfoil was 100, and the tunnel walls were discretized using 50 panels on each wall,
extending 10 chord-lengths upstream and 20 chord-lengths downstream of the test sec-
tion. Grid independence studies for the airfoil, tunnel walls and time step are found in
appendix C.

3.5.6 Separated flows

As the angle of attack is increased into the stalling region, the panel code does not
give results with any physical meaning, since viscous effects are not modelled. The
model assumes fully attached flow, and results in a steady lift coefficient as shown in
figure 3.16, as well as zero drag (d’Alembert’s paradox), which is clearly far from the
physically occurring situation. A potential code will not be able to give any sensible
airfoil data at high incidences, but certain tunnel effects can be investigated using the
method if it is modified.
The idea is to compare the tunnel wall source strengths for two situations where the
lift is identical, but where the tunnel blockage is different.
Producing a flow that at a given angle of attack has a given lift can be obtained by
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Figure 3.16: CL values at high incidences from standard potential code computations.

violating the Kutta condition. Specifically, the element in the influence matrix which
expresses the influence of the total airfoil circulation on the difference in the tangential
velocity at the trailing edge, is multiplied by a constant. This violates the Kutta
condition, resulting in a flow field as shown in figure 3.17. As mentioned previously,

Figure 3.17: Streamlines around a NACA 0015 airfoil at α = 20o. Computed by Euler
integration in the velocity field from the potential code. Left : Standard panel code.
CL = 2.5. Right : Kutta condition violated. CL = 0.8

this will not produce any airfoil data which is physically meaningful, but the effect
of a stationary airfoil at a specific angle of attack with a specified lift, on the tunnel
walls can be investigated to investigate corrections for tunnel blockage effects at high
incidences.
The results of the tunnel correction investigations are shown in section 4.1.

3.6 Navier-Stokes Code

Solving the Navier-Stokes equations, equations 3.1 and 3.2, directly is not even with
the use of supercomputers possible for standard airfoil flows. This is due to the very
big difference in the smallest and largest spatial and temporal features of the flow that
has to be resolved. The extremely small structures in turbulent flows would require
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a computational grid that was very fine in order to resolve the finest scales of the
flow. Furthermore, the grid should be big enough for the airfoil not to feel the outer
boundaries.
These facts renders direct numerical simulation of the Navier-Stokes equations for
airfoil flows impossible.

3.6.1 Reynolds Averaged Navier-Stokes Equations

In this work the approach to predicting turbulence is based on statistical methods,
namely the one point closure, where the equations of motion for the mean flow are
solved rather than the equations of motion for the instantaneous flow.
Following the Reynolds time averaging procedure, all variables are separated into a
mean part and a fluctuating part, where the time averaging period is large compared
to the turbulent time scale. The mean part of the variables are allowed to vary with
time, but much more slowly than the time averaging period.
For incompressible flow, the averaged equations of continuity and momentum, known
as the Reynolds Averaged Navier-Stokes (RANS) equations, are given by

∂ρ

∂t
+

∂ρUi

∂xi
= 0 (3.156)

∂ρUi

∂t
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∂(ρUjUi)
∂xj

= − ∂P
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∂

∂xj

(
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− ρuiuj

)
+ ρgi + Sv,i (3.157)

The term, Sv, in the momentum equation is a general part for inclusion of volume
forces.
The additional term appearing from the time averaging procedure, −ρuiuj, is known as
the Reynolds stress tensor, τij. The closure problem of turbulence consists of modelling
the Reynolds stress tensor.
The effect of the turbulence in linear eddy viscosity models is modelled through the
eddy viscosity concept, which is based on the assumption that the turbulent eddies
represents an extra viscosity, the turbulent viscosity µt, which is modelled analog to
the viscous stresses in laminar flow. The turbulent viscosity is related to characteristic
scales of turbulent motion and depends on the local turbulence of the flow.
Common for all linear eddy viscosity models is that the Reynolds stresses are modelled
by applying the Boussinesq approximation [38],

τij = µt

(
∂Ui

xj
+
∂Uj

xi

)
− 2

3
ρkδij,

to relate the Reynolds stresses to mean flow gradients. If furthermore the flow is incom-
pressible, the continuity and momentum equations, 3.156 and 3.157, can be rewritten
as

∂ρUi

∂xi
= 0 (3.158)
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∂xi

))
+ Sv,i. (3.159)

Note that the pressure, P , in the momentum equation denotes pressure fluctuations
around the hydrostatic pressure.
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3.6.2 k − ω Shear Stress Transport Model

Turbulence occurs in flows at high Reynolds numbers after a complex transition process
from laminar flow at low Reynolds numbers. In the present work the transitional stages
are not considered since trip tape was used to trigger a turbulent boundary layer in
the experimental part.
In wind turbine aerodynamics, where the prediction in the stalled region is of interest,
the demand on the turbulence model is very high. The turbulent stress model employed
in the present work is the k − ω Shear Stress Transport (SST) model proposed by
Menter [34], which is a two equation linear turbulent eddy viscosity model designed
to improve the sensitivity to adverse pressure gradients compared to standard k − ω
models. The k−ω SST model has shown good prediction of airfoil flows in the attached
and moderately/lightly stalled cases [20] [11]. However, an overestimation of CLmax due
to overestimation of the onset of stall is still evident, even though not as outspoken as
for the standard turbulence models.
The k− ω SST turbulence model is based on the k− ω baseline model also by Menter
[34], which combines the k−ω model by Wilcox [61] in the inner region of the boundary
layer, and the standard k − ε model, in a k − ω formulation, in the outer region and
the free stream. The transport equations for the turbulent quantities in the SST model
reads

Dk
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ρ

∂Ui
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Equation 3.160 is a transport equation for the turbulent kinetic energy, defined as the
kinetic energy per unit mass of the flow, k = 0.5 ¯uiui. The transport equation for the
specific dissipation rate of turbulent kinetic energy ω, is equation 3.161.
The blending function, F1, is zero at the solid walls and zero away from surfaces, and
is used to determine the value of the model constants, generally denoted θ :

θ = F1θ1 + (1− F1)θ2 (3.162)

The blending function is given by

F1 = tanh(arg4
1), (3.163)

where
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The distance to the wall is y, and
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)
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Constants for the inner (1) and outer (2) model is

σk1 = 0.85, σω1 = 0.5, β1 = 0.0750, γ1 =
β1

β∗ − σω1
κ2

√
β∗

σk2 = 1.00, σω2 = 0.856, β2 = 0.0828, γ2 =
β2

β∗ − σω2
κ2

√
β∗ (3.166)

Both the inner and outer models use κ = 0.41 and β∗ = 0.09. The solid wall boundary
conditions for the transport equations 3.160 and 3.161 are

kw = 0 and ωw =
60ν

β1(∆y)2
. (3.167)

The eddy viscosity is

µt = ρ
a1k

max(a1ω; ΩF2)
, (3.168)

where

F2 = tanh(arg2
2), (3.169)

and
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)
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Since F2 = k/ω far from the walls, the k− ω SST model is identical to the BSL model
far from the walls.
This definition of the turbulent viscosity secures that the production of turbulent kinetic
energy is larger than its dissipation for adverse pressure gradient boundary layer flows,
leading to earlier separation than for standard k − ω or f − ε models.
Apart from its good behavior in flows with adverse pressure gradients, the k − ω SST
model is insensitive to the inlet free stream turbulent quantities [34]. All computations
in the present work were computed using this turbulence model.
It is shown in for example [11] or [23] that transition modelling can have a great
impact on the outcome of a RANS simulation of an airfoil flow. Transition modelling
is, however, not included in the present work because trip tape was used to trigger
turbulence in the experimental counterpart of the work.

3.6.3 Numerical code

The computations shown in this work were carried out using the EllipSys2D code, de-
veloped by Michelsen [35], [36] and Sørensen [51] [54]. The isothermal incompressible
Reynolds averaged Navier-Stokes equations are solved for the simple variables U , V
and P , using a block structured, cell centered, non-staggered, finite volume method in
general curvilinear coordinates. The solution process is built on a predictor-corrector
method with two corrector steps, the PISO algorithm. The discretization scheme em-
ployed for the convective terms is the Second Order Upwind Scheme (SUDS), while the
pressure decoupling is avoided using the Rhie-Chow interpolation technique [44].
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3.6.4 Moving grid

Considering the case of a computational grid undergoing unsteady motion with respect
to an inertial system, corrections have to be made to the standard solution process for
the non moving grid in order to model the change in relative boundary conditions and
fictitious forces.
Since the computational grid is moving with respect to an inertial system, the boundary
conditions for the inlet velocity has to be transformed into the corresponding velocities
in the relative frame of reference. The fictitious forces arising from the unsteady motion
of the computational grid are modelled through the additional source terms, Sv,i, in
the momentum equations of the RANS equation 3.159. In this work these source terms
are treated explicitly.
The vectorial relations that connects positions, velocities and accelerations in inertial
and non-inertial systems can be found in elementary solid mechanics books, such as
[10]. The relations are given by

2r = 2r0 + 2r′ (3.171)

2V = 2V0 + 2V ′ + 2ω × 2r′ (3.172)

2a = 2a0 + 2a′ + 22ω × 2V ′ +
d2ω

dt
× 2r′ + 2ω × (2ω × 2r′) (3.173)

Since the there is no angular motion involved in the case considered in the present
work, 2ω = 0, the general transformation equations for the velocity and the acceleration,
equations 3.172 and 3.173 reduce to

2V = 2V0 + 2V ′ (3.174)

and

2a = 2a0 + 2a′. (3.175)

The primed quantities, ()′, refer to vectors in the relative system, the subscript, O,
refer to the origio of the relative system.
The inlet velocities in the moving grid are generally computed from equation 3.172, or
in the sub-case of no angular motion, equation 3.174, by isolation of the velocity in the
moving system, 2V ′.
In order to relate the transformation equation for the acceleration to source terms in
the momentum equation, Newton’s second law is considered

m · 2a =
∑

2Fext

⇓
m · 2a′ =

∑
2Fext +m · 2afict. (3.176)

The fictitious forces are obtained from equation 3.173,

2afic = −2a0 − 22ω × 2V ′ − d2ω

dt
× 2r′ − 2ω × (2ω × 2r′), (3.177)
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which in this specific sub-case is reduced to

2afic = −2a0. (3.178)

Equation 3.176 shows, that the fictitious forces can be considered external forces in
Newton’s second law, and hence, in the RANS momentum equations, 3.159.
Before arriving at the final expression for the source terms, we consider the fictitious
force that a ‘fluid-particle’, P , in the non-inertial system is experiencing

2Ffic,P = 2afic,PmP

= 2afic,PVρ

Since the dimension of the source term, Sv,i, in equation 3.159, is force per volume, we
get that

2SV = 2afic · ρ. (3.179)

Validation of the moving-grid implementations are found in appendix D.2.
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Chapter 4

Results

In this chapter results from the theoretical models will be presented and discussed.
Apart from the first two sections, this chapter deals with comparison of results from
theoretical models with the experimental data described in chapter 2.
The first section concerns unsteady wind tunnel corrections for the experiments. The
corrections presented are based on results obtained with the numerical potential code,
which is described in section 3.5. Following a short section on the difference in the aero-
dynamic response of airfoils undergoing translatory or pitching motion is a comparison
of the results from the analytical models with the experimental results, focussing on the
performance of the new heuristic dynamic stall model proposed in section 3.4. Finally,
the results obtained with the Navier-Stokes code are compared with the experimental
results.

4.1 Wind Tunnel Corrections

The imposition of the wind tunnel walls causes the flow around a body to differ from the
flow as it would have been in an unlimited stream. Therefore the quantities measured
in the wind tunnel has to be corrected for a number of phenomena to match the
corresponding free flow quantities.

4.1.1 Steady Tunnel Corrections

In steady wind tunnel testing the effects of wind tunnel blockage are usually accounted
for using wind tunnel corrections as found in for example Pankhurst and Holder [40],
Selig et. al. [46] or Rae and Pope [43].
Generally four different effects occurs in steady two-dimensional wind tunnel testing
with solid wall boundaries :

• Buoyancy: Additional drag force resulting from a decrease in static pressure along
the test section due to the growth of the boundary layer on the walls.

• Solid Blockage: The physical presence of a model within a test section produces
a decrease in the effective area. This increases the local flow velocity at the test
section, augmenting the aerodynamic forces.
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• Streamline Curvature: Due to the boundary conditions imposed by the tunnel
walls, the streamline curvature, and hence lift force, is altered, increasing the
effective camber of the profile, and thereby the lift and aerodynamic pitching
moment.

• Wake Blockage: The lower velocity within the airfoil wake compared to the free
stream velocity increases the velocity outside the wake, affecting the quantities
at the model. The effect of the wake blockage depends on wake size, and thus to
the measured drag force.

Below each of the steady tunnel effects and the corrections are commented with respect
to the present experimental setup.

Buoyancy

In order to estimate the effect of the buoyancy for the experiments carried out in the
present work, the displacement thickness from the turbulent one seventh power law
[60]

δ∗

x
∼ 0.16

Re
1/7
x

,

is combined with the Bernoulli equation to obtain

∆CDBuoyancy ∼ 0.0016.

Dimensions and standard operational conditions for the wind tunnel have been used to
arrive at the result above. Since this value is lower than the uncertainty of the obtained
results, that correction will not be employed in this work.

Solid Blockage

The decrease in effective area in the wind tunnel test section causes an increase of the
flow velocity around the model compared to the free flow case. This affects all forces
on the profile. A correction for the solid-blockage effect have been given by Thom [43]

εsb =
∆Vsb

VTunnel

=
K1VolModel

(ATunnel)3/2
, (4.1)

where K1 = 0.74 for a wing spanning the entire tunnel width. The volume of the model
can been approximated by VolModel = 0.7× model thickness × model chord × model
span. The tunnel test section area is denoted by ATunnel.
It is noted that the expression for the solid-blockage effect only involves the dimensions
of the model and not the incidence. At high angles of attack, where the airfoil is in
deep stall, it could be argued that the blockage of the airfoil should depend on the
incidence as well, but this is not been done presently.
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Figure 4.1: Modelling of streamline curvature through image vortices. Left : modelling
of one wall using a mirror image. Right : modelling of two parallel walls using an
infinite line of vortices of alternating sign.

Streamline Curvature

The presence of the tunnel walls alters the curvature of the streamlines compared
to that of the free flow case. Two dimensional streamline curvature corrections for
closed test sections are based on simple vortex theory, where solid walls are modelled
by image vortices as shown in figure 4.1. The streamline curvature effect of a single
wall can be modelled by introducing a mirror vortex of opposite strength at a position
corresponding to the mirror point of the quarter chord point. This ensures that there
is no flow through the wall.
If an airfoil is confined between two parallel walls, two semi-infinite rows of mirror
vortices with shifting signs are needed. One above and one below the real vortex. This
is shown in the right hand side of figure 4.1.
The effect of these mirror vortices on the velocity in the tunnel is a upwash angle that
varies almost linearly on the chord of the airfoil and is zero at the quarter chord point.
This situation is equivalent to a circular stream curvature, which in turn is equivalent
to an airfoil with an added camber in an unbounded straight flow.
According to Rae and Pope [43], this effect is properly corrected for by corrections to
both the measured lift and moment coefficients CLTunnel, CMTunnel, and to the angle of
attack α as well. The corrections to the lift and moment coefficients are

∆CLsc = −σCLTunnel (4.2)

∆CMsc = −σ

4
∆CLsc, (4.3)

where

σ =
π2

48

c2

h2
. (4.4)

Note that CM in these equations refer to the moment coefficient with respect to the
quarter chord.
If it is assumed that the airfoil can be approximated by a single vortex at the quarter
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chord, the correction to the angle of attack is [43]

∆αsc =
σ

2π
CL. (4.5)

A more correct expression is obtained if the vorticity is spread out along the airfoil. In
this case the correction for the lift and moment coefficients remain unaltered, but the
angle of attack correction is changed to [43]

∆αsc =
σ

2π
(CL + 4CM) . (4.6)

Since the above expressions are derived from potential theory, the validity of the stream-
line curvature corrections will be discussed briefly for separated flows.
The lift correction may be plausible for both attached and separated flows because the
correction of the lift is proportional to the measured lift, which in turn is proportional
to the circulation leading to the correction. Since the simple correction to the angle
of attack, equation 4.5, and the moment correction, equation 4.3, have the same form
as the lift correction, these corrections may be considered valid for all types of flows
as well, even though the measured moment itself is not close to the potential value for
separated flows.
The last correction, equation 4.6, the more complex correction of the angle of attack,
involves the measured moment, and is therefore not applicable for stalling flows.

Wake Blockage

Due to the viscosity of the fluid, a boundary layer develops on the airfoil. This region
of lower velocity extends downstream and forms the wake of the airfoil. Due to the
lowered velocity in the boundary layer and in the resulting wake, the velocity outside
the wake in a tunnel must be higher than that of the free stream. From Bernoulli’s
equation higher velocity in the free stream corresponds to lower pressure. Therefore,
the airfoil is in a pressure gradient. Rae and Pope [43] suggests the following correction
for wake blockage

εwb =
∆Vwb

VTunnel

=
c/h

4
CDTunnel. (4.7)

The drag on an airfoil in a wind tunnel can be computed from the velocity profiles
upstream and downstream of the profile, using the momentum equation regardless of
how the velocity fields are generated, be it attached or stalling flow. Therefore it is
assumed that the drag correction is valid for both attached and stalling flows.
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Full Corrections

Summarizing the results of the steady tunnel blocking effects, we have the following
corrections to Reynolds number, force coefficients and angle of attack [43]:

Re = ReTunnel(1 + ε) (4.8)

CL = CLTunnel(1− σ − 2ε) (4.9)

CM = CMTunnel(1− 2ε) +
σCL

4
(4.10)

CD = CDTunnel(1− 3εsb − 2εwb) (4.11)

α = αTunnel +
σ

2π
(CL + 4CM) (4.12)

α = αTunnel +∆α (4.13)

∆α =
σ

2π
CL (4.14)

where the solid and wake blocking coefficients are combined to one blocking coefficient

ε = εsb + εwb. (4.15)

Note that the first of the two corrections to the incidence, equation 4.12, is only appli-
cable in cases where the flow is attached.

Panel Code Corrections

According to the author, specific corrections for unsteady 2D experiments applying
to the present set-up are not documented in the literature up to now. Therefore
the validity of corrections obtained with the panel code described in section 3.5 was
examined for the steady case in order to determine if unsteady corrections based on
results from the unsteady version of the panel code could be plausible.
The effects for which a potential code can be used to compute corrections are the solid
blocking and the streamline curvature effects. The panel code was used to compute
lift and moment coefficients for a NACA 0015 airfoil in both unbounded flow and flow
bounded by tunnel walls. Computations were made at identical geometrical angles in
the free flow and the tunnel computations. The airfoil was discretized using 100 panels,
and the tunnel walls were discretized using 50 panels on each tunnel wall, summing up
to 200 panels describing the airfoil/tunnel system in total. Appendix C describes grid
refinement studies for the airfoil and tunnel walls.
Since the tunnel and free flow force coefficients related by equations 4.9-4.10 are not
at the same geometrical angle1, the difference in angle has to be accounted for when
comparing the results from the potential code with the corrections.
The lift coefficient for the airfoil in free flow and in the tunnel is to a good approximation
expressed as

CL = K1α (4.16)

CLTunnel = K2αTunnel, (4.17)

1The tunnel quantities are linked to the incidence αTunnel whereas the corresponding corrected
values corresponds to the incidence α, given by equation 4.13.
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where both K1 and K2 are close to 2π.
Using equations 4.9, 4.13 and 4.14, the free-flow-to-tunnel-flow ratio of the lift coeffi-
cients can be expressed.

CL(αTunnel)

CLTunnel(αTunnel)
=

CL(α)

CLTunnel(αTunnel)
− CL(∆α)

CLTunnel(αTunnel)

= (1− σ − 2ε)− CL(
σ
2π
CL(αTunnel))

CLTunnel(αTunnel)

= (1− σ − 2ε)− K2
1

2πK2

σ (4.18)

which, since K1 ∼ 2π and K2 ∼ 2π

CL(αTunnel)

CLTunnel(αTunnel)
	 (1− 2σ − 2ε) (4.19)

Since there is no wake blockage for a steady panel code computation, the analytic lift
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Figure 4.2: Solid blocking and streamline curvature effects. Steady free-flow-to-tunnel-
flow ratios. Left : Lift ratios. Right : Moment ratios. Both the lift and drag ratios
are nearly constant. The tunnel height to chord ratio is h/c = 4.47 for the presented
results.

correction for solid blocking and stream line curvature, equation 4.19, turns out to be
a function of model and tunnel dimensions only. The results from the potential code
(figure 4.2) show that the lift ratio vary between 0.9715 and 0.9727 (0.12%), and the
drag ratio varies between 0.842 and 0.857 (1.75%) for α < 10o and h/c = 4.47, which
is essentially constant. This is in agreement with the analytic lift correction. The fact
that the moment ratios are fairly constant implies, from equation 4.9 and 4.10, that
the lift to moment ratio in the tunnel should be constant as well. This was seen from
the potential results to hold true.
The ratio between the forces for an airfoil in free air and the forces for an airfoil situated
in the wind tunnel will be referred to as free-flow-to-tunnel-flow ratios from this point
on.
The left graph of figure 4.3 compares the free-flow-to-tunnel-flow ratio of the lift force
from equation 4.19 with the results obtained from the potential code. As seen, the
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Figure 4.3: Solid blocking and streamline curvature effects. Comparison between ana-
lytic and panel code steady tunnel corrections. Left : lift correction. Right : moment
correction.

potential code results are in excellent agreement with the analytical result in for h/c
above 2.5. As expected, the analytical results become inaccurate at low h/c ratios due
to the heavy simplifications under which the analytical expressions were derived. The
height to chord ratio for the experiments in this work is h/c = 4.47, for which the
agreement between analytic and numerical results is excellent.
The curve to the right in figure 4.3 shows comparison of the free-flow-to-tunnel-flow
ratios of the moment coefficient. The analytical expression in this case is

CM

CMTunnel

= 1 + 2ε+
σ(1− σ − 2ε)

4

CLTunnel

CMTunnel

(4.20)

In lack of analytic expressions for the quarter chord moment, the ratios obtained from
the potential computations were used. As mentioned previously, the ratios were not
dependant of the angle of attack, but only on h/c. In the right hand side of figure 4.3, it
is seen that the agreement is still good even though the panel code values are generally
slightly lower than the analytical ones. Notice that the tunnel effect is stronger on the
moment than on the lift.
The good agreement between the analytic and potential code results indicate that
potential code results can be used for solid blocking and streamline corrections.

4.1.2 Unsteady Tunnel Corrections

The unsteady nature of the experiment carried out introduces dynamic errors. To the
knowledge of the author, dynamic corrections suitable for correction of the experimen-
tal data presented in this work are not documented in the literature so far. Some
additional systematic periodic tunnel effects arise when the airfoil is subject to oscil-
latory motion. Due to the variation in bound circulation, which is a key element in
the determination of the unsteady forces, the presence of the walls becomes evident
through the restriction of the dynamic wake. The ‘memory’ of an unsteady potential
solution lies in the dynamic wake. This is altered by the presence of the tunnel walls.
An other effect is that the motion of the profile in the general case has a component
normal to the tunnel walls, thus augmenting the source strength needed to enforce the



94 Results

Neumann condition. Taking the strengths of the sources as an indication of the tunnel
effect, it is seen that motion of the airfoil causes extra tunnel effects.
Even though it can be argued that the most correct correction in the steady case is a
combination of corrections on the angle of attack and of the forces, this method might
not be feasible in the unsteady case. The unsteadiness of the forces, and hence, the
bound and wake circulation renders a steady correction of the angle of attack impossi-
ble. Therefore it was chosen to correct the forces only, letting the effect of the angular
correction be embedded in these.
The magnitude of the buoyancy is assumed to be independent of the motion, and there-
fore disregarded in the unsteady experiments as it was in the steady experiments.
Since the potential code was able to reproduce the steady corrections for solid blocking
and streamline curvature very well, it most likely will be able to produce corrections
for the change in the dynamic wake interaction and the imposed velocity normal to
the wind tunnel walls as well. In the following, results from the potential code will
be shown. The movement period was discretized using a minimum of 400 time steps,
which corresponds to a dimensionless time-step of maximum 0.06 based on the airfoil
chord. A study of the influence of the time step on the panel code solution is given
in appendix C, where the solution obtained with the panel code is compared to the
analytical unsteady potential theory solutions of an oscillating airfoil from section 3.2,
and to Wagner’s solution to the impulsively started flow, described in [13]. From this
investigation it was seen that the current temporal discretization is adequate.
Since the effect of the unsteady wake in potential computations is a reduction in the
amplitude of the oscillating forces and a shift in the phase2 as compared to quasi-steady
results. Due to the changed wake, it could be suspected that the tunnel walls might
change the phase of the forces as well the amplitude of the forces.
In order to investigate the effect of movement direction, β, and angle of attack,
α, on various tunnel effects, free flow and tunnel computations were carried out
at reduced frequencies fred = 0.02 and fred = 0.03 for α = 0o, 5o, 8o and β =
0o, 20o, 45o, 70o, 90o, 110o, 135o, 160o. For all simulations with fred = 0.02 a simulation
period of 2.75 movement periods was employed. In the fred = 0.03 cases a simulation
period of 3.75 movement periods was employed. This corresponds to dimensionless
times

t̃ = 2.75
V T

c
=

2.75

2fred
= 68.75 (4.21)

t̃ = 3.75
V T

c
=

3.75

2fred
= 62.50. (4.22)

Since the time is non-dimensionalized with the chord length, the starting vortex is
convected t̃ chord lengths downstream in this time. The results for the last period,
for example from t̃ = 2.75 to t̃ = 3.75 were used for the computations of mean values,
amplitudes and phase-shifts. As a measure for the periodicity could be noted that
Wagners function3 at beginning of the last period, has a value of 0.997 and 0.9975 in
the fred = 0.02 and fred = 0.03 cases, respectively, indicating that the results are quite
close to being periodic.

2the so called phase-lag described in section 3.2.
3described in appendix C.3
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Figure 4.4 shows an example of computed lift, quarter-chord moment, and drag
coefficient loops in free flow and tunnel. α = 5o and β = 20o. It is seen that the mean
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Figure 4.4: Lift coefficient (left), quarter-chord moment and drag coefficients (right)
versus position in free flow and tunnel. α = 5o, β = 20o, fred = 0.03, c/A = 13.16 and
h/c = 4.47.

value as well as the amplitude of the lift is augmented due to the restriction of the
tunnel. Furthermore a slight phase shift is noted. The tunnel adds a phase lag to
the lift. Similar trends is observed on the magnitude of the quarter-chord moment
coefficient, where the mean value is moved further away from zero, and the amplitude
is increased as well. On the drag loop a small augmentation of the amplitude is
noticed.
In order to understand the unsteady tunnel effect better, computed unsteady free flow
results are shown next.
From figure 4.5, it is evident that the mean lift and moment is independent of
movement direction and reduced frequency, whereas the mean drag decreases with
reduced frequency and component of motion perpendicular to the free stream.
This effect is known as the Knoller-Betz effect [26], which produces a net force in
the opposite direction of the flow by translating an oscillatory airfoil in a stream.
The fact that the mean drag is affected by the angle of attack is attributed to
discretization errors, which increase with the angle of attack due to the relatively
more localized pressure peak on the suction side of the airfoil. Figure 4.6 shows
the influence of α, β and fred on the unsteady free flow force coefficient ampli-
tudes. As expected, all force amplitudes increase with reduced frequency. Moreover
they follow the general trend of maximum values for a movement direction perpendi-
cular to the free stream, and minimum when the motion is in the stream-wise direction.

In the following, comparison between computed unsteady free flow and tunnel
solutions will be shown. These form the basis for the formulation of the unsteady
tunnel corrections.
Figure 4.7 shows the effect of movement direction, β, and angle of attack, α, on the
tunnel effect on the lift at reduced frequencies fred = 0.02 (left figures) and fred = 0.03
(right figures). The upper figures show the ratios of the mean lift in the unsteady cases
compared to the steady ratios. It is observed that the values, are very close (<0.1 %) to
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Figure 4.5: Mean forces and moments for free flow. Influence of movement direction, β,
and angle of attack, α (left figures). Influence of reduced frequency fred (right figures).
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Figure 4.6: Amplitudes of forces and moments for free flow. Influence of movement
direction, β, and angle of attack, α (left figures). Influence of reduced frequency fred
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Figure 4.7: Influence of movement direction, β, and angle of attack, α, on the free-flow-
to-tunnel-flow ratios of the mean lift (upper figures), lift amplitudes (middle figures)
and lift phase shift in degrees (lower figures). The phase shift is defined positive when
the maximum tunnel signal is after that of the free flow (lags the free flow signal).
The reduced frequencies are fred = 0.02 (left figures) and fred = 0.03 (right figures).
A/c = 13.16 and h/c = 4.47.
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the steady ones, independent on the variation in α and β. This is not surprising, since
the potential theory is linear in nature. The slight difference between the unsteady and
steady ratios is attributed to the fact that the fully periodic behavior is approached
exponentially, due to the starting vortex in the unsteady calculations, analogous to
Wagners function. The strength of this starting vortex is dictated by the local condi-
tions, the velocity of the flow and profile and tunnel walls, at the starting time of the
flow. This effect would be interpreted as what is observed in the upper figures of fig-
ure 4.7. If the flow was in fact fully periodic a periodicity of 180o in β would be present.

Moving on to the free-flow-to-tunnel-flow ratios for amplitudes of the lift, which
are shown in the middle figures of figure 4.7, it is noted that these values are constant
within 1% at a given reduced frequency. The level of the amplitude ratios increases
with reduced frequency, indicating that the augmentation of the lift amplitude by
the presence of the tunnel walls is decreasing with relative frequency. This is an
unexpected effect which will be discussed more in depth later in this section.
It is seen that the mean lift amplitude ratios increase slightly with α. Furthermore
it is noticed that the deviation from the mean amplitude of the lift ratios is greatest
when β is near 90o, corresponding to the smallest variations in the unsteady lift. The
reason for this is unknown to the author, but discretization errors may play a role, as
may the fact that truly periodic results are not fully obtained.

The free-flow-to-tunnel-flow phase shift of the lift signal is shown in the lower
figures in 4.7. The phase shift is defined positive when the tunnel quantity is behind
the free flow quantity, meaning that the tunnel quantity reaches the extremum later
than the free flow case. The phase shift is determined from the extrema of the lift
signals. The accuracy in determining the extremum of the signal was refined by
calculating the exact extremum of the second order polynomium going through the
extremum point and its two neighbor points.

The phase shift of the lift is positive in all cases considered. This implies that
the effect of the tunnel works is in the same direction as the phase lag effect from
the unsteady wake. The general level of the phase shift increases when the reduced
frequency is increased from 0.02 to 0.03, and the mean values of the phase shift
decreases with the angle of attack. At a given angle of attack and reduced fre-
quency, the phase shift is fairly constant, with the biggest variations, up to 1o, near
β = 90o. The reason for the greater variation near this movement direction is at-
tributed the the greater uncertainty due to the nearly constant lift signal in this region.

Figure 4.8 shows free-flow-to-tunnel-flow quantities for the quarter-chord moment,
corresponding to the one in figure 4.7. The free-flow-to-tunnel-flow ratios of the mean
moments are shown in the upper figures of figure 4.8. In this case an upward shift of
the ratios as compared to the steady results is noted. This corresponds to a decrease
in the enhancing effect of the tunnel. The shift in mean value, however, differs only
∼ 1.5% from the steady values, which is still fairly low. As was the case with the lift,
the moment amplitudes show little dependance (a few percent) on the direction of the
motion. An interesting thing to note, is that the amplitudes of the moment are not
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Figure 4.8: Influence of movement direction, β, and angle of attack, α, on the free-
flow-to-tunnel-flow ratios of the mean quarter chord moment (upper figures), moment
amplitudes (middle figures) and moment phase shift in degrees (lower figures). The
phase shift is positive when the tunnel signal lags the free flow signal. The reduced
frequencies are fred = 0.02 (left figures) and fred = 0.03 (right figures). A/c = 13.16
and h/c = 4.47.
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affected as much as the mean level by the tunnel. This is a big difference compared
to the lift results. Again, at the β = 90o point, where the amplitude of the moments
are small, the ratios differ somewhat from the general trend. The ratio of amplitudes
of the moment is increased, analogous to the lift, with the reduced frequency. As in
the previous figure, the lower graphs in figure 4.8 shows the phase lag of the moment
added by the tunnel effect. This is higher than for the lift, around 4o, and shows no
big difference in level between fred = 0.02 and fred = 0.03, and only a slight variation
in α. Again the β = 90o point shows a peak value, which is attributed to the low
amplitudes of the moment.

In order to investigate more thoroughly the influence of the reduced frequency
on the unsteady tunnel effects, calculations were performed with and without tunnel
for two cases of angle of attack and movement direction : α = 5o, β = 0o and
α = 8o, β = 160o. The results of these simulations are shown in figure 4.9. In
the upper figures, the tunnel effect on the ratio of the mean lift (left) and mean
quarter-chord moment (right), is shown. In agreement with the earlier results, the lift
ratios are very close to the static ones, within 0.1%, whereas the moments lie above
the static ratios, at a maximum of 1.7%, increasing with reduced frequency. As stated
previously, the reason for the difference is unknown.
The middle graphs of figure 4.9 depicts the lift amplitude and moment amplitude
ratios, left and right respectively. In accordance with the results shown earlier, the
lift and moment amplitude ratios are fairly independent of incidence and movement
direction, but shows a dependance on the reduced frequency. The lift amplitude ratios
has a minimum at fred 	 0.015, and lies in the range from fred = 0.01 to fred = 0.045.
The amplitude of the moment is increasing in the whole interval. Notice that the
values of the lift amplitude ratios differ from the moment amplitude ratios.
The lowest two graphs in figure 4.9 shows the phase shift between the free flow and
tunnel forces. The phase shift of the lift (left figure) increases up to fred 	 0.032, after
which the phase shift values remain fairly constant. The levels as well as the form of
the quarter chord moment, shown in the bottom right graph of figure 4.9 differs from
the lift phase values, increasing from 0.3o − 0.7o up to 3.5o − 4.0o at fred 	 0.025, after
which they decrease to 1.5o − 2.5o at fred 	 0.041.
The drag from a steady potential flow solution is zero. This implies that the drag
component in the unsteady potential computations is of an induced nature. In figure
4.5 and 4.6, the mean levels and force amplitudes was shown for the unsteady free
flow panel code solutions, showing for example that the drag amplitude at α = 5o,
β = 0o and fred = 0.03 is 0.032, which is in the same order of magnitude as the total
true drag observed from static measurements [46]. In order to gain insight into how
the lift-induced drag is changed in the tunnel, the ratios of the drag amplitudes and
the phase shifts are shown in figure 4.10. Notice however, that these figures can not
be used as a basis for tunnel corrections, since effects from viscosity such as separation
and viscous drag, which is the major contributor to the total drag in a big part of
the experimental cases, are not modelled in these data. The results may, however,
show the parameters on which the tunnel effect on the induced type of drag depends.
The results shown in figure 4.10 indicate that the amplitude ratio of the induced drag
depends strongly on the angle of attack and movement direction, and somewhat less
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Figure 4.9: Influence of reduced frequency on the free-flow-to-tunnel-flow ratios of the
lift characteristics (left figures) and moment (right figures) for two different configura-
tions of α and β, (α, β)1 = (5o, 0o) and (α, β)2 = (8o, 160o). The ratios of the mean
quantities are shown in the upper figures, the ratios of the amplitudes are shown in
the middle figures, and the phase shift, in degrees, is shown in the lower figures. The
phase shift is positive when the tunnel signal lags the free flow signal. A/c = 13.16 and
h/c = 4.47.
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Figure 4.10: Dependance of drag quantities on change in movement direction and angle
of attack (upper figures: fred = 0.02, middle figures fred = 0.03). The dependance of
drag quantities on change in reduced frequencies are shown in the lower figures. The
left figures show the drag ratios, and the right figures show the drag phase shifts. In
the lower to figures, the same configuration for α and β was used as in figures 4.9.
A/c = 13.16 and h/c = 4.47.
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drastically on reduced frequency. The strong dependance on the drag quantities of the
angle of attack and movement direction clearly reflects the fact that the drag in these
computations is induced by the lift. The added phase lag from the tunnel effect is
again strongly dependant on the angle of attack, direction of motion, and in this case
on the reduced frequency as well. Note that the overall shape and magnitude of the
two lower graphs match the corresponding graphs for the lift, again underlining the
fact that the unsteady drag in a potential solution is induced from the lift.
Even though it may be plausible to perform unsteady drag corrections based on the
panel code results for the lift induced drag forces in the fully attached case, this is
not done. The reason for this is that the corrections can only be used when the flow
is fully attached, which only holds true for a part of the experiments, leaving part of
the experiments uncorrected. Therefore another strategy was employed for the drag
forces, as will become evident later.

The results of an investigation of the influence of the amplitude of the motion is
shown in figure 4.11. It is seen that the ratio of the mean forces in free flow and tunnel
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Figure 4.11: Influence of movement amplitude on tunnel effect. The upper graph shows
the ratios of the mean quantities, the lower left graph shows the amplitude ratios of the
forces, and the lower right figure shows the phase change of the forces. α = 5o and
β = 0o.

flow is constant, as in all previous figures. Moreover, it is evident that there is no
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influence of the movement amplitude on neither the amplitude ratios or the phase shifts.

It has been observed that the amplitude ratios of all forces increase with reduced
frequency, signifying that the augmenting effect of the tunnel is decreasing as the fre-
quency, and hence amplitude of the velocity with which the airfoil moves, is increased.
It would be expected that an increase in the movement velocity should have greater
influence at the boundary, thus enhancing the tunnel effects on the airfoil. This would
lower the amplitude ratio, which is seen from the panel code results not to be the case.
In order to investigate the isolated effect of the tunnel walls on the induced velocities
on the airfoil from the wake, a simple model of the wake was considered. The unsteady
wake of the airfoil was modelled by a straight line expanding in the free flow direction
from the trailing edge of the airfoil, as shown in the right hand side of figure 4.12,
which shows the phenomenological relation between position, velocity, relative angle
of attack, lift, bound circulation and rate of vorticity shed in the wake. The position,
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Figure 4.12: Simple model of the unsteady wake of an airfoil undergoing translatory
oscillations parallel to the incoming flow, β = 0o. Left : phenomenological relation
between position, velocity, relative angle of attack, lift, bound circulation and rate of
vorticity shed in the wake. Right : Spatial distribution of wake vorticity at t = nTmov.

velocity and relative angle of attack of the airfoil are related through

y = A sin(2πfmovt)

ẏ = 2πfmovA cos(2πfmovt)

αrel = α− arctan
ẏ

V
.

From this, the expression for ∆αrel is

∆αrel = arctan
4πfmovA

V
	 4πfmovA

V
.

In order to relate the motion of the airfoil to the lift, and hence circulation, the following
relations are used

L = 2παrel (4.23)

L = ρV Γ, (4.24)
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thus obtaining

∆L = 8π2fmovA

V
and

∆Γ = 8π2fmovA

ρV 2
.

The use of the lift and relation between lift and circulation from the potential solution
of the steady flow over an infinitely thin airfoil is not strictly correct, but will suffice
in this phenomenological investigation. The main effect of the instationarity would be
the introduction of a phase lag of the wake with respect to the airfoil motion. However,
this effect is of no interest in the current derivation, as will become evident later.
From Kelvins theorem we get the shape of rate of vorticity shed in the wake, as shown
in the lower left of figure 4.12. From this the spatial variation of the wake vorticity is
as shown in the right hand side of the figure. The spatial period of the wake is given
from the period of the motion and the free flow velocity as

∆Xw = TmovV =
V

fmov

=
c

2fred
.

Employing Kelvins theorem once more, we get that ∆Γ is the amount of vorticity shed
in the wake between x = 0 and x = TmovV/2, as illustrated in figure 4.12. From this
the amplitude of the wake vorticity is determined as

γwa = 8π3f
2
movA

ρV 2
= 32π3f

2
redA

ρc2
. (4.25)

Based on the previous result, the final expression of the wake at time t is

γ(x) = 32π2Af
2
red

ρc2
sin(

4πfredx

c
− 4π

V fredt

c
) 0 < x. (4.26)

The induced velocity at the origio of a system in which two vortices with strengths Γ
located in (xv, h) and (xv,−h), as shown in the left hand side of figure 4.13, is

w =
Γ

πh
find(xv/h) (4.27)

find(xv/h) =
xv/h

1 + (xv/h)2
. (4.28)

From this expression it is seen that find determines the geometrical influence of the
x-coordinate of the vortices. It is noted that find is a function of xv/h only. The right
graph in figure 4.13 shows find versus xv/h. It is noted that the maximum value of
find is at xv/h = 1. This implies for the tunnel mirror wakes that the most important
part of the wake with respect to the induced velocities from the nearest mirror-wakes
lies one tunnel height downstream of the airfoil. The wake and the two nearest mir-
ror wakes are shown for three different reduced frequencies in figure 4.14. It is noted
that the phase of the mirror vortex sheets in the most sensitive area, around x ∼ h, is
shifted with respect to the motion of the airfoil as the reduced frequency of the motion
is changed.
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Figure 4.13: Left : induced velocity from two vortices with strengths Γ located in (xv, h)
and (xv,−h). Right : find(xv/h) from equation 4.28.

In order to investigate the full effect of the tunnel on the induced velocities, the induced
velocity from the wake was computed numerically from equation 4.26 and 4.27 using
30 mirror images of shifting sign above and below the actual wake vortex, a total of
60 mirror wakes. Each wake was discretized using 200 equidistantly located concen-
trated vortices per period of the wake. Two spatial periods of the wake was considered.
Figure 4.15 shows the effect of tunnel walls on the induced velocity from the wake at
the quarter-chord point. On the upper graph, which shows an example of the induced
velocity from the wake in free flow and in a tunnel, it is seen that the effect of the wake
is substantially modified by the addition of the tunnel walls. In the lower right graph,
the phase change introduced by the addition of the tunnel wall is shown as a function
of reduced frequency. The values of the phase change ranges from −25.7o to −23o,
indicating a strong tunnel effect on the phase of the induced velocity from the wake.
Another manifestation of the strong tunnel effect on the induced velocities from the
wake is evident in the lower left figure, where the amplitude ratios of the free-flow-to-
tunnel-flow values for the induced velocity is shown as a function of reduced frequency.
This value is decreasing towards unity as the reduced frequency is increased. This may
give an explanation to the surprising behavior of the force amplitude ratios versus re-
duced frequency depicted in the middle graphs of figure 4.9.
The general effect of the unsteady wake in oscillating potential flow is a reduction of
the amplitudes of the forces compared to quasi-steady results, as well as a shift in the
phase, the so-called phase lag4. The fact that the amplitude ratios decrease towards
one with increasing reduced frequency, indicates that the reduction of the induced ve-
locities by the presence of the tunnel walls decrease. If this is interpreted as a general
increase of the wake effect on the forces, then this is a possible explanation of the in-
crease in the force amplitude ratios with reduced frequency.
The instationary effect on the forces, and hence circulation, is a reduction of the am-
plitudes, as well as a phase lag. This effect is reflected in the wake of an unsteady flow,
but the phase change and amplitude ratio change of the induced velocities due to the
presence of the tunnel walls remains unaltered. Therefore the present results apply in

4this is explained in chapter 3.2
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the unsteady case as well.
The simple analysis of the tunnel wake effect is essentially based on the geometric pro-
portions of the wake-tunnel system, meaning that the relative effect of the tunnel, the
phase shift and velocity amplitude ratios of the induced velocities, are independent
of the actual wake strength. Therefore, the key parameter on the effect is the wake
wavelength to tunnel height ratio

V

fmovh
,

or, in terms of non dimensional quantities

c/h

2fred
.

The fact that the dynamic behavior of the airfoil-tunnel system is independent of
the amplitude of the airfoil motion, and hence, the amplitude of the velocity with
which the airfoil moves, suggests that the explanation to the relative decrease in force
augmentation by the tunnel walls is not related to the amplitude. This is another
indication that the alteration of the wake effect by the presence of tunnel walls is
responsible for the decreasing tunnel effect with increasing reduced frequency.
The very simplified analysis of the tunnel effect on the induced velocity by the wake
gives a hint at the explanation to the observed effect, but it is the author’s belief
that the full explanation to this effect lie hidden in the complex feedback effect of the
wing-wake-wall system.

In order to investigate the correctness of the corrections obtained with the panel
code for stalling airfoils, modifications were made to the steady code, allowing the
airfoil to be at a high incidence while limiting the lift/circulaton to a specified level,
emulating the characteristics of a stalling airfoil. The modified solution still obeys the
Neumann condition on the surface of the airfoil, but violates the Kutta condition, as
explained in section 3.5.6. This modification creates a singular point at the sharp trail-
ing edge of the profile. Since the conditions for the airfoil are not directly physically
meaningful, an indirect comparison of the tunnel effect was undertaken by comparing
the tunnel source strengths for the two cases, since the tunnel wall source strength
obtained from the solution is an indirect measure of the tunnel effect.
Figure 4.16 shows the comparison between the tunnel wall source strength for an
attached flow around an airfoil at 8o incidence, and an airfoil at 20o incidence, with
identical circulation (left) and lift (right), where it is noted that the tunnel source
distributions for attached and stalling cases are almost identical. From this it was con-
cluded that the extra physical blockage associated with a stalling profile compared to
a profile with attached flow having the same lift, is of minor importance.

Correction of the dynamic signal based on panel code results are basically based on
a positive slope of the steady lift curve, meaning that more or less the same relation
between the wake strength and profile motion exist. The wake is locked into a certain
phase shift range with respect to the motion due to the limitations of the panel code.
This could have implications on the correctness of the obtained corrections in the
stalling case because in this case the slope of the lift curve can be negative due to
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Figure 4.16: Comparison between tunnel wall sources for attached and stalled flow with
identical circulation (left) and identical lift (right). The incidences of the airfoils are
α = 8o and α = 20o for the attached and stalled cases, respectively. h/c = 4.47.

the complex nature of separation and stall, shifting the phase of the wake strength
drastically in relation to the airfoil motion.

In spite of this, the unsteady corrections obtained with the panel code were used to
obtain corrections for both attached and stalling experiments for blocking, streamline
curvature, and unsteady effects.

The effect of the tunnel walls on the highly non-linear dynamic effects, such as
the onset of stall and separation, are not modelled in the present corrections due to
the inherent limitations of the potential code. Standard steady corrections do not
take into account these effects either, and are still being used widely in lack of better
tools. However, the tunnel effect of stall and separation can be indirectly corrected for
by use of the wake blockage correction. As this is computed from the mean drag in
the unsteady case, the Knoller-Betz effect is actually influencing the magnitude of the
correction. As shown previously, this effect is very weak in the cases considered, and
will therefore not add considerably to any under-correction of the data.

Corrections to the phase are not applied in this work, since the behavior of the
measured system may differ considerably from the panel code results due to turbulence
and viscous effects such as stall and separation. The above investigation, however, sheds
some light on the magnitude of the tunnel phase shift effect, and on the parameters on
which it depends.
From the potential code results it was seen that the effect of the tunnel walls in most
cases was a phase lag of the forces, effectively enhancing the effect of the unsteady
wake. In most cases the tunnel phase lag for the lift forces ranged from 1o to 3o, and
slightly higher for the quarter chord moments.
The effect of a 3o phase shift of the signal may not have a significant effect on the
damping coefficient, since the phase shift between the velocity and the forces are not
big, always below 15o according to Theodorsens phase-lag function5. Due to the same
argument, it could be argued that a small change in the phase shift could have a
relatively big influence on the mass coefficient, since the part of the aerodynamic forces
contributing to that is 90o out of phase with the velocity.

5see section 3.2.
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Final Form of the Unsteady Corrections

Based on the previous observations and discussions, the following tunnel corrections
are proposed.
Summarizing the results for the combined unsteady solid body correction, streamline
curvature, and effect of motion, the corrections read :

C�
L = CLTF1 + (CLT − CLT )F2 (4.29)

C�
M = CMTF3 + (CMT − CMT )F4, (4.30)

where the functions F1 to F4 are determined from the potential code simulations. In
the general case F1 and F3 are functions of the height to chord ratio only, whereas the
corrections to the dynamic quantities, F2 and F4 depend on the height to chord ratio
and reduced frequency. If we restrict ourselves to the experimental set-up of this work,
with h/c = 4.47, F1 and F3 are constants with the values

F1 =
CL

CLT

= 0.9722 (4.31)

F3 =
CM

CMT

= 0.8616 (4.32)

Analytical expressions for F2 and F4 were determined by the least squares fits of third
order polynomia to the amplitude ratio data shown in figure 4.9. Figure 4.17 shows
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Figure 4.17: Analytical fit for the lift ratio, F2, (left) and quarter chord moment ampli-
tude ratio, F4, (right), as functions of reduced frequency. A/c = 13.16 and h/c = 4.47.

the obtained analytical fits for the experimental geometrical setup, which read

F2 =
CL Amplitude

CLT Amplitude
= −3862f 3

red + 346.1f 2
red − 7.400fred + 0.9466 (4.33)

F4 =
CM Amplitude

CMT Amplitude
= −4412f 3

red + 340.8f 2
red − 4.508fred + 0.9227. (4.34)

The additional correction for the wake blockage is essentially the steady wake blockage
correction applied to the corrected unsteady values

CL = C�
L(1− 2εwb) (4.35)

CM = C�
M(1− 2εwb). (4.36)
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The unsteady drag is corrected using the same approach, but including the analytical
correction for the solid blocking

CD = CDT (1− 3εsb − 2εwb). (4.37)

In equations 4.35 to 4.37, the values of εwb and εsb are given by equations 4.7 and 4.1,
respectively, where the mean value of the drag coefficient is used in equation 4.7 to
determine the wake blockage parameter εwb.

An example of the effect of the corrections

In order to show the effect of the derived unsteady tunnel corrections, figure 4.18
shows the non-dimensional aerodynamic damping and added mass as function of
reduced frequency for uncorrected experimental results, corrected experimental results,
and Navier-Stokes simulations. The incidence in the shown case is α = 8o, and the
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Figure 4.18: Effect of the unsteady tunnel correction at α = 8o β = 160o. Non-
dimensional aerodynamic damping (left) and non-dimensional aerodynamic added mass
(right) as function of reduced frequency. The dashed curve corresponds to the damping
and added mass from the uncorrected forces.

direction of the movement is β = 160o. In this case the Navier-Stokes computations
should be able to predict the dynamics of the flow accurately because of the attached
flow at that particular incidence.
It is seen in the left figure, that the aerodynamic damping of the corrected expe-
rimental data agrees very well with the aerodynamic damping predicted with the
Navier-Stokes code. The results for the added mass, shown in the right figure, is
not quite as encouraging as in the damping case. However, the correction drags the
experimental values in the direction of the Navier-Stokes results.
It was shown previously that one of the effects of a wind tunnel is a slight phase-lag
of the dynamic forces in the tunnel with respect to corresponding free-flow forces.
This may have implications on the uncertainty of the aerodynamic damping, and in
particular on the aerodynamic added mass.
Consider the following arguments. The source of the aerodynamic damping is found
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in both quasi-stationary forces and phase-lag/lift deficiency effects. The source of the
aerodynamic added mass are phase-lag/lift deficiency effects exclusively. Therefore,
added mass effects are more sensitive to any phase errors introduced by the presence
of tunnel walls. This leads to the conclusion that the uncertainty in the prediction of
the added mass is higher than the uncertainty of the aerodynamic damping due to the
changes in the phase of the dynamic forces caused by tunnel effects.
The general effect of the unsteady wake in fully attached flows can be described by the
phase-lag and lift deficiency effects, as described in section 3.2. The phase-lag effects
correspond to a positive added mass, as seen in the right figure. Since the effect of the
tunnel is an additional phase-lag, the added mass extracted from tunnel experiments
would be higher that the corresponding free-flow experiments, even after a correction
using the unsteady corrections proposed in this work.
It is the authors belief, that this explanation in combination with the uncertainty of
the experiments in general explains the difference between the added mass extracted
from the experiments and the ones predicted using the Navier-Stokes code.

Based on the previous discussion, it is seen that figure 4.18 indicates that the
proposed unsteady tunnel corrections work fairly well in the shown example.

4.2 Pitching versus translatory motion

Many engineering models describing the aerodynamic forces on wind turbine rotors
treat translatory and pitching motion identical. Identical in this sense means that the
aerodynamic forces of a translatory motion is evaluated as the forces from the pitch-
ing motion with an angular variation corresponding to the relative flow velocity in the
translatory case.
As an example of this can be mentioned the dynamic stall model proposed by Stig Øye
[63], which is widely used in the wind turbine industry in the program FLEX4/FLEX5
[64]. In many cases, this procedure gives good results. However, sometimes the short-
comings of such models can make simulation of certain phenomena impossible.
The following example outlines the difference between the dynamic response of the
forces from motion of an airfoil giving identical relative angles of attack in the case of
attached flow.
Figure 4.19 shows a comparison of lift, drag and moment coefficient histories for a
NACA 0015 airfoil undergoing heaving motion, β = 0o,

y

c
= 0.13 sin(ωt), (4.38)

and pitching motion corresponding to the relative angle of attack in the heaving case,

α = 5o + 4π0.13fred cos(ωt)
180

π
= 5o + 2.8o cos(ωt). (4.39)

The five different pitching curves corresponds to pitching around the leading edge,
pitching around the 25%, 50% and 75% chord points and pitching around the trailing
edge. The results are computed using the numerical panel code described in section
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3.5.
The upper figure clearly shows that the lift coefficient of the heaving case is matched
very well for pitching motion around the 75% chord point. This agrees with what is
predicted by the unsteady potential theory, where the motion at the 75% chord point
determines the forces on the profile, excluding the virtual mass terms.
Even though the lift of a heaving airfoil is matched very precisely by the corresponding
pitching motion around the 75% point, the drag and moment are very far from being
matched, as seen in the lower left and right figures of figure 4.19. The magnitude, and
especially the phase of the drag and moment forces, are far from the corresponding
heaving case.
The difference between the drag curves in the two cases can be understood by recalling
from section 3.2, that the drag in a potential flow has three terms. A quasi-steady term
which arises because to the forces from the flow acts perpendicular to the relative flow
velocity, a virtual mass term, and a term from the change in relative angle of attack
due to the unsteady wake. Clearly, both the quasi-steady term and the virtual mass
term are inherently different in the translating and pitching cases despite any efforts
to match the relative angle of attack.
The differences between the quarter-chord moment curves in the two cases can be un-
derstood similarly. Since both the quasi-steady forces and the forces from the unsteady
wake acts in the quarter-chord point, they do not contribute to the quarter-chord mo-
ment. The quarter-chord moment in a unsteady potential flow therefore consist of
virtual mass terms and a quasi-steady moment term due to the angular velocity of
the airfoil. Clearly both of these terms are different in nature for the translating and
pitching cases.
If the direction of the motion is different from the heaving direction, it is possible that
other effects, such as for instance the variation in bound circulation on the airfoil due
to the variation of the relative velocity, might introduce even more effects that render
the use of a corresponding pitching motion inappropriate.
The investigation above is valid only for attached flows. However, since the mecha-
nisms for attached flows, which are much lower in complexity than for stalling flows,
shows that both drag and moment loops are predicted very different in the cases with
identical relative angles of attack, it seems most likely that the response of the aero-
dynamic forces from airfoils in stall could be substantially different in the two cases as
well.

4.3 Analytical Models

In this section results from the analytical models are compared to the experimental
data. Focus in the comparison is on the performance of the new heuristic dynamic
stall model. Results from analytic unsteady potential theory and quasi-steady theory
are shown to highlight the differences between the models.
The comparison between the experimental results and the results of the analytical
models begins with a comparison of the non-dimensional aerodynamic damping and
added mass, and works its way up in detail level, ending with a comparison of selected
force loops.
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In order to show the overall features of the analytical models, figure 4.20 shows
the non-dimensional aerodynamic damping as function of incidence, α, and direction
of motion, β, for the analytical models and the experiments. The left and right figures
show the non-dimensional aerodynamic damping at reduced frequencies fred = 0.02
and fred = 0.03, respectively. The results for the quasi-steady and the new dynamic
stall models are based on the mean steady experimental lift and drag coefficients at
Re = 555.000, and does not include any specific information about the different stall
modes. These circumstances will be given attention later in this section.
The upper graphs of figure 4.20 shows the aerodynamic damping computed using ana-
lytical potential theory. Potential theory assumes fully attached flow, which means that
the results are only physically meaningful at low incidences, α < 8o. In this region the
agreement with the experimental results, shown in the lower graphs, is good. However,
as the incidence is increased into the stalling region the agreement is bad owing to the
assumption of attached flow. A region of negative aerodynamic damping exist in the
potential analytical results in the region near β = 90o for incidences above α = 10o.
As mentioned, this is beyond the range of validity for a potential model, rendering the
results at these incidences meaningless for any potential model. The non-dimensional
aerodynamic damping is slightly lower at reduced frequency fred = 0.03 compared to
the fred = 0.02 case. This is attributed to the effect of Theodorsen’s function, C(k), as
shown in figure 3.3 in section 3.2. Both the phase lag and lift deficiency effects causes
a reduction in the oscillatory forces in phase with the velocity. This leads to a decrease
of the non-dimensional damping.
The upper middle figures of figure 4.20 shows the non-dimensional aerodynamic dam-
ping from the quasi-steady theory. As mentioned before, these results are based on
the steady profile coefficients, and their derivatives with respect to the incidence, and
does not take into account the effect multiple stall modes. The non-dimensional aero-
dynamic damping is independent of the reduced frequency for the quasi-steady theory.
This follows from the non-dimensionalisation. The non-dimensional quasi-steady coef-
ficient of aerodynamic damping is obtained from equation 3.87 by division with 0.5ρcV

CDA,QS = sin β cos β(CLα + C ′
Dα) + cos2 βC ′

Lα + (1 + sin2 β)CDα. (4.40)

This expression only depends on the aerodynamic coefficients and the direction of the
motion.
Comparison of the quasi-steady results with the experimental results show that the
quasi-steady model predicts the general aerodynamic damping at the low incidences
fairly well. The agreement between quasi-steady and experimental data at the
high incidences is not very good. The general level of the aerodynamic damping is
somewhat lower for the quasi-steady results than for the experiments, and the model
fails to predict the location and magnitude of the minimum aerodynamic damping.
Quasi-steady theory predicts that the minimum aerodynamic damping should be
located close to the flap-wise direction at α = 20o. Clearly, this is not the case in
the experiments, where the minimum aerodynamic damping was found to be close to
the chordwise direction. The explanation to this effect may lie in the existence of the
multiple stall modes, which will be given attention later in this section.
The results from the new stall model is shown in the lower middle figures. The
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Figure 4.20: Non-dimensional aerodynamic damping versus β and α. Left: fred = 0.02,
Right: fred = 0.03. Upper: Analytical potential theory. Upper middle: Quasi-stationary
theory. Lower middle: New stall model. Lower: Experimental results.
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absolute value of the non-dimensional damping is slightly lower for the case with
fred = 0.03 (left) than it is for the case with fred = 0.02 (right). The reason for this is
the same as for the potential theory results, dictated by Theodorsen’s function, C(k).
Comparison of the non-dimensional aerodynamic damping from the new stall model
with the quasi stationary results show that the general form of the damping is quite
similar for the two models. However, the absolute value of the damping is generally
slightly lower for the new model, except for the chordwise direction at incidences below
α = 8o, where the new model is slightly more negatively damped that the quasi-steady
model. As was the case for the quasi-steady model, the new stall model predicts the
general aerodynamic damping at the low incidences fairly well, but fails to predict the
location and magnitude of the minimum aerodynamic damping. Again, the effect of
the multiple stall modes on the performance of he new dynamic stall model will be
given attention later in this section.

The aerodynamic damping is an integral quantity expressing the part of the force in
phase with the velocity in the direction of the motion. The integral quantity expressing
the force in phase with the acceleration is the aerodynamic added mass, which can be
non-dimensionalized with the mass of a unit depth circular cross-sectional cylinder of
air with half-chord radius, π0.25c2ρ.
Figure 4.21 shows the non-dimensional added mass as function of α and β for the
analytical models and the experiments at reduced frequencies fred = 0.02 (left) and
fred = 0.03 (right). Note that forces predicted using quasi-steady theory is in phase
with the velocity of the motion because the aerodynamics is based on velocity trian-
gles. Therefore the aerodynamic added mass (upper middle figures) in a quasi-steady
computation is zero.
The upper graphs of figure 4.21 shows the non-dimensional added mass computed
using analytical potential theory. The shape of the non-dimensional added mass is
similar for the two different reduced frequencies, but the absolute level of the surfaces
decreases as the reduced frequency is increased. The general agreement with the
experimental results is not as good as in the aerodynamic damping case. Again the
potential results are only physically meaningful at low incidences, but it seems that
high limit on the incidence in this case is maximum α = 5o. This shows that the
aerodynamic added mass is a more sensitive quantity with regards to the effects of
stall.
The lower middle figures show the non-dimensional added mass from the new dynamic
stall model. Analogous to the analytical potential results, the general shape of the
non-dimensional added mass is similar for the two different reduced frequencies, with
the absolute values of the non-dimensional added mass somewhat lower in the case
of fred = 0.03 than in the case of fred = 0.02. A comparison of the non-dimensional
added mass computed using the new stall model generally shows the same trends as
the experimental results, but the absolute level of the experimental added mass is
slightly higher than the results computed using the new stall model. Analogous to the
comparison of the non-dimensional aerodynamic damping, the location and level of
the minimum non-dimensional added mass is not predicted accurately. In this case
the absolute level of the experimental values are significantly larger than the ones
predicted by the new stall model. This could indicate that the phase-shifting effect
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Figure 4.21: Non-dimensional aerodynamic added mass versus β and α. Left: fred =
0.02, Right: fred = 0.03. Upper: Analytical potential theory. Higher middle : Quasi-
steady theory. Lower middle: New stall model. Lower: Experimental results.
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increases as the angle of attack is increased into the stalling region. However, since
the double stall phenomenon adds a considerable amount of uncertainty to the actual
levels of both mean steady and unsteady data, conclusions of this kind should be
stated very carefully in this case.
The fact that the general shape of the added mass is correct supports the assumption
that the dynamics of the flow can be described by a model similar to a unsteady poten-
tial theory model, which is one of the basic assumptions behind the new stall model.
However, the present results indicate (as stated previously) that the phase-shifting
effect is not modelled correctly in the stalling region.

The presence of the multiple stall modes in the experiments renders the validity of
using only one set of characteristic constants for each angle of attack dubious with the
present set of data. If the mean data should be extracted with a reasonable accuracy,
the time-series would have to be sufficiently long to get enough information on the
statistics of each stall mode. This means that the likelihood of having one specific
stall mode should be determined with a high degree of certainty. However, since the
present experimental measurements consist of only 60 second sampling periods, the
uncertainty on the stall-level statistics, and hence the levels of the mean lift, drag and
moments, are connected with a very big uncertainty in the region where multiple stall
modes occur, for 15o < α < 20o.

In order to investigate if the aerodynamic damping of the specific stall modes for
a moving airfoil can be predicted using steady force coefficients for the corresponding
stall modes, figure 4.22 shows a comparison of the non-dimensional aerodynamic
damping (left) and added mass (right) from the analytical models and the experiments
at angles of attack α = 15o and α = 20o. Because not all three stall modes were
present in the steady part of the experiments, only force coefficients and derivatives for
the two stall modes present at each angle of attack can be found. The force coefficients
and derivatives used in the simulations are given in the table below.

Mean α = 15o Hi α = 15o Vhi α = 15o Mean α = 20o Lo α = 20o Hi α = 20o

CL 1.05 1.05 1.07 0.62 0.55 0.95
CD 0.12 0.12 0.11 0.28 0.28 0.33
∂CL
∂α -1.07 -1.07 0.01 -3.93 1.38 -0.26
∂CL
∂α 2.13 2.13 1.40 1.28 1.27 2.41

As evident from the table, the low stall mode was not present in the steady α = 15o

experiment, as was the very high stall mode at α = 20o. Furthermore it is seen that
the mean and the high stall modes are identical for the α = 15o case. The derivatives
of the force coefficients in the low and high stall modes for α = 20o is computed
from the steady experimental data shown in figure 2.14 using forward and backward
differences, which introduces some uncertainty in the results.
It is seen from figure 4.22, that the specification of separate coefficients for each stall
mode generally improves the prediction of the non-dimensional aerodynamic damping;
greatly so in the α = 20o case. Note that the mean and high stall mode curves
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Figure 4.22: Comparison of analytical models and experimental results at incidences
where multiple stall occurs. Non-dimensional aerodynamic damping (Left) and non-
dimensional added mass (Right) versus movement direction, β. The reduced frequency
is fred = 0.02. Upper: α = 15o. Lower: α = 20o.
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predicted with the analytical models in the α = 15o case are identical due to the
identical force coefficients.
The results from the new stall model is in all cases closer to the experimental results
than the quasi-steady results.
Even though the specification of the separate force coefficients for each stall mode im-
proves the prediction, there is still noteworthy discrepancies. Generally the predicted
aerodynamic damping is lower than the experimental values. Another difference is the
location of the minimum aerodynamic damping in the α = 15o case. The new model
predicts the minimum to be located at β = 140o, which is 30o from the experimental
minimum at β = 110o.
Proceeding to the non-dimensional added mass, shown in the right hand figures of
figure 4.22, it is seen that no improvement in the prediction of the added mass was
evident when using the data from the specific stall modes as input to the analytical
models. This tells us that none of the analytical models are able to predict the exact
dynamics of the complex stalling flows.
The experimental aerodynamic damping is fairly independent of the stall mode for
all data-points. This could mean that a general mechanism, independent of the stall
mode, in the dynamics of a stalling flow determines the aerodynamic damping.
None of the analytical models were able to reproduce this mechanism.

In order to evaluate the performance of the analytical models on a wider spectrum
of reduced frequencies, figure 4.23 shows the non-dimensional aerodynamic damping
(left) and added mass (right) as function of the reduced frequency of the motion
for the experiments and the analytical models. The non-dimensional aerodynamic
damping and added mass is shown for four different configurations of incidence, α,
and direction of motion, β.
The upper figures are at the incidence α = 5o and direction of motion β = 0o. The
upper left figure shows the non-dimensional aerodynamic damping for the experimental
results and all analytical models. The reduced frequency was varied in the range from
approximately fred = 0.01 to fred = 0.04. As shown previously, the quasi-steady results
are independent of the reduced frequency, whereas the potential results decrease as
the reduced frequency is increased. It is seen that the dynamics of the new model is
similar to the dynamics described by potential theory. The level of the aerodynamic
damping is lower for the new model than it is for the potential theory results. This
is mainly due to the difference between 2π and the slope of the CL curve. The
present slope is ∂CL/∂α = 5.11 = 0.81 · 2π. Both the new model and the potential
theory results compare well with the experimental values of the non-dimensional
aerodynamic damping. The fairly good agreement between the experimental results
and the potential theory is due to the flow being fully attached.
Due to the restrictions of the movement mechanism, the Reynolds-numbers of the
dynamic experimental runs had to be reduced in order to increase the reduced
frequencies. The Reynolds-numbers corresponding to the reduced frequencies are
given in the table below.

fred < 0.0225 0.024 0.031 0.035 0.041

Re 555.000 470.000 383.000 330.000 270.000
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Figure 4.23: Comparison of analytical models and experimental results. Non-
dimensional aerodynamic damping (Left) and non-dimensional added mass (Right) ver-
sus reduced frequency, fred. Upper: α = 5o and β = 0o. Upper middle: α = 8o and
β = 160o. Lower middle: α = 15o and β = 135o. Lower: α = 20o and β = 0o.



4.3 Analytical Models 125

Reynolds-number effects and general increased uncertainty in the experiments at lower
Reynolds-numbers may explain the difference between the experimental and the new
model aerodynamic damping.
The upper right figure shows the non-dimensional added mass for the same configu-
ration of α and β. Generally, the results of the potential theory and the new model
agree well due to the attached flow. The agreement with the experimental data is
fairly good, even though the experimental results are at a somewhat higher level for
fred > 0.0225. The reason for this may lie in uncertainties in the experiments.
The upper middle figures show the non-dimensional aerodynamic damping and added
mass at α = 8o and β = 160o. In general the tendencies are the same as in the upper
figures, but the agreement between the new stall model and the experimental results
are better in this case, especially for the non-dimensional added mass. This adds to
the suspicion about the experimental uncertainty in the α = 5o case stated above.
The lower middle figures are at α = 15o and β = 135o, for which multiple stall modes
exist in both the static and moving experiments. The steady force coefficients and
derivatives for the high stall mode and the mean are identical. This leads to identical
aerodynamic damping and added mass for the high stall mode and the mean when
using the new stall model.
The left lower middle figure shows the non-dimensional aerodynamic added mass.
In agreement with the earlier comparisons between the analytical models and the
experimental data in the stalling region, the analytical models are not able to
predict the correct aerodynamic damping. The predicted damping is lower than
the experimentally obtained values at all reduced frequencies. In agreement with
the experimental results, the aerodynamic damping of the very high stall mode is
higher than the other levels. The new stall model does not show the same dramatic
effect of the reduced frequency as the experimental results. A part of this effect
may be attributed to Reynolds-number effects, but it is the authors belief that the
simple dynamics of the new model does not account for the complex effects for the
stalling flows. The right figure shows the corresponding non-dimensional added mass.
Analogous to the cases compared earlier, the analytical models underestimates the
added mass quite dramatically for all stall modes. Again, it is evident from the figures
that some dynamic features of stalling flows are not predicted correctly using the new
model.
The last configuration for which the influence of reduced frequency is investigated,
is α = 20o and β = 0o. The results for this case is shown in the lowest figures in
figure 4.23. As the earlier comparisons have shown, the specification of separate
force coefficients greatly improves the predicted level of the aerodynamic damping.
The general trend in the experimental data is, as in the previous stalling cases, not
predicted correctly using any of the analytical models.
The right figure shows the non-dimensional added mass, where it is noted that the
predictions get worse using the separate force coefficients. The effect of the reduced
frequency is, as for the previously investigated stalling cases, not predicted correctly.

Summarizing the investigations of the performance of the new dynamic stall model
with regards to prediction of the non-dimensional aerodynamic damping and added
mass, the following conclusions can be drawn.
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• Good agreement between the new dynamic stall model and experimental results
for angles of attack up to α = 8o.

• Not good agreement between the new dynamic stall model and experimental
results for angles of attack above α = 8o.

• The prediction of the aerodynamic damping generally improves by use of separate
force coefficients for each stall mode.

• The new stall model is missing important dynamics in the stalling case.

In order to investigate the dynamic behavior of the new stall model in depth, the
rest of this section deals with comparison of force coefficient loops obtained with the
new model, quasi-steady theory and experimental values.

A comparison of force coefficient hysteresis loops at α = 5o and fred = 0.02 are
shown in figure 4.24. The direction of the motion, β, is varied. The first column
of figures show the lift coefficient versus non-dimensional displacement parameter
z/c. The second and third columns show the drag and moment coefficient loops,
respectively. In order to indicate wether the force coefficient loops have the same
direction, an opening is kept in the loops at identical times in the period of the three
curves. This produces an easy way to determine if the direction of the quasi-steady,
new dynamic model and experimental loops are the same.
Comparison of the lift coefficient loops in figure 4.24 shows that the dynamic behavior
of the lift from new stall model matches the experimental results fairly good at this
angle of attack. The small differences in the mean level of the dynamic experimental
loops may be explained by the uncertainty in the adjustment of the angle of attack.
The shown runs are measured several hours apart, adjusted from other angles of attack
in between all the shown runs. Furthermore, the pressure-transducers were calibrated
in between each of the shown measurements, which adds to the differences between
the runs.
The middle column of the figure shows a comparison of the drag coefficient loops. In
this case the agreement is quite good. It is seen that the loops predicted by the new
model matches the experiments far better than the quasi-steady results at all shown
directions of motion, β. It should be noted that all the values from the experiments
are based on pressure measurements, and does therefore not include viscous forces.
This is of no concern in this comparison, though, because this is the case for both the
dynamic experimental results and the analytical results are pressure forces only.
The last column of figures shows a comparison of moment coefficient loops for the
new stall model and the dynamic experimental results. The agreement between the
loops is not especially good in this any of the cases shown. The determination of
the moments in the new stall model is based on an extension of the potential theory
expressions, which in the case of low drag is practically identical to the potential
theory results. These have the mean value zero because the theory is derived for
airfoils of infinitesimal thickness. The mean slope of the experimental and new stall
model hysteresis loops are in fairly good agreement, even though the actual shape of
the loops differ considerably.
The reason for the difference in the shape of the curves may be caused by a variety of
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Figure 4.24: Comparison of experimental and analytical model force loops at α = 5o

and fred = 0.02 at different directions of the movement, β. The left, middle and right
column shows CL, CD and CM , respectively. The solid curves are experimental results,
whereas the dashed curves and the dotted curves are results from the new stall model
and quasi-stationary theory, respectively.
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effects, such as trip tape effects, measurement uncertainties, Reynolds number effects,
profile thickness effects or other simplifications leading to the unsteady potential theory.

Figure 4.25 gives an insight into the effect of the angle of attack on the agreement
between the experimental and predicted loops. In this figure, the force coefficient
loops at β = 0o and fred = 0.03 are shown at angles of attack ranging from α = 5o to
α = 20o.
The agreement between the predicted and measured lift and drag loops are fairly good
up to incidences α = 8o. At α = 12o, there is a difference between the predicted and
measured curves. This difference is attributed to the presence of stall. The analytical
models are based on linearisation around a certain angle of attack. At the present
experimental setup, the motion of the airfoil corresponds to a change of ±2.8o in the
relative incidence. This could mean that the force coefficients and derivatives thereof
in one point is not enough to describe what happens in the whole range of relative
angle of attack.
The general agreement of the moment curves are comparable to the previously shown
loops for incidences up to α = 8o. After that, considerable differences between the
analytical and experimental curves exist. The differences between the curves in case of
α = 12o is attributed to the beginning of the stall and the nonlinearities following from
that, as explained previously. In the theory section it was stated that the moment
expressions were based on generalized potential theory results with an ad-hoc addition
regarding the influence of the drag force on the moment. In the case of stalling flows,
the drag increases, and with that the ad-hoc term becomes more important.
The comparison of the loops in case of α = 15o does not make any sense, because the
stall modes are different in the steady and unsteady experiments at this incidence.
The steady experiments consists of the high and very high stall modes at α = 15o.
The unsteady experiment at α = 15o and β = 0o only consists of the low stall mode.
The lowest figures, showing the force loops at the beginning of deep stall, α = 20o,
shows better agreement of the experimental results and the results from the new
stall model. The steady force coefficients and derivatives on which the results of the
analytical models are based, are the steady low stall mode results. The dynamic loop
of the moment curve is predicted fairly good, this may be a coincidence, because the
general dynamic behavior of the new model is not good in the stalling cases. The
results at α = 20o suggests that the ad-hoc corrections to the generalized potential
theory moment expressions gives moments in the right order of magnitude in deep stall.

To gain more insight into the specific behavior of the loops predicted by the new
stall model in cases of multiple stall modes, figure 4.26 shows non-dimensional force
loops for two cases at incidence α = 15o, where multiple stall modes occurs. The case
shown in the left figures has β = 70o and fred = 0.03, whereas the case shown in the
right figures has β = 135o and fred = 0.02.
It is seen in the left figures, that a comparison of the mean experimental loops (blue
curves) with the loops predicted using the mean force coefficients from the static
experiments compare very bad. As mentioned earlier, this is due to the presence of
the multiple stall modes in the experiments. The dynamic experiments shown in the
left figures show the occurrence of low and very high stall modes, whereas the static
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Figure 4.25: Comparison of experimental and analytical model force loops at β = 0o

and fred = 0.03 at different incidences, α. The left, middle and right column shows CL,
CD and CM , respectively. The solid curves are experimental results, the dashed curves
and the dotted curves are results from the new stall model and quasi-stationary theory,
respectively.
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Figure 4.26: Comparison of experimental and new stall model force loops for experi-
ments with multiple stall. The incidence is α = 15o in both cases. Upper figures : CL.
Upper middle : CD. Lower middle CM . Lower : CZ. The solid curves are experimental
results, and the dashed curves are results from the new stall model. The mean loops
are blue curves, whereas the black, red and green curves correspond to the low, high
and very high stall modes, respectively. The figures to the left are for β = 70o and
fred = 0.03, whereas the figures shown to the right are for β = 135o and fred = 0.02.
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experiments consists of the high and very high stall modes. This causes the results
to be very far apart in the two cases. Since the only stall mode in common in the
results is the very high stall mode, only comparison of these results makes sense. The
upper, upper middle and lower figures in figure 4.26 reveals that all mean levels of
the very high stall mode force coefficients (green curves) are predicted in reasonable
agreement with experimental results. It is noticeable that the mean level of the
moment coefficient is predicted reasonably well, in spite of the crude assumptions
under which the moment is calculated in the new model.
The dynamics of the predicted lift and drag loops does not agree well with the
experimental results. These two wrongs more or less cancels each other out in the
direction of movement, as seen in the loop of the force coefficient in the movement
direction, CZ , which agrees reasonable well with the experimental results. This should
not be interpreted as an indication that the model works for this particular stall mode,
but just as a lucky outcome to a somewhat random process. Effects like this may hide
themselves in integral coefficients like aerodynamic mass and damping, which is why
investigation of the finer levels of information is important.
The dynamic experimental results shown in the right figures has all three stall modes,
whereas the steady counterpart has only two, namely the high and very high stall
modes. As previously, this renders a comparison of the mean curves superfluous.
Contrary to the previous results, the mean levels of the predicted and experimental
results does not agree well in this case. The reason for this is not clear to the author.
Common for all stalling cases is that the dynamics are not predicted well despite the
specification of separate force coefficients and derivatives for each stall mode.

As a conclusion on the performance of the new dynamic stall model can be stated
that it is not able to predict the magnitude or position of the minimum aerodynamic
damping correctly, nor is it able to predict the effect of the reduced frequency for the
stalling cases. This is attributed to the assumption of similarity between the dynamics
in the attached and stalling cases, which clearly fail to describe the complex dynamics
of stalling flows.
It was shown that the use of specific information about the force coefficients and deriva-
tives thereof for the different stall modes improves the results of the model.
However, it was seen that the new model is a clear improvement over quasi-steady
theory at the low angles of attack, where accurate prediction of the unsteady lift and
drag loops are possible.
The general trend of the experimental moment curves were predicted correctly at low
incidences, but very big differences between predicted and experimental results were
observed in the lightly stalling and moderately stalling cases, α = 12o and α = 15o.
Comparison of the results at α = 20o, showed better agreement on the prediction of
the moment coefficient.

4.4 Navier-Stokes Model

In this section, results from the Navier-Stokes computations are shown. The focus
is on comparison with the steady and unsteady experimental data, but some results
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shedding light on the details of the behavior of the Navier-Stokes computations are
shown as well.
The computational grid employed for all Navier-Stokes computations in this work
is an 17.5-chord radius o-grid, generated by means of the hyperbolic grid generator
HypGrid2D [53]. The grid has 64 cells in the direction normal to the surface of the
airfoil and 256 cells in the direction tangential to the airfoil surface. A grid sensitivity
study leading to the choice of this grid can be found in appendix D.1, where also more
details regarding the grid can be found. The computational grid is shown in figure 4.27.

Figure 4.27: Computational grid around NACA 0015 profile employed for the com-
putations in the present work. The grid was generated by means of the hyperbolic
grid-generator, HypGrid2D [53].

The turbulence model used for all the computations was the k − ω SST model
described in section 3.6.2. The non-dimensional time-step used in the computations
were

∆t̃ =
∆tV

c
= 2.0 · 10−3, (4.41)

which ensured that the CFL6-number of the flow was below 1.3 in all computational
cells for Re = 555000 at an angle of attack α = 5o. Except for two very small regions,

6Courant Friedrich Levy - number. The number of computational cells a fluid element passes
during one time-step.
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one at the suction peak and one at the trailing edge, the CFL-number was below 0.3
in the whole fluid domain, as shown in figure 4.28.

Figure 4.28: CFL-number for the solution of the flow around the NACA 0015 airfoil at
Reynolds number Re = 555000. The incidence is α = 5o.

The presentation of the results obtained with the Navier-Stokes code is presented
next. First the results describing the stationary NACA 0015 airfoil, followed by the
results of the airfoil undergoing 1 DOF oscillatory translatory motion.

4.4.1 Stationary Airfoil

In order to determine the magnitude of the viscous forces, which are neglected in the
experimental part of this work, an investigation were undertaken using the Navier-
Stokes code.

Investigation of magnitude of viscous forces

Figure 4.29 show the lift and drag coefficient, and the isolated contributions from the
viscosity alone. Note that the viscous drag gradually drops from α = 0o to α = 20o

where it settles at an almost constant value. This is mainly due to the increase of
the recirculating zone at the upper side of the airfoil. Furthermore, it is seen that
the viscous forces contribute a very little part of the total forces apart from α = 0o.
However, when projecting these forces onto the z-direction given by β, as defined in
figure 4.30, we get

Viscous Ratio =
FV

FTot

=
CLV cos(β) + CDV sin(β)

CL cos(β) + CD sin(β)
(4.42)
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Figure 4.30: Definitions and positive directions of the angle of attack, α, the angle
of movement, β, and the x and y axes. All quantities are defined with respect to the
free stream velocity, V. The z-axis defines the positive direction for the motion of the
profile.
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It is seen that this expression goes to infinity for

β =
π

2
+ arctan

CD

CL

(4.43)

if CL �= 0 and

CD

CL

�= CCV

CLV

, (4.44)

which practically always holds true. This is illustrated in figure 4.31, where the viscous
force ratio is shown as a function of α and β. The points expressed by equation 4.43
corresponds to the direction normal to the force vector from the pressure. Note also
in figure 4.31 that high ratios are found at α = 0o due to the fact that the lift, which
is practically exclusively pressure forces, in that case is zero. Apart from the areas
close to α = 0o and the curve given by equation 4.43, the viscous forces are negligible
compared to the pressure forces.
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Figure 4.31: Ratio of viscous to total forces. RANS data, Re = 555000. The dotted
blue line outlines the chordwise direction, and the dotted red curve denote the direction
where pressure forces vanish, given by equation 4.43.

Even though it has been shown that the viscous forces dominate in certain direc-
tions in the stationary case, it should be of no practical influence in the unsteady
experiments. This is so because the ratio of total to viscous force magnitudes is very
big, as shown in figure 4.32, combined with the fact that the directions in which the
forces act is varying due to the motion of the airfoil.
On the basis of these investigations, it is estimated that the error introduced by ne-
glecting the viscous forces in the cases of 1 DOF translatory motion of the airfoil is of
no consequence for the validity of the results from the unsteady experiments.
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from RANS computations.

Comparison of Navier-Stokes computations with experimental data

A comparison of Navier-Stokes and experimental non-dimensional pressure coefficients
are shown in figure 4.33 for the non-moving NACA 0015 airfoil. It is seen that the
Navier-Stokes results are in fairly good agreement with the experimental results for
incidences up to α = 8o. The effect of the trip tape is clearly seen on the suction side
in the experimental results for angles of attack up to α = 12o. For incidences α = 10o

and α = 12o the agreement is still generally fairly good, but a difference between the
measured and predicted pressure coefficients is noted at the trailing edge, where the
experimental values are slightly higher than the ones predicted by the RANS code.
Big differences between the predicted and measured pressure coefficients are observed
in the α = 15o case. The multiple stall modes occurring in the experiments was not the
case in the simulations. The specific CP curves for the measured distinct stall modes
are shown in the figures. It is seen, that the predicted pressure profile for the α = 15o

case looks most like the very high stall mode, but the levels predicted on both the
pressure and suction side of the airfoil differs noticeably from the experimental values.
In the α = 20o and α = 25o cases, the agreement between the curves are better, but
still far from accurate. In the α = 20o case, the Navier-Stokes predictions looks most
like the low stall mode. The computations still show a minor suction peak for both
α = 20o and α = 25o which is not seen in the experimental results. The results differ
a little bit on the pressure side, where the experimental curves are slightly above the
predicted ones. Disturbances appear on the pressures side of the experimental results
due to the trip tape. Both the experimental and computed pressure coefficients has
the features of deeply stalled airfoil flows.
It is the authors belief, that the explanation of the difference between the experimental
and predicted values incidences α = 15o and α = 20o is caused by onset of stall at
different incidences in the measured and computed results.
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Figure 4.33: Comparison of the experimental non-dimensional pressure coefficients with
RANS results for stationary airfoil. Re = 555000.
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This is evident from figure 4.34 as well. This figure shows a comparison of the lift and
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Figure 4.34: Steady CL(upper) and CD(lower) curves for Re = 383000(left) and Re =
555000(right). The green curves corresponds to the mean measured level, whereas the
black, red and blue level corresponds to the Very High, High and Low levels, respectively.

drag coefficients for Re = 383000 and Re = 555000. From this figure it is seen that the
maximum level of the predicted lift is somewhat higher than that of the experimental
results.
It is known from previous studies that RANS solutions give higher values for the lift
in the regions near maximum lift and in the deep stall cases than the more physically
correct three dimensional DES computations.However, this alone may not explain all
differences shown in the figures.
It is clear that very complex flow situations, such as multiple stall modes, are not
predictable by standard 2D RANS computations. This alone complicates a comparison
substantially in the regions where multiple stall modes occur. A determination of the
location of the maximum lift in the experimental case is hard to do in these cases as
well.
Another thing that strike the eye in the comparison of the lift is the apparent difference
in the slope of the curves in the attached region. The slope of the lift curves in the
RANS computations is higher than that of the experimental results. It is known
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from for instance Selig et al. [46], that the slope of the CL curves decrease when
the Reynolds number is decreased. It is not known to the author how well this is
reproducible with a 2D RANS code. The change in the slope between the Re = 383000
and Re = 555000 curves in the experimental results is not reflected in the RANS
computations, but as explained in chapter 2, the uncertainty on the Re = 383000 data
is lower than the uncertainty on the Re = 555000 data, making a conclusion harder to
make on the basis of these results.
The turbulence model is another aspect that require special attention in this case.
Usually the k − ω SST turbulence model is used at higher Reynolds numbers above,
so the behavior of this specific model in this range of Reynolds numbers is not known
to the author.
As mentioned in chapter 2, the tolerance on the shape of the airfoil has not been
investigated, which leaves another unknown into this comparison, as does the effect
of having all pressure holes in one span-wise coordinate. The flow is disturbed by
the pressure taps, which means that the effect of having many pressure taps in one
span-wise coordinate may have an effect on the measured pressure distribution.

One explanation to the high lift levels in the RANS computations could be that
the relatively low turbulence kinetic energy level at the inlet of the domain decays
before it has reached the airfoil, such that the airfoil effectively meets a laminar flow.
This means that the flow within a distance from the stagnation point is effectively
laminar, until the kinetic energy, and thereby the turbulent viscosity, has reached a
level corresponding to the onset of turbulent flow.
Since a laminar suction peak is higher than a turbulent suction peak, this could cause
the difference between the numerical and experimental lift curves.
To further investigate this, the friction coefficient Cf = µ/(ρV∆y), is shown for α = 5o

in figure 4.35. The figure shows that a dip in the friction force occurs on both the
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Figure 4.35: Friction coefficient, Cf , for the flow at an angle of attack, α = 5o, at
Reynolds number Re = 555000.

pressure and suction sides of the airfoil, which corresponds to the friction coefficients
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in transitional flows, as for example shown in [23]. This supports the explanation of
the substantially higher lift curves due to practically laminar flow on the first part of
the airfoil.

Comparison of the drag curves reveal that the predicted drag corresponds rea-
sonably well with the experimentally obtained values for incidences up to α = 10o

despite the very coarse discretization of the pressure taps contributing to the force
in the chordwise direction. For the low incidences the measured drag is lower than
the RANS drag. However, the viscous drag should be added to the experimentally
obtained values in order to get the true drag, which should be kept in mind when
comparing the results.
The causes of the differences in the drag levels for incidences above α = 10o are
presumably the same as mentioned under the discussion of the lift above. The increase
in the drag level from incidences α = 12o in the experimental results corresponds to
the behavior of the RANS results at incidences α = 15o. Again, this signifies that the
onset of stall is not predicted correctly.

In order to evaluate the dynamics of the flow predicted with the RANS code, RMS7

values of the experimentally obtained lift and drag coefficients were compared with the
corresponding values for the RANS simulations. The result is shown in figure 4.36,
where it is noted that the dynamics of the RANS computations differs substantially
from the experimental results. It should be noted, that the high RMS levels of the
total (mean) experimental curve in the Re = 555000 case occurs due to the shift in the
mean levels due to the the multiple stall modes, and does not represent a physical rms
value representing the oscillations in the values around one mean value.
From the figure it is sen that the RANS rms levels are zero up to α = 15o. This
corresponds to fully stationary solutions to the flow. After this point the lift and
drag levels oscillate harmonically with one clearly defined frequency. The experimental
values display frequency content of a much wider spectrum, which could probably be
predicted better using DES simulation [48].
The cause of the harmonic force output from the RANS code is caused by vortex
shedding, as shown in figure 4.37.

4.4.2 Airfoil undergoing one DOF oscillatory translatory mo-
tion

In this section, a comparison of the results obtained with the Navier-Stokes code is
compared with the corresponding experimentally obtained values. It is the aim to
show both the cases where the results compare favorably and the cases where the results
compare less favorably, to show the strengths and weaknesses of the 2D RANS code
in the prediction of the aeroelastic response of an airfoil undergoing 1-DOF oscillatory
translatory motion.
Prior to the comparison with experimental results, the behavior of the Navier-Stokes
solutions at high angles of attack will be investigated.

7Root Mean Square:
√
()2.
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Figure 4.36: Root mean square values for non-moving airfoil. Rms CL(upper) and
rms CD(lower) for Re = 383000(left) and Re = 555000(right). The green curves
corresponds to the mean measured level, whereas the black, red and blue level corresponds
to the Very High, High and Low levels, respectively.
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Figure 4.37: Snapshots of stream lines and pressure from RANS computations are
shown for a stationary NACA 0015 airfoil in stall. The snapshots are taken at equidis-
tant times in the shedding cycle. The angle of attack is α = 20o, and the Reynolds
number is Re = 555000. The red color corresponds to high pressure, whereas the blue
color corresponds to low pressure.

General behavior of the Navier-Stokes solutions

In order to explain some of the phenomena occurring in the Navier-Stokes solutions
of oscillatory 1DOF translatory motion at high angles of attack, a selection of force
loops at high incidences will be shown in detail to uncover the dynamics in the flows
predicted by the Navier-Stokes code.
Figure 4.38 shows an example of the responses of three different configurations of
incidences and direction of movement at the reduced frequency fred = 0.03. The force
coefficients are shown as functions of non-dimensional time, tV/c, and as functions of
non-dimensional displacement position, z/c.
In the upper figure, where α = 15o and β = 0o, it is seen that the response is periodic.
Another case of periodic response is seen in the middle figure, where α = 20o and
β = 0o. In this case the periodic behavior is somewhat more complex. The reason for
this will be investigated shortly. The last figure shown exhibits non-periodic behavior.

The behavior of the upper figures of 4.38, where α = 15o, β = 0o and fred = 0.03,
is examined in detail in figures 4.39-4.41. Figure 4.39 show the lift, drag and moment
coefficients versus non-dimensional displacement, z/c, whereas figure 4.40 show the
same quantities versus the relative angle of attack. This is done to relate the force
loops to a familiar quantity. It should be noted that the obtained loops are not
corresponding to the loops that would occur by a pitching oscillation, as described
in section 4.2. The letters in figures 4.39-4.40 refer to the time-instances depicted in
figure 4.41, which shows the snapshots of stream lines and pressure from the RANS
computations.
The bump on the curves seen in figure 4.39 to the left of point A occurs because the
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Figure 4.38: Periodic and non-periodic behavior. CL, CD and CM versus time (left)
and position z/c (right). Upper: α = 15o β = 0o. Middle: α = 20o β = 0o. Lower:
α = 20o β = 90o. fred = 0.03 in all shown figures.
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Figure 4.39: Lift, drag and moment coefficients versus non-dimensional position pa-
rameter, z/c, obtained by RANS computations. The angle of attack is α = 15o, and
the direction of the motion is perpendicular to the free stream direction, β = 0o. The
Reynolds number and reduced frequency is Re = 383000 and fred = 0.03, respectively.
The letters on the curves refer to the snapshots in figure 4.41
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Figure 4.40: Lift, drag and moment coefficients from figure 4.39 plotted against relative
angle of attack. See figure 4.39 for details.
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A B C
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Figure 4.41: Snapshots of stream lines and pressure from RANS computations are
shown for NACA 0015 airfoil in light stall. The snapshots are taken at selected inci-
dences with letters referring to figures 4.39-4.40. The angle of attack is α = 15o, and
the direction of the motion is perpendicular to the free stream direction, β = 0o. The
Reynolds number and reduced frequency is Re = 383000 and fred = 0.03, respectively.
The dark red color corresponds to a high pressure, whereas the yellow color corresponds
to low pressure.

Navier-Stokes computations were not yet fully periodic for the loop shown in the figures.

It is seen in figure 4.41, that the size of the separated area increases on the
downstroke of the airfoil, corresponding to snapshots B, C and D. No big difference in
the size of the recirculating zone is seen from D to E despite the reduction in relative
angle of attack. From E to B, the size of the recirculating zone is reduced again. It
can be seen that there is a phase lag in the size of the recirculating zone with respect
to the relative angle of attack.

Figures 4.39 and 4.40 show that the drag coefficient has a fairly constant value from
snapshot D to B, whereas the drag coefficient is much lower at point C. The behavior of
the drag coefficient loop can be explained by noting in the steady results obtained with
the Navier-Stokes code, that the major part of the forces are in the lift direction in the
region of incidences close to α = 15o. From standard potential theory we know that
as a first approximation, the forces on a moving airfoil is perpendicular to the relative
velocity seen by the airfoil. When this is adopted to the current case, it is seen that
the total forces are shifted approximately 2.8o toward the incoming velocity at point
C. This means that the force in the direction of the free stream flow is reduced. From
point C to D this angle is reduced somewhat while the area of the recirculating zone is
increased, leading to an increase in the drag force. This balance between the direction
(and size) of the main forces and the drag forces from the stalling zone explains the
shape of the drag loops.
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According to the investigations of the dynamics of the flow for a steady airfoil,
vortex shedding occurs for flows at angles of attack larger than or equal to α = 17o.
The present results show that no vortex shedding occur even though the relative angle
of attack exceeds this limit.
A combination of two effects may cause this. The first of these is the time-lag effect
connected to the build-up of the boundary layer. If the angle of attack for an airfoil is
suddenly changed from one value to another, the boundary layer has to adjust to the
new angle of attack. This takes some time, hence the time-lag. If the time the airfoil
is above the critical relative angle of attack is short enough, then the boundary layer
will not have the time to adjust to the new conditions, and no vortex shedding will
occur.
The second effect explaining why no vortex shedding occur at the investigated
incidence is an analogy to pitching flows. According to Sørensen and Nygreen [50],
an upstroke pitching-wise has a stabilizing effect on the growth of the separation
bubble. If this can be transferred to the translating case in terms of the relative
angle of attack, then this should limit the growth of the separation bubble up to point C.

Since the direction of the lift loop in figure 4.39 is counter-clockwise and the direc-
tion of the motion of the profile is in the lift direction, it is seen that the aerodynamic
damping is negative. The slope of the steady CL curve is negative for this incidence,
which would lead to negative aerodynamic damping for this direction of the motion
when analyzed by quasi-steady theory or the new dynamic stall model. From figure
4.40 it is seen that the maximum and minimum lift predicted ny the Navier-Stokes
computations lie close to the maximum and minimum of the relative incidence. The
minimum force in the lift direction is found close to point F, which is before the mini-
mum relative angle of attack is reached. The reason for this is the recirculating zone,
which is almost gone in point C, thereby raising the lift.
As a side note it can be mentioned that the phase-lag of the size of the recirculating
zone with respect to the relative angle of attack can be explained by the time-lag effect
connected to the boundary layer.

A similar investigation of the force loops predicted in the case of α = 20o, β = 0o

and fred = 0.03, shown in the middle figures of figure 4.38, is given below.
Analogous to the figures in the previous investigation, figure 4.42 and 4.43 shows the
force loops and snapshots corresponding to selected incidences in the oscillation cycle.
Compared to the previous figures, the force loops in figure 4.42 are more complex.
This, as we shall see, is connected to shedding of vortices from the leading and trailing
edge of the airfoil. First the shape of the lift force loop will be connected to the
dynamics of the vortex shedding.
It is seen from snapshots A,B and C, that there is vortex shedding at the trailing
edge in this part of the oscillation cycle. Counter-clockwise vortices are shed from the
trailing edge whereas clockwise vortices are shed from the separation bubble extending
from the leading edge. The relative angle of attach has its minimum at point A.
From point C to F, there is a build-up of a elongated separation bubble/vortex, which
causes an increase in the lift because it represents an effective thickening of the airfoil.
In point E, a small counter-clockwise vortex is formed at the trailing edge, which
prevents the big clockwise vortex from being shed. This little vortex is then shed from
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Figure 4.42: Lift, drag and moment coefficients versus non-dimensional position para-
meter, z/c and relative angle of attack. The results are obtained by RANS computa-
tions. The angle of attack is α = 20o, and the direction of the motion is perpendicular
to the free stream direction, β = 0o. The Reynolds number and reduced frequency is
Re = 383000 and fred = 0.03, respectively. The letters on the curves refer to the
snapshots in figure 4.43
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Figure 4.43: Snapshots of stream lines and pressure from RANS computations are
shown for a moving NACA 0015 airfoil in stall. The letters are referring to figure
4.42. The angle of attack is α = 20o, and the direction of the motion is perpendicular
to the free stream direction, β = 0o. The Reynolds number and reduced frequency is
Re = 383000 and fred = 0.03, respectively. The red and blue color corresponds to high
and low pressure, respectively.
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the trailing edge in point F, causing the big vortex to be shed from G to J. When the
big vortex is shed, the lift connected to the effective thickening of the airfoil disappear
as well, causing the drop in the lift. As the big vortex is shed (G-J), the jump in
velocity at the trailing edge is very big. This feeds a concentrated vortex at the trailing
edge, which builds up from H to I, after which it is shed and convected from J to L.
Analogous to the feeding of the counter-clockwise vortices by the clockwise vortices,
the opposite is the case as well. The concentrated trailing edge vortex at snapshots
H-J causes the build-up of a clockwise vortex which causes the local top in the lift in
point L. From point L to point A only smaller bumps on the lift curve is seen. These
bumps correspond to trailing edge vortex shedding similar to the one seen from point
A to C. One period of the trailing edge vortex shedding occurs from point L to point
N, one period from point N to point Q, and two periods from point Q to point A.

Shifting the focus to the behavior of the drag, it is seen that the value is fairly
constant all the way from point O to point D. The explanation to this is identical to
the one given in the α = 15o case. The effects of stall and the effect from the change
in the forces from the flow due to the change in the relative angle of the flow cancel
out each other.
The maximum drag occurs the same time in the oscillation cycle as the maximum lift.
Both maxima are caused by the big separation bubble/vortex.

Similar to the lift and drag force cases, the noticeably peaks in the quarter chord
moment curve occur between point E and point M, where the relative angle of attack
has its maximum. Analogous to the other forces, the dynamics in the vortex shedding
causes the peaks and valleys. The minimum quarter chord moment occurs in the same
time in the oscillation cycle as the maxima in the lift and drag forces. The reason for
all these phenomena are the same. The big suction forces on the whole upper side of
the airfoil causes the negative peak in the quarter chord moment.

After this investigation, it is now clear that the reason for the force response with
higher frequency content than the motion of the airfoil, such as shown in the lower
four graphs of figure 4.38, is vortex shedding during the oscillation cycle. The periodic
response is a coupling of the vortex shedding on the motion of the airfoil during the
oscillation cycle, whereas the vortex shedding for the non-periodic force loops is inde-
pendent of the motion of the airfoil.
All peaks and dips in the force curves are seen to be governed by a complicated dy-
namic process, involving both clockwise and counterclockwise vortices, shed from the
leading and trailing edge, respectively. If the motion of the airfoil is fast enough and
the amplitude is big enough, then the vortex shedding will be locked into a periodic
behavior. As shown in figure 4.38, the direction of the motion is a key element in
locking the vortex shedding period onto the motion of the airfoil. This is probably due
to the influence of the direction of motion on the relative angle of attack.
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Comparison of Navier-Stokes computations with experimental data

In order to evaluate the overall behavior of the Navier-Stokes computations, figure 4.44
shows the non-dimensional aerodynamic damping (left) and non dimensional added
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Figure 4.44: Non-dimensional aerodynamic damping (left) and non dimensional added
mass (right) versus β and α for fred = 0.02. Upper: RANS results. Lower: Experi-
mental results.

mass (right) for the Navier-Stokes predictions (upper) and the experiments (lower).
The reduced frequency is fred = 0.02 and the Reynolds number is Re = 555000. The
selection of incidences and directions of motion on which the contour plot is made is
identical to the experimental test-matrix, namely α = 0o, 5o, 8o, 12o, 15o, 20o and
β = 0o, 20o, 45o, 70o, 90o, 110o, 135o, 160o.
Comparison of the aerodynamic damping computed using the pressure forces only in
stead of the total forces showed that the effect of the viscous forces were indeed negli-
gible, as indicated by the investigation of the magnitude and direction of the viscous
forces from the non-moving airfoil.
Comparison of the aerodynamic damping from the Navier-Stokes computations and the
experimentally obtained values show that the agreement is good for angles of attack
up to α = 15o. The big difference shows at α = 20o, where the predicted damping is
much more negative than the measured ones.
The non-dimensional aerodynamic added mass is shown in the right figures. Here it
is seen that the predicted values are generally slightly further from the experimental
values than in the case of the damping. The general shape of the predicted contour,
however, corresponds well with the contour of the experimentally added mass up to
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angles of attack α = 12o.
In order to investigate how the dynamics of the results from the Navier-Stokes code
compares with the dynamics of the specific multiple stall modes, the aerodynamic dam-
ping and the aerodynamic mass obtained from the Navier-Stokes computations were
compared to the experimental results in figure 4.45 for α = 15o and α = 20o. It is seen
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Figure 4.45: Comparison of Navier-Stokes and experimental results at incidences
where multiple stall occurs. Non-dimensional aerodynamic damping (Left) and non-
dimensional added mass (Right) versus movement direction, β. The reduced frequency
is fred = 0.02. Upper: α = 15o. Lower: α = 20o.

that the general shape of the aerodynamic damping computed with the Navier-Stokes
code compares best with the very high stall mode. However, since this stall mode
appears only in four points, it is hard to say wether this is a general feature or not.
The aerodynamic damping is predicted much worse in the case of α = 20o than it is
for α = 15o.
In the case of the added mass, it is seen that this quantity is predicted quite poorly
at α = 20o, and only slightly better at α = 15o. In this case the Navier-Stokes results
does not match the added mass for any of the multiple stall modes.
The reason for the relatively bad predictions at α = 20o may be linked to the occur-
rence of the complex vortex interaction described previously. If the complex vortex
interaction is predicted wrong, then the whole force response is computed wrong as
well. This issue will be addressed later.

In order to evaluate the performance of the Navier-Stokes code on a range of
reduced frequencies, computations were carried out at reduced frequencies fred = 0.01,
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fred = 0.02, fred = 0.03 and fred = 0.04 for four different combinations of angles of
attack and directions of the movement. The results are shown in figure 4.46, where
non-dimensional aerodynamic damping (left) and non-dimensional aerodynamic added
mass (right) is shown as functions of the reduced frequency.
The upper figures show the integral dynamic quantities for α = 5o and β = 0o,
whereas the upper middle figures show the results for α = 8o and β = 160o. Generally
the aerodynamic damping for these low incidences are predicted well. In the α = 5o

case there is some deviation from the experimental results, but this is attributed to
noise and measurement inaccuracy. The non-dimensional aerodynamic added mass,
however, is not predicted quite as good as the non-dimensional damping. Apart from
the higher sensitivity of the added mass with respect to phase lag, the added mass is
probably more sensitive to all kinds of disturbances because it seems that there is no
pattern in differences between the Navier-Stokes results and the experimental results.
As mentioned previously, the experimental results were obtained at different Reynolds
numbers, as shown in the table below

fred < 0.0225 0.024 0.031 0.035 0.041

Re 555.000 470.000 383.000 330.000 270.000

whereas the shown Navier-Stokes results are for one Reynolds-number Re = 555000.
The lower middle and lower figures show the results for the α = 15o, β = 135o and
α = 20o, β = 0o cases. From these figures it is seen that the general behavior of the
damping and added mass is predicted fairly well in the α = 15o case, whereas the agree-
ment is not as good in the α = 20o case. Furthermore, it is indicated in these data, that
the data predicted with the Navier-Stokes code is not always closest to the very high
stall mode results even though that was the case at fred = 0.02, as shown in figure 4.45.

Further comparison of the dynamics of the Navier-Stokes computations with
the experimental results are shown in figure 4.47, where the non-dimensional force
coefficient hysteresis loops are compared at α = 5o for different values of the direction
of the motion, β. The Reynolds number is Re = 555000 and the reduced frequency is
fred = 0.02. The left, middle and right figures show the lift, drag and quarter-chord
moment coefficient loops, respectively.
From the figure it is seen that the predictions of the dynamics of the lift and drag in
general is very good at this angle of attack. The differences in the level of the lift
coefficient is attributed to the general uncertainty when adjusting the angle of attack
in the experiments, and to the slightly higher stationary lift coefficient at α = 5o.
Comparison of the drag curves show that the predicted drag is always higher than the
measured drag. The reason for this could be the viscous part of the force, which is not
included in the experiments. As mentioned earlier, the discretization of the pressure
taps with regards to determining the force in the chord-wise direction is very coarse,
which adds to the uncertainty of the experimental drag. The cause of the difference
in the slope of the drag curves for β ≥ 45o is not clear to the author.
It is seen that the moment loops compare quite bad. Only the main features of the
moment loops are predicted well. Even though there is trip tape on both sides of the
airfoil, the disturbance is much more pronounced on the suction side of the profile. It
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Figure 4.46: Comparison between Navier-Stokes and experimental results. Non di-
mensional aerodynamic damping (left) and Non dimensional added mass (right) versus
reduced frequency. Upper: α = 5o β = 0o. Upper middle: α = 8o β = 160o. Lower
middle: α = 15o β = 135o. Lower: α = 20o β = 0o
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Figure 4.47: Comparison of Navier-Stokes and experimental force loops at α = 5o and
fred = 0.02 at different directions of the movement, β. The left, middle and right
column shows CL, CD and CM , respectively. The solid curves are experimental results,
whereas the dashed curves are Navier-Stokes computations.
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is likely that the disturbance introduced by the trip tape affects the measured moment
dynamically as well as the mean value.

Proceeding to comparison of the performance of the Navier-Stokes code for various
angles of attack, figure 4.48 shows the hysteresis loops for motion perpendicular to the
free-stream, β = 0o, at incidences α = 5o, 8o, 12o, 15o and 20o. The Reynolds number
and reduced frequency for these computations are Re = 383000 and fred = 0.03,
respectively.
It is seen that the predictions for incidences up to α = 8o are in fairly good agreement
with the experimental data. At angles of attack above this, the differences are quite
big. For α = 12o it is noted that all predicted force loops differ noticeably from the
experimental ones. Both the mean values and the shape of the loops.
The explanation for the big difference in the loops at α = 12o could be that the onset
of stall occurs at different angles of attack in the experimental and numerical work.
This was evident from the comparison of the static results as well. One interesting
feature of the curves is that the general shape of the experimental loops at α = 12o,
in particular the drag and moment loops, match the predicted ones at α = 15o. This
roughly means that the dynamics of the measured flow at α = 12o corresponds to the
one predicted by the Navier-Stokes code at α = 15o.
In the case of α = 15o the measured and predicted loops differ drastically. The only
stall mode present in the experiments was the low stall mode, which was the one
furthest from the predicted level at this incidence in the comparison of the static
results.
The lowest figures showing the comparison of the loops in the α = 20o case again shows
a drastic difference between measured and predicted loops. The dips and peaks due to
the vortex shedding in the predicted loops are not found in the experimental data. The
shown experimental loops are computed as a mean of approximately 144 oscillation
cycles, a process which can hide higher frequency oscillations if these are not periodic
in the oscillation cycle. When viewing the instantaneous pressure coefficients in time,
it was seen that pressure peaks corresponding to vortices was observed in cases where
the low stall mode was present. However, the force response corresponding to these
vortices were not as violent as the ones predicted by the Navier-Stokes code, and the
location of these were not fixed with regards to the oscillation cycle, but seemed to
appear more random.

The reason that the Navier-Stokes code predicts the strong effect from the large
vortices, which leads to the drastic behavior of the forces, may be caused by a
combination of three reasons. The two dimensional nature of the computations, the
relatively coarse grid in the vicinity of the airfoil, and the low free stream turbulence.
Two dimensional simulations generally generate larger structures in the flow than the
three dimensional counterpart,and the structures generated in the flow are generally
maintained longer. A part of the reason for this is that there is no possibility for
breakdown of the vortices due to instabilities in the third direction.
The size of the vortices/eddies that can be resolved with a certain computational grid
is connected to the size of the computational cells. If the radius of the vortice/eddy
is smaller than the grid size, then it is not possible to resolve the basic features of it.
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Figure 4.48: Comparison of Navier-Stokes and experimental force loops at β = 0o and
fred = 0.03 at different incidences, α. The left, middle and right column shows CL, CD

and CM , respectively. The solid curves are experimental results, whereas the dashed
curves are Navier-Stokes computations.
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This means that the size of the eddies that can be resolved with the computational
grid increases with the distance from the airfoil.
It has been observed, that the k − ω SST turbulence model dissipates the free-stream
turbulence set as inflow boundary condition before the flow is convected to the airfoil.
This means that the flow meeting the airfoil in essence is laminar. This could have
implications on the dynamics of the flow as well.

The last figure in the comparison between the experimental results and the results
obtained with the Navier-Stokes code is a comparison of the force loops in two cases
with α = 15o where multiple stall modes occurred in the experiments. This is shown
in figure 4.49. The case shown in the left figure has β = 70o and fred = 0.03, whereas
the case shown in the right figures has β = 110o and fred = 0.02.
It is seen in the left figures, that the predicted lift, drag and moment values compare
very bad with the low stall mode. The agreement between the very high stall mode
and the numerical results are somewhat better, even though there is still considerable
differences in both the mean values and the shape of the loops. It is seen in the
lowermost figure, that most of the big differences between the specific loops are
cancelled out in this direction of the movement, β = 70o. The agreement between the
predicted loop and the very high stall mode loop is very good. As pointed out in the
case of the comparison with the analytical results, this is just a lucky case where two
wrongs cancel each other out. In this case the too high lift level is compensated by
the too low drag.
All three stall modes are present in the right figures. This is the case where fred = 0.02
and β = 135o. As in the previous case, the predicted loops compare best with the
loops from the very high stall mode, but the agreement between the mean levels is
still not good. As was the case in the comparison of the analytical models, this case
compared much worse in the direction of the motion than the first multiple stall case.
The shape of the predicted loop corresponds well with the shape of the very high stall
mode loop, though.

The performance of the Navier-Stokes code can be summarized

• The agreement between force coefficients for stationary airfoil are reasonable good
up to α = 12o.

• The Navier-Stokes code predicts onset of stall later than the experimental value

• Multiple stall modes are not captured with a basic set-up of the computational
parameters.

• Quite big differences between experimental and numerical results for angles of
attack above α = 12o.

• The lift and drag loops are predicted well for low angles of attack.

• The moment loops are predicted fairly well for low angles of attack. Some of the
differences are attributed to uncertainties in the measurements.
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Figure 4.49: Comparison of Navier-Stokes and experimental force loops for experiments
with multiple stall. The incidence is α = 15o. Upper : CL. Upper middle : CD. Lower
middle CM . Lower : CZ. The solid curves are experimental results, whereas the dashed
curves are Navier-Stokes computations.
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• At α = 12o significant differences in moment loops, but damping and mass loops
are in fair agreement with the experiments.

• For α = 15o and above, the agreement between the numerical and experimental
loops is bad.

• At α = 20o. Violent peaks and dips predicted due to vortex shedding. This is
not present in the experimental results.

• The aerodynamic damping is predicted well up to α = 15o.

• The features of the very high stall mode force loops compares best with the force
loops obtained with the Navier-Stokes code.

• The general dependence of the aerodynamic damping and mass on reduced fre-
quency is captured well.
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Chapter 5

Conclusion

The work presented in this dissertation has focussed on investigation of the unsteady
two-dimensional aerodynamic forces acting on a NACA 0015 airfoil undergoing
harmonic translatory motions. The work falls in two categories.
Experimental and theoretical work.

The main part of the experimental work was devoted to measurement of the
unsteady pressure on the NACA 0015 airfoil undergoing translatory motions, but
measurements on a stationary airfoil was carried out as well.
The Reynolds number in the majority of the experiments was in the range from
Re = 383000 to Re = 555000.
Up to three distinctively different stall modes was observed in the experimental work
between maximum lift and the beginning of deep stall, 15o ≤ α ≤ 20o, for identical
boundary conditions. The multiple stall modes occurred in both steady and unsteady
experiments, where the duration of each mode varied from about one second to the
entire time-span of the specific measurement, 60 seconds. The cause of the shift
from one to another level was not found. Both the mean as well as the the dynamic
characteristics was found to differ from mode to mode.
The flow mechanisms leading to stall induced vibrations was studied from the results
of the unsteady experiments, where the aerodynamic damping and added mass was
measured as a function of angle of attack and angle of movement at two different
reduced frequencies, fred = 0.02 and fred = 0.03. The maximum negative aerodynamic
damping was in both cases found to exist in the stalled region of the airfoil, at 15o

angle of attack, with a movement direction close to the chordwise direction.
The influence of amplitude and reduced frequency of the movement on the aerody-
namic damping was investigated. The influence of the amplitude was found to be very
weak, but the reduced frequency had a dramatic effect on the aerodynamic damping.
The experimental results showed that aerodynamic damping decreased as the reduced
frequency was reduced for the stalling flows at incidences α = 15o and α = 20o.
It was found that the least damped stall mode at the low reduced frequencies was
the lowest of the two high lift stall modes. This particular stall mode showed greater
dependance of the reduced frequency than the other, and showed greater aerodynamic
damping than the other stall modes at reduced frequencies above fred = 0.03.
The result that slower oscillations are more prone to negative aerodynamic damping
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for the stalling flows between α = 15o and α = 20o may have interesting implications.
If this result is general, and not dependent on the type of the airfoil profile and
Reynolds number, then this may have implications on the aeroelastic stability of wind
turbines in the future. The trend in wind turbine design through the last decades has
been toward bigger turbines, and thereby lower eigenfrequencies. The tip speed, on
the other hand, has been kept fairly constant due to noise constraints. With increasing
size of the wind turbines, the reduced frequency decrease, causing a decrease in the
aerodynamic damping. If the sum of the structural and the aerodynamic damping is
negative, then dynamic instabilities will occur, resulting in system failure, or, at best,
a drastic reduction of the life-time of the turbine.

As a part of the theoretical part of the work carried out, a two-dimensional
unsteady panel code was developed, in which the option to include the wind tunnel
walls was implemented. This code was used for computing the effect of the imposition
of the wind tunnel walls on the dynamic response of the airfoil. Based on the results
from the code, dynamic tunnel corrections for the experimental work was derived.
The results computed with a Navier-Stokes solver was in fair agreement with the
dynamically corrected experimental results for attached flows, which indicated that
the corrections works satisfactorily.

A different application for the unsteady panel code was the investigation of the
difference between the aerodynamic response of a heaving and a pitching airfoil with
identical relative angle of attack. It was shown that the lift was matched very well for
pitching motion around the 75% chord point, but that the drag and moments were
very different in the heaving and the pitching cases. The investigation is valid only
for attached flows. However, since the mechanisms for attached flows, which are much
lower in complexity than for stalling flows, showed that both drag and moment loops
were predicted very different in the cases with identical relative angles of attack, it
seems most likely that the response of the aerodynamic forces from airfoils in stall
could be substantially different in the two cases as well.

Another part of the theoretical work concerned the development of a new heuristic
stall model, which could be considered an ‘interpolation’ between Quasi-Stationary
and Unsteady Potential theory. The model is identical to Unsteady Potential Theory
when airfoil characteristics from steady potential theory is used as input to the model,
and except from the terms arising from acceleration of a virtual mass, the new model
is identical to Quasi-Stationary theory as fred → 0.
Overall conclusions from comparison with the experimental results are, that the new
dynamic stall model is a clear improvement over quasi-steady theory in the attached
region, but that the new model fails to reproduce the features of the moderately
and deeply stalled flows significantly better than the quasi-steady results. This is
attributed to the assumption of similarity between the dynamics in the attached and
stalling cases, which clearly fail to describe the complex dynamics of stalling flows.

The most complex model for prediction of the flow used in this work is a Reynolds
Averaged Navier-Stokes model. The eddy-viscosity was calculated by utilizing the two-
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equation k−ω SST turbulence model of Menter. No transitional model were employed
in the present work, meaning that a fully turbulent flow was assumed.
From the comparison with experimental data, it was seen that the Navier-Stokes code
predicts onset of stall later than the experimental value.
Multiple stall modes were not captured with the Navier-Stokes code. The character-
istics of the predicted stall type corresponded best with the very high stall mode, but
substantial differences were present.
Comparison of the force loops from the Navier-Stokes results with the experimental re-
sults showed that the exact dynamics of the complex stalling flows were not predicted
correctly.
The force loops generally showed reasonable agreement up to α = 12o. After this point,
there was disagreement between the results. The agreement between the experimental
and computed force loops in the α = 20o case differs considerably. The computed loops
show violent peaks and dips due to shedding of vortices. Such behavior was not seen
in the experimental results.
Three reasons for this were suggested. Effects of two dimensional modelling, insuffi-
cient mesh resolution of the region near the airfoil where the vortices are shed, and the
practically laminar flow the airfoil meets in the Navier-Stokes computations.
An investigation of the general dependence of the aerodynamic damping and added
mass on the reduced frequency is captured well using the Navier-Stokes model. This
suggests that dynamic corrections or engineering models based on results from Navier-
Stokes computations are plausible even though the actual level of the computation
compares bad with experiments.

Future Perspectives

A possible extension to the new stall model described in the present work would be
to modify Theodorsens function C(k) to take into account the change in dynamics
due to separation and stall. In this case the renormalization function corresponding
to Theodorsens function would be of the form C̃(k, fstall), where fstall = f(α) denotes
the level of stall at the mean angle of attack.

An interesting perspective on the present data would be to quantify the differences
in aerodynamic response between pitching and heaving motion of the airfoil by direct
comparison of experimental results for which the flow is stalling.

In order to be able to use the dynamic data for validation of dynamic models, more
accurate and closer spaced steady results are required.

With regards to the Navier-Stokes simulations, grid-independence studies in the stalling
region would be of interest.
A straightforward extension to the Navier-Stokes investigations in this work would be
to investigate the effect of specifying the transition points at the trip-tape locations,
or to apply a transition model and investigate the natural transition points.
Further investigations using Navier-Stokes code could include three dimensional simu-
lations and DES modelling.
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Nomenclature

Latin symbols

a Acceleration
a Speed of sound
a Non-dimensional hinge-point parameter
A Amplitude

Ã Non-dimensional amplitude
ATunnel Cross sectional area of wind tunnel test section
b Half-chord
c Length of airfoil chord
C(k) Theodorsens function
CD Non dimensional drag coefficient
Cf Non dimensional friction coefficient
CL Non dimensional lift coefficient
CM Non dimensional moment coefficient
CP Non dimensional pressure coefficient
D Drag force
DA Aerodynamic damping
F1, F2, F3, F4 Unsteady tunnel correction coefficients
F Froude number
fred Reduced frequency
FTotal Total forces
FVisc Viscous forces
g Gravitational constant
h Height of wind tunnel test section
k Turbulent kinetic energy
k Non-dimensional wavenumber
L Lift force
m Molar mass
M Mach number
M Moment
N Normal force
2n Unit vector
p Pressure
R Universal gas constant
Re Reynolds number
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s Surface length parameter
Sv Source terms
t Time
t̃ Non-dimensional time
T Temperature
T Tangential force
U Fluid velocity
U Fluid velocity in X-direction
Us Fluid velocity component along path s
V Free-stream velocity
V Fluid velocity in Y -direction
x Coordinate in direction of free-stream
y Coordinate perpendicular to free-stream
y0.0125c Upper-surface ordinat for airfoil at 1.25% chord
z Coordinate in direction of motion

Greek symbols

α Angle of attack
αrel Relative angle of attack
α+ Non-dimensional pitch rate
β Direction of 1DOF motion
βrel Direction of 1DOF motion relative to airfoil
γ Vortex distribution
γ Angle between relative and absolute velocity
Γ Circulation
δ∗ Displacement thickness
ε Total blocking coefficient
εsb Solid body blocking parameter
εwb Wake blocking parameter
ω Specific dissipation rate of turbulent kinetic energy
ρ Density
σ Wind tunnel incidence correction constant
ψ Velocity potential
σ Source strength
η Length parameter perpendicular to the chordwise direction
µ Viscosity
µt Turbulent viscosity
ξ Length parameter in the chordwise direction

Superscripts

D Terms related to drag
L Terms related to lift
VM Terms related to virtual mass
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QS Quasi-stationary
∗ Quantity corrected for unsteady tunnel effects
′ Derivative with respect to angle of attack

Subscripts

fic Fictitious
l Lower
Kutta Kutta-direction
panel Quantities in panel coordinate system
pot Potential theory
rel Relative
sb Solid blocking
T Tunnel
T Translatory
TE Trailing edge
u Upper
V Viscous
VM Virtual mass
W Wake
x Chord-wise
y Flap-wise
WWI Wake-wake interaction (wake roll-up)
QS Quasi-stationary
α Aerodynamic quantities a angle α
η Direction perpendicular to the chordwise direction

Abbreviations

BEM Blade Element Momentum
CFD Computational Fluid Mechanics
DES Detached Eddy Simulation
DOF Degrees of Freedom
PIV Particle Image Velocimetry
RANS Reynolds Averaged Navier-Stokes
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Appendix A

Airfoil section and movement
mechanism

Pictures showing the airfoil section, airfoil section setup and movement mechanism are
shown in this section. Figures A.1 to A.3 show the airfoil and airfoil setup, whereas
figures A.4 to A.7 show the movement mechanism.

Figure A.1: The pressure transducers were located inside the airfoil test section to
minimize the length of the tubes connecting the pressure taps to the transducers. The
orientation of the transducers were such that the fictitious forces from the motion of
the airfoil had identical effect on all transducers, thus cancelling out in the computation
of lift, drag and moment. Note the hollow rectangular aluminum beam at the quarter-
chord, which provides the stiffness to the model .
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Figure A.2: The airfoil test section spans the entire width of the wind tunnel to minimize
three-dimensional effects. The test measuring section is located in center span. All
connections from and to the pressure transducers were led through the hollow rectangular
aluminum beam to one side of the airfoil, such that the airflow was disturbed minimally
at the center measuring span.

Figure A.3: The angle of attack was measured using a inclinometer attached to a piece
of wood machined to fit on top of the airfoil profile.
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Figure A.4: One servo, shown in the upper part of the left figure, drives the 1DOF
movement mechanisms on both sides using a shaft on top of the wind tunnel. This
ensures that the phase-difference between the motion on the two sides of the tunnel is
kept very low.
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Figure A.5: Movement mechanism for the 1DOF translatory motion shown at four
different stages of the rotational cycle. Left figures: View from inside of the wind
tunnel. Right figures: View from the outside of the tunnel.
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Figure A.6: The direction of the 1DOF motion, β, is set by rotating the ring on which
the guiding rods are attached. Left: Inside view. Right: Outside view.

Figure A.7: A plexiglass cover encloses the movement mechanism to prevent air from
leaking into the tunnel during operation of the wind tunnel. Outside tunnel view.
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Appendix B

Expressions for Unsteady Potential
Forces for Oscillatory Motion

An important subcase of the general unsteady motion of the airfoil described in section
3.2.3 is oscillation of the profile with angular frequency of the motion ω. Introducing
complex notation, the motion of the airfoil can be expressed as

x = x1 e
iωt (B.1)

y = y1 e
iωt (B.2)

α = α0 + α1 (B.3)

α1 = α′
1e

iωt (B.4)

The amplitude and phase of the motion is given by the modulus and argument of the
complex amplitudes, x1, y1 and α′

1. The physical position of the airfoil is given by the
real part of the complex quantities.
Assuming that the amplitudes x1, y1 and α

′
1 are small, the expressions for the forces on

the profile can be linearized. This leads us to to the assumption that the total bound
circulation on the profile will be of the form

Γ = Γ0 + Γ1e
iωt (B.5)

Due to Kelvin’s Theorem, the strength of the vorticity shed in the wake will have the
form

γ = γ0 + γ1 (B.6)

where γ0 corresponds to the starting vortex of the flow

γ0 = 0 for 1 < ξ < ∞−∆l (B.7)

γ0 = γ′0 for ∞−∆l < ξ < ∞, (B.8)

such that ∫ ∞

∞−∆l

γ′0dξ = Γ0.
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The vorticity belonging to the oscillation of the airfoil, γ1, is given by

γ1 = γ′1e
iω(t−bξ/V) = γ′1e

iωte−kξ (B.9)

for ξ >= 1. In equation B.9, the variable k is defined as

k =
ωb

V
= 2πfred. (B.10)

Note that it is assumed that V >> ẋ in order for the real part of γ1 in equation B.9 to
be a harmonic function of ξ.
Consider the motion of the profile, equations B.1-B.4, to consist of two parts, one of
which gives the bound circulation Γ0, and the other which gives the other part of the
total circulation in equation B.5, Γ1e

iωt. Corresponding to these, the vortex-sheets in
the wake of these motions are denoted by γ0 and γ1, respectively. The corresponding
value of the vortex’-normal force

NΓ = NQS +NW = NQS · C (B.11)

for the starting-vortex’ motion, NΓ0, is evaluated by integrating the total bound vor-
ticity from equation 3.10

Γ = b

∫ 1

−1

γdξ = bπ(A0 + 0.5A1) (B.12)

From equations B.7 and B.8 we get that∫ ∞

1

γ0√
ξ2 − 1

dξ = 0 (B.13)

∫ ∞

1

(
ξ√
ξ2 − 1

− 1

)
γ0dξ = 0 (B.14)

By evaluating equation B.12 with equations 3.17, 3.18, B.13 and B.14 the following
expression arises

Γ = (V − ẋ)α− ẏ − b(a− 0.5)α̇ = constant (B.15)

Inserting the expressions for the oscillating motion, B.1-B.4, into this yields

(V − ẋ)α− ẏ − b(a− 0.5)α̇ = Vα0 = constant (B.16)

Which after insertion into equation B.11, and using the results in equations 3.30 and
3.31 yields for the normal force corresponding to the Γ0 term

NΓ0 = 2πρb(V − ẋ)Vα0 (B.17)

Since NΓ = NΓ0 +NΓ1 we must have that

NΓ1 = NΓ −NΓ0 = 2πρb(V − ẋ) [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇]

+ρb(V − ẋ)

∫ ∞

1

γ1√
ξ2 − 1

dξ (B.18)
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Analogous to the introduction of Theodorsen’s function, C, earlier, the oscillatory part
of the normal force can be rewritten as

NΓ1 = 2πρb(V − ẋ) [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇] ·C (B.19)

In this case C is expressed by

C =

∫ ∞
1

ξ√
ξ2−1

γ1 dξ

∫ ∞
1

√
ξ+1
ξ−1

γ1 dξ
(B.20)

inserting γ1 from equation B.9 yields the final expression for C in the oscillatory case

C =

∫ ∞
1

ξ√
ξ2−1

e−ikξ dξ

∫ ∞
1

√
ξ+1
ξ−1

e−ikξ dξ
(B.21)

Note that Theodorsens’s function, C, in the oscillatory case is a function of reduced
frequency, or k, alone. The total normal force in the oscillatory case is found by
adding NΓ0 , equation B.17, and NΓ1 , equation B.18, with the virtual mass term NVM,
equation 3.32. Using equation 3.51 the final form of the lift force in the oscillatory case
is obtained

L = 2πρb(V − ẋ){Vα0 + [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇] ·C(k)}
+πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈] (B.22)

Note the (obvious) similarity with equation 3.55.
Since the normal forces from the bound vorticity and the wake influence acts in the
quarter-chord point, the oscillatory moment is given by

M = (a+ 0.5)2πρb2(V − ẋ){Vα0 + (Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇) ·C(k)}
−0.5πρb3(V − ẋ)α̇+ πρb3a [(V − ẋ)α̇− ẍα− ÿ − abα̈]− 1/8πρb4α̈ (B.23)

The oscillatory drag is found by computing the tangential force as in equation 3.49 and
using equation 3.52 for the projection of the forces to obtain

D = 2πρb{Vα0 + (Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇) ·C(k)}
·{[ẏ + b(a+ 1/2)α̇] + [Vα1 − ẋα0 − ẏ − b(a− 0.5)α̇] (1−C(k))}
−0.5πρb3α̇2 + πρb2 [(V − ẋ)α̇− ẍα− ÿ − abα̈]α (B.24)
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Appendix C

Numerical Panel Code Validation

In order to validate and investigate the accuracy of the developed potential panel code,
analytical solutions were used as reference case. The investigation of the accuracy in-
cludes determination of the errors associated with the discretization of both space and
time.
The analytical solutions chosen as test-cases in the present case are in case of steady
flow the solution of the the pressure distribution on a Van Den Vooren airfoil, and the
lift and drag coefficient on a symmetrical Joukowski airfoil.
For validation of the unsteady version of the code, two analytical solutions of unsteady
phenomena using infinitely thin profiles, were chosen. The first of these is the impul-
sively started flow over an airfoil at an angle of attack, and the other is an oscillating
airfoil, as described in section 3.2.

C.1 Van de Vooren airfoil

A mapping capable of transforming a circle to a symmetrical airfoil with finite trailing
edge was proposed by van de Vooren and de Jong. A van de Vooren airfoil of thickness
ratio 0.15 and trailing edge angle τ = 12.5o is shown in figure C.1.

Figure C.1: 15 % thick Van de Vooren airfoil with a trailing angle τ = 12.5o.

Analytical functions expressing the velocities on the surface of the airfoil can be
found in for example Katz et. al. [27]. From these the surface pressure can be computed
using Bernoulli’s equation, equation 3.9. Figure C.2 shows analytically and numerically
obtained negative dimensionless pressure coefficients. It is seen that the agreement
between the analytical expression and the panel code solution is excellent. Note that
the difficulties associated with constant strength doublets at the thin trailing edge, as
shown in figure 3.10, are avoided using the present approach.
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Figure C.2: −Cp versus x for Van de Vooren airfoil. Analytic to panel code comparison.
Left : α = 0o. Right : α = 8o.

C.2 Joukowski airfoil

It is possible to compute the exact, analytical, solutions to a number of airfoils using
conformal mapping. One of the existing solutions is based on the Joukowski transfor-
mation, which maps a series of airfoil profiles, known as Joukwski profiles, to a circle.
It can be shown [27], that the analytical value for the lift coefficient for a symmetrical
Joukowski airfoil is

CL = 2π(1 + ε) sin(α). (C.1)

The thickness parameter, ε, is related to the thickness ratio, such that the thickness
ratio is approximately equal to 1.299ε [27]. Figure C.3 shows a symmetrical Joukowski

Figure C.3: 15 % thick Joukowski airfoil. Notice the cusped trailing edge.

airfoil with a thickness ratio of 0.15.
Note that the trailing edge of the Joukowski airfoil is cusped, which is known to present
some numerical difficulties for panel code solutions. In the equations used to express
the profile shape, the exact value for the thickness parameter is computed for use in
the validation. The derivation of analytic expressions can be found in [27]. Figure C.4
shows the comparison between analytically and numerically obtained characteristics of
a 15% thick Joukowski airfoil. The upper figures show the numerically obtained values
for CL and CD versus number of panels in the discretization of the airfoil. As expected
the difference between the numerical and analytical results decrease with the number
of panels used. For 100 panels, the difference in lift coefficient is 0.007, corresponding
to 1.1%. According to d’Alembert’s Paradox, the drag from a potential flow should
be zero. The value obtained from the panel code was CD = 0.002 using 100 panels.
The lower figure shows lift coefficient, CL, versus angle of attack, α. The numerically
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obtained values of the lift coefficient lies 1.0% to 1.1% above the analytical results for
all angles of attack. On the basis of these results it was concluded, that the steady
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Figure C.4: Comparison between analytically and numerically obtained characteristics
of a 15% thick Joukowski airfoil. Upper figures: CL (left) and CD (right) versus number
of panels in the discretization for α = 5o. Lower figure: CL versus α for a discretization
using 100 panels.

version of the panel code was functional, and that a discretization of airfoils using 100
panels gives results with satisfactory accuracy.

C.3 Impulsive Motion, the Wagner function

The solution of the lift history of a impulsively started incompressible inviscid flow over
an infinitely thin airfoil at an angle of attack were solved by Wagner in 1925.
The development of the lift in time for this case can be characterized by a function, Φ,
such that

CL = 2παΦ(t̃) = CLsteadyΦ(t̃). (C.2)

Wagners function, Φ, is a function of non-dimensional time, t̃, only. The non-
dimensional time is given by

t̃ =
tU

c
. (C.3)
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According to Fung [13] the exact form of Wagner’s function can be expressed in terms
of Bessel functions of first and second order

Φ(t̃) = 1−
∫ ∞

0

{(K0(x)−K1(x))
2 + π2(IO(x) + I1(x))

2}−1e−2xt̃x−2dx. (C.4)

Since this expression is not expressible in terms of well known (analytical) functions,
the following approximate representations are used [13]:

Φ1(t̃) = 1− 0.165e−0.0910t̃ − 0.335e−0.600t̃ (C.5)

Φ2(t̃) = 1− 0.165e−0.082t̃ − 0.335e−0.64t̃ (C.6)

Fung [13] states that the expression in equation C.6 gives a slightly better approxima-
tion than equation C.5 for t̃ < 1.1. Due to this, a function consisting of equations C.5
and C.6 multiplied by weight functions is used as reference in the validations to follow.
The combined approximate expression for Wagner’s function reads

Φ(t̃) = Φ1(t̃)w(t̃) + Φ2(t̃)(1− w(t̃)) (C.7)

w(t̃) = 0 if t̃ ≤ 1.3

w(t̃) =
t̃− 1.3

2
if 1.3 < t̃ < 3.3

w(t̃) = 1 if t̃ ≥ 3.3

In figure C.5, numerically obtained values equivalent to Wagner’s function for 15%
profile thickness is shown with the approximate representation, equation C.7. The
numerical expressions were obtained using 100 panels on a NACA 0015 airfoil, using
time steps between ∆t̃ = 0.02 and ∆t̃ = 0.2.
It is observed that the panel code solutions approaches a value lower than the analytical
value as the time step is refined. In order to investigate this, the right figure shows the
same graphs for NACA 00-airfoils of thicknesses in the range from 1% to 15% using
∆t̃ = 0.05. It is noted that the curves get closer to the analytical curve as the thickness
ratio of the airfoils is reduced. The curve labelled as an airfoil of 0% thickness is a
computation employing the lumped vortex approach, corresponding to an infinitely
thin airfoil.
From the results shown in the right graph it was concluded that the rather big difference
between the results in the case of the 15% thick airfoil is attributed to the difference
in thickness. Wagners solution assumes a infinitely thin airfoil, and the results in the
left graph is for a 15% thick airfoil.
The slight differences between the analytical and numerical results for the thin airfoils
in the right graph is explained by the more detailed modelling of the wake in the
numerical case. Wagner’s function is derived under the assumption that the angle of
attack is so small that the profile and the wake lies on one straight line. This is not the
case in the panel code simulations, where α = 5o, and full wake roll-up is computed.
From the right figure it was concluded that a non-dimensional time-step of ∆t̃ = 0.05
is sufficient for the computations on this work.
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Figure C.5: Comparison of analytically and numerically obtained values of Wagners
function. The left figure shows CL/CL,static versus non-dimensional time, t̃, for a NACA
0015 airfoil using non-dimensional time-steps, ∆t̃, in the range from 0.02 to 0.2. The
right figure shows CL/CL,Steady versus t̃, for NACA 00-airfoils of varying thickness
using a dimensionless time-step ∆t̃ = 0.05.

C.4 Oscillating airfoil

In order to validate the unsteady panel code with an airfoil in oscillatory motion,
the results from computations on symmetrical NACA profiles with thickness ratios in
the range of 0.01 to 0.15 were compared to the analytic expressions from section 3.2.
From figure C.6 it is seen that there is excellent agreement between the analytical and
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Figure C.6: Comparison of symmetrical NACA profiles with thickness ratios in the
range of 0.01 to 0.15 with analytic solutions to airfoil in heaving motion, β = 0o.
CL/CL,Steady versus non dimensional time (left) and heave coordinate, z (right). The
airfoil is at α = 5o incidence, and the reduced frequency of the motion is fred = 0.03.

numerical results for the very thin profiles. This shows that the crude assumptions made
in the analytical derivation regarding the geometry of the wake has no big effect at the
small angles of attack where the requirement of fully attached flow is met. Furthermore
it is seen that the effect of the profile thickness is a reduction of the relative amplitude
of CL, as well as a slight phase-shift.
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C.5 Tunnel validation

The effect of tunnel walls is shown in figure C.7, where the non dimensional lift and
moment is shown as a function of tunnel wall spacing. As expected, the asymptotic
value in the case h/c → ∞ is the free lift as computed by the unbounded potential
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Figure C.7: Influence of tunnel wall spacing for a NACA 0015 airfoil at α = 5o, using
100 panels on the airfoil and 50 panels on each of the panel walls. Left: Lift coefficient
versus height to chord ratio. Right: Moment coefficient versus height to chord ratio.

code. It is observed that the absolute value of the lift and the moment increases as the
tunnel height is decreased.
The result of further validation of the tunnel wall implementation is shown in figure
C.8, where normal and tangential velocities are plotted as functions of x-coordinate
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Figure C.8: Normal (lower) and tangential (upper) velocities versus x-coordinate a
distance ∆l/c = 0.022 from the upper (left) and lower (right) tunnel walls. The airfoil
is located at x = 0. h/c = 4.47.

close to the upper and lower tunnel walls. It is seen that the velocities normal to
the tunnel walls are well below 0.1% of the free stream velocity. The ’wiggles’ on the
normal velocities are due to the discontinuities in source strength between the panels.
The tangential velocities are smooth, and close to the free-stream velocity far from the
airfoil. The tangential velocity on the upper wall is increased in the region near the
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airfoil while the tangential velocity on the lower wall is decreased in the region near
the airfoil. This is due to the circulation of the airfoil. It is seen that the increase on
the upper wall is larger than the decrease on the lower wall. This is the blocking effect
of the airfoil in the tunnel.
The method used in the unsteady panel computations is analog to the steady case, no
need for further validation of the tunnel implementation were needed.
In order to determine an appropriate discretization of the tunnel walls, an investigation
of the tunnel panel size was undertaken. The left graph in figure C.9 shows the lift
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Figure C.9: Investigation of tunnel wall discretization. Left: Influence of number of
panels on tunnel walls of fixed length. The tunnel extends from 10 chord-lengths up-
stream of the airfoil to 20 chord-lengths downstream of the airfoil. Right: Infuence of
tunnel length of fixed panel density. The ratio of the tunnel height to chord-length is
h/c = 4.47.

coefficient as function of the number of panels for a fixed tunnel length. The variation in
CL for numbers of panels higher than or equal to 50 is less than 0.03%. The right figure
shows the influence of the length of the tunnel walls, using identical panel densities.
Here the influence is very small too for the investigated total lengths. The variation in
CL for total tunnel lengths between 15 and 60 chord-lengths is less than 0.05%.
From the above investigations it was concluded that a discretization of the tunnel walls
using 100 tunnel panels in total was sufficiently accurate. The total tunnel length used
in all tunnel computations in this work was set to ∆L = 30. 10 chord-lengths upstream
and 20 chord-lengths downstream. The reason for going further in the downstream
direction than in the upstream is the unsteady wake, making the need for more tunnel
in that direction to capture correctly the coupled tunnel-wake interaction, and its
influence on the airfoil.
The length of the tunnel panels at the airfoil was determined according to

Lpanel = 0.4
xOut − xIn

NPanels

. (C.8)

The spatial distribution of the tunnel wall panel lengths were determined by a third-
order polynomium, such that the specified panel length at the airfoil was the shortest
of all the panels, while prescribing the tunnel inlet and outlet positions.
The discretization and size of the tunnel walls used for all tunnel computations in this
work are shown in figure C.10.
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Figure C.10: Discretization of the tunnel walls using 2 × 50 constant strength source
panels extending 10 chord-lengths upstream and 20 chord-lengths downstream.



Appendix D

RANS grid sensitivity study and
code validation

D.1 Grid sensitivity study

In order to determine the error committed when using a specific computational grid,
a grid sensitivity study is presented in this appendix. The first part concerns the
influence of the radius of the grid, and the last part concerns the discretization of the
grid.

D.1.1 Grid radius

The influence of the distance from the airfoil to the outer boundary of the computational
domain was estimated using relations from potential theory to link the lift coefficient
to a velocity disturbance at a radius r, far from the airfoil.

CL =
2Γ

cV
(D.1)

VΘ =
Γ

2πr
(D.2)

Equation D.1 relates the lift coefficient to the circulation of the bound vorticity on the
airfoil, whereas equation D.2 expresses the induced tangential velocity from a point
vortex at the distance r from the vortex. Combining equations D.1 and D.2, yields for
the disturbance from the circulation of the airfoil

VΘ

V
=

CL

4π

c

r
. (D.3)

This corresponds to the angle

α′ = arctan

(
VΘ

V

)
(D.4)

upstream of the airfoil.
At the inlet of a RANS computation, the velocity is specified. Therefore the disturbance
on the inflow velocity from a grid of radius r can be quantified using equations D.3 and
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D.4.
Figure D.1 shows VΘ/V and α′ as function of non dimensional grid radius r/c for
CL = 1. As a compromise between accuracy and computing costs, we employ grid
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Figure D.1: Effect of grid radius on disturbance of inlet velocity compared to an infinite
grid. Upper figure: VΘ/V versus r/c. Lower figure: α′ versus r/c. In both figures a
unit lift coefficient is used. CL = 1.

radius 17.5 throughout. This radius of the computational grid corresponds to a relative
disturbance of the velocity VΘ/V = 0.0045 for CL = 1. The corresponding change in
the angle of attack of the flow is α′ = 0.26o, upstream of the airfoil.

D.1.2 Grid discretization

The computational grids around the NACA 0015 airfoil used in this work were gener-
ated using the hyperbolic grid generator HypGrid2D, developed by Sørensen [53]. The
topology used for the grids is the O-grid configuration. The O-grid configuration avoids
the problem of specifying where the wake is, making it a more general grid. This is a
strength when dealing with moving grids, since the wake of the airfoil in this case is
not in the same relative position at all times. Moreover, the cells in the wake are not
as stretched as in a C-grid.
In order to quantify the error associated with the discretization of the fluid domain,
three computational grids were used to estimate the exact value of the lift coefficient
as suggested by Roache [45]. The three grids employed for the grid sensitivity studies
were of approximately the same outer radius, r = 17.5. The grids were constructed to
have a distance to the first gridline away from the surface corresponding to y+ = 1.0
in order to satisfactorily resolve the laminar sublayer. The value of y+ for these grids
more than meets the requirements from the k − ω SST turbulence model, which is
y+ < 3.0 [34]. With these requirements, the height of the innermost computational
cell was approximately 2 · 10−5 chord-lengths. The following three grids were used as a
basis for computing the exact value of the lift coefficient.
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• Grid A 384× 192 grid points. (tangential × normal direction)

• Grid B 256× 128 grid points.

• Grid C 192× 128 grid points.

Transient computations were carried out using grids A, B and C at incidence α = 5o

using the k − ω SST turblence model.
According to Roache [45], Richardson extrapolation can be used to determine the
exact value of a given quantity, f . The discrete solutions are assumed to have a series
representation in the grid spacing, h, of

f = fexact + g1h+ g2h
2 +HOT. (D.5)

The functions g1 and g2 are defined in the continuum, and does not depend on the
discretization. The term labelled HOT is the higher order terms. From solutions
using three different discretizations, the exact value, fexact, can be determined. Using
the above method on the present case, the exact value of the lift coefficient, CL, was
estimated using the cell width on the surface as the dependant grid spacing.

CL,exact = 0.5157 (D.6)

In order to save computational costs, a fourth computational grid was generated

• Grid D 256× 64 grid points.

Grid D has fewer grid points in the normal direction than the other grids, but due
to the high resolution in the direction around the airfoil, the computational accuracy
match grid C even though fewer computational points are used. Comparison of the lift
using grid D,

CL,gridD = 0.5221, (D.7)

with the estimated exact value show that the error committed when using grid D is
∆CL = 0.0064, corresponding to 1.25%.
As a compromise between accuracy and computational cost, grid D was employed for
all RANS computations in this work. Figure D.2 shows grid D.
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Figure D.2: The computational O-grid (D) around NACA 0015 profile employed for
the computations in the present work. 256× 64 grid points. Grid radius is 17.5 chord-
lengths.
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D.2 Moving grid validation

Since the basic elements of the code employed for the RANS computations carried out
in the present work is thorougly tested and validated previously, for example in [51]
and [54] by Sørensen, only validation of the new implementations were needed.
Validation of the implementation of the moving grid method described in section 3.6 is
undertaken by running computations on an empty rectangular grid undergoing oscil-
latory motion in the direction perpendicular to the motion of the free-stream. The
grid is shown in figure D.3. The result of such a computation should give the speci-
fied inlet velocity in the whole domain when subtracting the velocity field from the
motion of the computational grid. The grid is undergoing harmonic oscillation per-

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure D.3: Quadratic grid used for validation of the moving grid method. The grid-
size is 64, and the side-length of the quadratic grid is 1. The leftmost, upper and lower
edges of the domain have inlet condition (magenta), whereas the rightmost edge has an
outlet boundary condition (green). All other points are internal points in the domain.

pendicular to the incoming flow with an amplitude equal to 80% of the side length of
the grid. The period of the oscillatory motion equals the time for the flow to move
from through the computational domain. This gives a maximum flow velocity in the
y-direction, Vy,max/Vx = 0.8π = 2.51 in the relative frame of reference, corresponding
to a maximum relative flow angle

αrel = arctan(0.8π/1) = 68.3o

with respect to the horizontal grid lines.
For the computations, the following values were used

• Flow quantities: V = 1, ρ = 1 and µ = 1

• Movement parameters: A = 0.8 and T = 1
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• Time step: ∆t = 0.78125 · 10−3

The parameters corresponds to 1280 time steps per oscillation period, and a maximum
CFL value 0.126.
The flow-fields were investigated after 2 and 2.5 periods of the motion, at y = 0 and
ẏ/Vx = ±2.51.
It was observed that the disturbance on the velocity in the direction of and perpendi-
cular to the free-stream was

Vx < 3 · 10−6

Vy < 1 · 10−4.

From this it is seen that the disturbances added to the flow from the motion of the
grid is negligible, which validates the moving grid implementation.


