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Preface
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everyday life.

The low-dimensional models constructed during the present study have been interesting
to investigate and certainly have contribuied to a better understanding of the flow in the lid
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Summary

The flow in a lid driven cavity with a rotating rod has been studied by numerical simulations
utilizing an axisymmetric Navier-Stokes solver. This type of flow is suitable for studying vor-
tex breakdown because it is free of external, ambient disturbances and because the boundary
conditions are well-defined. The results of the simulations show that the breakdown bubbles
of the steady flow as well as the unsteady flow can be controlled by the rotation of the rod.
Tools were developed to obtain a quantitative measure of the transient behavior of the flow
field in the cavity. Transition of the flow was studied and the frequencies appearing in the
time varying flow field were determined by applying a Fast Fourier Transform (FFT).

By applying Proper Orthogonal Decomposition (POD), one is able to extract a limited
amount of data which characterizes a flow of interest. The modes resulting from the decom-
position form a basis in the phase space on which a Galerkin projection of the equations of
motion can be performed. By carrying out such a procedure one obtains a low-dimensional
model consisting of a reduced set of Ordinary Differential Equations (ODE) which models
the original equations. Such low-dimensional models have been constructed and used for
analyzing bifurcations occurring in the flow in the lid driven cavity with a rotating rod.

A technique called the Sequential Proper Orthogonal Decomposition (SPOD) was devel-
oped to perform decompositions snitable for low-dimensional models. The SPOD is capable
of transforming data organized in different sets separately while still producing orthogonal
modes. Also, 8 method has been developed for constructing low-dimensional models with
more than one free parameter. It was applied to the flow in the lid driven cavity with a
rotating rod. The resulting model allows one of the free parameters to appear in the inho-
mogeneous boundary conditions without the addition of any constraints. This is necessary
because both the driving lid and the rotating rod ¢an be controlled simultaneously. Appar-
ently, the results are among the first to be obtained for low-dimensional models based on

projection on POD modes for more than one free parameter.
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Dansk resumé

Stremningen i en lukket cylinder med roterende 13g og roterende stang er blevet underspgt
ved hjaelb af numeriske simuleringer med en akse-symmetrisk Navier-Stokes-lgser. Denne
type stromning er velegnet til studier af vortex breakdown (nedbrud af en hvirvel) pd grund
af fravaeret af udefrakommende forstyrrelser, og fordi at randbetingelserne er veldefinerede.
Resultaterne af simuleringerne viser, at recirkulationsboblerne i den stationeere sivel som den
instationzere stromning kan styres ved hjelp af stangens rotation. Der er udviklet veerktojer
til beregning af kvantitative egenskaber for transienterne i strgmningsfeltet i deh lukkede
cylinder. Transition af strgmningen er blevet undersggt, og frekvenserne, der optraeder i det
tidsvarierende stromningsfelt er beregnet ved hjzlp af Fast Fourier Transform (FFT).

Ved anvendelse af Proper Ortogonal Dekomposition (POD) kan man ekstrahere en be-
greenset maengde af data, som karakteriserer den pdgaldende stromning. Resultatet af dekom-
positionen udger en basis i faserummet. P& denne basis kan man foretage en Galerkin-
projektion af beveegelsesligningerne. Herved opnds en lavdimensional model, som bestar
af eb reduceret s=i af ordinere differentialligninger, der kan fungere som en model af de
oprindelige ligninger. Lavdimensionale modeller er blevet konstrueret og anvendt til at anal-
ysere bifurkationer, som optrader i str.gzmingen i den lukkede cylinder med roterende lag og
roterende stang.

En metode, som kaldes Sekventiel Proper Ortogonal Dekomposition (SPOD), er blevet
udviklet med henblik pd lavdimensional inodellering. SPOD er i stand H separat at trans-
formere data, som er organiseret i adskilte delmzngder, pd en sidan méde at de bereg-
nede basisvektorer bliver ortogonale. Endvidere er der blevet udviklet en metode til at
konstruere lavdimensionale modeller med mere end én fri parameter. Metoden er anvendt pa
stremningen i den lukkede cylinder med roterende 13g og roterende stang. Den resulterende
model tillader, at en af de frie parametre forekommer i de inhomogene randbetingelser, men
uden at det er nedvendigt at tilfgje yderligere betingelser. Dette er ngdvendigt, fordi at béde
det roterende lig og den roterende stang kan styres samtidigt. De opndede resultater er,
si vidt det vides; blandt de frste, der er opndet for lavdimensionale modeller baseret pd

projektion pa en basis, som er beregnet via POD, for mere end én iri parameter.
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Chapter 1

Introduction

The equations of motion are simple and well known. Yet they provide an unending source
of complicated fluid motion. The researcher might try to identify structures appearing in
a fluid flow and thereby attempt to understand its behavior. Perhaps the most striking
development along this line of research is the recent ability to predict the motion of the fluid
from structures appearing in the flow.

During the last few decades computers have become cheaper and increasingly more pow-
erful. It has for some time been possible to sample large amounts of data from fluid flow
experiments by using automated measuring equipment based on hot-wires, Laser Doppler
Anemometry (LDA) and Particle Image Velocimetry (PIV). Also, today very large amounts
of data are being computed by numerical solution of the Navier-Stokes equations.

By applying Proper Orthogonal Decomposition (POD), Wavelets and similar transforma-
tions, one is able to extract a limited amount of data which characterizes a flow of interest.
The modes resulting from such transformations form a basis in the phase space on which
a Galerkin projection of the equations of motion can be performed. By carrying out such
a procedure one obtains a set of Ordinary Differcntial Equations (ODE) which models the
original equations. The idea behind constructing a model of this type is that although the
original equations have a very large number of degrees of freedom the actual solution may
have only a moderate number of dimensions.

The approach of constructing low-dimensional models by applying Galerkin projection
of the Navier-Stokes equations on POD modes has several shortcomings. This fact is em-
phasized when considering Low-dimensional models of more realistic flows. Discretization
of the original partial differential equations yields a large number ODE’s which are coupled
through sparse coefficient matrices. Although a smaller number of ODE’s can be obtained
by Galerkin projectioﬁ, the resulting equations are coupled in such a way that any solution

variable depends on all the others. Thus, the necessary nuraber of computations increases




quickly with the number of modes. A certain error is introduced when representing a solution
by POD modes corresponding to data sampled for selected parameter values. The error tends
to grow quickly for parameter which are not close to the values selected for the sampled data.
Therefore, many modes are needed for a large paramster space.

The advantage of using POD modes for a low-dimensional model is that the modes are
caleulated in order to suit the specific problem in contrast to for instance the Fourier modes
which are given a priori. Of course, this is also a disadvantage because the solution of the
problem must be known before the POD modes can be found. However, the quest of data
for the calculation of modes to be used in a low-dimensional model provides motivation
for investigating the system which is modeled. The desire to enhance the performance and
accuracy of the low-dimensional model leads to a need for more detailed and accurate data.
The low-dimensional model can be viewed both as a model of a system and as a tool to
present large amounts of data for a system on a concentrated form.

In present study, the goal is to carry out axisymmetric numerical simulations in order to
control the steady and unsteady flow in a closed cylinder with a rotating lid and rod, con-
struct low-dimensional models based on decomposition techniques and analyze bifurcations
occurring in the flow. The study is presented in two parts. The numerical simulations are
presentéd in the first part. The second part is concerned with the construction and analysis
of the low-dimensional models.

The lid driven cavity is suitable for studying vortex breakdown because it is free of ex-
ternal, ambient disturbances that are often present in open flows and because the boundary
conditions of the fluid mechanics problem are well-defined. Despite its wide range of technical
applications, vortex breakdown is not fully understood and remains difficult to predict and
control. Due to the simple geometry of the cloééd cavity and the existence of efficient axisym-
metric Navier-Stokes solvers, this type of problem is highly suitable for numerical studies.
In Chapter 2, the problem is introduced, various aspects of the steady flow are discussed
and the results for the unsteady flow are presented. In order to characterize the flow for a
given set of parameters, numerical simulations were carried out for a long time interval until
a limiting state was obtained. The recorded data were analyzed and later utilized for both
the construction and evaluation of low-dimensional models. Tools were developed to obtain
a quantitative measure of the transient behavior of the flow field in the cavity. The frequen-
cies appearing in the time varying flow field were determined by applying a Fast Fourier
Transform (FFT) and the peaks were located in the calculated FFT amplitudes.

Constructing low-dimensional models of the fiow in a lid driven cavity with a rotating
rod has indicated several problems and served as a source of inspiration for enhancing the

modeling procedure. The Sequential Proper Orthogonal Decomposition (SPOD), which will




- be introduced ir Chapter 3, is a technique which was developed to perform decompositions
suitable for low-dimensional models. The SPOD is capable of transforming data organized
in different sets separately while still producing orthogonal modes. This feature is desirable
because the POD modes with the largest eigenvalues represent data corresponding to large
energy better than data corresponding to small energy. Thus, dynamically important data
might not be represented unless it is either transformed separately or weighted in some fash-
ion. An interesting contribution to the construction of low-dimensional models is presented
in Chapter 4. It is a method for satisfying inhomogeneous boundary conditions, in which one
of the free parameters appears, without the addition of any constraints. This is necessary
because the model has two free parameters in contrast to earlier models with only one free
parameter. The problem arises because both the driving lid and the rotating rod can be
controlled simultaneously.

In the beginning of Chapter 5, a validation is performed by comparing solutions of the
current type of low-dimensional model to the results obtained in the earlier work of E. A.
Christensen ef al. [10]. In order to accomplish this, a special version of the low-dimensional
model was implemented for the lid driven cavity without a rod. The performance of this
version of the model compares favorably with the earlier model of Christensen ef al. The
low-dimensional models of the flow in the lid driven cavity with a rotating rod are presented.
The transition occurring for varying parameter values is studied and the results are compared
to the original results obtained for the full numerical simulations. The effect of different
methods of data sampling and variations of the decomposition procedure is investigated.
The eigenvalue spectra of the SPOD are used for estimating an upper limit for the number of
modes which can be included in the models. A low-dimensional model, which is operational
with two varying parameters, is utilized for Hopf continuation. The resulting critical curve is
compared to the data obtained for the full model. For one constant parameter, the accuracy
of the critical values obtained for the varying parameter are superior to the results obtained
for simpler models. Within the literature, no results have previously been reported for low-

dimensional models based on projection on POD modes for more than one free parameter.
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Chapter 2

The closed cylinder with a rotating
lid and rod

2.1 Background

The flow in a closed cylinder with a rotating lid was originally introduced experimentally by
Vogel [31] and Ronnenberg {25, and was later studied intensively by experiment in the work
of Escudier [15]. Although it has appeared much less frequently in the literature than the
flow between rotating concentric cylinders it has gained increased popularity.

The flow in a closed cylinder with a rotating lid is suitable for studying vortex breakdown
because it is free of external, ambient disturbances that are often present in open flows and
because the boundary conditions of the fluid mechanics problem are well-defined. One has
to keep in mind, however, that the flow is affected by the Wa‘.lls7 and the lack of through-flow
in the cavity makes it difficult to transfer results directly to realistic applications.

Due to the simple geometry of the closed cavity and the existence of efficient axisymmetric
Navier-Stokes solvers, this type of problem is highly suitable for numerical studies. Recently,
the transition scenario in the flow has been studied numerically by Sgrensen and Christensen
128].

Despite its wide range of technical applications, vortex breakdown is not fully understood
and remains difficult to predict and control. Vortex breakdown in the closed cavity flow
was first controlled by means of a rotating axial rod by Hussain et al. [18] who reported
flow visualization experiments and an presented an analytical model aimed at explaining the
observed phenomena. Their analytical model is based on the velocities being independent on
the axial coordinate, which prevents modeling of breakdown bubbles. In contrast, the present
calculations show a change in the a,zimut‘hal velocity near the lid and near the bottom.

Mullin et al. [22] performed a numerical investigation of a slightly different configuration




in which both end-walls rotate. In particular, they considered the case of an inner cylinder
rotating with the end-walls and the case of & stationary inner cylinder. A recent experimental
and numerical study was performed by Mullin et al. [23] of a rotating cylinder of fluid where
one end-wall is rotated. The results show that the addition of a sloping inner cylinder has a
dramatic effect on the recirculation such that it can either be intensified or suppressed. One
of their main conclusions is that the onset of the recirculation bubble is mainly unaffected by
the presence of a small straight rotating inner cylinder (attached to the rotating bottom end-
wall). In contrast, the current study shows that presence of a small straight inner cylinder,
which is rotating independently of the end-walls, has an effect on the recirculation bubbles
which is just as significant as the presence of the sloped inner cylinder investigated by Mullin
et al.

The goal of the present study is to carry out axisymmetric numerical simulations in order
to control the steady and the unsteady flow in a closed cylinder with a rotating lid and rod.
The data resulting from the investigation will be used to construct low-dimensional models

based on decomposition technigques with the purpose of analyzing bifurcations occurring in

the fow.

2.2 Physics

The basic configuration consisting of a closed cylinder with a rotating lid (without any rod}

is shown in Fig. 2.1. The rotating lid has the effect of setting the fluid into a rotating motion

Rotating lid

z Computational
domain

Figure 2.1: Cylindrical cavity with rotating lid. The considered domain is a plane in between

the center axis and the wall.
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around the center axis. In addition, it drives the fluid close to the lid away from the center
thereby causing a meridional circulation. The fluid leaving the area near the lid then travels
downwards along the outer wall, turns inwards near the fixed bottom, rises vertically close to
the center axis and returns to the area near the rotating lid. Along this path, the azimuthal
velocity component of the fluid undergoes changes and the fluid rising aléong the center axis
forms a strong swirling vortex core. The vortex may experience a vortex breakdown which
manifests itself by one or several bubble-like zones of recirculating ﬂﬁid; called breakdown
bubbles, that are located along the center axis.

The model parameters governing the flow are the aspect ratio
A=H/R, (2.1)

where H and R denote the height and radius of the cylinder, respectively, and the Reynolds

number

v
Reh-dz » N (2.2)

where vy;4 Tefers to the tip velocity of the lid and » is the kinematic viscosity.

Escudier [15] identified boundaries within the (A, Rejq}-plane in which zero, one, two or
three breakdown bubbles occur on the center axis. In addition, for any given aspect ratio,
there is a; critical Reynolds number, Re.()\), at which the flow becomes unsteady and starts
to oscillate. Escudier found that for Reynolds numbers just above Re.(A) the oscillation is
periodic and axial provided that A < 3.1.

The present study is limited to treat only the case of a cylinder with an aspect ratio of 2.0.
The transition to three-dimensional fiow for this aspect ratio has been studied numerically
by Serensen et al. [29] They found that the flow remains axisymmetric in a substantial part
of the unsteady domain.

For this particular aspect ratio value, the only possible configurations in the steady domain
consist of zero, one or two breakdown bubbles. The streamlines of the flow obtained froiln
a steady state numerical simulation are represented in Fig. 2.2b. In Fig. 2.2 this result is
qualitatively compared to an experimental visualization (a) of Buchhave et al. [8]

As shown in Sgrensen and Ta Phuoc [27] the axisymmetric flow is accurately described
by transport equations for vorticity and azimuthal velocity, and a Poisson equation for the
stream function. This has been exploited this to produce a numerical model for simulating
the flow.

in order to control the vortex breakdown, that is either suppress or enhance the formation
of breakdown bubbles, a thin rod with radius ¢ = 0.02R was implemented in the numerical
model (see Fig. 2.3). Asseen in 2.6.1, rotating the rod has a significant effect on the formation

of breakdown bubbles. By rotating the rod in the same direction as the lid, the appearance




(a)

Figure 2.2: Comparison between experiment and computed stream lines for Reyg = 2200.
(a) Visualization, particles appear as white spots in a laser sheet. (b} Stream lines from

simulation.

of vortex breakdown bubbles can be prevented, whereas counter-rotating the rod results in
an amplification of the bubbles.

A simple dimensional analysis of this problem yields four model parameters. These are,
besides the aspect ratio, A, and the Reynolds number, Reyiq, the ratio between the radius of
the rod and the cylinder,

¢=5/R, (2.3)
and the ratio between the Reynolds number of the rod and the cylinder,

R65 7.)55

S M Ly 2.4
7 Repa  wyaR (2:4)

where v; is the surface velocity of the rod. Res is the Reynolds number based on the surface
velocity of the rod. To limit the number of control parameters, set £ = 0.02. Since A = 2.0,

the two remaining model parameters are therefore v and Reyg.

2.3 The governing equations

As shown in Appendix A, the Navier-Stokes equations and the continuity equation can be

reformulated in terms of velocity, v, vorticity,

w=V xv, (2.5)
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Figure 2.3: Cylindrical cavity with rotating lid and rotating rod. The considered domain is

a plane in between the rod and the wall.

~ and a covariant vector stream function,
v=-V X, (2.6)

For rotational symmetry and utilizing cylindrical coordinates, it is only necessary to consider
the azimuthal components, which are called v, w and v respectively. The radial and axial

components of the velocity are then given by

— 1?_’% __l@_?,b (2.7)

”’"—Faz’ Ve = T e
This leads to a formulation of the governing equations consisting of the equations (A.47),
(A.61) and (A.69). The equations are restated here as the Poisson equation,
0% 1oy @

=57 7o e 28)

TW
the vorticity transport equation,

Ow 8 d 10,4 1 1 10 [ dw Fw
3 o) g ve) + g ) F g (‘ﬁ‘” +i5 (75r) W) - (@9)

and the azimuthal velocity transport equation,

R 8 2 1 [ 1 16 ( v, Pu
B—tvg = _B‘T‘ (’UT‘UQ) — a(’f)z’vg) - ;‘:UT’Ug -+ Re ( T_2U9 + ;5 (T‘E) + W . (210)

In addition, according to the work of Daube et al. [12], there is a constraint (A.13), whick,

for the lid driven cavity with a rod, has the form

/F(%V"-VX(VXV)-I-%VX(VXV)).dlz(), (2.11)
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where I is a loop around the rod. The constraint is introduced because the pressure is
eliminated by differentiation when deriving the vorticity transport equation. However, as
shown in Appendix A, the constraint is automatically satisfied because the azimuthal velocity

equation is solved directly. This ensures the existence of a pressure function.

2.4 Boundary conditions

For the closed cylinder with a rotating lid the following boundary conditions apply according

to Serensen and Ta Phuoc [27]:

Symmetry axis
@bxw:w=a—=0, ﬁg=0,w=—vz. (2.12)

Cylinder wall

oY 22y
¢ =Up = Uy —é; = 0', Vg 0, —(;3—?3 = TW. (213)
Rotating lid ;
o 0y
Y=v, =1, = 5 0, vg =1, 522 T, (2.14)
Fixed bottom )
o oY
'l,bz’UT =’UZ=$:O, ’Ug=0, W=TW. (215)

The rotating rod with radius é is implemented by replacing the boundary conditions for the
symmetry axis by appropriate no-slip conditions
o 0%

)
@b:vT:Uz:EﬂO,vg:'ug,Wzrw,forcr‘:E. (2.16)

2.5 Numerical implementation of the Navier-Stokes solver

The transport equations are discretized by a second order central difference scheme. The
Poisson equation is discretized to fourth order accuracy using three-point Hermitian expres-
sions for the derivatives of the stream function. The boundary conditions were implemented
by using Taylor series expansmns into the flow domam The transport equations were solved
alternately with the Poisson equatlon For each equatlon every time step was split into fwo
steps, one time step for the z-direction and one time step for the r-direction, employing the
ADI technique. Further details about the numerical implementation, including references,
can be found in Sgrensen and Ta Phuoc [27].

The ability of the applied numerical procedure to correctly reproduce the flow structures
is shown in Fig. 2.2 which displays a comparison between PIV photo (a) from Buchhave et

al. [8] and computed stream lines (b). A detailed comparison between numerical results
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and measurements, showing excellent agreement, is reported in Sgrensen and Ta Phuoe {27].
They validated the basic numerical code (without the rod) against visualizations and velocity
profiles obtained by using LDA. We thus assume that the numerical method is thoroughly
validated, and we use it to gain insight into the physical problern. When the symmetry
condition with respect to the center axis is replaced by a no-slip boundary condition, it
seems reasonable to assume that the no-slip boundary condition performs equally well for the
rod and the outer wall.

By investigating different grid sizes, a grid resolution of Ar = Az = 0.01 was found to
be sufficient within the parameter range of interest in this study. An example for the rod is

given in Fig. 2.4.

(a) (b)

Figure 2.4: A study of the grid size effects for the rod with v = 0.010 at Reyg = 2200. (a)
Grid with 201x101 points, (b) grid with 281x141 points.

2.6 Steady flow

2.6.1 The effect of the rotating rod

The effect of co-rotation {y > 0) and counter-rotation {v < 0) of the rod relative to the
direction of the rotation of the lid for Reyg = 2200 is shown in Fig. 2.5. Co-rotation causes
the smaller breakdown bubble to disappear at a y-value within the interval 0.001 < -y < 0.002
and the larger breakdown bubble to disappear at a ~y-value within 0.004 <~y < 0.005. Note the
appearance of a small vortex in the upper left hand corner of the computational domain close
to the intersection between the rod and the lid. In contrast, counter-rotation causes the size of
both breakdown bubbles to increase and the flow becomes unsteady at a y-value in the range

of —0.007 < v < —0.006. But, also counter-rotation creates a voriex in the upper left hand
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corner of the computational domain. Thus, both co-rotation and counter-rotation are seen
to have a dramatic effect on the flow structure near the rod. This behavior is similar to the
qualitative experimental observations of Hussain et al. [18]. They performed visualizations
for Reyg = 2720, H/R = 3.25 and £ = 0.0416 in which they observed three breakdown bubbles
for a fixed rod. As co-rotation of the rod was increased, the bubbles became progressively
smaller in size and finally disappeared. For slow counter-rotation of the rod, the bubbles
became more prominent and wider than those for the fixed rod,- Furthermore, the observed
effect of the rotating rod on the bubbles is similar to the effect which was obtained numerically

and experimentally by Mullin ef al. for an inner cylinder with a sloped wall.

4 = —0.001 ~ = —0.004 4 = —0.006

Figure 2.5: The effect of co-rotation (above) and counter-rotation {below) of the rod for

Reyqg = 2200.
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2.6.2 Parametric study for the cavity with a rod

Numerical simulations of the flow in the cavity with a rod have been carried out for varying
parameters, {Rejg,-v). Within the steady domain the breakdown bubbles were counted via
the stream function for each investigated parameter combination. The recorded number of
breakdown bubbles did not include any vortex appearing in the upper left corner of the
computational domain near the intersection between the rod and the lid. The results are
shown in the diagram in Fig. 2.6.

The horizontal axis corresponds to Rejqy and the vertical axis corresponds to «y. Each
investigated parameter combination is equivalent to a point in the diagram. Within the
steady domain each point is marked to show the occurrence of zero, one, or two breakdown
bubbles in the flow. Any points within the unsteady domain are shown as crosses.

The boundaries among the domains and the transition between steady and unsteady fow
are indicated by lines. In order to Limit the number of computations most of the points were
located in areas wherg topological changes or transition to unsteady flow were expected.

Independently of whether the rod is rotating or not, the flow is unsteady for Reynolds
numbers above 2700. For Reynolds numbers above 1500 the flow is unsteady for values of
above 0.031 and below —0.016. No simulations were carvied out for Reynolds numbers less
than 1500. The flow becomes unsteady at a critical line, shown in the figure as a dashed line,
which extends in a curve from a point near the upper left corner of the diagram to a point
near the lower left corner. Within the steady domain, six distinct domains corresponding
to different numbers of bubbles can be identified. The uppermost domain corresponds to
zero bubbles. Below this domain, a domain of one bubble is located. Below this domain,
the domain of two bubbles is located. Inside this domain, a small domain of one bubble can
be found. It represents the phenomenon of two breakdown bubbles having merged to form
‘one large bubble. Below the domain of two bubbles, the flow becomes unsteady for Reynolds
numbers greater than a value in between 1800 and 1900. For Reynolds numbers less than this
value, a domain of one bubble can be found. Below this domain an L-shaped domain of zero
bubbles is found. Below and on the right hand side of this domain, the flow is unsteady. From
the diagram we learn that the topeology of the stream lines can be controlled by changing ~
and Reyq. In particular, it is possible to remove the breakdown bubbles by co-rotation of the
rod for all investigated Reynolds numbers up to a value above 2400. But it is also possible
to remove the breakdown bubbles by counter-rotation provided that Reyg is small enough.

In Fig. 2.6 this is shown for Reyy = 1500.
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Figure 2.6: Parametric study for the cavity with rod. For a series of values of Reyy and «y
the number of breakdown bubbles were counted by using the stream function. The lines are
meant to aid in distinguishing among the domains of different behavior and do not represent

computed data.
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For Reyz = 1600 the diagram displays a rather complicated behavior. Increasing the
rotational speed of a counter-rotating rod (y < 0}, the flow becomes unsteady at y = —(.008,
re-stabilizes with no breakdown bubbles at ~v = —0.013, and becomes steady once again at
4 = —0.015. Thus, the mechanism behind the observed behavior does not lend itself to an
~ easy explanation.

Escudier [15] reports the range of two breakdown bubbles at A =2 to be 1850 < Reyy <
2240 for the cylinder without a rod. We find that by introducing a fixed rod with £ = 0.02
the range of two breakdown bubbles is expanded to become about 1800 < Re;g < 2555.

The stream line topology for the closed cavity with a rotating lid can be viewed within a
mathematical framework that describes all kinds of behavior which are possible. This work
has been carried out by Brens [5], Hartnack [17], Brens and Hartnack [6] and Brens et al. [7].
Indeed, the method used by Brens [5] and Hartnack [17] can also be utilized for the cavity
with a rod as it fully describes the allowed kinds of behavior near a boundary with a no-slip
condition. Furthermore, the method for the interior of the flow can be applied. For instance,
the merging of two breakdown bubbles shown by Brens and Hartnack [6] can be observed
for the parameters (Reyq,y) = (2100, —0.001) in Fig. 2.6. According to their predictions,

the merged breakdown bubble should contain two recirculating areas. This is exactly what

is observed.

2.7 Unsteady flow

2.7.1 Overview of investigation

The purpose of this study is to investigate the transition from steady to unsteady flow and
the transition taking place within the unsteady region close to the steady regiori. In order
to characterize the flow for a given set of parameters, numerical simulations were carried out
for a long time interval until a limiting state was obtained.
Ag it is the nature of the flow to yield very long transients for parameter values close to a
critical point of the limiting flow, it was necessary to limit the investigated parameter space
"in order to obtain data near critical points. The parameters of main interest are Reyq and
. Thus, the thickness of the rod was fixed by letting £ = 0.02 and an aspect ratio of 2.0
was chosen for the cylinder. Escudier [15] reported the flow in the cavity without the rod
to become unsteady at the critical Reynolds number via a precession of the vortex core for
aspect ratios above 3.1. Hence, the aspect ratio for the present study was chosen well below
this value to keep the flow axisymmetric.
~ The region shown in Fig. 2.7 was chosen in the parameter space near the transition from

steady to unsteady flow for a fixed rod.

15



cavity with rod for H/R=2.0

T T 7 7 T
steady, ( bubbles ©
steady, 1 bubble A
L steady, 2 bubbles &
lperiod @
N 2periods 4
0.01 * . ¢ . ¢ chaos  +
[ ] [ ] ® ] .
] . . [ ]
o} L] LJ L] L
o] ® ° . e
e ® 4 L]
jo] L d -
0.005 o] © » . ® -
19] [ ]
o [
A A L] . .
& A A . .
E A A A ® [ ]
=
=]
o] A A L) L
0+ =] N - R Y T PN -
.
o] ] B L] e
R O o 1 L
o} o] O o L]
= o O L1 *
-0.003 | ] 0 [} . .
[
A + +
) 1 | t 1 i
2300 2400 2500 2600 2700 2800 2900
ReLid

Figure 2.7: Characterization of the unsteady flow in the cavity with a rod near the steady

region. For a series of values of Reyg and +y the number of periods of the time varying flow

field was determined.
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The horizontal axis represents the Reynolds number, Reyq, and the vertical represents 7.
Data is shown for Reynolds numbers between 2400 and 2700 and for v between —0.006 and
0.011. At Reyy = 2700 the flow is unsteady. For 2400 < Reyg < 2600 the flow is steady
between an upper and a lower critical v and otherwise unsteady. The method of determining
whether the flow is steady or unsteady is discussed further in 2.7.4.

For most of the parameter values in the shown unsteady region the time variation of
the flow field has one period corresponding to a basic frequency. Some parameter values

_yield higher harmonics that co-exist with the basic frequency. In the next subsection it is
explained how the Fast Fourier Transform was applied to enable detection of the frequencies
in the unsteady flow field. In 2.7.3 the method of determining the peaks is accounted for.

The higher harmonics have frequencies that are multiples of the basic frequency. Where

a single basic frequency exists the legend in the figure indicates one period.

2.7.2 Application of FFT

The frequencies appearing in the time varying flow field were determined by applying a Fast
Fourier Transform (FFT) with a Hamming window to data ensembles consisting of 2! or 2°
samples of the axial velocity at the monitor poini (0.67,0.11). The number of sampled points
covered several periods corresponding to the lowest occurring frequency. The samples were
equidistant in time and separated by time intervals of At = 0.04. The sampling frequency
was sufficiently high so that aliasing was not encountered.

The Hamming Window is defined by

H(j)z(l—a)—acosﬂ,j=0,...,N—l (2.17)
N-1
where a = 0.46. Before applying the Hamming window, the mean value of the ensemble data
was subtracted from each data point.

A portable scientific Cray library, sciport, was used to perform the FFT. The amplitude
(i.e. the square root of the energy) as a function of frequency was stored as the result.

An example of a time history of the axial velocity in the monitoring point for the parame-
ters (Reyq,y) = (2650,0.0) is shown in 2.8. Only the first 100000 time steps corresponding to
a dimensionless time interval of At = 4000 are shown. After 133000 iterations the unsteady
flow was considered to have reached & limiting state and a data ensemble consisting of 218
time steps was sampled. The output of the described FFT procedure is shown in Fig. 2.9.
The main frequency is determined by the largest peak at fi = 0.0379. The first harmonic is
given by the peak at the frequency f> = 0.0759.
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Figure 2.8: A time history of the axial velocity for the parameters Reyig = 2650, ~ = 0.000.
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2.7.3 Determining peaks in the FFT amplitudes

A computer program, peakf, was written with the purpose of locating the peaks in the
calculated FFT amplitudes. In this way the frequencies appearing in the time varying flow
were found at the frequencies of the peaks. The principle used was to compare the levels
of the logarithm of the amplitude for increased values of the frequency. Whenever a local

maximum was encountered it had to satisfy two criteria in order to be recognized as a peak:

1. In order to avoid spurious peaks resulting from noise the local maximum was required

to be greater than the mean level defined as
1 &
{logsg A{f)) s = N Z logg A(f:) (2.18)
i=1

9. For some parameter values (Reyg,y) the cost of reaching a limiting state of the time
varying flow was prohibitively high. Hence, small peaks of diminishing transient signals
weze ignored by requiring both of the differences between the local maximum and the

nearest local minimums to be greater than a predefined threshold value, Le.

logloA(fpeak)_10310A(fmm1) > T (2.19)
logyo A(fpear) — 10810 Alfmin2) > T- (2.20)

A value of T = 0.6 was used.

Because of the discrete nature of the frequencies output by the FFT algorithm, the local
maximum and the two neighboring points of each peak were fitted to a parabola via

in Ajml —In Aj.,_l

f=lit+ - fj+1)2(lnAj_1 +InAj51 - Indy) (221)

This expression can be considered as a Gaussian interpolation formula based on the amplitude

A.

2.7.4 Determining transient behavior

In order to obtain a quantitative measure of the transient behavior of the flow field in the
cavity, a computer program, rmsham, was utilized. The idea was to calculate the square root
of a fltered variance of the time history of interest within a Hamming window of a fixed
size. Thus, a Root Mean Square (RMS) value was obtained for each time value at which the
window was positioned.

Defining
p=> hi (2.22)

=0
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where h; = H(3) is the Hamming window given by Eq. 2.17, and defining

1 n—1
== B, (2.23)
P iz
the filtered variance is given by
1 n—1 1 n—1 1 n—1 2
vy = — Z hg (mi-l-j - .u'j) = — Z h.._,,xi_} — l:—- Z hz$g+3:| . (2.24)
Pico Pico P izo

As the RMS value as a function of time determined by this method was found to be oscillating,

depending on the size of the window, a post filtering procedure was applied via the expression

1 m—1

= > i/ (2.25)
§=0

where
m—1
g= Y hj, (2.26)
j=0

with A; = H(j), N = m, given by the Hamming window 2.17.

By plotting (%, %) the transient behavior of the flow field could be determined. If 7y
approached zero, the flow was characterized as being steady. If o setiled at a non-zero value,
the flow was unsteady and a qualitative RMS level was then given by the limit of m. In
particular, it was possible to decide if more iterations were needed in order to approach a
limiting state of the flow field.

The RMS level as a function of time was calculated for the time history shown in Fig. 2.8,
ji.e. the time history of the axial velocity in the monitoring poini for (Reyq, v} = (2650, 0.0).
The result is shown in Fig, 2.10 which depicts logarithm of the RMS level as a function of
time. The flow is observed be unsteady. It approaches a limifing unsteady state with an RMS
level of 107249 = (0.00321. According to Fig. 2.9 the unsteady motion is dominated by an
oscillation with the basic frequency. As the amplitude is constant, it should be proportional
to the RMS level with a factor of v/2 (because the RMS level is the square root of the integral
of a squared harmonic function), i.e. A= RMS+/2 = 0.00454. The distance between an upper
and a lower peak of the original time history should be 24 = 0.00908. By inspection of Fig.
2.8 this is easily verified.

The time history shown in Fig. 2.11 indicates that the flow is steady for the parameters
(Regq,7y) = (2300, 0.0).

However, it can be hard to judge from the time history if a sufficient number of iterations
have been carried out in order to reach the limiting state of the flow. In Fig. 2.12 the RMS
level as a function of time is shown. Upon reaching an RMS level of 107 the RMS level
starts to fluctuate due to numerical noise. Thus no improvement of the final state can be

obtained by further iterations.
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Figure 2.10: RMS level as a function of time for the parameters Reyq = 2650, v = 0.000.
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Figure 2.12: RMS level as a function of time for the parameters Reyq = 2300, v = 0.000.

2.7.5 Prediction of the behavior of transients

Consider a transient consisting of an oscillation behaving as
u(t) = A(¢) sin(wt) + B (2.27}

where
A(t) = ce ™ + 8. (2.28)

From this it can be concluded that
1 At + 2At) — At + At)

ke N Ay Ay —An) (229)
a = (A(t) — B)et (2.30)

and —EAL
p=— Al J_rkft(t T4 p2o, (2.31)

l1-e
As the amplitude A(t) is proportional to the RMS level for a harmonic signal with a slowly
varying amplitude, the RMS level of the limiting state of the flow can be predicted by using
the equations (2.29) and (2.31). This method was implemented in the computer program

transi. It was used to decide if the limiting flow was steady or unsteady for parameter
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values near critical points where only part of the necessary data for very long transients was

available.

As a practical criterion of steadiness an RMS level of 1077 was chosen. For limiting RMS
levels below this value the flow was characterized as being steady and otherwise unsteady.
For RMS levels near the value of the criterion, the simulations were continued where practical

in order to improve the data and reduce the risk of wrong predictions.

2.7.6 Frequencies present in the unsteady flow

The frequencies found by application of the procedure described in 2.7.3 were plotted as a

function of v > 0 for Reyg = 2500 in Fig. 2.13. For 0 < < 0.00525 the flow is steady.
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Figure 2.13: Frequencies in the unsteady fiow as a function of -y for Reyy = 2500.

Between v = 0.00525 and v = 0.00550 a transition to unsteady flow takes place. At v =
0.00550 the unsteady flow oscillates with the frequency f, = 0.02558. The transition from a

steady flow t0 an unsteady flow consisting of a single harmonic oscillation indicates & Hopf
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bifurcation. At~ = 0.00600 the first harmonic has appeared with a frequency of f> = 0.05117.
At v = 0.00700 a second harmonic has appeared with a frequency of f3 = 0.07713.

For increasing +y the three frequencies are slightly increasing. Without the parabolic
interpolation described in 2.7.3 the plotted frequencies appear somewhat fluctuating as a
function of « so that the slight increase of the frequencies with increasing v is not obvious to
the unaided human eye.

In Fig. 2.14 the frequencies are plotted as a function of v > 0 for Reyg = 2550, For

cavity with rod for H/R = 2.0, Re=2550
0.1 T T T T

; T
201x101 o]

oos b N
5 o o) o) o o]
[0} [o]o]
006 i -
- 00 0O o] o] Q (0]
004 F | .
; o) o 0o
oo O 0] ] 0] 0]
002 | -
0 A\ & N | 1 1 I
0 0.002 0004 0006 0.008 0.01
gamma

Figure 2.14: Frequencies in the unsteady flow as a function of « for Reyy = 2550.

~ < 0.00200 the flow is steady. Between v = 0.00200 and = 0.00300 a transition to
unsteady flow takes place. The basic frequency observed at v = 0.00300 is f; = 0.03778.
At v = 0.00400 the first harmonic has appeared with a frequency of fo = 0.07564. At
v = 000550 a second basic frequency, f3 = 0.02578, has appeared, and the first basic
frequency, f1, has died out. This phenomenon could caused by fold bifurcations occurring in

the periodic fiow. However, simulations of hysteresis were not pursued in order to prove this.
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Another explanation could be a torus bifurcation followed by an inverse torus bifurcation
within a narrow parameter range. But no proof of this has been obtained. At v = 0.00600

the second harmonic 2f3 has appeared. A slight increase of the frequencies is observed for

increasing +.
Fig. 2.15 depicts the frequencies found for Reyy = 2600. For —0.00500 < v < —0.00200
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Figure 2.15: Frequencies in the unsteady flow as a function of v for Reyq = 2600.

the flow is steady. Between v = —0.00200 and ~ = —0.00100 a transition takes place to
an oscillating flow with the frequency f1 = 0.03781. At v = 0.00100 the first harmonic has
appeared. A sudden change to a second basic frequency, f» = 0.02592 takes place between
+ = 0.00500 and v = 0.00525. At v = 0.00525 the second basic frequency and its harmonics
dominate the flow and the first basic frequency and its harmonics have disappeared entirely.

At v = —0.00550 only the frequency fy = 0.01179 and its harmonics 2f4 and 3f4 appear.
Although it has not been proved, it is suspected that a transition to chaos through period

doublings take place within a narrow range of v above v = —0.00600.
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2.7.7 Hopf bifurcations for constant -~y

Near the critical point a Hopf bifurcation exhibits a linear relétionship between the squared
amplitude and the controlling parameter. From this the critical point can be estimated.
As the RMS level is proportional to the amplitude for an oscillating flow with a constant
amplitude, the squared RMS level should depend linearly or the Reynolds number near a
Hopf bifurcation. )

For 4 = 0.000 a Hopf bifurcation occurs at Reyg = 2590. This can be seen by plotting
the squared RMS level of the oscillating flow as a function of the Reynolds number as shown

in Fig. 2.16. For the periodic flow, the data point nearest to the estimated critical point was
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Figure 2.16: Squared RMS level as a function of the Reynolds number near the Hopf bifur-

cation for - = 0.000.

found via the computer program transi as explained in 2.7.5.

As shown in Fig. 2.17, for v = —0.004 a Hopf bifurcation occurs at Rej;q = 2630. Hence,

the interesting result has been obtained that the transition to unsteady flow can be sup-
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pressed, by counter-rotation of the rod, so that it occurs at a higher Reynolds number than

when the rod is fixed.
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Figure 2.17: Squared RMS level as a function of the Reymnolds number near the Hopf bifur-

cation for v = —0.004.

Tt should be noted that it is possible to validate the estimated critical points by investi-
gating the behavior of other components of the flow ficld. By plotting the RMS level of other
velocity components or the vorticity, several estimates can be obtained for the same critical

point. This was performed by Serensen and Christensen [28] for the cavity without a rod.

2.7.8 Hopf bifurcation for constant Reynolds number

In Fig. 2.18 the squared RMS level of the oscillating flow has been plotted as a function of v
for Reg = 2550. The linear relationship between the squared RMS level and the controlling
parameter, -y, near the estimated critical point indicates that a Hopf bifurcation occurs at

~ = 0.00366. Thus, the transition to unsteady flow can be enhanced by co-rotation of the
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Figure 2.18: Squared RMS level as a function of 4 near the Hopf bifurcation for Reyg = 2550.

rod, so that it occurs at a lower Reynolds number than when the rod is fixed.

In Fig. 2.19 the sQuared RMS level of the oscillating flow has been plotted as a function
of v for Reyg = 2600. The linear relationship between the squared RMS level and the
controlling parameter, v, near the estimated critical point indicates that a Hopf bifurcation
oceurs v = —0.00103. This confirms the result, established in 2.7.7, that the transition to
unsteady flow can be suppressed by counter-rotation of the rod so that it occurs at a higher
Reynolds number than when the rod is fixed.

For v = —0.002 the flow approaches the limiting flow very slowly. Therefore, the simula-
tion of the transient for v = —0.002 was not pursued to decide if the limiting flow is steady,
as this would be rather expensive. However, by viewing Fig. 2.19 it can seen that the limiting
flow is steady for v = —0.002.

In Figs. 2.18 and 2.19 it should be emphasized, for the periodic flow, that the three data

points nearest to the estimated critical point do not lie as close to a straight line as for the
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Figure 2.19: Squared RMS level as a function of v near the Hopf bifurcation for Rey;q = 2600.

‘results presented for the constant v in-2.7.7. Thus, it would have been desirable to have

more data points closer to the estimated critical points for the case of the constant Reynolds

number.

2.7.9 Suppression of vortex breakdown in unsteady flow

The simulated periodic flow was visualized numerically by injection of tracing particles. The
simulation was carried out in three steps. First, the periodic flow was allowed to approach
the limiting state. Second, after the injection of tracing particles near the rod close to the
fixed bottom, the simulation was carried on for approximately 40 periods. In this way, the
particles were distributed for visualization of structures appearing in the flow. Third, starting
at the time £ = 0, the visualized flow was recorded at regular time intervals.

For Reyg = 2800 and 4 = 0.000, a breakdown bubble in the periodic flow was visualized
by injection of tracing particles. The results for t = 0.0, t = 8.0, ¢t = 16.0 and ¢ = 24.0 are

29

A




shown in Fig. 2.20. Only the part of the flow containing the vortex core has been plotted for
each time instant. The breakdown bubble in the vortex core appears near the fixed bottorm.
The visualized structure spreads out in a T-shaped form near the rotating lid. The period of
the flow was found to be 26.24 via a Fast Fourier Transform. Thus, nearly one period passes
between the first and the last image. The breakdown bubble appears to be moving in the axial
direction. From ¢ = 0.0 to ¢ = 8.0 the bubble moves towards the rotating lid. Furthermore,
the outer tip of the bubble travels inwards along the upper surface of the bubble. Also, the
inner spike attached to the upper surface of the bubble is elongated so that it attains an
appearance like the thin spikes which are traveling along the rod towards the rotating lid.
A new outer $ip has formed at the bubble at ¢ = 8.0. At ¢ = 16.0 the bubble has moved
further in direction towards the rotating lid. The spikes appearing on the upper surface of
the bubble continue to move inwards. At ¢ = 24.0 the bubble has obtained a sha,pe which is
close to the shape for ¢ = 0.0, and it has moved in direction of the fixed bottom.

The periodic flow for Re;q = 2800 and v = 0.004 has been visualized n Fig. 2.21 at
t = 0.0, t =8.0, t = 16.0 and ¢ = 24.0. The breakdown bubble that appeared for the fixed
rod at v = 0.000 in Fig. 2.20 is clearly suppressed by co-rotation of the rod at v = 0.004.
Only a small bubble protruding from the rod is visible at ¢t = 0.0. At £ = 8.0 the small
bubble has moved along the rod towards the lid. Also, closer to the fixed bottom, a new thin
structure has started to form on the surface of the rod. At ¢t = 16.0, the bubble has been
elongated so that it appears like the spikes moving along the rod towards the rotating lid.
The thin structure on the surface of the rod has been formed into a small bubble and has
moved in direction of the rotating lid. At ¢t = 24.0 the small bubble has moved towards the
fixed bottom. Furthermore, the thin spikes attached to the rod have moved in direction of
the rotating lid. For all four images, a small riﬁg is visible on each side of the rod in the zone
near the rotating lid where the visualized structure spreads out in a T-shaped form. This
indicates the presence of a small annular vortex oriented with its axis of symmetry parallel
to the center axis of the cavity.

The periodic flow was visualized for v = 0.000, ie. a fixed rod. and v = 0.004. ie. a
co-rotating rod, at the Reynolds numbers 2600, 2700, 2800, 2900. 3000 and 3100, For all
the Reynolds numbers, the breakdown bubbles appearing in the case of the fixed rod were

suppressed in the case of the co-rotating rod.
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t=28.0 t =16.0 t=24.0

Figure 2.20: Simulated visualization of an unsteady flow at Reyg = 2800 for v = 0.000.

t=18.0 t =240

Figure 2.21: Simulated visualization of an unsteady flow at Reyq = 2800 for y = 0.004.
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2.8 Conclusion

The flow in a lid driven cavity with a rotating rod has been studied by numerical simulations
utilizing an axisymmetric Navier-Stokes solver. The results of the simulations show that the
breakdown bubbles of the steady flow as well as the unsteady flow can be controlled by the
rotation of the rod.

In order to characterize the flow for a given set of parameters, the numerical simulations
were carried out for a long time interval until a limiting state was obtained. Tools were
developed to obtain a quantitative measure of the transient behavior of the flow field in the
cavity. Transition of the flow was studied and the frequencies appearing in the fime varying
flow feld were determined by applying a Fast Fourier Transform (FFT) and locating the
peaks in the calculated FFT amplitudes. It has been demonstrated that the transition to
unsteady flow can be suppressed, by counter-rotation of the rod, so that it oceurs at a higher
Reynolds number than when the rod is fixed. Also, the transition to unsteady flow can be
enhanced by co-rotation of the rod, so that it occurs at a lower Reynolds number than when
the rod is fixed. The data resulting from the investigation are suitable for the construction
of low-dimensional models based on decomposition techniques with the purpose of analyzing

bifurcations occurring in the flow.
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Part 11

Low-dimensional modeling
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Chapter 3

Decomposition techniques

3.1 POD

Proper Orthogonal Decomposition (POD) is a transformation that produces a set of basis
vectors which span the input data in such a way that the fraction of energy represented by
any given number of basis vectors is the largest possible. The basis vectors are called modes.
POD was first introduced to the fluid mechanics society in 1967 by Lumley [19] who suggested
that eddies in turbulent flows can be interpreted as POD modes. This point of view can be
somewhat misleading when taken too literally. On the other hand, it is commonly accepted
to think of Fourier modes as a sort of eddies with sizes corresponding to the wavenumber.
Within the context of linear functional theory, POD is simply a Fourier transformation with
a different type of basis functions than the harmonic functions. Hence, one may view the
POD modes as a sort of flow structures similar to the eddies.

Since its introduction in fluid mechanics, POD has been used for analyzing experimental
data by Delville [13] and others, and for studying the results of numerical computations as
done by Manhart [21]. A review has been written by Berkooz et al. [4] about POD in the
analysis of turbulent flows.

POD is also known as Singular Value Decomposition (SVD), Karhunen-Loéve Transfor-
mation (KLT) and Empirical Orthogonal Functions (EOF). Tt is widely known as a tool of
statistical pattern recognition. See for instance Fukanaga [16]. The basic idea of the trans-
formation is to sample data, estimate the auto-covariance, solve the correspohding eigenvalue
problem and then use the solution to construct an orthogonal basis. There are several ways
to present the transformation. However, in the context of discretized partial differential
equations, it is useful to consider the discrete transformation.

In the remaining part of this section a summary of POD is given. The following two

sections contain the basic derivations of POD and a proof of the energy optimality.
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The sampled data is arranged in vectors, X;, X2, ...; Xn, each containing a snapshot of

the flow feld at a given time. This is the first step of what s called the snapshot POD. One
may also sample the time evolution of flow field variables at different locations, and arrange
the data into a vector for each location, which is the approach used in the classical POD.
However, when considering sampling of data with 10% or more components, the classical POD
yields an auto-covariance matrix with a prohibitively high rank. Thus, the snapshot POD is

preferred.

It is customary to subtract the mean vector from the snapshot vectors by
1 7
Up = X — — in (3.1)
n =

This operation turns out to be crucial for constructing POD-Galerkin models with more than
one free parameter. Subtracting the mean vector decreases the number of dimensions by one,
ie. span(u;, ..., Uy) has n — 1 dimensions.

The auto-covariance matrix is calculated by
Ry =u; -y (3.2)
Now, solving the eigenvalue problem
Rg, =gehe. k=1, ..., n—-1 (3.3)
and arranging the eigenvalues in descending order,
M2z 2 A >0, (3.4)

one obtains an orthonormal basis

T
Z Giky

i=1
Gr=Ta 1 (3.5)
Z Gik
i=1
which solves the problem
T
\e = max {Z(m : uz-)g} (3.6)
¢l =1 Uiza
where
¢ - =0forl=12 ..., k-1 (3.7}

Therefore, the POD is an energy-optimal transformation in the sense that it produces a set of
basis vectors which span the input data in such a way that the fraction of energy represented

by any given number of basis vectors is the largest possible. This fact is exploited when

35



truncating the set of POD modes by keeping the first m modes for m < n — 1 and ignoring

the remaining modes. Thus, only the eigenvalues

M A D> Am >0, (3.8)

and the modes

I (3.9)

are retained when truncating a POD for m <n — 1.

3.1.1 Basic derivations of POD

When using matrix notation, the details of POD can be explained conveniently by linear

algebra. Introducing the matrix
U=[u - wul, (3.10)

the auto-covariance matrix is given by

R=U'U (3.11)
Defining the eigenvalue matrix,
A 0
A= - , (3.12)
0 )\n——l
and the matrix of eigenvectors,
G=[g - g1l (3.13)

the eigenvalue problem can be represented by

RG=GA (3.14)
Since R is symmetrical and positive definite the eigenvalues Ay, ..., A, are real and
positive. Furthermore, for ||g;] = 1,7 € {1, ..., n — 1}, the eigenvectors are orthonormal,
ie.
GTG = E. (3.15)
Defining the matrix product
B=UG (3.16)

the matrix U can be reconstructed from
U =BGT. (3.17)
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Note from (3.14) that

A =GTRG = GTGB"BG'G =B'B. (3.18)
Using the notation
1
A
1
0 M

and, for A"E = (A%)'l, defining
$ =BA™2 (3.20)

an orthonormal basis is obtained in the columns of @ as a consequence of (3.18) because
3T = A"iBTBA™7 = A"2AA"2 = E. (3.21)

Since
B = ®A7 (3.22)

the matrix U can be reconstructed by a linear combination of the orthonormal basis vectors

U=BGT = 3A3GT, (3.23)

The coefficients
A=A3GT (3.24)

appearing in the linear combination will be called amplitudes. Thus,

U=&A (3.25)

from which it follows that the amplitudes can also be found by

A=28TUu. (3.26)
Defining the mean vector
1 K
Xp = Z X; (3.27)
=1
the original snapshots can be reconstructed by
n—1
Xj = X0+ ) Graj (3.28)
k=1

where az; are the elements of the matrix A. Furthermore,

& = (UG)A™2 (3.29)

37



of which a single column
i

& = (Uge)Ay 2 (3.30)
is a basis vector. Since ||¢p;|| = 1 the basis vector can be written as
Ugs
& = : (3.31)
| Us

This is simply another form of (3.5}). Note that

AAT — ASGTGAZ = A, (3.32)

3.1.2 Energy optimality of POD

Consider, for ||| = 1, the vector h; which can be written as a linear combination of

orthonormal basis vectors,

hk == @Sk. (3.33)
The energy
g = (UTh) T (UThy) (3.34)
can the be expressed as
) n—1
p = (AT® 1) T(AT®Th,) = (GATET Bs)T(GATETds;) = sf Asp = 5 Ajs2, (3.35)
i=1

The energy can be maximized in the following manner. Since @ is an orthonormal basis and

il = 1 it follows that ||s;| = 1. Thus, for a given value of £,

she=1-3"s% (3.36)
i#k
Hence,
(i — M) = > Nsde + AL D sh) = e = 3 (A — A)s (3.37)
i#k J#k J7k
Arranging @ so that Ay > A2 2 +-+ 2 Ay_1 > 0 we may assume that Al = o = Ag > Agr
for some g < n — 1. From (3.37) it is now seen that (u; — A1) has maximum for s;; =0, 7 #
1, ..., g, which yields
1 = A (3.38)
Hence, p1 is maximized by choosing hy from span{¢,, ..., ¢,}. It is sufficient to choose
by = ;. (3.39)
Similarly, for ||hg|| = 1 and the condition hggbj =0, 5=1, ..., k—1, the maximum of uy
is obtained by
fe = Ak, (3.40)
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hy = ¢, (3.41)

This result can also be written

n-—1
A = max {Z(u}hkﬁ}, hih; =0forj=1, ..., k=1, (3.42)
E|hk” =11li=
is satisfied by
hy=¢,, k=1, ..., n— 1. (3.43)

Le. the POD is an energy optimal transformation.

3.1.3 Following components

Sometimes it is desirable to use only certain components of the snapshots for carrying out a
POD. However, the remaining components can be transformed as well by using the method
of following components. As before, the sampled data is arranged in vectors Xi, ..., Xp. But

the vectors resulting from subtraction of the mean vector xg are split into two parts,

{ ) :l =X — X (344)

Vi
The vectors v; are called the vectors of the following components. Introducing the matrices
U=[w - u], V=[v - vy, (3.45)

the auto-covariance matrix is defined as R = UT U and the POD is performed as usual. From

the results we find _
U=4%¢A (3.46)

and ‘
A=A3G" (3.47)

Tn order to transform the following components, define ¥ by

V= TA. (3.48)

Since
V =wAGT, (3.49)

the part of the basis vectors containing the following components can now be obtained by
T =VGA™3 (3.50)

Hence, the original snapshots can be reconstructed by

iy R
Xj =X+ Z ]i ] Okj (3.51)
k=1 d’f.
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3.2 SPOD

Sequential Proper Orthogonal Decomposition {(SPOD) is a technique developed by the author
for calculating orthonormal bases suitable for low-dimensional models based on Galerkin
projection of the governing equations. SPOD is capable of transforming data organized in
different sets separately while still producing orthogonal modes. This feature is desirable
because the POD modes with the largest eigenvalues represent data corresponding to large
energy better than data corresponding to small energy. Thus, dynamically important data
might not be represented unless it is either transformed separately or weighted in some
fashion.

SPOD utilizes the construction of the orthogonal space to a predefined space which is
used in the p-POD introduced by E. A. Christensen et al. [11]. In contrast to the p-POD,
where all the preselected states are transformed together by a single POD, the SPOD allows
the preselected states to be transformed separately in different sets. Furthermore, SPOD
does not require the selection of any reference points as does the p-POD, except the mean

vector of all the snapshots.

3.2.1 Calculating the SPOD

Consider the snapshots x1, ..., X,. In order to perform the SPOD, the mean vector
} T
Xp=— 3 Xj (3.52}
nio

is subtracted from the snapshots yielding
1 = X5 — Xo, je{l, ..., n} (3.53)

The resulting vectors are placed into a number, p, of separate sets, called blocks, each of

which can be represented by a matrix U;, i € {1, ..., p}. Furthermore, define

U=U; Us - U, (3.54)
Then, a POD is performed on U; yielding

Ui =& ATGT = &,A,. (3.55)

The essential idea of the SPOD is to perform a POD of each block in the space which is
orthogonal to the previous blocks. This is carried out in the following way. From each
data vector of the current block its projeciion on the basis vectors of the previous blocks is

subtracted before calculating the auto-covariance matrix of the POD. Hence,
3
Uiy — (@1@? + -+ q)iq)g}U.i+1 = @i+lAi2+1G',.iI‘+l =&; A (356)
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Defining the block diagonal matrix

and collecting the matrices containing the basis vectors
e=[2 - B)
the following is obtained
U; Us-— @1@’{{;2 e Up - (QIQIT 4 e+ @p_lég_l)Up] =dA.
Now, define the matrix of SPOD amplitudes
C=[C: - Gy
sa that
Since

U= dA —+ [0 @1@?[72 e (q’}.@;r + -+ q)p—lq)g‘—l)UP]

the following is obtained

Ci= . , Gi= A; . iE{Q,...,p}

0

Hence, the amplitudes of the SPOD can be representéd by a block diagonal matrix,

(A, #Tu, @Tu;, .. @]y,

0 A, &IU; .-+ B0,

C= 0 0 Aa ) :
_ @, Uy

0 0 0 A,

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

It is seen that the diagonal blocks of C are identical to the amplitudes of the POD transfor-

mations performed in the SPOD. C contains only zeros below the diagonal blocks. Above
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the diagonal blocks, C contains the inner products of U; for ¢ € {1, ..., p} and the basis
vectors of the previous blocks, ie. &, ..., P;_1.
In the event that all the blocks Uy, ..., U, were orthogonal to each other, C would

contain only the diagonal blocks, and (3.56) would reduce to
1
U1 = @1 AL Gl = i1 A, (3.65)

meaning that the diagonal blocks of C would be the amplitudes of POD transformations
performed independently for each block of snapshots after subtraction of the common mean
vector Xg. Since also the auto-covariance would be a block diagonal matrix, a single POD
performed on U would yield the same amplitudes although in a different order.

When the blocks Uy, ..., U, are not orthogonal to each other, C is no longer zero above
the diagonal blocks and the amplitudes of the SPOD are not identical to the amplitudes of
the POD. Thus, the basis vectors of the SPOD are different from the basis vectors of the
POD. From 3.1.2 it appears that the SPOD is not energy optimal. For simplicity, assume
that A1 > -+ > Ap—1. Obtaining the maximum energies would then imply choosing vectors

parallel to the basis vectors of a POD.

3.2.2 The truncated SPOD

Ag with the POD, truncating the SPOD is based on ignoring modes with low energy. However,
in order to truncate the SPOD, a truncation must be performed for each block prior to finding
the orthogonal space used for calculating the basis vectors of the next block. This is necessary
because otherwise noise contained by the higher order modes of a block can be carried on to
the subsequent blocks via construction of the orthogonal spaces. After truncation, the noise
introduced in the modes from the last blocks cannot be balanced by a linear coﬁbination with
the ignored higher order modes of the first blocks. This phenomenon causes reconstructed
snapshots requiring modes from the last blocks to become noisy or non-smooth.

The requirement of truncating a block before calculating the next introduces the dilemma
of knowing the energy of the modes in a block before having calculated it. How can the
truncation be performed by ignoring the modes with the lowest energy? The solution is to
calculate the SPOD in two stages. First, a regular POD of each block is calculated without
the construction of any orthogonal spaces. This option is chosen because it is relatively
fast, especially when the blocks are small compared to the total number of snapshots. The
energy of the POD modes is used to estimate the number of modes of the blocks in the
SPOD. Second, the truncated SPOD is calculated by, from each block, to retain exactly the

number of modes decided in the first stage. After the truncation of each block, consider
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the space which is orthogonal to the retained modes only. Within this orthogonal space the
amto-covariance matrix, which is used in the transformation of the next block, is calculated.

One may argue that the second stage of the described algorithm for calculating the trun-
cated SPOD yields modes with a different energy than the POD estimates of the energy
resulting from the first stage. While this is perfectly true, it is considered an advantage that
the algorithm is kept simple and efficient in order to harvest the benefits of dividing a large
set of snapshots info more manageable blocks with fewer snapshots.

When truncating the set of modes of a block, U;, the modes, ®;y1, ..., ®p, of the

successive blocks need not to be orthogonal to the ignored modes. Therefore, it may occur

that ‘
&, U;, ..., &, U #0. (3.66)
A reconstruction better than
U, = &A; + (8,87 + - + 8,87 )U; (3.67)

can be obtained by including the contributions of the successive blocks, i.e.
Ui (88T + -+ 8,187 U + A + (8,180, + - + 8,9, U; (3.68)

Thus, introduce the matrix, C, of extended amplitudes for the truncated SPOD by

[ A, &Tu, #Tu; - 3TU,
U, Ay @®IU; - 21U,
C=| 8Tu, #]U, A : . (3.69)
. : . 2T .U,
 @TU, U, - @ U, A, |

The improved reconstruction can then be written as
U =&C. (3.70)

When a sufficiently large number of modes are included for each block the sum of eigenvalues
for the ignored modes of each block becomes small. Then, the matrix, é, of extended

amplitudes becomes nearly identical to the matrix, C, of amplitudes.

3.2.3 SPOD with following components

When transforming

[ v ] { Vo }
= (3.71)
\% vV, oV,

TR



by using only

1
Ui — (8197 + -+ + 8,8 ) Ui = 8,1 A7,GEL = @180

and
U=&C
it is desired that
T = [T, ¥,
where
V=%C
This yields
V=0A+[0 937U, - (T:@]+ -+, 8] U]

i.e.
I
Vier— (T8 + - + 88U = ¥ A, = 8,4A% G
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Chapter 4

A low-dimensional model for the

cylinder with a rod

4.1 Introduction to low-dimensional models

TLow-dimensional models of systems governed by differential equations can be constructed
by projecting the equations on a truncated basis of Fourier modes, wavelets, polynomials,
POD modes or modes resulting from combinations of several different transformations. The
advantage of using POD modes is that the modes are calculated in order to suit the specific
problem in contrast to for instance the Fourier modes which are given a priori. Of course,
this is also a disadvantage because the solution of the problem must be known before the

POD modes can be found.

4.1.1 POD-Galerkin models

The type of low-dimensional model based on POD modes has been termed a POD-Galerkin
model because the projection of the equations on the modes is called a Galerkin projection.
Tt is sometimes also called an empirical pseudo-spectral model. In the literature, POD is
also known as Singular Value Decomposition (SVD), Karhunen-Loéve Transformation (KLT)
and Empirical Orthogonal Functions (EQF). Strictly speaking, a Galerkin projection requires
the modes to satisfy the boundary conditions individually. However, this requirement is not
necessarily satisfied for low-dimensional models based on projection on POD modes. Without
consideration of the boundary conditions, the term POD-Galerkin model is commonly used
for this type of low-dimensional model within the context of hjrdrodynamics.
POD-Galerkin models have appeared not only in hydrodynamics, but in such diverse
areas as for instance rapid thermal processing systems for manufacturing of semiconductor

devices [2], control of chaos in reaction and diffusion processes {30] and stabilization of laser
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arrays by means of delayed optical feedback [24].

POD was first introduced to the fluid mechanics society in 1967 by Lumley [19] who
suggested that eddies in turbulent flows can be interpreted as POD modes. Since this initial
motivation for using POD to resolve turbulent fluid flow fields, the first model capable of
reproducing realistic low-dimensional dynamics of a turbulent flow system was presented in
the pioneering paper of Aubry et al. [1]. More recent work has been carried out by Cazemier
et al. [9] for a turbulent driven cavity low. Several researchers have pursued investigation of
transitional flows by means of POD-Galerkin models. A transitional rotating driven cavity -
flow has been investigated by Christensen et al. [10], [11], and a transitional grooved channel

flow has been investigated by Bangia ef al. [3] and, involving heat transfer, by Sahan ef al

[26].

4.1.2 A basic POD-Galerkin model

As an example of a basic POD-Galerkin model consider the following. Using a fixed grid,
discretization of the Navier-Stokes equations

1

d 2
Eu+(u-V)u-Vp+ReV u (4.1)
and the continuity equation for incompressible flow
V-ou=0 (4.2)

results in a large system of autonomous ODE’s (i.e. ordinary differential equations with no
time-dependent coefficients) on the form

d

5%(t) = £(x(2), Re). (4.3)

When solving this system by numerical methods a set of data is generated
{x(t) it =t1, ta, ..., tn} (4.4)

for which a POD can be calculated. Defining the mean vector,
n

x0 = = 3 x(ts), (45)

L

and denoting the matrix of POD modes by @, the system data can be reconstructed by

x(t) = xp + Pa(t) (4.6)
where a(t) denotes the POD amplitudes for t = &3, ta, ..., in.
Taking the time derivative,
d d
Ex(t) = @Ea(t), (4.7)
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and multiplying by @7 one obtains

%a(t} = @T%x(t). ' (4.8)

Thus, projecting (4.3) on the POD modes,

d

@Tazx(t) = ®Tf(x(t), Re), (4.9)

and substituting using (4.6) and (4.8), a Galerkin projection on the POD modes of the ODE

system is obtained

%a(t) = @Tf(x‘) + ®Pa(t),Re), (4.10)

This type of model is known as a POD-Galerkin model or an empirically based pseudo-spectral

model. Truncating the set of POD basis vectors results in a reduced modelor a low-dimensional

model.

4.2 The discretized equations

For the lid driven cavity with a rotating rod a low-dimensional model of the axisymmetric
flow can be produced by Galerkin projection on orthogonal modes of the azimuthal transport

equations for vorticity and velocity.

4,2.1 The transport equations
Defining 4 = v, v = vg and w = v,, the vorticity transport equation (2.9) becomes
bw B o 10 ., 1/ 1 186w\ 0w
—B—t = -“~a-;(uw) - Eg(ww) -+ ;g(’ﬂ ) + ﬁ (“‘T—Qw-l‘ ‘I_é; (T‘B—T) -+ 'a?) (4.11)

and the azimuthal velocity transport equation (2.10) becomes

a 7, 0 2 1 1 18 f dv v
EEU = —E(m}) - é—;('w'u) - ;u’u + Re (—T—Q-'v + parm ('rg;) + 55) . (4.12)

4.2.2 The Poisson equation is not projected

It is not necessary to include the Poisson equation (2.8),

2 2
_oY 10, 0% (4.13)

P = e \
e  rdr 027

in the Galerkin projection because once the vorticity is known from the transport equations,

the stream function and its spatial derivatives are known from the orthogonal modes as

following components.
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4.2.3 Discretization

Since the spatial information of the low-dimensional mode! is included via the modes, it is
not necessary to employ any special or high-order spatial discretization. By using second

order central differences the following is obtained,

d 1 Jrjg1+ry 1 rjp1+2rj+715
—_—y T e e - | = 4+ Wi 4
di Re { o A% T T2 2r; Ar? "
ri+7i-1 1
- L R Y +__ Wi ---2w--+w.-‘ .
2TjAT'2 1,51 Azl ( i+1,7 i3 i 1,3)
1 1
—mua‘,jﬂwv;,jﬂ -+ muz’.j—-lwi,j_?{
1
oA, MitliWitlg o Win1iWiclg
1 1
— (4.14)

+ Vi1, Vi1, Ui—-1,5%i—1,5
QT'jAZ JYet+lyg 2TjA2’ 3 »J

i.u._ 1 )i -|“ij__ _ i_*_l?"j+1+27'j+rj_1 "
dt bd Re 27’jAT2 Z,J+l ?"‘72_ 2T‘JAT2 .
ri+riq 1
;T—j‘;;é_”i:j—l + o7 (Wi — 2vig + w_l,j)}
1

BTN S an A T Ay Gid 1V =1

1 1
— A, WitLiViH T oA WiV (4.15)

The mean value of v;; is called 'u%. Then vj; is redefined so that v;; is replaced by v;; + ’U',?j.
Similarly, w;; redefined to be replaced by ws; + ng, u;; is redefined to be replaced by u; +u?j
and w;; is redefined to be replaced by w;; + ng. Before the Galerkin projection is carried

out the equations are written as

% = éGijk!(“"kl + why)

F(Umn + U ) Mijktmn{wit + why)

H(tmn, + W Nijkimn (Wet + wiy)

+(FomeVes + Foume o5 + Irn + 1omn)

Prirtmn(Frighvon + Fragnvdy, + In + 7Jk) (4.16)
%i = é iikt{( Friefves + Fklef'?-’gf + Tnt + k)

(U, + U5 ) Sttt Frte plies + szefvgf + Ipy + ki)
(Wrn + W) Tijitmn( Fhte pves + Friesvey + Int + 7Jk1)- (4.17)

where I;; +vJ;; contains the inhomogeneous boundary conditions for the azimuthal velocity.
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4.2.4 The boundary conditions

I;j + ~Ji; contains the inhomogeneous boundary conditions for the azimuthal velocity on
the lid and the rod. These boundary conditions are implemented by letting Fjp; = 1 for
(i,5) = (k,1) except for {7, ) on the boundaries for the lid and the rod. For ¢ and j on the
boundary of the lid and on the boundary of the rod Fyj; = 0. For i on the lid, I;; = 1/r;,
otherwise I;; = 0. For j on the rod, J;; =1 /74, otherwise J;; = 0. The azimuthal velocity is
zero on the two other boundaries, i.e. on the cylinder wall and the fixed bottom.

The author has not previously seen any records in the literature of inhomogeneous bound-
ary conditions of velocity implemented by other means than via the mean field in low-
dimensional models based on projection on POD modes.

According to (2.13), (2.14), (2.15) and (2.16), the boundary conditions for the vorticity are
linear relationships between the vorticity and the stream function. Thus, any mode satisfies
the boundary conditions for the vorticity because it is a linear combination of the original
snapshots. Since the vorticity is replaced by a linear combination of modes, the boundary
conditions for the vorticity are automatically satisfied by the equations resulting from the

projection of the governing equations on the modes.

4.2.5 Collected form

In order to state the discretized equations in a form, which is more suitable for the projection
on the orthogonal modes, the tensors v;; and w;; are collected into a single tensor and the
coefficients are reorganized accordingly. The notation utilized for this purpose needs to be

explained at this point. Introducing

{ui g}
{ zj} = )
’ ( {wii.) )
ALk} {Aijvk*l,})

{Ag,j,k.t.} {A?.j,k.l,}

({Bil.j.-.k..t,.m*n*} {Cil,jthl*m,n«}) (Bz?,j-kglgm*m} {C'ij*k,l*m..n.}))
(482 ptomand AC%timnd) (1B isimat {Clikiman}) /

it is understood that

{Ayn} = (

{Qijklmn} = (

1 2

{4 s kvt T A7 5 e, Wh )
3 4

{47 e + A7 e Whate }

{Ajriyn} = (

and
{DLjpat {Dij*k,..;*})

{Qijklmnymn} = (
{DY 5} {Dfns)
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where

Dz,gtk L. = Big.kﬁlam*ﬁ*um*m + Cil,,j.k.l_m.-n.wm*n-:
Dg*j*k*l* = Big,j*k‘l.mt-n*umtm + Cz*:;tic*lam*n* Wi n.s
DYkt = Blikimen tmen, + G jbtim.n, Wnanas
Dfjri = Blikimatmn +Chikimon, Wmn.n..

Now, define

{wi .} {ui3.}
-  fwgl = (4.18)
bl ( {wis.} ) o) ( {wi} )
0
zj} = ( ) y {Cij} = ( {Ji*j*} ) (4.19)
0

[ Gk} | B} 0
{Aml}_( 0 {Hi*j*k_l*}), Waut) ( 0 {F%,.j*k,z*}) (420

({Misktimen.} {Nicjbodoman. }) (0 o)
{Qijetmn} =
(0 0) ({S"i*j*k*l*m*ni} {ﬂ*j.k*l*m*n* })
(4.21)
0 0) (0 {Pjkiimn.}
{Kijkimn} = ( ) ( It ) (4.22)
(0 o) (0 o)
The eguations (4.16) and (4.17) can then be stated on the collected form
d 1
i = ﬁAijkl(LkZefmef + Lkzefib"gf + By + vChr)

+Qijitmn Ymn + Yo (LitesTes + Liieszoy + Bri +7Ch)
(Lrtghgn + Litghtgn + Bit +¥Ck)- (4.23)

4.3 Projection of equations on orthogonal modes

The equation (4.23) is not evaluated for (z,7) on the boundary. In order to project the
equation on the orthogonal modes, ¢,, the boundary components are excluded from the
snapshots before calculating the orthogonal modes which are then zero on the boundary.
Le. ¢ijp = 0 for (i,j) on the boundary. However, in order to evaluate eq. (4.23) it is
necessary to include the boundary components as following components by introducing the
extended modes, c;f-)p, and letting qgijp = ¢ijp for (i, 7) not on the boundary. Furthermore, the

components of y are treated as following components and include the boundary.
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By projecting (4.23) on the orthogonal modes, $;jp, replacing

and observing

it is obtained that

dag
dt

+¢10Qijrktmn (Emnrr + Yoo ) (Litef Gefptp + Liierzor + B + vCu)

zij = Gijplp,  Yij = Eijplp

da da ;i da
biokin g = @ P a

1 .
= ﬁg%qﬂﬁm (Latefbefpap + Lites2ds + Bri +vCxi)

+¢ijqK'£jkk:lmn(Lmnefégefrar -+ Lmnefng + Bpmn + ’chn)

(Litgh@ohptn + Lrignop, + Brr +¥Crt),
g

where i and j on the boundaries are not included. Collecting terms,

dag _ 1
dt ~ Re

— Qg +—1-,6' +l5 + Cpolin + VMpgOp + Kpralpl + Y20y + Yitg + Ty
pe0p T RaPT T Re Y T oPIYP pglp T Kprqlplr g ¢ T Tq

The coefficients of the collected terms are given by

fipg =

fprg =

bisqlijkiLutesPefp

bisqAijui(Laieszos + Bri)

$ijqAiikCri

GiiqQijrimn Emnp(LitesTas + Brt) + Y0, LtefPesp)
+¢i5q Kijkimn (Lmne e so(Drigh®on + Bri)

+ Litgn¢ghp( LmnnesToy + an))
¢z'ij-zjmmn€man';§.!

+ 5o Ksiktmn(Lmane s e 1pChi + Litgh®ohyCrmn)
i3qQijkimnEmnr Licte P fp

+0i50KijktmnLmnes e e Litgh®ohp

$15qKijhtmn CmnChi

D150 Qiiktmn¥oun Cht

+¢ijq Kijttmn((LinnesTog + Bmn)Crr -+ (LitghZgn, + Brt) Cran)
$13¢QijnimnYom (LighTan + Bii)

o Kisrimn(Limnes T s + Bran) (Liighon + Bir)

At this point, it can be seen from (4.32) that

Tpg =0
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(4.25)

(4.26)

(4.27)

(4.28)
(4.29)
(4.30)
(4.31)

(4:32)

(4.33)
(4.34)

(4.35)

(4.36)

(4.37)



because according to (4.19) Cy, is zero except for the part called J;; representing the boundary
condition for the azimuthal velocity on the rod. The term of (4.32) containing Qi;imn only
involves terms containing M ximn, Nijhimns Sijkimn 80d Tijkimn- Regarding (4.16) and (4.17)
it is seen that these terms are the convection terms, i.e. the nonlinear terms containing
the axial and radial velocities. By looking at (4.14) and (4.15) one may conclude that the
relevant terms only involve identical radial indices for the azimuthal velocity and the two
other velocity components. Recalling the boundary conditions for the rod given in (2.16) it
is readily seen that the axial and radial velocities are zero on the rod. Thus, the term of
(4.32) containing @Q;jkimns is zero. The term of (4.32) containing Kijgimn i zero because it
represents the nonlinear terms of (4.14) involving only the azimuthal velocity. By similar

arguments it is found that

o, =0, (4.38)
g1y = 0. (4.39)
Thus, (4.27) reduces to
da 1 1 ¥
4.4 Runge-Kutta solver
Representing the model by
d
7= Y(a) (4.41)

for given v and Re, it can be solved numerically by the Runge-Kutta method

I = AtY(a") (4.42)
T, = AtY{a"+ %I‘]) (4.43)
1
Iy = AfT(a"+5Ty) (4.44)
Ty = AtY{a"+1Ty) (4.45)
1
a”tl =a" 4+ E(I‘1 + 215 + 2T'3 + T'y). (4.46)

4.5 Verification of simple properties

The equations (4.11), (4.12) and (4.13) governing the original problem can be represented by

%x(t) = f£(x(t), ¥(t). Re, 7), (4.47)

y(t) = gx(®)). - (4.48)
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Hence, it can be stated that

%x(t) = h{x(?), Re, 7). (4:49)

For parameters {Re,v) corresponding to a steady state, i.e.

h(X(f), Re, ')f) =0, (450)
the eigenvalue problem
oh H ’
&
—— B =P 4,51
{ oz, } (4.51)
0 Hn
must yield eigenvalues satisfying gy < 0 for k£ = 1,2,...,n. The low-dimensional model

assnumes a linear relationship between x and a given by (4.24). Thus if the low-dimensional
model is a faithful representation of the original problem, it should be able to reproduce a

steady state, i.e.

da
i 0 (4.52)
and the eigenvalue problem
8 d " ’
Gg .
— Al p =P .. 4.53
{Bap dt } (4.53)
0 Thn,
should vield eigenvalues satisfying n, < 0 for p = 1,2,...,m. [From the low-dimensional
model (4.40) it is easily found that
0 da 1
a—ap*d_; = Relre Cpq + (Kprg + Krpg)ar. (4.54)

This fact can be used for a simple verification of the low-dimensional model.

In order to analyze more complicated features of the low-dimensional model it noted from
(4.40) that
d dag 1 1 ~

SEe) d T REWT RSP RA (4.55)
d da 1
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Chapter 5

Low-dimensional models of

transition

5.1 Introduction

Very little is known about how the properties of a low-dimensional model are affected by
the procedures applied in its construction. How should the data used be sampled? Which
decomposition technique is optimal for transforming the data into modes? How should the
modes be selected? What is the effect of numerical noise? These are questions that are
difficult to answer.

The goal of the present study is to construct low-dimensional models of the flow in the lid
driven cavity with a rod and to explore the transition occurring for varying parameter values.
Some investigation was performed with different mcthods of data sampling and variations of
the decomposition procedure. -

The models were analyzed with AUTO 97, continuation and bifurcation software for
ordinary differential equations. This software was developed by E. J. Doedel et al. [14]. Via
the computer program odecav, the Runge-Kutta solver deseribed in 4.4 was used to solve
the ODE's of the low-dimensional models for different parameter values in order to verify the
results of AUTO 97.

Unfortunately, only few validation methods exist. Furthermore, the body of literature, to
which the performance of the models can be compared, is very limited. However, the articles
of E. A. Christensen et al. [10] and E. A. Christensen et al. [11] were available for the cavity
without a rod.

Section 5.2 presents the validations that were performed. In the remaining part of Chapter

5 the various low-dimensional models and their solutions will be presented.
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5.2 Validation

5.2.1 A low-dimensional model of the lid driven cavity without a rod

In order to compare the solutions of the current type of low-dimensional model with resulis
obtained in the earlier work of E. A. Christensen et al. [10} a special version of the low-
dimensional model was implemented for the lid driven cavity without a rod. In this version,
the boundary condition for the rod was replaced with a symmetry condition for the center
axis by letting the azimuthal velocity vg = 0 at this boundary in the projected equations.
Furthermore, the computational grid was changed to incorporate the axis of symmetry instead

of the rod.

5.2.2 Reproducing steady states

As a minimum, the low-dimensional model should be able to reproduce the steady states
appearing in an ensemble consisting of steady states only. This was verified by using the
model without the rod for an ensemble consisting of daia for the Reynolds numbers 2200,
9300, 2400 and 2500. The ensemble mean field was subtracted from the snapshots and a
POD with three modes was performed. the resulting model yielded solutions at the four
Reynolds numbers for which the stream line plots, iso-vorticity plots and iso-circulation plots
were compared to those of the original data. By visual inspection no differences were found

between the two sets of plots.

5.2.3 Reproducing a Hopf bifurcation

Sorensen et al. [28] found that the transition from steady to unsteady flow in the lid driven
cavity without a rod occurs via a Hopf bifurcation with a critical Reynolds number of 2550.
"The period of oscillation was found to be 26. E. A. Christensen et al. [10] used a low-
dimensional model. referred to as iype 1, to .reproduc'e the Hopf bifurcation. For 5-10 modes
plus 6 of the so-called displacement modes, the critical Reynolds number and the period
deviated approximately 1% from the actual values.

In order to compare the performance of the current type of low-dimensional model with
their model, it was necessary to implement the displacement modes in the current model and
to calculate a data ensemble similar to the data used for their type 1.

The displacement modes are based on displacement vectors defined as the differences
between sub-ensemble averages at fixed Reynolds numbers. The displacement modes are
produced by adding the displacement vectors to the set of modes generated by POD and

then perform Gram-Schmidt orthogonalization. In the current model, displacement vectors
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can be calculated upon demand. By placing the snapshots to be transformed via the POD
in the ﬁrst block of the SPOD and placing each displacement vector in a separate block after
the first block, the displacement modes were obtained.

For type 1, snapshots from Rej;g = 2600 were used in the POD. Displacement modes were
generated from all displacement vectors from neighboring sub-ensemble averages. With the
notation used in Christensen et al. {10} the mentioned displacemént vectors can be expressed
as X500 — X2200, Hasoo — X2500, H2700 — £2600, H2800 — H2700, H2000 — Hosoo and K3oo0 — H2900-

The unsteady data for the current model were sampled for a whole number of periods.
. The period was calculated for each Reynolds number via the FFT as described in 2.7.2.
Before sampling of both the steady and the unsteady data it was verified, via plots of the
RMS level explained in 2.7.4, that a sufficient number of time steps had been carried out
in order to reach a state close to the limiting flow. Approximately 60-100 snapshots were
included in each of the sub-ensembles of an unsteady limiting flow.

Type 1 models with 15 and 20 modes were produced (corresponding to 9 and 14 modes
plus 6 displacement modes in the work of E. A. Christensen et al.). Using AUTO 97, for 15
modes the critical Reynolds number and period was found to be 2526 and 26.66 respectively.
For 20 modes the results were 25632 and 26.58 respectively.

The SPOD is thought of as a more modern alternative to the use of displacement modes.
An alternative to the type 1 model was tested in which the sub-ensemble for Reyg = 2600 was
placed in the first block and the sub-ensembles for the Reynolds numbers 2200, 2500, 2700,
2800, 2900 and 3000 were placed in the following six blocks. Only one mode was allowed
from each of the last four blocks {in effect this means that the sub-ensemble averages for the
Reynolds numbers 2700, 2800, 2900 and 3000 were included via Gram-Schmidt orthogonal-
ization). Using AUTO 97, for 15 modes this model vielded a Hopf bifurcation with a critical
Reynolds number and period of 2541 and 26.42 respectively. For 20 modes, the result was

2550 and 26.36 respectively. Hence, the performance of the model compares favorably with

type 1.

5.3 Modeling Hopf bifurcations for constant =

5.3.1 Hopf bifurcation for a fixed rod

For the parameter v = 0, ie. for a fixed rod, the transition from steady to unsteady fHow
occurs via a Hopf bifurcation. In 2.7.7 the critical Reynolds number was estimated to be
2590. The full solution for a 201x101 computational grid and a time step of Af = (.04 has a
period of 26.44 at Reyy = 2600. In order to establish data for constructing low-dimensional

models of the Hopf bifurcation, the full solution was calculated for the Reynolds numbers
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2300, 2540, 2620, 2700, 2800, 2900 and 3000. For each solution, the RMS level described in
2.7.4 was allowed to settle at a constant level in order to reach a state close to the limiting
fow before the snapshots were sampled. This required 8 - 10° time steps with a time step of
At = 0.04 for a 201x101 computational grid at Rey;y = 2540, 5- 10° time steps at Reyg = 2620
and at least 10° time steps further away from the critical Reynolds number. For unsteady
flow, FFTs were calculated as described in 2.7.2 for ensembles with 2'® data points. The
peak frequencies were found as in 2.7.3 and the periods were calculated.

At Rey; = 2620 a snapshot was sampled for every 58 time steps, yielding 68 snapshots
cotresponding to 6 periods of 26.2932. The actual period was found to be 26.2941. In this
way it was ensured that each part of the period was represented nearly equally well.

The models to be presented in the following have been named arbitrarily. Thus, the

letters of the model names do not refer to any specific concepis.

The skx model

The snapshot calculated for Reyy = 2540 was placed in the first block of the SPOD and
the sub-ensemble containing the snapshots for Reyig = 2620 was placed in the second block.
The ensemble consisting of the sub-ensembles arranged in the described order was assigned
the label skx. The SPOD was carried out as described in 3.2. In order to obtain as high
numerical accuracy as possible, a LAPACK SVD routine mentioned in Appendix B was used
to calculate the POD’s involved in the SPOD. By this method, a direct calculation of the
auto-covariance matrix is avoided for the POD’s. The relative eigenvalue spectrum of the
SPOD is shown in Fig. 5.1.

The mode resulting from the first block is shown as mode number 1. The corresponding
eigenvalue is less than the eigenvalue of mode number 2 which is the first mode of the second
block. The eigenvalues decrease for increasing mode numbers. For mode number 12 the
relative eigenvalue is less than 1071° and the decay of the eigenvalues becomes much smaller
than for the previous modes. This indicates that the ratio between the smallest and the
largest eigenvalue is near the limit that can be obtained for the given ensemble of data. As
mentioned in Appendix B, the SPOD -utilizing the LAPACK SVD routine can represent the
eigenvélues with at least 20 decades of accuracy. Thus, the observed change in the rate of
decay of the eigenvalues with increasing numbers of modes cannot be caused by inaccuracies
in the decomposition method. Instead, it must be due to the properties of the data ensemble
that was used for the decomposition. '

The SPOD of the skx ensemble was calculated for 5-20 modes. Each set of modes was
used to construct a low-dimensional model as explained in Chapter 4.

The models were analyzed with AUTO 97 in order to find the critical Reynolds number
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Figure 5.1: Relative eigenvalue spectrum for the SPOD of the skx data ensembie for v = 0.000.

and the period. An example of the graphical output from AUTO 97 is shown for 6 modes in
Fig. 54 The horizontal axis represents the Reynolds number and the vertical axis represents
an Ly-norm used by AUTO 97. The diagram shows a steady solution. The full line represents
a stable solution and the filled square indicates a Hopf bifurcation. The dashed line represents
an unsteady solution or a solution for which stability is unknown.

In Fig. 5.2 the critical Reynolds number is shown as a function of the number of modes.
It appears that more than 5 modes should be used. With only 6 modes a critical Reynolds
number of 2602 is obtained. The deviation from the true value of 2590 is less than 0.5%.
The corresponding period is 26.33 which deviates less than 0.5% from the true value of 24.4.
For 6-18 modes, critical Reynolds numbers within the range 2601 — 2614 are obtained. The
deviation from the actual value of 2590 is less than 1%. The period shown in Fig. 5.3 lies
within the range 26.32 ~ 26.40.

Thus, very good representation of the period is obtamed. For more than 19 modes the
results of the low-dimensional model deviates significantly from the results of the full model.
However, this was expected to occur for some number of modes larger than 12. It can be
concluded that the skx model has a quite good performance and a counsistent behavior within

a reasonable large range of the number of modes.
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4 = 0.000 with 6 modes. The horizontal axis represents the Reynolds number and the

vertical axis represents an Lo-norm used by AUTO 97.

It is worth to note that this model is relatively simple. It is based only on a snapshot from
the steady regime and a sub-ensemble of snapshots for one Reynolds number in the unsteady
regime. Hence, in order to model a Hopf bifurcation, it is not necessary to use snapshots at
several Reynolds numbers and displacement vectors as proposed in the conclusion of E. A.

Christensen et al. [10].

The smx model

A model similar to the alternative model in 5.2.3 was tested in order to explore the effect
of including sub-ensembles for several Reynolds numbers. This model was labeled smx. A
steady snapshot for Rey; = 2300 was placed in the first block of the SPOD. The snapshot, for
Rejiq = 2540 was placed in the second block. The third block consisted of the 68 snapshots
for Reyg = 2620. Also, snapshots for the Reynolds numbers 2700, 2800, 2900 and 3000 were
placed in the last four blocks. But only ofie mode was allowed from each of the last four
blocks. The relative eigenvalue spectrum of the SPOD is shown in Fig. 5.5. At mode number
14 the relative eigenvalue is less than 107! and the decay of the eigenvalues is much less rapid
than for the previous modes. However, four more modes with large eigenvalues appear é,t the
end of the spectrum due to the last four blocks. Thus, it is expected that the performance
of the low-dimensional model will degrade for some number of modes above 18 modes.

Fig. 5.6 shows the critical Reynolds number for 8-20 modes for the smx model. The
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Figure 5.5: Relative eigenvalue spectrum for the SPOD of the smx data ensemble for v =
0.000.

depicted points appear more scattered than for the skx model in Fig. 5.2. For 8- 19 modes
the critical Reyq4 lies within the range 2579 ~ 2610. However, the deviation from the actual
critical Reynolds number of 2590 is less than 1% and slightly better than for the skx model.
For more-than 19 modes the low-dimensional model deviates significantly from the full model.
The period of the smx model shown in Fig. 5.7 lies within the range 26.29 — 26.42 for 8-19
modes. It seems that the major effect of adding sub-ensembles for several Reyg further away
from the critical point is that the minimum number of modes required to model the Hépf
bifurcation is increased. One interpretation of this is that adding information, which is less
important for the Hopf bifurcé,tion, increases the number of modes required to represent both

the Hopf bifurcation and the added information.

The sbx model

The order of the sub-ensembles of the SPOD could be important. For a sub-ensemble, only
the part orthogonal to the modes of the previous sub-ensembles is represented in the modes
of that sub-ensemble. By reserving the first blocks of the SPOD for the sub-ensembles of
the Rejy nearest to the critical Reyq, these sub-ensembles can be represented without the

addition of modes from any sub-ensembles for Reyq further away from the critical Reyq.
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This principle was implemented in the model called sbx. The blocks of the SPOD were
arranged according to the Reynolds numbers 2620, 2540, 2300, 2700, 2800, 2900, and 3000
in that order. The relative eigenvalue spectrum is shown in Fig. 5.8. At mode number 12

cavity with rod, H/R = 2.0, gamma = 0.00000
0 T | 1 '

T T T
S8VD of sbx: 74 snapshots

o

log_10{eigenvalue)

0 10 20 30 40 - 50 60 70 80

mode number

Figure 5.8: Relative eigeavalue spectrum for the SPOD of the sbx data ensemble for v = 0.000.

the relative eigenvalue has dropped below 107! gand the decay becomes slow. 6 modes with
large eigenvalues appear at the end of the spectrum. For 7-18 modes the critical Reynolds
number lies within the interval 2574 — 2609 as shown in Fig. 5.9. The corresponding periods
shown in Fig. 5.10 lie within the range 26.28 — 26.52. For morc than 18 modes the low-
dimensional model deviates significantly from the full model. In conclusion, the sbx model
does not perform better than the smx model. Thus, in this case the different order of the

sub-ensembles does not seem to have any significant cffect on the performance of the model.

The scx model

The effect of including several modes from each of more than one sub-ensemble was explored
with the model called scx. This model is identical to the sbx model except from allowing

more than one mode from the sub-ensemble corresponding to Reyg = 2700,
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Figure 5.10: The period at the Hopf bifurcation of the sbx model for v = 0.000.

64




However, the two-stage sequential POD has a tendency to include modes with smaller
. eigenvalues from the last blocks than from the first blocks because, in the first stage, part of
the vector space spanned by the snapshots of the last blocks is represented by the first blocks
and removed by orthogonalization from the last blocks in the second stage. Therefore, the
first stage eigenvalues of the block corresponding to Reyq = 2700 were weighted with a factor
of 1072 in the mode selection procedure.

The relative eigenvalue spectrum for the SPOD with 20 modes is shown in Fig. 5.11.

Although the full number of eigenvalues are shown, the eigenvalues from the second block to

cavity with rod, H/R = 2.0, gamma = 0.00000
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Figure 5.11: Relative eigenvalue spectrum for the SPOD of the scx data ensemble for v =
0.000.

the last block depend on the number of modes included from each block which again depend
on the total number of modes of the SPOD, i.e. 20. The eigenvalues of the first three blocks
are similar to those of the first three blocks in the SPOD of the sbx model shoﬁvn in Fig. 5.8.
The fourth block starts at mode number 71. At mode number 82 the eigenvalues decay much
slower than for the previous modes. At the end of the spectrum three large eigenvalues appear
due to the last three blocks. The first block is expected to support a maximum of 12 modes.
The second block and fhe third block support one mode each. Thus, it can be expected that
the ratio between the smallest and the largest eigenvalue, that can be represented with the

- given ensemble of data, will be near the Timit for 20 modes.
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The critical Reynolds numbers for 15-30 modes are shown in Fig. 5.12. For 17-29 modes
the critical Reynolds number lies within the range 2573 — 2588 and the data points appear
less scattered than for the smx and the sbx models. For 20-28 modes the critical Reynolds
number lies within the range 2580 — 2588 and the deviation from the actual value of 2590 is
less than 0.4%. The period is shown in Fig. 5.13. For 17-28 modes the period lies within the
range 26.40 — 26.43 and the deviation from the value of the full model is less than 0.2%. This
model allows a representation of the Hopf bifurcation which is superior to the other three
models for a relatively wide range of the number of modes, ie. for 20-28 modes. On the

other hand, it requires a higher minimmum number of modes to model the Hopf bifurcation.

Conclusion for the models with a fixed rod

In conclusion, for all the four low-dimensional models with a fixed rod it is not obvious how
many modes should be included to satisfy the minimum number of modes required to model
a Hopf bifurcation. However, the more data included from sub-ensembles corresponding to
parameter values far away from the critical point the more modes are needed.

Tt is possible to predict an upper limit for the number of modes. For a few number of modes
above this limit, all the low-dimensional models deviate significantly from the full model. For
a few number of modes below this limit, all the models attain their best performance with
respect to modeling a Hopf bifurcation. The upper limit is decided by the number of modes
at which the eigenvalues of the SPOD decay with the number of modes at a much smaller

rate than for the previous modes.

5.4 Hopf bifurcation for a counter-rotating rod

In 2.7.7 a Hopf bifurcation was found for v = —0.00400. The critical Reynolds number was
estimated to be 2630. For the full simulation with a time step of At = 0.04 and a 201x101
computational grid at Reyy = 2650 the period was found to be 26.46. Low-dimensional

modeling was utilized to reproduce the Hopf bifurcation.

The skx model

A low-dimensional model of the Hopf bifurcation for constant v = —0.00400, i.e. for a counter-
rotating rod, was constructed for 6-19 modes. This model was called skx. The modes were
based -on the data ensemble consisting of a snapshot for Reyy = 2550 and 63 snapshots for
Reyq = 2700. As in 5.3.1 care was taken so that the full solutions were close to the limiting
state before the snapshots were sampled. Also, a whole number of periods were represented

by the unsteady snapshots.
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Figure'5.13: The period_ at the hopf bifurcation of the scx model for v = 0.000.
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The steady snapshot was placed in the first block of the SPOD and the unsteady snapshots
in the second block. The resulting model was called skx. The relative eigenvalue spectrum

of the SPOD is shown in Fig. 5.14. At mode number 14 the relative eigenvalue is less than
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Figure 5.14: Relative eigenvalue spectrum for the SPOD of the skx data ensemble for v =
—0.004.

107! and the decay of the eigenvalues with an increasing number of modes becomes slow
as compared to the previous modes. Like in 2.7.7, this indiéates that the ratio between
the smallest and the largest eigenvalue is near the limit that can be obtained for the given
ensemble of data. As mentioned in Appendix B, the SPOD utilizing the LAPACK SVD
routine can represent the eigenvalues with at least 20 decades of accuracy. Thus, the observed
change in the rate of decay of the eigenvalues with increasing numbers of modes cannot be
caused by inaccuracies in the decomposition’method. Instead, it must be due to the properties
of the data ensemble that was used for the decomposition.

In Fig. 5.15 the critical Reynolds number of the skx model is shown. For 6-15 modes the
value lies within the interval 2640 — 2662. The deviation from the full model is less than
1.3%. For more than 16 modes the low-dimensional model deviates significantly from the full
model. The period is shown in Fig. 5.16. For 6-15 modes the period lies within the interval

26.40 — 26.59. The deviation from the full model is less than 0.5%.
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Figure 5.16: The period at the Hopf bifurcation of the skx model for v = —0.004.
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Conclusion for the model with a counter-rotating rod

A working low-dimensional model of a Hopf bifurcation can be constructed for a fixed non-zero
. This is interesting because the flow configured with a rotating rod is different from the flow
in the cavity without a rod whereas the behavior of the flow with a fixed rod is nearly identical
to the flow without a rod. However, it was expected that the low-dimensional model should
work, because the boundary condition of the rod is similar to the other boundary conditions,
and because for a fixed -y the inhomogeneous boundary conditions for the azimuthal velocity
are contained by the mean field like for the low-dimensional models of the flow in the cavity

without a rod.

5.5 Modeling a Hopf bifurcation for a constant Reynolds num-

ber

5.5.1 Satisfying the boundary conditions of azimuthal velocity

A low-dimensional model, for which + is allowed to vary, is fundamentally different from the
previously presented models. Although the Reynolds number is constant, the fact that the
data ensemble, which is used for the decomposition, contains snapshots for different values
of v implies that the azimuthal velocity becomes non-zero on a part of the boundary of the
modes. In the previous models, subtracting the ensemble mean field from all the snapshots
ensured that all the modes .contained only zero azimuthal velocity on the boundary. A low-
dimensional model, for which -y is allowed to vary, must be able to maintain a balance among
the modes for which the boundary conditions of the azimuthal velocity is satisfied by the
reconstructed flow field. This feature is needed to construct a low-dimensional mode! in
which v and Reyg are both free parameters.

It is reasonable to expect that the performance of low-dimensional models with a varying
« is comparable to the performance of the previous models, because a linear combination
of the modes, for which the boundary conditions of the azimuthal velocity diverge from the
boundary conditions enforced in the model, would produce escalating terms in the part of
the projected equations corresponding to diffusion. However, The author has not been able

to locate any references to this issue in the literature.

5.5.2 Hopf bifurcation for Rey;y = 2550

In 2.7.8 a Hopf bifurcation was found for Reyy = 2550. The critical v was estimated to be
0.00366. For the full simulation with a time step of At = 0.04 and a 201x101 computational
grid at v = 0.00400 the period was found to be 26.47. In the current study, it was attempted to
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reproduce the Hopf bifurcation by sixﬁple low-dimensional models. The models were analyzed

with AUTO 97 in order to find the critical Reynolds number and the period.

The hopfy model

A low-dimensional model of the Hopf bifurcation for constant Reyy = 2550 was constructed
for 4-10 modes. This model was called hopfy. The modes were based on the data ensemble
consisﬁng of a snapshot for 4 = 0.000, which was placed in the first block of the SPOD, a
snapshot for v = 0.002, which was placed in the second block, and 65 snapshots for v = 0.004
which were placed in the third block.

As for the data used to construct the previous low-dimensional models, care was taken
so that the full solutions were close $o the limiting state before the snapshots were sampled.
Also, close to a whole number of periods were represented by the sna,pshoté of the periodic
flow.

The SPOD utilized the LAPACK SVD routine mentioned in Appendix B. The relative
eigenvalue spectrum of the SPOD is showa in Fig. 5.17. At mode number 10 the relative
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Figure 5.17: Relative eigenvalue spectrum for the SPOD of the hopfy data ensemble for
Re;z-d = 2550.

eigenvalue is less than 1079 and the decay of the eigenvalues with an increasing number of

modes becomes slow as compared to the previous modes. Like in 2.7.7, this indicates that the
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ratio between the smallest and the largest eigenvalue is near the limit that can be obtained
for the given ensemble of data. Thus, it is expected that the low-dimensional model diverges
significantly from the full model for a number of modes above 10.

The hopfy model was analyzed with AUTO 97 in order to find the critical vy and the period.
An example of the graphical output from AUTO 97 is shown for 5 modes in Fig. 5.20. The
horizontal axis represents the Reynolds number and the vertical axis represents an Lo-norm
used by AUTQ 97. The diagram shows a steady solution. The full line represents a stable
solution and the filled square indicates a Hopf bifurcation. The dashed line represents an
unsteady solution or a solution for which stability is unknown. The actual Hopf bifurcation
is shown by the filled square at the bottom of the curve for v = 0.00399. An unstable
steady solution exists for v greater than the critical value. The hopf bifurcation of the of
the unstable steady solution indicated at the upper right part of the curve is a numerical
artifact. No bifurcation to a stable steady solution of the full model has been detected for
such a large y-value. However, it is detected far away from the range of y-values represented
by snapshots used for the construction of the low-dimensional model.

In Fig. 5.18 the critical v of the hopfy model is shown. For 4-10 modes the value lies
within the interval 0.00395 — 0.00398. The deviation from the full model is less than 9%. For
more than 10 modes the low-dimensional model deviates significantly from the full model.
However, this was expected. The period is shown in Fig. 5.19. For 4-10 modes the period
lies within the interval 26.37 — 26.41. The deviation from the full mode] is less than 0.4%.

Comparing the performance of the low-dimensional model to the previous models it is
remarkable that, although the deviation from the full model is an order of magnitude greater
for the critical value of the controlling parameter, the deviation of the period is of a similar
order of magnitude. A

As mentioned in 5.5.1, the hopfy model is fundamentally different from the previously
presented models. As the data ensemble, which is used for the decomposition, contains
snapshots for different values of v, it is implied that the azimuthal velocity becomes non-zero
on a part of the boundary of the modes. This feature is in contrast to the previous models in
which subtraction the ensemble mean field from all the snapshots ensured that all the modes
contained only zero azimuthal velocity on the boundary.

Apparently, the hopfy model, which allows v to vary, is able to maintain a balance among
the modes such that the boundary conditions of the azimuthal velocity is satisfied by the
reconstructed flow field. If the difference between the enfo}.ced boundary conditions of the
low-dimensional model and the boundary conditions of the linear combination of modes

yielding the reconstructed flow field was diverging, the model would not be able to function.
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Figure 5.19: The period at the Hopf bifurcation of the hopfy model for Reyq = 2550.
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Figure 5.20: Graphical output from AUTO 97 of the steady solution of the hopfy model with
5 modes for Reyg = 2550, The horizontal axis represents  and the vertical axis represents

an Ls-norm used by AUTO 97.

The hopfx model

An alternative low-dimensional model of the Hopf bifurcation for constant Regy = 2550 was
constructed for 4-10 modes. This model was called hopfx. The modes were based on the data
ensemble consisting of a snapshot for +y = 0.002, which was placed in the first block of the
SPOD, and 65 snapshots for v = 0.004 which were placed in the second block. In contrast
to the hopfy model, only one spapshot was provided in the hopfx model for representing the
steady region of the parameter space.

An example of the graphical output from AUTO 97 is shown for 5 modes in Fig. 5.21. The
horizontal axis represents the Reynolds number and the vertical axis represents an Lg-norm
used by AUTO 97. The diagram shows a steady solution. The full line represents a stable
solution and the filled square indicates a Hopf bifurcation. The dashed line represents an
unsteady solution or a solution for which stability is unknown.

The actual Hopf bifurcation is shown by the filled square at the bottom of the curve for
v = 0.00399. An unstable steady solution exists for + greater than the critical value. A fold
bifurcation named “3” is shown very close to the Hopf bifurcation. Although it is not known
if a fold bifurcation of the unstable steady solution ¢xists, the fold bifurcation contained by
the hopfx model is located for a v-value so close the the eritical v of the Hopf bifurcation,

that it was difficult to utilize AUTO 97 for detecting the Hopf bifurcation.
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Figure 5.21: Graphical output from AUTO 97 of the steady solution of the hopfx model with
5 modes for Reyy = 2550. The horizontal axis represents + and the vertical axis represents

an Lo-norm used by AUTO 97.

The fold bifurcation located very close to the Hopf bifurcation was a common feature for
the hopfx model with a number of modes in the range 4-10. Therefore, despite the prediction
of critical values of v within the range 0.0039% — 0.00400 and a period with an accuracy
comparable to the hopfy model, the hopfx model should be considered unreliable. For more
than 10 modes the model deviated significantly from the full model.

Conclusion for the models with a constant Reynolds number

1t can be concluded for the models with a constant Reynolds number that it is possible to
construct a simple working model for which + is allowed to vary. However, in contrast to the
models of & constant 7, it may be necessary to include at least one additional sub-ensemble for
a parameter value within the range of the parameter space corresponding to a steady limiting
flow. The alternative possibility of including additional modes derived from sub-ensembles
corresponding unsteady limiting flows has not been discussed.

This type of low-dimensional models is fundamentally different from the models with con-
stant ~ and the models with only one parameter. As the data ensemble, which is used for the
decomposition, contains snapshots for different values of -y, it is hoplied that the azimuthal
velocity becomes non-zero on a part of the boundary of the modes. This feature is in contrast
to the models in which subtraction the ensemble mean field from all the snapshots ensures

that all the modes have zero azimuthal velocity on the boundary. Thus, an important demon-
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block Repq ¥ snapshots  weight

1 2500 0.00000 1 1.0
2550  0.00000 1 1.0

2 2500 0.00200 . 1 10
2550 0.00200 1 1.0

3 2500 0.00400 1 1.0

4 2550  0.00400 65 1.0

5 2600  0.00000 59 0.1

6 2600 0.00200 59 0.01

7 2600  0.00400 79 0.001

Table 5.1: Blocks of the SPOD used to construct the hl model.

stration has been performed which indicates that it is possible to construct low-dimensional

models with more than one free parameter.

5.6 Continuation of a Hopf bifurcation

Within the parameter space, the region of the unsteady limiting flow is divided from the
region of the steady limiting flow by a critical curve. For the region of the parameter space
included in Fig. 2.7, the unsteady limiting flow is periodic within a substantial part of the
unsteady region located near the steady region. The upper part of the critical curve consists
of points, each of which is the critical point of a Hopf bifurcation. Thig part of the critical
curve can be reproduced by low-dimensional models and detected via Hopf continuation. The
task of Hopf continuation can be performed by AUTO 97.

A low-dimensional model used for Hopf continuation must be operational with two varying
parameters. As far as the author knows, there have been no previous feports in the literature
of such models based on projection on orthogonal modes which are calculated by decompo-
sition technignes. Within this context, a new issue is introduced - how should the ensemble
data used for the decomposition be located in the two-dimensional parameter space? Also,
when utilizing the SPOD for the decompeosition, the additional complication of the ozder of

the sub-ensembles needs to be considered.

5.6.1 A two-parameter low-dimensional model

An ensemble of data consisting of the sub-ensembles defined in Table 5.1 was used to construct

a two-parameter low-dimensional model called hl. For each parameter combination, the
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corresponding sub-ensemble was assigned to a numbered block of the SPOD. Also, the number

of snapshots contained by each sub-ensemble is shown in Table 5.1. The sub-ensembles of

an unsteady limiting flow each contain more than one snapshot. The sub-ensembles of a

steady limiting flow only contain one snapshot eack. The blocks containing the unsteady
sub-ensembles were kept as small as possible in order to obtain a high numerical accuracy
by enabling the use of the LAPACK SVD routine for as many of the blocks as possible. On
the other hand, some of the steady sub-ensembles were assigned to the same block. Hence, a
smaller number of blocks is obtained. As this requires fewer orthogonalizations in the second
stage of the SPOD, the numerical accuracy is increased. In order prevent the SPOD from
selecting modes with poor accuracy from the last blocks, the first stage eigenvalues of last
three blocks were weighted in the mode selection procedure before the second stage of the

SPOD. The resulting relative eigenvalue spectrum for 40 modes is shown in Fig. 5.22. Within
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Figure 5.22: Relative eigenvalue spectrumn for the SPOD of the data ensemble used for the

hl model.

each of the unsteady blocks, the relative eigenvalues decay slow compared to the previous
modes after reaching a level below 1072, The blocks 4, 5, 6 and 7 of the SPOD yielded 7, 9,
9 and 10 modes respectively. The relative eigenvalues of the calculated modes were all above

10719, Thus, a high degree of numerical accuracy is expected for all of the modes used in the

hl model.
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Figure 5.23: Graphical output from AUTO 97 of the critical curve found via Hopf continuation

of the h1 model with 40 modes. The horizontal axis represents the Reynolds number and the

vertical axis represents ~.

The SPOD of the hi ensemble was calculated for 23-40 modes. Each set of modes was
used to construct a low-dimensional model as explained in Chapter 4.

In order to use AUTO 97 for Hopf continuation, a Hopf bifurcation needs to be located
on a steady solution for a varying parameter, which is called the primary parameter, and a
constant parameter called the secondary parameter. For the hl model, Re;y was chosen as
the primary parameter and -y was chosen as the secondary parameter. For the calculation of
the steady solution, a -y-value of 0.0 was chosen.

The critical point of the Hopf bifurcation is used as a starting point for the Hopf contin-
uation in which both of the parameters are allowed to vary. During the Hopf continnation,
the period and the secondary parameter are recorded as a function of the primary parameter.
AUTO 97 is capable of detecting fold bifurcations on the critical curve. Furthermore, the
parameters can be recorded for specific values of both of the parameters. This was used to
record the «y of the critical curve for Reyqg = 2550.

As an example, the critical enrve for 40 modes is shown in Fig. 5.23. The starting point
of the curve is located at the right hand side of the diagram for v = 0.0. The corresponding
Reynolds number was calculated to be 2591. The curve proceeds in an S-shaped form towards
smaller Reynolds numbers and larger values of v until the end-point at Reyq = 2500 where

the calculation was stopped.
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Figure 5.24: Graphical output from AUTO 97 of the critical curve found via Hopf continuation
of the h1 model with 30 modes. The horizontal axis represents the Reynolds number and the

vertical axis represents 7.

The part of the curve above v = 0.004 can be considered as an extrapolation because
it does mot lie in between any values of - represented in the data ensemble used for the
construction of the hl model As can be seen from Fig. 2.7, the Hopf bifurcation for Rejg =
2500 occurs for a v-value in the range 0.00525 — 0.00550 whereas the value predicted by the
h1 model with 40 modes is 0.00488. Thus the hl model is able to perform predictions outside
its valid range of parameters, although these predictions are not very accurate.

For the hl models with 32, 33, 34 and 36 modes, fold bifurcations appeared on the
critical curve. The models with 32-36 modes were discarded because of the fold bifurcations.
Also, the models with less than 25 modes had critical curves with fold bifurcations and were
discarded. The critical curve of the hl model with 33 modes is shown in Fig. 5.24. The fold
bifurcations have been assigned the labels “4” and “5”. The label “6” is not a bifurcation
but it denotes a point for which the parameters are recorded.

In order to obtain a guantitative measure of the deviation from the true crltlcal curve of
the modeled critical curves, the critical Reynolds number for v = 0.0 and the critical v for
Reyg = 2550 were plotted versus the number of modes. Also, the period was plotted.

Fig. 5.25 depicts the critical Reyq for v = 0.0. For 25-31 modes, critical Rém within the
range 2591 — 2592 are obtained. The deviation from the actual value of 2590 is less than
0.08%. For 37-40 modes, a critical Reyq of 2591 is obtained. The deviation from the actual
value is less than 0.04%.
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Figure 5.25: The critical Reynolds number of the hl model for v = 0.000.
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Figure 5.26: The period on the critical curve of the hl model for v = 0.000.
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The period shown in Fig. 5.26 lies within the range 26.37 — 26.38 for 25-31 modes. The
deviation from the actual value of 26.44 is less than 0.3%. For 37-40 modes the period is
26.40 which deviates less than 0.2% from the actual value.

For the k1 model, both the critical Reynolds number and the period of the Hopf bifurca-
tion for v = 0.0 compare excellently to the results obtained for the simpler models presented
in 5.3.1.

Fig. 5.27 depicis the critical 7y for Reug = 2550. For 25-31 modes, the critical v lies
within the range 0.00365 — 0.00378. The deviation from the actual value of 0.00366 is less
than 4%. For 37-40 modes, the critical v lies within the range 0.00373 — 0.00382, for which
the deviation from the actual value is less than 4%. The period shown in Fig. 5.28 lies within
the range 26.36 — 26.39 for 25-31 modes. The deviation from the actual value of 26.47 is less
than 0.5%. For 37-40 modes the period lies within the range 26.40 — 26.42 which deviates
less than 0.2% from the actual value.

Both the critical v and the period of the Hopf bifurcation for Reyg = 2550 compare
favorably to the results obtained for the simpler models presented in 5.5.2.

Since the hl models with 32-36 modes were discarded, the following question is raised - is
it the models with 25-31 modes or the models with 37-40 modes which are reliable, and which
is the set of models which might be working by a mere chance? It is not considered acceptable
to have occurrences of spurious malfunctioning models for certain numbers of modes within
the range between the minimum number of modes required to model the Hopf bifurcation
and the maximum limit estimated for the current ensemble of data used for the construction
of the low-dimensional model. _

The eigenvalue spectrum shown in Fig. 5.22 indicates that the hl model should be capable
of supporting a number of modes greatér than 40. Also, Fig. 5.25 and in particular Fig. 5.27
indicate that the modeled critical curve approaches the true critical curve for an increased
rumber of modes within the interval 37-40. Unfortunately, due to the large memory require-
ments of AUTQ 97, it was not possible to analyze the low-dimensional models for more than
40 modes. However, it is very likely that the hl model performs well for more than 40 modes.
Therefore, it is believed that the minimum number of modes required for the hl model is at
least 37 and not 25. Furthermore, the maximum number of modes must be greater than 40
and not 31.

Probably, a better model than the hl model can be constructed to yield the section of the
critical curve in question. For instance, the sub-ensembles of data used for the model could
have been arranged differently. Also, different weighting factors could have been applied for
the SPOD blocks, and various maximum limits of the number of modes from each block could

have been defined. These options were not investigated further.
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Figure 5.27: The critical y of the hl model for Reyy = 2550.
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Figure 5.28: The period on the critical curve of the hl model for Reyg = 2550.
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The accuracy of the critical values predicted by the h1 model for one constant parameter is
remarkable compared o the earlier results obtained for the simpler models in 5.3.1 and 5.5.2.
This could provide a ciue of how to provide the data used to build low-dimensional models.
When considering the data ensemble used for the construction of a low-dimensional model
for which a high degree of accuracy is desired, it may be beneficial to include sub-ensembles
of data for other values of the constant parameter instead of including sub-ensembles of data
for an extended range of values of the varying parameter.

For a system with one control parameter, it seems that other sets of data than the snap-
shots sampled close to the limiting flow for one parameter value on each side of a bifurcation
are needed in order to produce a low-dimensional model with an accurate critical parame-
ter value. For a lid driven cavity with a fixed rod, improved accuracy can be obtained by
including snapshots for a co-rotating rod in the low-dimensional model. Another possibility
could be to sample transient data. However, this would require a characterization of the
transient and a consistent method of sampling the transient snapshots. This issue has not
been pursued further.

Tt has been demonstrated that for a lid driven cavity with a fixed rod, improved accuracy
of & low-dimensional model can be obtained by including snapshots for a co-rotating rod in the
data ensemble used for the construction of the model. It would be interesting to investigate
if this observation can be exploited within the context of the lid driven cavity without a rod.
One might be able to obtain a low-dimensional model with improved accuracy by sampling
of snapshots for simultaneously rotating end-covers. Perhaps investigations along this line

would prove useful for other systems than the lid driven cavity.

Conclusion for the two-parameter low-dimensional model

A low-dimensiona! model, which is operational with two varying parameters, has been used
for Hopf continuation. The resulting critical curve was compared in two points to the data
obtained for the full model in 2.7.7 and 2.7.8. For one constant parameter, the critical values
obtained for the other parameter compare favorably to the results obtained for the simpler
models presented in 5.3.1 and 5.5.2. Thus, when considering the data ensemble used for the
construction of a low-dimensional model for which a high degree of accuracy is desired, it
may be beneficial to include sub-ensembles of data for other values of the constant parameter
instead of including sub-ensembles of data for an extended range of values of the varying

parameter. This observation might have implications for a wide range of applications.
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block Reyyg ¥ snapshots weight

1 2550  0.00000 1 1.0
2 2550  0.00200 1 1.0
3 2550  0.00400 65 1.0
4 2550 0.00500 67 1.0
5 2550 0.00550 40 1.0
6 2550  0.00600 38 1.0

Table 5.2: Blocks of the SPOD used to construct the freqy model.

5.7 Modeling a bifurcating periodic solution

In 2.7.6 a bifurcating periodic solution was found for Reyq = 2550. For the full simulation
with a time step of At = 0.04 and a 201x101 computational grid, at v = 0.00500 the basic
frequéncy was found to be 0.03776 corresponding to a period of 26.48. At y = 0.00525 the
basic frequency was found to be 0.02571 corresponding to a period of 38.90. In the current
stﬁdy, it was attempted to reproduce the bifurcation by a low-dimensional model. The model

was analyzed with AUTO 97.

The freqy model

An éﬁsemble of data consisting of the sub-ensembles defined in Table 5.2 was used to constrﬁct,
a twﬁ-ﬁaréﬁleter low-dimensional model called freqy. For each parameter combination, the
corresponding sub-ensemble was assigned to a numbered block of the SP OD. Also, the numbéf
of snapshots contained by each sub-ensemble-is shown in Table 5.2. The sub-ensembles of
an unsteady limiting flow each contain more than one snapshot. The sub-ensembles of a
steady Hmiting flow only contain one. snapshot each. The blocks containing the unstea,dy
sub-ensembles were kept as small as possible in order to obtain a high numerical accura;::yi
by ehabling the use of the LAPACK SVD routine for as many of the blocks as possible. The
resulting relative eigenvalue spectrum for 40 modes is shown in Fig. 5.29. Within each of the
unstea:d}r bloclés, the relative eigenvalues decay slow compared to the previous modes Aftef
reaching a level below 1071°. The blocks 3, 4, 5 and 6 of the SPOD yielded 7, 9, 10 and 12
modes respecti\"rely. The relative eigenvalues of the calculated modes were all above 10710,
Thus, a high degree of numerical accuracy is expected for all of the modes used in the freqy
model. The SPOD of the freqy ensemble was calculated for 35 and 40 modes. Each set of
modes was used to construct a low-dimensional model.

In order to use AUTO 97 to detect bifurcations of a periodic solution, a Hopf bifurcation
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Figure 5.29: Relative eigenvalue spectrum for the SPOD of the data ensemble used for the
ffeéy model with 40 modes.

needs to be located on a steady solution. The critical point of the Hopf bifurcation is used
as a starting point for the calculation of the periodic solution in which only one pa,réméter,
in"this case v, is allowed to vary. During the Hop;f continuation, the period is recorded as a
fiiiction of the primary parameter. AUTO 97 is capable of detéciing fold bifurcations on the
periodic solution. ' ' ' .
“The periodic solution for 40 modes is shown in Fig. 5.30. The starting point of ‘the
curve is located at the left hand side of the diagram for v = 0.00354. The éorrespciﬁdiﬁg-
period was calculated to be 26.40. The curve proceeds along the stable peribdic"s%él&tidn.
towards larger values of  until a torus bifurcation with the label “5” is encountered at
v = 0.00499.  The dashed curve on the right hand side of the torus bifurcation indicétes an
unstable periodic solution. The other torus bifurcation labeled “6” does not cortipljr'Wifh the
full numerical simulations, but it does not lie in between any values of + représented in the -
data ensemble used for the model Vconstruction. AUTO 97 is unable to perforﬁa continuation
of torus bifurcations and to calculate the stable solution resulting from a torus Bifurcatidn.
For the freqy model with 35 modes, the Hopf bifurcation occurs at v = (0.00360 with a
period of 26.36. A torus bifurcation of the periodic solution was found for v = 0.00479 and

no other bifurcation were detected before the chosen end-point at v = 0.00656.
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Figure 5.30: Graphical output from AUTO 97 of the periodic solution of the freqy model

with 40 modes. The horizontal axis represents v and the vertical axis represents the period.

For both the model with 35 modes and the model with 40 modes, the critical -y of the
Hopf bifurcation was obtained with a deviation less than 4% from the actual critical value
of 0.00366 and the obtained period deviates less than 0.5% from the actual value of 26.48.
These results compare quite favorably to the results obtained for the models in 5.5.2.

For both of the models with 35 and 40 modes, the torus bifurcation of the periodic solution
is detected for a -y-value close to the interval of y-values in which a change of the frequencies
occurs in the full solution. However, it has not been proved that a torus bifurcation occurs.
A simpler solution would be the occurrence of fold bifurcations of the periodic solution gen-
erating hysteresis. This can be detected by full numerical simulations. In the event that the
explanation of the behavior of the full solution is the fold bifurcations, it is expected that a
low-dimensional model similar to the hopfy model, based on data including the hysteresis,
would detect the fold bifurcations. A less satisfying aspect of this issue is that the constants
used for controlling AUTO 97 might be set in such a way that very long transients are some-
how confused with solutions containing multiple basic frequencies. Unfortunately, AUTO 97
cannot calculate the stable solution after a torus bifurcation. Otherwise, the Runge-Kutta
solver described iz 4.4 could be used to solve the ODE’s of the low-dimensional model for

different parameter values in order to verify the results of AUTO 97.
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5.8 Conclusion

Low-dimensional models of the flow in the lid driven cavity with a rotating rod have been
constructed by projection of the governing equations on modes resulting from the application
of decomposition techniques to data obtained from full numerical simulations.

In order to compare the solutions of the current type of low-dimensional model with
results obtained in the earlier work of E. A. Christensen el al. [10] a special version of
the low-dimensional model was implemented for the lid driven cavity without a rod. The
performance of this version of the model compared favorably with the earlier model. It was
also verified that the low-dimensional model without the rod is able to reproduce the steady
states appearing in an ensemble consisting of steady states only.

Encouraging results have been obtained by applying a decomposition technique called
the Sequential Proper Orthogonal Decomposition (SPOD) which was developed to perform
decompositions suitable for low-dimensional models. The SPOD is capable of transforming
data organized in different sets separately while still producing orthogonal modes.

Also, a method developed for constructing low-dimensional models with more than one
free parameter was applied to the flow in the lid driven cavity with a rotating rod. The
resulting model allows one of the free parameters t0 appear in the inhomogeneous boundary
conditions without the addition of any constraints. This is necessary because both the driving
lid and the rotating rod can be controlled simultaneously. Appé,rently, the results are among
the first to be obtained for low-dimensional models based on projection on POD modes for
more than one free parameter.

The transition occurring for varying parameter values was studied and the results were
compared to the original results obtained for the full numerical simulations. The effect
of different methods of data sampling and variations of the decomposition procedure was
mvestigated.

The results indicate that it is possible to predict an upper limit for the number of modes.
For a few number of modes above this limit, the low-dimensional models deviate significantly
from the full model. For a few number of modes below this limit, the models attain their best
performance. The upper limit is decided by the number of modes at which the eigenvalues
of the SPOD decay with the number of modes at a much smaller rate than for the previous
modes. However, it is not obvious how many modes should be included to satisfy the minimum
number of modes required to model a Hopf bifurcation.

A bifurcating periodic solution has been investigated, but no conclusive results can ob-
tained without additional full numerical simulations.

A low-dimensional model with two varying parameters was utilized for Hopf continuation.
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The resulting critical curve was compared to the data obtained for the full model. For one
constant parameter, the accuracy of the critical values obtained for the varying parameter
were superior to the results obtained for simpler models. Thus, when considering the data
ensemble used for the construction of a low-dimensional model for which a high degree of
accuracy is desired, it may be beneficial to include sub-ensembles of data for other values of
the constant parameter instead of including sub-ensembles of data for an extended range of
values of the varying parameter. This observation might have implications for a wide range

of applications of low-dimensional models.
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Appendix A

Derivation of the governing

equations for the lid driven cavity

A.1 Outline

The foundation for computing solutions to any hydrodynamic problem is the Navier-Stokes
equations and the continuity equation for incompressible flow. For constant viscosity these
equations reduce to the commonly known form

-g%-v +(v-V)v= —%VP +vV Vv, (A1)

Vev=0, (A.2)

where VP is the sum of the pressure gradient and conservative body forces such as gravity.

By rewriting the Navier-Stokes equations as a vorticity transport equation on rotational
form, the term containing the pressure gradient can be eliminated. A constraint ensuring
the existence of a pressure function is thercby introduced. For the lid driven cavity, however,
the constraint is automatically satisfied when solving the azimuthal velocity equation. Also,
by introducing a stream function, the continuity equation is automatically satisfied and the
velocities can be replaced by derivatives of the stream function.

For rotational symmetry, and utilizing cylindrical coordinates, it is sufficient to consider
the transport equations for the azimuthal components of the vorticity and velocity and a

Poisson equation for the azimuthal component of the stream function.

89




A.2 Rotational form of the vorticity transport equation

The Navier-Stokes equations and the continuity equation can be stated in the dimensionless

form
3} 1
Al (v-Viv=-VP+ ﬁ—ev - Vv, (A.3)
V-v=0. (A.4)
The Reynolds number i8 given by
Q2D
Re = ” (A.5)

where D is the characteristic diameter and £2 is the characteristic angular frequency.

Using the vector identities
(v V)v = 5V(vv) = v x (VX v), (4.6)

V- Vv=V(V -v)-Vx(Vxv), (A.7)

and utilizing the continuity equation (A.4) the Navier-Stokes equations {A.3) can be rewritten

as

7 1 1
Ev—-vx(va)——V(P+§v-v)—EV>§(va). (A.8)

Introducing the vorticity,

w=Vxv, (A.9)

and applying the curl operator yields the rotational form of the vorticity transport equation

0 1
Ew—VX (vxw)—-—-f{—er(wa). (A.10)

Because the curl operator involves differentiation it is necessary to introduce a constraint
in order to establish the equivalence between the first formulation, which is given by (A.3)

and (A.4), and the second formulation given by (A.4), (A.9) and (A.10). Define

§=%v—vx(va)+éVX(va) (A.11)
in a multiply connected domain. Furthermore, choose p loops I'y, ..., 'y and assume that

the domain can be made simply connected by p cuts which will cut the loops too. According

to Daube et al. [12] the following theorem holds,

(ngz{),/g-dlz{),z’:l,...,p) & (Jo: €=V, (A.12)
r;
where 1 is the tangential vector. Thus, the constraint,
f(a vx(vaHivX(va)) dl=0,i=1 (A.13)
T, atv Re =4 t=L4L..,D .
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ensures the existence of a pressure function P so that (A.8) is satisfied. It has now been
established that the first formulation, which is given by (A.3) and (A.4), is equivalent to the
second formulation given by (A.4), (A.9), (A.10) and (A.13).

Note that the theorem (A.12) also implies that

fr, (V(P‘I‘%V'V))-dl:(},'.i=1:...,p. (A.14)

Therefore, if (A.8) is satisfied along the loops, then the constraint (A.13) is satisfied. In the
case of the lid driven cavity with a rod, only one loop is necessary because the dornain can
be made simply connected by a cut from the rod to the cylinder wall. Placing the loop in
a plane, which is orthogonal to the center axis, and solving the azimuthal component of the

velocity transport equation (A.8) ensures that the constraint (A.13) is satisfied.

A.3 Cylindrical coordinates

Introduce the cylindrical coordinates,
(z!,2%,2%) = (r,0,2), (A.15)

and the orthogonal coordinate system,

(¢1,62,8%) = (rcosf,rsind, z). (A.16)
For a contravariant tensor
T =Te; (A.17)
the rotation is given by
e e es
vwr:% a%l %i 5% (A.18)

gi;17 gosT7 g3;T7
where the fundamental tensor is defined by
g ={gi} = {e:- e} (A.19)

and g represents the determinant
g =detg. ' {(A.20)

Because (£1,£2,£%) is orthogonal the Jacobian

J= { o' } (A.21)

o2
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can be used for calculating the fundamental tensor via

1 0 0
{g:}=3"31=]0 2 0 (A.22)
00 1
which yields
g = det{gi;} =% (A.23)

Inserting, the contravariant rotation for cylindrical coordinates becomes

ey €es €3
_lla 8 9
VxT= |5 d8 Oz (A.24)
Tl ?"2T2 T3
The covariant tensor
T = Tje (A.25)
is related to the contravariant tensor via the relations
ey = gr; e (A.26)
Ty = gryT? ' (A.27)
By substitution, the covariant rotation for cylindrical coordinates is found to be
el r2e? e
_1ls o8 8
™ T T3

it is useful to consider unit tangential vectors which arc popular in the literature of Huid

mechanics. By choosing

e, =€y, rep=ey, €, =e;. (A.29)

it is obtained that e, is parallel to e, eg parallel to ey and e; parallel to es in such a way

that
er-er=1, 89-69=1, e;-e;xl. (A.30)
Defining
T = Trefr + Tgeﬂ + Tzez (A-31)
it is follows that
=T, Tg=rTa, 1.=1T;. (A.32)
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By substitution, the rotation formulated by unit tangential vectors for cylindrical coordinates

becomes
€. Tey €

1
_l8 90 0
VxT |5 % o (A.33)
’ . Ty Ty
In a right-oriented coordinate system, the cross product is given by
e €3 e3
1
TxS=—|T, To T A4
\/g 1 2 3 ( )
S1 S 83
Using unit tangential vectors the cross product for cylindrical coordinates becomes
e, TE€p € e € €y
1
Tx8= - T, Ty T, |=|T: Tp T (A.35)
Sf- 'TSH Sz ST SB SZ
The general contravariant formulation of the divergence is
V-T= ii(fTi) (A.36)
~ /g oz 9 )
which for the cylindrical coordinates (A.15) is given by
10 1 8,0 0.3
T = = — —T, .
V-T-= rar(TT)+89T +6‘z (A.37)
Using unit tangential vectors the divergence for cylindrical coordinates becomes
14 18 0
T = ~— i Y _
| v - (rTy) + " BGTQ + 8sz (A.38)
A.4 The Poisson equation
The stream function 1 is defined so that the velocity field is given by
v=-Vx. {A.39)
In cylindrical coordinates this yields
e T€p €
_1lla o8 @
v T8 s
However, by choosing a covariant stream function
W = e (A.41)
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and using

Yr =1, Yo =rihy, Pz =13
the following expression is obtained

e Tep €

v=_il8 o8 8
r| or 08 0z
Yo YPs
For rotational symmetry let o = 15 and observe that
1oy _ 18¢
U= T i

Hence, the vorticity becomes

Defining

it is obtained that

Also,
YrT TE YT e
Now, define .
Tle =Tp. -
For rotational symmetry
[V{V-)]g =0

Thus, the azimuthal component of the equation

w= -V x (V) =V —V(V- )

reduces to

w = V.

Therefore, (A.47) will be referred to as the Poisson equation.
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A.5 The conservative vorticity transport equation
Restating the vorticity transport equation (A.10) on rotational form

0 1
—égw -V x (V b4 w) = -"R?V X (V X w) (A53)

and recalling the rotation formulated by unit tangential vectors for cylindrical coordinates
(A.33) it is found that the azimuthal component of the vorticity transport equation becomes

a

e (L x = Zivxol) + s (VX - T xel) (A9

Re

Using (A.35) for rotational symmetry gives

€r €y €,
vxw=| v v Uy (A.55)
—%ve w %3‘%(7‘1}9)
which yields
7] 0 o
v xul = 5 (Urw —I—’Ugaz-’vg) (A.56)
d 0 1 3
a{v X Wy = 5 (—-'uzw + ;vgg;('rvg)) . (A.57)
Thus, the convection terms can be put on conservative form
a ad 0 0 10, ,
— (gl xwl - 5t < wlr) = =g (o) = 52 (o) + 5 (0h) (A.58)

Using (A.33) for rotational symmetry gives

e;r ’J"eg ez
d o) a
Vxw=_| 3 9 Oz (A.59)
—%Ug rw %3‘%(7’03)
which yields the diffusion terms
15) J g /18 g /10
“éF[V K w]z - 3Z[V X w}r = 'é; (;'B—T(Tw)) + Bz (;@(T(J))
1 18 [ dw 8w s
= —T—zw + ;5”; (T@) B_Zi (AﬁU)

Inserting the convection terms {A.58) and the diffusion terms (A.60) into the azimuthal
component of the vorticity transport equation (A.54) yields the vorticity transport equation

on conservative form

dw 8 d 18,4, , 1 1 190 ( dw\  &w
i ME'-('U,-LJ) - a(’uzw) + ;5;(1?3) t Re (_}Ew g ('?" 6‘1") + 822) - (A6L)
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A.6 The conservative azimuthal velocity transport equation

Restating (A.8)
1

5V v) — év x (V xv) (A.62)

0
—é?v—vx(va)——V(P+

it is seen that the azimuthal component in cylindrical coordinates for rotational symmetry

reduces to

%’Ue ~[vx(Vxv)p= —é[v x (V x v)]e. (A.63)

Using (A.35) and (A.33) and utilizing rotational symmetry the following is obtained

—vx (Vxv)]s = +u[Vxv], —0,[V xv (A.64)
- 52( )+ .1._‘?_( )
= e T g

+ v, B T (A.65)

Rendering the continuity equation (A.4) dimensionless and applying (A.38) for rotational

gymmetry yields

16 v, '
;51—‘(71}7-)-!- Ep ={. (A.ﬁﬁ)

Expanding, multiplying by vg, adding to (A.65) and collecting terms yields the azimuthal

component of the convection terms on conservative form

Uy dug Jug (fu_r vy sz)
v x (Vxv)lp = r +1JT(97‘ +Uz3z + r+8r+82
d a 2
= E(UTUG) + 5(‘!)2’03) + L (A.§7)

The azimuthal component of the diffusion terms can be evaluated by applying (A.33) twice,
utilizing rotational symmetry and expanding the terms yielding

L[V (Vxv)g = (g-i:[v % v]s — (%[v x V]T)

T

T fr\ror v Dz \rdz" °
_ 1 4 Bﬂ 13 n Juy vy
T g2 (Uﬁ Tor +’r§ ve T_) + 3z?
2
= —Tigvg 410 (Tﬁyg) el (A.68)

Inserting the convection terms (A.67) and the diffusion terms (A.68) into (A.63) yields the

azimuthal velocity transport equation on conservative form

9 0 9 2 1 [ 1 10 [ du\ , 8
5% = "5 (vrvg) — 5;(’“;:'”6) — U R (—T—Q'Ue 5 (Tg) + W) . {A69)

This concludes the derivation.
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Appendix B

Numerical accuracy of the

eigenvalues of POD and SPOD

Let R be a symmetrical matrix, for instance the auto-covariance matrix of a POD. Consider
the eigenvalue k; of the matrix (R + D). Assume that the elements of D are small compared

to the elements of R. Then there exists an eigenvalue, A;, for R so that .
|Ai — i) < [Dliz (B.1)

(see Madsen and Nielsen [20] or another introduction to numerical analysis of eigenvalues for

matrices). Here, ||||2 denotes the matrix 2-norm defined by

[Yllz = max [[¥x]2 (B.2)
llxllz = 1

for the matrix Y. Letting \; be the largest eigenvalue of R,
I Ril2 = max [As] = A1 (B.3)

Thus,
|hi = sl D2
A T Rl

For sufficiently large eigenvalues, this relationship guarantees the existence of an eigenvalue for

(B.4)

the matrix R near a computed eigenvalue. However, if the ratio Ai/A1 between an eigenvalue
and the largest eigenvalue becomes smaller than the right hand side of (B.4), several of the
eigenvalues less than \; may lie near the computed eigenvalue. Thus, the eigenvalues cannot
be distinguished from each other. This offers a theoretical limit for the smallest eigenvalues
that can be obtained with a given machine accuracy.

When calculating an auto-covariance matrix, R = UTU, the worst conceivable case of

degraded numerical accuracy is the addition of many small products to one very large product,
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i.e. for a machine accuracy of € and for ri; = > ugiti;.
P P
7ij T dij = (111' + 51) . (uJ‘ + 55.) ~ z (ukiukj + 2¢ Z umiumj) =rij + 2P€Tz‘j. (B.5)
k=1 m=1
In this relation it has been exploited that, for any k, the addition of the product ug;dr;
introduces a numerical error of the same magnitude as the addition of the first pi'oduct,
u1;015, which was assumed to be very large, and that uyui; & 3., Umimj. Thus, for the

worst case,
ID]l2 = 2P¢||R 2. (B.6)

The most favorable case is when products of comparable size are added, i.e.

P
T35 + dij = {(u; + DK (llj + ('5_?-) = Z (Ukiukj + 26ukiukj) = 735 + 2¢ery;. (B.7)
k=1
In this case,
D]z = 2¢||R|2. (B.8)

The available machine accuracy is € = 2.2 - 10718, For the worst case, a POD based
on direct calculation of the auto-covariance matrix has a theoretical limit of accuracy of
order 2Pe = 1.76 - 10~1! for the ratio between the smallest and the largest eigenvalue. Here,
P = 40000 denotes the number of vector components in a snapshot. For a practical calculation
of the auto-covariance matrix the accuracy is assumed to be increased by one decade or more.
However, a few decades of accuracy might be lost due to the practical method used for solving
the eigenvalue problem. Hence, an accuracy of at least 10 decades is expected.

For the POD based on direct calculation of the auto-covariance mairix, the least conser-
vative estimate of the theoretical limit of accuracy for the ratio between the smallest and the
largest eigenvalue is 2¢ = 4.4 - 10716, Taking into account the loss of a few decades due to
the method used for solving the eigenvalue problem, at most 13 decades of accuracy can be
expected.

By using the method called Singular Value Decomposition (SVD) to calculate the POD
the accuracy can be improved. When using the LAPACK SVD routine, the auto-covariance
matrix defined in 3.1 is not calculated directly and it is the singular values which are refurned.
The eigenvalues are calculated as the squares of the singular values. Therefore, this method
should yield at least twice the accuracy of a POD based on direct calculation of the auto-
covariance matrix, i.e. more than 20 decades.

In this study, utilization of the LAPACK SVD routine for calculating the POD was
limited td 104 snapshots. For calculating the POD’s involved in the SPOD the total number
of snapshots was limited to 156 snapshots or less depending on the data ensemble and the

calculated modes. When more snapshots were required, the LAPACK SVD routine was
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applied for as many of the first blocks of the SPOD as possible in order to minimize the
numerical errors introduced by the sequential orthogonalization. The POD utilizing direct

caleulation of the auto-covariance matrix was applied for the remaining blocks when needed.
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