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Abstract

A 2-dimensional vorticity-streamfunction formulation of the Reynolds aver-
aged Navier-Stokes equations in primitive variable form has been considered
for laminar and turbulent flow past airfoils. A new method for establishing
boundary distribution of vorticity and streamfunction at limiting boundaries
of the calculation domain is suggested. The method guarantees a unique
pressure distribution on a solid body.

Eddy-viscosity has been introduced for modeling the Reynolds stresses
and is calculated by use of the algebraic model of Baldwin & Lomax, the
1-equation turbulence models of Baldwin & Barth and Spalart & Allmaras
and the 2-equation K — w-BSL/SST turbulence model by Menter. Correct
implementation of the turbulence models has been regarded for flow past a
flat plate with finite thickness and rounded leading edge.

The developed Navier-Stokes solver has been used for computing station-
ary and in-stationary laminar and turbulent airfoil flow with great success.

Laminar flow situations has been regarded by three different flow situa-
tions past a NACA 0012 airfoil: A low incidence case, an impulsive start at
high incidence and an airfoil oscillating in pitch between 0? and 20° incidence.

Turbulent airfoil flows past a stationary Onera-A airfoil was considered
profoundly at incidences 10.1°, 13.3°, 17.6°, 25° and 40° and comparisons
are made with experiment at incidences below 25°. The Michel criterion was
used to predict transition positions in some cases.

Dynamic stall was considered by calculating a light and deep stall case
for a NACA 0015 airfoil with the different turbulence models. The light stall
case is characterized by a mean incidence equal 11.37° and a variation of the
incidence of 7.55°. The reduced frequency was 0.102. The deep stall case is
characterized by a mean incidence equal 19.58° and a variation of the inci-
dence of 6.83°. The reduced frequency was 0.154. In both cases the Reynolds
number was 1.5 - 10% and the results was compared with experiments.
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Abstrakt (in Danish)

En 2-dimensional stremfunktion-vorticity formulering af de tidsmidlede Navier-
Stokes ligninger 1 primitiv variabel formulering er blevet benyttet til bereg-
ning af laminsere og turbulente aerodynamiske strgmninger. En ny metode
er foresldet til at beregne fordeling af vorticity og strgmfunction pa randene
af et beregningsdomaine. Metoden vil garantere en entydig trykfordeling pa
overfladen at et fast legeme.

Reynolds spzndingerne er blevet modelleret v.hj.a. en eddy-viskositet
som er blevet beregnet ved den algebraiske turbulens model af Baldwin &
Lomax, 1-lignings modellerne af Baldwin & Barth og Spalart & Allmaras
og 2-lignings turbulens modellen af Menter. Implemteringen af turbulens
modellerne blev verificeret gennem strgmning over en flad plade med endelig
tykkelse og afrundet forkant.

Den udviklede Navier-Stokes lgser er med succes andvendt til at beregne
bade stationsere og instationzre, laminzre og turbulente stremninger.

Tre forskellige lamineere strgmmninger over et NACA 0012 vingeprofil er
blevet undersggt: en ved lav indfaldsvinkel, en impulsiv start ved hgj indfald-
vinkel og et oscillerende profil med en indfaldsvinkel, som varierer imellem
0° og 20°.

En turbulent strgmning over et Onera-A vingeprofil er blevet undersggt,
specielt ved indfaldsvinklerne 10.1°, 13.3°, 17.6°, 25° og 40°. Sammen-
ligninger med eksperimenter er foretaget for indfaldsvinkler mindre end 25°.
Michel criteriet blev i nogle tilfzelde benyttet til at beregne transition punk-
ter.

Dynamisk stall er undersggt for to forskellige tilizelde, et let stall og et
kraftigt stall. Det lette stall tilfzzlde er kendetegnet ved en middel ind-
faldsvinkel p& 11.37° og en variation af indfaldsvinklen pa 7.55°. Den re-
ducerede frekvens var 0.102. Det kraftige stall tilfzelde er kendetegnet ved
ved en middel indfaldsvinkel pa 19.58° og en variation af indfaldsvinklen pa
6.83°. Den reducerede frekvens var 0.154. I begge tilfzelde var Reynolds tallet
lig 1.5 - 10° og resultaterne blev sammenlignet med experimenter.
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Chapter 1

Introduction

The rapid increase in computer performance has made computational fluid
dynamic in three space dimension possible at quite low cost. Even though
3-dimensional Navier-Stokes solvers has matured to a level where the pre-
dicted results can strongly be relied upon, there is still a need for studying
2-dimeunsional flows.

The present work concerns the development of a Navier-Stokes solver
applicable for predicting unsteady flow past a bodies in arbitrary movement
fi. flow past a wind turbine blade or flow past a helicopter rotor in a forward
flight situation. These flow situations are by nature

¢ 3-dimensional
e unsteady
e compressible

e govern by turbulence

It is authors believe that no limitation is present today which could disable
a computation of a flow consisting of the phenomenon listed above although
such a computation in many cases be would unnecessary. A time true 3-
dimensional, compressible and turbulent Navier-Stokes computation would
require very power full computers and still the computation time would be
very long. In many case a steady state solution is aimed at and in these
cases acceleration techniques such as local time stepping is typically applied.
A special variant of a local time stepping algorithm has been developed for

1




unsteady flow calculations in 2-dimension [66]. Whether this scheme can be
applied for 3-dimensional flow is not known by the author but in general it
should be possible.

For the flow past helicopter rotors and wind turbines it is general be-
lieved that a local 2-dimensional approach, eventual with boundary con-
ditions taken from a 3-dimensional potential flow solution, will be able to
describe as local quantities satisfactorily as long as the flow is only mildly
separated. The flow past helicopter rotors is in some situations character-
ized by unsteady separation influenced by a pitching movement of the airfoil
relative to the oncoming flow. This phenomenon is called dynamic stall and
is more broadly defined as the unsteady separation on an airfoil subject to a
forced movement typically of sinusoidal form where the lifi-stall is significant
different from static stall.

Dynamic stall is maybe one of the less understood phenomena within
fluid dynamic and it is believed that in order to fully understand the nature
of the processes one must regard the very small structures of the flow. Many
attempts to study dynamic stall has been done by experiments mainly in
9-dimensional flows where methods such as Particle Image Velocimetry can
be very use full {42] but the very fine resolution in time and space afforded
by numerical simiulations is much better suited for looking into such details,
if the physics is adequately captured.

In real flows the influence of 3-dimensional flow effects on dynamic stall
are only limited known [28] but in order to understand the physics of the
unsteady separation process a 2-dimensional approach is well suited due to
relative simplicity of the flow situation compared to a 3-dimensional flow.
At the same time it is widely believed that the knowledge gained by such
2-dimensional computations can be applied when a understanding of the 3-
dimensional flow situation is looked for.

Considering helicopter rotors the flow was previously govern by compress-
ible effects mainly close to the tip of the rotors but today the tip speed are
gradually decreased demanded to some extend by a lowering of emitted noise.
Even though the tip speed has decreased some compressible effects are still
present. As dynamic stall is not fully understood it is general accepted that
an attempt to gain knowledge can be by use of an incompressible approach
even though the phenomenon has a large dependency of compressible ef-
fects. The source of this approach is perhaps of practical reasons because
experiments are more easily conducted in a incompressible flow situation.

For many years wind turbines has been studied at the the Dept. of Energy
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Engineering where this Ph.D. study has been carried out. Flow past wind
turbines has always been characterized by nearly incompressible flow and the
present work is related to the afore mentioned research where a demand of
studying the effects of unsteady incompressible flow past airfoils are present.

Airfoil flows has in many situations been studied profoundly for com-
pressible flows due to a very large commercial interest. By this a large
effort has previously been put into solving the compressible 2-dimensional
Navier-Stokes equation. Mainly the convective terms has been investigated
profoundly and a lot of very good numerical schemes such as shock fit-
ting /capturing and fluctuation splitting schemes has been constructed for
the solution of the Euler/Navier-Stokes equations [22]. In these approaches
the viscous terms are typically treated as source terms to the Euler equations.
The Euler equations for compressible fluids are some how easier to solve be-
cause a strong coupling between the pressure and the continuity equation is
present.

Today incompressible flows are becoming more and more interesting and
many of the techniques, such as upwinding of the convective termns, applied
in compressible flow solvers are applied in incompressible flow solvers. Solu-
tion of the incompressible Navier-Stokes equations was previously considered
very difficult because the coupling between pressure and a solenoidal veloc-
ity field vanish. Different approaches has been suggested in the past where
the artificial compressibility method maybe is the most direct connection to
the compressible Navier-Stokes equations. A scheme original invented for the
compressible Euler /Navier-Stokes equations has with great luck been applied
to the artificial compressibility method [14].

The most common way of solving the incompressible, turbulent Navier-
Stokes equations is based on the equations put in primitive variables. In
the 2-dimensional case this results in two momentum equations for the ve-
locity components, (I/,V'), and a Poisson equation for the pressure, p. The
latter, which is normally obtained by applying the divergence operator on
the momentum equations, must be strongly coupled to continuity since mass
conservation are assured only if a correct pressure distribution is obtained.

An alternative formulation consists of eliminating the pressure by taking
the curl of the momentum equations and introducing the vorticity, -y, and
a streamfunction, 7. As a result, the resulting system consists of only one
momentum equation (for transport of vorticity) and a Poisson equation for
the streamfunction. The main advantage of introducing a streamfunction is
that continuity is automatically satisfied. In the laminar case the formulation
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of the Navier-Stokes equations in y—1) variables is relatively straightforward,
whereas in the turbulent case the time-averaging may cause some difficuliies.

As mentioned previously one of the intentions with this Ph.D. study was
to develop a Navier-Stokes solver for predicting unsteady flows. In case of a
transient or a general unsteady 2-dimensional flow situations the vorticity-
streamfunction formulation is a very attractive alternative to the primitive
variable formulation of the Navier-Stokes equations. For the primitive vari-
able formulation a linearization of the momentum equations must be per-
formed if an implicit schemes are used. In the vorticity-streamfunction for-
mulation, which consist of a transport equation for vorticity and a Poisson
equation for the streamfunction, the two equations can easily be solved cou-
pled or the two equations can be applied in a simple predictor-corrector
scheme. In these cases no linearization is needed.

When introducing vorticity and streamfunction the boundary conditions
are no longer straight forward defined as in the case with the primitive vari-
able formulation of the Navier-Stokes equations. Many attempts to utilize
the vorticity-streamfunction method in the past has failed because bound-
ary conditions was imposed that provided a solution that did not satisfy the
primitive form of the Navier-Stokes equations.

In case of a dynamic stall situation the airfoil is no longer fixed relative
to an inertial coordinate system and the fow can profitably be calculated
by applying the vorticity-streamfunction formulation in a coordinate system
fixed relative to the airfoil. The vorticity-streamfunction formulation of the
Navier-Stokes equation are very simple to apply when a non-inertial reference
system is considered. In this case the vorticity-streamfunction formulation
is basically identical to the formulation in an inertial reference system.

Even though a tendency of decreasing the tip speed of helicopter rotors,
(and by this the Reynolds number), are found turbulence is still present and
plays a major role in the flow. The same large influence of turbulence is
found for wind turbines and many other flows of practical interest. Turbu-
lence is by nature full 3-dimensional and is typically studied in a three levels
order, Direct Numerical Simulation (DNS), Large Eddy Simulation (LES),
and Reynolds Averaging (RA). DNS is often applied to 3-dimensional flows
and the LES and RA method is often utilized in 2-dimensional flow situations
with great success. Where the DNS method is a valuable tool in studying
the nature of the large and small details of a turbulent flow, the LES method
serves as a method between DNS and RA providing time varying results for
the larger structures of the flow.




The RA method has proven to predicts local and global mean values of
turbulent flows in 2-dimensional flows very well when the Reynolds stresses
are modeled by an eddy-viscosity concept. A lot of different but good meth-
ods ranging from algebraic to transport models are available for calculating
the eddy-viscosity. The intention of this Ph.D. study was not to investigate
the nature of turbulence and by this it is natural to adopt the RA averaging
techniques with the eddy-viscosity concept.

Application of a RA method has in past often been linked to a flow
situation with a stationary mean flow and the method has proven to mimic
the time averaged flow properties well. When applying a RA method to a
non stationary flow situation the borders between the LES and the RA are
some how vanishing because the final mathematical outcome look similar and
both methods utilize an eddy-viscosity concept.

When considering aerodynamic flows transition from laminar to turbulent
flow often plays a dominant role in the flow. Different method has been
applied in the past for computing the location at which a laminar flow begins
to undergo transition to a turbulent flow where the e™-method has been
widely discussed [10]. More typically used are the empirical methods based
on experiment where the Michel criterion [38] is frequently used in literature.

As some of the ideas with this Ph.D. study was to perform computations
of unsteady, turbulent and incompressible flow past bodies in arbitrary move-
ment at least to some level of approximation we can summarize the demands
to the Navier-Stokes solver by the following items

e 2-dimensional
e unsteady
e incompressible

o modeling of turbulence

The relative simplicity of the vorticity-streamfunction formulation of the
Navier-Stokes equations for predicting 2-dimensional unsteady flow past bod-
les in arbitrary movement was the argument for choosing this approach. At
the same time the vorticity-streamfunction formulation is by the author re-
garded as a very interesting formulation. As only a turbulence modeling
was aimed at and not an investigation of the nature of turbulence the eddy-
viscosity concept was adopted.



This dissertation deals with the development of a time true 2-dimensional
Navier-Stokes solver applicable for calculating laminar and turbulent flows in
both inertial and non-inertial frames of references. The work is to some ex-
tend based on a laminar vorticity-streamfunction based Navier-Stokes solver
where boundary conditions was imposed without paying any attention to the
fact that the solution also should satisfy the Navier-Stokes equations in terms

of UV, P.




Chapter 2

Vorticity-streamfunction
formulation of the
Navier-Stokes equations

In this chapter an vorticity-streamfunction, v — %, algorithm developed as
a part of the authors Ph.D. study is described. The governing equations
and their solution will be presented, the time-averaging problem will be ad-
dressed. Boundary conditions for the vorticity-streamfunction methods is
discussed an a new method to determine boundary conditions will be pre-
sented in detail. Finally a review of related work will be given in order to
relate the present work with the present status of solving the Navier Stokes
equation in terms of vorticity. In the next chapter the utilized turbulence
models will be described and in the following chapters results obtained with
the developed code will be shown.



2.1 Governing equations

In a coordinate system rotating with angular velocity €;, the primitive vari-
ables formulation of the Navier-Stokes equations are written as

ot; . Ou; . ;
a—; + ujg + 26558 25Ux + €ik€rimS L T m + €kl Th
j
19p 8
—_ — — —— 2'1
p 0z; B Vawjaij ’ 1)
01
o = 0, (2.2)

where #; is the velocity relative to the rotating coordinate system at a point
z;. Here a tilde denotes the instantaneous value of the variable at (25, 1), v
is the kinematic viscosity and p denotes the density of the fluid.

Decomposing the instantaneous velocity, 4;, into a mean flow component
U; and a velocity fluctuation u;, we get that

where the time-average of U; is defined by

U= = [ wat 2.4)
, T 1o ’ (

The averaging period, 7', has to be sufficiently large in order to model cor-
rectly the small-scale turbulence. On the other hand, in order to maintain
the time-terms in the equations it has to be much smaller than a characteris-
tic rotation period. Employing the same decomposition for the pressure and
taking the time average of Navier-Stokes equations, results in the Reynolds
momentum equations (here defined in a rotating coordinate system)

ou; . 8l -
—g + UJEE: -+ 2€ijkgj Ur + ez‘jkfklmﬂjﬂlxm + 6ijkﬂj$k
18P a v, BU;
v i 2.5
paxﬁ”axj [(1+ V)azj]’ (25)




oU;

5 =0 (2.6)
where the Reynolds stresses have been modeled by the eddy-viscosity, v,
aoU;
—UU; = Vté";:;. (27)

For the «v—1) formulation, one can either first apply the rotation operator
and next make the Reynolds averaging or first make the Reynolds averag-
ing and next define the vorticity as the curl of the time-averaged velocity
components. In the first approach it is necessary to model vorticity-velocity
correlations f.i. by [55]

I5s
uy = ‘“th‘% ; (2.8)

where the vorticity has been decomposed as

F=v+7 . (2.9)

In the other approach, which is the one followed here, the vorticity is defined
as

oV oU
=5 By (2.10)

Considering a coordinate system rotating with an angular frequency, 2,4,
the 2-dimensional form of eq.(2.5) in vorticity-streamfunction formulation is

5} a (o 0 (oY
5%“ [7 + Q‘Qrot] - '5; (%7) + 8@} (655 7)

32 vy 82 Yy
=V [(1+;) ’}/] +v5§5 [(1+-V—) 7] + S, (2.11)
where
oU [ 8%y, ou oV v, Vv [ 8%y,
Sy =2 [“a‘»g (a_) B (a_ B @) (azay “wl\az) - @Y
This term is seen to depend only on second derivatives of the eddy-viscosity
and may be omitted.




From the definition of the streamfunction

o o
__ - 2.1
U 3y’ v 5 (2.13)

and the definition of vorticity, a Poisson equation is obtained for ¢

&y %
Gt (2.14)

By introducing the chord length of the airfoil, ¢, as the characteristic length
scale, and the free stream velocity, Up, as the characteristic velocity scale,
the variables are made dimensionless as shown below

* :L. y * * U [ ) * C
N=1=Z —_ — = Q’ro_ y
(23 ' Y ) ( ’ )7 (U :V ) (UOJ UO ) ‘Qrot tU()

[

U C c
+* = t——— = qh— * =y,

The superscript * will be left out from hereon. Introducing the Reynolds
number, Re = U,¢/v, and neglecting 5., the resultmg system of governing
equations are given as

7] oy o) 1 [8%ey  SPey
g Y+ Xl — 55 (ay )+8y (3:1: ) “E{EFJ’ 5 |0 (218)

8% 8211)

where € = 1 - v;/v. In the following v;/v will be denoted »; where the
superscript * indicate a non-dimensionalized eddy-viscosity, which is not non-
dimensionalized with U and c.

A transformation from the Cartesian coordinates, (z,y), to a boundary-
fitted curvilinear mesh is carried out by introducing the general transforma-
tion

G#E(w,y) . n=n(zy),
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where (£, n) denotes the coordinates in the curvilinear system. The transfor-

mation Jacobian is given as

& &
Mo Ty |
with the inverse transformation
Jl= g Ty
Ye Uy

The Jacobian may also be expressed as

_ Cofactor( J ™)

J 7T

where
Jt= [ J'1| = TelYn — Tnle,

which results in the metric coefficients
Ye Le

T
5:17 = Fl': gy = —Ti?'fa Ne = _3___1: Ty = T_’I

Applying the chain-rule of differentiation, after some manipulations the gov-
erning equations (2.15) and (2.16) are formulated in strong conservative form

as follows

[J_%T*F2Qmﬂh—-(%% )£+-(%§7)n

Re o€ on i

o] R P e

] } , (2.17)

(Cl?—q’-b-) + (Czﬁ) + (03%) + (C3a—¢) = J 1y, (2.18)
4 7 4 7

o€ dn on o€
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where

22 g2 z2 + y? Ynle + Ty
Ccl = ’?J_l??, 022%_1_5.’ 03:_£‘5—J_1—’7—5. (2.19)

The streamfunction is now defined as

p o
oy, L =-U°, 2.20
where superscript ¢ denotes contra-variant components
U=y U -2,V , Vo=-—ylU+aV . (2:21)

For later use it should be stresses that the convective terms of eq.(2.17}) of
course can be written as

The reason wy the formulation eq.(2.17) typically is preferred is that the ve-
locity to some extend is a redundant variable for the vorticity-streamfunction
formulation of the Navier-Stokes equations.

An important feature of the vorticity-streamfunction formulation is that
it maintains it basic formulation if one considers a fixed or an arbitrary
moving coordinate system. This is easily recognized by considering eq.(2.17),
from which it is seen that the only difference between a fixed system and an
oscillating one is the angular acceleration term within time derivative of

vorticity.

2.2 Boundary conditions for the v —1 formu-
lation

In the following section boundary conditions for the vorticity-streamfunction
formulation will be outlined. In order to ease the discussion, the description
is done only in an inertial frame of reference. Later, the boundary conditions
in a non-inertial system will be shown.

When considering a description of a flow in terms of vorticity the following
theorem, as stated by Wu and Guleat [63], is very use full
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Theorem 1 The motion of a fluid which fills infinite space and is at rest at
infintty is determined when the values of the vortieity are known at all points
of the space. Simularly, the motion of a fluid which occupies a limited simply
connected region is determined when the values of the vorticity are known at
all points in the region and the values of the normal velocity are known at all
points of the region’s boundary. In the case of a multiply connected region,
the values of the circulation in the several circuits of the region must also be
known.

This theorem ! is expressed mathematically by
VxU=7, v-U=0. (2.23)

The equivalence of eq.(2.23) in terms of the streamfunction for a 2-dimensional

flow situation is
Vi = | . (2.24)

where the specification of the normal velocity at limiting boundaries provide
the streamfunction at these boundaries. As the theorem states, and also
the Poisson equation, the vorticity needs only to be known in the interior of
the calculation domain in order to determine the velocities. When solving
for vorticity by use of the transport equation boundary conditions for v are
typically specified in some sense. These boundary conditions for vorticity
are by this often referred to as extraneous boundary condition. The Poisson
equation for ¢ can provide a velocity field which is not a solution to the
Navier-Stokes equation even though the vorticity field is, if wrong boundary
conditions for 4 are imposed. This means that only one set of boundary
conditions for the Poisson equation will provide a solution to the Navier-
Stokes equations and that the Navier-Stokes equations in terms of v — %
must consist of the transport equation for vorticity and the Poisson equation
for the streamfunction with additional constrains.

Examining the transport equation for vorticity, eq.(2.15), the transport
process consist of convection and diffusion, processes which cannot generate
or destroy vorticity but only redistribute vorticity. Consequently vorticity
is introduced in the fluid domain only at the solid/fluid interface [47] where
the no-slip boundary condition provides a mechanism for the generation or
depletion of vorticity. This form a contrast to the Navier-Stokes equations

IWhen solving the U, V, P formulation of the Navier-Stokes equations circulation also
plays an important role [56].
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in primitive variable form where boundary conditions at solid walls can be

derived from the momentum equations for I and V' and support the concept

of the extraneous boundary condition for vorticity.

The Navier-Stokes equations in primitive variable form can be regarded to
establish conditions which must be full filled for the vorticity-streamfunction
formulation to be complete. The pressure has been removed mathematically
from the momentum equations when defining the v — % formulation but has
to be inherent in Navier-Stokes equations in terms of vorticity. From the
Navier-Stokes equations we can derived the following conditions which must
be satisfied for the solution found by the vorticity-streamfunction formulation

[64]

VxLO)=0, Ax La({0)=-AxVPs , (2.25)
Vip=-V.-L(0), (6—P) =—it- L4 , (2.26)
on/ ,
and op
("5;),4 =—5-LM)a , | (2.27)

where A denotes a solid wall boundary and 7 is the normal vector to this
and 7 is tangential to the solid wall. £(U) is
- U 4 _ = -
LU) = 5 +U-VU —vV-(eVU) . (2.28)
As will be shown below the expression in eq.(2.27) is used as a global con-

strain of the vorticity boundary condition. In the past, as noted by Hafez
[20], many attempts to utilize the vorticity-streamfunction formulation of the

Navier-Stokes equation was done by only regarding the transport equation .

for vorticity and the Poisson equation for the streamfunction and not paying

any attention to eq.(2.27).
Consider a domain O = U AU B, with the interior denoted by I and the

boundaries by A U B, where A is boundaries with a no slip condition and B
is other boundaries limiting O. The time-averaged Navier-Stokes equation
written in terms of vorticity and streamfunction, completed by the no-slip
boundary condition in a general domain, is [49)]

D~ 1 s .
o = R_ev (v} in I, (2.29)
V% = yin O, (2.30)

i4




oy

o = 0 on A, (2.31)
¥ = const on A, (2.32)
P
s =0 mo, (2.33)

Js

where n is the direction normal to the solid wall A and s is the direction
tangential to this. Eq.(2.31) is the no-slip condition and eq.(2.32) is the
demand of no penetration. Eq.(2.33) is, when used along solid walls, actually
a constraint of vorticity ?

— [ev]ds =0 . (2.34)

In the following the utilized boundary conditions will be described and
in order to ease the discussion of the prescribed boundary conditions for
airfoil calculations, boundary conditions in a simple flow configuration will
be presented first.

2.2.1 Boundary conditions in simply connected domains

As an example of a simply connected domain, consider the channel flow
sketched on the figure below

Figure 2.1: Flow through a channel

As A7 equals the flow between two point, the difference in streamfunction
between the upper and lower surface is

h=to= [ (Udy-Vir)=Q , (2.35)

2In appendix A, eq.(2.34) is derived for a laminar flow case.
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where Q is the flow rate through the channel and 7 is the direction tangential
to the wall and y is the direction normal to this. No penetration through
the sides of the channel, (V = 0), demands a constant ¢ along the two
surfaces o and b. Assumptions made for the outlet velocity will provide the
streamfunction by the integral relation eq.(2.35).
The boundary condition for v can be made up by utilizing the definition
of v
v=V?% . (2.36)

As the only boundary condition enforced, (by putting 4 equal to a constant
along a and b}, are the no-penetration condition, the vorticity and stream-
function must be specified in order to assure the no-slip condition. The
vorticity at the boundaries must be specified in a way that full fill the pres-
sure condition eq.(2.33) and the streamfunction must obey /0y = 0 at
solid walls. 2

2.2.2 Boundary conditions in multiply connected do-
mains

In the following boundary conditions for the y — ¢ formulation in multiply
connected regions will be presented. For external flows, such as the ones
around airfoils, the domain is not simply connected and an idealized case of
such a flow is shown in the figure below.

b
/
——
L A

o

Figure 2.2: Flow past a solid body

3Tn [39] the no-slip condition was imposed by applying a second order accurate forward
difference approximation to v, = %;3

1
¢2 = :1' {3¢a +¢3] )
where index 2,3 denotes the two points closest to the boundary a.
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For this flow configuration the solution of the Poisson equation for 7 consist
of the boundary value problem

5, _ [¥s(s) =1s(s) + [, (U - dy — V - dr)
V=g ¥= { 4 = Constant on A } (2.37)
where s is the direction tangential to the outer boundary and sy is an arbi-
trary point located on the outer surface. Assuming known velocities at the
outer boundary, ¥p(s) is known except for the value of ¢¥(s¢). ¥5(s0) — ¥a
equals, (in accordance with eq.(2.35)), the flow rate through a section of the
flow domain emanating from the airfoil and ending at the outer boundary
at sg. In symmetric flow situations this flow rate is normally known but in
a general case f.i. a cambered airfoil or an airfoil with incidence this flow
rate is unknown. By this we can choose either 14 or ¥p(sq) freely but not
both. In this case it becomes necessary to solve the additional integral equa-
tion, eq.{2.33), assuring a continuous pressure distribution along the surface
A. Evaluating the Navier-Stokes equations along the surface A, we get the
following relation for a turbulent flow

——ds - jf 5 lerld (2.38)

where s now is the direction tangential to the airfoil and » is the direction
normal to this. This condition may be looked upon as a "viscous Kutta
condition” in which a vorticity flux is formed on the surface of the airfoil in
order to assure a continuous pressure distribution and constrains the extra-
neous boundary condition for «v. The condition is related to the fact that the
actual value of the streamfunction at the airfoil is not known a priori. Thus
the value of the streamfunction on the airfoil has to be adjusted in order to
satisfy eq.(2.38).

Suppose a solution to the Poisson equation, which satisfy eq.(2.38), is
obtained by solving

Vi = 7 (2.39)
Y = ¥, on A (2.40)
¥ = ¥z on B. (2.41)

Here an overline means values which make the solution satisfy the viscous
Kutta condition eq.(2.38) and will be denoted as the correct values. In ac-
cordance with the discussion concerning eq.(2.37) we are free to choose one
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of the boundary conditions for ¢. By choosing the streamfunction at the
outer boundary B and arbitrary putting the value of ¥4 = 0 a solution ¥,
can be determined from

Vi = 7F . (2.42)
P = 0on A _ (2.43)
¥ = vy on B. (2.44)

This system of equations will in general not satisfy the viscous Kutta condi-
tion, eq.(2.38), even though it is a solution obtained with the correct vorticity
inside the domain. Then it becomes necessary to produce an additional vor-
ticity on the surface of the airfoil. This is accomplished by solving eq.(2.16)
with a zero right-hand side, i.e. V2y+ = 0, subject to the boundary con-
dition, ¥* = v ,, on the surface. Such a solution can be established by a
vorticity distribution on the surface. Inside the domain the solution can not
contain vorticity due to the zero right hands side in the Poisson equation.
Since the relation between the vorticity and the streamfunction is linear in 7
we can regard the difference between the correct solution, 9, and the stream-
function 1, (1 = ¢ — 1), found by solving the Poisson equation with the
correct vorticity but with wrong boundary conditions

V) = V() — V) = 0 (2.45)
ypT = -, on A (2.46)
4t = 0 on B. (2.47)

This system can be normalized by ¥4

Vi) = 0 (2.48)
T = 1lon A (2.49)
t = 0on B, (2.50)

so that the actual solution is determined by superposition
b=t —x-9T, (2.51)

where x is found by the viscous Kutta condition. As the streamfunction
3" can be calculated prior to any time stepping and is common for a given
geometric flow configuration, 17 is called the Base-function.
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A comprehension of the Base-function can be established by re-inventing
it. The velocity field is made up by summing the velocities found from 1, and
¥*. At the outer boundary we demand no change in the net flow through
the domain due to the Base-function providing a constant streamfunction
1%. We arbitrarily fix the value to zero i.e. ¥ = 0 and by this choice
the streamfunction at the outer boundary, g, will never be altered. As
the flow through the outer boundary due to the Base-function is zero and
no penetration is required through the airfoil, (% = Constant), we can
normalize the system and get ¥/j = 1. At the airfoil we must demand the no
slip condition also for the Base-function. Such a flow can be established by
a surface vortex sheet with a vorticity located at the surface evaluated by

= lim f y*rd (2.52)
Such a solution will introduce circulation into the flow and is by this in
accordance with the theorem stated in the beginning of the chapter. If the
boundary cells, (the cells adjacent to the airfoil), are small enough we can
estimate and distribute the vorticity due to the Base-function in these cells.
By distributing v} over the boundary cells we will be able to calculate normal
derivatives of vt and we have established a relationship between the Base-
function and vorticity so the actual value of x can be calculated from

éj{%[ey]dﬁx-%f%[w*]dw& (2.53)

In the next section it will be shown how ~* is calculated.

Introducing additional vorticity in the boundary cells provides a way to
calculate the vorticity at the same time station as the rest of the domain when
considering time intergration of the Navier-Stokes equation. When solving
the transport equation, eq.(2.15), the boundary conditions for -y evaluated at
t = t* is utilized in the time integration. By this the vorticity in the interior
domain is found at ¢ = t¥+! and the vorticity in the boundary cells at ¢t = ¢*.

When evaluating
9 (E,Yk,k+1)

on
with vorticity at different time station it is no longer certain that the viscous
Kutta condition should be satisfied. On the other hands, when adding addi-
tional vorticity to the boundary cells by an amount which make the solution

(2.54)
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satisfying the viscous Kutta condition and the Poisson equation the total
boundary vorticity must be the correct one at t = ¢t*1.

The above derivation of the Base-function is also valid in a rotating frame
of reférence. As will be shown later on the boundary value problem for ¥
has a similar form in the rotating frame of reference. The viscous Kutta
condition, on the other hand, now also contain terms arising from the change
of reference system. In accordance with eq.(2.5) the viscous Kutta condition
is in a non-inertial system rotating around Origo

- %f%[eﬂds—i—x-ﬁ%j{%[ef]dsz

2
jg Fz—gﬂai[xz + 12+ Qrot[Tys — yxs]:| ds , (2.55)
s
where s and n respectively is the direction tangential and normal to A.
Even though the method was never tested the authors idea to utilize
the Base-function in a domain with more than one solid body should be
mentioned. In a domain with N solid bodies, N viscous Kutta conditions
must be satisfied and N Base-functions must be defined. All Base-functions
must guarantee no net inflow through the inflow boundary giving Vh 1N =
0. Requirement of influencing the n'th body boundary conditions only by the
n'th Base-function gives zero streamfunction on all bodies except the n'th,

Vit iy = 0 (2.56)

Vg may = 0 (2.57)
Yl =1 m=n

+ o = o 2.58

Q/)A,m_i,N {?,bj{,m =0 m # n ( )

where 7 is the body in consideration.

2.3 Discretization of the governing equations
and solution procedure

In Figs.(2.3) and {2.4) the computational domain and the boundaries are
sketched. The Cartesian coordinate system is located with its Origo at the
leading edge, the z-direction along the chord of the airfoil, and the y-direction
normal to this. The airfoil is embedded in a C-grid with £-coordinates defin-
ing the airfoil and outer contour of the mesh. The transformation to the
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boundary-fitted mesh is performed such that A{ = Anp =1, with £ € (1, nz]
and 7 € [—1, ny] with ¢, j as the counters in ¢ and 7 directions respectively.

JRRNARS

yl
x1

Figure 2.3: C-grid topology. Uy is the on-coming flow, superscripts I denotes
inertial frame of reference and A,B and D denotes limiting boundaries of the
c-grid. C is an overlapping region

Owing to the C-topology of the grid, the boundaries C; and C; define an
overlapping region between the lower and upper part, respectively, of the grid
behind the airfoil, see Fig.(2.4). Here C) is located at n = —1 with £ € [1, nk]
and C, is located at n = —1 with £ € [nz — nk + 1, nz], where £ = nk and
¢ = nx — nk + 1 define £ = constant grid lines emanating from the trailing
edge. To assure that the variables and their first and second derivatives are
continuous across the common grid line, 7 = 1, periodic boundary conditions
are defined as follows

fi,j-—-2 = fn:.l:+1-—i,j: fnm+1-—i,j~—2 = fi,j: J = 1:' 2 3 (259)

which are to be satisfied for both the streamfunction and the vorticity.

At airfoils or other bodies with discontinuity geometries vorticity is singu-
lar where the boundary is not differential. A staggered topology is utilized,
in order to avoid the singular behavior of v, with 1 located in the cell-vertex
and v located in cell-centers. The transformed equations is discretized by
a Finite-Volume / Finite-Difference method, applying central discretization
for Laplacians and upwinding for convective terms. For the former one the
algebraic form of the discretization can be found in [23].
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Figure 2.4: C-grid topology calculation domain

The upwinding scheme for the convective terms has been formulated in a
classical Finite-Volume way [13] [22]

SO — (ot o) + 0" U ) e~ [ (0)* + 0~ () T, (260)

3%
with " ]U | U IU |
C+ c c __ [+

S 0l R el L all 2.61

g g (2:61)

Index e and w defines east and west faces respectively, where the east face is
positioned at (7 + 1/2) referring to Fig.(2.4) and the indexing for . The cell
face values are found by the MUSCL approximation [22], [65]) for ¢ = U~y

85 = e+ (1= K6~ bia) + {1+ ) (B — 6)

67 = bis = {1+ BB — 8 — 31— W) (G2 — duss) - (262)

All the results shown in this dissertation are calculated with x = —1 giving
a linear reconstruction
3 1 3 1, -
¢ = '2'452' - §¢i—-1 , G = '2‘¢i—1 — 5@'—2 ) (2.63)
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which in case of parallel flow reduced to

és — ¢ = ‘;‘(3@' —4di1 + Pi-2) , (2.64)

resulting in a second order finite-difference scheme [45]. Please notice the
difference from utilizing a classic finite-difference second order upwind scheme
and the cell face method in cells with in- or outflow at two adjacent cell faces.
The former one is unstable and gives rice to wiggles in the solution for non-
stationary airfoil flows.

The MUSCL approximation needs special attention in the cell next to
solid walls for normal derivatives. Here a one sided finite difference, based
on points inside the domain only, must be applied as no information for
points located inside the wall is available.

Boundary conditions for vorticity in cells next to the solid wall is deter-
mined by evaluating eq.(2.18) at the first cell adjacent to the airfoil. Dis-
cretizing eq.(2.18) by a finite-difference method results in the algebraic form

I impape = Cingp (¢i+3/2,3/2 - ¢¢+1/2,3/2) -
Ciaje - (¢i+1/2,3/2 - 7%:—1/2,3/2) + (2.65)
Clajen (¢i+1/2,5/2 - %ﬁz‘+1/2,3/2) ,

where the tangential velocity at the surface is put equal to zero, (index refers
to grid points).

At the wall, the vorticity and its normal derivatives is found by consid-
ering a Taylor series expansion for 4. The first known vorticity is located
in the center of the boundary cells and is denoted by index 1. The Taylor
expansion away from the surface is

074 18%v4

Yy = Ya-+ %Anl + 5 o2 (An1)2
0 152

Yo = Ya-+ -(-%?Ang -+ 5 3;; (An2)2 (266)
2} 162

V3 = Ya+ %Ang + 5 3’3; (An3)2

where the first vanishing term is of fourth order. The Taylor expansion forms
a quadratic system of equations,

Ova 0%va\"
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where M is a matrix containing only geometry of the grid. The solution of
eq.(2.67) contains the magnitude and the derivatives of the surface vorticity
to be used in eq.(2.53). The Taylor series expansion is also utilized for the
Base-function. Assuming 7 to be different from zero in the boundary cells
and zero above, we still full fill V3¢ = 0 in the calculation points next to
the surface and in the rest of the calculation domain. The magnitude of
is found by utilizing eq.(2.66) for ¥. Vorticity is introduced by the Base-
function because the no-slip condition is introduced in the same way as for .
By solving eq.(2.67) for 43 and its derivatives, the last integral in eq.(2.53)
can be evaluated. Finally x can be found as the factor which makes the sum
of the two integral equal to zero and the solution can be updated.

2.3.1 Numerical treatment of the boundary conditions
for airfoil flows

In the general case, the airfoil is assumed to oscillate in pitch about the axis
(z,,0) with an angle of attack given by

a=a-+ Aasin(f - 1), (2.68)

where @ is the mean angle of attack, Ac the amplitude, and f is the frequency
of oscillation non-dimensionalized by U, and ¢. The reduced frequency which
is based on the half-chord is then given by k = 3. The angular velocity is
found by taking the time-derivative of the angle of attack

Qrop =~ =2-k-Aacos(2-k-1t) . (2.69)

(The minus sign is due to the orientation of the coordinate system). The
angular acceleration is given by

Qo = =t = —4-k - Aasin(2-k - 1) . (2.70)

Denoting by superscript I a variable in the inertial frame of reference, we get
the following relations

o =+ Bl 4] 271

UI =0 - Qrot Y, VI =V + Qrat : (J’? - ﬂ']o) » (272)
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v=+ 200 . (2.73)

The relations between -, in an inertial and rotating frame of reference
provides an easy link between boundary conditions in the rotating frame of
reference and in the inertial frame of reference. Even though the governing
equations are solved in the rotating frame of reference, some of the utilized
boundary conditions are established in the inertial reference system and are
then transformed to the rotating frame of reference.

In the non-inertial reference system the airfoil boundary A on Figs.(2.3)
and (2.4), located at n = 1 and € € [nk,nz — nk + 1}, defines a streamline.
Thus, the streamfunction here takes a constant value, ¥4, determined from
the pressure compatibility condition described above.

When establishing boundary condition for ¥ the boundary condition
will first be derived in the inertial coordinate system ,(z’,»’), with the or-
thonormal basis (€1, &), accordingly to Fig.(2.3). In this coordinate system
the streamfunction equals

(2, y") =9'(0,0) - o -y, (2.74)

in the hole domain if the airfoil was not present and the on-coming flow Uy
is parallel to z/. At the outer boundary B the velocity is assumed to be
equal the undisturbed far field value. Assuming far field values along B and
non-dimensionalize Uy, ¥k (2!, %) equals

wé(r{:y!) = —_yI H (275)

when (0, 0) is chosen equal to zero. At each time-station, ¢t = ¢*, the airfoil
has in the inertial coordinate system an incidence relative to the on-coming
flow o from eq.(2.68). The points (x5, yp) in the rotating frame of reference,
with the x-axis along the chord and y-axis normal to that, is expressed in a
local non-inertial coordinate system, (&', )) with basis vectors & parallel to
&l and &, parallel &

Xz = zp-cos(a)+yg- sin(a) (2.76)

Vs = —zp-sin(a)+ys-cos(e) . (2.77)
As the (X,)) coordinate system is rotating with the angular velocity €2,
the streamfunction in this coordinate system is

be = = = (25 - )+ ()7 (2.79)
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where also z, is expressed relatively to (€1, €2).

As the far field velocity is supposed to be ir-rotational, no vorticity at the
inflow boundary in the inertial system reference is present. In the rotating
frame of reference the vorticity equals

B = "'"ZQrot . . (279)

The flow out of the calculation domain through boundary D' and D?
(Figs.(2.3) and (2.4)), are supposed to be dominated only by convection
processes. This is of course only true when the boundaries D' and D? are
located very far downstream of the airfoil. When doing airfoil calculations
the outflow boundary is typically located 12 chord lengths or more away and
expirements with different boundary conditions lead to the conclusion that
the wake normally was disappeared before reaching the outflow boundary.
The applied boundary condition for vorticity is derived from

o1 OUsy  OVEw _

5ot a0 (2.80)

J—l

where the far field values of the velocity is assumed present. Assuming smail
time variations in vorticity and an orientation of the grid lines nearly along
the oncoming flow direction lead to take

dvp _ _
79-1;“_ =0 . (2.81)

A consistent boundary condition for p with the boundary condition for
~vp is to apply far field values also at the outlet in accordance with eq.(2.78).
This boundary condition will at the same time guarantee that no global
violation is done to the mass continuity of the flow.

If the airfoil is not oscillating the reduced frequency, &, is zero and all the
above boundary conditions is still valid. This means that the non-oscillating
airfoil flow can be viewed as a special case of an oscillating airfoil flow.

2.3.2 Solution procedure

The transport equation for v and the Poisson equation for ¢ are solved un-
coupled. In general the algebraic equations resulting from the discretization
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are solved by the Alternating Direction Implicit, ADI, method by Peaceman
and Rachford [44]. In symbolic form the ADI method is ‘

+1 K 1/2 i [k"‘l 2 K :;

where Q can be «y or ¥, L is the operator resulting from the discretization,
superscript k& defines the time station and P is a source term arising from
the cross derivatives due to the coordinate transformation. For the vorticity
transport equation the ADI scheme is second order in time. For the Poisson
equation, where an artificial time dependent term has been added, the opti-
mum time step for a sequence of N consecutive iterations is calculated by a
Wachspress routine [58].

Points located at the intersection line, C at Fig.(2.3), is solved implic-
itly. The matrix arising from L, contains of-diagonal elements destroying
the tri-diagonal structure normally established by central discretization of
Laplacians. A numerical algorithm developed at DTU [1] was utilized to
enable implicit solving for points at the intersection line.

When utilizing the upwind scheme, eq.(2.60), the tri-diagonal structure
are maintained by adding the outer-band elements to the right hand side
of the algebraic system of equations. This will of course reduce the time
accuracy of the ADI scheme when applied to the transport equation for
vorticity but as will be shown in the next chapters, the solution strategy are
still able to calculate rapid time variating flows.

One time step with the algorithm is established by the following proce-
dure. Assume < is known at ¢t = t*. An eddy viscosity is calculated by
one of the turbulence models outlined in the precedent chapter followed by
advancing the transport eq.(2.15) one time step. Then the Poisson equation
eq.(2.16) is solved by the Wachspress algorithm. The viscous Kutta condi-
tion is applied and v is updated, (¥ = ¥ + 1), together with the vorticity
in the boundary cells and the solution is now known at ¢ = t**!. The time
advancing algorithm can be viewed as a predictor-corrector method with the
transport equation for v as the predictor and the Poisson equation plus the
Base function as the corrector.

When a stationary solution is aimed at a measure of how far the solution
is from being stationary or converged is found by consider the following
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convergence criterion

n=ntol n=ntot

,;;1 (,Yk+1 _ ,.Yk) p3} ,Yk+1|
Res = == Al , F= —‘—%t———— (2.84)

where ntot is equal to the total number of point in the computation domain.
A residual constructed in this manner can be thought of as an estimate of the
summation of rate of change of vorticity scaled with a characterize vorticity.
Please notice that eq.(2.84) is not a stringent residual. The most common
way to construct a residual is to evaluate the deviation of the solution from
the system of equation resulting from the discretization of the governing
equation _
Res = L{v) , (2.85)

where L is the discretized operator of the governing equation.

2.4 Variants of the vorticity-streamfunction
formulation

Even though the v — v formulation and the vy — U formulation is rarely
used, the method has been utilized in a variety of flow situations in the past.
Some of the methods will be reviewed in the following sections together with
a single result showing the implementation of a method dealing directly with
the problem concerning boundary values for % in a multiply connected region.

2.4.1 3-Dimensional forms of the vorticity formulation

The extension .from two to three space dimensions for the v — ¢ formulation

is in some way straight forward, (see fi. [12]). By defining a streamfunction

é as a vector with two component different from zero, ¢ = (0,1, 8), and with

the velocity component given by

0 o g 0 :
LRV S (2.86)

U:é?_y’ T 8z 9z’ oy’

¢ will automatically ensure that mass conservation is satisfied. The definition
of vorticity for v, and +y; are rewritten in terms of ¢
o%p 0% %8

T2 T T2 T G2 0102 (287)
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8% 8% 9%

Yy = ay2_—i— 522 + e (288)

The transport equation for vorticity maintain nearly the same form but the
scalar v in 2-dimensions is in 3-dimensions a vector. Solving for «y, and 7,
by integrating the transport equations, 7, can be found by the solenoidal
requirement of vorticity

V:y=0. (2.89)

An alternative to the vorticity streamfunction formulation can be derived
by eliminating v by the velocity and form a set of Poisson equations for the
velocity [53]

Vi =-Vx¥7, (2.90)

by the use of the continuity equation and the definition of vorticity [21]. This
method can of course be used in a 2-dimensional space [48]

2.4.2 2-Dimensional variants of the vorticity stream-
function formulation

The 2-dimensional form are by far the most common one. It has been used in
conjunction with a lot of different flows. Typically the different approaches
varies in the formulation of the boundary condition, especially for the vortic-
ity. A method where the setup of boundary conditions for the streamfunction
strongly based on a potential method to determining the volume flow through
any line connecting boundaries of the flow domain has been implemented by
the author of this dissertation. The idea is to determine the net flow through
an inviscid solution and presume this overall inviscid volume flow equals the
overall viscous volume flow. Assume the velocity field as a superimposing of
an inviscid and viscous flow [46] [57]

[_j = Uviscous + ﬁz’nm’scid : (2-91)
with

5 _ (% H

Oosems = (-5 52) 2.92)

= _ (00 9¢

D;nmsczd - (6.’13, ay) . (293)
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Applying the definition of vorticity and the continuity equation, the velocity
relations are transformed to a Poisson equation

Vi +Vip=17v . (2.94)
This problem can be decoupled into two systems of equations
V= V=0, (2.95)

where the last equation defines the classical potential flow problem. The
formulation, eq.(2.95), looks quite similar to the methods outlined in chapter
2 section (2.2) where the Base-function was introduced, but the difference
is quite clear when the utilized boundary conditions are outlined. As the
net flow is determined totally by the potential flow the difference At fi.
between the inflow boundary and the airfoil equals zero and the viscous
velocity fields only redistribute the inviscid volume flow. By this the viscous
no-slip condition must be reformulated to a slip condition with a tangential
velocity equal the inviscid velocity with opposite sign. This was by the author
considered as the biggest problem with the method as indicated on Fig.(2.5),
where a U-velocity profile at mid-chord of a NACA 0012 airfoil is shown
calculated with the streamfunction-potential method and the Base-function
method. 7

On this figure it is clearly shown that even though the flow in the outer
part of the boundary layer are predicted similar with the two methods, dis-
crepancies occur close to the wall, where the summation of the viscid and
inviscid velocity does not mimic the no-slip condition. Investigations indicate
that the space accuracy are very important when calculating the slip-velocity.
One of the anterior parts of the method is the general applicable to flows with
more than one solid body e.g. an airfoil with flaps. As the volume flow is
determined by the inviscid solution the boundary conditions for ¢ is on every
boundary zero streamfunction. It is the authors opinion that the method is
worth further investigations especially in a lifting case.

A compressible form of the vorticity streamfunction formulation has been
utilized in [20]. In this case the continuity and the definition of the stream-
function yields the following Poisson equation

8 (10v) 8 (189 _
(%) a o) =1 (2:59)

where p is the density. The convective terms in the transport equation for
vorticity contains now the mass flow vector instead of the velocity vector. One
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Figure 2.5: Velocity profiles obtained at mid-chord of a NACA 0012 airfoil
with the streamfunction-potential method and the Base-function method.
Re = 200. a = 0°. u/Uj pot is the potential flow solution and u /U, visc is the
viscous part. u/Uy is the resulting velocity profiles from the superimposing
method and the conventional stream function vorticity method (dotted line).

auxiliary relation is of course needed when the density of the fluid has been
introduced. Normally the last equation is the energy equation or assuming
constant total enthalpy.

By applying the Base-function outlined in chapter 2 section (2.2) we do
not explicitly impose the no-slip condition. In [49] a influence matrix tech-
niques has been used which satisfy both the no-slip condition and the viscous
Kutta condition. The method also utilize a superimposing principle as the
Base-function method but introduce extra vorticity in the hole calculation
domain and introduce as many elementary functions as grid points located
at the solid wall.
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2.5 Aerodynamic forces and boundary layer
parameters

To calculate the aerodynamic forces, the pressure and skin friction are inte-
grated along the surface. The pressure is obtained from

P(s) = P(so) +/ [ rot 2 {(g — zo)2 + 4] + Qrot[(z — To)ys — yTs] | ds

J;e / aa () ds . (2.97)

where P(sg) is the pressure at the front stagnation point of the airfoil. Here
and in the test of this section v wil denote the vorticity corrected by the
Base-function. The vorticity is known at the center of the cell faces so the

integration performed numerically by
P,=P_+GE+1/2) As (2.98)

where G(i+1/2) is the kernel of the integrations in eq.(2.97), is second order
in space. Local quantities for pressure and a viscous surface friction are often
refer to as pressure coefficient C, and skin friction coefficient Cy

P — P TA 2

where superscript ' on P denotes a pressure which is not non-dimensionalized
and 74 is the wall shear stress. Assuming inviscid flow along the front stag-
nation line the pressure coefficient at the stagnation line is accordingly to the
Bernoulli equation equal to 1. By this assumption a level of Cj, is established
and eq.(2.97) can be used to provide Cj, at the remaining part of the airfoil,
with

Cp=1+2-P , (2.100)

where P is determined from eq.(2.97). Also the following non-dimensionalized
global numbers, denoted coefficient of lift, drag and moment, are normally

considered

F E; _ M

—L =t Cp=———, 2.10
0.5- pUpl Ca=755. pUsl 0.5 pUl? (2101)

C =
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where [ is the span length, F; is the total force normal to the free stream
velocity, F; is the total force tangential to the free stream velocity and M is
the moment around a point (zg, yo). These coefficients can be grouped with
respect to pressure and friction

- 2 __ 2 f
Cp, = fP , Ciy= Toel ¥{s) asds (2.102)
- o _ 2 9z
Cop = Eng(s)a—dS, Cdf"—ﬁjg’}’(s) ds  {2.103)
2 Oz Oy
Cro = 3§PO{ -5+ =W )ds (2104

Oz Oy
Cry = Reljgv ( (v - yo)§'+($—f€o)68)d5 (2.105)

where subscript p and f, respectively, represent contributions due to pres-
sure and viscous forces and where the moment is considered positive in the
clockwise direction. When considering oscillating airfoils it is common to
use only forces due pressure and define the normal coefficient, C,,, as the
integration of pressure projected on the chord direction of the airfoil and
the tangential coefficient, C; as the summation of pressure projected on a
direction tangential to the airfoil chord.

Considering boundary layer parameters these are defined for flow past a
flat plate

§ = d where v =0.99 (2.108)
Uy

. = _Z 2.

5 / (1 Uo) By (2.107)

§ = [ 7 (1—50)5@ (2.108)

where d is the normal distance from the wall and ¢ is the boundary layer
thickness. ¢* is the displacement thickness and # is the momentum thickness.
In airfoil flows or other flow situations with curved surfaces these definitions
are no longer valid due to the upper limit in the integration [54]. The author
has used a method dealing with the magnitude of vorticity in order to deter-
mine the extension of the boundary layer. In a flow past a solid body with
a ir-rotational on-coming flow vorticity is only present in the viscous part.
The extension of the viscous part is defined as the boundary layer thickness
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5 and is used as upper limit in eq.(2.107) and (2.108). ¢ is found where the
magnitude of vorticity, measured in a path advancing the boundary layer
from the top, becomes greater than

_ max |y '

Vs = Re s (2109)
where max |v;] is the maximum vorticity at the considered boundary layer
station, £ = 4. This choice is some how arbitrary, but serves as filtering
mechanism for numerical errors such as spreading and generation of vorticity
outside the boundary layer. The velocity used in eq.(2.108) and (2.107) are
the velocity vector U projectet on the tangential direction 7 of the surface.
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Chapter 3

Turbulence modeling

The present chapter describes the various turbulence models utilized in this
dissertation. The used turbulence model are the algebraic turbulence model
by Baldwin & Lomax (BB) [4], the 1-equation models by Baldwin & Barth
(BL) [3] and Spalart & Allmaras (SA) [62] and the 2-equation K —w (KO) [34]
model by Menter. In order to be able to compare the nature of the utilized
turbulence models a short review of turbulence models for aerodynamic flows
will be presented first.

3.1 Short review of turbulence modeling

In the preceding chapter 2 the time averaging process was addressed and the
concept of an eddy-viscosity was introduced. When the time variations in
the mean flow are small, the time averaging process is straight forward and
the mean velocity the U; component is calculated by

to-+AL/2

Ui adt . (3.1)

T At
to—O/2

If the time variations in the mean flow are large a condition on the time
averaging period [26] can be derived

to+AL/2 to-{-’}At/?
(tU—At/2 to+AL/2 _ Uty + At) — Ulto) <1 (3.2)
t°+mﬁ-dt o Ulto + At/2) .

to
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If the above condition can not be satisfied a sample averaging can be utilized

1 =1,n
U, = ~ a, (3.3)

=1

where n is the number of repeat experiments. In computational fluid dynamic
the length of the time averaging process, (At), is some how arbitrary. When
the time averaging process has been carried out on the momentum equations
no sign is left of it. This means on the other hand, that when integrating
in time the time averaged momentum equations a mean velocity will always
be the outcome and the variation of this mean velocity should always be
compared with the global time step utilized in the integration process. A
way to avoid the time averaging process can be the Large Eddy Simulation,
LES, although the basic of the method has been established by another view
point. :

The LES approach is based on a space-averaging instead of a time-
averaging and the time dependent details of the large eddies are calculated
by use of a simple subgrid-scale model. The large eddies are those motion
elements which carry most of the kinetic energy and most of the turbulent
fluxes and the motion is simulated by a time dependent numerical integra-
tion scheme which numerical resolves scales in between a lower limit of order
h given by the grid scale and a upper limit given by the extension of the
computational domain. The details of these large eddies are related to the
dissipation of turbulent kinetic energy where the time scale is the Kolmogorov
time scale which typically is several orders of magnitude lower than the inte-
gration time used in Navier-Stokes calculations. Even though the basis of the
turbulence modeling is totally different in LES and time averaging methods
the Navier-Stokes equations has the same appearance, but the eddy-viscosity
used in a LES methods is related to the volume of the grid cells.

The eddy-viscosity concept goes back to 1877 by the work of Boussinesq
who was the first to introduce

Tz'j = —_’I,Tiﬁ; = Vt% . (34)

3$j

Later Prandt] in 1925 related the eddy-viscosity to a length scale, [, of the
turbulent motion and derivatives of the mean velocity by

aU;

5 (3.5)

Vt=l2
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von Karman postulated a linear relation ship, scaled by the von Karman
constant k, between the length scale [ and the distance, y, from a solid wall
in an attached boundary layer

Iy
F=rs =041, (3.6)

for y/0 < 0.2 where § is the boundary layer thickness. For y/§ > 0.2 | was
assumed constant. van Driest found by measurement that in the laminar
sublayer the variation of [ was not linear but ! ~ % so

I =&y [1 —exp (—y+/A+)] =ryD , (3.7)

where D is the famous van Driest damping function. Similar Kiebanoff found
by experiments that in the outer part of the boundary layer the length scale
[ should go to zero which was introduced by the Klebanoff intermittency

function Fxies

0

The work of Prandtl, von Karman, van Driest and Klebanoff is still the basis
of many eddy-viscosities models and the relations still serves as calibration
tools for new turbulence models based on the eddy-viscosity hypothesis.

The combination of eq.(3.6)-(3.8) is often utilized as a complete turbu-
lence model and the proberly most famous model based on these equations
are the Cebeci-Smith model [8]. It is believed that one of the major short
comings for such a turbulence model is that no transport of a turbulent quan-
tity is present except for the one inherent in the Navier-Stokes equations.

Most of the work in the concept of eddy-viscosity when concerning trans-
port processes for a turbulent quantity is based on the transport equations
for the turbulent kinetic energy K, dissipation of turbulent kinetic energy ¢
and the specific dissipation rate w {43], [33], [36]. In a very general form the
transport equation for K is

oK 0K oU; 0 oK
— +Ui—=njm——e+ — |(v+ownjog) m—| . 3.9
8t | ox; Yo Bz, [( t/0%) axJ (3:9)
where 7;; is the Reynolds stress tensor, o, oy is closure coefficients and ¢ is
the dissipation of turbulent kinetic energy for which a transport equations

can be established

3 O¢ e OU; €2 o) 3
=+ Uja_mj =CagTig, Cag + 3z [(V‘F ov /o) a—%“] - (3.10)

Fiies = {1 +55 (?-) 6} o (3.8)
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A general form of the transport equation for the specific dissipation rate w
is

Ow Ow w  Ou 0 Ow

—a'“t— + MJE:; = a-—IETija—:r; — }6(.02 -+ E’L‘: [(V -+ O'Vt) a] ; (311)
which is basicly the same equation as Kolmogorov postulated in 1942 with
an additional production term.

In the model of U. C. Goldberg [17} the K — € equation are utilized
to establish an algebraic relation ship within a separation bubble for the
eddy-viscosity. Outside the separation bubble typically a Cebeci-Smith or a
Baldwin-Lomax algebraic turbulence model is applied.

In the half-equation model by Johnson & King model [24], a transport
equation for the development in the flow direction of the maximum Reynolds
stress, is made up from the transport equation for turbulent kinetic energy,
K. The term half-equation model is due to the ordinary differential equation
derived.

1-equation models has been and still is a very popular choice. Histori-
cally 1-equation models was based on the transport equation for K and the
prescription of a length scale such that the eddy-viscosity is

w=IWK, (3.12)

where [ is prescribed by an algebraic relation. Other mostly used 1-equation
models are the Spalart-Allmaras and the Baldwin-Barth model. Where the
Spalart-Allmaras model is derived from empiricism and dimensional analysis
the Baldwin-Barth model is derived from combination of the K — ¢ model.
The Baldwin-Barth models is, as derived from the K — e model, basicly a
2-equation model where some terms has been removed in order to have a
1-equation model. The 2-equation Baldwin-Barth model was modified by U.
C. Goldberg [18] to become pointwise, so the distance to the nearest wall did
not appear in the turbulence model.

Typically 2-equation models are grouped into K — ¢ and K —w models
where the eddy-viscosity is

(3.13)

The variety of the models are very large [61] where the biggest variation
are found in the utilized damping functions. Menter has combined the free
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stream independence of the K — ¢ model with the accuracy of the K — w
model in the near wall region.

Beyond the Boussinesq approximation is the second moment closure [62).
These method can be grouped in two where the first approach is to solve an
differential equation for the Reynolds siresses and the other is the algebraic
Reynolds stress models. By solving for the Reynolds stresses normally third
order moment are introduced which must be modeled in some way.

Considering aerodynamic flows transition plays a major role in the com-
putation of maximum lift. Even though some turbulence models persist a
transition model it should never be trusted [52]. Later in this chapter the
transition problem will be addressed.

3.2 The Baldwin-Lomax turbulence model

The Baldwin-Lomax turbulence model is pattern after the Cebeci-Smith
model [8] and is by far the mostly used algebraic turbulence model. It follows
the ideas of Prandtl, von Karman, van Driest and Klebanoff and introduce a
two layer division of the boundary layer named as the inner and outer part
where the eddy-viscosity non-dimensionalized by v is given by

* (V;)inner for ¥ < Yerossover
v) = ) 3.14
( t) { (V:)outer fOI' ) > Yerossover ( )

where y is the normal distance from the wall and Yerossover i the smallest
value of y at which values from the inner and outer formulas are identical.
In the inner region the Prandtl-Van Driest formulation is used

(¥} )inner = Re - 2 |’7’| ) (3.15)
where

[ = ky [1 — 6_y+/A+J ; y+ =/ Re |’Yma:c[ Yo (3-16)

where Yyna, 18 the maximum vorticity in the profile, At = 26 is the van Driest
damping constant and s = 0.4 is von Karman’s constant. For the outer layer
the following relations are proposed

(V] Jouter = Re - Kcigus * CopFrienFwake (3.17)
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where
Fware = Min (ymameaxE CWKymaxszDiff/Fmax) (3.18)

Here Cop = 1.6, Cwx = 0.25 and the Clauser constant Keus = 0.0168.
The quantities Fiax and Ymax are determined from the function

F=yhl[1—e"/4]. | (3.19)

In wakes, the exponential term is set to zero. Fina is the maximum value
of F occurring in the velocity profile and g, is the value of y where this
oceurs.

The quantity Up;sy is the difference between the minimum and maximum
total velocity in the profile

UD’iff = (V Uz +v? max — (V Uz+4Vv? mins (320)

where (VU2 + V2), is taken to be zero except in wakes. In wakes the
position of the wake is said to be at the position of (vU? + V2 )min- The
function Fiies is the Klebanoff intermittency factor given by
61-1
Fries = [1 + 5.5 (Ckied * ¥/ Ymax) ] ; (3.21)
Wi‘bh Cngb = (.3.

The Baldwin-Lomax model is difficult applicable in the wake flow behind
an airfoil. Examining the streamvice change in eddy-viscosity close to the
trailing edge of an airfoil when the models is applied in the basic formulation
a large and rapid change is found. To smooth these large variations, an
intermittency function is used in the near wake region and is given by, [19]

v (8) = vy pr(s) + (1,51 (Ste) — Vs,BL(8)] exp (—3 _Bste) , (3.22)

where s is the distance along constant ¢ lines and B = 8.0 -Re™%2 is a length
scale corresponding to at least 20 times the boundary layer thickness for a
flat plate. In order to decrease the large variations in the eddy-viscosity close
to the trailing edge C, is taken to be Cyi = 1 instead of 0.25 [19] in the
wake. Further more an under relaxation of the eddy-viscosity is used in the
wake in order to stabilize the flow.
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3.3 The Baldwin-Barth turbulence model

The Baldwin-Barth turbulence model was one of the first 1-equation turbu-
lence models where no out coming information was needed for a length scale.
‘The model is derived from the K — e turbulence model by considering an

equation for
DR; 2R,DK R;De

Dt K Dt €Dt (3.23)

where %
Ri=— , (3.24)

Ve

is the turbulent Reynolds number. As the model is derived from the X — ¢
model steep gradient close to the wall will be transmitted to the model.
Different function is defined in order to make the variation of R, linear in the
near wall region. The transport equation for R; is

D(R) _ B 1 ( u_,,) R,
Dt (Cerfo Ca) RtP+Re 1+2cre dz;0z; (3.25)
1 9 [ ,0R
" Reo, 0z; (yt 39:,—) ’ (3.26)
and
V: = O“RtD:[Dg . (327)

P is the production term, Ce1, Ce, C,, and o, are closure constants and fs is
a damping function. All variables are put in non-dimensional form by use of
the free stream velocity Uy and the chord length of the airfoil ¢. The utilized
closure constants are given in table (3.1).The functions D; and D, are van
Driest damping functions given as

Dy = 1-exp(—y*/Af)
Dy = 1-—exp(—y*/A). (3.28)

P is a production term given as

ov;  oU;\ aU;
= ) .2
P " (32?3 + 61?1) axj (3 9)
The function f; is given by
f(y*) = Gt (1-%2) (E + DiDa)
-(\/_D1D2+ L [Dz(j;m + Dﬁ;’z)D . (330)

41




& Cel Ce2 O.t-% Ai!— A.-?F
041 (1.2 20| 0.09: 26 | 10

Table 3.1: Utilized elosure constant for the Baldwin-Barth turbulence model.

The turbulence model, eq.(3.26), has been discretized by the same proce-
dure as the transport equation for vorticity with a first order accurate upwind
scheme for the convective terms and the production term treated explicitly as
a source term. The algebraic equations are solved by the same ADI routine
as the used for the transport equation for vorticity.

The model has some numerical stability problems, (as also pointed out by
Baldwin and Barth). When discretizing the transport equation, eq.(3.26), it
is not automatically satisfied that our finite difference approximation of the
terms

_.%._(14_2_”;) "Ry 1 9 (y*aRt) . - (3.31)

Re oo/ 01;0%; B Reaea—xi t Oz;

guarantees a diagonal matrix with negative diagonal entries and positive off-
diagonal entries. This is only satisfied when 1} varies by only a factor of 3
from one mesh point to another. It is found that this problem do occur with
some grid stretching. The problem is rectified by limiting the anti-diffusion
term, (the second term in eq.(3.31)), to 20% of the value predicted by the
model. The regions where this limiting process has to be applied is typically
at cells close to the airfoil and at the top of the boundary layer. The limiting
process normally involves 2 or 3 cells normal to the streamvice direction.

In a later, very rarely used, version of the BB model [5] modification was
introduced to stabilize numerical the model. It is the authors impression that
the numerical benefits of using the latter version on behalf of a less physical
model was small compared to the original version outlined above.

The utilized boundary conditions follows the recommendations of Bald-
win and Barth. At inflow boundaries the turbulence intensity is assumed
to be small and therefore also the eddy-viscosity. By this, the boundary
condition for R, is put equal to 1 which results in an eddy-viscosity lower
than 0.09 times the molecular viscosity. At outflow a Neumann condition is
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applied for R,
dRy
¢
At the surface we require Ry=0. As the variable is located in the center of the
cells a value different from zero must be specified. The model was designed
to behave linearly in the near wall region with

0. (3.32)

K
Ri=—y" 3.33
(A Cp, ( )
so this functional relationship was utilized together with a smoothing func-
tion
1
4

in order to prevent wiggles from forming.

B (Riie1+2 Ry + Ryjpa) i€ [nk,nz —nk] , (3.34)

3.4 The Spalart-Allmaras turbulence model.

The Spalart-Allmaras turbulence is an 1-equation turbulence model similar
to the BB model. This model also utilize a transport equation for a tur-
bulent quantity but contrary the BB models it contains a destruction term
depending implicit of the pressure gradient. The derivation of the SA model
is different from the derivation of the BB model and is partly based on dimen-
sional analysis and empiricism. The SA transport equation for the working
variable V strongly related to the eddy-viscosity is

Dy 1{ 0 oV ayv gV
E- =CnuSY -+ 5_— ':‘5;; ((V + V) 'B?k—) + Cha (TCE};E):I

— Cotfo [%] . (3.35)

where S is a modified vorticity, o, Che, Cy1 are closure constant and f, is a
damping function. All variables are put in non-dimensional form by use of
the free stream velocity Uy and the chord length of the airfoil ¢. By applying
some mathematical transformation the final transport equation in z, y-space
for V*=V/vis

Dy~ IC1 1 v\ ? 1+Cp[ 8 (., 8V
Dt = CusV [EJ_ECHJIM (?) * ocRe |0z v Oz,
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B 1— Cpy* *V*
' ocRe Oxi0z;

(3.36)

with the eddy-viscosity, (non-dimensionalized by the kinematic viscosity),

v*3

T Oh (8:37)

Vt* = V*fula V= V/V, f'vl =

and

c V*
S [5) =171+ et (3.35)
The Spalart-Allmaras model utilize the following closure constants given in

table (3.4) and auxiliary relations

V* 1+, 1°
o=l — ———  fu= Y , 3.39
Ju 1+ V*fu Jo=9 [96 + 6%3] (8:39)
and
g=r+Cu(r®—r), r Y v (3.40)

TSk |y #fPRe+ Vi fn

Coyi | Cww |[Cun| © Copi . |Cuz | Cus| &
0.1355 | 0.622 | 7.1 [2/3 [ Sy + %2103 | 2 |04l

Table 3.2: Utilized constants for the Spalart-Allmaras turbulence model

The Spalart-Allmaras turbulence model is discretized and solved in the
same manner as the Baldwin-Barth turbulence model and with the same
outflow boundary condition. At inflow Spalart-Allmaras recommend a value
close to zero and zero if the solving procedure does not produce negative
eddy viscosities. In the present implementation V* =1 1010 was utilized.
Similar to the Baldwin-Barth model, this model also require specification of
the value in the cell next to the airfoil. This is done by following the model

approach

V' =ryT, (3.41)
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and applying the smoothing algortithm eq.(3.34) V* for as utilized for the
BB model. The production term was treated implicitly toghether with the
destruction term in order to further stabilize the numerical integration and
enhance the time step.

The argument r introduced in the f, function acting on the destruction
term is numerically very unstable in the present implementation. The func-
tion f,o is designet to make S equal to 1/xy* all the way to the wall and not
only in a log layer. If small wiggles is introduced some how in r the wiggles
will be transmitted to the destruction term. As the destruction term plays a
dominant role it will have a large impact on the solution and next time the
r argument is calculated an amplification of the wiggles will occur. It was
found that the best way to avoid wiggles from forming was a combination of
a small time step and a smoothing of r along a boundary layer station by

1 .
;= i . (Tj_1 +2- T+ Tj+l) 7€ [21 ny - 1] : (342)

3.5 The K-w / K-€¢ turbulence model

In this section the K — w turbulence model by Menter will be described.
First the baseline model (BSL) will be described and secondly the shear
stress transport (SST) model. The model consist of transport equations for
the turbulent kinetic energy K and the dissipation time scale w. The Menter
model is blending the K —w model of Wilcox [60], [61] with a standard K —¢
model. By doing so the free stream independence of the K — ¢ model are
combined with the near-wall accuracy of the K — w model.

3.5.1 The K-w-BSL turbulence model

The governing transport equation for K is

DK oU; 1 4 ~OK .
D Tija_xj + EEE [(1 + O'kvt)a:cj] BwK (3.43)

where o, and 3 are closure constants. The transport equation for w is

Dw_rﬁjan 1 ¢ ® &u 2
Dt "y 8z; Redz; l(l_}_awyt)aa:j} pe
20, 0K ow



where o, I’ and (3 is closure constants. w has been non-dimensionalized by
Us/c, K by UZ, U by Uy and z; by the chord length ¢. F is the blending
function which make the formulation equal to the K — w in the inner part
of the boundary layer and equal to the K — ¢ model in the outer part of the
boundary layer. Fy equals 1 at the wall and gradually goes to zero in the
middle of the boundary layer. The eddy-viscosity is given by

K

The closure constant utilized in the K — w-BSL models are listed in table
(3.3) where the blending of the different constants are defined by

¢=F¢+(1—-F)p . (3.46)

 |ox| ou B g & T
set 11051 0.5 |0.0750 | 0.09 | 041 | B/F — o2/ /B
5ot 3 1.0 | 0.856 | 0.0828 | 0.00 | 0.41 | B/F — o2/ A/ B

Table 3.3: Utilized closure constants in the K — w turbulence model.

The production term for K, F, is

" gy dx; ' Oz;) 3 dz;

which by use of the continuity equation for incompressibe flow reduces to

00 _ g [, (AU, (VNP (OUN (VYT UV
YOx;  Re oz dy ) dy oz oy 0z |~
- (3.48)
Similar the production term for w, F,, is
7 OU; aU\? av\2 (oU\® [ev\® _dUoV
i Rt ) I il i el v YU (3.
v Bz, (3:1:) 205 ) T\5) &) Tees | O
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The blending function is defined as

args = min | mazx VK . 500 | doupK (3.50}
T 0.09wy ’ y2wRe| ' CDguy?/’ ‘
CDy, = mazx (QJM}_a_KB_w; 10—20) ,
w 0z; 0z,

F, = tanh(arg?) .

where o, is o, from set 2 in table (3.3).
Boundary conditions for w is normally derived from the functional relation

ship

6

where ) is 8 from set 1 in table (3.3). By applying this relation ship at a
boundary point above the surface a numerical error of around 33% for first
derivatives and 78% for second derivatives will be produced if the derivatives
are discretized by central approximations [62]. ! This motivate for a cell ver-
tex centered discretization scheme where the boundary condition of Menter

[35]

60

:m 3 KAZU ’ (352)

g
can be applied. (y; is the normal distance from the wall to the first calculation
point). This mean that the X —w model is solved, in contrary to the BB and
SA models, in grid points. The discretization is basicly the same as the one
used for the BB and SA models applied to cell vertexes. The ADI scheme is
also utilized for solving the algebraic equations. In both transport equations
the destruction terms are treated implicitly and production terms is treated
explicitly together with the cross-derivatives in the w equation. First order
upwind was utilzed for the convective terms. At inflow boundaries the values
of K and w are taken equal to

*
Vt,BwB
Re

1The numerical error is defined as the deviation from the analytical solution and the
actual solution found by the numerical solution.

wp=5, yfp=10", Kp= (3.53)
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A limitation of the produktion term for K as proposed by Menter has
been implemented. The limiter is constructed as

where Dj is the dissipation. As Menter claims this limiter prevent wiggles
from forming in the shear-strain tensor and prevent unphysical buildup of
eddy-viscosity in the stagnation region without affecting the gross flow.

3.5.2 The K-w-SST turbulence model

The Shear-Stress Transport (SST) model is basicly the same model as the
above described K — w-BSL model with an additional limiter that acts on
the eddy-viscosity in the outer part of the boundary layer. The model has
some similarity with the Johnson-King model [24] and attempts to account
for the important effect of the transport of the pricipal turbulent shear-stress

Dr Ot or
. — .55
Dt~ ot T Vs (3:55)
where 7 = —p@v. The limiter is based on the Bradshaw’s assumptions,
r=pan K | (3.56)

with @, being a constant. The modified eddy-viscosity is then given by

OllK
maz (a1w; YF2)

Re , (3.57)

U =

where

0.09wy’ y*wRe

VK 500 ) | (358)

Fy = tanh (arg%) ,  args = mac (2

with a; = 0.31. The constants in the transport equation remains unchanged
except for oy, which changes to 0.85 instead of 0.5

3.6 Transtion

Following the discussion in chapter 1, the process where a flow undergo
transtion to a turbulent flow is rarely seen as a sharp interface between:
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the two states of the flow. Numerical the transition process is devided into
two related problems. First, the onset point where the first turbulent flow is
present and second the distance where the flow is part-time turbulent before
becoming fully turbulent known as the transition length.

Several calculation methods for determining the point of transition has
been suggested in the past. These methods can be grouped in methods based
only on experimental and analytical methods with inherent empiricism [41]
[7]. A very good ingeneering approach, based on experiments, is the Michel
criterion, [38] which is valid only for attached flow. In the Michel criterium
comparison are made between respectively the Reynolds number based on &
and a distance 5. The onset of transtion is assumed located where

Regsr ~ 2.9ReYy, (3.59)
with g 5
Reg = @ , Re, = USi)S . (3.60)

Us(8) is the total velocity at the boundary layer edge projected on the di-
rection tangential to the airfoil s. s is a distance measured along the profile
starting from the front stagnation point and 8 is calcualted by the method
outlined in chapter 2 section (2.5). The transition point is calculated at every
time-station by evaluating Rey and Re; along the airfoil starting from the
front stagnation point.

Very little information is in general avaible for the length of the transition
zone. Typically the intermittency is simulated by lowering the eddy-viscosity
from values predicted by the utilized turbulence model with a intermittency
factor [9), [32]. When calculating airfoil flows it is common to make the
extension of the intermittency zone long enough to provide a smooth solution
when the turbulence models are turned on. This will of course make the
transition process very sensitive to the used Navier-Stokes solver. Different
strategies has been applied to the turbulence models outlined in the sections
above.

For the algebraic turbulence model, BL, the eddy-viscosity is put to zero
in regions where flow is considered laminar. A smooth transtion is simulated
by the intermittens function [19],

1£(6) = Hanle) - |1 - ezn (22 ) (3.61)
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where s is a distance measured along the surface of the airfoil, Si is the
assumed position for transition and As is the length of the boundary cell at
s;. The parameter g is taken equal to 0.36 and the actual value of n- As is
chosen to give a smooth transition over 2-3 cells in the streamvice direction.

For the Spalart-Allmaras and Baldwin-Barth turbulence models only the
convetive part of the transport equations is maintained in laminar regions.
For the K — w model only the production and destruction terms are put
to zero in laminar flows in order to achieve a smooth transtition. For all
transport models a smoothing was applied when introducing the viscous and
production and destruction terms into the equations in turbulent flow situa-
tions. A linear smoothing was applied

. 8§ — Sy
=F- 3.62
Fop= Fomin (1,522) (362)

where F can be any terms of production, destruction or viscous.

3.7 Turbulence models applied in non-inertial
systems

The turbulence models outlined above is of course also applicable in a non-
inertial coordinate system as this is only a practical way of solving the Navier-
Stokes equation in case of a moving solid body. On the other hand care should
be taken when evaluating quantities involving vorticity. As shown chapter 2
vorticity is not invariant to the choise of reference system and eddy-viscosity
is not alowed to be generated just because of another choise of reference
system. The inner eddy-viscosity calculated by the Baldwin-Lomax model

(V:)irmer = Re - l2|’yf| ) (363)

has to be applied only in the inertial coordinate system of reference. Other
wise additional eddy-viscosity would be introduced by an amount propor-
tional with 20,.;. The equatity y* used in damping function must also be
based on |v}| in order to be consistent. Considering the strain rate tensor
S;;, which is used in production terms, it can easily be shown, by direct
calculation, to be invariant to the choise of reference system. When solving
transport equations for a turbulent quantity, in a non-inertial coordinate sys-
tem the relative velocities and the vorticity in the inertial system are applied.
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Chapter 4

Turbulent flow past a flat plate

A flow past a flat plate is a simple test case for a turbulent Navier-Stokes
calculation if the transition from laminar to turbulent flow is left out of
account. In the simplest form only a mild pressure gradient exist in the
direction along the plate and no steep gradients are present in the flow.
A large knowledge is also available through measurement and it is widely
believed that the velocity profile follows an universal law, known as the log-
law or the law of the wall. All the implemented turbulence models are based
on the assumption of the existence of such log layer limited by a laminar
sub-layer below and a outer region on top. Constants in turbulence models
are typical tuned by require the velocity to obey the law of the wall

1
ut = =In(yT)+B x=041 B=50 , (4.1)

K
for y* greater than some value typical around 15. (The integration constant
B can normally not be enforced the turbulence models). In the laminar sub-
layer below the log-layer the velocity is supposed to follow the functional

relation ship
ut =yt . (4.2)

As turbulence models typical are made up by assuming eq.(4.1) and eq.(4.2),
it is crucial to test an implementation of a turbulence model for a flow where
such a velocity distribution should present. If we consider a flow with no or
mild pressure gradient along a flat plate it is known that the velocity should
follow eq.(4.1) and eq.(4.2) if the Reynolds number based on momentum
thickness, Rey, is greater than 670, [51].
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4.1 Numerical setup

Even though the present code is able to calculate flow past a flat plate with
zero thickness another variant of the flat plate calculation has been performed
in this case. As the code is developed to handle a c-grid topology used for
airfoil flows a c-grid is wrapped around a plate with finite thickness. The
leading edge is described by a semi circle and the trailing edge is made by
collapsing the two last point of the plate into a single point. This geometry
is shown below

/ 4

0.3

03 (" f0.002 0

-

Figure 4.1: C-grid wrapped around a flat plate. The thickness of the plate
has been drawn in another scale. '

Another important aspect can be tested by this geometry namely sym-
metry of the flow solver. It is the authors believe that if the solver calculate
a symmetric solution no implementation errors has been made concerning
indexing and the solution algorithm used for solving across the wake can
strongly be relied upon in this manner. A requirement is of course that a
symmetric solution exist. The Base-function can also be tested in this case
as it is known that the Base-function should not be active for this case with
zero incidence.

Boundary conditions outlined in chapter 2 section (2.3.1) are utilized at
the far-field and inflow boundaries. At outflow boundary inviscid convection
of vorticity is applied together with a Neumann condition for the stream-
function ” '

3¢ ={. (4.3)
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The outflow condition for v, eq.(4.3), assumes flow parallel to the on-coming
flow and is necessary because the outflow boundary is located in a short
distance from the trailing edge. By applying far field boundary conditions
it is guaranteed that no flow can cross the extremities of the calculation
domain, except at the outlet boundary. This is similar to a channel flow
with the outer most grid line located in the line of symmetry. In order not to
have the flow influenced by a strong pressure gradient the far field boundary
is located in a safe distance from the wall.

4.2 Results for flow past a flat plate with fi-
nite thickness

In the following results for the geometry described in the section above will be
shown. Results will be given in form of velocity plots in wall coordinates and
skin friction distribution for a flow with a Reynolds number equal 2 million.
The flow has been calculated on different grids where the height of the cell
next to the wall was decreased together with increasing the total number of
grid points until virtually no changes was observed. The final grid consist
of (nz,ny,nk) = (173,85,13) with a height of the cell next to the wall of
2-107%. The total grid together with a zoom of the leading edge is shown
on Figi(4.2).— o - T

As the flow configuration is quite sirnilar to an airfoil calculation the con-
vergence history shown in Fig.(4.3) is representative for the Navier-Stokes
solver when applied to airfoil flows. The code has been running until the
residual was decreased to 10710, (see chapter 2 section (2.3.2) for the defi-
nition of the residual). The convergence of the Navier-Stokes solver applied
with the various turbulence models are similar except for the Baldwin-Barth
model when comparing the non-dimensionalized time spend to achieve con-
vergence. When measurering the actual cpu time spend greater deviations
occurs. In table (4.1) the utilized time step is shown together with the
measured time consumption per iteration and the total number of iteration
needed. At is the time step. 4t is cpu time consumption per time step
measured over 5000 iterations. N. of iter. is the total number of iteration
needed for the calculation. CPU is the total cpu time spend without pre-
and post-processing. (The utilized computer was an IBM RISC 6000, model
591).
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| BL | BB | SA | K —wBSL| K —wSST
At-10° | 2.47 | 2.25 | 2.25 2.70 2.70
5t [s/i] | 0.808 | 0.983 | 1.052 | 1.088 1.162
N. of iter. | 8956 | 11038 | 8925 7004 7371
CPU [s] | 7237 | 10850 | 9389 7718 8565

Table 4.1: Statistics for the various turbulence models when applied to a flat
plate calculation.

The results shown in table (4.1) reveals some very interresting general
features for the utilized turbulence models. Even though the 2-equations
turbulence models solves twice as many equations as the l-equation models
they are less expensive concerning cpu time. One explanation for the low
time consumption is the higher available time-step. The time-step used for
the calculations are the largest possible in order to get a converged solu-
tion. The ratio between the used time step for the turbulence models are
common also for airfoil calculations. In general it is difficult to settle if it is
+he turbulence model that makes the solver stiff or the underlying Navier-
Stokes solver because both has limitations of the time-step and the problem
is strongly coupled so the solver must be regarded as such. On the other
hand, the number of floating point operations for different turbulence mod-

els can be compared. In general the algebraic and one-equation turbulence
model requires calculation of damping function based on square roots and
power terms which are quite expensive in terms of floating point operations.
The K — w model is distinguished by presence of only one square root term
and otherwise squared terms.

The symmetry of the flow has been evaluated by considering the value
of the streamfunction at the plate when the residual was decreased to 1019,
Tt is known that the correct value of 9wan equals 0. If the solver does not
calculate a symmetric flow lift will be generated forcing Ywou to 2 value away
from zero by the requirement of a unique pressure on surface of the plate.
The calculated values of % are listed in table (4.2). As the table indicate the
flow must be considered as symmetric.

On Fig.(4.4) velocity profiles are depicted in wall coordinates. Compar-
isons are made with eqgs.(4.1) and (4.2), (intersection is set at y* = 11.6).
As one can observe the models can be grouped in two. The BL and the BB
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BL BB SA K — w-BSL | K — w-SST
Vwar | —2.6-107%15.9-100° | —24.107° [ —25-1079 | —1.8-107°

Table 4.2: Wall streamfunction values, ¥4, for a converged solution of a low
past a flat plate

models both predicts a strong wake at the outer part of the boundary layer
and a good agreement with the log-law in major parts of the boundary layer.
The SA and the K — w models predicts a mild wake and a sooner deviation
from the log-law.

Skin friction distributions for the different turbulence models is depicted
at Fig.(4.5) where also

C; = 0.0576Re;%? | (4.4)

valid for Re, < 107 is plotted, (From [2]). Commen for all the models are
a drop in skin friction close to the initiation of the plate and the wiggles in
the trailing edge region. All models except the SA model produces similar
skin friction distributions which not agree especially good with eq.(4.4) in
the leading edge region, properly due to the influence of the rounded leading
edge. The wiggles observed at the trailing edge is common for the utilized
code and is due to the singular behavior of the vorticity at the trailing edge
which can be felt some distance away. A poor discretization in this region
will amplify this effect. Finally the value of § and Res was considered and
the values are shown in table (4.3) together with reference values,

6
— =037 Re;%? Rey=0.0142- Ref/7 | (4.5)

valid for Re, < 107 {59].

As table (4.3) indicate quite large variation are found in Rey and § but these
was expected when comparing the velocity in the outer part of the boundary
layer shown on Figs(4.4).

4.3 Summary

The BL, BB, SA, and K —w turbulence models has been used for calculating
flow past a flat plate. It was found that all models predicts a velocity distri-
bution in good agreement with the law of the wall and the final solution is
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. BL | BB | SA | K —w-BSL | K — w-SST | Eq.(4.5)
6-100 | 2.54 | 1.75 | 2.11 2.25 1.97 2.03
Rey | 3419 | 3252 | 3226 3443 3325 3574

Table 4.3: Boundary layer thickness and Rey for a flat plate calculation. The
values are found at z/c = 0.95.

symmetric. Comparing skin friction with an empirical relation showed good
agreement mainly in the trailing edge region. The skin friction obtained with
the SA model deviate slightly from the other models. Comparing the cpu
time consumption needed for getting a converged solution showed that the
BL and the K — w models was less expensive to use than the two 1-equation

models BB and SA.
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Figure 4.2: C-grid wrapped around a flat plate.
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Figure 4.3: Convergence history for a flow past a flat plate with rounded
leading edge. The flow is calculated with the turbulence models outlied in
chapter 3 and with a Reynolds number of 2 million.
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Figure 4.4: Mean velocity profile calculated with the turbulence models out-
lied in chapter 3 on a plate with rounded leading edge. The flow is calculated
with a Reynolds number of 2 million. The velocity profiles is taken at position
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Figure 4.5: Skin friction distribution calculated with the turbulence models
outlied in chapter 3 on a flat plate with rounded leading edge. The flow is
calculated with a Reynolds number of 2 million.
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Chapter 5

Laminar flow past airfoils

Onmne of the purposes with the Navier-Stokes code described in the previous
chapters was to develop a solver capable of calculating time varying flows.
The implementation of the turbulence models described in chapter 3 is con-
sidered as an extension to the developed laminar Navier-Stokes solver and it
is by this crucial to validate the laminar part of the solver. Three laminar
flow situations has been examined, a stationary flow past a NACA 0012 air-
foil at low incidence and low Reynolds number, an impulsive start of a NACA
0012 airfoil at low Reynolds number and high incidence, and an oscillating
NACA 0012 airfoil at low Reynolds number and moderate incidence.

Visualization taken from the literature are compared with calculated in-
stantaneous streamlines. The visualizations are carried out by photograph of
particle trajectories as in unsteady flow near the surface of an airfoil represent
neither streamlines nor streaklines. On the other hand, if the exposure time
is short enough the traces will coincide nearly with instantaneous stream-
lines. In the flow situations shown here, where such a good agreement is
found between visualizations and computations this minor discrepancies was
ignored.

Oscillatory airfoil flow effects, known as dynamical stall effects, will be
addressed when it is appropriate. In a later chapter dynamical stall effects
will be discussed in details.
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5.1 Laminar stationary flow past a NACA
0012 airfoil

In order to validate the laminar flow solver a comparison is carried out with
results obtained with a Navier-Stokes solver in primitive variable form devel-
oped by N. N. Sgrensen [50]. The primitive variable solver, called EllipSys2D,
has in many cases provided accurate airfoil data in laminar and turbulent
flow situations. The results presented in this content with EllipSys2D has
kindly been produced by assistant professor M. Hansen, Technical University
of Denmark.

The flow situation to be studied consist of a flow past a NACA 0012
airfoil with an incidence of 3°. The Reynolds number was taken equal to
1000 and the grid consist of 337 grid points around the airfoil and wake with
49 points in the wake. In the direction normal to the airfoil surface 49 points
was distributed with a cell height of the first cell next to the airfoil of 1-1072.
The relative low incidence was chosen for the flow to be stationary but still
high enough for the airfoil to produce an appreciable lift necessary for the
testing of the Base-function.

On Fig.(5.1) the pressure and skin friction distribution on upper and lower
surface of the airfoil are shown. As shown on these two figures virtually equal
skin friction distribution was predicted with the two Navier-Stokes solvers,
whereas deviations occur mainly in the leading edge region for the pressure
distribution. Closely inspection of the skin friction distribution predicted by
the two Navier-Stokes solvers prevail small differences in the peak values close
to the leading edge. As the pressure in the -1 formulation is calculated by
the derivatives of v at the wall, a deviation will be expected in the pressure
when the surface distribution of vorticity not is identical for the two Navier-
Stokes solvers. As the two different Navier-Stokes solvers predicts similar
restilts in this case and EllipSys2D is widely tested and a good accordance
with experiment normally is found it is believed that the present y — Y
formulation also is able to produce reliable results, at least in this case.

5.2 Impulsive start of a NACA 0012 airfoil

In this section an impulsive start of a NACA 0012 airfoil will be considered.
The Reynolds number is 1000 and the angle of attack is 34°. The flow is
calculated on a grid with the dimension of 225 grid points in the direction
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Figure 5.1: Pressure and skin friction distribution for laminar flow past a
NACA 0012 airfoil with an angle of attack o = 3°. The flow was calculated
by utilizing a primitive variable and a v — v formulation of the Navier-Stokes
equations.

around the airfoil, 33 grid points in the wake and 91 grid points in the normal
direction. The height of the cell next to the airfoil was taken equal to 1073
and the applied time step was At = 1072, The grid was extended 12 chord
lengths away in all directions.

At t = 0 the flow was at rest. For ¢ greater than zero the flow development
is depicted on Figs.(5.4) to (5.13). The development of Cf, is depicted in
Fig.(5.3). The figures showing instantaneous streamlines are compared with
visualizations reported in {11]. Later when referring to structures in the flow
this is done by f.i.: ”the leading edge vortex, I on Fig.(5.4),”. Generally an
excellent agreement is found when the calculated flow is compared with the
visualizations.

As the flow evolve from rest at t = 0 to t = 0.4, Fig.(5.4), a separation
bubble, 1, builds up at the leading edge. At the same figure the starting
vortex 0 originating from moving the rear stagnation point to the trailing edge
is convected out into the wake flow. The lift has in the same period dropped
from a very high initial value to a local minimum and as the boundary layer
is developing the lift begins to increase.

As the leading edge separation bubble, 1, grows bigger and moves further
downstream two new separation bubbles, 2 and 3, are formed near the leading
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edge as seen on Fig.(5.5) at ¢ = 1.6. In between the primary leading edge
separation bubble, 1, and the newly created leading edge separation bubble,
3, a counter clock vice rotating bubble, 2, exist. The structures formed by
1,2,3is felt as a thickening of the airfoil which means that the lift is increased
due to the attachment of the flow at the trailing edge. The counter rotating
bubble, 2, and the primary leading edge bubble, 1, is enlarged at ¢ = 2.8
as seen on Fig.(5.6). As the primary leading bubble, 1, is further enlarged
the flow de-attach at the trailing edge and the lift starts to decrease. At the
same time a new counter rotating trailing edge vortex, 4, is formed.

At Fig.(5.7) the trailing edge vortex, 4, has become bigger and a local lift
minimum is formed. The flow situation is quite similar to the flow situation
at ¢ = 2.8 except that the trailing vortex, 4, is bigger in this case.

The vortex pair consisting of 2and 4 begins to merge at t = 3.6 , Fig.(5.8),
and the process is initiated by the growth of the trailing edge vortex, 4. This
merging process together with a convection and diffusion process governs the
movement of the primary leading edge vortex, I, in to the wake as shown
on Fig.(5.8). As the trailing edge vortex, 4, is enlarging the lift is slightly
increased. At ¢ = 4.0 the merging process of 2 and 4 is nearly finished
and the lift decreases slowly. At t = 4.4 a large separation area exist, 4 on
Fig.(5.10), at the trailing edge, an elongated vortex, 3, at the leading edge
and the primary leading edge separation, I, is located in the wake. The lift
is advancing a global lift minimum in the investigated time period at ¢ ~ 4.6.

At £ = 4.8 the trailing edge separation, 4 on Fig.(5.11), has started to
enter the wake flow. As the trailing edge separation is brought out into the
wake, the flow close to the trailing edge is no longer felt as a separation but
more as an attached flow. This flow situation will begin to raise the lift
as seen on Fig.(5.3). A short living vortex, 6 on Fig.(5.11), is formed as a
consequence of the break up of the leading edge bubble, 3 at Fig.(5.10), into
two distinct vortices 3 and 4.

Att = 5.2, Fig.(5.12), the flow situation is similar to the earlier realization
at t = 1.6. Two relatively large separation areas exist, 5 and 3, in the leading
edge and mid-chord regions of the airfoil and the flow is attached in the
trailing edge region. The flow situation at ¢ = 5.2 is said to attached in the
trailing edge region because the center of the vortex now is located behind
the trailing edge. The reattachment process from t = 4.8 to £ = 5.2 rapidly
increase the lift until a local maximum is established at ¢t ~ 5.4. After this
local maximum the vortex, 3, expands and the flow becomes fully separated
at the trailing edge and the lift begins to drop.
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Figure 5.2: Instantaneous streamlines for and oscillating NACA 0012 at an
angle of attack 17.42 |. Left: From [37]. Right: Present calculation.

5.3 Flow past an oscillating NACA 0012 air-
foil

The flow configuration to be studied consist of an NACA 0012 airfoil os-
cillating in pitch, for which visualizations has been carried out by Werle
(37]. Comparisons are made between the visualizations and instantaneous
streamlines in the inertial frame of reference. These comparisons are shown
on Figs.(5.16) to (5.24). On Fig.(5.14) and (5.15) the aerodynamic coeffi-
cients, Cp, C; and C,,, are shown together with a zoom of the applied grid.
The pitching motion of the airfoil was conducted with the center of rotation
located in (zp,y9) = (0.25,0) and with a reduced frequency k = 0.5. The
sinsoidal pitching motion is centered around a mean angle of attack @ = 10°
and amplitude Aa = 10°. The Reynolds number is 5000. The utilized grid
has 312 grid points around the airfoil with 91 grid points in the normal di-
rection and 33 grid points in the wake. The height of the cell next to the
airfoil surface was taken equal to 1.6 - 10~*. In [37] oscillation was initiated
after a stationary solution was found at the lowest incidence and by adopting
the same procedure in the present calculation an eminent agreement is found
between the two different computations as shown on Fig.(5.2).

On Fig.(5.14) the normal lift coefficient, C,, is depicted as a function of
the incidence. As the lift is multi valued, depending on the way the incidence
is reached, the lift curve is often referred to as a hysteresis curve or hysteresis
loop. It is clearly seen that the upstroke lift coefficients are comparable with
static ones, at least when the incidence is low, but not at downstroke where
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the generated lift is not comparable with static ones and greatly exceed
the static lift coefficient in some parts of the hysteresis curve. This is a
distinguished feature of dynamical stall but because the Reynolds number is
low and the flow is laminar the flow situation is normally not classified as
dynamic stall. At least the upstroke part of the hysteresis curve has to some
extend been described by the ” Ericsson’s mowing wall” {40] effect : When the
back of the airfoil is displaced downwards the conventional boundary layer
separation is delayed because of a time lag. This time lag is associated with
the relative high velocity of the wall to the oncoming flow compared to the
time needed to develop the boundary layer.

The flow at downstroke is govern by massive separation which is initiated
at upstroke by formation of a leading edge and trailing edge separation bub-
ble, 1 and 2 on Fig.(5.18). The formation of these two vortices is seen as the
beginning of stall on the lift curve. When the incidence becomes high the
static tendency to develop separation can still be compensated by the high
momentum fluid in the boundary layer so the lift is still maintained at a high
level. As the incidence becomes higher, a = 18.49° 1, the high momentum
fluid at the trailing edge can no longer compensate for the effect of moving
the rear part of the airfoil downwards and separation, 2 on Fig.(5.18), is
initiated at the trailing edge. Even though the flow has started to separate
at the trailing edge the high lift is still present. Further more the time lag
associated with the development of the separation are decreased due to the
lowering of the angular velocity.

Reaching maximum incidence o = 20.00° —, Fig.(5.19), the angular
velocity goes to zero and the trailing edge separation 2 now quickly becomes
Jarger. The leading edge vortex I breaks up into three new vortices 3,4 and
5 which are clearly seen on the visualization. The process is rapid and is
may be related to an accumulation of vorticity in the leading edge region
which suddenly roll up into a vortex. At maximum incidence the flow at
mid-chord of the airfoil is still attached. The flow at the trailing edge is now
fully de-attached and the lift has started to decrease.

At o =17.42° | the flow is entering a situation with a local minimum in
lift. The primary trailing edge separation bubble, 2 on Fig.(5.21), is leaving
the airfoil and the three leading edge vortices, 3,4,5, has enlarged and yet
another small vortex, 6, is formed in the leading edge region.

After the local lift minimum is passed the flow situation at o = 11.39° |,
Fig.(5.22), produces a lift which is higher than the value produced at the
upstroke part of the hysteresis curve. The flow structures is quite organized
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with a sequence of counter and clock vice rotating vortices along the upper
side of the airfoil as seen on Fig.(5.22). The flow is now heading towards a
situation with a local lift maximum.

As the vortices at the upper side of the airfoil are brought downstream by
convection these growth bigger as seen on Fig.(5.23) for @ = 4.72° |. When
the flow passing on top of the vortex, 3 on Fig.(5.23), no longer come close
to the trailing edge, as the vortex moves towards the wake, a lift maximum
is passed and the lift now quickly becomes smaller. This process continues
until the vortex 3 virtually is in the wake and the flow at the trailing edge
begin to re-attache, Fig.(5.23).

From o = 4.72° | and until o ~ 2° | the lift coefficient is similar to the
values at upstroke part. After this the lift suddenly is increased due to a flow
situation where the pattern of the separation, 4,6,7 on Fig.(5.24), is felt as
a thickening of the airfoil due to the attached flow at the trailing edge. The
lift increases until the vortex 4 on Fig.(5.24) begins to leave the airfoil.

5.4 Summary

Comparing pressure and skin friction distribution for a NACA 0012 airfoil
at 3° of incidence and with a Reynolds number equal 1000 obtained by the
present v — 1 formulation of the Navier-Stokes equation and a primitive vari-
able formulation showed small deviations mainly in the leading edge pressure
distribution.

The Navier-Stokes solver has been tested and compared with experiments
for two different types of time varying flows. It was found that both the cal-
culation of the instantaneous start and the oscillating airfoil showed good
agreement when comparing instantaneous streamlines with streaklines ob-
tained experimentally. This conclude that the Navier-Stokes are able to
complte a time varying flow for both a stationary and oscillating airfoil.

Some indication of how flow structures are organized in a separated flow
which exhibits high or low lift was found. It was found that when the flow
was separated and the streamlines limiting the massive separated areas, from
the non-separated outer flow, gets close to the trailing edge of the airfoil a
situation with high lift was encountered. When these streamlines did not get
close to the trailing edge a situation with low lift was encountered. These
features was found in the non-oscillating airfoil low as well in the oscillating
airfoil flow.
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Figure 5.3: Lift coefficient as function of time. The circles indicates positions
for the plots presented in Figs.(5.4) to (5.13).

Figure 5.4: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=0.4.
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Figure 5.5: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=1.6.

Figure 5.6: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=2.8.

Figure 5.7: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=3.2.
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- Figure 5.8: Flow situation for an impulsive start of a NACA 0012 airfoil at

t=3.6.

Figure 5.9: Flow situation for an impulsive start of a NACA 0012 airfoil at

t=4.0

Figure 5.10: Flow situation for an impulsive start of a NACA 0012 airfoil at

t=4.4.
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Figure 5.11: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=4.8.

Figure 5.12: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=5.2.

Figure 5.13: Flow situation for an impulsive start of a NACA 0012 airfoil at
t=5.6.
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Figure 5.14: Normal coefficient, C,, hysteresis curve and .utﬂized grid for an
oscillating NACA 0012 airfoil. Re= 5000, k = 0.5, @ = 10°, Ao = 10°. The
circles indicates positions for the plots presented in Figs.( 5.16) to (5.24).
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Figure 5.15: Tangential coefficient, (Cy), and moment coefficient, (C:), as
function of the angle of attack a.
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Figure 5.18: Flow situation for an oscillating NACA 0012 at o = 18.49° 1.
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Figure 5.21: Flow situation for an oscillating NACA 0012 at o = 17.42° .
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Figure 5.24: Flow situation for an oscillating NACA 0012 at o = 1.84° |..
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Chapter 6

Turbulent flow past a
stationary airfoil

The work presented in this chapter is partly done within the frame work of
ECARP : European Computational Aerodynamics Research Project, Part IT
*Validation of CFD Codes and Assessment of Turbulence Models”.

The present work is focused on calculating flow past an Onera-A airfoil,
see Fig.(6), for which a large number of experimental data are available
through measurement conducted at the F1 and F2 wind tunnels at Onera
in Toulouse, France. The accuracy of measurements is considered lower in
the F2 than in the F1 wind tunnel and the difference is profounded at high
incidences where the stall incidence measured in the two wind tunnels is

considerable different.
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Figure 6.1: Geometry of the Onera-A airfoil
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6.1 General discussion of flow past an Onera-
A airfoil

The Onera-A airfoil is a suitable test case for computational fluid dynamics
as the physics of the flow is well described through thoroughly conducted
measurements. At the same time the flow is not easy calculated because
transition and an interaction between a leading and trailing edge separation
is believed to be present. This may on the other hands leave many open
questions concerning how and where the transition from laminar to turbulent

flow occur.

Within the frame work of ECARP some partners found that the pre-
diction of a trailing edge separation strongly interact with the presence of
a leading edge separation in the computation. If a leading edge separation
was predicted the overall turbulence intensity could be increased, and by this
also the downstream eddy-viscosity, causing the flow to be attached in the
trailing edge region. It is believed that the correct pressure and skin friction
distribution only can be predicted if the separation pattern was captured

correctly.

For all the measurement transition is fixed by transition strips at z/e=
0.3 on the lower side and is free on the upper side. The presence of a leading
edge bubble seams to be the origin of transition for most angles of attack.
Analysis of skin friction measurement [19], leads to take a fixed transition
at z/c = 0.12 at the upper side for all angles of attack. By calculation done
by partners in ECARP, indications was found on that especially at angles of
attack near stall that the transition position moves further upstream. In spite
of that, the transition points was kept fixed at these positions. The reason
for that was the basis of the ECARP-work where the main subject was to
compare turbulence models and not to investigate the transition process. By
this the danger of not knowing the capacity of flow prediction of the applied
turbulence models was introduced, when they was applied with a process
which does not follows the physical transition mechanism.

Many partners within ECARP applied a local time stepping algorithm
for solving the Navier-Stokes equations. The use of a local time step has
no influence on the flow as long as the flow is stationary. As will be shown
later on, by use of a time true solver, the existence of a stationary solution
are questioned at incidences above stall except when the incidence is very
high (o ~ 40°). By partners doing local time step computations this fact
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was reported as non converged solutions and gave in general a very high
lift at incidences above the measured stall incidence. Utilizing a local time
stepping algorithm and the prescription of a transition position that maybe
not in accordance with the real transition positions can make comparisons
of turbulence models very difficult. On the other hand, when all turbulence
models are applied with the same transition points and by only regarding
results below or near the stall incidence at least a judgement of the turbulence
models can be made on this basis and the results can be viewed in light of
the measurement.

All the calculations presented in the following sections was performed on
a grid provided by the ECARP project with every second normal grid line
removed. It consist of 177 grid points around the airfoil and 64 grid points
in the normal direction where the original grid contains of 353 grid points
around the airfoil. The height of the boundary cells was distributed with
small cell heights in the front stagnation region and larger cell heights in the
trailing edge region. Computations showed that y every where was below
2.5 in the boundary cells. The outer boundary was located around 11 chord
length away. On Fig.(6.2} results obtained on the original grid and on the
grid with every second grid line removed are shown.

5.0 T T T T 0.03

—— K-0 58T 353x65 —e— K-0 85T 353465
4.0 px,, — KO SBSTITRES — K-DB5T 17765
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Figure 6.2: Pressure and skin friction (upper surface) coefficient distribution
on the surface of the Onera-A airfoil calculated with the K — w-SST turbu-
lence model on two different grids. The angle of attack equal 13.3° and the
Reynolds number is 2 million. Circles are experimental results from the F1

wind tunnel.
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As shown on Fig.(6.2) only small deviations occur in the solutions ob-
tained on the two different grids and the largest deviations are found in the
skin friction development close to the point of transition. One calculation on
the 353265 grid demanded approximately 9 hours of computation time on
a CRAY-C92A with an overall floating point performance of 382.4 mflops.
The solution of the transport equation for vy used 583.3 mfiops and the trans-
port equations for K and w used 560.8 mflops and the solution of the Poisson
equation for ¢ was done with 473.2 mflops. The very large time consumption
leads to do further calculations only on the grid with 177265 grid points.

The results shown in the following sections are in general considered when
the residual was reduced to 11077 for stationary flow situations. It was
often found that the transition mechanism made further residual reduction
very time consuming and was typically unnecessary when flow properties
not close to the transition point was considered. Flow properties close to the
point of transition exhibited a tendency to fluctuate in time with very small
variations but still large enough to influence the overall residual long time
after the main flow was converged. Only tiny influence from the fluctuations
was found in the global coefficients such as lift and drag. In some cases, f.i.
where an unsteady separation bubble is present, a residual reduction was not
possible and in these cases mean values obtained after the residual reduction

was stagnated are considered.

6.2 Results for the Onera-A airfoil up to in-
cidence equal 17.6°

In this section result obtained with the various turbulence models outlined
in chapter 3 section (3.3.2) to (3.3.5) will be shown for flow past the Onera-A
airfoil with a Reynolds number equal 2 million and incidences equal 10.1°,
13.3° and 17.6°. At the largest incidence measurement taken from the F1
wind tunnel experiments suggest lift stall to occur around o = 17.6° so this
incidence is interesting because stall is typically difficult to capture correctly.
One special incidence, @ = 13.3°, is treated profound and all the results are
shown on Figs.(6.4) to (6.7).

Following the discussions done previously, the Cp distribution and the
C; distribution are strongly linked and should not be treated separately
but basically the pressure distribution found by applying all the turbulence
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models coincidence fairly well with the experimental results. The BL. model
is the one which produce the largest overall C; value after transition, except
at o = 17.6° where wiggles occur. As Fig.(6.5) indicate the BL model needs
a quite aggressive smoothing procedure, (see chapter 3 section (3.3.6)), in
order to have a smooth pressure and skin friction distribution. The 1- and
2-equation turbulence models needs only a linear smoothing over a short
distance, typical 3 to 4 cells, in order to produce a smooth transition.

For @ = 10.1° and 13.3° the predicted pressure distribution is found to
be in good accordance with the measurement as shown on Fig.(6.4) and
Fig.(6.5). The most pronounced difference in the results obtained by the
different turbulence models is found in the results obtained by the BB model.
This model predict a lower skin friction distribution than the other models
and is the only model that computed a noticeable trailing edge separation at
o= 13.3°

The skin friction and pressure distribution at o = 10.1° and 13.3° pro-
duced by the SA and the K — w models is comparable, with the SA model
giving nearly identical results as the K — w-BSL model. It is quite clear that
the limiter introduced in the K — w-SST model gives a lower C; value than
the BSL model and provides a better agreement with the experiments. Gen-
erally it can be observed that when the skin friction is in good agreement
with the experiments greater deviations occur between the measured and
computed C, distribution. Typically all the models tends to underpredict
the C distribution in the transition region. This can be on account of the
smoothing procedure and there might also be a grid-dependence as indicated
on Fig.(6.2). _

In Fig.(6.6) local quantities are shown for a = 13.3° at z/c equal 0.5,
0.86, 0.9 and 0.96 for the U-velocity component and the principal turbulent
shear-stress

Tyy = U0 = -—Ut-a-—q' ) (6.1)

By

along a straight line orthogonal to the surface of the airfoil at the considered
position. Care should be taken when conclusions are drawn because the
measurement of U and 7, was only available from the F2 wind tunnel where
the accuracy is considered lower than in the F1 wind tunnel. On the other
hand the deviation of lift and drag from the two different set of experimental
data are not very large at this incidence so the data from F2 can certainly
be used.
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The C, and C; data are from the F1 wind tunnel and especially the
C; distribution at the trailing edge indicate a smaller separation than the
measured U-velocity distribution. The calculated Cy distribution is reflected
in the calculated 7., distribution by the amount of back flow in the near
wall region. The BB model predict local values fairly well but deviate from
the measured skin friction distribution at the trailing edge. Actually the
BB model is the only model which calculate a separation comparable with
the F2 measurements but the normal extension of the de-attached flow is
slightly underpredicted. The BL model predicts results in lowest agreement
with the experiments for all the compared quantities. The SA model gives
similar results to the ones obtained with the K — w-BSL model and the SST
model is seen as a clear improvement to the BSL model. The K — w-S5T
model calculated a skin friction distribution in very good agreement with
the measured skin friction but the U and 7., distribution deviate from the
measurements.

On Fig.(6.7) the calculated momentum and displacement thickness are
shown. A good agreement between the calculated and measured displace-
ment thickness is found for nearly all the applied turbulence models except
the BL model. Again it is seen that the results obtained with the SA model
are comparable to those obtained by the K — w-BSL model. When compar-
ing the calculated momentum thickness Jarge deviations occur between the
calculations and the measurements for z/c > 0.7 at the upper surface. The
large deviation seem as in dis-order with the calculated velocity profiles at
least for the BB model. Closely inspection of the measured velocities shows
a lower boundary layer thickness than the calculated. As the momentum
thickness is more sensitive to the boundary layer thickness than the displace-
ment thickness due to the squared velocity a large deviation will be expected
when the boundary layer thickness does not correspond to each other.

At o = 17.6° all models predicts leading edge separation as shown on
Fig.(6.5). The BB model predicts a very little leading edge separation and a
large trailing edge separation. The convergence history showed a stagnation
in residual reduction and occurrency of spikes of large residuals. These spikes
of large residuals are believed to originate from the boundary condition for
R, at the airfoil. The flow was only temporary altered due to this instability.
The SA and the K —w-BSL/SST turbulence models predicts a larger leading
edge separation than the BB model but a smaller trailing edge separation.
The results obtained with the BL model is regarded as being in error due to
the wiggles in the leading edge region. The K — w-BSL model calculated a
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nearly steady flow where the unsteadyness originated from a tiny pulsation of
the leading edge separation. The two 1-equation turbulence models predicts
a strong suction peak close the leading edge which makes the lift coefficient
large. The suction peak found by the K — w models coincidence better
with the experiment and the lift coefficient is by this found to be in better
agreement with experiments.

In table (6.2) lift and drag coefficients are listed for the computed flow past
the Onera-A airfoil. By comparing the calculated results with experiments
a general good agreement is found for the results obtained by the K — w-
SST model in the predicted lift with a tendency to under estimate the lift
coefficients for & equal 10.1° and 13.3° and a tendency to over estimate the
lift coefficient for o equal 17.6. In general large variations between measured
and calculated drag coefficients are found. The drag coefficient which is as
important as the lift is in general more difficult to calculate due the large
dependence of the pressure distribution on the drag coefficient.

6.2.1 Transition considerations

The Michel transition criterion was utilized for examining the hypothesis that
the upper transition point was located at z/c = 0.12. In the calculations
the transition point at the lower surface was kept fixed at z/c = 0.3. The
calculations was performed with the K — w-SST model. Three calculations
was performed at incidences equal o = 6°, 8° and 10.1°. For these three
incidences the Michel criterion predicts the upper side fransition point at
the positions shown in the table (6.1).

C; and transition positions
a | z/c | Cinticrer | Croaz | Crr
6.0° | 0.16 0.81 0.80 | 0.88
8.0° | 0.12 1.00 1.00 | 1.09
10.1° | 0.11 1.20 1.21 1.30

Table 6.1: Transition positions predicted at the upper side of the Onera-A
airfoil with the Michel criterion. Subscript Michel indicate values obtained
with the transition position predicted by the Michel criterion, 0.12 indicate
transition at z/c = 012 at the upper surface and F1 is experimental data
from wind tunnel F1.
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The transition points shown in table (6.1) correspond well with the exper-
imental estimated position z/c = 0.12, at least for incidences 8° and 10.1°.
At lower incidences the Michel criterion indicate a transition point located
further downstream. The predicted lift is seen to be virtually independent
of the location of the transition point.

At higher angles of attack no stationary transition point was found with
the Michel criterion due to a part time presence of a leading edge separation
bubble. As the Michel criterion in the beginning of a calculation predicts
a transition point close to the ones at lower incidences a leading edge sep-
aration bubble builds up in front of the transition point. As the leading
edge separation bubble builds up a programmed logic will put the transition
point ahead of the separation bubble *. When the transition point is located
in front of the bubble eddy-viscosity will be produced behind the transition
point and the downstream flow will re-attach. When the separation bubble
no longer is present the Michel criterion will find the same early stage tran-
sition point and the leading edge bubble will appear again. This unsteady
motion will continue through out the calculation.

In the previous section it was postulated that the origin of transition
process was a leading edge separation for most angles of attack. All the
computations performed in this sub-section gives no indication on the pres-
ence of a leading edge separation bubble for incidences lower than 10.1°. On
the other hand the calculation performed on the grid consisting of 353265
grid points shown on Fig.(6.2) indicate a small leading edge separation which
was not captured on the 177z65 grid. If there exist such a grid dependence
also at lower incidences the Michel criterion can not be utilized for the flow
past the Onera-A airfoil but then it must believed that the transition process
originate from the presence of a leading edge bubble.

6.3 Results for the Onera-A airfoil at inci-
dences higher than 17.6°

In this section the BL, BB and the K — w turbulence models will be applied
to an instantaneous start of the Onera-A airfoil. The incidences considered
are 25° and 40° which are incidences where the flow is fully separated.

1The Michel criterion is only valid for attached flow, see chapter 3 section (3.3.6).
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At an incidence of 25.0° the flow is fully separated. The lift history for
the impulsive start of the Onera-A airfoil is depicted on Fig.(6.8). Due to
the facts that none of the models would accepts the high gradients present
in the very beginning of the flow, all the calculation has been initiated by
first invoking the turbulence model after 0.125 dimensionless seconds. In this
flow onset period the lift which initially was very high is decreased to a low
value.

The only model that predicts a stationary flow for o = 25° is the BB
model. The BB, BL and the A — w-SST models predicts the same pattern
in the stall onset phase. All three models computes an increase in lift with
a peak just before onset of stall. After onset of stall the lift drop to a low
value and recovers to a nearly constant value almost equal for all the applied
turbulence models. Closely inspection shows nearly the same peak-valley
pattern for the BL model and K — w-SST model. The result obtained with
K — w-BSL model deviate in the sense that no peak and valley pattern is
observed in the stall onset phase.

At very high incidence, a = 40°, all the utilized transport models gave
nearly identical results as shown on Fig.(6.8). The evolution of C; is sinu-
soidal with a decreasing amplitude ending with a stationary solution after
approximately ¢ = 40. The algebraic BL model gave the same start-up mo-
tion as the transport models but the value of C} continuously oscillate with
a constant frequency and with same amplitude every second period.

Figure 6.3: Flow past an Onera-A airfoil at 40° of incidence calculated with
the K — w-SST (left) and the BB (right) turbulence model.

On Fig.(6.3) the streamlines obtained by applying the BB and the K —w-

SST turbulence models for the flow with the incidence of 40° are shown.
As the figure indicate only limited variations are found in the flow. It is
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interesting to observe that the flow at high incidence is nearly independent
of the utilized turbulence model. The reason why all transport models gives
similar results at high incidences is proberly found in the use of a time true
solver combined with a transport process of the turbulent quantities. When
the solver correctly models the larger structures of the flow the influence of
the eddy-viscosity will mainly be in dissipation of turbulent kinetic energy
in the small scale range and the formulation is then close to an large eddy
formulation. - _

The Spalart-Allmaras model could not be applied to the impulsive start
case with o = 25° and o = 40°. The growth rate of eddy-viscosity is low
and the flow creates structures forcing the model to predict large negative
eddy-viscosities.

6.4 Summary

The flow past an Onera-A airfoil has been calculated by utilizing turbulence
models varying from algebraic to 2-equations turbulence models. It was found
that the BB model predicts results in good agreement with experimental
results at an incidence equal 13.3°. The SA and the K — w-BSL models
predicts results comparable to each others. The K — w-SST model predict
the flow in overall best agreement with the experiments and the predicted
skin friction distribution is in very good agreement with the measurements.
The K —w turbulence models was the most robust turbulence models relative
to the other models. _

The transition point was predicted by the Michel criterion for incidences
equal 6°, 8.0° and 10.1°. A good agreement was found with an experimental
estimated transition point at the incidences 8.0° and 10.1°.

At high incidences, o = 25°, the influence from applying different tur-
bulence models begins to vanish. Quite similar development of lift in time
was found by applying different turbulence models. At very high incidence
o = 40° all transport turbulence models gave nearly identical solutions and
the algebraic BL model predicted an unsteady motion with sinusoidal lift
variation in fime.
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Lift coeflicients C)

o | BL | BB | SA |K~wBSL|K~-wSST{ F1
10.1 1 1.24 1 1.20 | 1.22 1.19 1.21 1.30
13.3 1 1.52 | 1.49 ) 1.51 1.50 1.49 1.57
176 | 1.87 | 1.81 | 1.80 1.82 1.76 1.66
25.0 ] 0.75 | 0.81 0.88 0.95 -
40.0 | 0.90 | 0.75 0.71 0.71 -

Max/min lift coefficients C;
o BL K —w-BSL | K-w-SST | F1
17.6 ;1 1.90/1.86 | 1.83/1.80 - 1.66
25.0|1.01/0.64 | 1.03/0.74 1.17/0.77 -
40.0 | 1.41/0.43 - - -
Drag coefficients Cy
o BL BB SA |K—-w-BSL|K—-w-S8ST| F1
10.1 { 0.007 | 0.008 | 0.017 0.009 0.017 0.015
13.3 | 0.029 | 0.019 | 0.018 0.022 0.020 0.021
17.6 | 0.053 | 0.045 | 0.049 0.065 0.065 -
25.0 | 0.247 | 0.315 0.262 0.223 -
40.0 | 0.835 | 0.617 0.616 0.610 -
Max/min drag coefficients Cy
Q BL K—wBSL | K —-w-SST ;| Fl

17.6 | 0.065/0.037 { 0.070/0.060 - 0.021

35.0 | 0.323/0.166 | 0.333/0.178 | 0.312/0.157 | -

40.0 | 1.191/0.570 - - -

Table 6.2: Lift and drag coefficients for the Onera-A airfoil obtained with
the various turbulence models. An overline denotes a mean value for a non-
stationary solution and a ’-’ denotes that no solution was obtained or no data
was available. In the tables with headings Max/min maximum and minimum

values are shown for the non-stationary solutions.
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Figure 6.4: Surface pressure distribution on an Onera-A airfoil. Upper row:
o = 10.1°. Middle row: a = 10.1°. Lower row: o = 17.6°. Circles are
experimental results from the F1 wind tunnel.
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Figure 6.5: Skin friction distribution on the upper surface of an Onera-A
airfoil. Upper row: a = 10.1°. Middle row: o = 10.1°. Lower row: o = 17.6°.
Circles are experimental results from the F1 wind tunnel.
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Figure 6.6: Mean velocity and shear stress profile calculated with the BL,
BB, SA and K — w-BSL/SST turbulence models. The angle of attack equals
13.3° and the Reynolds number is 2 million. Circles are experimental results -

from the F'2 wind tunnel.
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Chapter 7

Turbulent flow past an airfoil
oscillating in pitch

In this section turbulent flow past an airfoil oscillating in pitch will be pre-
sented. The flow is calculated by the vorticity-streamfunction formulation
of the Navier-Stokes equations outlined in the previous chapters. The flow
to0 be considered is a light and deep stall flow situation for a NACA 0015
airfoil. Before presenting the results a general discussion of the phenomenon
dynamic stall will done.

7.1 General description of dynamic stall

As mentioned in the introduction oscillatory airfoil flows is linked to phe-
nomenon called dynamic stall, which is a subject of large interest due to the
unsteady loads of e.g. helicopter rotors. The term dynamic stall refers to
the unsteady separation on an airfoil subject to a forced movement typically
of sinusoidal form where the lift-stall is significant different from static stall.
Generally three distinct dynamical flow situation is considered, stall onset,
a light stall and deep stall case [29], [28] [27]. A typical development of lift,
moment and drag as a function of incidence for the three basic dynamic stall
situations are shown on Fig.{7.1).

Stall onset is considered where the maximum incidence is equal or below
the static lift-stall angle. The hysteresis loop is narrow and a tendency to
overshoot the static lift is found at down-stroke. The flow is typically un-
separated through out the rotation and the tendency to overshoot the static
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" lift counterparts is due to a time lag for the development of the boundary
layer. The development of the boundary layer is typically slower than the
corresponding movement of the airfoil.

The light stall case is considered when the maximum incidence in the
pitching motion is higher than the static lift-stall angle. In this case the
hysteresis curve mostly shows concave form at the up-stroke motion. The
maximum lift found at the up-stroke can greatly exceed the static counter-
part, but the actual evolution of lift, moment and drag at the up-stoke is
greatly influenced by the reduced frequency as shown on Fig.(7.2). That the
maximum lift encountered at the up-stroke motion exceed the static ones is
again partly described by the time lag for developing the separation and by
flow realizations described below for the deep stall case. - -

The deep stall case is considered when the maximum incidence greatly ex-
ceed the the static lift-stall incidence. After passing the static stall incidence,
lift continuously increases until and abrupt and strong lift-stall occur. The
deep stall case is considered as being viscous dominated and the existence of
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a vortex like structured formed between the static stall incidence and maxi-
mum incidence at up stroke in the leading edge region is supposed to play a
dominant role [30], {6]. As the static stall incidence is reached the boundary
layer separate in the trailing edge region and soon after an attached vortex is
formed near the leading edge. The formation of a vortex like structure in the
leading edge region is believed to originate from a concentration of vorticity,
due to different time scales for generation and transport of vorticity, which
suddenly erupt.

Ones the vortex is formed the pressure in the leading edge region will
decrease fast and as the vortex de-attaches the surface and is passing the
airfoil in the oncoming flow direction the overall static pressure on the suction
side will decrease and lift is increased. By this process the high lift is no
longer generated by the pressure peak in the leading edge region as in the
static case with trailing edge separation but by the over all low pressure along
the airfoils suction side.

As the pressure peak is no longer present in the leading edge region the
pressure drag will decrease and can even change orientation. The moment
will in the same time change dramatically due to another distribution of
pressure mainly at the upper surface. When the vortex passes the trailing
edge the lift can no longer be held at a high level and the dynamic lift-stall
occur. The extension of the separation area is in the order of the chord length
and even though the incidence is decreasing the time scale for reattachment
are long so the static lift is, if ever realized at down-stroke, postponed long
after the static lift-stall incidence is reached.

The unsteady forces shown on Fig.(7.1) are some how idealized cases. The
flow development is strongly influenced by a number of parameters where
the ones with largest impact on the flow is the maximum incidence ez,
the reduced frequency k, and the geometry of the airfoil (mainly the leading
edge) [31]. If the Reynolds number are high enough > 1.5 - 10° normally no
Reynolds number effect are found. On Fig.(7.2) the effects of varying the
reduced frequency are shown for the deep stall case.

The dynamic stall case is divided into two stall mechanism named, by the
nature of separation, as leading edge or trailing edge stall. The airfoil shape
has the largest influence in the light stall case. On an airfoil with a blunt nose
separation is typically initiated by a trailing edge separation which is spread
upstream as the incidence is increased. The pressure in the leading edge
region will, for airfoils with trailing edge separation, still be high enough to
compensate for the looses in the trailing edge region. Airfoils with moderate
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sharp leading edges has a tendency to produce leading edge separation before
trailing edge separation. This leading edge separation spreads rapidly in the
downstream direction. This process produce a relative strong vortex which
makes the changes in the aerodynamic coefficients occur more fast than for
a trailing edge separating airfoil.

Dynamic stall is typically computed by two different strategies when the
full Navier-Stokes equations are considered. In one strategy the Navier-
Stokes equations are solved in an inertial frame of reference and for each
time step a new grid is calculated [15] [25]. This method is preferable when
the non-inertial terms gives rise to numerical instabilities in the chosen inte-
gration and discretization scheme. Another method, which is similar to the
present method, is to solve the Navier-Stokes equations in the rotating frame
of reference an include the terms arising from the non-inertial coordinate

system.

7.2 Numerical setup for calculation of dynamic
stall

In the following two sections the vorticity-streamfunction Navier-Stokes solver
with the turbulence models outlined in Chapter 3 will be applied to two oscil-
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lating airfoil flow, one which is considered as light-stall and another consid-
ered as a deep-stall case. Results are compared with measurement {16]. The
grid utilized for the calculations consist of 382 grid points around the airfoil
and wake with 64 points in the wake. 65 grid points was distributed between
the airfoil and outer boundary with a distance to the grid point next to the
wall of 3 - 10~°. The outer boundary was located 12 chord lengths away.

The BB and K — w models was calculated by utilizing a time-step of
2.5- 1073 and due to stability problems with the SA model a time-step of
1.5- 1073 was utilized. Further more the f,(r) function in the SA model was
put equal to one due to the very unstable behavior of the argument 7. This
is of course a violation of the Spalart-Allmaras turbulence model where the
destruction term was designed to vanish in the outer part of the boundary
layer. On the other hand the f,(r) function is supposed to be equal to one
in the major part of the boundary layer and deviate slightly from one in the
laminar sub-layer in case of a strong pressure gradient. The analysis done
by Spalart and Allmaras leading to f, are based on attached boundary layer
flow in order to produce a log-layer and a calculation performed for flow past
a flat plate with f, = 1 showed that the additive constant B in the law of
the wall is altered to a higher value.

7.3 Dynamic light stall airfoil lows

The flow considered in this section is a turbulent flow past a NACA 0015 with
a mean angle of attack @ = 11.37 and with an amplitude of the oscillations
Aa = 7.55. The Reynolds number is 1.5 million and the reduced frequency
equals £ = 0.102.

On Fig.(7.3) to Fig.(7.7) Cy,, C: and C,, are shown. The values are taken
from the second cycle but only very small variations are found from the first
to the next cycles. Oscillations was initiated after 7 non-dimensionalized
seconds. Observations found with different flow situations at onset of oscil-
lations showed that no changes was found from utilizing a fully converged
solution or a solution obtained after 7 non-dimensionalized seconds.

For the 1-equations turbulence models BB and SA a general good agree-
ment are found with the measurement as shown on Fig.(7.4) and Fig.(7.5).
The BB model over estimate lift at up-stroke whereas the SA model make a
under estimate of the lift at up-stroke. At down-stroke the agreement with
measurement are similar quite good for the BB and SA models, with the BB
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model tending to over predict lift for incidence higher than a ~ 15° | caused
by a to slowly separation process. The moment are by the one-equations
turbulence models predicted in good agreement with the measurement at
up-stroke and down-stroke, except just after maximunm incidence. The drag
are similar in quite good agreement with the measurements. As both lift,
drag and moment are predicted in good agreement with the measurement
it is believed that some of the flow realizations typical for dynamic stall are
captured by the calculations.

On Fig.(7.8) instantaneous streamlines are shown for the flow calculated
by the Spalart-Allmaras model. In general the separation pattern is com-
parable to static flow situations at up-stroke. This was some how expected
due to the low reduced frequency. As the incidence increases a separation
is formed at the trailing edge which is first noticed around o = 13.3° 1,
Fig.(7.8.c). This separation bubble becomes bigger as the incidence increases
and a counter rotating vortex is formed closed to the trailing edge, Fig(7.8.1).
Passing maximum incidence the separation continuously becomes bigger even
though the incidence is becoming smaller. This is explained by the time lag
between the development of the boundary layer and the pitching motion of
the airfoil.

Around o = 14.6° | Fig.(7.8.h) the reattachment process has started and
continue until & ~ 10° |. At this incidence the lift has not regained the static
counter part due to the time needed for building up the boundary layer.
From a ~ 10° | an until minimum incidence very little lift variations are
found. In this region of incidence the boundary layer is developing towards
the static counter part at minimum incidence. At minimum incidence the lift
is comparable with the static one and equals the realization of the beginning
of the second cycle.

The very high lift calculated by the K — w-8ST model around maximum
indence, Fig.(7.7), is on account of a formation of two very strong vortices
in the leading edge region and one strong vortex in the trailing edge region.
The presence of an attached vortex in the leading edge reading is felt as an
thickening of the airfoil and raise the pressure in this region. In this situation
the flow is clearly an un-physical realization and an investigation of the flow
gave no indication of how to remedy the problem or alter the turbulence
model.

The K — w-BSL model produces result which again must be considered
as un-physical. The model gave only limited separation close to maximum
incidence followed by a rapid attachment of the flow producing a high lift at
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down-stroke.

The flow situation calculated by the BL model is characterized by very
little separation in the trailing edge region. (Please notice that the loop
is counter clock vice). This was some how expected because the BL mod-
els normally has difficulties in predicting separation close to the static stall
incidence.

7.4 Dynamic deep stall airfoil flows

The flow to be considered is a turbulent flow past a NACA 0015 with a
mean angle of attack @ = 19.58 and with an amplitude of the osciilations
Aa = 6.83. The Reynolds number is 1.5 million and the reduced frequency
equals & = 0.154.

(lobal variables, C,, C; and Cy,, obtained in the second cycle after oscil-
lations was initiated, are shown on Figs.(7.3) to (7.7) for the flow calculated
with the various turbulence models outlined in chapter 3. Oscillations was
initiated after 2 non-dimensionalized seconds. Only limited influence was
found in the first hysteresis loop due to the initial solution and the influence
was disappeared when entering the second cycle.

Quite large deviations occur from the first to the second cycle but after
the second cycle only small changes was found in the cycles. In general
deviations occur between the calculated results and measured values in the
second. cycle but it is believed that some major features of the flow is
captured well with the BB, SA and K — w-SST models and to some extend
also the K — w-BSL model. The BB and SA model predicts fairly well the
incidence where the lift begins to increase rapidly close to maximum incidence
and the strong diminution of lift at maximum incidence. The K — w-SST
model calculate a to early lift-raise. Similar all three models, (BB, SA and
K — w-38ST), correctly predicts an increase in lift at down-stroke just after
maximum incidence. Close to maximum incidence very strong variations
occur. As the angular velocity goes to zero the lift begins to decrease and
close to the point where the angular velocity begins to increase a sudden lift
increase is encountered followed by a rapid decrease.

The measurement suggest a lift plateau at an incidence around 22.5°
for both up- and down-stroke movement. None of the models capture this
plateau and the lift raise is for all models seen as an pure increase with no
tendency to a level off, around an incidence of 22.5°. In general the S-shape of
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the up-stroke part of the hysteresis curve is not captured by any of the utilized
turbulence models. Maybe some of the explanation of why the S-shape is
not captured by any of the utilized turbulence models should be found in
the flow at minimum incidence. Here all models does not calculate the path
of lift-recovery to a value close to the static ones at minimum incidence. In
general the up-stroke part calculated with the BB, SA and K —w-SST models
look similar with a different off-set.

A good agreement with measurement is found for the drag coefficient
caleulated with the SA and BB model. The to soon up-stroke lift raise
predicted by the K — w-SST model produce a clear impact on the drag
coefficient as seen on Fig.(7.7). The early increase in lift makes C; decreasing
and is due to a to early generation of a strong vortex in the leading edge
region.

On Fig.(7.9) instantaneous streamlines for the flow calculated in the sec-
ond cycle by the Baldwin-Barth model is shown 1 As the pictures indicates
quite Jarge variation with massive separation occur in this flow situation.
The separation is initiated by a trailing edge separation, 1, clearly seen at
o = 23.2° 1 on Fig.(7.9.a). The flow in the leading edge region is still at-
tached an a high pressure peak can be maintained so the lift is still high.
Around a = 25.4° 1 Fig.(7.9.c) a flow situation with nearly maximum lift
is found. The flow pattern is felt as a thickening of the airfoil where the
leading edge pressure peak no longer is present but the large and elongated
separation bubble lower the static pressure overall on the airfoils upper sur-
face. This makes the pressure drag decreasing fast as seen on Fig.(7.4). At
o = 26.1° 1 Fig.(7.9.d) a very strong vortex is formed, 2, in the leading edge
region. As the strong vortex in the leading edge region quickly becomes big-
ger and moves further downstream the lift can no longer be held at a high
level and decreases fast.

Just after maximum incidence a sudden lift raise is encountered followed
by a decreasing lift situation. The situation is characterized by the enlarge-
ment of a trailing edge vortex 3 as seen on Fig.(7.9.f). The lift continuously
decreases until the leading edge vortex, 2, created before maximum incidence
and the trailing edge vortex ,3, created around maximum incidence, has en-
tered the wake flow. After that, the flow at the trailing edge is attached -and
an increasing lift situation is encountered at o = 25.2° | Fig.(7 .9.h). The

1The same reference methods as used in chapter 5 is applied when discussing structures
in the flow.
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flow is separated in the leading edge region and this separation 4 is expanding
mainly in the downstream direction as seen on Fig.(7.9.h to i). When the
separation expands into the wake around a ~ 24.5° | the lift is no longer
maintained at a high level.

The flow evolution from o = 24.2° | and back to the initial situation
of the hysteresis loop are more calm. The flow is govern by expansion and
shedding of a trailing edge separation, 5 on Fig(7.9.j}, and the shedding of the
large elongated vortex, 4, formed at a ~ 25° | making the flow to re-attach
from the front part of the airfoil.

7.5 Summary

Two different dynamic stall situations, a light and deep stall case, has been
computed by applying the BL, BB, SA, and K — w-BSL/SST turbulence
models. The 1-equation turbulence models BB and SA gave results for both
the light and deep stall case in good agreement with experimental data. The
algebraic BL turbulence model failed to produce results in vicinity of the
experiments. The K —w-SST model gave fairly good results for the deep stall
case but gave results which did not gets close to experiments near maximum
incidence in the light stall case. The K — w-BSL predicted some general
features of the flow for the deep stall case but fail to produce a separation
large enough in the light stall case.
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Figure 7.3: Hysteresis curves for Cy, Cy, Cr, for turbulent flow past a NACA
0015 airfoil calculated with the Baldwin-Lomax turbulence model. Left : k =
0.102, @ = 11.37°, Aa: = 7.55°. 'Right: k = 0.154, @ = 19.38°, Aa = 6.83°.
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0015 airfoil calculated with the K — w-BSL turbulence model. Left: k =
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Figure 7.8: Instantaneous streamlines for an oscillating NACA 0015 obtained
in the 2nd cycle. The flow is calculated with the SA turbulence model with
a mean incidence @ = 11.37° and amplitude of the oscillation Aa = 7.55°.
The reduced frequency is & = 0.102 and the Reynolds number is Re = 1.5
million. (The letters are refering to Fig.(7.5)}.
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Figure 7.9: Instantaneous streamlines for an oscillating NACA 0015 obtained
in the 2nd cycle. The flow is calculated with the BB turbulence model with
a mean incidence @ = 19.58° and amplitude of the oscillation Az = 6.83°.
The reduced frequency is & = 0.154 and the Reynolds number is Re = 1.5
million. (The letters are refering to Fig.(7.4)).

106




Conclusion

A 2-dimensional Navier-Stokes solver based on a vorticity and streamfunc-
tion has been developeds. Turbulence was simulated by time averaging the
Navier-Stokes equations in primitive variable form, introducing vorticity and
streamfunction based on mean values and adopting the eddy-viscosity con-
cept for modeling the Reynolds stresses. The eddy-viscosity was calculated
by utilizing the algebraic Baldwin-Lomax model, the 1-equations turbulence
models by Baldwin & Barth and Spalart & Allmaras and the 2-equation
K — w-BSL/SST turbulence model of Menter.

Boundary conditions for vorticity and streamfunction has been considered
profoundly and a new method has been suggested for determining vorticity
and streamfunction distributions at limiting boundaries of the calculation
domain. This new method includes a pressure constrain derived from the
primitive variable formulation of the Navier-Stokes equations and guarantees
a unique pressure distribution on bodies, (a viscous Kutta condition), for flow
in multiply connected regions. The method utilize a Base-function which only
varies with the geometry of the flow configuration.

Three different laminar flow situations past a NACA 0012 has been con-
sidered, a stationary flow at moderate incidence, an impulsive start at high
incidence and an airfoil oscillating in pitch between 0 and 20° of incidence.
In the stationary case a code to code validation showed that the pressure dis-
tribution was predicted slightly lower with the present formulation than with
a primitive variable formulation. Nearly equal skin friction distribution was
calculated with the two different Navier-Stokes solvers. The two unsteady
laminar flow cases showed very good agreement when calculated instanta-
neous streamlines was compared with visualizations found in the literature.

As a basic test case for the Navier-Stokes solver a turbulent flow past a flat
plate with rounded leading edge was regarded. It was found that the Navier-
Stokes solver complemented by the five different turbulence models calculated
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a symmetric flow with presence of a velocity distribution following the law of
the wall closely. Comparisons of skin friction, boundary layer thickness and
Reynolds number based on the momentum thickness with empirical relations
showed good agreement. Finally, the convergence history of the different
turbulence models was considered. It was found that the K — w models was
very numerical stable and could be applied with a larger time step than the
algebraic and l-equation turbulence models. The SA model was numerical
very unstable. In the overall performance of the turbulence models when
applied to a flat plate flow the K —w model require smaller calculation time
than the l-equation models and only slightly more than the algebraic BL
model.

A turbulent flow past a stationary Onera-A airfoil was calculated at in-
cidences between 6° and 40°. Transition was enforced, at same position for
all incidences, in accordance with experimental observations. The calculated
flow was compared with experiments for three different incidences, two below
stall and one at stall onset. In general all models underpredicts the lift below
stall and over predicts lift at stall onset. Comparing Reynolds stresses and
mean velocities indicate that the K —w-SST and the BB model is well suited
for this type of airfoil flows.

The Michel criterion was applied to investigate the hypothesis of a fixed
transition point for all incidences. Computations was performed at incidences
6°, 8° and 10.1° and especially for the two highest incidences good agreement
with the experimental estimated transition point was found. At higher in-
cidences the. Michel criterion could not be applied due to the presence of a
leading edge separation bubble.

An impulsive start of a flow past a stationary Onera-A airfoil was com-
puted for two incidences, o = 25° and o = 40°. (Lift stall is experimental
determined at an incidence around o ~ 17.6°). At incidence a = 25° a
stationary solution was predicted by the BB model whereas the BL, SA
and K — w-BSL/SST models predicted an unsteady flow. For this incidence
only limited influence from the applied turbulence models was found on the
results. At incidence o = 40° the influence on the flow situation from the dif-
ferent turbulence models applied vanished when turbulence transport models
was applied. All turbulence transport models predicted the same oscillatory
1ift pattern and the solution became stationary after 40 non-dimensionalized
seconds. The BL model did not predict a stationary solution in this case.
Instead a constant oscillatory lift evolution in time was found. The SA model
could not be applied in this case.
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A turbulent flow past an NACA 0015 airfoil oscillating in pitch has been
investigated. A light and deep stall case has been considered and the results
obtained by the various turbulence models was compared with experimental
results. In general very large different flow structures was found by utilizing
the different turbulence models. The algebraic BL model fails to produce
results in the vicinity of the measurements in both cases. The l-equation
models, BB and SA, gave the best results in both the light and deep stall case.
The K — w-S8T model predicted flow patterns comparable with experiments
in the deep stall case but predicted non-physical results in the light stall case.
The K — w-BSL model is believed to capture the major flow evolution in the
deep stall case but predicted to little separation in the light stall case.

The new method to establish boundary distribution of vorticity and stream-
function has been tested for many different flow situations steady as well as
unsteady flow cases. It is believed that the method clearly has made the
vorticity-streamfunction formulation of the Navier-Stokes equations a valu-
able alternative to the primitive variable formulation when airfoil flows, espe-
cially in a non-inertial frame of reference, are considered. However, indication
was found on a slightly underprediction of the pressure distribution for airfoil
flows.

A possible extension of the present work is to enforce the no slip condi-
tion on solid surfaces explicitly and it could also be profitable to implement a
local time stepping solution algorithm to lower the computation time needed
for stationary computations. The new method to establish boundary distri-
bution of vorticity and streamfunction is only tested for a single body in a
multiply connected region. As the extension to several bodies in multiply
connected regions is supposed to be straight forward a proof obtained by a
calculation would definitely be appreciated.
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Roman

Symbol
at,a”

A-l—

crc2 8
Ol: 02

Cy1, Cho
Cep

CDKw
Cél: C&?

Ckleb

QOO0

kaycwl
D11D2
D11D2

Nomenclature

Definition

coefficient in MUSCL approximation
boundary with no slip condition, airfoil boundary
van Driest damping constant

boundary of domain O, inflow boundary in c-grid topology
additive constant in the law of the wall
chord length of airfoil

metric coefficients

overlapping region in c-grid topology
closure coefficient

closure constant

drag coefficient

cross derivative for K — w model
closure constants

friction coefficient

closure constant

lift coeflicient

moment coefficient

closure coeeficient

normal pressure coefficient

pressure coefficient

tangential pressure coefficient

closure constant

closure constant

outflow boundary in c-grid topology
van Driest damping function
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Roman cont.

f
f23 fw
F

3|
Friep

PHIVNVOZZELIED "

frequency

damping function

term of production, destruction or viscous
blending function

Klebanoff intermittency factor

limiter in SA model; constant in intermittency function
counter in the & direction

Jacobian for the transformation z,y — &£, 7
Jacobian for the transformation &,7 — z,y
counter in the 5 direction

magnitude of J~1

reduced frequency

turbulent kinetic energy

Clauser constant

length scale

differential operator

coefficient matrix for v and derivatives of «y
direction normal to a boundary

number of points along C

number of gridpoints in £ direction

number of gridpoints in 7 direction

number of solid bodies

domain limited by AU B

instantaneous pressure

time-averaged pressure; Production term in BB model
source term

argument for damping function in SA model
Yee Reynolds number

turbulent Reynolds number

120




Roman cont.

THEOE SN T ne

S

direction tangential to a boundary
magnitude of modified vorticity
source term in momentum eq. for y
time

time averaging period

time averaged velocity in x-direction
mean velocity vector

free stream velocity

velocity fluctuation

time-averaged velocity
instantaneous velocity

working variable in SA model

V/iv

time averaged velocity in y-direction
time averaged velocity in z-direction
point of ratation

Cartesian co-ordinate

Cartesian co-ordinate in inertial coordinate system

non-inertial coordinate system
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-

A= R R RS IR

Y o

=

£

2

Definition

angle of attack

mean angle of attack

closure constants

constant determined by the viscous Kutta condition
boundary layer thickness

Kronecker delta

displacement thickness

finite-diference operator

variation of attack

streamwise length

permutation tensor

dissipation of turbulent kinetic energy or 1 + /v
coordinate in a curvelinaer system

metric coefficients

vorticity based on time-averaged velocity U
instantaneous vorticity

vorticity based on instantaneous velocity @
closure constant

momentum thickness

von Karman constant

kinematic viscosity

eddy-viscosity

v /v, eddy-viscosity nondimensionalzied with v
specific dissipation rate

angular velocity

angular frequency

time derivative of 2
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Greek cont.

set of closure constants

reconstructed east cell face value for outflow

reconstructed east cell face value for inflow

streamfunction which is a solution to the Navier-Stokes eqgs.
boundary condition for ¢ on A

boundary condition for ¢ on B

streamfunction which not is a solution to the Navier-Stokes egs.
Y —

density of a fluid

closure coefficient

Reynolds stress tensor

principal turbulent shear-stress

coordinate in a curvelinaer system

metric coefficients

Definition

solid wall for a channel fiow

solid wall for a channel flow

on a boundary with no slip condition
on a boundary with slip condition
value at boundary layer edge

east cell face values

friction

note point 7, j

maximum value

minimum value
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Subscripts cont.

number of bodies

n
D pressure
3 evaluated tangential to the airfoil
t time differentation
te tailing edge
¢ based on momentum thisckness
tr transition
w west cell face values
wall evaluated along solid wall
x differentation with respect to the z-direction
Y differentation with respect to the y-direction
i differentation with respect to the n-direction
£ differentation with respect to the -direction
Superscripts
Symbol Definition
c contra-variant component
I value with respect an inertial reference system
k time-station
() reconstructed cell face values for outflow
() reconstructed cell face values for inflow

| first derivative with respect to ¢

second derivative with respect to ¢

+ sublayer-scaled value
* non-dimensionalized number
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Auxilary

Symbol
arg
Hes
( )inner
( )cmte'r

Definition

argument for a function

Residual

value in inner part of boundary layer
value in inner part of boundary layer
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Appendix A

Derivation of the
vorticity-pressure coupling at a
solid wall

In this appendix the derivation of the pressure-vorticity coupling will be
derived for a laminar flow case. The extension to turbulent flow with an
eddy-viscosity is straight forward.

At a solid wall the Navier-Stokes equations reduces to

2 2
. (% % 5+ 5
Py= = ‘ (A1)
ar 2 2
& % |5+ 5]
A vector 7 normal to the solid wall and a vector § tangential to the wall and
orthogonal to 7 is
L {0z Oy . _ [0z By
n= (an’ Bn) » 5= (33’ 85) ' (4.2)
The vector product of P, , and 7 equals
s oP 1 ([e*U 0o*Ulor [V 82V dy
P, f=—=—|(|l——+—— | ZF|oat—| = A3
¥ P Bs " Re ([&c? T Byz} 3s [89:2 T 57| Bs (4.3)
Vorticity is defined as
eV ou (A4)
7= Bz oy’ '
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and the z and y derivatives of v equals

Oy &V 8*U

oz 0z Ozdy (4.5)
Oy o’U BV

- = = A,
dy Oy? + dzdy (4.6)

which by use of the continuity equation reduces to

Oy vV PV

= 4 A.
oz Oz + Oy (A7)
Oy U U : -
o T o e

These derivatives of v can be recognized as the terms inside the brackets of
eq.(A.3) which now can be written in terms of these derivatives

9P _ 1 ( tyow, o0y
Bs Re( dy Os i 85) ’ (4.9)
> P dydy 0y '
oF _1( 9w 0o
ds _Re( dyon Oz an) ’ (A.10)

because 7 and § are orthognal. The terms within the bracket of eq.(A.10) is
identical to minus the normal derivative of -y

By Ovyoy Ovyoz
Lol Nt AR Bt 11
dn Oyon Ozdn (A.11)
and by this 3 5
P 1 Oy
- 8s  Redn (A.12)
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