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Abstract

The two-dimensional mean velocity and Reynolds stress ficlds have been mea-
sured using laser Doppler anemometry (LDA) in the middle of a staggered tube
bundle in cross flow of water. The tube bundle had transverse to longitudinal
pitches of 2 X 9 and the Reynolds number for the flow was Re = 32000. The
messurements did not cover the region close to the tube walls. A recircula-
tion zone extended one diameter behind the axis of each tube. Visualizations
illustrates this zone further. _

Two tube bundles with transverse to longitudinal pitches and Reynolds
numbers: 2 x 2, Re = 34000-92000 and 2.07 x 1.04, Re = 40000, were placed
in cross flow in a wind tunnel. Here, the local heat tranfer was measured in
steps of 1.8° around the perimeter of one tube that was electrically heated
with a constant heat flux generated in a thin gold coating. _

The commercial code FLOW3D from Harwell Laboratories, UK was used
for calculations with the k-¢ model and the Reynolds stress and flux models and
with wall laws as boundary conditions. Calculations of the local heat transfer
for an abrupt pipe expansion gave satisfactory results when a more accurate
handling of the wall boundary was implemented in the code. However, the
test case of an impinging jet showed that +he same wall laws could not predict
t+he correct heat transfer near the impingement zone.

Compared to the experimental results, the k-¢ model was able to find rea-
sonable levels of heat transfer and turbulent kinetic energy, but was unable
to find the local variations. Surprisingly, the Reynolds stress model predicted
much too low levels of turbulent kinetic energy and heat transfer although it,
contrary to the k-e model, predicted velocity distributions close to those of
the experimental data. The reason for this has not been established, but it is
likely that this problem is related to the inadequacy of wall functions.
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Abstrakt (in danish)

De to-dimensionale tidsmidlede hastigheds- og Reynoldsspeendingsfelter er ble-
vet m&lt med laser Doppler anemometri (LDA) i midten af et forskudt rgrbundt
tveerstrgmt med vand. De relative afstande mellem rgrene er 2 x 2 i hen-
holdsvis den transversale og den longitudinale retning og Reynolds tallet for
stgmningen er 32000. Malingerne daekkede ikke omradet tet ved rgrvaeggene.
En recirkulerende zone udstrakker sig til en diameter efter hverts rgrs akse.
Visualiseringer illustrerer denne zone yderligere.

To rgrbundter med de relative transversale og longztudmale afstande samt
Reynolds tal: 2 x 2, Re = 34000-92000 og 2.07 x 1.04, Re = 40000, blev
placeret i tveerstrom i en vindkanal. Her blev den lokale varmeoverfgbringskoef—
ficient malt i spring pa 1.8° omkring perimeteren af et rgr, som blev elektriskt
opvarmet med en konstant varmeflux genereret i en tynd guld belegning.

Det kommercielle program FLOW3D fra Harwell Laboratories i England

‘blev brugt til beregninger med k-¢ modellen og med Reynolds stress og flux

modellerne. Vaglove blev brugt som vegrandbetingelser. Beregninger af den
lokale varmeoverforing for en pludselig rgrudvidelse gav tilfredstillende resul-
tater, ndr en mere ngjagtig behandling af veegrandbetingelsen var blevet im-
plementeret i programmet. Et test tilfzzlde med en jet stgmmende mod en
veeg viste imidlertid, at den samme vegrandbetingelse for dette tilfeelde ikke
kunne forudsige varmeoverfgringen. :

Sammenlignet med de experimentelle resultater, giver k-¢ modellen for-
nuftige niveauer for varmeoverfaring og turbulent kinetisk energi, mens denne
model ikke var i stand til at finde de lokale variationer. Det er overraskende,
at Reynolds stress modellen forudsiger et alt for lavt niveau for den turbulente
kinetiske energi og for varmeoverfgringen, selv om den finder en hastigheds-
fordeling, som er teet pd de experimentelle data. Grunden til dette er ikke fun-
det, men det er sandsynligt, at problemet er relateret til ut1Istraekkehgheder
ved vaegrandbetingelserne.
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Chapter 1
Introduction

Most industrial flow are turbulent and many of these flows involve complex
geometries. The flows often have complicated structures like recirculating re-
gions, impinging zones etc. Examples are burners, chemical reactors, cyclones
and heat exchangers. Typical parameters of interest are the pressure drop and
global transfer rates for heat and mass. In some cases local values of e.g. heat
transfer are important. Local flow characteristics like the position and size of
a recirculating region can also be of interest.

Traditionally, the design of industrial flows are based on experience and
correlations that have been determined by experiments. In the literature,
correlations based on numerous experiments are found. These correlation are
valuable tools in the design process, but they have their limitations. They
are often limited to quite general geometries, fluids and flows and if many
parameters are taken into account in a correlation, it is often not very accurate.
In cases with special geometries and flow conditions, or in cases where a high
degree of optimization is needed, the design process often has to be done
through expensive experimental work. There is therefore a great interest in
numerical models for flow and heat transfer prediction. These models can be
used for numerical experiments that have lower costs and that usually makes
it very easy to vary the geometry and other parameters. Numerical models
can also give information that is impossible or at least very difficult to find
experimentally.

With the rapid development of computers and their calculation capacity,
the numerical calculations of flows are now a tool that it is realistic to use in
the design of industrial processes. But at the same time no computer today is
able of giving a full simulation of a turbulent flow at Reynolds numbers typical
for industrial processes. In most cases only the time averaged values of the
different parameters like velocities, pressure and heat transfer are of interest.
The common way of overcoming the problems with a full simulation of the
flow is to use a model that describes the effect of the turbulence on the time
averaged values of velocities, temperature etc. Several turbulence models have
been proposed over the last decades, but it is only within the recent years that
it has been possible to make calculations with these models for more complex
flows.

Two different models have been tested in the present study. The k-¢ mod-
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els are a kind of ndustrial standard’, because these models are used for many
practical problems today. They model the effect of the turbulence through an
effective viscosity and through other effective diffusion coefficients that usu-
ally are found as a scaling of the effective viscosity. They have been tested for
numerous types of flows and give fair results for many of the simple types. For
more complex flows the &-¢ models have severe weaknesses and there is there-
fore an interest for more sophisticated models like the Reynolds stress and flux
models. These models are more complicated and requires a significantly larger
computational effort, but they also have the potential of modelling various
aspects of the turbulence more accurately. They are still in a stage of research
and are not used much for practical design purposes yet. It is therefore inter-
esting to test these models against some of the more complicated flows that
are found in industrial processes.

To represent industrial flows it has been chosen to study different test cases
with local heat transfer on a wall. This will be done by comparing the results
of calculations with different turbulence models with available experimental
data. Experiments have been performed in this study to supply data that
can be used for verification of the models. Even though many flows have been
investigated thoroughly through experiments, there is still a need for data that
are well suited for verification of turbulence models. Such data should consist of
measurements of both local turbulent flow parameters, like mean velocities and
the Reynolds stresses, and of Jocal heat transfer data. Furthermore, it is very
important that the experiment is designed so that the boundary conditions
can be reproduced in the numerical models.

A tube bundle in cross flow has been chosen as a test case. The tube bundle
is one of the most used designs for heat exchangers. It has both a quite complex
geometry and a complex flow with features that are found in many industrial
fiows. The flow and heat transfer in the middle of a tube bundle is only affected
little by the in- and outlet conditions for the hole tube bundle. During the
present study it has been attempted to establish a set of experimental data
that can be used for verification of calculations with turbulence models. Other
more simple test cases will be used in the calculations to test some of the flow
features that is found in the tube bundle fow.

The commercial computer program FLOW3D for computational fiuid dy-
namics (CFD) is used for the calculations. This has two purposes: It saves the
effort of making a new program (perhaps by modifying another program) and
it gives an opportunity of testing how well a commercial program performs for
more complicated flows relevant for the industry. FLOW3D has been chosen
because it is one of the very few commercial available programs that has the
more complicated Reynolds stress and fux turbulence models implemented
and because it was possible to obtain the parts of the source code that was
necessary for the study.

In the following chapters, this report will describe: An- overview of the
physical aspects of the flow in a tube bundle followed by descriptions of LDA-
measurements, visualizations and heat transfer experiments for a tube bundle.
Then follows reviews of the turbulence models and the computational method
used in this study and finally the results of calculations made on an abrupt pipe
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expansion, on an impinging jet and on two tube bundles will be presented.



Chapter 2

Measurements in a tube bundle

2.1 Introduction

This chapter will describe the experimental work done in the present study
with the purpose of determining local velocities, turbulence parameters and
the local Nusselt number in a staggered tube bundle.

Cylinders in crossflow are used in many applications in the industry. It
is probably the most common way to make heat exchangers. There has been
extensive investigations of the flow and heat transfer around a single circular
cylinder in crossflow. The tube bundle has also been subject to many investi-
gations, but the majority of the experiments only measure global parameters
like the mean Nusselt number and the pressure drop over the tube bundle,
since these are the parameters used in the design of applications.

There are many parameters, both geometric and physical, that determine
the flow and heat transfer in a tube bundle. It is therefore difficult and la-
borious to make good correlations that take all the parameters into account.
The known correlations may vary considerably from each other. For special
or complicated geometries none of the available correlations might be appli-
cable. In some applications, the local conditions have interest, e.g. when the
maximum surface temperature should be kept under a certain level. There is
therefore a great interest in models that can be used for detailed calculation
of the flow and the heat transfer.

There are only few reported measurements of local variables. They are
usually more complicated to measure and are less important in the design pro-
cess. However, they are of great importance for the understanding and for the
modelling of the flow and heat transfer. A main purpose with the measure-
ments described in this chapter is therefore to establish a set of experimental
data that can be used to verify different computational models for turbulent -
heat transfer.

The next section will describe general definitions and characteristics of
flow in tube bundles. Then follows sections describing LDA measurements,
visnalizations and heat transfer measurements.
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Figure 2.1: Characteristic lengths in staggered tube bundles -— minimum flow
section is shown with dashed line and “unit-cell” is shown with dotted box.

2.1.1 Definitions related to the tube bundle

In the literature several different ways of describing the geometry of a tube
bundle are used. The tubes in a tube bundle are usually arranged in either
in-line or staggered arrangements. Only staggered tube bundles will be used in
the present study. The definitions used by Zukauskas and coworkers [1] will be
adopted. The staggered tube bundle is characterized by the relative transverse
(@ = s1/D) and longitudinal (b = s5/D) distances (pitches) between the axes
of the tubes, see figure 2.1. This report will use the term row for tubes on the
same transverse line. Only smooth circular tubes are considered.

According to [1], several authors have found that is is convenient to general-
ize the results using a Reynolds number, Re = (U,,,D)/v, based the diameter
of the tubes D, the kinematic viscosity v and the mean velocity U,, in the
minimum flow section between the tubes. The minimum flow section is the
cross section between the tubes where the mean velocity is largest. As it is
illustrated in figure 2.1, the position of the minimum flow section depends on
the geometry. .

The heat transfer will be described by the Nusselt number, Nu = AD/A,
where h is the heat transfer coefficient, D the diameter of the tubes and A
is the thermal conductivity of the fluid. Both v and A are evaluated at the
free stream temperature. In a tube bundle where all tubes are heated the
free stream temperature is assumed to be the mean fluid temperature just
upstream of the local tube. The local Nusselt number is evaluated using the
local heat transfer coefficient based on the local wall heat flux, the local wall
temperature and the fluid mean temperature upstream of the local tube. The
angle ¢ from the front stagnation point is used to characterize the position on
the surface of tube, see figure 2.2.

The mean Nusselt number Nu could be defined as the mean value of the
local Nusselt numbers. However, most experiments only use global parameters
like the average heat flux from a tube and the mean temperature of the tube
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Figure 2.2: The angle ¢ from the front stagnation point on a tube.

wall. Therefore, in order to be able to compare the results with these experi-
ments the mean Nusselt number is evaluated using a heat transfer coefficient
based on the average heat flux and the mean wall temperature for the tube. In
case of a constant wall temperature this Nu would be equal to a Nu calculated
as the mean value of the local Nusselt numbers.

92.1.2 Characteristics for flow and heat transfer in a tube
bundle ‘

The flow around a tube in the middle of a staggered tube bundle is similar to
the flow around a single cylinder. Zukauskas and coworkers [1-3] have reported
extensive reviews on both flows. Following these, the flow around a single
cylinder can be divided into different domains depending on the Reynolds
number Re.

In the front of the cylinder, a laminar boundary layer is formed and its
thickness increases downstream. For Re < 1 the inertial forces are negligibly
<mall and the boundary layer separates from the surface at the rear stagnation
point. For Re > 5 a pair of symmetrical vortices are formed at the rear part
of the cylinder forming a recirculating region and for Re > 40 these vortices
become unstable; they are periodically shed from the rear of the tube and the
von Karman vortex street is formed. When Re > 150 small irregular vortices
are formed together with the large vortices.

The range from Re = 1000 and up to the critical Reynolds number Re =
9. 10° is called the suberitical flow regime. Here the flow is a combination of
2 laminar flow in the front and a turbulent wake with regular vortices. The
vortex shedding is very regular with the dimensionless frequency, the Strouhal
number (St = fD/U where f is the frequency), being almost constant, St =
0.2. The separation point for the laminar boundary layer is at ¢ = 80°.

The mechanism behind the separation found must be found in the bal-
ance between the pressure gradient at the wall and the viscous forces. The
pressure gradient is favourable (dP/dz < 0) at the front part of the cylinder
and increasing to become adverse (dP/dz > 0) at the rear part. The viscous
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forces are largest at the wall. At the point where the decreasing force from
the pressure gradient have the same order of magnitude as the viscous forces,
separation occurs. Further down the cylinder wall, fluid particles will start
moving in the opposite direction of the main flow and the fluid begin to curl.
This forms the vortices that sheds from the tube.

At the critical Reynolds number the laminar boundary layer gradually be-
comes turbulent and the separation point shifts downstream to approximately
¢ ~ 140°. There are not full agreement on the mechanisms for the laminar-
turbulent transition. Zukauskas [2] suggest the laminar boundary layer still
separates at the front part of the cylinder, forms a separation bubble that
reattaches to the surface and then again separates at ¢ ~ 140°. The change of
this effective separation point gives a large decrease of the drag coefficient and
the size of the wake. It also gives large changes of the Strouhal number Sr.

Heat exchangers with tube bundles are typically made in one of two con-
figurations: The in-line and the staggered tube bundle. In the in-line tube
bundle all tubes are located on a rectangular grid while in the staggered tube-
bundle the rows are staggered as illustrated on figure 2.1. Compared to the
in-line tube bundle, the staggered tube bundle is characterized by a larger
heat transfer, but also a larger pressure drop. The staggered tube bundle in
the subcritical low domain is probably the most widely used configuration in
industrial application and it will be used as the test case for the present study.

The flow around the first roew of tubes in a tube bundle is quite similar
to the flow around a single cylinder. For the following tubes, the flow is still
similar to that of the single cylinder the difference being that the velocity
profile upstream of the tube is non-uniform and highly turbulent. The flow is
usually considered to be fully developed from the 3rd-5th row depending on
the geometry. In the fully developed region all the characteristics of the flow
are usually found in a “unit-cell” containing a part of two different tubes, see
figure 2.1. It is usually only just upstream of the last row in a tube bundle
that the flow at the outlet of the tube bundle differs from the flow in an inner
unit cell.

This pattern where the flow is organized in unit-cells can, especially for
in-line configurations, be disturbed by two mechanisms. The flow can in some
cases go criss-cross through the bundle instead of just in the streamwise di-
rections. This happens when some passages in other directions have a smaller
flow resistance that the streamwise direction. The other mechanism is peri-
odic oscillations down through the tube bundle. Vortex shedding can occurs
from the first row, but usually not for rows further down. For an in-line tube
bundle Ziada and Oengtren [4] found that the vortex shedding from the first
row could excitate a resonance phenomenon in the flow. It is probably less
likely that this phenomenon will appear in a staggered tube bundle. However,
for both types of tube bundles vortex shedding from the first row can excite
mechanical resonances of the tubes. Vibrating tubes are an important problem
in the design of real heat exchangers.

A typical distribution of the local heat transfer for the same Reynolds
number around a single tube and around a tube in a tube bundle is shown in
figure 2.3. The mean Nusselt number for a single cylinder in the subcritical
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Figure 2.3: Local heat transfer on cylinder: (1) single cylinder, Re = 38 350,
Tu = 0.4% [5]; (2) tube bundle, Re = 41500, 4. Tow, a X b = 2 X 2, present
study; (3) single cylinder, Re =39 000, Tu = 11.5%, adapted from 2]

domain usually correlates with Re>®. In figure 2.3 the local heat transfer
has therefore been plotted as Nu/ Re™® so that measurements with different
Reynolds numbers easily can be compared. For a single cylinder in a flow of low
turbulence the local Nusselt number has a maximum at the front stagnation
point. It decreases towards the separation point and then increases again until
the rear stagnation point where it reaches approximately the same value as at
the front stagnation point.

Two factors are important for the local heat transfer on a single cylinder:
The blockage factor and the turbulence intensity. Normally it is assumed
that the flow around the cylinder is not affected by boundaries such as walls.
However, if a cylinder is located in e.g. a channel, the effect of the walls can
often be described by the blockage factor k,: The blockage area of the cylinder
as a fraction of the cross section area of the empty channel. The effect of
the blockage factor is significant for blockage factors larger than k; =~ 0.2;
according to [3] an increasing blockage factor will result in larger velocities
near the surface of the cylinder and therefore also in higher heat transfer
coefficients. Furthermore, the separation point and the minimum for the local

heat transfer will move downstream.

The turbulence intensity Tu is the RMS value of the velocity fluctuations as
a fraction of the time averaged velocity. With increasing turbulence intensity in
the main flow, the heat transfer also increases. A higher turbulence intensity
will also cause the transition to a turbulent flow in the boundary layer to
oceur at a lower Reynolds number. Zukauskas [2] estimates that the critical
flow Tegime is established for Re - Tu > 150000 where Tu is expressed as a
percentage.




According to this criterion, the measurement performed with Tu = 11.5%
in figure 2.3 is in the turbulent regime and this changes the distribution of
“the local Nusselt number significantly. It still has a maximum at the front
stagnation point and is then decreasing until about ¢ = 90°. Here it is assumed
that there is a separation of the laminar boundary layer and then a transition
to a turbulent boundary layer that reattaches. This gives a sharp rise in Nu
over a distance of A¢ ~ 10°. After the transition Nu again decreases toward
the separation of the turbulent boundary layer at ¢ = 140° where there is a
second minimum for Nu. '

The distribution of the local Nusselt number for the 4. row in a tube bundle
is plotted in figure 2.3. The result is quite similar to the distribution of Nu
for the single cylinder in a turbulent flow. The difference between the local
minima and maxima for the tube bundle is smaller than for the single cylinder
and the minima are all placed about 10° closer to the rear stagnation point.
The mechanisms forming Nu is therefore probably the same and the main
difference is probably due to the high blockage factor and the non-uniform
upstream flow condition for a tube in a tube bundle.

In the highly turbulent flow in a tube bundle the effective diffusivity of heat
is high throughout the flow. The main heat resistance is found in the laminar
sublayer at the walls. The local Nusselt number is mainly determined by the
thickness of the laminar sublayer and therefore by the flow conditions. Because
of this, there is little difference between measurements where all tubes in a
tube bundle are heated and measurements where just one tube is heated; most
authors therefore use only one heated tube in their experiments in turbulent
flows [1].

2.2 LDA-measurements

This section reports measurements of local velocity and Reynolds stresses in a
tube bundle. The measurements are performed using laser Doppler anemome-
try (LDA). The results are used in section 5.4 for comparison with calculations.

2.2.1 Review of literature

Although the global heat transfer of tube bundles have been extensively inves-
tigated, only few measurements of local velocities and turbulence quantities
have been carried out for a turbulent flow in a tube bundle. Such measure-
ments are complicated because the flow is highly turbulent and because the
tubes make it difficult to reach the inner part of a tube bundle.

A few measurements have been performed using hot-wires etc. Neal and
Hitchcock [6] performed measurements with a hot-wire anemometer and Si-
moneau and VanFossen [7] performed similar measurements with a hot-film
anemometer probe. In both cases the experiments have been performed in
rather narrow test sections with only 2-3 tubes in each row. The hot-wire and
hot-film techniques can only be used in the limited parts of the flow where the
turbulence intensities are not too high and where the flow direction is known.
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In particular it is therefore not possible to get reliable measurements in the
recirculation zone.

The laser Doppler anemometer is a more generally applicable technique
because it is able to deal with the highly turbulent flows. However, a limiting
factor for a traditiona]l measurement with LDA is that the probe volume is
produced by two intersecting beams. If the optical axis is aligned with the axis
of the tubes, the angle of the beams therefore gives a limit on how close the
probe volume can come t0 the tube wall. There is therefore a conflict between
the desire for measuring far away from the side wall of the tube bundle to
avoid three-dimensional effects of the side walls and the desire for measuring
close the tube wall.

More complicated LDA-techniques can be used to overcome this problem.
A fluid with a refractive index matched to the tube material could be used to
give full freedom in the positioning of the probe volume. However, this tech-
nique demands a complicated flow system with a very accurate temperature
control. To the author’s knowledge this technique has so far only been applied
to laminar fows in tube bundles [8]. Another possibility is to give the optical
axis an angle with the tube axis. This will probably require a more compli-
cated optical system for most test channels. It is also possible to complement
the measurements with measurements of the velocity component that is locally
tangential to the tube wall. This can be done with a two beam configuration
either aligned with the tube axis or looking out through a window in the tube
wall. To the author's knowledge none of these techniques have been used so
far.

Measurements with the optical axis aligned with the tube axis have been
performed by Halim and Turner [9} and Simonin and Bacouda {10]. Both
studies are comparable to the present study, but in all cases the geometries
are different.

2.2.2 Experimental set-up

The present measurements have been performed with the set-up shown in fig-

- ure 2.4. The isothermal test section contains 9 rows in a staggered arrangement

with 3-4 tubes in each row. Acrylic rods with a diameter D = 10 mm are used
as ‘tubes’. The transversal and longitudinal pitches are a X b=2.0x2.0and
the length of each tube is 6 diameters. The sides of the test section consist of
10 mm transparent acryl of good optical quality. The inlet to the test section
contains a flow straightener that consist of closely packed plastic tubes with
thin walls. They have a length of 50 mm, a diameter of 5mm and are fixed in
the flow by a fine grid. ,

The flow system is shown in figure 2.4. From a reservoir, tap water is
circulated by a centrifugal pump. The mean flow rate is measured with an
orifice plate and can be regulated with a valve. The orifice plate is constructed
according to DIN 1952 [11] and is placed in a 2 inch tube with 40 diameters
of tube upstream and 10 diameters of tube downstream. The temperature of
the water is regulated to 25.3° £ 0.3°C by cooling water and a thermostatic
controlled electrical heater. The mean flow rate, regulated by a throttle valve,
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Figure 2.4: The experimental set-up for LDA measurements

is believed to be steady within £1%. The measurements were performed at
a Reynolds number Re = 30000 based on the tube diameter D, the mean
velocity U, between two tubes in a row estimated from the flow rate measured
by the orifice plate and the kinematic viscosity at the temperature 25.3°C,
v = 0.890 - 10~ m?/s.

The test section is connected to the flow system with flexible 3inch hoses
which enables the transversing mechanism to move the test section relative
to the optics. The resolution of the transversing mechanism is better than
0.0lmm. However, the error on the positioning is believed to be within
+0.15mm. Larger errors occurred while moving several tube diameters in the
flowwize direction. These errors are believed to be due to the loading of the
flexible hoses connected to the test section and they were corrected assuming
a linear variance of this error.

The laser-Doppler anemometer consists of a 1.5 W Spectra Physics Argon
laser, a 4 beam, two-component optical unit and two photomultipliers in for-
ward scatter mode. The laser light contains a blue and a green line. In the
Dantec optical unit (55X) the laser beam is split into two beams and one of the
beams passes a Bragg cell shifting the frequency 40 Mhz. The beams are split
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into four beams, two of each colour, and then expanded in a beam expander
with an expansion ratio of 1.94 to a diameter of 2.43mm.

The beams are focused using a front lens with a focal length of 160 mm.
The intersection angles between for the two sets of beams have been measured
and the relevant data for the two data channels are listed in table 2.1. The
probe volume is estimated to have a length of 0.50mm and a diameter of

0.04 mm.

z;-direction xo-direction
colour green blue
beam intersection angle 12.8° 13.4°
wavelength [nm] 514.5 488.0
fringe spacing [m] 2.300 2.085
frequency shift [kHz) 2000 3000
high pass filter [kHz] 64 256
low pass filter [kHz} 4000 8000

Table 2.1: Parameters for the two data channels

The signals from the photomultipliers are coupled to a Dantec frequency
shifter (55N15), where the 40 Mhz signal from the Bragg cell is subtracted
except for a shifting frequency. The setting of frequency shifting and hi- and
low-pass filters ensured for both channels and for all measuring positions that
all data points lying within 5 standard deviations of the mean value were
treated correctly.

The signals are then passed to two Dantec LDA counter processors (551:96)
equipped with a coincidence filter in order to ensure the simultaneity of the
signals. The maximal time difference between the two signals was chosen
to 50 us. Bach signal is filtered with a high and a low pass filter. Typical
data rates were between 10 and 50 Hz. These data rates give an average time
between samples that is significantly larger that correlation time for the flow.
The data from the counters are collected and processed to the final results
with a program running on a personal computer (12}

The fow in the tube bundie is highly turbulent. It is therefore important
to avoid velocity bias errors. Following [13], the residence time is therefore
used as weighting factor in the computation of statistical quantities.

The direction of the axis of coordinate system used in the measurements
are shown in figures 2.4-2.5. The origo of the coordinate system is located in
the middle of the measuring section, i.e. at the center of the middie tube in
the 7th row. In the zs-direction (along the tubes) the origo is located at the
wall closest to the front lens of the optical unit.

2.2.3 Measurements and results

The purpose of the measurements is to estimate velocities and Reynolds stres-
ses in a plane in the middle of a tube bundle. This will be done in the measuring
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Figure 2.5: Measuring section (dashed line) and coordinate system used for
the measurements. Both are centred around the tube in the middle of the 7th
row (see figure 2.4). The measurements are transformed to the upper right
unit cell and here the position for each transformed measurement is indicated
with a small ring.

section shown in figure 2.5. To determine whether this measuring section can
be used to give a reasonable estimate of the flow in the middle of a tube bundle,
different investigations have been carried out.

To find an indication of the influence of the number of samples, series of

.measurements where performed at a single point. The number of samples
in each measurement was changed in steps from 100 to 6000 samples. The
measuring point had the approximate coordinates (z;, Z2,z3) = (0.85 D, 0, 0)
and the results of these measurements are shown in appendix B.1. Similar
measurements have been performed at other points with the same qualitative
results. '

The measurements indicate that increasing the number of samples from
100 to 1000 leads to a significant decrease of the variance of the statistical
quantities. Increasing the number of samples to 6000, indicates in most cases
a further but not so significant decrease of the variance. At 6000 samples there
is still a visible variance. It was chosen to use 5000 samples at each point for
the further measurements although even larger samples could be justified.

It is expected that the actual mean velocity in the minimum flow section
for the measuring section will be higher that the mean velocity estimated by
the orifice plate measurement. This is due to wall effects in the test channel
and due to the inaccuracy of the orifice plate measurement. The actual mean
velocity has been estimated by LDA-measurements of the U; velocity compo-
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nent in the sinallest cross-sections of the measuring section (z:/D = -2,0,2

and —1.1 < (z2/D) < 1.1). These measurements are shown on figure 2.6. The
mean velocity in the minimum flow section is found to be U, = 2.85m/s by
numerical integration of all the measurements. This is 6.7% higher than that
estimated from the orifice plate measurement assuming identical conditions
between all tubes, and the actual Reynolds number is therefore Re = 32000.
In the presentation of the measurements the velocity and the Reynolds stress
components have been made dimensionless with U, = 2.85m/s. -

The flow in the middie of a large tube bundle is assumed to be two-
dimensional. To determine how. large three-dimensional effects are in the test
channel, profiles have been taken in the zz-direction at various points in the
measuring section. In a two-dimensional flow these profiles would show con-
stant values of the measured varables. No three-dimensional effects were found
in the middle of the flow and the wall effects were generally small. The mea-
suring volume was not able to resolve the laminar sublayer at the walls. The
largest effects were found in the wakes just behind the tubes. :

Figure 2.7 shows an example of the U,-velocity component measured in the
recirculating region behind a tube, approximately at (z1,2) = (0.85D, 0.0).
Figure 2.7 shows 3 different sets of measurements at the same point. While
there can be seen only a small effect of the wall on the fluctnating velocity
components Ui, there is a significant effect of the wall on the mean velocity
component U; which is decreasing until about 1 diameter from the wall and
then increasing slightly. This effect is probably due to a flow pattern similar
to the horseshoe vortex observed for a cylinder at a wall. The slight increase
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Figure 2.7: Variation of U; (key: ©) and @ (key: +) in the zs-direction
approximately in the point (z;,72) = (8.5D,0.0); wall at z3/D = 0, centerline
at 3 / D=3.

of the velocity from about 1.5 diameter from the wall is probably due to the
fact that the x3-axis of the traversing mechanism makes a small angle {about
1°) to the optical axis.

The final measurements have been performed in the middle of the test
channel, i.e. at z3 = 3D. In this position the beam angles did not permit
measurements closer than 0.3 diameter from the surfaces of the tubes. The
measurements have been performed on a grid with a spacing of 0.1 diameter
and covering the measuring section shown in figures 2.4-2.5. A few measure-
ments were also taken just outside the measuring section. All the measure-
ments are plotted on graphs in appendix B.2. The measuring section covers
4 unit cells and the results have been transformed and plotted on the upper
right unit cell together with a curve showing the average of the transformed
values. The positions of the measurements transformed to the upper right unit
cell are shown in figure 2.5.

~ During the experiments a small velocity bias error was found on the U
velocity component. This error is only significant in the wake behind the
tubes and here it is seen as a systematic, difference between the transformed
measurements from different unit cells. This difference is seen for the velocity
component in the zs-direction and for the Reynolds stresses that contain a
component in the zp-direction. In the wake the fluctuating component of
the velocity has the same order of magnitude as the mean component and
it is therefore expectable to find the largest velocity bias errors here. The
error was found consistently at many different positions in the flow and it is
therefore believed that the bias error does not arise from the flow but from the
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measuring system. However, it has not been possible to ascertain whether the
bias error arises from the optical system oF from the processing of the signals.
The velocity bias error is found in appendix B.2 in the wake for Us, Utz
and @ gz, The error is reduced by the averaging of all measurements. This
is confirmed by the fact that averaged values of U, and TiEp are quite close
to zero for zo = 0.0. The average values of the measurements are therefore
believed to give a fair estimate of the mean values of velocity and Reynolds
stresses.

An impression of the error of the measurements is given in appendix B
by the standard deviation of repeated measurements with the same number
of samples (see table B.1) and by the scattering of the single measurements
compared to the mean values plotted in section B.2. Besides the uncertainty
due to the limited number of samples in each measurement, the most important
error is probably introduced in the determination of Up. It has been found
by a series of measurements and is estimated to have an uncertainty of about
1%. Other errors arising from the measuring system are assumed to be less
important. It is therefore estimated that the error on the mean velocities is
less than 2% of U,, and the error on the Reynolds stresses is less than 5% of
their local levels. The errors on Us,, Uzt and Tilz might be a little higher due
to the mentioned velocity bias error.

Besides the velocity bias error, the measurements from the four unit cells
in the measuring section are all close to the averaged values. This indicates
that a periodic boundary condition can be assumed for up- and downstream
boundaries. Along the sides of the unit cells (z; = 0.0 and 2z = +D) the
gradient of Uy, Thuy and 37z and the values of Uz and T s are approximately
zero. Together with the fact that most of the measured values are close to the
mean values this indicates that a symmetric boundary condition at the sides
of a unit cell can be assumed. These conclusions support the numerical model
used in chapter 5.4. '

The measurements show a recirculating zone behind the cylinder, but only
the last part of this zone is captured. The zone extends to about z;/D = 1.0,
i.e. 0.5 diameter downstream of the tube. :

2.2.4 | Conclusions

The LDA data seem to give reasonable estimates of the mean velocity and the
Reynolds stresses in the middle of a tube bundle at the 7th row where the
flow appears to be fully developed. It has been found reasonable to assume
that the flow is two-dimensional and that all the characteristics of the flow
can be found in a unit cell with asymmetric periodic boundary conditions
upstream and downstream, and symmetric boundary conditions on the sides.
* A limitation with the measurement is the lack of data near the tube walls.
Although the accuracy of the measured data is satisfactory for the verifi-
cation of turbulence models, the accuracy could be improved in several ways.
The use of 5000 samples in each measurements have been found reasonable,
but it could be justified to use significantly more samples; particularly if mo-
ments of higher order than two are sought. The problems with the velocity
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bias error could purhaps be solved by a very careful examination of the optical
system and the data processing system. Other improvements could be a more
accurate transversing mechanism and a more stable flow system.

It has been shown that three-dimensional effects exist, but only close to the
side walls of the test channel. These measurements indicate that it would be
possible to make measurements closer to the side walls without distortions due
to wall effects.. This would allow access closer to the tube walls. An interesting
supplement would be measurements of the velocity component tangentially to
the tube wall using a 2 beam LDA set-up that is rotated to follow the wall.

- Furthermore it would be interesting to investigate the flow near the bound-
aries of the tube bundle, i.e. inlet; outlet and sides and to investigate the flow
development through the first rows.

Fig'ui-e 2.8: Picture of the flow with exposure time 1/30 second. Flow from
left to right.

2.3 Visualization of the flow

To give a qualitative impression of the flow in a tube bundle visualizations
have been performed in the test channel described in the previous section, see
figure 2.4. The test section was rotated 90° around the rj-axis. The two green
beams from the LDA-optics were send through two cylinder lenses to produce
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Figure 2.9: Picture series of the flow (part 1) — exposure time 1/500 second.
Flow from left to right.
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Figure 2.10: Picture series of the flow (part 2) - exposure time 1/500 second.
Flow from left to right.
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two sheets of laser light. The lenses were carefully arranged together with
mirrors at the opposite side of the channel in order to cover as much of the
inner flow as possible. The resulting laser sheet was located behind the middle
tube in the 7th row and between the two gide walls (z3 = 3 D). The thickness
of the laser sheet was approximately 1 mm.

Photographs were taken with a traditional SLR camera (Nikon F90) fitted
with a 105 mm lens. This gave a magnification with a ratio of approximately
1:1. The film was a black-and-white, 36x24 mm film (Tlford HPS5, 400 ASA).
The magnified pictures are shown as negatives and show a flow from left to
right. They contain areas with different degree of shading. These areas are due
to reflections and lens effects from the acrylic rods that were used as ‘tubes’.

The flow was visualized by adding air bubbles to the water. Air was injected
in the straight tube before the orifice plate. The air bubbles flow together with
the water into the water reservoir. Here only minor bubbles manage to reach
the inlet to the pump. In the pump the bigger bubbles are split into smaller
bubbles and at the inlet to the test section the water is therefore seeded with
quite small bubbles. It is estimated that most of the bubbles have diameters
smaller than 0.1 mm. They are not expected to follow the flow completely, but
it is assumed that they give a fair impression of the large scale motions in the
flow.

The visualizations have been performed at approximately the same flow
conditions as the LDA-measurements. Using the correction of the orifice plate
measurement found in section 9.9 3 the velocity in the minimum flow section
is U,, =~ 3.0m/s corresponding the a Reynolds number of Re =~ 35000. '

Figure 2.8 shows a picture taken with an exposure time of 1 /30 second.
During the exposure time the main flow has moved approximately 7 diameters.
The picture therefore gives an impression of the mean flow. The flow seems to
be divided into two regions: The region behind the cylinder with large vortices
and the rest of the flow where no vortices can be seem. However, in the latter
region, the tracks of the bubbles cross each other indicating that there is a
high degree of turbulence in this region also. In the region behind the cylinder
the existence of large vortices indicates that flow reversal occurs. '

A series of pictures taken with an exposure time of 1/500 second is shown
in figures 2.9 and 2.10. In this case the exposure time has been obtained by
placing a shutting mechanism from another camera in the laser beam and using
this to make a short flash of laser light. During the exposure time the main
flow has moved approximately 0.6 diameters. These pictures can therefore
be interpreted as snapshots of the flow. They are taken as a series within
approximately one minute. _

The snapshots show the same two regions found in figure 2.8 The region
with flow reversal contains many vortices, both of large and small scales. There
is a clear interaction between the large vortices behind the tube and the direc-
tion of the main flow. The first vortices appear at ¢ = 120°. This is perhaps
most evident in picture (7), where a relatively large vortex is seen at the lower
part of the tube just after ¢ = 120°. Unfortunately these vortices can not be
seen in figure 2.8 because this part of the flow is poorly illuminated.

These vortices indicate that sepatation 0ccurs before ¢ = 140° which will
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be in contradiction with the theory of Zukauskas [2] referred in section 2.1.2.
It is not possible to make any further quantitative conclusions based on the
present visualizations, but the observations show that it would be desirable to
make a more detailed investigation of the flow close to the walls of the tubes.

2.4 Meaéurements of local heat transfer

This section will describe measurements of the local heat transfer for a cylinder
in a tube bundle in crossflow with a constant heat flux.

2.4.1 Review of literature

There have been performed several measurements of the local heat transfer
for a tube in a staggered tube bundle in the subcritical flow range. Some of
these studies are reported in references [14-19]. Most of the measurements use
different geometries. General measurement of the heat transfer in tube bundles
together with a review of the literature can be found in the work of Zukauskas
and Ulinskas [1]. Some of the measurements are combined with measurements
of the local velocities and turbulence. However, no reports of measurements of
good quality that combines heat transfer and velocity /turbulence have been
found.

Different boundary conditions for the heat transfer have been used in the
cited measurements. For measurements made with concern to test numerical
simulations, a boundary condition with either constant temperature or con-
stant heat flux are of special interest because these boundary conditions are
simple to implement. However, in some experiment both the temperature and
the heat flux vary along the perimeter of the tube and special concerns are
often needed to keep one of them constant.

Several techniques can be used for heat transfer measurements. One tech-
nique is to use the analogy between heat and mass transfer, e.g. to use subli-
mation of naphthalene to estimate the Nusselt number [14]. However, the two
most used techniques are probably to either heat the tube with an electrical
current in a thin electrical layer on the surface or to heat {or cool) the inside
of a tube to yield a constant surface temperature by e.g. water or stream.

A constant heat flux produced by electrical heating of a plastic foil with a
thin gold coating is used in the present study. Baughn et al [20] have reported
thorough investigations of this technique and used it for measurements similar
to the present [19]. A general difficulty using electrical heating of a surface
is that materials that are electrical conductive usually also have high heat
conductivities. This results in tangential heat conduction that disturbs the
uniformity of the constant heat flux generated by the electrical heating. In the
case of the gold coated plastic foil the gold coating is very thin and tangential
heat conduction is therefore reduced to conduction in the plastic foil and the
support material.

As it is discussed in section 2.1.2 only the single measuring tube will be
heated in the experiment.
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Figure 2.11: The tube bundle sections for the wind tunnel. The position of
the measuring tube is shown with a x.

2.4.2 Experimental equipment

The experiments have been carried out in air in a wind tunnel with a closed
loop. The air is cooled to maintain a constant temperature at 20.0 & 0.1°C.
The test section of the wind tunnel has a length of 1.8m and a nominal square
cross seetion of 0.3 m x 0.3 m at the inlet. The test section is slightly divergent
to compensate for the growth of the boundary layer at the walls of the empty
test section. Upstream of the inlet of the test section the air is accelerated
through a contraction with an areal reduction of 12.94 : 1. The pressure
drop over the contraction and the pressure difference between the inlet and
the surroundings are measured with a Schiltknecht water micro manometer
(estimated resolution of 0.02 mm H,0). These pressure differences are used to
determine the mean velocity at the inlet, see appendix C.1. The mean velocity
at the inlet is regulated by setting the velocity of rotation of the blower. Some
minor Auctuations with a typical time scale of 10 seconds were observed for
the mean velocity. When this is considered together with the uncertainty in
t+he measurement of the pressure difference over the contraction, it is estimated
that the mean velocity can be determined with an accuracy of 2%.

The two tube bundle sections shown in figure 2.11 can be inserted into the
test section of the wind tunnel. The longitudinal and transversal pitches are for
tube bundle A: axb = 2.00x2.00, and for tube bundle B: axb = 2.07x1.04. In
both cases the tube bundle is constructed in an open ended box. Commercial
A5 mm steel tubes are mounted between two 5mm acrylic plates. The sides of
the box consist of 1 mm steel plates. Half tubes are mounted on the sides and
there is a gap of a few milimeters between the steel plates and the sides of the
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Figure 2.12: Measuring tube.

wind tunnels test section.

The tube bundles are prepared for measurements with a single hot-wire in
the space between two tubes in the same row. For further details about these
measurements, see appendix C.3.

The measuring tube is shown in figure 2.12. It consists of a gold coated
plastic film mounted on a tube made of cast acryl and with a wall thickness of
5mm. The plastic film is manufactured by Courtaulds Performance Films [21].
It has a thickness of 0.17mm and is made of transparent PET (thermoplastic
pdlyester). The gold coating has been sputter deposited in a continuous process
onto the PET film and the film is supplied in a 330mm wide roll. It has a
nominal surface resistance of 25Q and the gold coating is thin enough to be
somewhat transparent. It is estimated that the tangential heat conduction in
the gold coating is less that 1% of the tangential heat conduction in the PET
film and the heat conduction in the gold coating is therefore ignored.

The uniformity of the surface resistance has been tested by measurements
of several 20mm by 20mm pieces of the film. The variations in the central
parts of the film were found to be within +3% from the mean value. Near
edges of the film the resistance is somewhat higher and therefore a piece from -
the central 40 % of the roll was used for the measuring tube. This piece were
mounted by applying glue near two of the sides and then wrapping it around
the tube. Plastic foil was then wrapped around the film and a rubber rod was
used to apply pressure on the glued section of the film while the glue hardened.
This insured that the film was fixed tight and smooth around the acryl tube.
The outer diameter for the complete tube is D = 45 mm =+ 0.1 mm.

The electrical connections on the measuring tube are shown on figure 2.13.
Two electrodes made of copper foil is glued to the ends of the gold coating using
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Figure 2.13: Diagram over the electrical connections for the measuring tube

a silver loaded paint to ensure good clectrical contact. The length between the
edges of the silver paint were L = 225mm =+ .5 mm. A four-wire connection
was used for the electrodes so that the current supply and the measuring of
the voltage applied to the gold coating used separate wires. DC voltages up
to 30V were used.

Three thermocouples were glued to the back side of the PET film. The wires
consist of respectively chromel and alumel and has a thickness of 75 pm. ‘Small
track were made in the acryl tube to give space for the wires. Inside the tube
the wires are connected to thicker wires of the same material. The cold junction
of the thermocouples is used as a sensor of the upstream temperature. In this
way the voltage from the thermocouples are directly related to the temperature
difference between the wall and the upstream air. The thermocouple wires are
connected to copper wires using special connectors designed for thermocouples.
Furthermore, all the connectors are in the same insulated volume in order to
minimize local temperature differences. During preliminary measurements the
three thermocouples gave almost the same results and the middle thermocouple
was chosen for the final measurements reported here.

A manual switch box especially designed for small voltages makes it possi- -
ble to connect each of the thermocouples to a voltmeter. The voltmeter (So-
lartron 7151 computing multimeter) has a resolution of 0.1 pV corresponding
to 0.0025°C. A stepping motor is via a gear able to rotate the measuring tube
in steps of 0.36°. All movements were ended with a rotation in the positive
direction in order to avoid slack. The tube could be positioned with an accu-
racy better than 1°. Both the voltmeter and the controller of the stepmotor
were controlled by a personal computer. :
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2.4.3 Data reduction

Although the measuring tube has been designed to give a constant heat flux
from the surface, small variations oceur and they will therefore be modelled
in order to achieve the correct Nusselt number. The heat flux g;; produced
by the electrical heating of the gold coating is absorbed by three processes:
Convection ¢",, to the air, conduction g%, from the gold coating into the
measuring tube and radiation ¢4 from the surface to the surroundings. It is
q”.,., that is used to determine the Nusselt number. The heat balance can be
written
q{:‘:’mv = qgl - qgand - qgad‘ (21)

If the tube bundle is assumed to be a large, blackbody surface with the
same temperature as the upstream air then the radiation can be expressed as
g4 = €,0(T4 — T where ¢, is the emissivity of the gold coated film and o is
Stefan-Boltzmann’s constant. The conduetion ¢7,,, can be found from a finite
difference analysis. This is shown in appendix C.4.

If the electrical resistance of the gold coating were constant, gy could be
found from the voltage V,; between the electrodes and the surface resistance.
However, two effects will be taken into account:

e Nonuniformities in the gold coating causes a nonuniform surface resis-
tance.

e The resistance depends on the temperature.

It is assumed that the local surface resistance can be found as R" = Rf(1 +
B(T — Tjs)) where 3 is the temperature coefficient of resistance and Ry is the
local surface resistance at T3. Both Rj and 5 can be found by calibration.
The local electrically produced heat flux can then be assumed to be described
with the equation

(Va/L)?

"o
% = BRI+ AT - Tp))

The local heat transfer coefficient can now be found as h = gf,,./(AT).
Following [19] the temperature difference AT is the difference between the wall
temperatures for respectively the heated tube and the unheated tube under the
same flow conditions. In all the measurements these two temperatures were
measured in two separate runs. Since the measured wall femperature repre-
sents an adiabatic wall temperature, it will differ slightly from the upstream
temperature. During the measurements this difference did not exceed 0.15°C
at any position. :

(2.2)

2.4.4 Measurements and results

Some simple measurements of the local mean velocities have been performed
with a single hot-wire. They are described in appendix C.3. The purpose is
to test whether the flow is in reasonable agreement with flow found by LDA
measurements. The flow is highly turbulent and the results therefore not very
accurate. The measurements indicate that the mean flow is quite similar to the
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flow found by LDA-measurements. The measurements of the local turbulence
intensity are quite uncertain and no conclusions sbout this could be drawn.

All the calibrations have been performed with the measuring tube in the
empty wind tunnel. First the thermocouples and the temperature coefficient
of resistance were calibrated using different temperatures of the air in the
wind tunnel. It is estimated that the uncertainty in the measurement of the
temperatures is less than 0.1 K. Then the Jocal surface resistance was found
by measurements of the heat transfer at the front stagnation point. This
surface resistance differs less than 1% of the value found from a measurement
of the total resistance of the gold coating. The details of the calibrations are
found in appendix C.2. Here it is also shown that the emissivity of the gold
coating is quite low and therefore ¢/, is neglected in the determination of the

Nusselt number.

Before each measurement the measuring tube was kept at constant heating
and flow conditions for more than 30 minutes to ensure that the tube had
reached a stable temperature. The measurement was started with the ther-
mocouple at ¢ = 0° and then moved in steps of 1.8° until ¢ = 180°. At each
position at least 5 single measurements of the thermocouple voltage V; were
performed with intervals of 12 seconds. The voltmeter was constructed to
return a voltage that was a result of an average of samples taken over approx-
imately 9 seconds.

At each position the last 4 or in some cases the last 10 single measurements
of V, were used to estimate whether stable conditions were reached. This was
done by calculating the difference between the average values of the first half
and the last half of these measurements. If the difference was less than a tem-
perature change corresponding to 0.025 K /minute, then the average value of
the last half was assumed to be the wall temperature. It should be noted that
after steady conditions were reached the fluctuations of the single measure-
ments of V, were significantly larger on the rear part of the cylinder compared
to the front part. '

Figure 2.14 shows two separate measurements of the wall temperature taken
for the same row, the same tube bundle and the same heating and flow condi-
tion. The solid line is measurements taken with steps for ¢ going from 0° to
180° and the dashed line is measurements taken with steps going from 180° to-
360°, but plotted so that the angle from the front stagnation point is in the in-
terval 0°~180°. The figure shows that these temperature curves are quite close
to each other, and that the Nusselt number therefore is symmetrical around
the stagnation points. The figure also shows that there is no significant differ-
ence between measurements taken with steps that approached or moved away
from the front stagnation point, respectively. This indicates that the check for
steady conditions described in the previous paragraph is successful.

The final measurements consist of four measurements in tube bundle A
and one measurement in tube bundle B. An overview of the measurements is
chown in table 2.2. This table also shows the mean Nusselt number Nu (found
as described in section 2.1.1) compared with the mean Nusselt number found
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Figure 2.14: Local wall temperature (shown as AT') on 4. row in tube bundle A
with Re = 41500. Solid line shows positive angles and dashed line negative
angles, measured from the front stagnation point.

from the correlation [1]:

0.2 0.25
Wa = 0.35 (-‘;-) RePS0 py38 (%} . (2.3)
This equation is supposed to be valid in the subcritical flow domain and for
(afb) < 2. It has been evaluated using data from table C.1 and assuming
that the Prandtl number at the wall Pr, is equal to the upstream Prandtl
number Pr,. The difference between the measured Nu and Nu from (2.3)
in percent of the latter is also shown in table 2.2. The difference is about
5%, positive for tube bundle A and negative for tube bundle B. Another
correlation that is expected to be valid for case 1 from table 2.2 is given by
[22]: Nu = 0.229 Re™%*2, This amounts to Nu = 167.7 which is quite close to
the measured value. It is probably reasonable to assume that the accuracy of
(2.3) is not much better that 5% and the variations from the measured values
are therefore acceptable. '

In figure 2.15, plots of the Nusselt number for all the measurements are
shown together, and in figure 2.16 two of the measurements are compared
with a similar measurement by Baughn et ol [19]. The local Nusselt number
has been normalized by Re®® since equation (2.3) indicates that the mean
Nusselt number depends on the Reynolds number with an exponent of 0.60.
All the curves for measurements in tube bundle A are quite close to each other
and the correlation with Re’® is therefore reasonable. A small difference in the
shape of Nu are seen; for the high Reynolds numbers the Nusselt number is
slightly lower near the front stagnation point and somewhat higher and with
a smaller variation for ¢ = 80°-130°.
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case | tube bundle | row | Re | Nu, exp. | Nueq. (2.3) | difference
1 A 4. | 34100 | 168.5 162.1 3.9%
2 A 4. [ 41500 190.7 182.3 46%
3 A 4. [ 70000 | 263.7 248.6 6.1%
4 A 4. [ 91200] 310.0 292.4 6.0%
5 B 6. | 40000 192.8 203.9 54%

Table 2.2: Measurements of local heat transfer in tube bundles A (a x b =
2.00 x 2.00) and and B (a x b = 2.07 x 1.04).
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Figure 2.15: The measurements of the local Nusselt number. Refer to table 2.2

for key.
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Figure 2.16: Local Nusselt number for case 1 (1) and case 4 (2) (see table 2.2)
compared with measurements by [19] for Re=34500 (3) and Re=84600 (4).

The measurements of Baughn ef ol [19] are in fair agreement with the
present measurements. The differences from the present measurements seem
to be that the first minimum in Nu is located about 15° closer to the stagna-
tion point and that Nu for ¢ greater that 90° has a higher level, but smaller
variations. The measurements of Baughn et ol were performed in the third
row. The same difference between the local Nu in the third and the fourth row
was found with measurements [5] using the same tube bundle and wind tunnel,
but another measuring tube than in the present measurements. It is therefore
plausible that this effect occurs because the flow and heat transfer is not fully
developed at the third row even though the mean Nusselt numbers are quite
close. It could therefore also be questioned whether the flow and heat transfer
around the fourth row represents fully developed conditions. However, this
can only be tested through measurements with more rows that the present.
Unfortunately the LDA. measurements in section 2.2 do not cover the first four
tubes.

The measurements in tube bundle B (case 5) show that the level of Nu is
higher than for tube bundle A. This is in agreement with the presence of the
term (a/b)%? in equation (2.3). Here the term is only valid for 3 < (a/b) < 2.
As it is seen in table 2.2 the correlation (2.3} overpredicts Nu for tube bundle B
while it underpredict Nu for tube bundle A. This might be because (a/b) = 2
for tube bundle B and the correlation might therefore be less reliable for this
case. The local Nusselt number also has two minima, but these are located
closer to the rear stagnation point and Nu here have a smaller variation than
Nu has in tube bundle A. This corresponds well with the fact that the flow in
tube bundle B has a smaller recirculating region than tube bundle A.

29




2.4.5 Conclusion

The local heat transfer from a tube in the middle of a tube bundle has been
measured for two different bundle configurations. This is done for four different
Reynolds numbers for the first tube bundle and for & single Reynolds number
for the second one. The Reynolds numbers are chosen so that they are in the
same range as typical industrial applications of tube bundies. The results have
been shown to be in good agreement with experiments and correlations found
in the literature.

Simple measurements with a single hot-wire indicates that the flow in the
tube bundie used for LDA-measurements in section 2.2 and in the tube bundle
used for heat transfer measurements are in good agreement with each other.
Although many authors state that the heat transfer in a tube bundle is fully
developed from the third or fourth row, it would be interesting, especially for
tube bundle A, to verify this by measurements in the first four rows. The LDA-
measurements indicate that there are enough tubes in each row to eliminate
the significance of the side walls. This is, however, a subject that also could be
interesting to investigate further. These problems are probably less important
for the measurements in tube bundle B since the tubes here are more closely
packed and since the measurements are performed in the sixth instead of the
fourth row.

The most important source of uncertainty in the measurements of the local
Nusselt number Nu probably comes from the determination of the wall tem-
perature. It is estimated that the uncertainty of the Nu is about 3 % in most
cases, but it might be a little higher at the extrema in Nu on the rear side of
the tube. At these extrema, the internal heat conduction takes it largest values
(typically 5%) and this gives both larger uncertainties and a disturbance in
the uniformity of the heat flux. .

The design of the measuring tube could be further improved. Especially,
it would be interesting to use a even more insulating material (e.g. some sort
of foam) instead of acryl to support the gold coated plastic film. 'This would
reduce internal conduction inside the tube and thereby improve both the uni-
formity of the convective heat flux and the accuracy of measurement of the
heat transfer coefficient. A more accurate arrangement for the calibration of
the thermocouples would also give some improvement of the overall accuracy.

2.5 Closure

The measurements reported in this chapter have been used to establish a
database that is suited as a test case for validation of calculations of turbulent
fiows with heat transfer. Together with the LDA-measurements of Simonin
and Bacouda [10] the present measurements form test cases for two quite dif-
ferent staggered tube bundles. These data can therefore be used to give a fair
impression of how well calculations models are able to predict the flow and
“heat transfer in a staggered tube bundle.
There are several possibilities of improving the reliability and the accuracy
of the measured data. However, it is judged that with the present state of the
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methods and models for predicting turbulent heat transfer in complex flow,
the present set of data will be able to give a good impression of how well a
calculation reproduces the actual flow and heat transfer in a tube bundle.
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Chapter 3

Models for turbulent heat
transfer

3.1 Introduction

With the rapid development of the performance of computers, numerical sim-
ulations of turbulent flow and heat transfer has the possibility of becoming
more realistic. This chapter describes some of the most used turbulence mod-
els and boundary conditions with special attention to heat transfer. According
to Launder [23] the local heat transfer coeflicient, even for a gaseous flow where
the molecular Prandtl number is close to unity, is determined to a very large
extent by the variation of the effective diffusivity within the immediate vicinity
of the wall. This indicates that the modelling of the near-wall turbulence is of
special importance when considering heat transfer. The near-wall modelling
will therefore be given special attension in this chapter. It will only consider
incompressible flow.

3.2 Turbulence models

If the flow variables are assumed to be described by the Reynolds decomposi-
tion f = F+ f' where F' is the mean value of f and f! is the fluctuation about
the mean, one can obtain the time averaged continuity, momentum and scalar
transport equations (for brevity fluctuating variables are from now on written
without ’ ):
ou;
’ Bxi B
oU; oU; 10P 0 oU;  odU; ou;t;
—_— — = —— — = F; 2
ot ’Ba:j ,08335 * 8:53— l:V (BIL'J + 6:1:,)] Bl'j t 5 (3 )
00 00 7, (5[] u:0
— +Uim— = r — S. 3.3
ot *Var, T o [ amj] z; (3:3)
The equations are written in cartesian tensor notation. U; and F; are velocity
and body force component along the coordinate direction ¢ (i =1,2, 3), Pis
the pressure, S a source term and I the molecular diffusivity of the transported

0, (3.1)
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scalar ©. The equations contain the Reynolds stresses %i; and the turbulent
scalar flux u;0 as additional unknowns whose values have to be determined
for the closure of system (3.1)-(3.3) to be possible. This requires a turbulence
model.

There is a significant effort going on trying to improve and develop bet-
ter turbulence models. Recently there has been several reviews concerning
this topic. A few of these are [23-28]. This note will therefore only give a
brief introduction to two common turbulence models: the k-6 model and the
differential Reynolds Stress model (RSM).

3.2.1 The k-¢ model

The k-e¢ model is based on the Boussinesq eddy viscosity concept. The main
effect of turbulence is to increase transport of the conserved properties and
dissipation effect with respect to the laminar state. In a laminar flow these
processes are controlled by the viscosity of the fluid and one can therefore
represent the effect of turbulence by introducing a turbulent viscosity v4. The
Reynolds stresses can be rewritten as a function of the turbulent viscosity z;

as:
oU; oU; 2
uiuj = —i (axj + "a—:;:'j-) ~+ gJUk (34)
where 1
k= §Uz‘ (3.5)

is the kinetic energy per unit mass associated with the turbulence. Similarly,
an eddy diffusivity I'; must be defined for every transported scalar:

0 = T, (a@). | (3.6)

Bz

~ Turbulent diffusivities of momentum and a scalar such as thermal energy can be
related, by Reynolds analogy, using a turbulent Prandtl (or Schmidt) number:

4

=5 (3.7)

Ty
In most models o; is assumed to be a constant, at least for fluids whose molec-
ular Prandtl number is of the order of unity. Commonly used values in gases
are 0.7 for free shear layers and 0.9 for wall bounded flows.
Introducing (3.4) and (3.6), the equations for the average transport of mo-
mentum and scalars become

O Ly, 0% 10 0 [(u+ v;) (aU" + GUj)] +F, (3.8)

ot jéx—j - —56375 83:;- 8l'j Bcci
o0e 00 d 00 :
*37 -+ U;%—: = 5.’5-: [(P -+ Ft) 5}:] + 5, (3.9)

where the isotropic part of the Reynolds stress tensor %cﬁ-jk has been lumped
together with the average pressure in the variable P. Egs. (3.8) and (3.9)
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together with a relationship for v form a closed system of equations which can
- be solved numerically. The k-e¢ model is one of the most popular and most

tested models for this. It comsists of two partial differential equations: one
for the turbulent kinetic energy k and one for the kinetic energy dissipation
e. A transport equation for € can be derived from the Navier-Stokes equations
starting from the definition:

(3.10)

Due to the dominant role played by small scales, which have no characteristic
length, but simply adjust themselves to the energy level of the larger eddies,
the modelled form of € heavily relies on “dimensional analysis and intuition”
[24]. The standard form used in the k-¢ model is:

Be Je e (U, OU;\OU; 0 (v Oe e &
%LU = e o) S ha—F, 311
at +U 833;7 i1 k (83:1 + 3I1) ij +327k (Ge Ba:k) ¢z k +o k ( )
ot ’8:::,— - 637_,' 33?,' 837_-,- sz O 333k
F, and F, are the body force, see Rodi [29] for further details. The turbulent
viscosity is modelled as

) —e+F.  (312)

2
v = cp-k?. (3.13)
The model contains five empirical constants which has to be adjusted through
experimental data. For incompressible flows the commonly accepted values
are [29]:
Cu C1 cg Ok Oe
009 144 192 10 1.3

3.2.2 Reynolds Stress Model

Transport equations for Uuit; and ;8 can be obtained from the instantaneous

velocity and temperature by applying the Reynolds decomposition, taking the
fluctuating part, multiplying by u; and averaging. The resulting equation for
U 18:

auiuj U, Bu,-uj

ot + Oxy. - .
___oy; oU; 1 dp Op 32?1—3’!1;
[Uzukaxk +'U'3’Uk8$k} + ; (Uzga + Ug%:) + v———ax%
o0 3ui 3’(13' ———
. (wu;me) — 2v By Ok + (fiuj + fj'ui) - (3.14)

The term in (3.14) involving the gradient of pressure fluctuations is usually
decomposed into turbulent diffusion by pressure and the so-called pressure
strain term:

1 dp dp 8 {%p P . p (Ou; Ou;
a2y, ) = 2 (W4 By ) 4 2 (24 50, G
p “ oz; Y95, Oz, ( o ¥ + p I + p \9z; * ox; )’ (3.15)




and (3.14) is then written as

Chhat ] _
ot TV
e s’
Cs
iy ?_Ul — olU; +£ du; N ou; + P RTETE
Yk g, T Rz | p\Oz; O ozl
-P; &5 Dy
: ™ T Ty g
- [Ugﬂjuk + u—JE(Sik + -u—Eéjk} - 214’--111—--—7“’:i + (f,;u_—; + ijz’) (3.16)
Oy P p ] Orp Oz, S L
it —€ij Fi
_Dt, ij
ij

The resulting equation for ;8 can be found using a similar procedure:

ot “omr
C;
80 —8U; p [ a og Ou; |
_—z_"“"__.._ ——— -} - F i 8
4 “’“axk ”’“an,c + p (3334;) + Oxx. [ u Oxy Tt or j
s —— — =,
— 4501 —Li02 g e
P — . — — e 1 . .17
Bzx ["'ukg o "“] 2 V) b B L (317)
_Bt ] —E,;g #
i

The symbolic terms in (3.16) and (3.17) have the following physical inter-
pretation: C;; and Cjg is the convective transport, P;; and Py is the production,

¢:; and ¢yg is the pressure strain, Df; and D%, is the viscous transport, D§j and
D, is the turbulent transport, €; and ¢; is the dissipation and Fj; and Fjp
is body forces (e.g. buoyancy force). In e.g. buoyant situations an additional
equation for the scalar fluctuation 02 is necessary to compute the body force
F.. See Rodi [29] for further details.

The pressure-strain, the diffusion and the dissipation terms of (3.16) and
(3.17) contain correlations for which model approximation must be introduced
if the system is to be closed at the level of the stress-equation. This is called
second-moment closure. The most used closure is called the Basic Closure.
Tt is essentially the form developed by Launder, Reece and Rodi [30]. It as-
sumes a high Reynolds number and therefore the viscous transport Dy; and
D, is neglected. It consists of approximations for the unknown terms and an
additional equation for . '

The first unknown term is the turbulent diffusion Df;. It contains an ad-
ditional unknown namely the triple correlation %;u;Ur. Hanjalic and Launder

[31] has obtained an expression for this term by a severe simplification of the
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exact transport equation for Tt Uk

. ,k ___BUjuk
— U Uy = cs-e— Uy oz +4; 5z + Ty .
l ! l

T L } : (3.18)

where the constant is estimated to ¢, = 0.11. In the Basic Closure a simple
gradient-diffusion hypothesis (3.19) proposed by Daly and Harlow [32] is often
used instead of eq. (3.18) . The pressure-induced diffusion in Di; is usually
neglected although there seems no direct evidence to retain or neglect the
assumption [30]-

The form found by Gibson and Launder [33] is often referred to as the
Basic Closure. Following [25] it can be summarized as:

Reynolds stress equations:

0 k 0u;u;
L — Ut — )
D,LJ Cg a.’l:k [ukuz P Bx; } , (319)
2
€ = —5(51-3-6, (320)
bi; = Gij1+ Gij2 + bijs + Pigu (3.21)

where ¢, is used only in wall flows. The terms ¢s;1, @ije and @ijw are called
return-to-isotropi, rapid distortion and the wall reflection term. The terms in
eq. (3.21) are modelled the following way:

€ 1
qbijl = —CrE('lLiﬁj — géz-jukuk), (322)
1 1
Gijo = —C2 [(RJ - é'éijpkk) —(Cy — géijCkk)] . (3.23)
1
bijs = —ca(Fiyj— §5iijk), (3.24)

L€, 3 3__
¢ijw = {C1E(Ukumnknm5ij - Eukuinknj - éukujnkni)

3. 3
+ o Grmonanimdi; — §¢ik2nknj - §¢kj2nkni)
k3/2

—  h{Pkmanenmbs; — %ﬁbikl’.nkni - gékjaﬂkni)}clmn (3-2_5)
where ny, is a unit vector normal to the wall and z, is the distance from the
wall. The term (Cy — 36;;Cix) in eq. (3.23) is not always included. Tt is
strictly essential to render the model independent of the observer, although it
is of little practical consequence except in strongly swirling flows [34]. In the
wall reflection term ¢;;,, the factor k32 /{ciez,) acts to reduce the effect of @i

with increasing distance from a wall. The constant ¢; is equal to k/ cf;/ 4,

€ - equation:
2

Je O¢ a k Oe 1 L€ €
— 4+ U,—}— = CE-EU; (uku;-e-—a;;) -+ —2'C€1 (Pkk + Fip) A - Cegz. (3.26)
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The coefficients in (3.19) to (3.26) are:
e € 2 € ¢ & & «a Ce’  Ca . Ce2
022 18 06 ¢, 05 03 0 25 015 144 1.92

* Scalar-Flux Equations:

0 k Ou;f
e = Cop— |G — 3.27
Dig _Ce B7r [ukwe 971 ] ) ( )
e = 0 (3.28)
Gis = Qi + Pz + Gios + Pisw- . - (3.29)

The terms in (3.29) are modelled the following way (s, wall flows only):

€

dig1 = —Calguig, (3-30)
Pdiga = —co2DFip2, (3.31)
gz = —co3Fis, (3.32)

k3/2

€—
Digw = {Crs],'k'ukgnkni + ChoPraaTiT + CozDraamini} o
[CLny

(3.33)

The coefficients in (3.27) to (3.33) are:
Co Co Con Cos  Chy Cho Cha
015 29 04 04 025 0 O

3.2.3 Algebraic Reynolds stress model

The Basic Closure in the previous section consists of 11 partial differential
equations (or 15 if a scalar equation is included). Even with ‘modern numerical
schemes and computers the model is quite expensive. There has therefore been
made attempts to simplify the model. It is possible to make a model based
on the equations for k& and ¢ where the Reynolds stresses %;%; are found by
algebraic relations. These models are often referred to as the algebraic stress
models (ASM).

An equation for k that is based on the Reynolds stresses %%; instead of the
eddy viscosity v, can be made by taking the trace of the T -equation (3.16)
with its modelled terms for the three normal stresses (2, i = 1,2, 3):

ok =~ __ Ok J [k Ok oU;
kil e = coe— | S —— | — T — — .34
Y +U; oz, csaxk (Eﬂk?ﬂaml) Uy B2, €+ Ff, (3.34)
b ~ -~ e st
Ck Dy, —F

where C is the convective transport, Dy is the diffusion and F; is the produc-
tion of k. P is related to the corresponding term in the @;-equation F;;, by
Po=1} P

Derivatives of 7;m; appear only in four terms in the Zu;-equation (3.16):
the rate of change J@;@;/0t, the convective transport Cj; and the diffusive
transport terms DY and Df;. Rodi [35] has proposed an algebraic Reynolds
stress model based on the assumption that the transport of %% is proportional
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to the transport of k {with the factor Tz /k). The four terms containing
gradients of T;; can then be modelled by eq. (3.34):

o v uu; Ok Uy
BtJ +Gij—D,;j—D§j= -TJ' (-a—t'-}-ck—Dk) IT'?'(—PJG—E-FF;;).
(3.35)
This is & good approximation when the temporal and spatial change of
Tu;/k is small compared with the change of TG itself. By substituting eq.
(3.35) into the T;-equation with the modelled term for ¢; and ¢ (with

iz = —C2(Pyj — 30:;Pex) ) the Reynolds stresses are found as
Wilj _ g&j + (1—c)(Py — 365P) + (1 — cs)(Fij — 26 Fy) + ¢ijw‘ (3.36)
k 3 P+ Fe+(a—1)e

An algebraic relation for u;f can made using the same procedure, see [29]:

e —3U;
— =+ (1— — + F ifw
oD 2 [uzu; 5z, + (1 — co2) (ulgaa:; + 9) + g ]

3.37
k B+ Fy + (2019 - 1)6 ( )

In e.g. buoyant situations, an additional equation for the scalar fluctuation
@2 is necessary to compute the body force Fyp. See Rodi [29] for further details.

Egs. (3.36) and (3.37) together with the equations for k (3.34) and € (3.26)
form the Algebraic Reynolds stress model. It makes it possible to take into ac-
count some of the anisotropy of the turbulence with a computational effort not
much larger than for the standard k-e model. Tt also offers a better treatment
of buoyancy.

3.3 Wall laws

The wall boundary conditions have to be given special attention for the tur-
bulence models presented in the previous section. There are two problems in
the near-wall region:

1. Gradients are very steep in the near-wall region. A fine grid is therefore
needed and this will make the computation more expensive.

2. The presented turbulence models are only valid for high Reynolds num-
bers. They are therefore not applicable in the near-wall region.

The common solution to these problems is to use the logarithmic wall laws
described in this section.

Tt is assumed that the flow is approximately two-dimensional near the wall.
The coordinate system used here has the first axis parallel to the wall pointing
in the direction of the local velocity and the second axis normal to the wall. In
general, the boundary condition will have to be transformed into the coordinate
system used in the calculations. This is fairly simple for a vector like the
velocity, but more complicated for a tensor like the Reynolds stresses u%;.
The transformation for @w; is shown in appendix Al
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Figure 3.1: _Measureménts of velocity Ut vs. distance from the wall ¥ in a
2-dimensional channel flow (after Laufer [36])

3.3.1 Standard Iogarithmic.wall law

Experimental results (eg. a fully developed channel flow, see figure 3.1) show
that the velocity near a wall can be described by the equation:

= %In Eyt (3.38)

where k = 0.4187 and E = 9.8. The equaﬁion is valid for y* > 30. The
wall coordinates, U+ and y™, are defined using the wall friction velocity U, =

-/ Tw/ 0

‘ Ut = .éi v (3.39)
T Tw/P
Tw
L. /e (3.40)

v v
For scalars, a similar wall coordinate ©%1 can be defined:

oF = Pepy/ Tw/p(Ow — ©)

7 , (3.41)
and ©% can be expressed as a function of U™t
O* = op(U* + P) (3.42)

“where o, = 0.91 and P is an empirical function (the so-called “pee-function”)
found by Jayetilleke [37]

o \3/4 o
P=924 l(—) — 1] [1 + 0.28 exp (—0.007——)} . (3.43)
: Jg Og

In (3.43) ¢ is the Prandtl number for the general scalar ©.
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In general, the shear stress at the wall 7, is not known. However it can be

_estimated by assuming that the near wall layer is a simple shear layer in local

equilibrium, where the production of & is equal to the dissipation e. A near
parallel flow approximation of (3.12) then reduces to:

" (%g)z —e (3.44)

Using (3.13) and approximating the wall shear stress by the shear stress near
the wall (7, ~ 7oy = pr:0U/8Yy), T can be found as

Tw = €,/ pk. (3.45)
In some flows 7,, is known and eq. (3.45) can be used as a boundary condition
for k. When T, is not known a boundary condition for £ must be found by
other means. Sections 3.3.3 will describe an alternative boundary condition
for k.

Eq. (3.44) can also be used to estimate ¢ in the near wall region. By
inserting eq. (3.13) in eq. (3.44), rearranging and using (0U/0y) found from
eq. (3.38), € can be expressed as

cp3/4 372

KY

€= (3.46)
The wall laws described in this section are sufficient in simple flows such as
pipe flow. In more complex flows there will be problems. An example following
from the definition of 8% in eq. (3.41) is that the Nusselt number falls to
zero at separation and reattachment points, while experiments often show the
maximum levels of heat transfer at reattachment. A remedy for this problem
will be shown in the next section.

3.3.2 Modified Wall Coordinates

As clearly seen in figure 3.1 there is a region close to the wall (y+ < 11) where
eq. {3.38) is not valid. In this region viscous forces begin to dominate the flow
and here another approximation can be used: '

Ut =y*. (3.47)

The influence of this region can be approximated by assuming that the flow
changes abruptly from fully turbulent to viscous behaviour at a distance y; =
11. U+ should then be found from (3.47) in the viscous region and from (3.38)
in the turbulent region. '

A set of modified wall coordinates that are more capable of handling com-
plex flow can be defined following Chieng [38] and Launder [23]. The modi-
fied coordinates are based on the Prandtl-Kolmogorov formula from the one-
equation turbulence model:

vy = c k2. | (3.48)
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Near the wall, the length scale [ can be assumed to increase linearly with the
distance from the wall, { = ¢;y. Eq. (3.48) then takes the form v; = cu ik ?y.
By approximating 7, with the shear stress 7z in the turbulent region near the

wall we get
oU

Tw -"_‘;' Tzy = pfi*kl‘m —8; (349)
where £* = ¢,¢; is approximately 0.22 [23]. In a fully turbulent flow of constant
stress, the turbulent kinetic energy is also essentially uniform so eq. (3.49)
may be integrated to give a logarithmic law similar to (3.38), but in the new
modified wall coordinates

Ukt? 1

—— = —In E*y". 3.50)
P (

E* and y* are found by assuming that the transition from fully turbulent
+0 laminar behaviour occurs abruptly at the distance y, from the wall. The
velocity—distance relation at g, must therefore satisfy both eq. (3.50) and the
viscous relation U = (7,/p)y and from this y* and E* can be found to be

U*

il

‘ yk/?

= 2 3.51
y o (3.51)
E* = ————exP; y”). (3.52)

In (3.51) k, can be used as an approximation of k, [23].

A similar expression in modified coordinates can be made for a scalar ©.
If the turbulent scalar diffusivity is assumed to be o' times the turbulent
kinematic viscosity then in a layer with uniform scalar flux the flux can be

found using eq. (3.49)

T K* 1/2 9
o _F 12, % 0, - 0), 3.53
pCp  Op yay( ) ( )

and this can be integrated to

— 1/2 -
* = pcp(ew e)k — ﬁln E*'y*, (3.54)

T K*

e

where E* = exp(k"y.0/0e)/y:. Ea. (3.54) can be rewritten using a modified

“pee-function”

e* = oo(U* + P*). (3.55)
" _Egs. (3.50) and (3.55) are analogous to egs. (3.38) and (3.42). In a equi-
librium layer with constant stress they should give identical results and by
using eq. (3.45) it follows that U* = ¢;/*U*, y* = Myt v = ¢;*/*x and
P* = ¢;'*P*. From these relations the constants become y* = 20.4 and

E*=54. :
The two formulations (U*+ and U*) give identical behaviour in near-wall
layer with constant stress. The rationale behind the U* coordinates is that
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Figure 3.2: Assumed distribution of variables across near-wall control volume

they should give forms that better extrapolate to conditions far from equilib-
rium: where the stress varies rapidly with distance from the wall, and where
generation and dissipation rates of turbulence energy are not in balance. An
example is that the use of U* gives, for a fixed y*, a wall shear stress that is
directly proportional to the near-wall velocity, and the wall shear stress will
simply change sign if the velocity does. Another example is the use of ©* does
not require the Nusselt number to vanish if the wall shear stress 7, is zero pro-
vided k, is not zero. In the examples there is a much more plausible behaviour
near separation and reattachment than that implied by the traditional law of
the wall.

3.3.3 Boundary conditions for &

If the wall shear stress 7, is known and the near wall layer can be approximated
by a shear layer in local equilibrium, k ecan be found by eq. (3.45) as & =
Tw/ (,oc:/ 2). However, in general 7,, is not known and k is usually found by
solving the equation for k. Using the symbolic form presented in eq. (3.34)
this equation takes the form (without source terms from body forces):

%lg +Cr=Dr+ P, —e (3.56)
To solve eq. (3.56) a boundary condition is needed. If the viscous sublayer can
be assumed to be small a simple boundary condition is a zero gradient of k at
the wall: 0k/dy = 0. In flows where the viscous sublayer is a significant part
of the near wall cell, a more thorough treatment of the terms in eq. (3.56) is
required. This is illustrated in figure 3.2.

As with the velocity, the near-wall control volume is imagined to have a
viscous sublayer up to the distance y, from the wall where there is an abrupt
change to a fully turbulent region. In the turbulent region the viscous transport
can be ignored and in the viscous sublayer the turbulent stress is negligible.
The kinetic energy & is not negligible in the viscous sublayer and experiments
suggest a parabolic variation [23]:

k= ky(y/y.)*. (3.57)
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To solve eq. (3.56) the mean contribution of the right hand terms has to be
found. Following eq. (3.57) the diffusion of % is zero at the wall and therefore
the net diffusive flow to the control volume is that entering the north face. To
find the mean value of € the two regions have to be integrated separately. In
a sublayer it may be shown [39] that

1/23y 2
€ =2V (azy ) . : (3.58)

Substituting for & from eq. (3.57), € takes the constant value in the viscous

sublayer:
_ 2vk,

€= 7
In the turbulent region e can be determined by eq. (3.46). Integrating over
the control volume the mean value € is found as

g AIAE32
ez = [Tedy = Whe | G In (ﬁ) . (3.60)
UYn JO Yoln KEln Yo

(3.59)

The mean turbulence energy generation P is also found by integrating over
the control volume. The turbulent shear stress is assumed to be uniform and
equal to 7,, in the turbulent region and zero in the viscous sublayer:

— 1 w7, 0U Tw Un — U,
P=— [ Z2—dy=——""— 3.61
vl POy P (3:61
and substituting U found from eq. (3.50), P is found as
5 _ (Tw/P)2 Yn

In the evaluation of (3.60) and (3.62) k and 7, are assumed to be uniform
over the turbulent region and the linear variation showed in figure 3.2 is thus
not used. However, the sensitivity of the equations to moderate variations in
k and i3 is not greaf: and, moreover, k and Wu; usually vary in the same
sense. Chieng and Launder [38] evaluated eqgs. (3.60) and (3.62) assuming a
linear variation of energy and shear stress and this lead to a very cumbersome
formula for €.

It is easily seen that at local equilibrium (where (7,,/p) = ¢/?k) P equals
if the viscous sublayer is neglected. Near separation and reattachment 7, falls
to zero faster than k and in such regions P will be considerably less than €.
In complex flow egs. (3.60) and (3.62) therefore give better results than wall
laws based only on the local equilibrium assumption.

3.3.4 Boundary conditions for %w; and ;0

As with the boundary condition for £, a simple boundary condition for #7; and
u;0 is a zero gradient at the wall, e.g. 0u;w;/0y = 0. This boundary condition
is valid for any coordinate system and there is therefore no complication arising
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from coordinate transformations. The boundary condition assumes the viscous
sublayer to be small. In flows where the viscous sublayer is a significant part
of the near wall cell, an analysis like the one presented in the previous section
could be made.

In a near-wall approximation the Reynolds stress 7, T; can be approximated
as Wil & Tw/p- This can be combined with the zero gradient condition for
uiny, Ugts, Usts and ;9 and by setting Witz = Uzus = 0. This boundary
condition can, however, give difficulties in codes where a transformation of the
boundary condition is needed, because the transformed boundary condition
will be a combination of Dirichlet and Neumann conditions.

Another possibility that overcomes this problem is to obtain a Dirichlet
boundary condition from the Algebraic Reynolds Stress model by assuming a
local -equilibrium layer. This calculation is shown in appendix A.2 for flows
where body forces do not contribute to the wu;-equations. The result is

I

wap = 1.098k,
wa = 0.2476k, - (3.63)

UzlUz = 2k — Uy — Uals.

Tt is assumed that & has been found in the near wall cell by solving the equation
for & (using terms from (3.60) and (3.62)). The conditions for the remaining
Reynolds stresses are again Uiy = Tw /p and T7G3 = Ttz = 0.

Tt is interesting to see, that when this boundary condition for T us is re-
lated to the Algebraic Reynolds model in a local equilibrium layer {see Ap-
pendix A.2) it turns out that the value of the constant ¢, should be ¢, = 0.065
instead of the value ¢, = 0.09 used in the k-¢ model. The reason for this is
that the k-¢ model has been calibrated in a free flow. Some authors, e.g. [40],
use the value ¢, = 0.065 in the calculations near the wall. Both values will be
tested in in chapter 5.

In Appendix A.3, a similar boundary condition for u;0 is derived from the
Algebraic Reynolds model in a local equilibrium layer. This is more compli-
cated that the condition for %;w;, because it involves gradients of both velocity
and temperature. This boundary condition has not been tested against the
alternative zero gradient flux boundary condition.

3.4 Low Reynolds number turbulence models

In the previous section, the problems with wall boundaries were solved by using
logarithmic wall laws. Another solution is to modify the turbulence models
from section 3.2 so that they are also valid for the low Reynolds number flow
near the walls. This solution is especially interesting in complex flows where
the wall laws often perform poorly. However, the low Reynolds number models
also have problems. They will need a solution of the boundary layer down to
approximately y* = 1 and will therefore need significantly more grid nodes
than the wall laws. '

Another problem is that the low Reynolds number models are only little
tested, especially in the case of complex geometries. They are also more dif-
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ficult to develop and validate because there exist few good measurements of
the turbulence very near the wall. In the recent years new progress has been
reached through the use of data for near wall turbulence obtained by direct
numerical simulations.

There has been made several proposals for models, but a “standard” has
not yet been found. This section will neither present these models nor give a
review of the present state of the models but only mention some references to
important models and reviews. The models are based on the high Reynolds
number models, which are modified to include viscous effects that dampen out
turbulent effects as the turbulent Reynolds number goes to zero.

A review of two-equation models has been given by Patel et ol [41]. They
tested several k-¢ models and compared the results with data from available
measurements. The model of Launder and Sharma [42] was one of the few
reasonably well performing models. This model is purhaps the most extensively
tested two-equation model for low Reynolds numbers. One of the problems
with these model is that there are no natural boundary conditions for . A
solution is to use a derived boundary condition like (3.58).

An interesting trend is two-equations models where € is replaced with an-
other variable. An example is the kw-model, e.g. the model by Wilcox and
Rubesin {43]. This model also performed reasonably well in the review of Pa-
tel et al. The new variable w is defined as w = ¢/k. Another example is the
k7-model where 7 is defined as 7 = 1/w = k/e. Speziale et al [44] suggest a
version of this model. An advantages with these models is that the variation
of both w and 7 are simple near walls. This makes the numerical modelling of
the problem in the near wall region easier.

Lai and So [45] have used results from direct simulations to investigate how
Reynolds stress models should be modified to acount for low Reynolds number
effects. In their paper they propose a modification of the basic Reynolds stress
model and in a later paper [46] also of the basic Reynolds flux model. In a
review [47] their Reynolds stress model is compared with other models.

The low Reynolds number models still need considerable further devel-
opment. This is due both to the known shortcomings in the high Reynolds
number models and to the lack of reliable data for the flow and turbulence
near walls. Concerning the recent direct simulations they have become a very
valuable tool and are presently used extensively for development of new mod-

els.

3.5 Closure

This chapter has given a review of the ‘standard’ models for modelling turbu-
lent heat transfer. This include the k-¢ model, the Reynolds stress and flux
models and the handling of wall boundary conditions with the use of wall laws.
It should be mentioned that several weaknesses are known for the models and
that an extensive research to improve the models is going on. However, it is
beyond the scope of the chapter to give a full review of this résearch.

45




Chapter 4

Computational Method

4.1 Introduction

This chapter will give a brief review of the computational method used in the
project. The method is a traditional finite volume method and the focus of the
chapter will therefore be the implementation of curvilinear grids and turbulence
models. The calculations are made with the commercial program FLOW3D
from Harwell Laboratory, UK. A more detailed description of the program
can be found in references [48-51]. However, several changes of the original
implementation have been made during the project and these will be described
in this chapter together with a review of the method used in FLOW3D based on
the reference [48]. Due to the complex mathematical relations, general tensor
notation will be used in this chapter instead of Cartesian tensor notation.

The finite volume method has been used for many year for the calculation
of heat transfer and fluid flow. A thorough description of the method used
on rectangular grids can be found in [52]. However most practical geometries
are too complex for simple grids like a rectangular grid. A common solution
is to use a body-fitted grid. In this project a general non-orthogonal grid will
be used. The basic idea is to use a curvilinear transformation to map the
complex flow domain in physical space to a simple rectangular flow domain
in computational space, see figure 4.1. A Cartesian coordinate system (') = -
(z,y,2) in the physical space is therefore replaced by a curvilinear coordinate
system (€) = (& n,() where the boundaries of the flow domain correspond
to surfaces & = constant. The equations are then discretized with respect
to the computational space coordinates. Boundary conditions are simple to
implement in the rectangular computational domain, and it is also easier to
control grid density in regions where high resolution is desired. The expense
is that the partial differential equations become more complicated due to the
non-linear coordinate transformation.

A traditional approach to ensure velocity-pressure coupling is to use an
algorithm like e.g. SIMPLE and to store the velocities on 2 staggered grid
to avoid the so-called “checker-board” oscillations. However, this is a quite
complicated approach to implement with a curvilinear transformation. During
the transformation one might also consider to treat velocities as vectors and
Reynolds stresses as tensors, but this gives more complicated equations and
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physical space zt ' computational space £

Figure 4.1: Grid structure in physical space and computational space

furthermore also an undesirable sensitivity to the grid. The solution chosen
here is the same as advocated by Peric [53], namely to store all variables at
the cell centers and to treat them all as scalars when discretized. This method
therefore uses a non-staggered grid. A method by Rhie and Chow [54] will be
used to avoid the “checker-board” oscillations.

4.2 Equations in curvilinear coordinates

This section shows how the equations are handled in general curvilinear coordi-
nates. First the coordinate transformation will be shown and then the general
convection equation will be integrated over a finite volume in the physical
space. '

4.9.1 Coordinate Transformations

The analysis will be using the two coordinate systems, (z!) and (£), shown
in figure 4.1. The following notation is used (see [55] for further details about
tensor notation):

ozt

CJy = 6 = Jacobian matrix
T = ?ﬁ- = (J7Y) = Inverse Jacobian matrix
i T et i
|[J| = det(J5) = Jacobian determinant
Ay = |J|J; = Adjugate Jacobian matrix

It is assumed that the coordinate transformation is non-singular and there-
fore that the Jacobian determinant is non-vanishing. It is also assumed that
the transformation is positively oriented, i.e. that a right handed frame of lo-
cal base vectors in computational space is mapped to a right-handed frame
in the physical space, and vice-verca. The Jacobian matrix and its inverse
relates, by the chain rule, derivatives in the physical space to derivatives in
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a) elementary parallelepiped - b) control volume Q

Figure 4.2: Elementary parallelepiped and general cell (.

the computational space, and vice versa:

o9 _ 9786 _ ;00
o~ o0&t B tdzI
o _ 0800 5500 |

9z 0z 061 I agi” (42)

(4.1)

In the analysis, equation (4.2) is important because derivatives will be
expressed relative to computational space. A numerical approximation to the
-nverse Jacobian matrix must therefore be found. A route to this is to evaluate
the Jacobian matrix by simple numerical differentiation and then invert the
matrix. However, another route will be used here.

In any curvilinear coordinate system (€Y, at any point, it is possible to
associate two distinet frames of base vectors:

ozt |
@) = €@k = 79% = J¥ (tangent to coordinate curves) (4.3)
. i 3 : — .
el = e(k) = :9-% =J, (normal to coordinate surfaces) (4.4)

They are called, respectively, the covariant and contravariant frames of base
vectors. Any Cartesian vector V = (V;) has two sets of distinct components
with respect to the above frames of base vectors:

V =V, = Viey = Vie® (4.5)

where V%, V! are called the contravariant and covariant components of V,
respectively. _
Now, since JiJ; = &, it follows that the triads (e) and (et) are dual
to each other, i.e.
e®.en = &%- (4.6)

It is interesting to look at a parallelepiped-generated by the covariant base
vectors, see figure 4.2. Let A® (¢ = 1,2,3), denote the area vectors normal
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to the surface of the parallelepiped, i.e. vectors normal to the faces and with
a magnitude equal to the areas of the faces. Then

AWM = e X €@, A = e@) X eu) AB) — e) X e@) (4.7)

and ay a I3
AD ey = e - [ew) X e)]d; = vol & (4.8)

where vol is the volume of the parallelepiped found as
vol = €q) - [8(2} X e(3)] = ]JI (4.9)
Comparing equation (4.8) with the relation (4.6) we have

A®

T (4.10)

AD = = e =

The contravariant base vectors e(? are therefore given from the area vectors of
 the elementary parallelepiped formed by e(; divided by its volume. Therefore,

the adjugate Jacobian matrix A% can be found from the area vectors A(,:) as
Al = |J[T, = AY (4.11)

An infinitesimal rectangular volume element (d¢, 67, 6¢) in computational space
is transformed to a parallelepiped generated by the vectors dley, 57]8(2)., oCe(s)
in physical space. Therefore the volume and the area vectors are just simple
scalings of the volume and area vectors of the elementary parallelepiped in
figure 4.2. ‘ ,
" Instead of working with the contravariant components V" of a vector field
V, it is found to be more convenient to work with the normal flux components
V* defined by

Vi= |J|VE = ALV, (4.12)

and it is eésily shown that V7 is simply the scalar product of V with the area

vectors o _ o _ )
Vi = |J|V" = Vg - |Jle? =V - A9, (4.13)

In a general cell © in a grid in physical space, the area vectors of the faces
can be found by splitting each face up in two triangles and computing the area
vector of each triangle as a vector product of the vectors spanning two of its
sides. Using Gauss’ law, the volume of £ is obtained by an integration of the
faces of the cell.

The Jacobian determinant and adjugate Jacobian matrix may now be ap-
proximated from the volume and the area vectors. The present method should
be compared with the alternative method, where the inverse Jacobian ma-
trix is found simply inverting the Jacobian matrix. Although both methods
are formally second order accurate, the present method has less emphasis on
the presence of the coordinate transformation and more on the fact that the
physical domain has been filled with an array of irregularly shaped volumes,
where the discrete conservation laws will be imposed. The present method is
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therefore expected to approximate the geometric information more accurately
on highly distorted grids.

During the analysis it will be necessary to make interpolation from variables
at grid nodes at the center of the cells to the faces of the cells. Although it
can be done formally second order accurate in computational space, in the
analysis, liniar interpolation in physical space will be used, because this will
be more accurate with a non-linear coordinate transformation.

4.2.2 Integration over control volume

All the equations that are to be solved in this analysis have the general form:

Opd ) A __‘2_ ?_@_ _
—é—t— + -a—gc—z (pU ¢) ax" (F 63’,‘*) =S. (414)

Equation (4.14) is now integrated over the control volume ) in figure 4.2 using
Causs’ law where dA® is a local area vector t0 2 small part of the surface of {2

dpe i3 Ai 09 , i _
(2 dV—l—jmpc,bU dA ij‘axidA -—fQSdV. (4.15)

The first term in (4.15) is the time dependent term. Tt will later be shown
that this term can be treated as a source term. At first we will therefore neglect
this term and rewrite (4.15) using the total flux (convection + diffusion) It
through each of the surfaces of Q on figure 4.2. The index nn runs through
the six surfaces of  with a value of 7 that corresponds to the face, and we

then have

S h,=vol-S, (4.16)
where 86
2 k 4 (nn) (nn)
I, = (pU Ao —TAL 5;;;) _ (4.17)

The term d¢/z* can be expressed in terms of cornputational space deriva-
tives as follows

o 06 _ M2
ok = Vrag T 11|08 (4.18)

and we therefore have y '
00 _ ArAL 00 '

Equation {4.17) can now be written as

.. _ . [ 8¢
I =C oum—Di | 5 .
£, = it = Din (55) (420
where Ci_ and D¥, are the convective and the diffusive coefiicients
G = (o07),, =oU* A" (4.21)
. B Al J
Di = T9=T Aoy (4.22)

i
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Figure 4.3: Control cell and discretization molecule in two dimensions

It can be shown [48] that if the diffusivity in (4.14) had been anisotropic,
this would also result in an anisotropic diffusion coefficient in the transformed
equation. The only difference between the transformed equation (4.16) and
(4.20) and the original equation (4.14) is that the transformed equation has
an anisotropic diffusion coefficient. The next steps in the discretization are
therefore nearly the same as the ones taken in the traditional finite volume
analysis.

4.3 Discretization

The general convective equation integrated over a control volume  can
now be discretized. This will be done for each of the terms in (4.15). A
general molecule for the discretization in two dimensions is shown in figure 4.3.
ndex nb will be used for nodes in the neighbouring cells. The examples of the
discretization schemes will be for the west side of the control volume and will
assume that the flow comes from west.

4.3.1 Time dependent term

Equation (4.14) can be written in the form

Opd ,
e F(¢). (4.23)

The left side of (4.23) can be discretized using several different schemes. Since
only steady state flows are considered in the present study, the discretization
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will only be illustrated with an example, the backward difference,

(qu)n ';t(pé)n_l — F(qb‘n)’ (424)

where 7 is the index for the time step. For a more extensive discussion on.
time discretization, see e.g. [52]. The term on the left hand side of (4.24) can
be absorbed into the source terms and the resulting equation will then look
like the steady state equation. Other schemes can be implemented in similar
ways.

4.3.2 Diffusion terms

In an orthogonal grid the cross derivatives in (4.20) vanish, ie. D = 0 for
i & j. The diffusion term can then be estimated using central differences, here

with the west face as example,
0 i . o
/ PE:c_dAJ = DZ(¢p — dw) (no summation of i). (4.25)
w i

For a non-orthogonal grid the cross derivatives give extra terms that involve a
larger difference molecule. In order to obtain a simple matrix structure it has
been chosen to use a deferred correction approach, where the discretization
first is performed using (4.25) and then the extra terms arising from cross
derivatives will treated as explicit known terms by including them as a source

term called S’

S'= > Di, (%) . | (4.26)
i .

The cross derivatives are approximated with central difference interpolated to
the appropriate face of the control volume. This can be illustrated with an
example for the west face (noting that the distances between cell nodes in
computational space are all unity):

(g—i) = 1 (v — b5+ dnw — bsw) (4-27)

4.3.3 Advectidn terms

The advection terms are the terms that cause the greatest difficulties. The
advection term involves a value of ¢ at the faces of the control volume while
the values of ¢ are actually saved at the cell centers. Therefore, some sort
of interpolation is needed, and table 4.1 lists some common methods of doing
this. The most natural solution is to use a central difference. This scheme
is second order accurate, but unfortunately it is only robust for small mesh
Peclet numbers (Pe, = C./Dy < 2). A simple and very robust differencing
scheme is the upwind scheme, but the expense is that it is only first order
accurate. It can therefore give errors referred to as numerical diffusion. The
central difference and the upwind schemes are often combined to the hybrid
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=7

{ scheme order o ' Pe
central second Hop + ow) (¢g + ¢p)
upwind first | dw | ¢p
higher upwind | second Sow — soww 3gp — 30w
quick third | 2ép + 3w — 5oww 36+ 2¢p — 30w

Table 4.1: Difference schemes for advection term (west and east faces; flow
from left) .

scheme: Central differencing is used if Pe is less that 2 and upwind differencing
is used if Pe is larger that 2. :

The higher upwind and the quick schemes give better accuracy with the
expense of being less compact since they use two upwind points. They also
tend to be less robust. The extra upwind point éww can be handled using
deferred correction in the same way as was done with the cross derivatives that
appear in the diffusion terms.

4.3.4 Matrix equation

The source term in (4.15) is simply integrated over the control volume assuming
that the values in P are valid over the entire volume. To enhance the diagonal

dominance, the source term is split into two terms

/ﬂ SdV = 5, + S, ép | (4.28)

where S, is non-positive [52}.
The matrix equation to the solved then has the form

a’P¢’P - Z anbénb = S‘u + S’ + Sd (4.29)
nb

where a,; are the coefficients to the neighbouring nodes and S’ and Sy are the
deferred correction source term coming from the discretization of the diffusive
and advection term, respectively. The coefficient ap is found as

ap=Y_ Gnp+Sm— Sp (4.30)

nb

where S,, is a mass source term found from the convection coeflicients Crn

S = Crn- (4.31)

Equation (4.29) can, after implementation of boundary condition, be solved
using any suitable equation solvers. However, solvers will not be described in
this review.
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4.4 Implementation of physical equations

It is now straightforward to implement equations for scalars like the tempera-
ture. For turbulent scalars like the turbulent kinetic energy k and it dissipation
€, it is important to take measures to ensure that they never can take negative
values. For the momentum equations and the equations for the Reynolds stres-
ses and fluxes more detailed modelling will be described in the following. Also,
the handling of the pressure and the continuity equation will be described.

4.4.1 Momentum equations

The incompressible steady state momentum equations with no additional body
forces can be written in their Cartesian form as

d ki oP Ui d 5‘U’° an
9 iy = 98 _ 0 4.
o W) = 55 T P T ok ( (ax,- * Bxk)) (4.32)

where P is the pressure and g is the effective viscosity. This equation can now
be rewritten using the total flux I¥ of U

d
ol = S; (4.33)
where
QU -
¥ = pUtU - p,(—,:)%, (4.34)
oP ouwm; 8 { OUF
S = —— o, - 1. . (4.
ox; P om Oz* (H ot ) (4.35)
These equations can now be transformed to computational space
0 ik frkpri 5 OU?
a&k‘['i - IJISZ‘J Iz’ - pU Ur-r @“3 (4'36)

where T* is found from (4.22) using g as I'.

The calculation of diffusion and advection coefficients are now straightfor-
~ ward. The source term S; from (4.35) contains derivatives of both P and U*.
These terms will be evaluated by integrating over the control volume {2

(1S = ~

Y k
Py [ Tigy 1 [ pS-aat
o Oz* Q

ozi 50 s ort
p oAtum;

%, ; OUF
_ Ak nn .
Aot g T2 (’” A )) 3

It is seen from (4.37) that, in general, each momentum equation contains all
three computational space derivatives of the pressure.
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4.4.2 Pressure correction equation

The pressure can be found by e.g. the SIMPLE algorithm, see [52]. This section
will describe the implementation of this algorithm in the curvilinear coordinate -
system. Similar algorithms like the SIMPLEC and PISO can be implemented
using the same technique.

Assuming that U “# and P* denote the most recent updated velocity and
- pressure fields, the discretised momentum equations can be written

. ai Uit nb " oP*
Uitp =S 22 4 G — Bi— (4.38)
o % a’p o

where a', and a’p are coefficients for node P and its neighbouring nodes and

S} are the source terms, except the pressure gradient source term, divided by
a’p. B is defined as

Ak

Bt =%

T

= (4.39)
ap

The velocity U™ found from (4.38) does not in general satisfy the conti-
nuity equation, but has a residual mass source Sn, which can be found as a
summation over all faces of the control volume of the convection coefficient

Con = pUH i
Sm=3pUk =3 Cu (4.40)

nn?
The convection coefficient Cr, has to be interpolated from the velocities stored
at the cell center in an appropriate way. This will be done using the Rhie-Chow
algorithm that will be described in the next section.

The idea of the SIMPLE algorithm is to find corrections P’ to the pres-
sure so that when the corrected pressure P** = P* + P' is inserted into the
discretised momentum equation (4.38), corrected velocities U™* will obey the
continuity equation. The corrected velocities are found by the equation

7
U =U" - D‘;% (4.41)

where D¥ = B for the SIMPLE algorithm.
The discretised continuity equation can be written in terms of the corrected
normal velocity flux component U™* as

Y ol =0. (4.42)

nn

Equation (4.41) can now be transformed to normal flux components

’ |
frive = [ — D ?9?’5 . where Di* = ALDE. (4.43)

Following [54] the off-diagonal components of Di* are small and will vanish for

a converged solution; they can therefore be ignored in the calculations. An
equafion for the pressure corrections can now be found by substitution the
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appropriate equation (4.43) into the continuity equation (4.42) using central
differences to approximate pressure correction gradients. This gives

Py = " busPls — S (44)
nb
where .
bp= bapy bmw= pD* (i corresponds to nb). (4.45)
nb '

In cases where it is important to achieve good mass conservation during the
iterations the off-diagonal components of Di* can be taken in account using &
deferred correction method similar to the one used for diffusivities, see [48] for
further details.

The boundary conditions for (4.44) are implemented in the same way as
it is done for the general scalar equation. However, it should be noted that
for a Diriclet boundary (e.g. an inlet or a wall) either the velocity or the
pressure should be specified. If the velocities are specified on a boundary, then
no corrections will be needed for the velocity fluxes at the corresponding cell
faces, ie. U™ = Ui*. From (4.43) it then follows that the gradient of P’
projected into the area vector for the corresponding face should be zero. This
can be done by setting the relevant coefficient b, to 0. If instead the pressure
is specified on a boundary, the pressure correction P’ should take the value 0
at the boundary and an appropriate boundary condition should be applied to
the velocities, e.g. a Neumann condition

4.4.3 Rhie-Chow interpolation

It is essential for the evaluation of the continuity equation in the previous
section that the interpolation of the velocities to the faces of the control volume
are accurate. A simple interpolation scheme based on physical distances is
not satisfactory since it can lead to the so-called “checkerboard” oscillations.
Rhie and Chow [54] has developed an interpolation method that overcomes
this problem. The method is based on the discretised momentum equations.
However, the method has to be extended to include the Reynolds stresses in
the interpolation. Equation (4.38) can be rewritten

X a Rk* i *1
Ui + [st ] _ [z Eu} + 18], (4.46)
e | ,

%
'Ot s a’s

where S is the remaining source terms and the term R** in the original method
by Rhie and Chow is the pressure P*. However, when the Reynolds stresses
are present, they have to be included and R** then takes the form

B =P+ PATATIT;
Ak Ak

The idea is now to interpolate equation (4.46) to the faces of the control
volume. At e.g. face e this equation reads

ko - i ¥i
U + {B’? oR ] = [}: 92”-—@] + 18], - (4.48)

" ogk o G

(4.47)
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This equation can also be written using a weighted interpolation from the
corresponding terms for the equations at the nodes P and E (this interpolation
is denoted by an overline},

— T..0R* U] '
Ut*e+[3$ agk] = [zb _‘;—-‘l} +T51.. (4.49)

Rhie and Chow prescribes the following method to interpolate to (4.48). It is
assumed that the terms on the right hand of (4.48) may be approximated by
the corresponding terms in (4.49). It is also assumed that [B¥]. = [B%], and
[B*oR [o¢F], = [BY] [OR™/ 9EF],, and the Rhie-Chow interpolation formula

then becomes _
, — T ORk* ORF*
% i k | —_—
U =UF + B, ([——"a.gk ] [agk }) (4.50)

This can be expressed in normal velocity components as

et

oo T 5, ([T - (2] ) e (99,25 a0

e .

Since all gradients of R** are computed using central differences, the cross-
derivative terms in (4.51) cancel, and the formula reduces to

F—

"y — . gR™ OR™ .
Uez* _— U::t + [Bu]e ([_a_g_jle . [ 852 ]e) (1 not Sumn’led). ' (4.52)

The interpolation formula is therefore a simple interpolation of U plus a
correction term containing the difference between the gradients of R™* evalu-
ated respectively at the cell nodes and interpolated to the face and a simple
gradient at the same face. It can be shown [48] that using this practice the
continuity equation will contain a fourth order derivative of the pressure. This
will give a third order error in continuity and will ensure that the pressure field
is smooth.

4.4.4 Turbulent momentum and scalar equations

In the equations for turbulent momentum and scalar transport the molecular
diffusive terms are often quite small compared to respectively Reynolds stresses
and fluxes. The diffusive terms are therefore often neglected. The smaliness
of the diffusive terms has two effects: It makes the equation system less stable
and with the lack of the smoothing effect of diffusion, checkerboard oscillation
can occur for velocities and scalars. The present code takes two measures
to repair these unfortunate effects; it adds a physical reasonable diffusion on
both sides of the equations and uses an interpolation method similar to the
Rhie-Chow method for gradients at the cell faces.

57




For the momentum equations the following turbulent diffusion terms are

used

Dii = __.T;s‘]: Al A, (jmot summed). (4.53)

Here, ¢, is a constant from the turbulence model. These diffusion terms are
divided by a turbulent Prandt] number for scalar equations.
The gradient of a variable é is evaluated by relaxation as

o\ (99 NG |
(-8-5) e = (é—é;) ] + (1 (I) (3:5-7) e. (454)

The last term in (4.54) is the gradients of ¢ calculated at the cell nodes and
then interpolated to the cell face. It can be shown [50] that this interpolation
method introduces a fourth order error in the source term. This ensures a
smooth scalar {or velocity) field. In [50] the authors found that o = 0.9 gave
the most satisfactory results. '

It should be noted that other authors use a somewhat different method
developed by Obi et af [40]. By rearranging the equations for T, U4, can
be split into a part containing gradients of the velocities and a part containing
the other parts. When the gradients u;i; are inserted into the momentum -
equations the terms containing gradients of the velocities can be arranged as
apparent- diffusive terms. In this way these apparent-diffusive terms are not
artificially added, but are simply a rearrangement of the equations. However,
a disadvantage with this method is that it is dependent of the Reynolds Stress
model used. A change of e.g. wall reflection terms will also involve changes of
the apparent diffusive terms.

4.4.5 Equations for Reynolds stresses and fluxes

As mentioned earlier, in order to avoid the mathematically complex transfor-
mation of the equations for Reynolds stresses and fluxes, their elements will be
treated as scalars during the discretisation. In three dimensions there will then
be 6 separate equations for the Reynolds stresses and 3 separate equations for
the Reynolds fluxes. The equations will have the same form as (4.14) with the
exception that the diffusivity will be anisotropic.

The source terms in the equations are quite complicated to evaluate. The
productions terms contain gradients of the velocities (and of the scalar for
Reynolds fluxes). These should be computed in computational space and then
transformed into physical space using (4.2). However, the largest difficulties
come from the wall reflection terms because they are dependent on the geome-
try. For each face in the geometry, the wall reflection terms consist of complex
terms involving a unit vector from the face and a distance from the face.

In FLOWS3D the user has to implement the wall Teflection terms. In the
present study this has been done in a general way so that the same implemen-
tation could be used for all the presented calculations.
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Figure 4.4: Coordinate system local to a wall

4.5 Boundary conditions

Boundary conditions can be implemented by several methods. Two different
methods are !

1. Modifying coefficients in the near wall cells,

2. Setting values in dummy cells, i.e. extra cells just outside the computa-
tional domain.

The first method offers greater flexibility while the second in many situations
is the simplest to implement. In FLOW3D the first method is used for walls
and the second method is used for other types of boundaries such as inlet and

. putlets.

In a curvilinear grid the boundary conditions are often specified in a lo-
cal coordinate system (#,n‘) with one axis #* tangential to the boundary and
the other axis n' perpendicular to the boundary, see figure 4.4. During the
transformation in section 4.4 it was chosen to specify velocities and Reynolds
stresses and fluxes in a global coordinate system (z*) to obtain a simpler trans-
formation. As a consequence of this, the resulting effect of the boundary will
in some situations have to be transformed to the global coordinate system.
The transformation of the Reynolds stresses is shown in appendix A.1.

4.,5.1 Walls

A Neumann boundary condition, e.g. a specified heat flux, can be implemented
in the near wall cells by putting the relevant coefficient ans to zero and instead
adding the effect of the flux to the source terms. For a Dirichlet boundary
condition, e.g. a specified wall temperature, a similar approach can be used.
The flux on the wall must then be expressed as a function of the value in the
near wall cells node. As an example it will be shown how a boundary condition
for the velocity can be implemented. The physical velocity near the wall Ui
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can be split into two components, & velocity perpendicular to the wall U;e,,p
and a velocity parallel to the wall Upar» s€€ figure 4.4,

Uip = (Uh - 0/)0, Uiy = Ub = Ulperp - (4.55)
The vector # in figure 4.4 can now be found as t' = Ui, /|Uper]. Assuming
that the velocity of the wall is Uy, the momentum flux from the wall, L.e.
the wall shear stress 7, can be written as

Tiua.ll = Tm(U'ZJall - U;;m')° . (456)

In the laminar case the multiplier T}, is given by T = 1/ Ywait, Where Yuwali is
the distance between the near wall node P and the wall. In the turbulent case
T., can be found from the modified wall law (3.50) to be
*1.1/2
7= PR (4.57)
In(E*y*) ,

If Ai_is the area of the cell face coincident with the wall the integral across
Ai_ of the velocity flux vector It is

. I,';dAi = IAjzan:-uau‘ (4.58)
This boundary condition can be incorporated in the discretized equation by
setting the coefficient ann, = 0 and

Sp = Sp - 1Ananm9 (4‘59)
Su(i) = Su(i) + iAnnKU;erp + U:vall)' . (4‘60)

A similar technique is used for scalar equations. For the Reynolds stresses a
more complex transformation is sometimes needed. This has been implemented
in the code during this project and is discussed in section 3.3.4.

4.5.2 Periodic boundary condition

In FLOWSD, a simple periodic boundary condition is implemented. This uses
a row of dummy cells just outside the boundary. The values just inside one
of the boundaries are simply copied to the corresponding dummy cells for the
other boundary. This is also done for e.g. gradients and the velocity flux at the
boundary. The boundary is illustrated in figure 4.5.a. However, the illustrated
flow is a fow in a repeated geometry (e.g. a channel containing periodic ribs)
and here the pressure and e.g. the temperature differ by a constant value
from “inlet” to “outlet”. This can not be easily handled by the standard
implementation in FLOW3D. An even more complicated situation is the “unit
cell” in the staggered tube bundle shown in figure 4.5.b. Here, the periodic
boundary for “inlet/outlet” is furthermore anti-syminetric, i.e. the bottom left
correspond to the top right of the domain and vice versa.

A new periodic boundary condition has been implemented in FLOW3D
during the project. The implementation assumes, that the grid is orthogonal
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Figure 4.5: Periodic boundary conditions

at the boundary and furthermore that the axes in physical space here coincides
with the axes in computational space. Besides copying to the dummy cells
according to the symmetric or anti-symmetric condition, it takes the following
circumstances in consideération:

1. Velocity corrections are added to the velocities that are copied to the
“inlet” in order to obtain the specified mass flow through the domain.

2. There will be a difference between the corresponding values of e.g. pres-
sure and temperature due to the effects of wall friction and heat transfer
in the domain, respectively. This difference is estimated and taken into
account each time values are copied into the dummy cells.

3. Elements of vectors and tensors that contain one element in the anti-
symmetric direction must change sign when they are copied. If the anti-
symmetric direction is the z®-axis this must be done for Uy, U3, Uatiz
and ug0.

It is not always simple to estimate the pressure difference used in the imple-
mentation of the boundary condition. Basically this is a kind of regulation
problem. The imposed pressure difference affects the solution of the flow con-
ditions, the flow conditions determine the wall shear stresses and the sum of
the wall shear stresses determine the actual pressure difference. This imple-
mentation of the periodic boundary condition can therefore in some cases lead
to unstable solutions that are either oscillating or diverging.

In some cases it is therefore a better solution to remove the pressure differ-
ence by the addition of a body force in the main flow direction. No correction
of the velocities or pressure difference between inlet and outlet are then needed.
There is still a regulation problem; now the body force that gives the desired
mass flow through the domain must be found in an iterative process. This
process is often more stable, but may at the same time need & large amount
of iterations. Also, the solution with body terms can not be applied with
the same ease to scalar variables like the temperature because their boundary
conditions are more complicated.

61




4.5.3 Other boundary conditions

The other boundary conditions used in the study are an inlet, an outlet and
a symmetry boundary condition. In their implementation it is assumed that
the grid is orthogonal at the boundaries.

The inlet boundary is quite simple. It is a Direclet boundary condition
where all variables except the pressure are specified and copied to the dummy

cells at the inlet.

As outlet condition, a Neumann boundary condition is used, namely a zero
gradient across the boundary for of all variables except the pressure. This
condition therefore assumes that the flow is fully developed at the outflow
boundary. For the velocity it is important to ensure global mass conservation
during each iteration and this is done by adding corrections to the outfiow
velocities perpendicular to the boundary.

For a symmetry boundary condition there is no flux across the boundary.
Therefore, this boundary also has a zero gradient for all variables across the
boundary. However, in order to ensure a zero flux over the boundary it is
also necessary that there are no vector or tensor components in the direction
perpendicular to the boundary.

Both the outlet and the symmetry boundary condition is implemented by
copying the values from the near boundary nodes to the nodes of the dummy
cells. In this process the special consideration for vector and tensor components
perpendicular to the boundary are taken into account.

4.6 Closure

The solution procedure for the steady case can now be outlined.
1. A set of reasonable values for all variables is used as initial guess.
9. The momentum equations are solved for velocities U,

3. The convection coefficients Cy, are found using the Rhie-Chow interpo-
lation based on the discretized momentum equations.

4. The equation for the pressure correction is solved and corrected values
of the pressure P** and velocities U™ are found, in effect satisfying the
conservation of mass. '

5. Equations for turbulent variables are solved.
6. Scalar equations and any equations for Reynolds fluxes are solved.
7. Steps 2 to 6 are repeated until convergence.

The present review of the method used in FLOWS3D has only described
the parts of the code that are relevant for the study. It should be mentioned
that the code also able is to make calculations with simple orthogonal grids
using rectangular or polar grids coordinates. These parts of the code are
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straightforward simplifications of the general code and has therefore not been
presented in this review. It should also be mentioned that the test cases
presented in chapter 5 all are two-dimensional cases. FLOW3D takes measures
to avoid unnecessary calculation, when it is specified, that the flow is two-

dimensional.
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Chapter 5

Results from numerical
calculations

5.1 Introduction

This chapter will describe calculations made on three different test cases with
turbulent fow and heat transfer. Since the flow in a tube bundle is quite
complex some of the features of this flow will be examined with two more
simple test cases. The abrupt pipe expansion is one of the classical test cases
for recirculating flows and this has been chosen as the first test case. The
second test case is an axisymmetric impinging jet and it is used to examine
the capability of the turbulence models to handle the very complex features
of in an impinging zone. The third test case is then the flow in the middle of
a staggered tube bundle. The three test cases all represent typical turbulent
flows found in industrial processes.

All the calculations are performed with the program FLOW3D version 2.4.
The computational method for this program is described in chapter 4. Aside
from the turbulence models and some of the wall boundary conditions, the
calculations use the standard version of FLOW3D. To ensure the continuity
the SIMPLE scheme described in section 4.4.2 is used. The higher upwind
convection scheme (see table 4.1) has been used in the calculations unless
otherwise stated. This second order accurate scheme has been chosen because
it is significantly more accurate than first order accurate schemes like the
upwind scheme. In some of the preliminary calculations it was found that
the higher upwind scheme gave results close to even more accurate and costly
schemes like the quick scheme, but at the same time the higher upwind scheme
tended to be significantly more stable.

In each calculation, the iterations were continued until a constant (low)
level of the residuals for the discretized equations was reached. For each cal-
culation it has also been checked that the values at a selected monitor point
were constant during the last iterations. The calculations were performed on
a Hewlett-Packard workstation (HP 9000/720) and had calculation times from
5 to 48 hours. The typical usage of virtual memory was about 10 Megabytes.

The effect of the turbulence is modelled with the turbulence models de-
scribed in chapter 3. Both the k-¢ model and the basic Reynolds stress model
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have been used. For the latter the wall reflection terms have been implemented
for each of the cases. A modified wall reflection term proposed by Craft and
Launder [56] has also been implemented and used in some of the cases. This
modified version is designed to be more able to handle flows that are not
parallel to the wall and the modification only involves changes of the part of
equation (3.25) that contains the c) constant. This term will be denoted ¢%;,,,
ie.

k3/2
Gy = Co(Prmaanimdis — SPuanen; — %ékﬁnkni)ae‘g;' (5.1)
The modified term called the Craft-Launder term reads
aU,
?jw — {FO.OSEE—;-ugum (55:,' — 371;'11_1)
: ol 3 oU; 3 9U;
- 0.1% Qim (b—z—mnmkdﬁ - -é--é};nmj - 55:5—;?1;1%)
al, 1 k372
Ak ——myn, | nim; — =0;; 5.2
+ 0 4ka$mn;n (n n; 3(53)} p— (5.2)
where
: N —
as; = 5 — 30T (5.3)

k

Both wall reflection terms use a weight function that depends on distances
to the walls. Following the practice of e.g. [40] this weight function has been
delimited so that it is never greater that unity, i.e. (k%2/(ciex,)) < 1.

The boundary conditions used for the walls in the standard implementation
of FLOW3D differ somewhat from the implementation shown in section 3.3.2.
It does use the modified wall coordinates, but it does not take the effect of the
viscous sublayer into account in the integration of the k-equation in the near
wall cell. For the Reynolds stress equation a simple zero gradient condition is
used for all Reynolds stresses and fluxes. The shear stress on the walls is found
by extrapolation of the Reynolds stresses and not from the modified wall laws.

In some of the calculations with the Reynolds stress models the wall bound-
ary conditions described in sections 3.3.2-3.3.4 has been implemented info the
code. This will be referred to as the ‘new’ boundary condition. The k-equation
is solved in cells immediately adjacent to walls and here the viscous sublayer is
taken into account in the integration. The values of the Reynolds stresses are
then in these cells found from algebraic relations. The zero gradient condition
has been maintained as the boundary condition for the Reynolds fluxes.

5.2 Abrupt pipe expansion

The backward facing step and the abrupt pipe expansion are perhaps the most
classical test cases for internal flows with recirculating regions. They can be
implemented using a cartesian (or cylindrical) grids and are therefore easy
to implement in most computer codes. Recirculating regions occur in many
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Figure 5.1: Sketch of the abrupt pipe expansion (d = 0.4D) - the dotted line
shows the computational domain.

industrial applications and the purpose of many calculations on industrial geo-
metries is to predict the position and size of these regions. In some cases heat
transfer to the walls are also of interest.

The prediction of recirculating regions in turbulent flows is a challenge
for turbulence modelling. Two-equation models like the £-¢ model and simpler
turbulence models usually have difficulties predicting recirculating regions cor-
rectly while the Reynolds models are more reliable here, at least for confined
recirculating flows. Another problem is the boundary conditions for the walls.
"The approach with logarithmic wall functions is based on the assumption of
a flow parallel with the wall. Especially at the separation and reattachment
points one can therefore not expect the wall functions to give goaod results.

5.2.1 Description of the test case

The emphasis of this calculation is the local heat transfer. Good measurements
of both the local heat transfer and the local velocities and turbulence have not
been found. No detailed investigation of the prediction of the local velocity
field will therefore be performed. The test case is based on measurements
of the local heat transfer downstream of an abrupt pipe expansion made by
Baughn et al [57]. In these measurements the downstream pipe was heated
with a constant heat flux produced by a thin, gold coated plastic film. This
technique gives a boundary condition that is well suited for calculations and
it is believed that the measurements are of good quality. Among the different
geometries and Reynolds numbers that were measured, it has been chosen to
use an expansion ratio of (1 : 2.5) and a Reynolds number of Re = 40750 for
the calculations.

The geometry of the test case is shown in figure 5.1. The Reynolds number
Re = U,,D/v is based on the downstream mean velocity U, and the down-
stream diameter D. The kinematic viscosity v and the thermal conductivity
X of the Auid are both evaluated at the upstream temperature. The diameter
of the upstream pipe is d = 0.4 D and the height of the step is H = 0.3D.
The origin of the coordinate system is located at the expansion with the z-axis
coinciding with the center line.
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Figure 5.2: Part of the grid used for abrupt pipe expansion. The hatched area
show cells that are treated as solids. ‘

The local heat transfer coefficient h(z) is defined as

I

4q
M) = L@ - Ta) 54)

where ¢” is the local heat flux (in this test case q" is constant), 1o, (z) is the
local wall temperature and Tp(z) is the local mean bulk temperature found
by integral control volume analysis,

z Dxd”
Ta(x) = —:i%[o ¢"dx + T = szl + Tip. (5.5)

Here 771 is the mass flow, ¢, the constant specific heat and Tiy is the upstream
temperature. The local Nusselt number is calculated as Nu = h(z)D/A and it
will be normalized with the Nusselt number for the fully developed pipe fiow
downstream of the expansion, which is given by the Dittus-Boelter formula as

Nupp = 0.023 Re*Pr4. (5.6)

The computational domain is shown with a dotted line on figure 5.1. The
calculation is performed in cylindrical coordinates and the center axis is there-
fore a symmetry line in the domain. Since FLOW3D is a three-dimensional
code a symmetric boundary condition has been applied to the tangential direc-
tion. The downstream boundary is a traditional outlet with zero gradient as
boundary condition for variables and an adjustment of the global continuity.
The wall boundary conditions are different kinds of wall laws.

The upstream boundary condition has been found by a calculation of a
straight pipe. This calculation has been performed with the standard Reynolds
stress model in FLOW3D including wall reflection terms and using standard
wall Taws. It used the same grid distribution in the y-direction as the inlet to
the abrupt pipe expansion and in the z-direction 100 grid nodes were used.
The length of the inlet pipe was 100 upstream diameters and it was verified
that a fully developed flow was reached at the end of the pipe. ,

5.2.2 Numerical results

The grid used for most of the calculations is shown on figure 3.2. In the
y-direction the grid is uniform with 25 cells. In the z-direction the grid is
stretched both up- and downstream of the expansion and is starting with
the same cell length as in the y-direction. The expansion ratio are 1.1 and
1.025 and the number of cells are 20 and 110 for the up- and downstream
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Case | wall law | wall reflection term | special conditions
1 | standard | standard -

2 | standard | standard upwind/hybrid
3 | standard | standard coarse grid

4 | standard | standard with ¢, = 0.065 | -

% | standard | not included -

6 |standard | - k-e model

7 new standard -

8 | new Craft-Launder term -

Table 5.1: The abrupt pipe expansion test cases.

sections, respectively. The length of the upstream section is therefore about
1.1 D and the downstream section is about 12 1. The expansion was modelled
by specifying that the cells in the hatched area in figure 5.2 should be treated
as solids.

An overview of the performed calculations is shown as a list of cases in
table 5.1. The results are shown as streamline plots of selected cases in fig-
ure 5.3 and as plots of local heat transfer downstream of the expansion on
figures 5.4-5.6.

To investigate the solutions sensitivity to the grid, case 3 represent a cal-
culation made with a coarser grid. This grid was uniform in both directions
and had 110 x 25 cells as compared to 130 x 25 cells used otherwize. The cells
in the recirculating region were therefore significantly larger than in the grid
shown in figure 5.2. Test case 2 represents a calculation made with the grid in
figure 5.2 but instead of the more accurate higher upwind convection difference
scheme the upwind scheme was used for momentum equations and the hybrid
scheme was used for the other equations. If the solution is grid dependent this
change of differencing scheme is likely to cause a change in the solution.

Streamline plots of case 1-3 (not shown here) showed only small differences
in the flow. The difference was largest for case 3 just after the expansion where
there is a very large difference in the grid density for the two grids used. The
local heat transfer for the three cases are shown in figure 5.4. There is only a
quite small difference between the cases. It is therefore assumed that the grid
in figure 5.2 is fine enough for the present calculations.

The streamline plots in figure 5.3 show that solutions for all models are
close to each other. Streamline plots of case 1, 4 and 7 are almost identical
and only the plot of case 1 is therefore shown. The fact that streamlines
stop just before the walls is due to the plotting program. Compared with
the Reynolds stress model, the k-¢ model only finds a very small secondary
recirculation area in the corner of the expansion. A closer examination of the
velocity fields show that the k-¢ model predicts a shorter reattachment length
than the other models. This is a feature of the k-¢ model that is found by
most authors. -

In case 5 no wall reflection term was included in the calculation. The
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Case 6 — k- model

Figure 5.3: Streamline plots for the abrupt pipe expansion

streamline plot here shows a ‘kinked’ streamline in the reattachment zone.
While approaching the wall from the centerline, the z-composant of the mean
velocity changes from positive to negative and then again to positive very near
the wall. This is an unrealistic behaviour. A closer examination shows that
all calculations with the Reynolds stress model have this behaviour in the
reattachment zone. Other authors have found the same problem in similar
fows. Lasher and Taulbee [58] used the basic Reynolds stress model together
with a low Reynolds number model at the wall on a backward facing step flow.
Their conclusion was that the problem lay within the wall reflection term and
they were able to remove the problem with a change of the ¢} constant in
this term. The present calculations also make it probable that the problem
comes from the wall reflection term. However, a consistent modification of the
Reynolds stress model is a rather large task and this is therefore not within
the scope of the present study.

The new wall reflection term by Craft and Launder [56] (case 8) only in-
volves changes in the other part of the wall reflection term — the part preceded
with the ¢, constant. This might explain why the problem in the reattachment
zone is also found with this model. Compared with case 1 this model finds a
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Figure 5.4: Local heat transfer — test of grid dependency. Legend numbers are

explained in table 5.1.

Figure 5.5: Local heat transfer — test of standard wall reflection term and of
k-e model. Legend numbers are explained in table 5.1.
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Figure 5.6: Local heat transfer - test of new wall law and of the Craft-Launder
wall reflection term. Legend numbers are explained in table 5.1.

larger secondary recirculating region.

In figure 5.5 the k-¢ model (case 6) has a maximum of the heat transfer at
¢/H = 7 instead of z/H =~ 10 found by the experiment. This corresponds to
the difference in the prediction of the reattachment point. All the calculations
done with the Reynolds stress model find a position of the maximum heat
transfer that is close to that of the experimental result.

All calculations with the standard wall law predict a too low level of heat
transfer in the proximity of the reattachment point. The only exception is
the calculation without any wall reflection term where the heat transfer is
predicted to be too high. This effect is particular evident further downstream
where the calculated heat transfer is about twice that measured. The wall
reflection term therefore seems to be important for the heat transfer.

Most of the calculations predict the local heat transfer just after the expan-
sion to be significantly lower than the experimental heat transfer. This region
has low velocities and turbulence and the turbulence models therefore have
difficulties in predicting the flow correctly. The grid has generally been chosen
so that y+ > 11 for the near wall nodes, but in some of the calculations y7 is
less than 11 very near the expansion. This might lead to wrong predictions of
the flow and heat transfer. However, this is also the region where the largest
errors in the experiment is found due to conduction in the pipe wall. It is
therefore difficult to say whether the experiment or the calculation are closest
to the correct value of the heat transfer.

As mentioned in section 3.3.4, some authors use ¢, = 0.065 instead of
e, = 0.09in calculations near a wall. Since the constant ¢; in the wall reflection
term is equal to &/ cf;’ 4 this constant will then be different from the standard
value, ¢ = 2.5, that corresponds to ¢, = 0.09. To test the effect of this
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change, a calculation has been performed with the value of ¢ corresponding
to ¢, = 0.065 (case 4). In streamline plots no difference could be seen and
only a small improvement on the local heat transfer is seen in figure 5.5. It
has therefore been decided to use the standard value ¢, = 0.09 for the further
calculations.

The effect of the new wall boundary condition is illustrated on figure 5.6,
case 7 and 8. Here the local heat transfer is predicted quite well and the
new boundary condition therefore seems to be more capable of handling heat
transfer than the standard wall law. However, before any final conclusion can
be drawn, the new boundary condition should be tested at different Reynolds
numbers. A calculation with the Craft-Launder wall reflection term and the
new wall law is shown as case 8. The local heat ‘transfer is found to be quite
close to the result made with the standard wall reflection term.

5.2.3 Conclusion

Different models for turbulent flow and heat transfer have been tested for the
abrupt pipe expansion which isa ‘classical’ test case. It was found that the k-¢
model tended to have a too short recirculation zone while the basic Reynolds
stress model gave results close to that of the experiment. This is a tendency
that is also found for many other types of flow with recirculation zones. For
the Reynolds stress model some strange behaviour of the velocities was found
near the reattachment point. This behaviour has also been reported by other
authors and is probably caused by a deficiency in the wall reflection terms of
the Reynolds stress model.

Some changes to the wall reflection terms in the Reynolds stress model was
tested: another value of the constant ¢; and a replacement proposed by Craft
and Launder [56] for one of the terms in the wall reflection term. None of these
changes gave significant changes in the results of the calculations. Also, a new
implementation of the wall boundary condition was tested. This consisted of a
more accurate integration in the near-wall cell and a new boundary condition
for the Reynolds stresses. This change gave a significant improvement of the
prediction of the level of heat transfer in the recirculation zone. With this
improvement the Reynolds stress model was able to predict the local heat
transfer quite accurately.

5.3 Impinging jet

Like the abrupt pipe expansion, the axisymmetric impinging jet is a flow with a
relatively simple geometry that it is easy to implement in most computer codes.
Impinging jets are important for many industrial applications, especially for
cooling purposes where it can establish very high local heat transfer. However,
it is also a flow that is radically different from the flows parallel to walls that
most turbulence models are developed for.

In parallel flows the turbulence is generated by shear, length scales are
usually determined by the distance from the wall and convective transport
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Figure 5.7: Sketch of the impinging jet — the dotted line shows the computa-
tional domain

of turbulence is usually small because of the approximate balance between
generation and dissipation. The turbulent processes for the impinging jet are
more complicated. In the vicinity of the axis of symmetry, the turbulence
is generated by normal straining, length scales are strongly affected by the
length scales of the jet turbulence and the convective transport of turbulence
energy is important. Just beyond the impinging region the flow structure is
significantly affected by the strong curvature of the streamlines and while the
flow further downstream reverts to a thin shear flow, it is not a simple one
because the maximum shear stress occurs outside the wall region.

The impinging jet is therefore a very challenging test for turbulence models.
The purpose of the present calculation will therefore be to demonstrate how
well the models used in the study are able to handle a more complicated flow.
The results have been presented at the ‘2nd ERCOFTAC-IAHR Workshop on
Refined Flow Modelling’ [59] where this case was used as one of the test cases.

5.3.1 Description of the test case

The jet for this test case is produced by a fully developed pipe flow and
it is released perpendicular to an flat plate. A sketch of this axisymmetric
impinging jet is shown in figure 5.7. The Reynolds number for the test case is
the Reynolds number of the pipe producing the jet, i.e. found as Re = U, D/v
where U, is the mean velocity in the pipe, D its diameter and v is the kinematic
viscosity. The local heat transfer coefficient h is based on the local heat flux
and the temperature difference between the local wall temperature and the
inlet temperature. The local Nusselt number is found as Nu = h D/X where
) is the thermal conductivity of the fluid. Both v and A are evaluated at the
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isothermal temperature of the jet. The coordinate system consists of the r-axis
following the wall and the y-axis following the symmetry line of the pipe. The
origo is located in the jet stagnation point on the wall.

Four different cases have been calculated. These are obtained using two
different Reynolds numbers, Re = 23000 and Re = 70000, and two different
jet release heights, H/D = 2.0 and H /D = 6.0. For these cases measurements
of both the local velocity and turbulence fields have been performed by [60]
using hot-wires. Data for local heat transfer with a constant heat flux are
available for the low Reynolds number from [61] and for the high Reynolds
number from [62]. All the measurements have been performed with special
concern to turbulence modelling.

The computational domain is shown with a dotted line on figure 5.7. The
calculation is performed in cylindrical coordinates where the left boundary is
a symmetry line. The inlet conditions are found with a separate calculation
of a pipe flow in the same way as described in section 5.2.2. The inlet data
are prescribed one diameter upstream of the pipe exit. The rest of the upper
boundary is an entrainment boundary specified by constant pressure, zero
turbulence for entering fluid and zero gradient on velocities. On the right
boundary, zero gradients are applied to outflowing fluid. The lower boundary
is modelled by wall laws. The part of the pipe that is inside the domain is
modelled by treating some cells as solids. The boundary condition on these
solids is also modelled with wall laws.

5.3.2 Numerical results

The grid used for the calculation of the cases with H/D = 2.0 is shown in
figure 5.8. The grid has 98 x 71 cells (r- and y-directions, respectively) and
the grid is uniform for grid lines covering the inlet pipe. Outside this uniform
region the grid is stretched with a factor 1.03 in the r-direction starting from
the pipe and stretched with a factor 1.01 in the y-direction starting from the
wall. The size of the near wall cells has been chosen so that the center in all
cases was at a position where y* > 11. The solution’s dependency of the grid
has been tested with several grids using from 53 to 98 r-cells, 57 to 120 y-cells
and different degrees of stretching. These tests indicated that the chosen grid
gave grid independent solutions. For the H /D = 6.0 case the grid was simply
extended by adding extra rows of cells to the grid in the y-direction. This grid
has 98 x 121 cells (r- and y-directions, respectively).

Three different models have been used in the calculations and they are listed
in table 5.2. Model 1 is the standard implementation of FLOW3D together
with an implementation of the standard wall reflection terms. Model 2 uses as
the only difference from model 1 the new implementation of wall laws made
in this study. Model 3 represents data from the literature compiled by Craft
et al [63]. Their calculations also use the basic Reynolds stress model, but
the near wall layer is modelled using a well tested low-Re k-¢ model [42}. Tt
is believed that these calculations give a significantly better representation of
the near-wall conditions and they will therefore be used as a kind of reference
to the calculations made with model 1 and 2. Finally model 4 uses both the
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- Figure 5.8: Grid used for impinging jet (H/D = 2.0).

Model | wall law wall reflection term | key
1 standard standard e
2 new standard _——
3 low-Re k-¢ model | standard
4 new ) Craft-Launder term | -
i Experimental data from [60] o

Table 5.2: The Reynoldé stress models used for the impinging jet cases.
Model 3 is data produced by Craft et af [63].
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new wall laws and the new wall reflection term by Craft and Launder [56].

Plots of the local bulk velocity Uy = VU2 + V2 and of the local Reynolds
stresses are shown in appendix D.1 for two of the cases: a) Re = 23000,
D/H = 2.0 and b) Re = 70000, D/H = 6.0. Here it is seen that the results
of model 1, 2 and 3 are quite close to each other. The largest differences occur
not unexpectedly at the first near wall cells for wall law boundaries. The
prediction of the mean flow and the turbulence seems not to be affected by the
simplifications used in the wall laws. The deviations from the experimental
data are most likely due to deficiencies in the standard Reynolds stress model.

This is quite evident in the plot of the Reynolds stress component normal
to the wall on the stagnation line. The basic Reynolds stress model predicts a
too high level of this component. The reason for this can be found in the part
of the wall reflection term that is preceded by the ¢; constant. Ina parallel flow
this term redistributes energy from the Reynolds stress component normal to
the wall to the other components. However, when the flow direction is normal
to the wall the term has the opposite effect leading to too high levels of the
component normal to the wall. The Craft-Launder term used in model 4 has
been constructed to remove this weakness. The prediction of model 4 is closer
to the experimental results, but especially for the high Reynolds number, the
level of component normal to the wall is still too high. :

For model 1-3, too high levels of the Reynolds stresses are found. For
r/D < 1.0, the profiles of the bulk velocity match the experimental velocity
quite well. For higher values of r/D the Reynolds stresses tend to have their
maximum too far away from the wall. Combined with the generally too high
levels of turbulence this is probably the reason why the predicted bulk velocities
are too low close to the wall. For both geometries, the calculations with model 4
has a region downstream of the stagnation point where very low levels of the wo
component are found. This problem was not found in the similar calculation
by Craft et ol [63] using the same wall treatment as model 3. The very low
levels of the @0 component in the present calculations with model 4 might
be caused by numerical problems, purhaps in combination with usage of wall
laws.

Plots of the local heat transfer are shown on figures 5.9-5.12. All the
models predict the same heat transfer as the experiments far downstream of
the stagnation point. Close to the stagnation point large differences are found.
The highest Nusselt number found by the experiments is not unexpectedly
found at the stagnation point. Because of the too high levels of the Reynolds
stresses at the stagnation point it is expected that the Nusselt number will
also be too high here. The result found by model 3 is in agreement with
this while the other models that all use wall laws happen to find a Nusselt
number quite close to that of the experiments. They do, however, predict the
“maximum Nusselt number to be located at some distance from the stagnation
point. The flow condition near the stagnation point are far from those of the
assumptions used in the wall laws. It is therefore believed that the predicted
Nusselt number is a combination of the wall laws predicting too low heat
transfer and the turbulence model predicting too high heat transfer.

For the H/D = 2.0 case a characteristic variation of the local Nusselt
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Figure 5.9: Local Heat transfer for H/D = 2.0 and Re = 23000. See key in
table 5.2
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Figure 5.10: Local Heat transfer for H/D = 6.0 and Re = 23000. See key in
table 5.2
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number is found by the experiments near the stagnation point. None of the
models are able to reproduce this variation. In calculations of Craft et al [63]
this variation is reproduced with the Craft-Launder term. In spite of the quite
wrong levels of the Reynolds stresses found by model 4, the Nusselt number
found by this model is close to the Nusselt numbers found by the other models
using wall laws. This indicates that the Nusselt number found by models 1, 2
and 4 is mainly a result of the wall law.

5.3.3 Conclusion

Calculations have been performed with the Reynolds stress model for an im-
pinging jet for two different geometries and two different Reynolds numbers.

~The predicted velocities, Reynolds stresses and local heat transfer are com-
pared with experimental results.

The most important result for the velocity and Reynolds stresses was that
too high levels of the Reynolds stresses were found. This is caused by a well
know deficiency in the wall reflection terms. The Craft-Launder term which
tries to overcome this deficiency, was also tested in a calculation. An improve-
ment was observed in the impingement zone while the results in the rest of the
flow were poor with this model. This problem in the rest of the flow might be
caused by a numerical problem:

The standard and the new implementation of the wall boundary condition
were both tested with the basic Reynolds stress model and the only important
difference in the performance of these two wall boundary conditions was found
1o be the level of the heat transfer. Here the standard implementation tended
to be closest to the experimental data. However, since the Reynolds stresses are
overpredicted it is not possible to judge which of the wall boundary conditions
that gives the best performance.

" The results from the basic Reynolds stress model were compared to those
of Craft et al [63] that used a low Reynolds number k-¢ model as boundary
condition instead of wall laws. Quite good agreement was found between the
predictions of the Reynolds stresses while the prediction of the local heat trans-
fer was significantly better for the model of Craft et al. The good agreement
between the predictions of the Reynolds stresses might seem surprising because
the flow conditions are quite far away from the assumptions that the wall laws
are based on. The good agreement therefore indicates that for this case the
wall boundary condition is not very important for the prediction of the flow
parameters, but only for the prediction of the local heat transfer.

5.4 Staggered tube bundle

Tube bundles are used in many industrial applications, especially as heat ex-
changers. The tube bundle also represents a typical test case for industrial
flows because it has both a complex geometry and a complex turbulent flow.
As a test case, the calculation is performed in a unit cell with periodic boundary
conditions. This give the important advantage that no inlet boundary condi-
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Figure 5.13: The two tube bundles used as test cases. The dotted line show the
computational domains and the lines M—M show the minimum flow sections.

tion needs to be specified. Because of the complex geometry the calculations
must be performed in curvilinear coordinates on a body fitted mesh.

As it is illustrated in figure 5.13 the fiow contains features from the two
previous test cases: It has both an impinging zone and a zone with recirculat-
ing flow. Furthermore, the test case has a contracting region where the flow
is accelerated and an expanding region where the flow is decelerated. The
turbulence levels are quite high because the tubes act as a sort of agrid. A
more detailed discussion of the physics of the flow in a tube bundle is found
in section 2.1.2.

Some numerical results on turbulent flow in tube bundles have been re-
ported. The tube bundle has been used as an examples to test a curvilinear
code, [53, 64]. Numerical results have also been compared to data for the
mean heat transfer for a tube bundle [65]. However, it is not until very re-
cently that calculations have been compared to detailed measurements of the
fiow and turbulence. The only example known to the author is the numerical
results in [66, 59] that are compared to the LDA-measurements of Simonin
and Barcouda [10].

5.4.1 Description of the test cases

The definitions related to the geometry, the Reynolds number and the
Nusselt number are found in section 2.1.1. Two geometries will be used in
the calculations, see figure 5.13. The longitudinal and transversal pitches are
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Figure 5.14: Straight channel with two-dimensional flow - the dotted line
shows the computational domain.

for tube bundle A: @ x b = 2 x 2 and LDA-measurements are available from
section 2.2.3. Simonin and Barcouda [10] have performed LDA-measurements
for tube bundle B. In their experiments, the diameter was 21.7mm and the
longitudinal and transversal pitches were respectively 45 mm and 22.5 mm cor-
responding to a x b= 2.07 x 1.04.

Measurements of the local heat transfer for both geometries are found in
section 2.4.4. Here only one tube in the tube bundle was heated and the tem-
perature difference used in the calculation of the local heat transfer coefficient
is the difference between the local wall temperature and the upstream fluid
temperature. In the calculations, all tubes are heated and it is therefore not so
obvious what the fluid temperature is. In tube bundle A there is a significant
distance between the rows. Since the effective thermal diffusion is high in the
middle of a turbulent flow, the temperature differences in a cross section of the
flow between two rows are quite small compared to the temperature difference
between the fluid and the wall. It has therefore been found reasonable to use
the mean temperature in a cross section of the flow just upstream of the tube
as the fluid temperature. In tube bundle B the distance between two rows is
very small and the choice of the fluid temperature is therefore less obvious. It
has been chosen to use the mean temperature in a cross section.between two
tubes in the row just upstream of the tube considered, i.e. at the inlet to the
unit cell. This choice of fluid temperature might give a minor difference in the
level of the Nusselt number from the measurements and the calculations.

The LDA experiment reported in section 2.2 supports the commonly used
assumption that the flow in the middle of a tube bundle can be calculated
using a ‘unit’-cell with parts of two tubes. This unit-cell is shown for the two
tube bundles in figure 5.13. Aside from the wall boundaries, the boundary
conditions are a symmetry condition on the sides aligned with the main flow
direction and a special periodic boundary condition for the up- and down-
stream sides. Since the flow is two-dimensional a symmetry condition is used
in the planes that are perpendicular to the tube axis.

In the present study special attention has been given to the periodic bound-
ary condition. Section 4.5.2 describes a new implementation of the periodic
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boundary condition. The implementation of this boundary condition has been
tested for a simple two-dimensional turbulent flow in a straight channel with
a height 2h, see figure 5.14. This flow can be considered one-dimensional
and therefore also periodic in the flow direction. Furthermore it is symmet-
ric around a line in the middle of the channel aligned with the flow direction
and therefore both the anti-symmetric and the standard periodic boundary
condition can be used for this flow.

The straight channel is one of the most simple flows that can be used as
test case for the periodic boundary condition, but the simplicity of the case
gives some problems in the calculations. Since the momentum equations for
the flow reduce to a balance between the pressure drop in the channel and the
shear forces generated by the walls, the calculation with a periodic boundary
condition becomes very sensitive to the estimated pressure drop. This problem
is discussed further in section 4.5.2. It turned out during the calculations
that it was very difficult to get a stable solution with the approach that used
corrections of inlet velocities. Instead the approach where the pressure drop is
replaced with a body force is used for both the periodic boundary conditions.
The convergence of these calculations were quite slow and they therefore had
calculation times in the same order of magnitude as the calculation of the 200 2
long channel.

The results of several calculations are shown for the velocity U and for
one of the Reynolds stresses, 1%y, in figure 5.15. Both U and u1u; has been
normalized with the maximum velocity Up in the channel and they are plotted
against the distance from the wall y. Here the solid line represents a calculation
with normal inlet and outlet conditions for a 200 h long channel with 100 x 40
grid cells, the short-dashed line represents a calculation for a 0.5 & long channel
with 10 x 40 grid cells and with the standard periodic boundary condition in
FLOW3D and, finally, the long-dashed line represents a calculation for the
same channel and grid, but with the new anti-symmetric boundary condition.
All calculations use the standard wall boundary condition for turbulent flows
in FLOW3D.

The results from the three calculations are all in reasonable agreement
with the experimental data. The results from the calculations with periodic
boundary conditions are closest to the experimental data. The reason for this
is probably that the flow at the end of the 2004 long channel is not fully
developed. The deviations from the experimental data are seen most clearly
near the wall because U and T u; are normalized by the maximum velocity
Us and not the mean velocity of the channel. However, the deviations of uyiy
from the experimental data near the wall might also be caused by weaknesses
in the wall boundary conditions. In general, the calculations indicate that the
implementation of the anti-symmetric periodic boundary condition gives the
correct results.

5.4.2 Numerical results for tube bundle A

The grid used in the calculations on tube bundle A has 80 x 40 cells and is
shown in figure 5.16. It is a compromise between the desire to have a grid
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Figure 5.15: Fully developed flow in a plane channel with Re = Ugh/v =
30 800. Symbols show experimental data from [36] and the lines show compu-
tational results using different boundary conditions (see text).

Figure 5.16: Grid used for tube bundle A.
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that is fine enough to give grid independent results and the demand for the
near-wall cell nodes to have a distance where y* > 11. The latter is a problem
in the tube bundle cases used in the present study. In the grid in figure 5.16
some of the near-wall cell nodes at the rear of the first tube have distances
from the wall where y* is smaller than 11. The computer code takes measures
to handle this in a physically reasonable way, but of course the result can not
be completely correct.

On the other hand, calculations have been performed with several different
grids, both more and less fine that the grid on figure 5.16. For the more
fine grid the row of cells that were nearest to the walls were removed. In
this way the height of the near-wall cells were twice the size of the height of
their neighbouring cells and the near wall nodes were thereby located at a
distance from the wall so that 3+ > 11 for most of the nodes. The price of this
arrangement is that there is a jump in the cell size from the near-wall cells to
the rest of the cells and this gives a greater discretization error in this region.

A general problem with the grid generation for a tube bundle unit cell is
that the unit cell has 6 corners while there is only 4 corners in computational
space. Two of the corners of the unit cell therefore have to be located in the
middle of a boundary in computational space. On figure 5.16 these corners are
located at the front and rear stagnation points on the tubes. As it can be seen
these corners will inevitable have severly distorted cells. This problem could be
solved by using a multi block approach, i.e. several domains in computational
space that are linked together in the physical space. Unfortunately this option
was not present in the version of FLOW3D that was available at the time
where the problem was implemented.

In could be argued that it would be better to locate the corners with dis-
torted cells in those of the corners of the unit cells that are not located at the
walls (the lower-left and the upper-right corners on figure 5.16). Such a grid
with the same number of cells as the grid in figure 5.16 has been generated
and used in a single calculation. This calculation gave more smooth results
at the stagnation points, but no significant change in the results in the rest of
the flow. However, since FLOW3D does not support the use of both a sym-
metric and a periodic boundary condition along the same boundary, it is more
complicated to implement the tube bundle problem with this grid. It has also
turned out to be quite difficult to give the near wall nodes a uniform distance
from the wall with this type of grid. It has therefore not been used for further
calculations.

The calculations with these different grids all gave similar results, but they
had minor differences in the prediction of actual values. The grid in figure 5.16
seems to be a fair compromise, but it can not be claimed that this grid gives
grid independent results. :

The final calculations consist of a calculation with the k-e¢ model and a
series of calculations with the Reynolds stress and flux models. During the
first preliminary calculations, both the standard implementation and the im-
plementation made of the wall laws in the present study were tested. It was
found that the difference between the two implementations was small com-
pared to other problems found in the calculations. The final calculations have
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therefore only been performed for the standard implementation of the wall
laws. ' '

Tt was attempted also to use the higher upwind convection scheme. It
surned out to be quite difficult to get a converged solution with this scheme.
Since the importance of the convection scheme probably is small compared
to some of the other problems in the calculations, it was decided to used the
hybrid convection scheme in final calculations. Since no ‘effective’ viscosity or
diffusivity appears in the momentum and the temperature equations for the
Reynolds stress and flux model, it is not possible to use the hybrid scheme here
and therefore the upwind scheme has been used instead for these equations.

The wall reflection terms has been implemented so that they take the walls
of the tubes inside the unit cell into account. It could be argued that the
contributions from some of the tubes outside the unit cell also should be taken
into account. However, the wall reflection term is most important in the im-
mediate vicinity of the reflecting wall and it is probably questionable whether
it really represents effects from other walls in the quite complex flow in a tube
bundle. Furthermore, it would be quite complicated to implement the term
for all possible walls and therefore it has been chosen only to use the walls of
the tubes inside the unit cell.

A first impression of the difference between the results from the k-¢ model
and the Reynolds stress model is given by the streamline plots in figure 5.17.
Tt is evident that the k-e¢ model predicts a much smaller recirculation zone
than the Reynolds stress model. The streamline plots should be compared
with the visualization shown on e.g. figure 2.8. The velocity field predicted
using the Reynolds stress model seems to be in the best agreement with the
experimental results. This is a tendency that is also found for other flows with
recirculation zones, e.g. the abrupt pipe expansion.

In appendix D.2 the numerical result for both tube bundles are compared
with the results from LDA measurements. This is done with plots of profiles of
the velocities and the Reynolds stresses along the five lines shown in figure 5.18.
These lines are the sides of a unit-cell, a line through the recirculation zone
and a line downstream of the recirculation zone. The five profiles together
therefore give an impression of the most important features in the flow. The
coordinate systems used for the plots are also shown in figure 5.18.

The numerical results for tube bundle A with a Reynolds number of Re=
32000 are compared in appendix D.2.1 with the results from the LDA results

presented in section 2.2. The pattern observed from the streamline plots is also
seen here. The length of the recirculation zone can be judged from the plots
of U; in the wake region (za = 0). The plot of the measured data indicate
that the recirculation zone extends to z; = 0.99 D while the plots of the
numerical results predict that the recirculation zone extends to z; = 0.70D
and z; = 1.07D for the k-¢ and the Reynolds stress models, respectively.
The k-¢ model therefore predicts a too small recirculation zone, while the
predictions of the Reynolds stress model is closer to the experiments; the
recirculation zone is here a little too long and, according to the plot of U; for
z; = 0.8 D, a little too narrow compared with the experiment. At the inlet
to the umit cell the velocity profile predicted by the Reynolds stress model is
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Figure 5.18: Lines in the tube bundle unit cells where profiles have been plot-
ted.

quite close to the experiment while the k-e model finds a more flat velocity
profile, probably because of the too small recirculation zone. In the impact
region the U; velocity predicted by the k-¢ model is in good agreement with
the experiment while the Reynolds stress model predicts a Us-profile with the
‘right shape, but with a level about 20% too low. This problem is probably
connected to the narrowness of the recirculation zone.

The turbulent kinetic energy k = 3%;i; can not be found from the LDA-
experiments because #3lz was not measured. Since Tty and Tpuz are quite
different in many parts of the flow an estimate value like k = 3(urmy + T2t2)
will probably be quite inaccurate in many positions. It can be said that the
k-¢ model assumes that the Reynolds stresses are isotropic. It has therefore
been found reasonable to compare the results from the calculations with the
k-¢ model with the experiments using an isotropic estimate of the Reynolds
stresses: T dy = Ugle = %k. This is an estimate and it can only be used to
give an impression of the level of k compared to the experimental data.

The plots in appendix D.2.1 show that in the wake of the tube the level
of k predicted by the k-¢ model is clearly too low while it at the inlet to the
unit cell and in the impact region it tends to be too high. While the general
levels of k outside the wake therefore has the same order of magnitude as the
measurements, the general levels of the Reynolds stresses predicted with the
Reynolds stress model are much too low at all positions. In contrast to the
k-e model, the Reynolds stress model does predict a peak for the Reynolds
stresses in the recirculation zone although the peak is closer to the symmetry
line than the peak found experimentally. Both models finds a peak in Uiy
just upstream of the front stagnation point. The experimental data show no
indication of such a peak although the measurements do not cover this position
very well.

The performance of the k+¢ model is reasonable when the well known weak-
nesses of this model are taken into account. But it is surprising that the perfor-
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mance of the Reynolds stress model is significantly poorer than the k-¢ model.
The reason for this is not clear. To test whether the periodic boundary condi-
tion could cause problems a calculation on a ‘full’ tube bundle was performed.
This bundle contained five unit cells, a rather coarse grid with 200 x 20 cells -
and used traditional inlet and outlet instead of the periodic boundary condi-
tion. The Reynolds stresses in the fourth unit cell were compared with the
results of the calculations shown in appendix D.2.1. The calculation on the
‘gull’ tube bundle gave essentially the same results as the calculations with
the periodic boundary condition. This indicates that it is not the periodic
boundary condition that causes the low levels of the Reynolds stresses.

In the figures 5.19 and 5.20 the local heat transfer from the surface of a
tube is plotted against the angle ¢ from the front stagnation point. The local
Nusselt number Nu has been normalized by Re™8 since both the correlation
(2.3) and the figure 2.15 indicates that this should take account of the effect
for the Reynolds number.

In figure 5.19, the local heat transfer for the k-¢ and Reynolds stress models
at Re — 32000 is compared with experimental data at Re = 34100. Both
models find a general level of the heat transfer that is somewhat smaller than
that of the experiment. The major difference between the k-e¢ model and the
Reynolds stress model is that the k-e model has a higher level of the local
Nusselt number, particularly on the front side of the tube. ‘ _

The calculated Nusselt numbers have small peaks at the front and rear
stagnation points. These peaks are probably caused by the distorted cells at
the stagnation points. This is supported by the fact that a calculation with the
grid having distorted cells located at another position (mentioned on page 84)
did not find these peaks in the local Nusselt number.

Increasing the angle ¢ the calculated local Nusselt number is increasing
on the front side of the tube, takes its highest value at ¢ = 90° and is then
decreasing again until the recirculation zone where the Nusselt number with
minor variations takes a constant level. In contrast to this, the local Nusselt
number found experimentally takes its largest value at the front stagnation
point and is decreasing on the front side of the tube. On the rear of the tube it
has a generally lower level and a characteristic variation with minima at 100°
and 150° and maxima at 120° and 180°.

Figure 5.20 shows a series of calculations with the Reynolds stress model
using different Reynolds numbers. The local Nusselt numbers normalized by
R®® are generally close to each other. With increasing Reynolds number the
level is increasing slightly outside the recirculation zone while it is decreas-
ing slightly inside the recirculation zone. Although the variation is somewhat
larger than the quite small variations seen for the experimental data on fig-
ure 2.15 using the same Reynolds numbers, the plots on figure 5.20 show that
the calculated Nusselt number also scales reasonable well with Re™.

5.4.3 Numerical results for tube bundle B

Using the same type of grid and calculation procedure as the one used in the
previous section for tube bundle A, the calculations on tube bundle B gave
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data at Re = 34100.
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Figure 5.21: Grid used for tube bundle B.

either unstable or oscillating solutions. Several different procedures to solve
this problem were attempted. It was found that with a computational domain
consisting of two unit cells combined with the use of low underrelaxation factors
for the equations it was possible to obtain a solution where the oscillations were
dampened so that a steady solution could be reached.

Two grids with 160x 20 and 240x 30 cells, respectively, where tested. 'There
was found some differences in the level of the Reynolds stresses for the two
grids and none of the grids can therefore be claimed to give grid independent
solutions. However, values of y™ less than 11 on parts of the tube walls are
found for the calculations made with both grids and it was estimated that it
therefore was not reasonable to refine the grid further. The grid with 240 x 30
cells is shown in figure 5.21 and was chosen for the final calculations.

The results in terms of the velocity and Reynolds stresses for this calcula-
tion has been presented at the ‘2nd ERCOFTAC-IAHR Workshop on Refined
Flow Modelling’ [59], where the flow in tube bundle B was one of the test
cases. Earlier calculations have also been reported by Sebag et al [66, 67].

Most of the problems with the calculation procedures that were discussed
for tube bundle A also apply for tube bundle B and will therefore not be re-
peated. The final calculations on tube bundie B used nearly the same approach
as tube bundle A: hybrid and upwind convection schemes, the wall functions
implemented in the present study and the wall reflection terms from tube walls
in the units cell. The calculations are only performed for a single Reynolds
number: Re = 40000.

Figure 5.22 shows streamline plots for the performed calculations. The
results from the k-e model show no recirculation zone while the result from the
Reynolds stress model show a small area with recirculation. The streamlines
are here rather kinked because the grid is coarse compared to the dimensions
of the recirculation area.

In appendix D.2.2 the profiles of the velocities and the Reynolds stresses
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are plotted along the five lines shown on figure 5.18. These plots confirm
the observations from the streamline plots about the recirculation zones. The
recirculation zone found experimentally seems to be a little larger than the
one found in the calculation with the Reynolds stress model. At the inlet,
the velocities found by the calculation have a higher level than the velocities
found experimentally. The reason for this must be that the velocities found
experimentally do not correspond to the stated velocity U, upstream of the
tube bundle. When this difference is taken into account it can be seen that in
the impact region the Reynolds stress model tends to predict too low velocities
while the k-¢ model predicts velocities closer to the experimental data. This
tendency was also found for tube bundle A.

In the plots of the Reynolds stresses the k-¢ model again uses an isotropic
estimate: Ul = Utz = %A Here its is found that the k-¢ model predicts too
high levels of turbulent kinetic energy, except for the wake region where the
levels are somewhat too low. In contrast to this, the Reynolds stress model
predicts much too low levels of the Reynolds stresses at all locations. These
results are very similar to the result of the calculations for tube bundle A. Like
it was found for tube bundie A, both models also predict a peak in 7yu7 just
upstream of the front stagnation point. Some measurements are available for
tube bundle B in this region and they show no sign of a peak in T W3-

At the ‘2nd ERCOFTAC-IAHR Workshop on Refined Flow Modelling’ [59]
the flow in tube bundle B without heat transfer was used as one of the test
cases. There was large scattering in the level of the Reynolds stresses for
presented results with the Reynolds stress model, but in most of the cases the
predicted levels were closer to the experimental data than those of the present
study. This indicates that the difference between experiment and prediction to
a large extent is cause by other factors than deficiencies in the basic Reynolds
stress model.
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Figure 5.23: Local heat transfer at Re = 40000 for k-¢ and Reynolds stress
(RS) models compared with experimental data (see text).

The local heat transfer found in the calculations and the experiment is
shown in figure 5.23. Like in the calculations on tube bundle A, the peaks
in the Nusselt number that are found at the stagnation points are probably
caused by the distorted cells in these regions. The mean Nusselt number is
significantly too high for the k-e model while it for the Reynolds stress model
happens to be close the experimental Nusselt number. The k-¢ model does
not the fird the maximum heat transfer at the front stagnation point as in
the experiment, but instead at ¢ = 30°. It also does not reproduce the small
variations found in the recirculation zone.

The Reynolds stress model predicts minima in the front and rear stagnation
points which is in contrast to the experimental data that have maxima at
these locations. As for tube bundle A the Reynolds stress model again finds
a maximum at ¢ = 90°. It also finds some variations and a minor peak in
the recirculation zone, but the variations do not correspond to the variations
found experimentally. The peak is probably caused by a very low value of y*+
at this location.

5.4.4 Conclusion

Tt is not unexpected that the performance of the k-e model is not very good
for the quite complex flow in a tube bundle. However, it is surprising that
the Reynolds stress model gives a significantly poorer prediction of the level
of turbulence than the k-¢ model. There are several possible reasons for this
of which some will be discussed in the following:

There could be some sort of deficiency in the Reynolds stress model that
caused e.g. to low generation or too high dissipation of the turbulent kinetic
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energy for this particular Row. An example could be that the turbulence

model was incapable of modelling irregular vortex shedding from the rear side
of the tubes. However, since the k-¢ model seems to be able predict a level
of the turbulent kinetic energy that is in the same order of magnitude as the
experiment, it is not likely that the modelling of e.g. vortex shedding is the
problem for the Reynolds stress model. The fact that other authors [66, 59]
have made calculations with the Reynolds stress model that find a level of the
turbulent kinetic energy significantly closer to the experimental data, makes it

- likely that the low levels found in the present study is caused by other factors

as well as possible deficiencies in the Reynolds stress model.
One of the possible factors is that the wall boundary conditions cause
problems in connection with the Reynolds stress model. Since two different

‘boundary conditions for the Reynolds stresses has been tested, it is not likely

that the reason should be found in the boundary condition of the Reynolds
stresses. However, as it is seen in equation (4.56) and (4.57) the term that is
used to find the wall shear stress used in the momentum equations contains

'a factor that is roughly proportional to k2. A low level of k will therefore

result in a low wall shear stress. This might decrease the velocity gradients

"near the wall and a decrease in the velocity gradients might result in a lower

generation of k. If the productions terms in the Reynolds stress equations are
more sensitive to such a reduction of the velocity gradients than the production
term in the k-equation, this could explain the large difference in the levels of
k.

In FLOW3D the value of y* is calculated as y* = (c,)/*y* where y* is the
modified wall coordinate defined in equation (3.51). This value of y* therefore
also contains k12 as a factor. While y* > 11 for nearly all near wall cells in
the calculations with the k-¢ model, the calculations with the Reynolds stress
model generally have lower levels of y+ due to low values of k¥ and there are
large areas where yt < 11. Even if the wall laws are not the most important
reason for the low levels of & the assumptions, that the wall laws are based
on, are not fulfilled. The wall laws will therefore probably cause some kind of
errors in the results.

Because of the problems with low levels of k it is difficult to make any
further conclusion regarding the performance of the Reynolds stress and flux
models in a tube bundle. Further investigations should probably use an im-
proved treatment of the walls, e.g. use a jow Reynolds number turbulence
model near the walls.

5.5 Closure

This chapter reports numerical results for three different test cases that have
turbulent flow and heat transfer. ‘Standard’ models were use to model the
turbulence: the k-¢ model and the Reynolds stress and flux models. The wall
boundary conditions were handled by wall laws.

The abrupt pipe expansion is the most simple of the cases and here it was
possible to obtain satisfactory results for the local heat transfer coefficient. The
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calculations with the impinging jet demonstrated some well known deficiencies
in the Reynolds stress model. Quite good agreement with numerical results
by other authors was found for the Reynolds stresses. The wall boundary
condition is probably not very important for the calculation of the Reynolds
stresses. However, this calculations also demonstrated that the wall laws are
unable to give good predictions of the local heat transfer for a flow with quite
complex structures.

For these two test cases the inlet was found from a calculation of a fully
developed pipe flow. The level of the turbulent kinetic energy is here to a
large extent determined by the level at the inlet. The staggered tube bundle
cases uses a periodic boundary condition instead of a traditional inlet and the
level of the turbulent kinetic energy is therefore entirely determined in the
calculation domain. The modelling of the wall boundary conditions therefore
become important not only for the prediction of the heat transfer but also for
the prediction of the flow and turbulence.

The caleulation with the Reynolds stress model for the staggered tube bun-
dles gives a much too low level of the Reynolds stresses. No final explanation
for this has been established, but there is reason to believe that the use of wall
laws is an important factor in this problem.

The calculations in this chapter has demonstrated that the use of walls laws
in many simple flows, even flows with a recirculation zone, can give satisfactory
results. However, for more complex flows it is probably essential to use a more
refined way of handling the walls, e.g. a low Reynolds number turbulence
model.
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"_C_hapter 6
Summary and conclusions

The most important of the tasks that have been performed in the present study
are listed below:

-owA”water test channel Wiﬁh fiow system has been designed to be used
- for LDA-measurements in a tube bundle. LDA- measurements have been
- performed in the middle of the tube bundle.

o g._Visuahzatlons of the flow in the water channel designed for LDA-measu-
. rements was performed.

e A ‘special constant heat flux tube has been designed to measure the local

" heat transfer in a tube bundle in an existing wind tunnel facility. This

“tube was used to measure the local heat transfer in the middle of two
different tube bundles. :

- @ Several changes have been made in the commercial finite volume com-
- puter code FLOW3D:

~ A new periodic boundary condition which enables both an asym-
metric periodicity and a usual periodicity where variables such as
pressure and temperature have a net change of level from “inlet” to
“outlet”.

— A general form of the wall reflection terms for the Reynolds stress
and flux equations. In the present version it can be used for two-
dimensional geometries (but three-dimensional flows). It is straight-
forward to extend the implementation to three-dimensional geome-
tries.

— A new version of the Reynolds stress model proposed by Craft
and Launder {56]. The implementation is valid for two-dimensional
flows.

—~ A new wall boundary condition has been implemented. This bound-
ary condition uses a more accurate integration at the wall based on
[23] and a new boundary condition for the Reynolds stresses based
on [66].
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e Calculations with the k-¢ model and the Reynolds stress and flux models
have been performed, of both flow and local heat transfer, for three dif-
ferent test cases. The resulés in terms of the velocities, Reynolds stresses
and the local heat transfer have been compared with experimental data
from the literature and from the present study.

The present experiments have been designed to produce data that are suit-
able for verification of calculations with turbulence models. The measurements
have produced data for both local velocities and turbulence and for the local
heat transfer in one staggered tube bundle. Data for the local heat trans-
fer have also been produced for a tube bundle with another geometry. Data
for local velocitics and turbulence for this other geometry are available from
[10]. All these data form two test cases for staggered tube bundles with quite
different geometries.

The accuracy of the experimental data (typically £3%) are found to be
satisfactory for the verification of calculations with turbulence models. How-
ever, there are several ways that the measurements could be improved and
extended. The most important extention would probably be measurements
of the velocities and turbulence close to the tube walls. Although there are
reasons to believe that the flow can be considered to be fully developed at
the positions where the measurements have been performed, it would be inter-
esting with an investigation of the development of the flow and heat transfer
in the inlet section to a tube bundle. An investigation of the importance of
the number and the length of the tubes in each row would also be interesting.
Several possible improvements of the accuracy of the measurements have been
discussed in the thesis.

The calculations with the k-¢ model have demonstrated that this model
tends to predict too small recirculation zones. This is a well known problem
with the k-e model and this model is not very good for most complex flows.
The Reynolds stress model has a significantly better performance although
the test case with an impinging jet demonstrates that the basic Reynolds
stress model also has deficiencies. Both models can be designed to give better
improvements although the Reynolds stress model probably has the largest
potential. However, the work with improvements of turbulence models is &
laborious task and has not been covered in the present study.

Wall laws are based on assumptions that are not very well fulfilled in com-
plex flows. Nevertheless, wall laws are used in lack of a better boundary
condition. In the present study, a version of the wall laws that should be more
robust to the conditions in a complex flow have been implemented. The flow
conditions in the first two test cases seem to a large extent to be determined
by the inlet conditions and not so much by the wall laws. The flow is there-
fore probably mostly determined by the turbulence model. However, the local
heat transfer is very dependent of the conditions near the wall and is therefore
mostly determined by the wall laws. For the abrupt pipe expansion, the new
implementation of the wall laws seems to give important improvements and a
result quite close to the experiment.
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It is not surprising that the k-e model gives a rather poor prediction of the
fow and heat transfer in a tube bundle. It is, however, surprising that the
Reynolds stress models, in constrast to the k-¢ model, find much too low levels
of the turbulent kinetic energy. The tube bundle calculations use a periodic
boundé,ry condition as the ‘inlet’. The flow is therefore much more determined
by the wall laws. There is therefore reason to believe that the problem with the
low levels of the turbulent kinetic energy might be connected to the weaknesses
in the wall laws and Jor to numerical problems that come from the combination
of the Reynolds stress model and the use of wall laws.

The most important way to improve the results of the calculations is proba-
bly to use a low Reynolds number turbulence model at the wall instead of wall
laws. This requires a grid that is able to resolve the sublayer at the wall down
to about yT = 1 and therefore a larger computational effort. Unfortunately,
there was no direct possibilities of performing such calculations in the used
version of FLOW3D. . _ .

Since the present study has used the commercial code FLOW3D a short
evaluation will be given of this program. It has been found that the program is
relatively easy to use in most cases. However, it is quite difficult and laborious
to make changes, like the periodic boundary condition and the new imple-
mentation of the wall functions that have been made in the present study.
Unfortunately, there seems to be a tendency that commercial programs for
computational fluid mechanics give very limited possibilities for changes in the
calculation procedures. There is therefore still a great need for programs that
might be less easy to use, but that instead makes it easy to implement new
models and methods.
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Nomenclature

Below follows a list of the most important symbols used in the present study.
Note that general tensor notation is used in chapter 4 while Cartesian tensor
notation is used in other parts of the study.

Italic symbols:

A A

7]

Area.

Adjugate Jacobian matrix.

Transverse pitch between tubes; matrix coefficient.
Coefficient used in equation (4.39).

Longitudinal pitch between tubes; matrix coefficent.
Convective term or coefficient.

Various constants — indices are defined in the text.
Specific heat.

Coefficient used in equation (4.41).

Diffusive term or coefficient.

Diameter.

Logarithmic wall law constant.

Basis vector.

Time averaged body force or body force term.

Fluctuating part of body force; frequency.

-

Frossling number.

height.

Heat transfer coefficient.
Total flux.

Jacobian matrix.
Jacobian determinant.

Turbulent kinetic energy.
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81, 82

Biokage factor.
Length.

Mass flow rate.

Unit vector.

Nusselt number.
Nusselt number given by Dittus-Boelter equation (5.6).

Time averaged pressure; Production term; “Pee-function” from
equation (3.43).

Fluctuating part of pressure.

Peclet number.

‘Prandt! number.

Heat flux.
Rhie-Chow term, see equation (4.47).

Surface resistance.
Coordinate in radial direction.

Reynolds number.

Source term.

Transverse and longitudinal distance between tubes.

Strouhal number.

Temperature.

Temperature difference.

Time.

Unit vector.

Turbulence intensity.

Time averaged velocity.

Bulk velocity (Upuz = UF + U3 + U3).
Wall friction velocity.

Fluctuating part of velocity.

Reynolds stress.

Reynolds flux.

Voltage; volume; velocity in y-direction.
Vector. |

Fluctuating velocity in y-direction.
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vol Volume of control volume.

T Coordinate in physical space.
Y Coordinate in physical space.
z Coordinate in physical space.

Greek symbols

Underrelaxation factor.

o

Ji) Témperature coefficient.

I Diffusivity for general scalar.

7y Isentrop exponent.

8i5,0% Kronecker delta.

€ Dissipation of turbulent kinetic energy.

€q Emissivity.

© Time averaged general scalar.

g Fluctuating part of general scalar.

K von Karman constant.

A Thermal conductivity.

7 Dynamic viscosity.

v Kinematic viscosity.

i) Density.

o Prandtl number for general scalar; Stefan Bolzmann’s constant.

T Shear stress. |

¢ Angle; pressure strain term; general scalar.

£ Coordinate in computational sjaa.ce.

7 Coordinate in computational spabe. :

¢ Coordinate in computational space.

Q Control volume. |
Subscripts

i,3,k,1,m Vector and tensor indices.
E,N,P,S,W Cell nodes, see ﬁgure 4.3.
e,n,s,w Cell faces, see figure 4.3.

nb Index running through neighbouring cell nodes.
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Index running through faces of control *}olume.

Conduction.
Convection.
Effective.

| erl:' Electric.

m | Inlet.

rad ~ Radiation.
ok - be k-equation.
m Mean value; mass.
¢ -Turbulent.
~w._ At the wall
- 0 ~ Reference condition.
0o, Condition far away from wall.
SﬁperSCfipts
- Time average; average between nodes; mean value; inverse.
° Normal flux component.

4+ Wall coordinates. '

E _Modiﬁed wall coordinates; most recent updated value.
s+ Corrected value. '
i, 5,k Vector and tensor indices.

n Time step index.
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Appendix A |

Boundary conditions for w;u;

and uiG

This appendix will show a possible implementation of a boundary condition for
the Reynolds stresses and fluxes. First it will be shown how values of Reynolds
stresses found in a coordinate system local to a wall can be transformed into
a global coordinate system. Then it will be shown how values of the Reynolds
stresses and fluxes can be approximated using the algebraic Reynolds stress
and flux models. Although this section will only consider the two-dimensional
case, the results can easily be extended to the many three-dimensional cases,
where the flow near the wall can be approximated with a local two-dimensional

flow. -

A.1 Coordinate transformation of Reynolds stres-
ses

A local coordinate system can be defined, as shown on figure A.1, with one
axis n normal to the wall and the other axis t parallel to the wall and in the
same direction as the velocity U near the wall. The global coordinate system is
denoted z* = (z!,22) and the vectors defining the local coordinate system have
the components t = (t1,2) and n = {ny,n2) in the global coordinate system.
Let * = (z'',2?) denote the local coordinate system and Tru; denote the
Reynolds stresses in the local coordinate system. If the Reynolds stresses are
considered a contravariant tensor it can be transformed as [55]

i 5.7 ‘
G = (i’“”‘—?-"-”—) . (A
: |

Here, 8z*/82*’ can be expressed using t and n as

[ o |
%z oV 9a¥ =(:1' ’;1) (A.2)
’ o 8z P

6z" 0z
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Figure A.1: Coordinate system local to a wall

Combining (A.1) and (A.2) the Reynolds stresses transformed to the global
coordinate system can be expressed as

U1 = (t1)2 =+ Uatiz (TL])z + 2u1u2’t1n1
Ualla — U (tg)z + Ualla (n2)2 + 2u1u2 totlo (A?))
Uity = TUjuq hile + TaUg e + 'U,I’U,gl(tlﬂz + tgnl).

A.2 Wall approximation for 7;7;

Values of the Reynolds stresses near a wall can be estimated by applying a
local Couette flow assumption to the algebraic Reynolds stress model [66], see
figure A.2. It is assumed that k and € are found using the technique described
'In section 3.3.1 and 3.3.3.

The algebraic Reynolds stress model is descrlbed in section 3.2.3 and can
be written without body forces as

TG _ g, (1 — eg)(Py/e - 204 P/[e) —!-(15,3,,,/6 (A4)
k 8y P/E +c; — 1 )
where
€ .
¢ijw = { E(ukumnknmau - %uku,-nknj - %ukujnkm)
3/2
S (Grmanenm0:; — SPianen; — %(bkﬂnkni)}a%—l, (A.5)

where P;; and ¢;;; are defined in equations (3.16) and (3.23).

Using the local Couette flow assumption and forcing €nearwen = —W102(0U1 /0z2),

the production terms can be written

oU.
P11 = *2(&1&1%‘2?’ + U}‘U,g—]:') = 26 (AG)
1
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T; = (0, 1,0)
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Figure A.2: Local Couette Flow

= — 2 e —S) = 7

Py 2(Tuz B2, + UaTz 52 )=0, (A.T)
oU. oU. oU. U oU.

. P, = —(UIUIE?% -+ U1u25§,‘f -+ Uzular“i- =+ Ugﬁzg-z—;) = —u2u2—é;;(A.8)

From the usual definition of the dissipation length scale the weight function
k32 /(cie)z,)) can be assumed to take the value of unity in the near wall cell
and the wall reflection terms can then be found in the local Couette flow as

€ €
Priw = Cﬁ-,;(“zuz —0) + ch{goe — 0) = Cllzuzuz + Chpaza, (A.9)

€
P2 = C'l-',;(uzuz — 3uguz) + ch{@22 — 3d222)
€
= —26’1 EU?'U.Q - 26’2¢222, (A].O)
€ : o
baw = -3¢ 7tz 2 o _ (A.11)

Expressions for the Reynolds stresses can now be found using the assump-
tion P = € and the constants in the model as ’ :

. . Taly
T 2(cr+2—2c2 20y} + 61_2}_2 . -
= —~1.008, (A.12)
k €1
o . .
UoUs '5(61 +Cp — 11— 262612)
= = 0.2476 ‘ A.13
-k ¢y + 2C’1 0 ’ ( )
U Us 2 l—0co+ %C2C’2 UsUg ’
= . = 0 = - A.14
(5%) atid K T (A.14)

A.3 Wall approximation for u;0

A similar analysis can be performed with the algebraic Reynolds flux model
from section 3.2.3. This model can be written, without body forces, as

_ 50 __aU;
75 2w~ (1 ~ ca2)(wb——) + Pigw)
R (P 2w ’ :
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where

T A.16
. Gigw = (CBLE'L‘I nmi)m- (A. )
With n; = (0,1,0) the wall reﬁectioﬁ term can be reduces to
¢19w = ¢39w = O) (A‘17)
€——
boow = Corpusf. (A.18)

Using the same assumption as used for the Reynolds stresses, the Reynolds
fluxes can be found as :

00 20 — 1
-5 Tt —— + Tts—=—— + (1 — coa)ualf——
T_J'l_q — 0z 0z 04 (A 19)
k Co1€ ’ ’
.uie. = 1u28‘r1 2 261"2 (A 20)
k (cor ~ ciy)e ’ ’
Ez—g =0 (A.21)
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Appendix B

Plots of LDA measurements

B.1 Test of number of samples in a point

0-00 'lll E) L] L3 "'II! L] L] LB E S EE] 0-05 Ili' ¥ L] ‘ 1 LELILS
0.05 o b7 %
v 00T 1 m OO
U X X T
m ~0.10 - ;_}__;,{.;—g_u - m —0.05 |- $-% =
X X ' X '
—0.15 | * % - ~0.10 - 5 -
_0.20 sl 3 2 agaaaal bkl ) _0.15 st 1og s aaiul 2 i.r.aaill
100 1000 10000 100 1000 10000
: number of samples number of samples
0-20 Illl L] LA IIIF[ L + F FTIT 0.20 II ¥ LIS lll!l L3 T + F #3789
T 0.15 - - gtz 0.15 - H\‘H__i____g——! -
2 2 X
Un) 510 | 3 4 U=Foaw} -
005 | R R 0.05 | 4
O-OG il y a1 sl it antst 0.00 wal y 3 a2zl 3t 4 rsant
100 1000 10000 100 1000 10000
number of samples : number of samples
0.10 prr—T—rrrrT—rvrT :
TrE T 0.05 -
5 X
(Um)* 0.00 --W-—i-—»l——r‘-n-—
=005 —
__0'10 1l i PN AT 1 $ 2 Ll
100 1000 10000

number of samples

The above 5 plots show measurements that all are taken in the same physical
point. The coordinates for this point is approximately (z1,22) = (0.85D, 0).
The number of samples in each measurement has been changed in step from
100 to 6000 samples. For each number of samples 10 measurements were
performed. The result from a single measurement is shown with the symbol
x and the average of all measurements with the same number of samples are
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ﬂ Uz U Uy Ugliz Uy ls
: Un Un (Un)? | (Un)? (Un)?
- mean value —0.10423 | —0.03244 | 0.06554 | 0.14900 | —0.00229

standard deviation [ 0.00228 | 0.00502 | 0.00148 | 0.00314{ 0.00122

| Table B.1: Mean value and standard deviation for 10 measurements, each with
6000 samples.

 shown with a solid line. The measurements have been normalized using the
mean velocity between two tubes in a row: U, = 2.85m/s.

In table B.1 the mean value and the standard deviation are shown for
each of the mean velocities and each of the Reynolds stresses in the measuring
series that had 6000 samples in each measurement. For the mean velocities
the standard deviation is less than 1% of U,,,. The standard deviations for
uru; and Upug are about 2% of their mean values. The point used in the
measurements is located close to a line of symmetry and the mean value of
U g is therefore close to zero. However, the standard deviation of Tz is
about 3% of the general level of the mean value of 7173 in the surroundings
of the measuring point. '

B.2 Measurements in measuring section

The following 100 plots show all measurements taken in the measuring section.
The plots are organized in 5 groups containing plots of respectively Uy, Us,
Uil1, Uous and Wiwz. Each single measurement is marked with a symbol and
four different symbol are used to denote which of the unit cells in the measuring
section a measurements has been taken in. The symbols are explained below
this paragraph. Solid line denote average of all measurements in a point. On
the plots, all the measurements have been transformed to the upper right unit
cell where both z; and z; are positive). This transformation involves changing
the sign on U, and @@ for measurements in the unit cells with symbols +
and X.

Symbols used on plots:

;<01 z2,>0
T9 <0 a X
T2 >0 + <&
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Appendix C

. Wind tunnel experiments

This appendix will describe different problems and experiments related to ex-
periments with tube bundles carried out in the wind tunnel.

C.1 General relations and properties

The mean velocity Us at the inlet to the wind tunnel test section is deter-
mined from the pressure before and after the contraction shown in figure C.1.
It will be assumed that the flow in the contraction is steady and isentropic
with a uniform velocity distribution. From conservation of mass and energy

pr AUy = p24aUs, (C.1)
Py + 10Ut = P+ 3%, (C.2)
the velocity Us is found as
2(P, — )
U, = ) C.3
2 \} p2(1 — (pa/ p1)(A2/A1)?) (©3)
The ratio of the densities can be found from the relation for an isentropic
process
]
2 (B c.4
1 P : : (C4)

where  is the isentrop exponent for air.

The properties for air used in this study are listed in table C.1. Except
for the density p, all properties are assumed to be constant with the pressure
P. The density is found from the ideal gas relation as p(P) = po{ P/ Py) where
index 0 refers to conditions at py = 1 bar.

The Schiltknecht water micro manometer measures a pressure difference as
a water height difference Ah. This is related to a pressure difference as AP =
pwgAh. The density of water at room temperature 21°C is p, = 998.0 kg/m3
and the local gravity acceleration is g = 9.8159 m/s.
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Figure C.1: Contraction at the inlet to the wind tunnel.

property symbol | value unit
density p 1.189 kg/m?®
heat conductivity A 0.0258 W/(Km)
dynamic viscosity p - | '1.82-107° | kg/(ms)
Prandtl number Pr 0.708 -
isentropic exponent ¥ 14 -

Table C.1: Properties for air at 20°C and 1 bar. Adopted from [68].

~0.05 0.00 0.05 010 015 020 025 030 035 040
Vi {mV]

Figure C.2: Calibration of the thermocéuple: Temperature difference AT vs.
voltage over thermocouple V,.
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Figure C.3: Calibration of temperature coefficient of resistance, 3, for the gold
coating.

C.2 Calibration

In the first part of the calibration, the temperature of the air in the wind
tunnel was varied in the interval 20°C-40°C. However, due to limitations in
the cooling system it was only possible to keep the temperature constant over a
longer period with temperatures up to 30°C and the termocouples in the mea-
suring tube could therefore only be calibrated in this interval. The calibration
for the thermocouple used in the measurements is shown in figure C.2 and two
symbols used represents measurements at two different positions (¢ = 0° and
¢ = 180°). In both cases the difference between the wall and the upstream air
temperatures AT = T,, — T has been corrected for the temperature difference
found at adiabatic flow conditions. During these measurements, the cold junc-
tion was placed in an insulated jug with water at room temperature. Another
thermometer was used to register the temperature here. It was checked that
the two thermometers used showed the same temperature in the jug. Fig-
ure C.2 show a line that is fitted to the data with the least squares method
and all the measurements are close to this line. The slope of the line is 24.718
K/mV and this is quite close to the table value of 25.0 K/mV. During the final
measurements the calibrated slope has been used and the temperature differ-
ence measured at adiabatic flow conditions has been used as the zero value for
AT. It is believed that the uncertainty of the temperature is less than 2%.
This corresponds to 0.1K at AT=5K.

The calibration of the temperature coefficient of resistance j for the gold
coating is shown on figure C.3. From the slope of the line showed on this
- figure, it is found that 8 = 0.00072 K~!. It should be noted that this value is
somewhat different from the value for solid gold. '
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The value of the surface resistance at the thermocouple is found by mea-
surements of the heat transfer at the front stagnation point of a single cylinder
in the wind tunnel. For the turbulence intensity Tu < 1% the Nusselt number
at the front stagnation point can be expressed [3]

Nu = 1.11 Re®® Pr%% (Pr,./Pr,)*®. (0.5)

The blockage factor is assumed to have only little effect and the Reynolds
number used in (C.5) will therefore be based on the upstream velocity. As-
suming that the Prandt]l number is constant, Pr= 0.708, equation (C.5) can
be written using the Frossling number as

Nu
v Re

The heat balance from equation (2.1) can be written

= 0.9836. (C.6)

(Va/L)? N o
ri+ i~ Ty~ AT+ e AT +eo(To+ AT = T5) - (G7)

where it is assumed that the conduction inside the tube ¢, is proportional
with AT with a factor c.ong, i-e. that it only depends little on the Reynolds
number. The calibration has been performed as measurements with different
" Reynolds number but constant temperatures upstream T and on the wall
T = Ts. The heat transfer coefficent i found from (C.6) can then be combmed
with (C.7) to give

(%5) =RiciVRe+ o (C.8)
with the constants ¢; = 0.9836 (A/D) AT and ¢z = Rf (quona + Graa)-

Measurements for AT = 4.67K and for Reynolds numbers in the inter-
val 25000-54000 is shown on figure C.4. All measurements are very closé
to the same straight line and from this it is estimated that Rj = 24.179Q
and that (c/Rj) = —1.238W/m?. A finite difference analysis of the heat
conduction based on measurements of a single cylinder indicates that ceng =
—0.5W/{(Km?) and from this it can be estimated that the emissivity of the
gold coating €, is less than 0.05. At the used temperatures qj,’ad is therefore
small and it will be ignored in the final measurements. '

C.3 Hot-wire measurements

The purpose of the measurements with hot-wire is to estimate whether the
flow in tube bundles in the windtunnel corresponds reasonable to the LDA-
measurements. The flow is highly turbulent. This limits the value of the
hot-wire measurements considerably and the results can only be used as an
indication. In each of the two tube bundles the measurements are performed
between the two tubes upstream of the measuring tube. The measurements
use the same coordinate system as the LDA-measurements, see figure 2.5.
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Figure C.4: Measurements at the stagnation point for a single cylinder and
constant temperatures, AT = 467 K.

The measurements are performed using & Dantec 55P11 single hot-wire and
a Dantec CTA bridge 56C17 connected to an analog-to-digital conversion card
(Metrabyte DAS-16) in a personal computer. The data were processed with
the hot-wire anemometer software ‘acqWIRE’ from Dantec. The hot-wire was
transversed manually with a precision of 0.1 mm.

The hot-wire was located so that the main velocity was perpendicular to
both the hot-wire and the prongs holding the hot-wire. The hot-wire was
aligned in the same way during the calibrations in the empty windtunnel.
About 10 single measurements with velocities in the range 0-20 m/s was used
to fit a fourth order polynomial as a calibration curve. These measurements
varied less that 1% from the calibration curve. After the measurements the
calibration curve was checked at several velocities. During these measurements
the turbulence intensity in the empty wind tunnel was measured to be Tu =
0.4 %.

In each position four batches with 16000 samples were taken with a fre-
quency of 8000 kHz. In each batch the mean velocity and the RMS value was
calculated by the program and the final values were found as the mean values
of the four batches.

Due to the high levels of the turbulence in the tube bundle the mean
velocity registered by the hot-wire U,g is not the actual mean velocity. If it is
assumed that the actual mean velocity Ui is perpendicular to both the hot-
wire and the prongs holding the hot-wire then the effective velocity registered
by the hot-wire can be approximated as [89]

Usto UiUolUs U UzU3
Labe 1 A2 e — e C9
toE T U3 ) (C9)

e

U,q= Uil

131
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IQ/D

Figure C.5: Mean velocity in tube bundle A. Symbols are hot-wire measure-
ments, solid line is U and dashed line is U,g, both from LDA measurements.

U

05 06 0.7 0.8 0.9 1.0 11
/D

Figure C.6: Mean velocity in tube bundle B. Symbols are hot-wire measure-
ments, solid line is U; and dashed line is U,g, both from LDA measurements.
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Figure C.7: Mean square of velocity fluctuations in tube bundie A. Symbols
are hot-wire measurements, solid line is @1tr and dashed line is W3z, both
from LDA measurements.

1.00 I ] - T !
0.80
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0.40
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Figure C.8: Mean square of velocity fluctuations in tube bundle B. Symbols
are hot-wire measurements, solid line is Tya; and dashed line is #@z, both
from LDA measurements.
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The measurements of the mean velocities by hot-wire will therefore be
compared with U, calculated from (C.9) using only the first two terms: Uz=
Uy(1 + w73/ (2UF)). The measurements are shown in figure C.5-C.8. The
z-axis shows distance from the center between the two tubes. For tube bundle
A the velocities have been made non-dimensional with the mean velocity Up,
between the two tubes and for tube bundle B with the corresponding upstream
(before tube bundle) velocity Us. The symbol < represents positions moving
away and symbol -+ represents positions moving towards the hot-wire support.

For tube bundle A the calculated effective mean velocity U, in figure C.5 is
a little higher than U, with the measured hot-wire data laying between these
two velocities. For tube bundle B the mean velocities from the LDA data
shown in figure C.6 seem to have systematic fluctuations and are, in the middle
between two tubes, somewhat lower that U The calculated effective mean
velocity is quite close to the measured hot-wire measurements. For both tube
bundles, the hotwire measurements therefore indicate that the mean velocities
in the wind tunnel agree well with the LDA measurements.

The mean square of the velocity fluctuations from the hot-wire measure-
ments in tube bundle A are shown in figure C.7. They are located somewhere
between T4y and WUz measured by LDA. For tube bundle B figure C.8 shows
that the velocity fluctuations are close to Ti%; but significantly lower that
stz measured by LDA. Because of the high level of turbulence it is difficult
to draw any conclusion regarding the agreement between the measurements of
the turbulence by hot-wire and by LDA measurements.

C.4 Calculation of heat conduction

The internal heat conduction inside the measuring tube has been calculated
using a finite difference analysis, see e.g. [22]. The tube is considered to consist
of two parts: The acrylic tube with a wall thickness of ¢; = 5mm and the
PET film with a thickness of {; = 0.17mm. The manufacturer states a heat
conductivity for acryl of A} = 0.19W/(Km). The manufacturer of the PET
film was not able to state a heat conductivity and instead the value Ay =
0.29 W/(K m) stated in [70] for PET is used. The heat conduction is assumed
to be one dimensional in the PET film and two-dimensional in the acrylic tube.
The grid used for the latter is shown on figure C.9. The equation for the heat
conduction in a polar coordinate system can be written [22]

8T 18T 16°T

'(:3";2"+;-8";+;2—-552-=0. (C.10)

This equation can be discretized

Tip1;— 20+ Tiyy 4+t Liv1,; — Loy R L= 2T+ Ty _
(o7)? r(7) 267 (r(9)? (60)? -
(C.11)

and rearranged on the form '
a;Tij 0+ 6T+ T ja = diTicy; +edina (C-12)
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n:—3) (-1
- (ni - 2) k(21

Figure C.9: Grid used in finite difference calculation. The boundaries of the
acrylic tube is shown with thick lines. '

where
a; = c-—-——l-——- (C.13)
T (r(6g) ‘
b o= ey (C14)
' (57'22 (r(1)6¢)? '
- 1
%= G arGer (C15)
o = L (C.16)

(67)? M 2r(i)or

The calculation is performed for a half tube. On the outer wall the mea-
sured temperature is used as the boundary condition. In order to reduce errors
due to small local fluctuations in the measured temperature, this temperature
is smoothed before it is used as boundary condition. The smoothing is done by
fitting a second order polynomia with the least squares method to five adjacent
point and then adjusting the point in the middle to the polynomia. This pro-
cedure is done for all points twice. The smoothed temperatures are only used
in the finite difference calculation. A zero gradient condition is used on the
other boundaries corresponding to an adiabatic inner wall and fo symmetry
at the ends. The zero gradient is implemented by extra rows of points just

outside the boundary. -During each iteration these ‘dummy’ points are given
the same value as the corresponding points just inside the tube.
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The temperatures are initialized with the corresponding outer wall temper-
atures. In the radial direction n; = 20 points were used and in the tangential
direction the grid was determined by the positions of the measured wall tem-
peratures. A traditional tridiagonal line solver [71] is then used to solve lines
with constant value of 7, for ¢ going from n; to 1. This is repeated until the
maximum change of temperature at any point during an iteration is less than
10~%K.

The control volume shown with a dashed line in figure C.9 is used to find

the heat flux removed by conduction from gold coating, ¢, = —¢; — ¢ — ¢%,
where the three contributors to ¢, are: The radial heat flux ¢/ and the

resulting heat flux from the balances of tangential heat conduction in the tube
g; and in the PET film ¢. These can be written

; orT ‘

i = N o
or or or

. _ _,_or ([er]  _fer - (cas8

9e.j '2r25¢ ([39?5] =172 [6¢L+1/2) .
ty BT] [31'}

. _ .t ([oT]  _Jer C.19

g *r25¢ aaﬁb i~z L9l o

where the temperature gradients at the sides of the control volume are found

as
or . Toiy — Tni-1
o = = , (C.20)
: BTJ [aTJ ) T j+y — 205 + Ty (
- _— = Lk 22 : . 0.21)
([a‘f’ -2 99 J+1/2 o6

The geometry around the thermocouple is shown in figure 2.12. The ther-
mocouple is not in direct contact with the acrylic tube as it is assumed in
the finite difference analysis. A small part of the material is removed and a
coating of silicon rubber is used instead to keep the thermocouple in the cor-
rect position. The manufacture states that the silicon rubber has a thermal
conductivity of A; = 0.12W/(Km). The error introduced by this design can
be roughly estimated by assuming that the design corresponds to a small area
near the thermocouple with only half the heat conductivity of the acrylic tube.
If tangential heat conduction is neglected and if the change of radial heat con-
duction due to the design is assumed to be small, the difference ATy between
the temperature drop over the silicon rubber and over £ = 0.5mm of massive
acryl is vo

QT'
| AL =T n _
Equation (C.22) has been calculated for all the measurements; it was found
that AT at all positions was less that 1% of AT except at a few points at the
extrema of Nu where values up to 3% were found. This indicates that the error
introduced by the design with the silicon rubber is small and it has therefore
been neglected in the calculation of the heat transfer coefficient. Also, as a

(C.22)
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Figure C.10: Calculated heat conduction relative to the generate heat flux.
Key as table 2.2.

partial correction the tangential heat conduction in the acrylic tube q; which
is the smallest contributor to the heat flux has been neglected. The total heat
flux is then found at the jth position as @ g = Grj T a5

The order of magnitude of the calculated heat conduction is illustrated in
figure C.10. Here the ratio between g, and ¢} is plotted as a function of the
angle ¢ for each of the measurements listed in table 2.9. On the-front side of
the tube g, ; is small, less than 2 % of g} However on the rear side of the tube
at the peaks in the local Nusselt number, values of g .q up to 8% of qly are
seen for the low Reynolds numbers. Here the assumption of a constant heat
flux is not very good. The radial heat conduction ¢” is the main contributor
to ¢" .. The best way to reduce geong would therefore be to use an even more

. cond®
insulating material than acryl.
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Appendix D

Plots from numerical
calculations

D.1 Impinging jet

The figures in this section show plots of profiles in the y-direction of local
bulk velocity Uy and the local Reynolds stresses. The Reynolds stresses are
composed from the fluctuating velocity u in the r-direction and the fluctuating
velocity v in the y-direction. The key to the figures is found in table 5.2.

Reynolds stress component normal to wall on stagnation line.
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Velocity and Reynolds stresses for Re = 23000 and H/D = 2.0.

1.2 T T T 0.1
1 @Q T/D=1.0 -1 ) 0-08-

0.8
Upulk
0.4
0.24

T 1

o]
o
.
T
1
S8
o
o
o
T

ST

0.1 0.2 0.3 0.4
aF ’ n
i L ]

0.08 r{D=25 - 0 ‘LW
77 0.06 F 1 w02} .
f37] U2

°0.04} 4 %004t -
0.02F i 006t r/D=25 -
R : . : 1 L
% T o 03 o4 % o1 02 03 04
y/D y/D

139




Velocity and Reynolds stresses for Re = 70000 and H/D = 6.0.
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D.2 Tube bundles

The following two sections show plots of local velocities and Reynolds stresses
along the lines shown in figure 5.18 using the coordinate system shown on the
LDA-measurements are shown
with the symbol o, the results from calculations with the Reynolds stress
model are shown with solid lines and the results fro
model are shown with dashed lines. For the k-¢ model the Reynolds stresses
on the plots have been estimated as o = Uz =

same figure. Experimental data obtained by
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D.2.1 Tube bundle A

The coordinates are normalized by the tube diameter D and the velocities
and Reynolds stresses are normalized by the measured mean velocity in the
minimum flow section U,.

Profile at inlet to unit-cell, z; = 0.0.
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Profile at z; = 0.8 D.
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Profile at z; = 1.2 D.
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Profile in the impact region, 7o = 1.0 D.
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"Profile in the wake region, z = 0.0.
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D.2.2 Tube bundle B

. Thé coordinates are given in actual distances from the LDA-experiment {10]
and the velocities and Reynolds stresses are normalized by the mean velocity
upstream of the tube bundle section Up. ’

Profile at inlet to unit-cell, z; = 0.0.
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Profile at z; = 0.51 D (z; = 11 mm).
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Profile at z; = 0.76 D (z, = 16.5 mm).
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i
Profile in the impact region, zo = 1.04 D.
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" | PrbﬁIe in the wake region, zo = 1.04 D.
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