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CILIATED PLANE CHANNEL FLOW
WITH PRESSURE GRADIENT

Niels Finderup Nielsen.

Abstract

The envelope model for cilia water propulsion is applied to the case of a two dimensional
channel with ciliated parallel walls. Results of a perturbation analysis of the creeping
flow are presented, in terms of the steady velocity (streaming) produced by oscillatory
motions of two opposing flexible surfaces. Two specific cases are considered, that of no
pressure gradient, and that of a finite pressure gradient. The latter case appears as a
coupled flow problem including pressure gradient and induced streaming. The results
indicate that effective propulsion (pumping) occurs for symplectic metachronism in
ciliated channels with predominantly transverse waves, and for antiplectic metachronism
in channels with predominantly longitudinal waves, in both cases provided the effective
stroke is in the same direction as the streaming velocity. The ratio of the streaming
velocity for the channel model and that of the single ciliated wall is discussed. This ratio
shows the degree to which streaming is augmented or impeded by the flow interaction. It
depends on phase relation, distance between the two sheets, and their amplitude ratio.
The net flow arising from streaming and pressure gradient is shown as pump
characteristics. These results, discussed for different phase relation and distance between
the two sheets, are related qualitatively to known characteristics of the gill of Mytilus
edulis. '

1. Introduction

Fluid transport due to systems of b_éa’_sing cilia has been analyzed by two main
approaches. The first approach, the sublayer model, was initiaied by Blake (1972) (see
also Liron & Mochon 1976a and Liron 1978) and approximates each cilium by a line of
force singularities (stokeslets). The velocity field due to all cilia is then found by
summing over all cilia. This model allows computation of the average fluid flow rate at
any point inside or outside the cilia layer. The model applies to widely spaced cilia. The
second approach, the envelope model, which will be the model considered here, replaces
the array of closely packed cilia by an envelope of cilia tip profiles, which requires that




the cilia totally entrain the fluid in the interstitial space so that the exterior fluid
essentially experiences the motion of a flexible surface whose motions roughly correspond
to those of the cilium tips. This model is appropriate for many biological systems where
the flow between neighboring cilia are unimportant because of close spacing, see Brennen
& Winet (1977) for summary.

Buasic mechanism of ciliary beating. — Each individual cilium has a regular beat pattern
consisting of the effective stroke, which determines the direction of the induced flow, and
the recovery stroke. In the effective stroke the cilium remains straight, or nearly so.
- During the recovery stroke, ‘the cilium turns to its starting position through a bend
propagation from the base to the tip of the cilium (figure 1).

In a given surface direction, a cilium beats slightly out of phase with its nelghbours
so as to produce a metachronal wave traveling over the surface.

" In the two d1mens1ona1 case, as considered here, the cﬂ1ary beat and the
metachronal wave may be such that the direction of the effective stroke is opposite to
the direction of wave propa,gatlon, as in figure 1b, or in the same direction, as in figure
1a. These two relations are called antiplectic and symplectic metachronism, respectively.
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Figure 1. Schematic diagram of ciliary metachronism indicating the relative directions of metachronal
wave propagation and streaming velocity for (a) symplectic and (b) antiplectic metachronism (adapted
from Brennen & Winet 1977). .

In the more general case, the motion is often three dimensional with some of the
recovery stroke taking place out of the plane, as in the case of the lateral cilia of the gill




Mytilus edulis. Tn these cases, the motion is termed diaplectic (dexioplectic if the
rotation from the metachronal wave direction to the effective stroke direction is 90°
anti—clockwise, viewed from above, and laeoplectic if 90° clock~wise). These
relationships were identified by Knight & Jones (1954) (see figure 2).
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Figure 2. Nomenclature of ciliary patterns and metachronal waves given by Knight—Jones (1954). The
arrows indicate the directions of metachronal waves in the various patierns.

As mentioned, the envelope model is appropriate for cilia that are sufficiently closely
packed together, which is the case for syraplectic metachronism, where the cilium beats
in the same direction as the wave is progressing and the cilia are close together
throughout the whole beat (see figure 1). This is contrary to that of antiplectic
metachronism (a conclusion reached by Blake 1972, when using a sublayer model).
However, Brennen (1974) pointed out a condition where the envelope model is valid for
both symplectic and antiplectic metachronism,

- | vjuL >>kLd, k<1, (1)

where v is the kinematic viscosity, w the radian frequency (w=2xf), L the cilium length,
d the base separation and k the wave number,k=27/X, A being the wavelength.

Condition (1) is valid for many cilia systems, including that of Mytilus edulis. So,
here we consider two dimensional cilium beat, represented by both symplectic and
antiplectic waves. In the bands of lateral cilia on the gill filaments in Mytilus edulis the
ciliwm beat is a more complicated three dimensional beat and the streaming velocity is
perpendicular to the direction of the wave propagation. In spite of this we expect, from
the present analyses, to obtain important information about cilia water propulsion in
ciliated channels.




Considering the envelope model, the ciliary tip performs a simple harmonic motion
where the amplitude of the longitudinal motion is a and the amplitude of the transverse
motion is b. The longitudinal motion will lead the transverse motion by the phase angle
¢ and the metachronal wave will travel with velocity ¢ (c=w/k), and wavelength A
(k=27/X), in the positive x—direction. If at any point x the longitudinal motion leads the
transverse motion by a phase angle p, then the various cilia loci that are so described are

indicated in figure 3.

Ciliaty tip locus
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wave
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Figure 3. Variations of arbitrary elliptical ciliary tip loci with parameter a, b and (. An example of a
ciliary- tip locus (symplectic) is indicated in the lower part of the figure (adapted from Brennen &
Winet 1977).

Preliminary rewtew of literature. — Many ‘models have been made for water propulsion
based on the two dimensional waving sheet. Taylor (1951) made an inextensible model of
a transverse wave at zero Reynolds number. 'Reynold's (1965) introduced a first order
movement in the longitudinal direction, as well as in the transverse direction by allowing
the sinusoidal surface to strain. Tuck (1968) simplified Taylor and Reynolds results and
considered longitudinal and transverse oscillations separately. Blake (1971b) considered
longitudinal and transverse oscillations acting together which implied that the envelope
surface would be quite different from the ones considered previously.




Other geometrically shaped models for external flows have been considered, such as
the infinite long cylinder (Blake 1971b), traveling surface waves on a sphere (Blake
1971a), and a thin oscillating boundary layer on a sphere (Brennen 1974).

In the case of two dimensional channel flow Burns & -Parkes (1967) comsidered
transverse oscillations in the interior of a channel (peristaltic motion}), subject to a zero
pressure gradient. They also determined the frictional pressure drop associated with flow
though a channel with fixed wavy walls. Here, we consider longitudinal movements as
well as the transverse oscillations, and include an arbitrary pressure gradient. Besides,
the oscillating walls may be out of phase (see figure 4).
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Figure 4. Schematic diagram illustrating the envelope over cilia. Coordinates {X,Y) represent envelope,
(x,0) and (x,h) represent mean position.

The expressions for the streaming velocity are obtained with use of perturbation theory.
The no slip condition is satisfied at the envelope surface by expanding the solution for
the -velocities in terms of small perturbations. From this we obtain an infinite set of
linear equations which is truncated to the required order of accuracy. Presently,
solutions are worked out to second order.

2. Formulation of the problem

Considering creeping motion at vanishing oscillatory Reynolds number (w/k?/), inertia
may be neglected and the two dimensional, incompressible flow is governed by

Vv=0 ; Vp=uViv, ‘ (2)




where v = (u,v) denotes the velocity, p the pressure, and p the dynamic viscosity,
assumed to be constant. Here continuity is satisfied by introducing the stream function,

u=gg, V:.ﬂ_%’ ' (3)

and the curl of the balance of momentum becomes

Vy=0. (4)

The oscillating extensible walls of the channel at (xy) = (X,Y), are defined by (see
figure 4)

X, =x+asin(z+y) ; Y, =bsin(z), (52)

Xy =x+a-sinz +¢y) ; Yy=h—b-sin(z), (5b)
where L and U tefer to lower and upper surface, respectively, a is the longitudinal and b
the transversal amplitude, h the nominal channel width, ¢ the phase, and

z=wt—kx ' (6)

is a convenient parameter representing 2 frame in which waves are stationary. Equation
(6) describe progressive waves of velocity ¢ = w/k in the positive x direction, of
frequency f = w/27, of wave number k, and wavelength A = 27/k. Two different phase
parameters give considerable flexibility. It is noted that the effective beat in the ciliated
surfaces represented Dby (5) occurs near z = x/2 where the velocity component in x is

X = —awsin(y) (see (7) below). It therefore follows that (5) represent symplectic
metachronism for 7 < ¢ < 27 and antiplectic metachronism for 0 < ¢ < 7 Thus, any
combination of metachronism of the two walls may be studied.

The boundary conditions are those of no slip along the walls, implying the
following specified velocities at the upper and lower wall, respectively,

u =X = aw(cosz'cosch—sinz-singoL) ; vy =Y = bucosz, (7a)

uy, = X, = aw(cosz-cospy—sinz-singy) 5 vy = Y = —buweosz . (7b)




A final volume condition of an externally imposed pressure gradient is needed for a
complete statement of the problem of determining the volume flow through the channel.
(the inverse problem of an externally imposed volume flow, with the aim at determining
the pressure gradient, will not be considered). Following Burns & Parkes (1967) partial
integration of (2) gives the condition

A
Ap = - [V ax, (®)

which may be evaluated at any value of y.

3. Perturbation solution

In view of the nature of the boundary conditions the solution to (4) is expressed as

P(x,y,1) = 10y3 +myy Of {smh nky)“an-i—bny} sin(nz) + [cn-f-dny] cos(nz)] +
) (9)
cosh(nky) [ [en+fny} gin(nz) + [gn+hny] cos(nz)} } ,

which implies the velocity components
00 _
2 .
u(X7Y!t) = 310y + 2Iﬂ z {COSh nky l:[nk [&n-l-bny] +fn] SlIl(IlZ) +

[nk [c;l+dny] +hn] cos(nz)] + (10a)
sinh{nky) [ [nk [en+fny] +bu} sin(nz) + [nk [gn—z—hny] +dn] cos(nz)] } ,
v(x,¥,t) -——f OEO nk{sinh(nky) [[aﬂ+bnyJ cos(nz) — {cn-i—dny] sin(nz)] +

(10b)
cosh(nky) [ {en-f-fny] cos(nz) — [gn-i-hnyJ sin(nz)} } ,




where coefficient 10, m, and I hn, to desired order, are determined from boundary

conditions. _
Inserting (10a) into (8) yields immediately

-_ P |
where P denote the pressure drop per wavelength (P=—-Ap/A). Thus, positive P indicate
imposed pressure gradient for symplectic metachronism and negative P indicate imposed
pressure gradient for antiplectic metachronism (see figure 1 for definition of symplectic

and antiplectic metachronism). o
To approximately satisfy (7) at the actual location of the walls (5) we expand (10)
in Taylor series, from (x,0) for the lower wall,

u(X;,Y;) = u(x,0) + (XL—x)-%uz(x,O) + YL'—%(X,O) + .-

(12a)
= v v
V(XLaYL) = V(X,U) + (XL‘XJ'&(XZ)O) + YL'W(X’O) + o
and from (x,h) for the upper wall,
u(XyYy) = u(xh) + (X, ) - T4xh) + (Y yh) - Gcm) + -
| (12b)

V(X Yy) = ¥(xh) + (Xg=) KV h) + (YU—h)--g—;’;(x,h)'—i- e

Clearly the velocity (10) subject to (7) in terms of (12) is a sexies solution in
dimensionless amplitudes ka and kb which must therefore be assumed small compared to
unity. It is worth noting, as shown by Blake (1971b), that expanding (10) in Taylor
series has the effect of making the series solution restricted in other variables, including
the nondimensional channel width kh.

Then, to first order in ka,kb, employing the first term in (12), gives

__3 —
m, = -—§h10 , b= 0, (13)
and the values of the coefficients a, — }11, listed in the appendix. These coefficients can
be solved in pairs and are, to this order, uncoupled from m, and 10. As expected, the
solution to this order consists of linear harmonic oscillations superposed a Poiseuille flow
driven by P.



Next, to second order in ka,kb, employing the three terms in (12) it is necessary to
recalculate m, h0’ ay, b1 and fl to determine the modified coupled flow problem arising
from nonlinear terms. The calculations give

m, = - fiZUE [al—i—fl-l-ka-sinrpL] , (14)
et ool 09

and the new first order coefficients 3y, b1 and fl, which are solved numerically and listed

in the appendix.
The time mean velocity of (10a) is calculated by integrating over the period T

- _ 2

u= 310y + 2my + hD , (16)
and finally, integrating across the channel width from y=0 to h gives the resulting mean
velocity in the channel,

112
U=1h*+mph+h, (17)

arising from the coupled flow problem including pressure gradient and induced
streaming. It is worth notice that for the case of zero pressure gradient, 10=0.

4. Discussion of the kinematics of the envelope model

In this section the oscillating surface envelope defined by equation (5) is discussed. Using
a parametric representation for the envelope model and looking for the values of the
parameter s where the tips of cilia are crossing each other we will find the permissible

values of the model parameters.
The parametric representation for the lower surface envelope, for example, appears

as
1(s) = [s+a-sin{wt—ks+¢), b-sin{wt—ks+¢)] , (18)

where we are looking for crossings (double values of the function), that is, solutions to
the equation
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r(sl) = 1'(32) , (19)
implying the transcendental equation
ks + aksing-cos(wt—ks) — wt + 7(n+1/2) = 0,n=0,1,2,-- - (20)

A solution to equation (20) in terms of the nondimensional parameter ks denotes
crossing while no solution denotes no crossing.
Without loss of generality, we set the time t equal to zero and (20) becomes

ks + aksiny-cos(ks} + n(n+1/2} =0, n=0,12, .-- | (21)
An analysis of equation (21) shows that the criterion for no crossing is given by
~1 < ak-sinp<1. (22)

Figures 5 and 6 show examples of crossing and no crossing, respectively.

It is worth noting that (22) is independent of the transversal amplitude b but
dependents of the longitudinal amplitude a, wavelength A, and phase . In a physical
sense, a crossing indicates that, at a given position, two cilia tips are at the same
position (see figure 5). The no crossing criteria given by (22) will, according to
pe_rturbatibn theory (ak < 1), always be satisfied. Therefore, the calculations doﬁe here
are not subjec’:t to restrictions. However, when using models with greater amplitudés the
envelope model {equation (5)) may not be sufficient.

//////////////////f//////////////////////////////

Figure 5. Envelope Model for cilia crossing (ak-sinp=1.48, see equation(22))

77777777 77777777 7777777777777 777777777771177777//

Figure 6. Envelope Model for no cilia crossing (ak-sin@=0.74, see equation(22))




—11—

5. Numerical results

In this section we consider the mean velocity, normalizes by the wave velocity, U/c,
resulting from induced streaming and imposed pressure gradient, for the two dimensional
channel given by (17). The results, are determined for different phase relations and
amplitude ratios, implying different envelope surface forms.

Clearly, (17) is linear in the frequency f, and it can be shown that (17) is quadratic
in the nondimensional amplitudes ka,kb and in the nondimensional channel width kh.
The mean velocity of a viscous fluid through a uniform two dimensional channel is given
by U, = Ph2/12y which is the value of the net flow U when a=0, b=0. Now, introducing
a new ''pressure" parameter UP/C we consider results of different values of the pressure
parameter and related pump characteristics.

The equations have been solved for boundary conditions similar to those used by
Burns & Parkes 1967. These correspond to peristaltic motion where the longitudinal
amplitude a equals zero. The results show agreement with the second order case with no
pressure gradient and are lower than the second order case with fixed boundary and a
prescribed pressure gradient.

Parameter selection

Taking advantage of dimensionless parameters and confined attention to U/c, there still
remains six parameters, kh, ka, kb, oy Py and UP/c. Thus, a complete parameter
study is not possible. Representative values for the lateral cilia in Mytilus edulis are f=15
Hz and A=15 ym (see Brennen & Winet 1977), which yields Re = 5.4-107%. Further,
according to perturbation theory, ka and kb are small and we select the values of
ka/kb=2.5 (ka=0.5, kb=0.2) and ka/kb=0.4 (ka=0.2, kb=0.5) which indicate
predominantly longitudinal waves and predominantly transverse waves, respectively. In
the numerical investigation the four remaining parameters (kh, P Py and U /c) will
be studied with special attention to the nondimensional channel width kh.

To obtain general results we are looking at variation of the asymptotic solutions
(hk — ) with phase angle v and @. These results also include the combination
symplectic—antiplectic waves (see figure 1 for definition of symplectic and antiplectic
metachronism) on the surface envelope which, in a ciliated channel, seems to be
physically unrealistic and only of mathematical interest.

- Generating symplectic and antiplectic waves is a matter of selecting different phase
angles ¢, and g (see equation (5) and figure 3). Figure 7 shows different surface
envelope forms, and it is worth noting the considerable difference of symplectic and
antiplectic wave forms.
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Numerical results

Figure 8—11 show two cases, of amplitude ratio ka/kb=0.4 and amplitude ratio
ka/kb=2.5 with no pressure gradient. This means that the mean velocity equals the
streaming velocity originating from the oscillatory motions of the walls. First, in figures
8 and 9, we consider asymptotic solutions (hk=10) versus phases. at the lower and upper
wall ¢ and Py and second; in figures 10 and 11, we consider solutions for spacing equai
to about 1/3 wavelength (kh=2) versus phases.

For amplitude ratio ka/kb=0.4 (figure 8 and 10}, it is found that the streaming
velocity is always positive (positive x—direction as the wave propagation) and we notice
the large values of streaming for' the small spacing equal to about 1/3 wavelength. The
maximum and minimum streaming velocity for ¢, and ¢ is equal to 37/2 and 7/2,
respectively. For amplitude ratio ka/kb=2.5 (figure 9 and 11) the streaming velocity is
always negative, however, for spacing equal to about 1 /3 wavelength we have positive
values in the region of symplectic metachronism. Contrary to that of figure 8 and 10 we
get maximum and minimum streaming, in the negative x~direction, for o and Yy equal
to 7/2 and 37/2, respectively. ' ' ' -

Figures 12 and 13 show results for the streaming velocity normalized with the wave
velocity U/c, versus channel width for different envelope surfaces defined by (5). Here
we consider ciliated channels with symplectic or antiplectic waves on both surfaces.

Clearly, the streaming velocity depends on the phase, and for sympleéctic
metachronism (figure 12) the streaming velocity in the positive x—direction decreases as
the channel width.increases. Figure 12 also shows the special case of peristaltic motion
and it should be noted that the streaming is always lesser than the values obtained for
channels with boundary conditions given by (5). For antiplectic metachronism (figure
13) it is found that the streaming in the ‘negative x—direction increases as the channel
width increases. However, here we find an overshoot for channel width in the region 1 /6
to 1/2 wavelength. | "

It is worth noting that streaming velocity is symmetrical about gpL=chm37r/ 2 for
symplectic metachronism and about (,or=(pU=7r/2 for antiplectic metachronism (see
figure 8-11).

Figures 14 and 15 show mean velocity normalized with wave velocity, U/c, versus
channel width for different values of the pressure parameter Up /¢, which is proportional
to the imposed pressure gradient in x. The mean velocity now equals net flow arising
from both pressure gradient and induced streaming. It can be seen from figure 14
(ka/kb=0.4) and figure 15 (ka/kb=2.5) that the effect of a pressure gradient, positive or
negative, diminishes with channel width. Calculations for other phase parameters than
those used in figures 14 and 15 will give similar trends.
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Next, consider the ciliated channel to be a pump subject to 2 back pressure (UP Jc
< 0 for symplectic metachronism and UP/ ¢ > 0 for antiplectic metachronism). Figures
16—18 show pump characteristics, in terms of pump head (equal to back pressure} versus
flow, for different values of phases and spacing between the two sheets. The calculations
are shown for both symplectic and antiplectic metachronism as well as for the special
case of peristaltic motion. For clarity, all pressures and flows are shown as being
positive. Figures 16a—c show pump characteristics for the case of amplitude ratio
ka/kb=0.4, where different phase relations and distance between the two sheets are
considered. Clearly, the most efficient pump is that of channel width kh=3.0 and phases
(pL=37r/2, (pU=37r/2. In Figures 17a—c we consider the amplitude ratio ka/kb=2.5 and,
as in figure 16, flow and pump head increases with decreasing spacing, in all cases being
greatest when phases equal r,aL=7r/ 2, goU=7r/2. Figure 18 shows the special case of
peristaltic motion, involving no phase relations. Again, the most efficient pump is clearly
that of close spacing. Comparing figures 18, 16a and 17b for the case kh=3.0 shows that
the peristaltic pump is good but not the best. Any of the cases of figure 16a shows better
performance.

In conclusion, the most efficient pump will be that of symplectic metachronism,
close spacing of two opposing sheets, and with the two walls in phase.

Finally, two examples of time mean velocity profiles are shown in figure 19, the
two sheets being in phase, figure 19 upper part, and the two sheets out of phase, figure
19 lower part, for the two extreme cases, U=0 and P=0. As expected for the two cases
(see equation (16)) we have a linear function for the purely streaming velocity (P=0)
and a parabolic function for purely pressure driven flow (U=0). We notice that the case
where the walls are in phase, the streaming velocity (P=0) is a constant.

6. Discussion

Mean velocity with no pressure gradient (streaming): — Consider the asymptotic solutions
(figure 8 and 9) where the channel width is about 1.6 times the wavelength (hk=10) or
more, and recall that the effective stroke is in the same direction as the streaming
velocity (m<p<2r and O<g<w for symplectic and antiplectic metachronism,
respectively, see figure 7). The asymptotic solutions then indicate symplectic
metachronism for amplitude ratio ka/kb=0.4 with maximum streaming U/c~0.21 for ¢,
and @y equal to 37/2, and antiplectic metachronism for amplitude ratio ka/kb=2.5 with
maximum streaming in the negative x—direction U/c~0.21 for ¢ and g;; equal to 7/2.
In conclusion, symplectic metachronism in ciliated channels appears at predominantly
transverse waves and antiplectic metachronism appears at predominantly
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longitudinal waves. Also the metachronism has an optimum for optimal wave form.
These conclusions were also was obtained by Blake (1975) for the infinite sheet, and it is
of interest to compare o this case.

The streaming velocity for the two dimensional waving sheet is given by (see, for
example Brennen & Winet 1977)

Ufe=1 [—(ak)2+(bk)2—z-ak-bk-singa] - (23)

which for the two amplitude ratios used in the present study reduces to

U _ PR
(ol /b s = ~ 0-1050 0.10-singp, (243)

.(%)s,ak bk = 0-1050 —0.10-simg (24b)
for antiplectic and symplectic metachronism, respectively.

Now comparing results. for the channel (figures 8—13) with that of the sheet,
(24a-b), the streaming velocity is largest for the infinite sheet in antiplectic
metachronism (see for example the diagonal from (0,0) to (7,7) in figure 9 or figure 11
and compare with (24a)), and largest for the chanmnel in symplectic metachronism,
provided there is close spacing of two opposing sheets in the channel (see for example the
diagonal from (,7) to (2m,27) in figure 10 and compare with (24b)}. It is noted, that for
_the case of predominantly longitudinal waves (antiplectic metachronism) we have
streaming in the negative x—direction of about U/c~0.23 as the spacing between the two
sheets equals about 1/4 wavelength, which is allways greater than (24a) (see figure 13,
(,aU=7r/2). This suggests an additive or a destructive interference of the oscillating
motion generated by each sheet when the metachronism appears to have predominantly
longitudinal waves, and an additive interference, when the metachronism appears to
have predominantly transverse waves.

As spacing extends to infinity, channel cases with the two sheets in phase yields
exactly the value of the waving sheets solution (see figure 8 and 9), which is in
agreement with asymptotic analysis for the limit kh — oo.

Considering the infinite sheet model (equation (23)) we notice that the steady
velocity is quadratic in the nondimensional amplitudes ak and bk. Since these are
assumed small, the streaming velocity U is much smaller than the oscillatory velocities
associated with the motion of the envelope which are first order in ak and bk (see
equation (7}}. Thus, an analysis gives
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smax

=05-ak. - (25)

u .
wall , max

Clearly, (23) gives a streaming velocity U smaller than the velocities at the envelope.
Now, the conclusions from comparing the two dimensional channel with the the two
dimensional sheet indicate a greater streaming velocity for the channel than for the sheet
Tt is therefore possible that the streaming velocity might exceed the velocity at the
surface envelope for the two dimensional channel. However, there is no proof of this
conjecture in the present analysis. Pursuit of this question requires higher order
solutions.

From the numerical results of figure 10, it was found that the direction of
streaming is always the same as the wave direction of propagation (positive x—direction).
Now, examination of (24b) shows that the direction of streaming delivered by each sheet
will always be positive, independent of the value of p. Thus, choosing the lower sheet to
give a positive streaming, then the sheet at the upper surface can either have a
destructive or a constructive effect. Nevertheless, figure 10 shows an increased streaming
in all cases, this in spite of cases where the upper surface has the effective stroke against
that of the lower surface.

Mean velocity with pressure gradient: — Including a pressure gradient the net flow U will
be coupled though pressure gradient and streaming. Investigating (17) and writing the
last two terms of the formm h =1F, + oF, and 1, = [ )F, + oF, (see (14) and (15)),
where FI=F1(a,b,k,h,go) and F2=F2(a,b,k,h,(p) yields

U= Cl, + L F, + oF,, (26)
where C is a constant determined by geometry. Inserting (11) into (26) yields

U:ﬂ%@[C+F1]+wF2, (27)

i denotes the dynamic viscosity of the fluid. Rearranging (27) yields the pump
characteristic |

(28)

w-F2 —U
dp/dx:“'[ CF T, ]

Now, assuming kinematic and geometric parameters to be constant, (28) shows that the
net flow is linear to dp/dx (or to the pressure parameter Ug). So, the linear dependence
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in figures 16—18 is not surprising.

For given geometry and kinematics, the shut—off head of this pump (dp/dx for
U=0) is proportional to the product of beat frequency and fluid viscosity, pw, and the
zero back—pressure flow (U for dp/dx=0) is proportional to the beat frequency w and
independent of viscosity. Clearly, the geometry of this pump is a poor approximation to
that of the bands of lateral cilia in Mytilus edulis. In view of this, and the fact that the
present theory is limited to small amplitudes, it is also not surprising that the pump
_characteristic of equation (28) does not match that inferred from experiments, Jgrgensen
et al (1990). The latter suggest shut—off head to be independent of both beat frequency
and viscosity u, and the zero back—pressure flow to be inversely proportional to
viscosity.

- 7. Conclusions

In :conclusion, this report has presented a two dimensional channel model for ciliary
water propulsion based on the envelope model. The creeping flow equations with
boundary conditions (equation (2) and (7)) have been solved by usual perturbation
theory which is valid provided the nondimensional amplitudes in the longitudinal and
transverse directions are small. ' ' '

‘Two. cases are considered, that of steady velocity (streaming) produced by
oscillatory motions of two opposing flexible surfaces, and that of including a pressure
gradient. The latter case appears as a coupled flow problem including pressure gradient
and induced streaming.

Results for the net velocity are presented for the two—dimensjonal channel in
cormparison with the wave velocity. The ratio of the streaming velocity for the two
dimensional chammel and that of the single sheet model is discussed. Depending on phase
relations and distance between sheets of the channel this ratio illustrates the degree to
which streaming is augmented or impeded by the flow interaction.

Specific cases of amplitude ratio ka/kb include that of predominantly longitudinal
waves (representative for the lateral cilia of Mytilus edulis), that of predominantly
transverse waves, and that of zero longitudinal waves (peristaltic pumping) has been
considered. The first one indicates antiplectic metachronism in ciliated channels and the
second one indicates symplectic metachronism, provided that the effective stroke is in
the same direction as the streaming velocity. At close spacing of two opposing sheets,
the results indicate additive interference when the metachronism appears to have
predominantly transverse waves, and additive or destructive interference when the
metachronism appears to have predominantly longitudinal waves. In agreement with
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asymptotic analysis for the limit kh — oo, the streaming equals that of a single sheet as
the spacing between the sheets becomes large compared to the wavelength of the
metachronal waves of cilia motion.

Also, the streaming velocity is relatively insensitive to the phase between waves of
opposing sheets. This seems to be an appropriate choice in an evolutionary context in
view of the fact that opposing bands of lateral cilia in Mytilus edulis have randomly
changing phase. These observations are subject to the limitations implicit in the present
perturbation analysis. It treats opposing infinite sheets that have small amplitudes,
while ciliary systems in bivalves involve opposing narrow bands that have amplitudes of

order one or greater.

' Including a pressure gradient on the induced channel flow the results has been
interpreted and presented as pump characteristics. The results indicate that the most
efficient pump is that of close spacing of two opposing sheets and with the two sheets in
phase. However, its dependence on viscosity and frequency of cilia motion does not agree
with observations on Mytilus edulis, suggesting the need for further analysis including
finite amplitudes, finite geometry and higher order harmonics in time in order to model
the differences in the speeds of the effective and recovery strokes.
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Figure 11. Variation of the dimensionless streaming velocity U/c with phase angles 23 and Py at

lower and upper surface, respectively; case of, ka=0.50, kb=0.20 (ka/kb=2.5), ¢=0.225mm/s, kh=2,
P=0.
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Appendix
First order coefficients:
a, = —fl — ka-smgaL

B,+B,

b= —tanh2(kh) - [1 +(kh)2J +(kh)?

B}; —ka- [sim,oL {—khtanh%kh)—taﬁh(kh)—i—kh} -;six_lgbt; Jéosh(kh) [—tanh(kh)-!—kh”

B, = kb- [tanhQ(kh)—khtanh(_kh) /cosh(kh)] _ .

1%ah- [cos o, [—-khta,nhz(kh)-i—kh} +cosipy - tanh(kh) /cosh(kh)]
1 _tanh2(kh) - {1+(kh)2j +(kh)?

C

; ka {cos L [khta,nhz(kh)+t anh( kh)—kh} ~C08 Py [tanh(kh)—kh] / cosh(kh)]
1 _tanh?(kh)- [1+(kh')2j +(kh)?

e = kb
_ F +F,
1 _tanh?(kh)- [1 +(kh)2J +(kh)?

f

F, =ka- [singoL-tanhz(kh)+singaU/cosh(kh) [khtanh(kh)”

F, = kb- [kh-tanh%kh)—tanh(kh) [1+1 /cosh(kh)] _kh [1+1 /cosh(gh)]]

g =0

hl = ka'COStpL - ¢
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Recalculated first order coefficients arising from second order coupling. The new
coefficients a,, b,, f, are solved by Gauss elimination of the linear system Ax = y, where

819 219 343 3 ¥y
A= | 8y 899 Bgq | x=|b |, Y= 1¥51>
8g) 839 834 £ I3
_k [ k _
a = |k cosE(EEi]

a,, = 1:3 kh + tanh(kh)]

a5 = =1+ kh-tanh(kh) + 1/cosh(kh)]

2
2. =X .tanh(kh)

n"w’

_k
29 = a-kh-tanh(kh)

_k,
a —akh

ksing
_1k L . 12 kh
b1 = 51540 [gogmrDy ~ Keineg ) ~ b iamh(kh) ~ sl
1k, [ 1 1

sing.

1k L 1 kh
8, = 2K fa [MEHI - smch(I-i-khtanh(kh)] - L. [2tanh(kh)+khJ - H
ks, _ ) 61 khb
yl = —kb‘taﬂh(kh) —m[Sln@L'f‘Sln@U] + UJ'—COSE(EE)_
y., = —Xkb- [ 1 + 1}
2 cosh(kh)
1 (c,+h ) cosp,
Vg = 51{&[[ co SH{KE) — COS{y, [cf{-khdﬁh1 + (d1+khh1)tanh(kh)” +
2
akh 31 kh

1 2 1 1 : i
§(kb) ‘:1 -l-m} + §kakbsmcputanh(kh) — HE(EE(EH}SIHQ)L - mm
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Nomenclature

Latin symbols

a longitudinal amplitude

an velocity coefficient (see eq.(10))

b transverse amplitude

bn velocity coefficient (see eq.(10))

e wave velocity (c=w/k)

C geometric constant

Cn velocity coefficient (see eq.(10))

d base separation between neighboring cilia
dn velocity coefficient (see eq.%lﬂ

en velocity coefficient (see eq.(10

f frequency (f=w/2m)

fn velocity coefficient (see eqg.(10))

F function (Fi=Fi{a,b,lh,p

Fy function {Fa=F2(a,b,kh,¢p

gn velocity coefficient (see eq.(10))

h channel width

hp velocity coefficient (see eq.(10))

k wave number (k=27/A)

1o pressure coefficient (see eq.(11))

L cilium length

mg coefficient (see eq.(10))

P pressure

P ~ pressure drop per wavelength

Re Reynolds number (Re=hU/v)

Re, , oscillatory Reynolds number (Re, /\=w/k2v)
t time

u velocity component in x—direction

1 time mean velocity

U mean velocity in the channel

U, mean Poiseuille velocity (U,=FPh?/ 124)
Us mean velocity of single sheet '
Us envelope surface velocity in x—direction
v velocity component in y—direction

Vs envelope surface velocity in y—direction
X x—coordinate -

y . y-—coordinate

& x—coordinate of lower surface envelope
Xy x—coordinate of upper surface envelope
YL y—coordinate of lower surface envelope
YU y—coordinate of upper surface envelope
Z stationary frame parameter

Greek symbols

A wavelength (A=27/k)

% phase angle

. phase angle at lower suriace

vy phase angle at upper surface

) stream function (see eqé3))

w radian frequency (w=2x1)

7 dynamic viscosity

v kinematic viscosity
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NUMERICAL SIMULATION OF WATER TRANSPORT
BY CILIA SYSTEMS

Niels Finderup Nielsen.

Abstract

Water transport generated by a periodic oscillating “interior boundary" which
represents cilia movement, is presented. Numerical solutions of the full unsteady as
well as the steady form of Navier—Stokes equations are computed. Three cases of
results are considered, that of oscillating flow inside a square cavity, that of streaming
velocity of quasi-steady. periodic solutions, and that of flow separation of steady
solutions at low Reynolds numbers. The results indicate that the unsteady term in the
Navier—Stokes equations may be neglected for a rotational Reynolds number (Rer=
Rw/v) less than about order unity and that the convective term (nonlinear term) may
influence the flow system when the translational Reynolds number (Ret:ZU Jv) is
greater than about 0.05. Of much interest in problems of the present type is the
streaming velocity. This component of the flow is set up through the nonlinearity of
the problem which in this study may be a result of purely oscillating cilia motion or a
combination of cilia motion and streaming from the nonlinear terms of the governing
equations. Results include comparison with experimental investigations of the blue
mussel, and a more general discussion of recirculating flows as steady solutions at low

Reynolds numbers.

1. Introduction

Cilia are hairlike organelles that are found on the surface of organisms and the basic
function of the cilia is to move air, water and in some cases mucous. The typical beai
form includes the effective stroke in which the cilia move rapidly towards one side,
followed by the recovery stroke in which they move more slowly back in the other
direction in a bend position (see figure 1). In this "rowing type" beat each cilium has
a regular beat pattern consisting of the effective stroke and the recovery stroke.
However, cilia usually occur in large numbers of the cell surface and often the cilia
form an isolated clump or band. If the group of cilia beat asynchronously, so that




adjacent cilia are slightly out of phase, the movement gives rise to metachronal waves
(out of phase waves). _ -

Of special interest in cilia motion is the steady velocity component which is a
result of the above described cycle of cilia activity which produces a resultant
movement of water (streaming) in the direction of the effective stroke. This steady
streaming will in general appear in oscillatory flows due to the nonlinearity of the
problem. This may be the nonlinearity of the governing equations (Navier—stokes
equations} or the nonlinearity of the boundary conditions.

The structure and the functioning of cilia systems of especially the blue mussel
is well known (see Aiello & Sleigh 1972, Owen 1974, and Jergensen 1975 for further
details). The lateral cilia bands of the blue mussel, which produces the main flow and
thus constitute the mussel pump, is a complicated three dimensional beat and the -
streaming velocity is perpendicular to the direction of the metachronal wave
mentioned above (see report 3 for further details about the blue mussel). -

Water transport by cilia sysiems has been of much interest in many years, but
so far only analytical solutions of the Stokes equation (inertia terms neglected) has
been made. Considering the relevant parameters for cilia systems as cilium length L
(~10-20pm), beat frequency f (~10-30Hz), and velocity amplitude U {~10-3m/s),
clearly, the Stokes approximation is valid due to a Reynolds number of order 10-2 (see
section 2). But considering a flow system outside the cilia sublayer as for example a
channel in which cilia transport water, the length scale may be several times the cilia
length and both the unsteady term and the convective term in the Navier—Stokes
equations may influence the flow system.

Not much work has been done in solving the time dependent and the’
quasi—steady periodic Navier—Stokes equations for low non—zero Reynolds number
flows involving oscillatory systems. One is the investigation of flow inside a square
cavity (Re=0-600), generated by a uniform oscillatory motion of the upper cavity
wall (Duck 1982). Another is oscillatory flow over a simi—infinite flat plate (Re=0-50,
Duck 1988). |

In the present study we introduce a numerical model for synchronous cilia
movement (oscillatory motion in the interior of the calculation domain). We consider
two—dimensional unsteady and quasi-—steady periodic low Reynolds number flows
with special attention to water transport by cilia systems. Furthermore, we
investigate recirculating flows as steady solutions at low Reynolds numbers. The
results are represented with use of representative values of the lateral cilia bands of
the blue mussel. Some results are compared with experimental investigations for
evaluation of the cilia model. In spite of the two—dimensional model and a relative
simple cilia modeling it is expected that the present analysis will give importani




information of theoretical modeling of water transport by cilia systems and flow
separation at low Reynolds numbers. The advantage of the numerical approach is
casy modeling of finite amplitudes and different speeds in effective and recovery
strokes. These features could not be treated in the envelope model (see report 1).

2. Formulation of the problem

Considering two—dimensional, incompressible, and laminar flow the unsteady form of
the conservation laws are described by the Navier—Stokes equations

p(-gtz-i— v-W) =-Vp + u¥V?v +5_, _ (1)

and by continuity
Vov=10, (2)

where p is the density, V the nabla (del) operator, v=(u,v) the velocity vector, p the

thermodynamntic pressure, p=pv is the dynamic viscosity, v denoting the kinematic

viscosity, and s_ the source term. '
We now define the following dimensionless quantities

fzwt , V=N , v=g , p=(PD)/uU,
(3)
_ U

_Sy{? e
= =2

VI o ReEg 0 R

where w (w=2nf) denotes a typical angular velocity, I and U typical length and
velocity scales, respectively, p_ the constant pressure at infinity, and Re]F and Ret the

rotational (oscillatoiy) and translational Reynolds numbers, respectively. Inserting
(3) in (1) and (2) yields the nondimensional form

5 o e s
Rer(gg) + Re(v-Yv) =-Vp + Viv+s_, {(4)

Vov=0. (5)

In the Navier—Stokes equations (4) the inertia terms comprise the unsteady term and




the convective term which belong to the rotational and translational Reynolds
numbers, respectively. -
The mnumerical problem consists of solving (4) and (5), with appropriate

boundary conditions and relevant values of Re_ and Re,.

3. Numerical model

In order to solve the differential equations of the previous section it is necessary to
discretize the equations. Discretization of the differential equations and the boundary
conditions of a continuous domain yields a finite set of algebraic equations to be
solved in a domain of discrete points (grid points).

Here, we use a finite volume discretization approach in which the calculation
domain is divided into a number of non—overlapping control volumes such that there
is one control volume surrounding each grid point. The differential equations are then
integrated over the control volumes, one of which is sketched in figure 2, and we
obtain the discretized equations containing the values of the dependent variables (P of
figure 2) for .a group of grid points. The main feature of the finite volume
discretization is that the integral balance of momentum is satisfied over any group of
control volumes and, of course, over the whole calculation domain. Hence, the integral
balance is not only fulfilled when the number of grid points become large but also on a
coarse grid (Patankar 1980). This property is fully exploited when the governing
equations are written in conservative form. '

In the discrete form of the governing equations there appears values of the
dependent variables at the control volume surfaces. These values have to be expressed
in terms of neighbor grid point values (interpolation) in order to achieve algebraic
equations. This is effected by differencing schemes. The choice of difference scheme
depends on the nature of the physical problem. Here, the hybrid scheme is used (see
Patankar 1980). This scheme employs central differences for vanishing cell Peclet
numbers (the cell Peclet number is defined as the ratio of convective fluxes to
diffusive fluxes, Pe —qu/ v) and upwinding schemes for large Peclet numbers
(Pe_ >2). In either case the discretization of (4), for the two—dimensional case

con31dered here, is given by
AxAy]_n+1 _ At n+ 1 n+1 n+1
[ap+ At ]Vi,P_&El T awYi w T AN T A%V, s T

AXAY_n _
S +p_AE_XV1,P , ApTagTagtaytig,

(6)




where a fully implicit scheme with an implicit Euler time step is used {see Patankar
1980 for further details). In (6) Vip denotes the velocity comiponent in the central
point P, Vip Viw etc. the velocity components in the neighbor points to the central
point (West, East, North, South, see figure 2), ap and ap, Ay elc. the coefficients
associated with the central and the neighbor velocities, respectively, 5, the source
term including the pressure, Ax and Ay the grid spacing in the x— and y—directions,
respectively, and At the time step. The superscripts n and n+1 are taken as "old"
values (i.e. the values at the previous time step) and "new" values, respectively.

In equation (6) above, the velocity, the pressure, and other variables could be
located at the main node, P, of the control volume. However, locating these variables
at the main node a zig—zag structure may arise. A pressure field where every second
pressure node has the same value different from the other values will satisfy the
momentum equations as well as an uniform pressure field would do. A zig—zag
pressure field arising during the iterative solution will persists until convergence
(Patankar 1980). One way to get rid of the zig—zag fields is to use a staggered grid. In
the staggered grid, which we will use here, the u velocities are stored at the center of
the "e" and "w" faces and v velocities are stored at the center of the "n" and "s"
faces. Only the velocities are staggered from the main grid point whereas all other
variables as pressure, density, and viscosity are stored at the main grid point. Hence,
in place of (6) the momentum equations, for example u_ and v_, are given by

AxAv| n+1 _ n+1
[ae+ At }ue - Z:anbunb + (pP_pE)Ae + ( )
7a
AxAy. n _
s, FRp 0, ae—-Eanb,
AxA n+1 n41
[ +p_ATl] D= vy T (PP, :
h)

where the summation Ea,nb denotes the neighbor values linking to the center value P
and A_the area of the e~face of the main control volume.
The discretized form of the continuity equation (5}, written for the P—centered

control volume, is given by

Aw(ue—uw) + As(vn—vs) =10. (8)



4. Solution procedure

In this section we describe the solution procedure of the discretized Navier—Stokes
equations and the equation of continuity. The solution procedure includes
velocity—pressure coupling, boundary conditions, solvers and periodic ‘boundary
conditions, numerical treatment of ciliary movement, and finally time stepping

procedure and stop criterion.
4.1 Velocity—pressure coupling

As indicated by the equations (7) and (8) the pressure does not have its own
governing equa.tion; but has to be determined through the equation of continuity.
Only if the correet pressure field is substituted into the momentum equations (7), the
resulting velocity field will satisfy the equation of continuity (8). Several methods has
been developed to determine the velocity pressure coupling (see for example Gervang
1988). Here, we only consider the PISO algorithm (Pressure Implicit with Splitting of
Operators, Issa 1985). The PISO algorithm is a predictor—corrector scheme including
one predictor level and two corrector levels. The algorithm was developed to handle
unsteady flows with no iterations in each time step and no under relaxation to
suppress effects of nonlinearities. It is noted, that other algorithms as for example
SIMPLE or SIMPLER require several iterations in each time step and under
relaxation on both the pressure and the velocity field. Clearly, the PISO algorithm
needs under relaxation, and this is also obtained through the time step At. But what
about steady state solutions ? — It can be shown that there is a close relationship
between under relaxation in steady state iteration problems and relaxation through
the time step in time dependent problems (see Issa 1986 for further details). In
conclusion, it is noted that in unsteady calculations the PISO algorithm needs no
under - relaxation and no global iterations in each time step. In steady state
calculations no under relaxation is needed when updating the pressure field, but when
updating the velocity field under relaxation is necegsary. However, in the steady state
version of PISO under relaxation as high as 0.90 may be used. In the present study
the PISO algorithm is used in both the steady state version and the time marching

version.
4.2 Boundary conditions

So far only the governing equations has been discussed. In this section a number of
typical boundary conditions will be considered, rigid impermeable wall, inlet, outlet,




and finally pressure boundary conditions. Further, due to the staggered grid location
the boundary condition schemes are outlined for grid points® (nodes) lying on the
physical boundary and outside the physical boundary.

Rigid, impermeable wall, velocity node on the wall. As the velocity node is placed
on the wall and we assume no slip the velocity, say 1, at a north boundary (see figure
3a) equals zero. The momentum equation (6) then become

AxAy] n+l _ n+l n+1 n+1
[a,P—i—%——Xt ]up =agly +agly +0+agug " +

AxAyv n
Sc+ At uP'

The no slip condition is therefore obtained by adjusting the usual coefficients

(9)

according to the scheme

ap=a, , ay=0. (10)

Rigid, impermeable wall, velocity node outside the wall. Here, there is no velocity node
on the wall itself and a "ghost" point is considered (see figure 3b). Satisfying the no
slip condition on the physical boundary we obtain Uy =—1p, and the momentum

equation become
AxA n+l _ n+l1 n+1 a1 n+1
[alﬁ-p—f—xt ]uP =agly  +agly + ay(—up ) +agug +

pAXAY n
Sc + t uP }

(11)

implying the adjustment

ap=aptay ay=0. (12)
It is noted, that similar schemes can be obtained for the case of a permeable wall.

Inlet, velocity node on the inlet boundary. At inlet nodes velocities are assumed
to be known. The boundary condition, say Uy=U. , is satisfied at the physical
boundary, yielding a equation similar to (6). Thus, we only need to specify the known
velocity u. and no further modification is necessary.

Inlet, velocity node outside the inlet boundary. Here the grid arrangement is
similar to that of figure 3b. The boundary condition on the physical boundary is




uin=(uP+uN) /2 yielding u =21, —u, and the momentum equation (6) become

AXAY] n+1 _ n+1 n+1 n41 n+l1
[ap*'p?ﬁl}up =agiy + (20, T ) Faguy T Faglgt

- {(13)
QAXAXI n
Sc + t Up >
which implies adjustment according to the scheme
ap=aptay , 878 tagu, . (14)

1t is noted, that the two inlet schemes outlined above, of course, also applies to the
case of a specified velocity on a boundary.

Outlet. In order to assure global conservation of mass flow the integrated flux -
across all outlet cells is calculated. All outlet cell velocities are then normalized so
that the net inlet flux equals net outlet flux. This condition equals the condition of

zero velocity gradient, say up=uy, and (6) becomes

AxAy| n+1 _ . 0+l n+1 n+1 n+1
[aP—i-&A——Xt ]uP = aplp T 2yl + Ayl + aglg +

AX/_\ n
Sc+ At uP’

(13)

implying the adjustment

ap=ap—dy , 2ap=0. (16)
It is noted, that this outlet condition can only be used if the flow is relatively well

deveidped at the outlet.
Pressure boundary conditions. The pressure correction equation can be obtained

through the equation of continuity and takes the form (see Patankar 1980)

: | — 1 L T !
aPPP = a,EPE + aWPW + aNPN + a,SPS +s_,
(17)
ap=ataptagtag,
where the source term s represents the mass defect which is equal to zero i
continuity is satisfied and the pressure correction P'=P—P*, P* denoting a guessed
pressure field.




Given normal velocity at the boundary. In the present study the grid is designed
such that the boundary always coincides with a control volume face where a normal
velocity is given (u or v—velocity). In the derivation of the pressure correction (17)
this has the effect of setting the pressure correction, say Py (or ay) of a north
boundary, equal to zero. Thus the pressure coefficients are adjusted according to

a, =0 . (18)

The alternative approach of a given pressure at the boundary will not be consider here
(see for example Patankar 1980).

4.3. Solvers and periodic boundary conditions

Solvers. Before we discuss the solution scheme for periodic boundary conditions, the
solvers for the discretized algebraic equations will be considered. Among many
solvers, such as Jacobi, Gauss—Seidel, or successive over relaxation (SOR) point or
block iterative methods, we here use the line-iteration procedure and the alternating
direction implicit procedure (ADI, Peaceman & Rachford 1955). In using the two
latter procedures on every internal node of the velocity {eq.(7)) and every internal
node of the pressure (eq.(17)) we obtain an algebraic system of N equations and N
anknowns where N is the total number of internal nodes (one system means one line,

for example south—north line of a west—east sweep, of the calculation domain). This:

set of equations is easily solved by a Tri—Diagonal Matrix Algorithm (TDMA) which
takes the form

Ax=b, (19)

where A is a tridiagonal matrix of order N

d1a1 +++ 0
bedgag--- 0
A=|. N (20)
0 o
0 'dN

where d is the central point coefficient, a, and b, the north and south coefficients,
respectively, for an west—east sweep and a and b is the east and west coefficients,
respectively, for an south—north sweep. x is the dependent variable vector which here
is velocity or pressure, and b is the source vector which include the remaining
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coefficients with associated dependent variables.
Periodic boundary conditions. In many real flow situations periodic boundary
conditions appears. In the notation of eq. (19) periodic boundary conditions are

obtained by setting

X, =X for all i {21)

i +N !

which means that the boundaries are linked together. Inserting the condition (21) in
(19) the coefficient matrix appears as

dyay -+ b
badsag--+ 0 .
A=1. .. . (22)
0 Lo
aN PP dN

Hence, the tridiagonal structure of the matrix is destroyed. However, the technique
for solving (19) with a coefficient matrix as (22) is straightforward and will not be-

considered here (see Samarski & Nicolatev 1981).

Tn the present study we have, for one case of results, periodic boundary .
conditions and the u— and v—momentum equations (7a) and (7b) will be solved by the -

technique of Samarski & Nicolatev. But the pressure equation, which is a pressure
correction equation, will be solved in the usual manner because the velocity is known
and then no information about the pressure correction is needed (see pressure

boundary condition above).
4. 4. Numerical treatment of cilia movement

In this section we consider a model for cilia movement. There will be some special
attention to the lateral cilia bands of the blue mussel which, however, eagily can be
modified to other sifuations.

First, how should we model cilia movement 7 —In a simple configuration cilia
movement can be sought of as a beat period T {T=1/{, { denoting the frequency) and
an amplitude consisting of the difference in penetration into the fluid in the effective
stroke and in the recovery stroke. This amplitude, in the {ollowing referred to as
penetration amplitude, is defined as

Ay - (23)

Iec

A =AY
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where Ay off and Ay denotes the distance from a specified wall to the cilia tip in the
effective stroke and the recovery stroke, respectively.
Taking into account the nature of a numerical model there will be three obvious

models to choose between

e specified time dependent velocity on a wall
® specified time dependent velocity in interior of calculation domain

® specified time dependent source in interior of calculation domain

The first model is easily implemented in a numerical model (see section 4.2) and
higher order harmonic functions in time in order to model the differences in the speeds
of the effective and the tecovery strokes may be studied. However, the penetration
amplitude defined by (23) will always be zero.

The second model eliminates the limitation of zero penetration amplitude of the
first model, but here the coefficient matrix A (see (20)) of the pressure correction

equation becomes singular.

The third model, which is the model used in the present study, is easily
implemented and furthermore satisfies the condition of non—zero penetration
amplitude. The specified source for this model (s, of (1)), which may be placed
anywhere in the calculation domain and at different positions at different times, is an

external volume force which for a cylinder is given by

b

f oo glluen)? o _ o gl (24)
X D 2 v D 2

where G denotes the drag coefficient, d the diameter of the cylinder (cilia), p the
fluid densﬁ:y, . (and v .) the velocity of the cilia, and u, (and v ;) the fluid velocity.
At low Reynolds numbers the drag coefficient is given by

Cp = C}/Re_, (25)

where Re_1is the cilia Reynolds number (ReCZd(UC—Uf) [v, v denoting the kinematic
viscosity). Inserting (25) in (24) yields '

f = Clue~ug) fy = C{vevi) , (26)

where C=C[lu/2, 4 denoting the dynamic viscosity. Inserting (26), say f, in the
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discretized momentum equation (7a) we obtain

AxA :n+1 1
[ae+ﬂm—l+0]u2+ =ZXa_ un+ + (ppPplA, +

(27)
pAXAY, n
+ T e
which may be rearranged to
n+1 AxAy n
a1l ZRplpp (Pp—PplA, + P A3 ue+
11e - AxA
a, + ppxo T C
(28)
AxA '
R PERT
c 'a*e'i'PAX? +C'- )

Investigating (27) we note that the fluid velocity, u_, enters the implicit solution
algorithm. Investigating the explicit form (28) an asymptotic analysis show that for
the limit C — « we obtain u=u. The cilia velocity, u ; is a known kinematic
condition. The drag coefficient, C, of (26) — (28) is taken from theoretical results of
flow past a circular cylinder (Cheer & Koehl 1987). The drag coefficient is-obtained
for an isolated cylinder (C._), for a cylinder with a neighbor 50 pm away (050 #m)
and for a cylinder with a neig’hbo; 0.3 ym away (C, 3um ). A curve fit of these
calculations gives the following expressions

C._ =3.60-107(Re )7 (29a)

) B —3,7 \—0.833
Coopm = 35310 (Re) , (29b)

37y 1—0.823
CO.3um = 3.35-10 °(Re ) , (29¢)

where the diameter of the cylinders in all cases is 0.1 ym and Rec=d(uc—uxf1) /v, u’;

denoting and "old" fluid velocity {velocity from a previous time step or iteration).
Now, taking special attention to the lateral bands of the blue mussel where the

effective stroke occupies one fifth of the beat period and the recovery stroke four fifth

period, the cilia velocity, u_of (26) —(28), is given by
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U sin(5/2ut) , 0<t<T/5
( = - ’ (30)
¢ Ursin{5/8w(t+3T/5)] , T/5<t<T
or the continuous Fourier series
1 b4 )
u (t) =58, + )y a.ncos(nwt) + bnsm(nwt) , (31)

n=1

where the Fourier coefficients B B and b]1 are listed in appendix. It is noted, that in
a numerical model, which is discrete in nature, equation (30) is sufficient in spite of
the discontinuity at t=T/5. The amplitudes U_and U of equation (30) and (31) (see
appendix) is the maximum velocity in effective and recovery strokes, respectively.
The effective stroke of the lateral band of the blue mussel occupies, as mentioned, one
fifth of the beat period, within which the cilium sweeps though an arc of 1500 (Sleigh
& Aiello 1972). Thus, the mean speed in the effective stroke is Um’eﬁ=(150 /360)27L/
(T/5) ~ 13Lf, where L is the cilium length and f the beat frequency. This yields a
maximum velocity in the effective stroke of

U_= (r/2)0 (32)

meff ’
The recovery stroke occupies four fifth of the beat period, and in order to ensure zero
time mean velocity during a cilium beat period, which is the result of a cilium

following a closed curve, we obtain
1 A _ _1
U, —5U, =0 = U, =30, (33)

This- has the effect of making the Fourier coefficient 3 in (31) equal to zero, as
expected.

Tn conclusion, the present cilia model approximates cilia movement by specified
sources which may be placed anywhere in interior of the calculation domain (eq.(26)).
The cilia velocity will in the present study be represented by a model of the lateral
band of the blue mussel (eq.(30) or (31) and (32),(33)). The drag coefficient of the
cilia are represented by theoretical results of flow past circular cylinders (eq.(29)).

4 5. Time stepping procedure and stop criterion

Time dependent solutions. The PISO algorithm (see section 4.1) calculates with great
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accuracy the velocity and the pressure corrections within only one global iteration in
each time step (Issa 1986). The result of this is a time marching procedure with
relaxation obtained through the time step (no under relaxation of velocity and
pressure fields). In order to obtain a converged solution on each time step with the
PISO algorithm it is necessary to use a small time step and many internal iterations
(sweeps) in both the predictor and the corrector step of the pressure correction
equation. _

In the present study two approaches, which gave sare results, were used. In the
first approach the time step, At, was obtained by a CFL—criterion given by

A= min &8 (34

where Ax and Ay denotes the grid spacing in the x— and y—directions and U and V
typical velocities in in x— and y—directions. In some cases a time step lower than the
CFlL—criterion was used in order to obtain convergence. In this approach a converged
solution was assumed if the ratio of the total residual in the first sweep to the total
residual in sweep number n satisfied

R <001, (35)

where the total residual is calculated by the 1-norm

R=13 1|, (36)
1

and where the tesidual at each point, r, is calculated by

Xa,

t= aP[PP a nbcpnb - Sc ’ (37)

where ¢ denotes the dependent variable (velocity or pressure) and where the unsteady
terms are included in a;, and s_ (see eq.(6)).

In the second approach a solution with a time step equal to the CFL—criterion
was obtained after one tenth the time period (maximum velocity of (30) or (31)). In '
this approach the convergence criterion was ten times as high as condition (35), hence

RO

R $0.1. (38)




Now, a new solution after one tenth period was obtained with 2 time step of half the
value of the first one. This procedure was maintained until the difference between two
successive solutions was lesser than 1 0/50. This was usﬁally obtained after halving the
time step 3—4 times. This time step, and the condition (38), was then used from t=0
and throughout the calculations.

In the first approach the condition (35) was obtained after 20—40 sweeps for the
momentum equations and after 100200 sweeps for the pressure correction equation.
Tn the second approach these values were 5—10 sweeps for the momentum equations
and 25—50 sweeps for the pressure correction equation. The cpu—time consumption for
the two approaches was about the same, but for cases of specifying sources in different
grid points at different times (because the specified source (cilia) change position) the
second approach yields the best results, because some time steps between removal of
specified sources is necessary in order to avoid instabilities.

Steady state solution. The PISO algorithm was also used in steady state
solutions and in this version under relaxation for the velocity fields was needed. The
value of the under relaxation factor was between 0.70 and 0.85, where the lower value
was used for stretched grids. In the present study a steady state solution means either
a steady solution in the usual manner or a so called quasi-steady periodic solution,
where a steady solution is obtained for different phases within the time period
(different values of (26) and different positions of the specified source).

A converged solution in steady state is obtained if the normalized total residual

satisfies

Rn

D |
A <5107, (39)

where, for example, the flux is the total momentum inlet flux when solving the
momentum equations and the total mass inlet flux when solving the pressure

correction equation.

5. Numerical results

Three cases of results, which uses the cilia model presented in section 4.4, are
considered here. In the first case, we consider a square cavity (100x100pm?2) where a
10 ym wide cilia band is placed at the lower cavity wall (see figure 4). In this case,
results of the quasi—steady periodic Navier—Stokes equations, in which the rotational
Reynolds number defined by (3) equals zero, and results of the time dependent
Navier—Stokes equations for different rotational numbers are presented. In the second
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case we will focus attention on the streaming velocity for quasi—steady periodic
solutions and compare the results with experimental data. The streaming velocity,
which is non—zero due to the nonlinearity of the problem, is found by integrating the
velocities at each grid point over a complete time cycle T. In this study we consider
two geometries, the squared cavity from case one (figure 4), and a geometry which is
representative for the blue mussel gill (figure 5). Finally, in the third case, we
consider recirculating flows as steady solutions at low Reynolds numbers. The
geometry of this problem (figure 6) is presented in report 3 and has been used for
experimental investigation of water transport in narrow channels. The numerical
model simulates the steady flow produced by the lateral cilia band of the blue mussel
gill, where a single filament i removed from the entire gill system and positioned
close to a perspex plate far from other surfaces (see report 3 for further details).

In all cases presented here the specified source defined by (26) is limited to the
case of f =0. The cilia velocity is described by (31) which is a representative model of
the lateral band of the blue mussel (figure 7) and the drag coefficient is described by
(29¢) which is the drag coefficient of a cylinder with a diameter 0.1 ym and a neighbor
0.3 pm away. The removal of the specified source (cilia) is limited to displacement in
only the y—direction. Physically, this model may be thought of as an actuator disc as
used to represent a wind turbine or a propeller (cilia) in which the power is varied
during a specified time period (beat period of the cilia). Furthermore, the position of
the actuator disc is varied -during the period. :

Parameter selection. For all cases the results are presented with attention
confined to the normalized velocity u/u__ and the normalized streaming u /u__
both in the x—direction where u_ 13 the maximum velocity in the effective stroke
(see U below). We select the vaiues f=10Hz and L=15um which yields a maximum
ve10c1ty in the effective stroke U -Smm/s (see (32)) and a maximum velocity in the
recovery stroke U =0.75mm /s (see (33)).

Case I. Oscillatory flow inside a square cavity.

The dependence on the unsteady term in the Navier—Stokes equations may be
evaluated by the rotational Reynolds number (Re ) defined by (3) (see section 2). In
this first case we use a 30x30 grid on a 100x100 pm? cavity which yields a grid size in
both the x— and y—direction of Ax=Ay=3.3 pm. Here the translational Reynolds
number is Re, —0.30, which is a result of representative values of the lateral band of
the blue mussel gill and the cavity height and the penetration amplitude defined by

(23) A =10pm.
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First, for Rer=0.94, figure 8a—b show time dependent solutions over five periods
for two grid points at the centerline of the cavity, one 14 am (cilia tip in the effective
stroke) and one 30 pm above the lower cavity wall. For comparison the figure also
show the quasi-steady periodic solution (Rer=0) in the first period. As expected, due
to the nature of the boundary condition (see eq.(31)), the flow is periodic. Also the
quasi—steady results correspond well to the unsteady results, and so the solution for
Rer=0.94 appears quasi—steady to a very good approximation.

Similarly, for Rer=4.7 1, 23.6 and 125, figures 9—11 shows time dependent
solutions over five periods for two grid points at the centerline of the cavity and in
the first period the quasi-steady periodic solution. For Rel_=4.71 the solution still
appears to bee quasi— steady to a good approximation. However, for the grid point 30
pm above the lower cavity wall a little amplitude difference appears at t=T/10 and
t="T/5. For rotational Reynolds numbers equal to 23.6 and 125 the solutions deviate
significantly from the quasi-steady solution, and so the unsteady form of the
governing equations is necessary t0 obtain a satisfactory solution. It is noted that in
the present study, where the flow is very viscous (Ret=0.30), we only observe
amplitude differences and no phase differences.

Next, for Re =0 (quasi-steady), 0.94, 4.71, and 23.6, figure 12 shows the
normalized centerline velocity at the time t=T/10, corresponding to the instant when
the cilia possess the greatest velocities (maximum effective stroke). Similarly, for
Re =0, 125, and 625 figure 13 shows the normalized centerline velocity at t=T/10. In
agreement with the time courses showed above the figures shows that for a rotational
Reynolds number lesser than 23.6 quasi—steady solutions is a good approximation.

The results of figure 813 confirms that a quasi-steady solution will be
satisfactory whenever Re < 0(1), as expected.

Comparing the centerline velocity profiles for the different rotational Reynolds
numbers of figure 12 and 13, we observe that the general trend is an overall
weakening of the flow away from the moving cilia (lower wall). Hence, as Re_— o the
general trend appears as a concentration of the flow within a boundary layer around
the cilia. Considering the Navier—Stokes equations in the limit Re, — o we obtain a
balance between the unsteady term (acceleration term) and the viscous term. This
indicates that the wnsteady form of the Stokes equation is valid. The physical
explanation of the phenomenon indicated by figures 12 and 13, as argued by Duck
(1982), appear to be that, at higher values of Re, the greater importance of the
acceleration terms in the equation of motion introduces more "ag" in the flow
compared with the quasi-steady solution, and this effect offsets the trend of a weaker
flow away from the moving cilia.

In the previous resuits we only considered the centerline velocity. To obtain a




general view of the flow field, figures 14 and 15 shows selected streamlines at t=T/10
in the cavity for the quasi—steady solution and for the time dependent solution of
Re =625. The figures show one main eddy that, as expected from the previous set of
results move the center of the eddy towards the lower wall for increasing rotational
Reynolds number.

Counsidering the quasi—steady solution (figure 14) we observe counter rotating
fluid in a small region at each of the corners of the cavity. Such a phenomenon is
commonly observed in steady solutions (see for example Pan & Aerivos 1967, see also
Moffat 1964 {corner eddies)). Considering the solution for Re =625 we see that the
counter rotating regions in the cavity corners disappear. This result ig in agreement
with the calculations of Duck (1982). _

It is noted, that the results of figure 14 and 15 are symmetrical about the
centerline which is not surprising due to the low translational Reynolds number of
0.30.

Finally, we consider the x—direction streaming velocity which is a result of the
nonlinearity of the problem. Figures 16 and 17 show the normalized centerline
streaming velocity for different rotational Reynolds numbers. In agreement with
results considered above the figures show that for Rotational Reynolds numbers below
23.6 the quasi—steady solution appears to be a good approximation.

Case II. Streaming velocity for quasi—steady periodic solutions. Cavity and gill model.

In this case we consider quasi—steady solutions with special attention to the steady
x—direction streaming velocity. Two geometries will be considered, the square cavity
of case I (figure 4) and a geometry representative for the blue mussel gill (figure 5).’

For the square cavity the translational Reynolds number is Ret:0.30 and a
30x30 grid (Ax=Ay=3.3pm) is used.

"First, figure 18a—b shows the normalized centerline streaming velocity for
different penetra,tioﬁ amplitudes defined by (23). For finite amplitudes figure 18a
show a back flow in the cilia sublayer which decreases with decreasing penetration
amplitude but maximum streaming remains at a position equal to the cilia tip in the
maximum effective stroke. As expected, the streaming velocity decreases with
decreasing penetration amplitude, becoming almost zero for zero penetration
amplitude, as shown on figure 18b. The latter result indicates that the nonlinearity of
the problem, which for a penetration amplitude equal to zero means the convective
term of the Navier—Stokes equations, may be neglected. It is noted, that in figure 18b
the streaming velocity in the cilia sublayer is zero. This means that fluid velocity
equals cilia velocity and we have the asymptotic solution of drag coefficient C — w
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(see eq.(28))-

Figure 19 shows the normalized centerline streaming velocity for zero
penetration amplitude, but here for translational Reynolds numbers equal to 23.6 and
195. For translational Reynolds number equal to 23.6 the nonlinearity of the
convective terms still only influences the flow system very little. At a Reynolds
number equal to 125 it is necessary to solve the steady form of Navier—Stokes
equations. It is noted, that the streaming velocity of figure 19, say for Re,=125
(streamning due to the nonlinearity of the governing equations), is about one fifth the
streammg obtained by a quasx—steady periodic solution of the present cilia model (see
figure 16, Re =0, streaming due to an oscillating "boundary").

The results above (figure 18b and 19) and the results of case I indicate that the
solution of Stokes equation will yield satisfactory results whenever Re L <O(1 ) and
Re <O(1) Hence, the governing equation has become linear and superp031t10n of
solutlons is valid. For periodic solutions, as considered here, this means that only one
(steady) solution for each phase, containing different penetration amplitudes (see
(23)), is necessary.

Next, having attention to the linear nature of the problem, figure 20 shows the
x—direction streaming velocity for one steady solution in the effective and the
recovery strokes, respectively, ‘which means that we have the same velocity
throughout the effective and the recovery strokes (step function instead of the Fourier
function given by (31)). Furthermore, the figure shows the solution for equal speeds in
the effective and recovery strokes and, for comparison, the solution for the Fourier
function given by (31) (see figure 18a, Aczlﬂum). These calculations, of course,
satisfy the condition of zero time mean velocity during a complete beat period T.
Hence, the difference in the streaming velocity of (b) and (c) of the figure is a result
of different penetration amplitudes in some part of the effective stroke (the
penetration amplitude, Ac, is not 10um throughout the effective beat for the solution
with cilia velocity given by the Fourier function (31)). If the governing equations are
linear as suggested above then we only expect 10 obtain streaming through cilia
oscillations and not through the convective terms. The difference of figure 20a and b
arise mainly from the nonhnea,nty of cilia oscillations and only about 10% arise from
the nonlinearity of the convective terms. Further step function calculations, with zero
penetration amplitude (only streaming through the convective term) and different
translational Reynolds numbers, shows that the govermng equations are nonlinear in
each phase (here the effective phase and the recovery phase) and that for Re,>0.05
the convective term influence the flow system. But it is noted that this nonlinearity
does not affect the strearning for calculations with cilia velocity given by the fourier
function (31) (see figure 18b and 19, integration over a complete time cycle of many
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nonlinear solutions).

Fina}ly, for Re =0 and Re, —0'30 figure 21 shows streamlines for the streaming
velomty The figure shows one main eddy located at a position about one third the
cavity height from the lower cavity wall and one eddy located i in the cilia sublayer
Furthermore, the streaming velocity, as in the case of a quaSI—steady solution at
t=T/10 (see figure 14), shows four symmetric recirculating regions in the cavity
corners. | " B

Comparing the streaming velocity of figure 18a for a penetration amplitude of 10
umm, which is about the value of the lateral band of the blue mussel (Aiello & Sleigh
1972), with measured velocities of Jergensen (1982) for an isolated gill filament (seé
also report’3), we obtain about one fourth the value measured by Jorgensen at a
position corresponding to about the cilia tip in effective stroke. It is noted that the
present geometry is not quite that used by Jergensen. However, calculations for an
equivalent geometry (2000x600 um? cavity with a gill filament placed about 200 pm
above the lower cavity wall) yield the same result.

For the blue mussel gill geometry we use a step function with maximum cilia
velocity i in one fifth of the beat period and one fourth the maximum velocity (negative
x—dlrectlon) in four fifth of the beat period (the same function as used in (b) of figure
20, see also eq.(33)). The traunslational Reynolds number is Re, =0.12 (based on the
channel height) and a 40x32 grid (Ax=7.5um, Ay=2.5¢m) is used '

Figure 22 shows, for different phase relations on the lower "cma, band" (see
figure 5), the mean x—direction streaming velocity (streaming veloc1ty integrated
across the channel) in the channel. The figure shows that two cilia bands in phase
yield a greater streaming than two cilia bands out of phase. This result is in
agreement with a perturbation solution of the creeping flow equation (see report 1).

Comparing the result of figure 22 having the two cilia bands in phase with
experimental mean velocities, calculated from the pumping rate, the gill area, and the
filamentary and interfilamentary dimensions of the intact blue mussel (see for
example Walne 1972, Jprgensen 1975, Mghlenberg & Riisgird 1979, Kigrboe et al.
1980, or Jorgensen et al. 1986) we obtain about one fifth of these values.

The reason for the significant discrepancy between measured and calculated
velocities may be a cilia model which not quite represent realistic cilia movement and
the three—dimensional beat of the lateral cilia which is not considered in the present
study.

Case II1. Flow separation of steady solutions at low Reynolds numbers

The calculations of case II presented above yields velocities of one fourth to one fifth
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the values obtained experimentally. Let us assume that the velocities throughout the
beat period equals the maximum velocity in the effective stroke (experimental data
input for the numerical model) and then use a steady state solution procedure. This
steady procedure means, compared with the quasi—steady periodic procedure of case I
and II above, a steady solution for only one phase, here the phase at t=T/10. This
simple model is used for comparison with experimental investigations. However, this
comparison is not done here but a detailed description is given in report 3.

Presently we focus attention on flow separation of steady solutions at low
Reynolds numbers. The translational Reynolds number, based on three different
channel widths of the model of figure 6, h=40um, h=100pm, and h=200pm, are
Rﬂt:O.IQ, 0.30, and 0.60, respectively. We use a stretched 100x100 cartesian grid with
minimum grid size Ax and Ay of 8.6um and 3.0um, respectively, and a maximum
velocity input of 3.0 mm/s. This maximum value is a typical maximum measured
value for experimental investigation of the same model (see rapport 3).

First, for channel width h=100ym, figure 23 shows streamlines of the overall
calculation domain (see also figure 6) and a picture magnified 64 times of the flow
between the perspex plate and the gill filament. Figure 24 shows streamlines around
the filament and between the filament and the perspex plate for 256 x magnification.
The figure shows recirculating flow near the perspex plate for a position equal to
abott the lateral cilia band. The eddy is about 50 pm wide and about 68 pm deep
(measured from the perspex plate). Defining a nondimensional depth of penetration
(Veaay) for the recirculating flow near the perspex plate as the ratio of the distance
from the perspex plate to the end of the eddy to the channel height (Veddy=
AYrecirculating/ 1) We obtain, for this channel, Jeday=0.68. The center of the eddy is
located about 2.5zm upstreamn of the centerline of the lateral cilia band.

Similarly, for channel widths h=200um and h=40pm, figures 25 and 26a show
streamlines around the filament and between the filament and the perspex plate for a
956 x magnification. Figure 26b shows velocity vectors instead of streamlines for the
case of h=40um. In figure 25 {h=200xm) the eddy is about 100 pm wide and about
120 pm deep, which for the latter value yields Jeday=0.60. The center of the eddy for
this channel width is located about 21 pm upstream of the centerline of the lateral
cilia band. Figure 26a (h=40pm) shows an eddy that is about 29um wide, 21um deep,
Jeady=0.53, and the center of the eddy is located at the centerline of the lateral band.
Hence, for this case the eddy is symmetrical about the lateral band.

It is expected that the recirculating flow regions near the perspex plate are a
result of an adverse pressure gr‘a,di'ent due to wall friction on the perspex plate. In all
cases considered so far the perspex plate was about Smm long (filament length was
about 120um). Now, for the case of h=100pm, figure 27 shows velocity vectors around
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the filament and between the filament and the perspex plate for a 256 x
magnification. For this case the length of the perspex plate is the same as the filament
length about 120pm (this model is physically impossible and is only studied
numerically), but the recirculating region still exists. Further calculations show that
when the perspex plate is one grid point (~10pm) upstream and downstream of the
lateral cilia band the eddy disappears for the grid used in the present calculations.

Finally, the calculations of this case show that the magnitude of the eddy
motion near the perspex plate increases with decreasing channel width. The velocity
profile for channel width h=40um is fully develc)ped a very short distance after the
lateral band (see figure 26a or 26b) which is contrary the channels of width h=100pm
and h=200um where the velocity profile never becomes fully developed before leaving
the channel.

6. C_oncl_usions

In conciusion, this report has j)resented a discrete cilia model for water propulsion
based on a numerical approach. The unsteady as well as the steady form of the
Navier—Stokes equations have been solved for a periodic oscillating “interior
boundary" -which represents cilia movement in the interior of the calculation domain.

~ Three cases of results are considered, that of oscillating flow inside & square
cavity, that of streaming velocity of quasi—steady periodic solutions, and that of flow
separation of steady solutions at low Reynolds numbers. In the first case, results of
the quasi—steady periodic Navier—Stokes equations in which the rotational Reynolds
number defined by (3) equals zero and results of the time dependent Navier—Stokes
equations for different rotational numbers are discussed. In the second case, special
attention was given to the streaming velocity for quasi—steady periodic solutions with
the geometry of case one and a geometry representative for the blue mussel gill.
Finally, in the third case, flow separation of steady solutions at low Reynolds numbers
has been considered.

The results indicate that the uns_j;eady term in the N avier—Stokes equations may
be neglected for a rotational Reynolds number (Re = Rw/v) less than about order
unity and that the convective term (nonlinear term) may influence the flow system
when the translational Reynolds number (Re,=/U /v) is greater than about 0.05. For
Re_ — o the general trend appears as a concentration of the flow within a boundary
layer around the cilia. The physical explanation of this phenomenon appear to be
that, at higher values of Rer, the greaier importance of the acceleration terms in the
equation of motion introduces more "lag" in the flow, compared with the




quasi—steady solution, and this effect offsets the trend of a weaker flow away from the
moving cilia. For quasi—steady periodic solutions the results indicate counter rotating
fluid in a small region of the corners of the cavity but, in agreement with Duck's
(1982) calculations, these eddies disappear for unsteady solutions.

The streaming velocity, which in general appears in oscillatory flows, is a result
of the nonlinearity of the problem and in the present study a result of purely
oscillating cilia motion or a combination of cilia motion and streaming from the
nonlinear terms of the governing equations. Also, the streaming velocity indicates
corner eddies as in the quasi—steady results above and furthermore recirculating flow
in the cilia sublayer. The present values of streaming yields one fourth to one fifth the
values obtained experimentally for the blue mussel. This significant discrepancy may
be explained by a cilia model which does not quite represent realistic cilia movements
and by the three—dimensional beat of the lateral cilia which is not considered in the
present study, suggesting the need for further analysis.

Steady solutions of low Reynolds number flow between a filament and a perspex
plate, representing partly one narrow channel of the entire blue mussel gill, shows
recirculating flow near the perspex plate. These eddies, which are expected to be a
result of an adverse pressure gradient due to wall friction on the perspex plate,
increase in magnitude for decreasing channei width. The center of the eddies are
located symmetrically about the lateral cilia band for channel width equal to 40pm
and are moving upstream of the of the lateral band for increasing channpel width.
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Figure 1. Typical pattern of cilia motion which show stages in the cycle of beating of a cilium,
with stages of the effective stroke shown as solid lines and stages of the recovery stroke as dotted
lines. The heavy arrows indicate the resultant water flow (ada.pted from Satir 1974).
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Figure 2. Main control volume for the two—dimensional situation. The figure show face locations
and assoclated neighbours.
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Figure 3a—b. Boundary conditions for rigid, impermeable wall where a linear vibration of the
dependent variable is assumed across the wall. (a) node on wall, (b) node outside wall.
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Figure 5. L.ayout of case II. Geometry of the blue mussel gill with specified sources simulating the:
lateral cilia.
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perspex plate (1=5mm)
. . |h channel cases
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Figure 6. Layout of case III. Lower part; boundary conditions and coordinates in cm. Upper part;
single gill filament and perspex plate representing partly one narrow channel of the the entire blue
mussel gill. The specified sources represents the lateral cilia.
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represents the lateral cilia of the blue mussel.
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Figure 14. Streamlines at t=T/10 for the quasi—steady periodic ‘solution of a driven cavity

(100x100pm?2); case of Rer=0, Ret=0.30, 30x30 grid (Ax=Ay=3.3pm), Ac=10um, Atp=1.20-1079
mz/s, Albcorners=3-60‘ 10_131112/5.

Figure 15. Streamlines at t:T/ 10 for the unsteady solution of a driven cavity; case of Rer=0625,
Rex=0.30, 30x30 grid (Ax=Ay=3.3pm), At=8.4-10"T, Ac=10um, A¢=1.20- 10-%m?/s.
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Figure 21. Streamlines of the streaming velocity for a driven cavity (100x1001m?2); case of Rer=0, -
Ret=0.30, 30x30 grid (Ax=Ay=3.3um), tmax=3.0mm/s, Ac=10pm, A=2.83- 109m2/s,
Atorners=3.11+10"14m?/s.
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Figure 22. Mean normalized x—direction streaming velocity (Us/umax) for the blue mussel
geometry. Two cases of results are considered, the two "cilia bands" in phase (solid line) and the
two "cilia bands" T/5 out of phase (dashed line); case of Rey=0, Re;=0.12, 40x32 grid
(Ax=7.5um, Ay=2.54m), unax=38.0mm/s, Ac=104m, h=404m.
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Figure 24. Streamlines around the filament and between the filament and the perspex plate for 256
x  magnification.; steady solution case of - Ret=0.30; 100x100 grid {AxXchanne1=8.584m,
AyChannelz4.56ﬂm), Hmax,input=3.0mm/s, A.c:-“].(}ﬂm, h=1f}0ﬂrﬂ, lperSPex:E)mm, A¢:2.40'10_9

m?/s.
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Figure 25. Streamnlines around the filament and between the filament and the perspex plate for 256
x magnification.; steady solution case of Ret=0.60, 100x100 srid  (Axchanpel=8.584im,
Agchanﬂ31:6.54p}m), Umax,in_put:s.ommls, AC:1O,.’.Lm, h:fZOOum, 1perspex$5mln, A¢=296.10'9
m?/s. '
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Figure 26a. S_treamliﬁes around the filament and between the ﬁIament and the perspex plate for |
256 x magnification.; steady solution case ‘of Rer=0.12, 100x100 grid _‘(Axchanne1=8.58,um,

Ag'channel=2.0ﬂm), umax,j_nput=3.0mmls, Ac:lo,um, h=40,um, lperspex=5mm,-A¢:1.82'_10.‘9

m4/s. S
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Figure 26b. Velocity vectors around the filament and between the filament and the perspex plate
for 256 x magnification.; steady solution case of Ret=0.12, 100x100 grid (Axchannel=8.584m,
Aychannel=2.04m), Ugax,input=3.0mm/s, Ac=104m, h=40/im, Iperspex=5mom-
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Figure 27. Velocity vectors around the filament and between the filament and the perspex plate for

0.30, 100x100 grid (Axchannel=8.58um,

Aychannel=4.564m), Upax.input=3.0mm/s, Ac=10um, h

256 x magnification.; steady solution case of Ret

100pm, Iperspex=1204m.
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Appendix
Fourier coefficients (see eq.{31))

5 = AUe16U
0 5T

4 = ﬁ[ 1—Cos(1—2n/5)1r+ 1—-008(1—5—211/5)7r] N

n e 5-2n 5+2n

ﬁur[ c03(3/4-6 /3 7-5in(1/2—4/50) 7 — 5in(3/4=6/5n)7-sin(1/2-4/5n)7 __
s 5/4—2n

cos(3/4+6/5n) 7-sin(1/244/5n) T — Sin(3/4+6'/5n)Wosin(1/2+4/5n)7r1
5/4+%n

b = Ue sin(1-2n/5)7 _ sin(1+2n/5)7 +
n T 5—-2n 5+4+2n

JﬁU,’[ 4—8111(3./41..—6/51:1)71'-Sin(1/2-¥4/5n)7r — cos(3/4—é/5n)7rosin(1/2—4/5n)7r+
T 5f/4=2n

sin(3/446/5n)7-sin(1/2+4/5n} 7 + cos(3/4+6/5n)7r-Sin(1/2+4/5n)71']
5/4+2n
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Nomenclature

Latin symbols

ag Fourier coefficient

an Fourier coefficient

ap east coefficient of discretized equation
By north coefficient of discretized equation
2p central point of discretized equation

ag south coefficient of diseretized equation
Ay west coefficient of discretized equation
Ae penetration amplitude

A tridiagonal matrix

b source vector

bn’ Fourier coefficient

CD drag coefficient

5 " R o h sy by by
??:ﬁdpg ?8 (wniab =P =N

Ret

drag coefficient

cylinder diameter
frequency (f=w/27)

volume force (f=(fx.fy))
volume force in x—direction
volume force in y—direction
channel width

wave number (k=27/X)
length scale

cilium length
thermodynamic pressure
thermodynamic pressure at infinity

cell Peclet number (Pe;=uAx/v)
residual at each grid point

total residual in sweep number one
total residual in sweep number n

cilia Reynolds number (Rec=d{uc—us)/v
rotational Reynolds number (Rer=2w/v

translational Reynolds number (Re;=[/v)
- source term

source term

time

time step

CFL—criterion

beat period

velocity component in x—direction
cilia velocity in x—direction

flow velocity in x—direction
maximum velocity in effective stroke
streaming velocity

velocity scale for x—direction
velocity amplitude in effective stroke
velocity amplitude in recovery stroke
mean streaming velocity

velocity component in y—direction

Z 2
S
=)

N

SHBEBBEBBEIZZEZEEZ

T T, e e e e e,
T Th U 0D 0 T Lo
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Ve cilia velocity in y—direction m/s

Vi flow velocity in y—direction ; m/s

v velocity vector é:(u,v)) m/s

viip  tip speed of cilium in effective stroke m/s
velocity scale for y—direction m/fs

X x—coordinate m

X dependent variable vector -)

Ax grid spacing in x—direction m

y y—coordinate m

Ay grid spacing in y—direction m

Ayesr  distance to wall in effective stroke m

Ayrec distance to wall in recovery stroke m

z z—coordinate m

Greek symbols

A wavelength (A=27/k) m)

7 dynamic viscosity of the fluid Pa-s) -

v kinematic viscosity of the fluid m2/s

p fluid density kg/m3

Pt fluid density kg/m3

¥ dependent variable (-

w radian frequency (w=2xf) : radian/s)
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