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ABSTRACT

The velocity field in straight and curved ducts of Newtonian and
Non-Newtonian fluids is investigated numerically in order to determine the
secondary flow descending either from curvature effects and/or from non-linear
rheology. Physical phenomena. inherent to duct flows are frictional pressure drop,
heat transfer, mass transfer, and mixing rates. These phenomena may largely be
changed by the presence of secondary flow which is a part of the present study
considering only laminar flow. The investigated ducts have cross section geometry
of 4x4 mm, 3x5.33 mm, 2x8 mm, and 1x16 mm with the width being equal to or
greater than the height. This gives aspect ratios from 1 to 16. '

The fluid dynamic model incorporates the finite volume method combined
with an orthogonal curvilinear coordinate formulation of the governing equations
in semi-strong conservative form. The velocity—pressure coupling is based on the
PISO method in which an ADI solver is used to solve the momentum equations
and a preconditioning conjugate gradient method is used to solve the

pressure—corrector equations.

The influence of secondary flow on the primary flow in a curved duct with
water is seen to depend on the Reynolds number. At low Reynolds numbers the
highest value of the primary flow is situated near the inner wall whereas it is
situated near the outer the wall at high Reynolds numbers.

Modeling 2% viscarin in a straight duct with the CEF-equation two vortices
in each quadrant are observed for unity and moderate aspect ratio whereas 3
vortices are observed for. the aspect ratio 16. The direction of the streamlines are
only changed by changing the sign on the second normal stress coefficient.

The effect of secondary flow on pressure drop was not observed through
measurements. Calculations showed a significant difference on the pressure drop
using the powerlaw model and the CEF-equation at high velocities where the
CEF—equation gave higher pressure drop.
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ABSTRAKT (in Danish)

Hastighedsfeltet i lige og krumme kanaler er undersggt numerisk for
Newtonske og ikke-Newtonske fluider med henblik pd sterre information om
sekundzerstrgmninger stammende fra enten krumningseffekter og/eller ikke-lineser
rheologi. Fysiske feenomener relateret til kanalstrgmninger er friktions tab, varme-
og massetransport 0g blandings rater. Disse feenomener kan endres betragteligt
ved tilstedevaerelse af sekundzrstrgmninger, hvor kun sekundzerstrgmning ved
lamingere strgmninger er undersggt. De underspgte kanaler har et tvaersnitsareal
p& 16-10°6 m? med dimensioner for hgjde og bredde pa henholdsvis 4x4 mm,
3x5.33 mm, 2x8 mm og 1x16 mm, hvilket giver et sideforhold spendende fra 1 til
16.

En finit volumen model kombineret med en ortogonal kurvelinezer koordinat
formulering af de styrende ligninger pi semi-steerk konservativ form er ‘benyttet.
Tryk-hastigheds koblingen er baseret pa PISO-algoritmen, hvor en ADI
ligningslgser er benyttet til lgsning af bevaegelsesmomentligningerne, 0g €n
preekonditioneret konjugeret gradient metode er brugt til lgsning af
trykkorrektionsligningerne. Indflydelsen af sekundaerstrgmning pé
primeerstrgmningen i krumme kanaler med vand afheenger af Reynolds tallet.
Viskos domineret strgmning (lave Reynolds tal) giver de stgrste hastigheder
neermest indervaeggen, mens inerti domineret (hoje Reynolds tal) giver de stgrste
hastigheder neermest ydervaeggen.

Med brug af CEF-ligningen til modellering af 2% viscarin i lige kanaler blev
. 9 hvivler observeret i hvert kvadrant af tveersnittet ved smi sideforhold. Ved
sideforholdet 16 blev 3 hvivler observeret i hvert kvadrant givende 12 hvivler i
hele tvaersnittet. Retningen af strgmlinierne afhzenger udelukkende af fortegnet pa
anden normal spandingskoefficient.

Sekundzerstremningens indflydelse pa tryktabet er ikke observeret ud fra
malinger. Dette er derimod for hgje hastigheder observerei ud fra numeriske
beregninger. CEF-ligningen, der giver sekundaerstrgmning, giver et hgjere tryktab
end powerlaw modellen, der ikke giver sekundarstrgmning.
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NOMENCLATURE

To distingushed between scalars, vectors, and second order tensors the
following notation is used,

s = scalar (lightface italic)

v = vector (boldface italic)

r = gsecond—order tensor (boldface Greek)

Italic symbols

Coefficient in discretised, integrated momemtum equation.
Coefficient in matrix A.

Coefficient matrix.

Area.

Source vector.

Preconditioning matrix.

Mass flow rate.

Search vector.

Diagonal matrix.

Diffusion coefficient.

e DO R QRSP R S
:r_h :

Contravariant base vector.
Covariant base vector.

Factored matrix of B (EET = B).

Error function.

F-function in eq. (8.6).

Residual vector.

Vector used in the PCG-method.

Scale factor.

Linear operator used in a compact form of the discretised and integrated

T e T I

momentum equations.

Cartesian base vector.

Unit matrix.

Jacobian.

Coefficient in powerlaw model of viscosity.

Coefficient in powerlaw model of first normal stress coefficient.

N

.} Spectral condition number.
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Characteristic length.

Lower triangular matrix.

One part of the decomposed matrix A (A= M+ R).
Exponent in powerlaw model of viscosity.

Exponent in powerlaw model of first normal stress coefficient.
First normal stress difference.

Second normal stress difference.

pressure.

Peclet number.

One part of the decomposed matrix A(A= M+ R).
Elememtal arc length.

Source term of dependent variable.

Coefficient in linearization of 8, = 8, + s,

Coefficient in linearization of S, = s 9+ s,

Velocity component in physical domain (primary flow).
Coefficient in upper triangular matrix.

Characteristic velocity.

Upper triangular matrix.

Velocity component in physical domain (secondary flow).

<

A volume.
Orthogonal matrix used in PCG.
i) Physical componets of a vector.

S oe S QO ARt PRI F RS SRS

...

Nn.&i H\ &ne

g R o=

Y Contravariant component of a vector.
Covariant component of a vector.
dependent variable vector.
Solution vector.
Orthogonal coordinates.
Orthogonal coordinate system.
Cartesian coordinates.
Cartesian coordinate system.
Transformed dependent variable vector.
Velocity component in physical domain (secondary flow).

Greek symbols

o  Angle to describe change in unit vector due to curvature.
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Angle to describe change in unit vector due to curvature.
Magnitude of %.

Rate of strain tensor.

Lower—convected derivative of rate of strain tensor.
Diffusion coefficient.
Unit tensor.
Error.
Shear rate dependent viscosity.
o A A Relaxation parameters used in the momentum equations.
Elgenva,lues
A = diag())
Newtonian viscosity.
Diffusion flux momentum tensor.
Density.
-} Spectral radius.
Coefficient in the PCG~method.
Extra—stress tensor.
Dependent variable (a scalar quantity).
First normal stress coefficient.
Second normal stress coefficient.
Relaxation factor.

E@Gﬁﬂﬂ}_\ﬁﬁtp—“‘)—y.ﬁmmr—jq.pba. > ™

Invariants

1 First invariant defined as I = 2 ¥,

II  Second invariant defined as II = 2 ¥ 70711

. Il Third invariant defined as III = 2 Z 2 7 73k7k:

Subscript

e, n w8 U d Indicate the cell faces east, north, west, south, up, down in
relation to a main grid point.
E, N, W S, U, D Indicate the neighbour grid points east, north, west, south, up,
down in relation to a main grid point.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND FOR THE PRESENT WORK

Considerable attention has been devoted to the study of the flow in
rectangular ducts from the frequent use in engineering practice of non—circular
duct flows of various forms. Perhaps the most important class of exact solutions
is that of fully developed Newtonian flow in straight ducts of arbitrary but
constant shapes. By fully developed we mean that our attention is focused far
downstream of the duct entrance, sO that the initial growing shear layer and
acceleration effects have vanished and the velocity is purely axial and varies only
in the cross plane. Whenever the ducts become curved or the fluid is of a
Non—-Newtonian type an exact solution is usually not obtainable. This counts for
both fully developed flow and in particular developing flow, why numerical
simulations are of great importance in understanding the physics of duct flows.
Most non—circular duct flows have a primary velocity field in the direction of the
duct and a secondary velocity field in the cross plane normal to the direction of
the duct. Only Newtonian fluids in straight ducts show a rectilinear flow. The
secondary flow is usually one or several orders lower than the primary flow.
Therefore it usually does not have an important influence on the total velocity
field, but it may play an important role in fluid mechanics because of its
relevance to various engineering applications. Physical phenomena inherent {0
duct flows are frictional pressure drop, heat transfer, mass transfer, and mixing
rates. These phenomena may largely be changed by the presence of secondary flow
which becomes a part of the present study.

The present work is closely connected to a Brite project in which the
Department of Fluid Mechanics (DFM) at the Technical University of Denmark
(TUD) participate. The brite project is based on the need of more knowledge of
ultrafiltration systems, where the study of duct flows equipped with a membrane
at one wall is the main concern of the TUD work. Pressure-driven membrane '
processes have been used since the mid nineteensixties by the Danish Sugar
Corporation, DDS (the filtration division is now a division under DANISCO,
Ltd.). The pressure—driven membrane processes are used to fractionate molecules
of different size by filtration, see Madsen (1977). The flow through the membrane,



the permeate flow, depends, among other things, on the concentration polarization
i.e. the development of increased concentration near the membrane surfaces owing
to removal of solvent. A desirable feature of pressure-driven membrane processes
would be to minimize the concentration polarization to obtain higher permeate
flow. In order to minimize the concentration polarization it is indeed a
requirement to have a detailed information about the fluid mechanics in the :
ducts. Madsen (1977) studies the influence of primary flow and the corresponding
shear rates on concentration polarization where mainly straight ducts are --
considered. The present study is devoted to a detailed investigation of the flow
aspects of membrane filtration, including the secondary flow in curved ducts of a
Newtonian fluid and in straight and curved ducts of a-Non-Newtonian fluid. A
greater knowledge of.secondary flow will hopefully be of.use in pressure—driven
membrane processes to increase the permeate flow as mentioned is the case of
heat transfer processes. _ .

Rectilinear flow takes. place in stralght ducts with Newtonian ﬂu1d
However, if the duct is equipped with a membrane at one wall a striping
phenomena is observed on the surface of the membrane in the direction along the
duct, when. using died solutes. Madsen (1977) states that these stripes have a great
influence on the concentration polarization and may occur due to either a wave
pattern in the duct, or vortices, or both. Jonsson (1984) also observes stripes and
evidence of a moving boundary layer flowing along the membrane surface in the
duct direction. The concentration boundary: layer- was accumulated in the stripes
and left the membrane nearly visible between the stripes. This pattern was stated
to appear due to secondary flow perpendicular to.the primary flow direction. This
kind of secondary flow is believed to appear-due to an instability arising from a
coupling between primary flow, concentration boundary layer, and permeate flow,
Larsen (1989) and it is believed to be confined to the concentration boundary
layer. The secondary flow arising from curvature effects and non-linear rheology;
however, extends all over the cross section. Even though the striping phenomenon
may increase the mass transfer through the membrane only the type of secondary
flow which arises from curvature effects and non-linear theology is considered in
the present study. _

Secondary flow. in ducts arising from either curvature effects or non-linear
rheology. has earlier been studied by others. Secondary flows arising from
curvature effects have been studied for an aspect ratio (width/height) ranging
from 1 towards zero and the secondary flow arising from non-linear rheology has
been. studied using a perturbation method. For the present work, aspect ratios




larger than or equal to unity will be studied and for the chosen Non-Newtonian
model the full equations will be simulated numerically. The ducts considered all
have a rectangular cross section with an aspect ratio ranging from 1 to 16 with
corresponding dimensions ranging from 4x4 mm to 1x16 mm and all having a
constant cross sectional area of 16-10°6 m2, see figs. 1.1 and 1.2 for the geometry.
The two fluids which will be used are the Newtonian fluid water and the
Non-Newtonian fluid 2% viscarin which is a solution of 2% viscarin in water.
Viscarin is a polymeric solution chosen because it is found to be a suitable
transparent model fluid to simulate certain dairy products. The constitutive
equation used to describe the viscarin solution is the CEF-equation which takes
account of the shear thinning behavior of the viscosity and the first and the
second normal stress differences. The range of Reynolds numbers which will be
simulated will be confined to laminar flows. The simulations are carried out using
3 finite volume discretisation, employing pi:imitive variables. A straggered grid is
involved in which the control volumes for each velocity component is staggered a
half control volume in the direction of each velocity component relative to the
main control volume. The solution procedure for the flow problems is based on a
pressure-velocity coupling involving the PISO algorithm in which the momentum
equations are solved with an ADI solver and the pressure equation with a
preconditioned conjugate gradient method.

-
r

e ‘ 2H — .

Fig. 1.1 Geometry and coordinate system for straight duct, 2h = height and
-~ 2H = width.



Fig. 1.2 Geometry and coordinate system for curved duct, 2H = width and
R = radius, see fig. 1.1 for cross section geometry.




CHAPTER 2

MATHEMATICAL DESCRIPTION OF
PHYSICAL PHENOMENA

2.1 INTRODUCTION -

In solving differential transport equations a coordinate system which
describes the geometry of the domain has to be chosen. Complex geometries
need advanced coordinate systems, but the complexity of the transport
equations rise with the more advanced coordinate system. In section 2.2 the
various coordinate systems are considered with their drawbacks and merits.

In section 2.3 the conservation equations of mags, momentum, and an
arbitrary scalar quantity are formulated in an orthogonal curvilinear
coordinate system

Each individual fluid material has its own characteristics which is
described through its nature laws or constitutive relations which are the
subject of section 2.4

Closing remarks are given in section 2.5

Some characteristics of orthogonal curvilinear coordinate systems are
given in appendix A and for those who are not familiar with curved
coordinate systems it is recommended to read appendix A before starting on
chapter two.



2.9 COORDINATE SYSTEM

The coordinate system in which ‘the differential transport. equations is
used should be chosen according to the geoﬁletri'.of the considered problem. A
general non-orthogonal curvilinear coordinate system can be used in all
geometries, but it is only used in complex geometries in which cartesian and
orthogonal curvilinear coordinate systems are not adequate to describe the
complexity of the problem. When a non—orthogonal curvilinear coordinate
syster is used the form ‘of the differential equations can take different forms
depending on how tlie base vectors are defined and depending on with which
reference thé vectors and tensors are expressed. In an orthogonal coordinate -
system ihe contravariant-and the covariant vectors point in the same
direction, and as base vectors are chosen the unit vectors. This gives a
atural" reference in which the vectors and the tensors are expressed
according to the chosen coordinate system. ' :

The range of coordinate frames to match a geometri may be classified

into three categories, namely

e  "Standard" orthogonal systems such as the cartesian,
cylindrical-polar and spherical frames, - o

e  Other orthogonal—curvilinear systems,

" s Non-orthogonal systems.

The first of these categories possesses the disadvantage that it only can’
. map domains of a limited range of geometries. The second category can, from
a theoretical point of view, map all geometries, but under the condition that
the coordinate lines are mutually orthogonal. For some geometries, this condi—
tion gives a poor resolution of the flow because there is only a limited control
for the required grid spacing. The third category can map all geometries
~ without any limitation on the grid lines (except that the grid lines normal to
the boundaries are usually chosen to be orthogonal for ease of computation).
The flow field in complex geometries were earlier calculated or rather
tried to be calculated in cartesian coordinates where the boundary of the
geometry then was modified to fit the chosen coordinate system. A
modification of the geometrical boundary condition of the real problem then
gives inaccurate result. Consequently, to solve differential transport equations
in complex geometries it is necessary to use a coordinate system which follows




the boundary of the geometry.

The three categories of coordinate frames give each a range of geometries
to handle, but also the range of complexity of the governing equations in each
individual system. The first category shows the simplest form of the governing
equations and the third category the most complex form.

In a finite control volume formulation, the orthogonal property of the
grid is essential for the application of the method. Since a diffusion flux across
a control volume face is calculated in terms of the unknowns at two grid
points, it is convenient that the face is normal to the line joining the two
points, see Patankar (1980). The introduction of a non—orthogonal grid in the
finite volume formulation does not cause severe problems, but the grid is
generated not to deviate too much from an orthogonal grid to limit the
numerical errors. The non—orthogonality of the grid involves more than two
unknowns to calculate the diffusion flux across a control volume face, see
Peric (1985). '

. For the present work, an orthogonal coordinate system is chosen. Two of
the directions are curvilinear and orthogonal to each other while the third is
cartesian to the two others. Fig. 9.1 shows an orthogonal curvilinear
coordinate system. The Y-system is the cartesian system in which the
i—vectors are unit vectors belonging to each y’.—direction and the X-system is
the orthogonal curvilinear system in which the e—vectors are unit, tangent

vectors belonging to each- a;:.-direction.
)

t

¥ Fig 2.1 Orthogonal curvilinear coordinate system.
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2.3 THE GOVERNING EQUATIONS

. The motion of any fluid is described in a compact form by use of the
Gibbg notation where the equation: of conservation of mass, momentum, and
an arbitrary scalar quantity is-written as '

SRR PFE P e
Gy + Vow) = Vext s, (21D)

Here, p is density, v velocity vector, x diffusion momentum flux tensor or -
stress tensor (see later), ¢ a scalar quantity (e.g. temperature or mass
fraction), Ffp a- diffusion coefficient for the quantity ¢, and s and s, source
terms associated with the momentum and scalar equations, respectively. The -
product between v and v is the dyadic product, often written ®,. which gives a
second order tensor as shown in fig. 2.2. Lo '

) o0t2) 0]
o= |o(2)u1) v2)o2) 2)e(3)|
W(3)u(1) v(3)v(2) o3)n(3)

Fig. 2.2 Compoﬁents of the convective momentum tensor.

The tensor represents the convective momentum flux tensor. The physical
meaning of & momentum flux tensor is explained later when the diffusion
momentum flux is considered. '

In the following, only steady, incompressible flows will be considered why
eq. (2.1) takes the form |

V=0, - (2.22)

Ve(poo) = Vexr + s, B - (2.2b)




V-(pwp) = V-(I‘chp) + 5, (2.2¢)

The equation of conservation of mass, eq. (2.2a), is also called the equation of
cdntinuity.

The symbolic notation, V and V- (for the gradient and divergence
operator), used in the conservation equations to describe transport of mass,
momentum and scalar quantities can not be used in a computer program until
a coordinate system is chosen. The transport equation will be described in an
orthogonal curvilinear coordinate system where physical components of the
vectors will be used. In appendix A the notation is explained and the metric
coefficients in an orthogonal curvilinear system are given as well.

9.3.1 THE EQUATION OF CONTINUITY

In a steady, incompressible flow the equation of continuity states that
the divergence of the velocity field is zero physically implying that the net
outflow per unit volume is zero. With the divergence, written div, eq. (2.2a)
may also be written as div() = 0. '

5

Fig. 2.3 Finite volume in orthogonal curvilinear coordinates.

Consider the Ty) Ty Ty coordinate system in fig. 2.3, with scale functions

hys by and A, (see appendix A), defining length increments hz.dxi'along

-9 —



coordinate axis z. Let v = y1)e, + A2)e, + u(3)e, be the vector field given
in terms of the unit vectors e, e, and €. The divergence of v will be

calculated as the flux vout of the sides of the box in fig. 2.3, divided by the
volume of the box. The flux density normal to the z,, z,—plane is v-e, = (1)
and the area of this face is % h,dz, dz,. Therefore, the flux entering from that

face is o(1)hoh;dr, dzy, while tghg ﬂsx ig’eaving the opposite face is {v(1)hh; +
‘[3(v(l)h2h3)/'azi]dxl'}d32dz'3 (remember that: v(1), hy, and h, are functions of z,
as wé move along the :sl—coordi'nate curve). Thus, the net flux in the
z,~direction i [0(u(1)Byhy) /0z,)dz, dz,dz,. Adding the contributions of the z,
and" z;~directions the total flux through the volume sketched in fig. 2.3 is

[%;[v(l)h?hg] + gfz—[v(z)hlhz{] + %[w(s)hlhg]] dv, dr, dz,.
| (2.3).

The divergence of the velocity field in curvilinear coordinates is now obtained
by dividing the expression in eq. (2.3) by the volume _h1h2h3d$1d$2d$3- Hence

Div(s) = 775, [%z—l[v(l)hg@] + gyl + g@[@(m&]} -(2 .
| i

or, written with summation indices,

Div(y) = %5 [%iv(i)],,-, (2.4b)

where h = h hyh,. The equation of continuity for a steady, incompressible

fluid states that eq. (2.4) must be equal to-zero.

2.3.2 THE EQUATION OF MOTION

In the equation of balance of momentum, eq. (2.2b), the divergence ope-
rator operates on second order tensors, the convective and the diffusive mo—
mentum fluxes. The convective momentum flux pvv which is associated with
the bulk flow of the fluid represents the convective transport. The diffusion
momentum flux x is due to the molecular motion and interaction within the

—-10 —




fluid. Before the divergence of a second order tensor is worked out in an or-
thogonal curvilinear coordinate system it is appropriate to look at the physics
behind the diffusion flux tensor of momentum, also called the stress tensor.

In the stress tensor x the component T represents the force per unit
area acting in the positive j-direction on a surface perpendicular to the
i—direction. With the sign convection adopted from Bird et al (1960) and Bird
et al (1987), it means that the fluid on the negative side of an element with
area ds will exert a force of n-xds on the fluid on the positive side of ds
where the positive side corresponds to the orientation of the unit normal
vector n. Since force per unit area, which takes place between the individual
parts of the fluid whenever a velocity difference occurs, is due to the diffusion
process within the fluid, it is often more appropriate to talk about a
momentum diffusion transport process. x is then given the name the diffusion
momentum flux tensor.

Later it will be shown that the diffusion momentum flux for a
Newtonian fluid is in the direction of the negative velocity gradient. It means
that the momentum goes from a region of high velocity to a region of low
velocity. Let us consider shear flow between two large parallel plates where
the a:l—direction is in the direction of the flow and the xz—direction is
perpendicular to the :r,l—direction. Newtons law of viscosity then states that

Ty = —y%—l—)-. (2.5)

2

. The reason for the adopted sign convection, see Bird et al (1960) and Bird et
al (1987), is that it follows Fourier's heat conduction law ¢ = -#VT and Fick's
mass diffusion law j= —INp, where k is thermal conductivity, T is
temperature, ¢ is heat flux, D is mass diffusion coefficient, and j is mass flux.
Fig. 2.4a shows the stresses on a finite fluid element whereas fig. 2.4b shows,

~ the corresponding diffusion momentum fluxes. In principle there is no
difference between the diffusion momentum flux tensor and the stress tensor
why both convensions can be used.

Divergence of x in an orthogonal curvilinear coordinate system.

Tensor analysis is a widely used tool to express the sense of the
operators used in Gibbs notation in any coordinate system. The tensor

-11 -



1,+4Az,

Fig. 2.4a Volume element with arrows zndzcatmg the direction of the
5 : z—component of the stresses AR

X i
Il-fﬁll

' Fig. 2.4b  Volume element with arrewS'indz'cating the direction in which the
z—component:o f "the mt)memﬁum is transported through the surfaces. '

analysis forms an algebra which can be used to simplify rather comp]ex
expressmns, but at the same time it can hide some of the physms behind the'
problem. To use ténsor algebra when dealing with’ orthogonal curvilinear o
coordinate systems, it is necessary to stari out with a non-orthogonal
coordinate system and then simplify it to the orthogonal case. To avoid the
general tensor algebra, Prager (1961) uses only orthogonal unit vectors (base
vectors) and their comiponents ‘with Tespect to the ‘rectangular Cartesian -
coordinates to express the different operators in general orthogonal coordina—
tes. He then uses only contravariant components, but it is rather cumbersomie
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and will not be recommended. To avoid hiding any of the physics behind the
tensor algebra simple projection techniques will be used in our case. In the
derivation of the divergence of a second order tensor in an orthogonal
curvilinear coordinate system the technique will only be shown for a 2-D case.

From fig. 2.5 it is seen that all quantities must be referred to the local
coordinate system in the middle of the element and that the components of
the diffusion momentum flux tensor at the cell faces has to be projected on
the axes of the local coordinate system. The angles of rotation of the cell
faces relative to the local coordinate system is, to first order,

: 8h, 1 Oh,

0, = (b + t7.05)d5 — Mydnl/hd, = 5,7,
dh, 1 M

a, = -k - é-a—-z—zda:z)dxl - hydz,}/hdz, = éﬁ2-3'§;d$ ,
oh, - | h,

@ = [(hy + %%Idml)dxz - hydz,)/hdz) = %ﬁl ) Top
, 3h2 1 6h2

a, = .-[(,h,2 - %—azzdzl)dzz - hzdmz]/ hld:z:1 = éﬁl-%—ldzf

Fig. 256 2-D orthogonal curvilinear element.

The components along the a:l—axi's of the divergence of x take the form
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C omyy. o 3 12 Ohy
[y 2—3 da; )cosa + (7r12 d:r; smaj(h + z'a_df‘? )da:

9 | AT oo by
[(7_1-_11 -4 z, d:c )cosa + ('ir12 — 1y E; d_:zl)sm(—aw)_](h2 - é—a?v;dzl)dxz +

o/ JOR A oh,

21 3 22
| [( 21_-i~ 7z, dz )cosa + ( dz )sm( a )](h + 2-3——d:c Jdz, -
aﬂd 62% B o 42
[(7gy -3 a:)cosa +( _ z)smas]( - 2-3—— 547,

Knowing that coser = 1 - a2/21 + oA/4! — ... and sina > @ — a3/3! + o8f5! -
.. the expression, after reductlon to first order, takes the form
P P 3h oh.,
%1(71’11]12)(1%6152 + —a— ( 21 l)dz dz, + ”12'3'5: dx dz, — 7r22-3—5; da: dz,.

The components along the a:zfa.xis of the divergence of x take the form

6?&'22 31r21 ' Bh
[(myy + 4 19z, dz,)cosa, + (7y) + 23 dz,)sinar ](h + 2.5_.(1:,; Jdz, -

03y Oy - - oh
{(mo 23 dz,)cosa + (m, 23 dz, )sm(—a )]( o= 2—3—-dx Jdz, +

o, :' or, oh,
[(7r12 + 3 7, dzl)oosafé + (7r11,_+ é—az-l— dxl)sm(—qe)](% + é-gx—ldxl )d:c2 -
o 12 | om oh,
[(7l'12 -1 dZB )COSO’ +. ( - %.3“9:‘; d:l?l)Sl]law](hz - é-a;-l'dxl)dx s

which after reduction-becomes
(2.7)
a’ ' . ' o Ohy Oh - -
%, (7T22h1)d$ dz, + -3'751(1r12h2)d:r:1d:1:2 + 7r21-651d:51d32 - ”11'6':52dx1dz2'

—14 —




The divergencé of a second tensor in orthogonal curvilinear coordinate is
now obtained by dividing eq. (2.6) and (2.7) by the volume of the element,
hence the 7, and z, components of V-x are, respectively,

Ty ﬁlﬁ [ab‘ (my4hy) + 63 (“21"1)] + Tilﬁ "mghl - ﬁlﬁ “226;2’
1%L %y 1l 1203y Ry 220,
(2.8a)

T, 1 [6 (7rh)+a(1rh)]+11rah2—17r-ahl.
2 7{;52 BEI 1272 B?cz 291 5'1'52 213}1 H;ﬁ2 11"6?:2-

(2.8b)

The derivation of the divergence of a second order tensor has been shown for
s 9-D case. The same procedure can be used in a 3-D case where the z,, Z,,
and 7z, components of the divergence of x are, respectively,

. 1 Jij a 3
B Rhah, [?El(-“nhzhs) + ‘3?:2(”21”1”3) t 633(“31"1"2)] +

1 3h1 1 3h1 1 3h2 1 3h3 (29 )
1 + T - ! - ! ) 9a)
Rih, 1203, © Fihy 139z, ~ hk, 2202, N
e 28 r pn) + & (mohihy) + T (rghihy)| +
2’ Elﬁ2ﬁs le 12723 51:2 227173 39:3 32712 '
oh oh, dh oh
1 g 1 9 1 11 3
T + T. - T - T . (2.9b)
RiR, 2102, " Bighy 230z, ~ BB, 110, h,hy 3303,
pe 2 by + & (mpghihy) G (Tghihy)|
3 T hohy 0%, M1372'8 AGTR U A R
oh oh oh oh,
1 3 1 3 1 1 1 p]
T + T - T - T : (2.9¢)
gh, 73102, hgh, 3202, ~ hghy 19z, ~ Byh, 220, |

Written with summation indices, eq. (2.9) takes the form
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Diy(r)_ = % [%— wij] h + El:ﬁ; [71'?.]. hz, - 7rﬂ hj,] .7 -
o @210)

where h = h1h2h3

The diffusion momentum flux tensor has been used as the second order
tensor of which the divergence I in orthogonal curvilinear coordma,tes is shown.
In the equation of motion eq. (2.2b) it is seen that the divergence of the
convective momentumn flux appear too. Following, the same procedure for the

dyadic product of v and v, the %) Ty and Ty components of the divergence of

pwy are, respectively,

z: h—}ﬁi [gz«l('ﬂ"(l)”(l)hzhg) +' %ig(pv(g)v(l)hlh3) + %3(90(3)9(1)];1}52)] +

Ml

oh, R oh,
h‘?i Pv(l)v(2) + h—ﬁ Pv(l)v(3)55 WQPW)U(?)%-I’— -@391}(3)1’(3)351;'

(2.11a)°
s

AL ACOLOLLS ¥ g;;?(p;@m)aiﬁa) + %;3(@(2)'1)(3)@?»2)] ¥

g P e ni' o2)ul3 Oy 1 e — ”},(' Ohs
2)9(1 + 3= — 7 pr{1)K1 _ 2(3)0(3) =",
1 2,0 ) -351 2 3p )-353 Wf v( )%2 ﬁ;ﬁgﬂ ™ )%2

-~ (2.11b)
) 1 d - a ;. L, 0
%R, (55 (r(0teltghy) + 5, () + 3;3(pv(s)v(a)h1h2)] ¥

Oh, oh, . oh,,
m pu(3) )5z + 7,—;; P”(?’)”(?)gg. ﬂ p(1) K1) 73 7{7; P"(2)v(2)35 :

(2.11c)

and in summation notation eq. '(2.11):' is given' by
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piviom) = - 3] + AL [0 gy = 49 bl @

The equation of motion eq. (2.2b), with eq. (2.10) and eq. (2.12), can be
written in orthogonal curvilinear coordinates as

% [%j Pv(i)v(j)] it p%%f% [ﬂ(i) h; ;= W) hj,i] -

The terms in the second pair of brackets on each side on the equation
sign in eq. (2.13) are due to the curvature of the coordinate lines and are
called the curvature terms. The contributibn- of the curvature terms from the
convective part may be recognized as the centrifugal and the coriolis forces.

The difference between the divergence of a vector and the divergence of
s second order tensor becomes clear by comparing eq. (2.11) and eq. (2.4a). It
ig seen that the terms in the brackets in eq. (2.11a) are equal to eq. (2.4a)
where the tensor components now are velocity components. The extra terms in
eq. (2.11a) are due to the curvature of the coordinate lines which also can be -
seen from the projection technique used to derive the divergence of a second
order tensor. Similar equalities can be seen for the other coordinates lines.

- 9.3.3 THE EQUATION OF TRANSPORT OF A SCALAR

In the equation of conservation of a scalar quantity, eq. (2.2¢), does the
gradient of a scalar appear. The gradient operating on a scalar gives a vector
on which the divergence operate. The divergence of a vector in orthogonal
curvilinear coordinates has already been worked out, whereas the gradient of a
scalar still need to be derived in orthogonal curvilinear coordinates.

The components of Vy in the e, direction is given by dp/d§, the rate of
change of ¢ with respect to distance in the e direction. Since €, €y, and €
are mutually orthogonal unit vectors Vo can be expressed in terms of these as

Vw=_%%el+%%32+%%ea
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or, with use of the metrics also called the scale factors (see appendix A, where
also the definition of ¢, 1, and (i glven) ‘the gradlent of a.scalar in
orthogonal curvilinear coordinates is given by

1d ld ld :
Vo = ﬁ C + E E 8 = ﬁf,ﬂ,i z (214)
With use of eq. (2.‘4‘5),: (2.14), and (2.2’0)"the equation of cdnservation of a
scalar quantity in orthogonal curvilinear coordinates is written
118 o) + & (et + & (st =
W3 651(,0'0(1)99 9 3) + '3_9}2(107)(2)90 1 3) + 653([’”(3)50 1h2) =

ﬁ—ﬁ[z&( Fa“g +é§ H£)+33: TFHQ]

| (2 15)

or, with summation indices
ﬂﬁmmbfﬂﬁ?@L+%._. _@m)

2.4 CONSTITUTIVE RELATIONS

When the equation for transport of an arbitrary scalar was set up, €eq.
(2.1c), it was already pointed out that a diffusion coefficient T’ associated
with the medium ¢ was needed..The term -T Vy decribes a flux (e.g. a heat
flux or a mass flux) where I, depends on the medium and then is a -
characteristic of each specific medium. The relations which describe the
behavior of a medium is named the constitutive relations and is a nature law
Many different constitutive relations can be made, but only relations mvolvmg _
the determination of the, dxffusmn momentum ﬂux tensor is considered in this
section. Throughout the report we deal only with nonpolar fluids which state
the symmetri of the diffusion momentum flux tensor, see Arpaci & Larsen

(1984),

— 18 —



T,.= T..

1j n
This implies the absence of intrinsic angular momemtum and surface and body
couples.

941 NEWTONIAN FLUIDS '

‘A rtather big class of fluids, such as, see Bird et al (1987), the gases,
gaseous mixtures, and low-molecular-weight liquids and their mixtures, are
named Newtonian fluids. They show the simplest constitutive relation which
fluids can take. ,

As stated above the diffusion momentum flux tensor is a symmetric
tensor and every symmetric tensor can be divided into an isotropic part and 2
deviatoric part, whence 7 takes the form |

xr=p6+ 7 (2.17)

where p is pressure, § is a unit tensor and the deviatoric tensor 7 i8 a tensor
where the trace per definition is zero and is then called traceless. The trace of
a tensor is written te(r) = T (i.e. sum of the diagonal elements). The |
deviatoric tensor is named the extra—stress tensor. The pressure p is, according
to eq. (2.17) and the definition of a deviatoric tensor, in a Newtonian fluid '
defined as

p=r7.3

The pressure represents a local state property and is given through the
thermodynamic equation of state p = p(p,T) why the pressure is called the
thermodynamic pressure, which also is static pressure, see Arpaci & Larsen
(1984). The deviatoric tensor contains the stresses which try to distort the
fluid without changing the volume and the isotropic tensor gives the stresses
which try to dilatate the fluid without shape distortion.

In order to provide a well-posed problem for the solution of the equation
of motion under the condition of incompressibility it is necessary to require
additional relationship between the extra—stress tensor and the kinematic
variables. A general linear model based on the asumption that the extra-stress
tensor is proportional to rate—of—deformation tensor leads to, se¢ €.g. Pragér'
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(1961), Batchelor (1967), and Arpaci’& Larsen (1984)
= —Vot )T+ Gu-R@0E  (218)

where ¥ = Vv + (Vv)T is rate—of-deformation tensor or rate-of-strain temsor, p
the dynamic viscosity, and & the bulk viscosity. The bulk viscosity is written

2u + X whére A" denotes the second viscosity. The rate-of-deformation tensor
is composed of the gradient of the velocity field 'and its transposed. The -
gradient of a vector field is named the dyadic and represents-a tensor. The
dyadic of a velocity field Vv in Cartesian coordinates takes the form '

ST on oy dul
Vo = du dv Ow

|9y %y Oy
O Ov Ow
| 0z bz 0z |

With the introduction of eq. (2.18) in eq. (2.17) ‘we obtain after the usual

e (s, 706 o Lt @)

where p, is named an arbitrary pressure. The shown linear model consists of
~ all possible combinations of first derivatives of velocity components that are
allowed when the fluid is nonpolar and has no directional preference, see
Prager (1961). - SRR :

. The bulk viscosity is only known: to-become of practical importance in
processes involving rapid volume changes which will not be considered here, .

- why the Stokes hypothés‘i'ss stating 44 = =X, i8 assumed to apply to most
Newtonian processes. The Stokes hypothesis is based on the assumption of
local thermodynamic equilibrium. In our case, where only incompressible fluids
are studied, V- v vanishes and eq. (2:19) takes thé form -

B T A T (220)

The equation of motion eq. (2.1b) combined with the constitutive relation, eq.
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(2.20) gives the well known Navier-Stokes equations.

In section 2.3.2 dealing with the equation of motion it was shown how
the equation of transport of momentum can be expressed in orthogona.l
curvilinear coordinates. To express the full Navier—Stokes equations in
orthogonal curvilinear coordinates we only need to show how of the
constitutive relation, eq. (2.20), is expressed in orthogonal curvilinear
coordinates.

The isotropic part of the diffusion momentum flux tensor does not need
any rewriting, but the deviatoric part which contains the dyadic V- v needs to
be rewritten. The components of V-v in the e -direction is given by 0v/d¢,
the rate of change of v with respect to distance in the e —direction. Since e,,

€y and €, are mutually orthogonal unit vectors V-v can be expressed in terms
of these as

V-v=-gze +-a7?e +-g%’ . (2.21)

The introduction of &, 5, and ¢ is given in appendix A. When dealing with
the gradient of a scalar it was easy to introduce the scale factors and write
the gradient in orthogonal curvilinear coordinates, but when dealing with a
vector field it is necessary to evaluate the derivatives of the unit vectors e,
with respect to distance in the ) I, and z4 directions, respectively. This ca,n
be seen by writting v in components as v= (1), + w2)e, + 1)(3)3 and
introduce this expression in eq. (2.21). The derivative of the unit vectors with
~ respect to distance in the z,, 7,, and 7, directions give the curvature of the
coordinate lines. The curvature of e, due to change in the z, and z, directions
for a 2-D case will be shown, wh1le the generalization to 3—D for the
curvature of e and € should be straight forward. With the help of fig.

2.6a it is seen tha.t the cha,nge in e, due to change in 7, is —€,a, where

oh,
a = dzdz, -55-2-/ (hydz,),

whence 381/3:1:1 is expressed as



Fig: 2.6  Chance in unit vectors due to curvature.

The change in e, due to change in z, is elzﬂ, see fig. 2.6b, where

/3 = dI dz, T/(h dz )

Théréfore_, N

ﬁl
It o
.-'?1:;9“- ‘l

When dealmg w1th a 3-D case an extra component along the z4 —dlrecmon
~ mneed to be added for the denvatxve of e along the 2, —dlI‘eCtIOH why de, [0z,
in 3-D is expressed as .

1 €, Bhl 63__(9h1
Oz, ~ " hy 0z, " Ry Oz

The curvature of the unit vectors in a 3-D orthogonal curvilinear coordinate
system can according to the above derivatives, see Morse & Feshbach (1953),

be summarized as

Bel=*e2 Bhl €y 3h1 381532 3h2. 6e1= €y 8h3
s, = K, 05, Ry Os O3 B 05’ O B Oa
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682=_33 6h2_31 6h2_ Bc2=e3 3h3' 332=31 "”‘1_
833=_31 3h3_e2 6h3_ c’;’e$=e1 3h1. 633ze2 ahz.

The dyadic field of v can now be expressed in terms of curvature of the
coordinates lines, components of the v-vector, and eq. (2.21). It must be
remembered that the product of the unit vectors is the dyadic product, why
the result is a tensor. With use of Vv and its transposed the components of
the diffusion momentum tensor eq. (2.20) are written

ah. dh. '
= 1 d(v(1 (2 1, »(3 1 ' =
Xy ="P- Zu[ﬁl—%—)—)-zl + E(F)-l \ %, + E(-E)-l . —3_753], (2.22a)
Lacs2)) . o3) M L o(1) O |
o oSBT e

= - fp 2520+ 4G A
o= =AW ¢ TA ),
fy = Ty = | ;;3723 %%)] + %E’gl 2%)] (2.22¢)
wmm o AR A R] e

With the equation of motion eq. (2.2b) and the components of the
diffusion momentum flux tensor eq. (2.22) the Navier-Stokes equations
become, in orthogonal curvilinear coordinates, ' '

% B:—k pv(:')v(k)} 7t pﬁ%’% [v(i) i = o8 hk,‘_] -

Ay
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+ %},u ;—kl [ﬁ_(g%)_’ + Hl (‘%Ll ]

LI

--Ezﬂﬁr[ v(z), +¥h'(7il } e
(s i"’ 1, J%': ’#])

Equatlons'(z 23) have been worked out in a three—dimensional orthogonal
curvilinear coordinate system. However, in the present study, dealing with
straight and curved ducts of general €ross: sect1ons, we have chosen to work in
curvilinear orthogona,l in two directions and cartesian orthogonal in the third.
The resulting special form is obtained by making hy and h, functions of only

z, and’ Ty and to- make h mdependent of coordlnate dlrectlons The scale

factors then take the form

hy =..h1(?”1"_\...‘52).=‘ RS |
hy = hy(2;, Zo)s (2.24)
By = 1.

2.4.2 NON-NEWTONIAN FLUIDS

All fluids which do not obey the ﬁatufa,l law described in eq. (2.20),
where the extra-stress tensor is proportlonal to the rate—of—deformatxon tensor,
are classified as Non-—Newtoma.n fluids. Examples of materials which. deﬁmtely
are "fluid— hke" see Coleman et al (1966), but not are well described by eq.
(2.20) are molten polymers, concentra.ted and even dilute polymer solutions,
protein solutions, synthetic latices (i-e. colloidal suspensions of synthetic
rubber in water); spec1a1 soap sohltlons, and examples ‘encountered in daily life
include asphalts, paints, pitch, starch suspensions, certain glues, and certain
honeys. The term "fluid-like" refers to the fact that the fluid behavior results
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in flow when subjected to stress. These fluids are referred to as
elastic&viscous fluids or, as already mentioned, Non-Newtonian fluids.
Materials which do deform, but do not flow, are termed viscoelastic materials
and belong to the elastico solid group. A new science has originated in
elastico—-viscous fluids, Rheology, which is the study of deformation of flow of
matter. The necessity of this study is needed because the equation of motion
and the equation of continuity' cannot alone predict the behavior of a
particular fluid within the conditions of a flow situation. A constitutive
equation which relates stress and deformation is needed.

In trying to relate stress and deformation, one model, as for the
Newtonian case, cannot be made for the Non-Newtonian case. Only one |
parameter, the dynamic viscosity, which is material dependent, appears in the
constitutive relation for a Newtonian fluid. To represent the complex behavior
of Non—Newtonian fluids we need constitutive equations with several material
parameters (constants) and nonlinear as well as linear terms. We still expect
stress to depend on rate of deformation. _

In the work of modeling the diffusion momentum flux tensor the usual
decomposition, as in the Newtonian case, is made

x=pb+ T, . (2.25)

but the decomposition is not necessarily composed of an istropic tensor and a
deviatoric tensor. In eq. (2.25) p is an arbitrary pressure and takes the form
as a dynamic variable, but it may not be a state proporty. From a
* computational point on view it is important to realize that the arbitrary
pressure is only used as a variable to obtain the equation of continuity in
junction with the equation of motion, see chapter 5. The extra—stress tensor 7
is usually not a deviatoric tensor and for that reason not traceless. The
pressure, which is defined as 1rh./3 (see the section of Newtonian fluids), is
~ then, for a Non—Newtonian fluid, composed of the arbitrary pressure and the
trace of the extra-stress tensor. The rotating rod example shows one of the
many peculiar differences between dynamics of Non-Newtonian and Newtonian
fluids. The non-traceless form of the extra-stress tensor of the Non—
Nowtonian fluid, for this example, gives rise to the rod—climbing phenomenon.
The Navier-Stokes equations can be non-dimensionalized using a suitable
characteristic velocity V and length L. The equations then involve one
non—dimensional parameter called the Reynolds number Re, defined by
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For a Non—Newtoma.n fluid, additional dimensionless para,meters appear: One
s the ratlo ‘of ‘the elastic forces to the viscous forces (remember that the-
Non-—Newtoman fluids are called elastico-viscous fluids too). This number is
the Deborah’ niumber De, defined as the ratio of a characteristic time of the
fluid X t0 a chara,ctenstlc time of the deforma,tion or the ﬂow process t -
see Crochet et al (1984) and Bird et al (1987), | '

De = )\/t (2.27)

flow’
It is seen that the Newton:a,n case is obtained in the limit De - 0, and in' the
lnmt De 5 % the v1scoelastrc case is obtamed The characteristic time of the
ﬂmd Py or the cha,racterlstlc times A if the ﬂmd is characterized by several -
time " constants, is for exarnple used When a memory effect is modeled.” An
example of a process where an elastlco—wscous fluid shows memory effect is-
the extrudate swell. In the rest “of the thesis memory characteristics ‘will not
be considered even if the fluid considered contains memory. Only two" ‘
rheometrrcal differences from the Newtoman case will be considered, the shear

rate dependent viscosity 7 = (1 ¥) and the normal stress differences (7 is also
used. to describe the physrca.l drstance along the z, —dlrectlon but thrs should
cause 1o problems)

. The shearira.te_ dependent_r visoosity.._' . |

In the Newtoman case, the dyna.rmc v1scomty is a consta.nt for each
ma,terra.l Thls is. not the case for Non-Newtonian ﬂmds where the vrscomty is
a functlon of the shear ra,te A typlcal exa.mple of shea.r rate dependent
vrscos1ty is shown in ﬁg 2 7, where the. two plateaus are ca.lled the first
Newtoman pla.tea.u, denoted Ny and the second Newtoman pla.teau, denoted

The axes in ﬁg 2.7 are 1ogar1thrmc 50 the. vamatlon of m between UM and
n2 is, often a.pprommated by a powerlaw, of the forrn

n=k*ﬂ'_1“-:, - L (2.28)
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Fig, 2.7 Viscosity as function of shear rate.

Employing the four constants 7, Ty k, and n , the viscosity variation is
approximated with the dashed line in fig. 2.7. Fluids which have 2 decreasing

value of n with increasing %, as in fig. 2.7, are ca.lled ghear thinning fluids
whereas shear thickening fluids have an increasing value of 7 with increasing

4, Tt is seen that 7 must be less than 1 for shear thinnning fluids and greater
than 1 for shear thickening fluids. The Newtonian case i8 obtained for n = 1
and k = p. '

First & second normal stress coefficients.

The normal stress differences observed in Non-Newtonian fluids were
already touched on when the decomposition of the diffusion momentum flux
tensor was described. It was stated that the extra—stress tensor was not
~ always traceless why normal stress differences can 0CCOUr. The first and second
normal stress differences are denoted N, and N, respectively, see Crochet et
al (1984) and Bird et al (1987),

iy~ Taa = M)

Tag " T3 = 7 K1
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where ¥ = |#] = ¥ ZEfyUsz = 4 #IL II is the second invariant of a tensor,

also written II = tx(#¥-%) = tr¥2 Two more mva,rla.nts of a tensor can be

defined as I = tr(#) and III = try® which are the first and third invariant,
respectively. Invariants are quantities which are independent of the ch01ce of

coordinate system to which the components of ¥ are referred. The normal
stress differences are modeled as linear functions of the square of the
magnitude of the rate-of-deformation tensor,

SN = ()R
—N2(7) = —1112:(-;}()";/2’..

Where \I! and \I' are the ﬂrst and second nermal stress coefﬁments _
respectlvely For many ﬂmds, the normal stress coefficients show a smnlar
dependency ef sheam rate as the v1sc031ty, why a power law model is- used as’
well. o ' ' e
~~The viscosity, and the first-and second normal stress differences, are -
usually referred to as the three viscometric furictions, . the. viscosity being
especially important in many engineering applications. The magnitude of -V, is
much smaller than N, about one order of magnitude, but this does not mean
that N does not have a prominent influence. For example, rectilinear flow in
. stra.lght channels with non—circular cross section is usually not possible with a
olastico—viscous fluid, and some secondary flow is to be expected when N, is
non—zero. This fact was studied in detail in a paper by Dodson et al (1973)
where a perturbation method was used. In the present work, the full equations
are used in their:original form when studying the nature of the seeondary
flow.= .~ 0 00 : L . co
. Tt was mentioned ‘that Non-Newtonian- fluids are attempted modeled with
several methods. Here, however only two models will be described. The first
model is the generalized Newtonian model which only contains the shear rate
dependent viscosity 7, and the other model is the Criminale-Ericksen-Filbey
(CEF) model which contains all three viscometric functions 7, ¥,, and ¥,.

Generalized Newtonian Fluid.
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In the Newtonian case, the extra-stress tensor has the form

T = —pi%, | (229)

where p is a constant for the given material at a given temperature and
pressure. In the generalized Newtonian model, the extra—stress tensor is given

by
T = - % - (2.30)

Letting the viscosity 7 be dependent on the magnitude of ¥, it is to be
independent of coordinate system, hence only a function of combinations of

the invariants of 7, see Bird et al (1987). Of the three possible invariants I,
II, and IIL, I is zero due to the incompressibility condition and III turns out
to be zero for shearing flows. It is not considered to be a serious restriction if
111 is omitted for nearly shearing flow, see Bird et al (1987), why II is the
only invariant on which 7 depends. As already mentioned, instead of using the
second invariant the magnitude of the rate-of-deformation tensor is used,
hence 7 = n(II) for incompressible flow of the generalized Newtonian model.

The Criminale-Ericksen-Filbey (CEF) equation.

Each model of a Non-Newtonian fluid has its own limitations. It is
therefore important to know which flow situation can be handled with which
model. An important class of flows are shear flows. Various categories of shear
flows are studied in Bird et al (1987), but we only will look at one type of
flows, the viscometric flows, for which a constitutive equation will be obtained.

According to Bird et al (1987) from which the definition is taken the
viscometric flow is defined to be a flow in which

o  There is a one—parameter family of material surfaces, the shearing
surfaces, which move isometrically, that is, the distance between any two
neighboring particles in the surface i constant; and

o The volume of every fluid element is constant; and

o  The lines of shear are material lines; and
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e  The velocity gradient ;Y?i is independent of time at a given particle.

The velocity gradient a1 is the grafdient seen from the shear axes at a
particle where the xl-—direction is tangent t0 a shearing surface and the
z,~direction is ‘normal to a shearing surface. The first two requirements define
general shear flow and, with the third requirement, the definition of :
unidirectional shear flow is obtained. Rectilinear shear flow is defined by the

first 3 requirements and
o  The fluid particle pathlines are straight lines.

It is seen that steady rectﬂi1_1_eaf shéa: flow is a viscome_tri_c flow.
A constitutive equation based on the three viscometric functions is the
CEF—equation, see. Criminale et al (1958), “ |

S : : . A : B
r= (i + )T - (8 BT (2:31)

where ¥ represents the lower—convected derivatives and defined as

A
y=D v+ (9T + L (232)

© with % as the substantial deriv:_xtive

: % = %Z + (v-V).

In the previous sections, the transport equations and the constitutive relations
have been worked out in an orthogonal curvilinear coordinate system, but the
CEF-equation will only be worked out in a cartesian system because the:
model will be used in modeling the flow in straight channels. Attempts t0
extend the study to that of a. curved channel using the same model is justified
when -curvature effects on diffusion of momentum is neglible.

In employing the generalized Newtonian model in the solution of a flow
problem, the basic equations are necessarily more complicated in detail than
the corresponding Navier—Stokes equations for a constant 7, but no new
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conceptual difficulties are encountered, Crochet et al (1984). The first term in
the CEF—equation is then handled mainly as in the Newtonian case and only
the second and third terms will be written with summation indices for a
cartesian coordinate system. In the second term, where the substantial
derivative appears, only the convective term is of interest since only steady

A
situations are considered. The second term 3¥ 7y = 10 [v-Vy + {(Vv)T-"y +
¥-(Vp)}] is given by

A d%. .

> ik, Ov(]); ov(})
and, with ¥, = 61);’ + 0vxk . the second term takes the form

k t

A . \
. 321;5 i) 6%51:] v(j) dv(y) . dv()) ov(k
T = 12.11;1{1;(3')[ T 07, + T zi] +2 T, 0T, + T, 0% +
33:k 5:::3.

The third term is given by

(¥, - 2){7’>’Jk}"1’*‘1’{-am*3@ + O O o
0o ol 2.35)
§ J

The second and third terms are outlined in component form in appendix B.

2.5 CLOSURE

We have chosen to work in an orthogonal coordinate system which is
curvilinear in two direction and cartesian in the third direction. In outlining
the governing equations they have been worked out in a 3-D orthogonal
curvilinear coordinate system which easily can be simplified to the
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environment we have chosen to work in. -

In modeling the nature of fluids, the well known Navier-Stokes equations
have been outlined for the Newtonian fluids. The Non—-Newtonian fluids have
been modeled with the viscometric functions 7, \Ill, and \112. Two constitutive
relations have been given. The first one, the generalized Newtonian model,
which takes into account the shear rate dependent viscosity 7, and the other
model which, in addition to 7, takes into account the normal stress
differences. The second model, the CEF-model, which will mainly be used in
straight channels, is for that reason written in cartesian coordinates.
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CHAPTER 3
DISCRETISATION

3.1 INTRODUCTION

In order to solve the differential equations proposed in chapter 2 it is
necessary to discretise the equations. An interpolation practice which expresses
the cell face values in terms of the neighbour node values in order to obtain a
closed set of algebraic equations is outlined.

From a mathematical point of view, a differential equation can take
different forms without loss of information, but from a numerical point of
view the form of the equations is important for the accuracy of the |
calculation. Section 2 describes the different conservation forms and give the
form which is used for the present work.

In the preceding éhapter the governing equations were derived with use
of the scale factors. In section 3 these equations are written in a form where
all quantities are in physical dimensions.

With the equations set up in section 3, the general form which they may
take is shown in section 4 where the assembled equations yield a system of
linear algebraic equations. The associated matrix structure is outlined for a 7
point discretisation molecule.

In section 5, the desired properties for differencing schemes are described.
In the following section 6, several discretisation schemes are considered. The
final form of the equations with the chosen differencing scheme is given in
section 7.

Closing remarks are given in section 8.
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3.2 CONSERVATION FORM

In using the finite volume approach for discretization of the transport
equations it is desirable to keep the equations on a conservative form. A
differential equation on a conservative form is given by, see Berge (1982),

where A, B, and C are functions of 'the unknowns _aind C does not contain
derivatives of the unknowns. _
The unique proporties of the conservative form, see Hirsch (1988)

illustrated by a little example. _
. With u being velocity in the z direction a,nd f the z component of the

ﬂux vector the conservation law is given by
ouw ,Of _ .
bu 9 -0 (3.2)
The discretization of eq. (3.2) at a point ¢ with a central difference applied to
the mesh of fig. 3.1 is o '
du, [,
__: + _._L-—-—Lt-*-l - z_l = q‘_, (33) -
ot Az

The same discretization applied to point i+1 gives -

and at 1

(3.5)

at Az =1

The sum of these three equations is a consistent discretization of the
congervation law for the cell AB
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8 (u, + u,, +1u ) fia — f3
i i+1 i1 i+ = _ 1
i 3 e =G G T % 1)
(3.6)

since the flux contribution at internal points have cancelled out.

-3 i+4 i+3 :

| — == |
2 1 i i+1 i+2
- Ag -
A B

Fig. 3.1 Mesh cells in one-dimension with equidistant mesh (grid point
spacing) Az, cell AB has the length 3Az.

In general, if a summation is made of the difference equations for all the
cells in a domain, the inner fluxes cancel, leaving the net transport flux across
the solution domain balanced by internal sources and boundary fluxes. This
guaranties overall conservation of the transported quantity, see Roache (1976),
and for that reason equations which possess this property are said to be

written in a stromg conservation Jorm.
With fa function of the unknown , €q. (3.2) can be expressed as

du G-, (3.7)

and with % = afu) eq. (3.7) takes the form

"?7%"" e % = (3.8)

which is in a non—conservative form. Applying second—order central difference

at mesh point ¢ results in

du, ,, — U
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where a, can be estimated as = (g T “,,_1)/2 If similar equations are
written for i+1 and +1 and summed a d:scretlsed equation for the cell AB in

fig. 3.1 is obtained,.

i+l = v it5 _
7 5t (o3 + 4 9 6az —3

g (u, +u, , +u " %43 Y3 qi+qz'+1+qi—1=

Yiyd T Uiy Uity
(85,4~ 0 3) o+ (a9 - z—i)—JT_’_E

(3.9)

A direct discretisation of eq..(3.8) on the cell AB would have given the
left-hand side of eq. (3.9) with a vanishing right-hand side. It is therefore
seen that thé discretisation of the non—conservative form of the equation gives
rise t0 internal sources, equal in this case to the right-hand side of eq. (3.9).
From a mathematical point of view there is no difference between eq. (3.2)
and eq. (3.7), but it is obvious that the corresponding discretised equations
(eq. (3.6) and eq. (3.9)) are different. It is seen that the internal sources do
vanish as Az - 0, but this is of little consolation in practical computation
with finite Az, From a numerical point. of view; the internal sources appearing
in the non—congervative form are: considered as a numerical error and in order
to avoid this error a conservative formulation is preferred. It can be achieved
if the base vectors at any point are expressed in terms of arbitrary, but
spacially constant base vectors and the obvious choice would be to use
- cartesian base vectors ¢, as a fixed basis, see Peric (1983). On a staggered grid
this approach will cause problems and oscillations are usually encontered, but
since the staggered grid is used as a remedy to remove the zig-zag field which
the pressure field might cause (see chapter 4 for grid arrangement) we are not
going to use constant base vectors and a strong conservative form is not
obtained. We already know from chapter 2 that the chosen base vectors are
unit base vectors which follow the curved coordinate lines. When using a set
of base vectors which follow the curvilinear coordinates the curvature terms
(see chapter 2) will appear as undifferentiated terms and the form of the
equations is said to be a semi-strong conservation form which is the form we
are going to use.

The semi-strong eonservation form has the advantage that it can be cast
into a form which follows a general transport equation. A general transport |
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equation contains convective and diffusive terms in the actual directions of
base vectors and source terms. The advantage of this form i3 that the same
solution procedure can be used in solving different transport equations since it
contains common terms. The main difference is the terms contained in the
source term. A general transport equation in orthogonal curvilinear coordinates

is

%i {%kpv(k)‘ﬂ} . = % {%%F:p"o’k} . + 8, (3.10)

where  is the unknown quantity which is transported. The continuity
equation is obtained from eq. (3.10) by setting ¢ = 1 and 5,= 0 and the
equation of motion is obtained by setting ¢ = (i) and T' = 4. Comparing eq.
(3.10) with eq. (2.16) it is seen that they take exactly the same form and eq.
(3.10), as it stands, is in a conservative form and it incorporates variation in
both density and as diffusion coefficient. The source term contains all the
other terms which cannot be cast into the convection and diffusion terms.

In using a semi-strong conservation form the non-conservative terms
appear among other expressions in the source term. In the equation of
continuity the source term is zero, whereas in the equation of motion the
pressure gradient and the curvature terms are contained in source terms. In
the Navier-Stokes equations, where ¢ = (§) and T = p in €q. (3.10), the
source terms take the form

p 32 {otbity - Wb, (3.11a)

P Ot L W

h h ) h..
+ 3R (7 D+ hl(”j_),,] -5 Rk Hf] ”(3)’1'*?7%7%"1,!]'

sthjt L 1#]
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Equation (3.11a) gives the curvature terms being due to the convective flow,
whereas eq. (3.11b) contains the pressure gradient and the curvature terms
being due to the diffusion flow.. SRR _

In this work, the general fransport equation will be used in handling -
hoth Newtonian and Non-Newtonian fluids. Non-Newtonian fluids with
"memory" are usnally simulated with the equation of motion and a transport
equation for the stress, see Crochet et al (1984). In using the power law
model eq. {2.28) to describe the shear-rate dependent viscosity the flow
problem can be solved as for a Newtonian viscous fluid with variable viscosity
and eq. (3.10) and eq. (3.11) together with the powerlaw model describe to
full extent the géﬁ'era.li’zed Newtonian fluid.

~ In using the general tré;lSport equation to describe the conservation of
momentum and the CEF-model to eipress the constitutive telation it is seen
that only the term which coritains the shear dependent viscosity is contained -
in the diffusion terins. Whereas the terms which describe the normal stress’
differences must be contained in the source term. When treating the normal
stress difference terms as source terms they will be handled in an explicit
manner. o - '

The advantage of treating the normal stress terms as explicit terms is
that no special attention has to be taken to the boundary conditions. The
boundary conditions are treated in chapter 6. The disadvantage of explicit
terms compared to implicit terms is usually larger cpu consumption for the
same accuracy of the computation. Larger cpu consumption might not be the
case in our problem because the generalized Newtonian term in the |
CEF-rodel has a much bigger influence on the flow field than the first and
second normal stress differences. In other words, the main flow couples
strongly to the secondary flow or the main flow drives the secondary flow
which has little influence on the main flow. This coupling justifies the
splitting of the extra-stress tensor in a part which is treated fully implicitly
and a part which is treated explicitly. The main disadvantage of the splitting
in our case is the accuracy of the computation. For the splitting used, to
obtain the same accuracy as in a full implicit treatment, a finer grid is needed
and through that, larger cpu consumption occurs. But again, because of the
coupling, the accuracy of the secondary flow is mainly determined through the
accuracy of the main flow, why the grid density is determined from the
conditions of the main flow. The cpu consumption is given in chapter 8.
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3.3 THE TRANSPORT EQUATION

In the preceding section, the general transport equation is shown. It
takes a semi-strong conservation form when used in orthogonal curvilinear
coordinates and will be used for Newtonian fluids as well as for
Non-Newtonian fluids. The reason why the general transport equation can be
used for the Non-Newtonian fluids of interest is that the geometries which
will be considered have a flow field with a dominant velocity component.

In finite volume calculations, the computational domain is discretized
into a number of cells, or control volumes, formed by coordinate surfaces. The
volume of & control volume (CV) in physical dimension, see appendix A, is

AV = hdzr dz,dz, = AEARAL. (3.12)

It is seen that when working in the physical domain (£,m,¢) it is not necessary
to use the scale factors directly. The coordinate system £, 1, and ¢ follows the
Ty, Ty and T, system, but the distances along the coordinate lines are always
in physical dimension of length. Since the volume of a CV can be given in
physical dimensions, as the last equality of eq. (3.12), it can also be
convenient to cast the general transport equation into a form where all
quantities are in physical dimensions (the velocity components are already
given in physical dimension of length per time, see chapter 2 and also
appendix A). With the scale factors given by eq. (2.24), the physical distances
by eq. (A8), and the velocities (1), »(2), and %3) by u, v and w,
respectively, the transport equation (3.10) takes the form, see also
Antonopoulos et al (1976)

3% g-g(pww) + zg% %ﬁwmm + gg(pwao) =

b Br and) +xk G ABD + J B 4, ()

In table 3.1, the expressions for s_are given for the components of the
momentum equations when y stands for the velocity components. Note, that
these forms assume a coordinate system which is curvilinear orthogonal in the
¢ and 7 direction and cartesian orthogonal in the (-direction.

The equation of continuity which is a special case of the general
transport equation (3.10) takes the corresponding form
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Table 3.1 Espressions for the source term S,

! coordinate system

in the momentum equations

when ',’0 takes either the value u, v, or w for an orthogone

which is curvilinear in the & and 7 direction and cartesian in t

he ¢ direction.
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7&% gZ(P”Aﬂ) ¥ 3—15 -g;,(ﬂvﬁlé) + gz(pw) = 0. (3.14)

34 FORM OF DISCRETISED EQUATION

A difference equation corresponding to €q. (3.13) can be derived by use
of the finite volume approach which has been adapted here. In the finite
volume approach equations are integrated over a finite volume of CVs, in
order to ensure the conservation property of the differential equations. In this
process, using Gauss' theorem, the volume integrals can be convected into
surface integrals over the six faces of the control volumes. Thus, eq. (3.13)
takes the following discrete form

Ce(‘ae B waw + Cn‘*’n B Csws + Cu‘pu - Cd‘pd =
De((pE - {p_p) - Dw((,OP - (pw) + Dn((pN—_ (PP) - Ds(‘PP - (103)
+ D (py - #p) ~ Dfop=vp T S AV (3.15)

where e.g. C, = (puAA).‘3 is the mass flow rate normal to the Weh face of the

CV and D, = (F'AA/A:c)e is the diffusion coefficient at the "e" face, see fig.
3.2 for location of E, e, W, w, eic. AV and AA are the volume and the face

H]

area of the CV, respectively.

Fig. 3.2 A control volume showing face locations and associated neighbours.
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The ratio of the mass flow rate C, and the diffusion coefficient D_ gives the
ratio of convection to d1ffu31on The ratio is named the cell Peclet niumber

and defined by

_ uA:v |
Pee - ET—_
Similar cell Peclet numbers are-given for the other cells. A global Peclet -
number is also defined and take the form '

B

where U and L are a characteristic velocity and a charactéristic length of the
problem, respectively. '

In order to derive eq. (3 15) from eq: -(3.13) it is seen that the variation
of a,long coordinate lines approximated by some function of distance is
needed to fit selected nodes. Central ‘differencing has been used for the
diffusion term whereas no a,pprommatlon has yet been made for the convected
face values Py Py eté. These values are considered in detail in a following
sectlon The unknown ¢ and the fluxes are regarded as uniformly distributed
over the CV and the control suxfaces, respectwely, whlch requires that the CV
is small. The source term is appro:ﬂma.ted by a constant as seen from eq
(3.15). :

Even if the source term is considéred as a constant in the discretisation
- procedure it is important to account for the variable @ on which the source
term might depend. The source term will be hneanzed according to

s, = sp'goP'+ So | (3.16)
where s is the coefficient of Yp and s_ is the constant part of Sy A
linearization as eq. (3.16) is only done 1f s, takes a negative value in order to
stabilise the equations and ensure fast convergence, see Patankar (1980).

After the convective face values v, ¥, etc. are calculated through
interpolation from their neighbouring nodal va,lues the discretised equation is
cast into the general form

aPp = La o + b, (3.17a)

— 49 —




g =%a_ +3S (3.17b)
m ?

where a's and b express combined effects of transport and sources, % =
summation over coefficients linking to neighbours, and e is the center node
coefficient. Every node P is assembled by an equation as eq. (3.17), yielding a
closed set, see Gosman et al (1969). Since eq. (3.17) exists for each interior
computational node the numerical solution procedure entails solving a system
of N equations in N unknowns where N is the total number of nodes. The
total system of linear algebraic equations results in the matrix equation

Az = b (3.18)

where A is coefficient matrix, z is solution vector containing the unknowns ¢,
and b is right hand side containing SOUrCes.

The diagonal elements of the coefficient matrix A consist of the o,
coefficients and the non-zero off-diagonal elements correspond o the —a_
coefficients. Row i in eq. (3.18) corrosponds to eq. (3.17a) rewritten as a P, "
12731 o P = b. Fig. 3.3 shows the structure of the coefficient matrix A which
possesses seven non—zero diagonal elements in three dimensions. The matrix is
of banded form. The total number of unknowns in each coordinate direction
are given by N, 'NJ., and N, and ordered such that index 718 increasing first,
then j and lastly k In chapter 7, several ways to solve the system given by
eq. (3.18) are outlined.

Nix Nj—-——*
L'“
2;-3

Nz-x

Fig. 3.3 Matriz structure using a T point "molecule” for discretisation in 3-D.
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3.5 DESIRED PROPORTIES FOR DIFFERENCING SCHEMES

Conservation.. -

In-section 3.2 it was stated that keeping the governing equations in a
conservative form will be an advantage numerically since it gives rise to no
qumerical, sources. Roache (1976) gives examples where a non—conservative
form-in compressible flows can give a more accurate solution than a
conservative form but in general, conservative systems. give more accurate
results.

©*To satisfy the conservation law. a value p must be represented by the
same value at the "e" face of CV P and the "u" face of CV E. This
guaranties that the conservation of ¢ represented by eq. (3.13) must hold,
whether the intergral is over the entire domain or a single CV. The flux
leaving one CV face must be equal to the flux entering the adjacent CV face
which,_by Patankar (1980), is named the consistency at control volume faces.

- The consistency at OV faces is obtained by having the same derivative
with tespeci: to distance of ¢ along a normal to a face, approaching the face
either .along the positive or negative side. From this it can be deduced that at
least a linear variation between two adjacent points must be taken. Parabola
and higher- ordens variations do not -violate the consistency rule, but if a
stepwise profile is taken a slope at the CV face is not: defined and the
consistency rule is violated. In integrating eq. (3.13) a stepwise variation is
assumed for the source term and it is hereby seen why our formulation is |
named a semi-strong conservation form since the curvature terms, which are
included in the soﬁibe term, do not take the same value approaching a CV
face from either the positive or negative side.

Stability and boundedness.
In order to avoid overshoot, undershoot, or wiggles a differencing scheme

has to be bounded. In a steady state problem and in absence of sources the

interior of a domain should be bounded by the minimun and maximum values

of the boundaries, see Carrier & Pearson (1976),

min(pg) < v < max(gp)- - (8.19)
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To obtain the boundedness of eq. (3.19) it is sufficient to require that all
coefficients have the same sign, positive sign is chosen, and that the sum of
the neighbours is equal to the coefficient of the main node. Including sources,
linearized according to eq. (3.16) for s, negative, the main node coefficient
must include the negative s coefficient in addition to the sum already
obtained according to eq. (3.17b). The positive sign requirement states that an
increase in a value ¢ at one node should, with other conditions remaining
unchanged, lead to an increase in the value at the neighbouring nodes. The
other requirement implies that the value ?, at the central node is a weighted
avarage of the neighbour values ¢, .

With the requirement that the sum of the neighbour coefficients is equal
to the main node coefficient and with a Dirichlet boundary condition imposed
it will hold, at least for one node, that

?#lfg‘ <1,
e

which with the requirement of positive coefficients implies that the matrix is

positiv definit (a:TAz >0,042z¢€ R"). A positiv definit matrix is an adequate
condition to ensure convergence for all iterative solution methods. If one of
the requirements is violated instabilities may occour, but even if boundedness
is a desired feature of the discretisation scheme not all schemes are bounded.
Unbounded schemes may be used to enhance the accuracy according to 2

- Taylor series expansion analysis, (TSE) analysis, see next section.

Transportiveness.

‘A differencing scheme is said to possess the ability of transportiveness if
a perturbation in a transport property is convected only in the direction of
the velocity, Roache (1976). Due to diffusion the perturbation will spread in
all directions, but it should only be carried in the direction of velocity. ‘With
no flow (Pe = 0} the perturbation will diffuse evently in all directions and a
constant value of i is indicated by a circle in fig 3.4, whereas flow with no
diffusion (Pe ~ ®) gives a straight line of constant ¢. Intermediate values of
the Peclet number give elliptical contours of constant ¢, see fig 3.4. Failure to
obey ihe transportiveness requirement may give rise to unrealistic results.
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- Fig. 3.4 Tmnsport -property shown for constant value of ©: ab
different global Peclet numbers. :

3.6 DIFFERENCING SCHEME .

In order to obtain the face values ¢e, p, etc an interpolation practice
has to. be described in evaluating the convective fluxes. In the following
schemes only - face va,lues at the "' faces are gomg to be considered. The
other face va.lues ca,n easﬂy be denved when the expressmn for the "e" face 13'

known.

Central Differeneihg_ Scheme (CDS). |

Central differencing was used in approximating the diffusive fluxes. With
the same approximation for the convective fluxes the face value between P

and F takes the form

soEfe _ tpp, o (320

- §p
where f E__f_ see ﬁg 3.5.
Thus, cp is by eq. (3 20) gwen through a hnea,r vanatlon between of ¢ P a,nd

E. With a uniform grid 1, becomes 1 and @, would take the same form wzth 3

quadratic mterpolatmn _
With the "e" face value glven by eq. (3. 20) the E coefﬁc1ent o, w1th eq.
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(3.15), is given by

o,= D, - Cf ' (3.21)
————
U

WwPéE

Fig. 3.5 Interpolation in central differencing.

To obtain boundedness it was earlier stated that the coefficients had to have
the same sign, positive sign was chosen. When the Peclet number (defined
earlier as C/D) becomes greater than 1/f the coefficient 4  becomes negative.
To avoid negative coefficients it is seen that the CDS only can be used for
low Peclet numbers (on a uniform grid the Peclet number must be lower than
2), high Peclet numbers make the matrix non—diagonal dominant and
convergence is not.assured, Spalding (1972).

Imploying a TSE analysis it is shown that the CDS is second order

sccurate with the truncation error % pu(Ag)Wg%g (the leading higher order
neglected term). As stated above, the boundedness requirement i8 not obained
~ at high Peclet numbers, but the transport property is also violated because it
is physically unrealistic that downstream information should influence face
values for Pe - o.

| Upwind Differencing Scheme (UDS).

In order to obtain a scheme which does not have the drawbacks of the
CDS, the upwind differencing scheme can be used. In the UDS, the cell face
value is taken as the value from the upstream ndoner" cell, see fig. 3.6a and
fig. 3.6b, along the same coordinate line, thus

@p if Ce >0
Ve = {cpE if C, <O0f (3.22)
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Employing eq. (3.22) and eq. (3.13), the a, coefficient takes the form
a = D, + max(-C,0). (3.23)

This scheme is both bounded and has ‘the transportive property which makes
the resulting matrix unconditionally diagonal dominant.

1% ,. U
| !
- L T 1 S

Fig. 3.6 Interpolation in upwind differeneing.

A TSE analysis shows-that the UDS is only first order accurate with the
truncation error —épuAgg—Z—f. Since the truncation. error is proportional'“to%??
the error is said to be diffusion-like with an artificial viscosity I', = 3 pUAE.
The artificial viscosity-in the truncation error should not be considered as an -
undesired feature of the UDS, at least at high Peclet numbers, but rather a
term which makes the scheme stable. In a paper by Raithby (1976a), the -
transportive property of the UDS is highly appreciated, whereas "“falge"
diffusion is stated as a drawback of the UDS. False diffusion is encountered -
when flow to grid alignment is violated and if a strong gradient of the
dependent variable normal to the flow exist. An approximate expression for
the false diffusion coefficient for a two—dimensional situation is given by

Patankar (1980},

o - pUA¢Ansin28
Lase = AB7s 100 0 + ALeost)y | (3.24)

where U is the resulting velocity and # the angle made between the velocity
vector and the ¢—direction. It is seen that no false diffusion is present when
the flow is aligned with grid. 'On the other hand, the false diffusion is most
serions when the angle is 450,
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Linear Upwind Differencing Scheme (LUDS).

The previous two one-dimensional schemes are based on the closest
neighbour nodes, whereas the linear upwind differencing scheme is based on
the two closest upstream neighbour nodes on the same coordinate line, see fig.
3.7 and fig. 3.7b. Here, the cell face value is given by

pp+ (pp = o) (-f) H C > 0
Yo ™ {‘*”E 4 (pp-vgpfe M C, < 0}’ (3.23)

here | EEE#&ef S =W nd s the unk t the nod

where [ = — [ = ——~, and @ 5 the unknown & e node
Ty v S tw EE

next to E away from the P node.

e B e

U U
L | P I R
ww ww w w P e E waeEeeEE

Fig. 3.7 Estrapolation in linear upwind differencing.

In order to use a "higher" order scheme, as the LUDS, it is necessary to use

9 points for discretization whereas only 5 points are needed if the CDS or
UDS is used in two—dimensions. In three dimensions, the LUDS requires 13
points where only 7 points are needed when using CDS or UDS. With the face
value given by eq. (3.23), the a, and ¢ coefficients are expressed as

e, =D, + ma.x(—Ce,O) £+ max(-C ,0) ];
(3.26)
e, =" max(—Cﬂ,O) 5
: gP - €W .
where j;? = ﬁ and ¢, now enters the sum in eq. (3.17).

It is seen that the transportive proporty requirement is obeyed, but the

— 49 —



far neighbouring points EE, WW, NN;:SS, UU, and DD are. either negative or
zero depending on flow direction. This gives a scheme which is not
unconditionally bounded: and hence not a. diagonal dominant matrix which
might give overshoots- and/or undershoots in a solution procedure. A TSE

a.nalyms glves a leading truncation error of —gpu(A{) o3 ‘and compared w1th
UDS which also preserve transportiveness it is expected that LUDS is more
accurate than UDS. This is confirmed by Peric (1985) among others, but also
that LUDS produces’ overshoots and undershoots if the variation of ¢ is not
SUfﬁcnently "smooth". . :

In the LUDS the cell face value is extrapolated from the two closests
points whereas in the Quadratic Upwind Differencing Scheme (QUDS) the cell
fade values are interpolated from a quadratic function. The situation is
outlined in fig. 3.8a and fig. 3.8b. '

U e
L ! . ! !
ww ww W o p e E w v P ¢ B e EE

‘Fig. 3.8 Interpolation in quadratic upwind differencing.

Even though the leading truncation error ﬂpu(AE)z-gE% is lower than in the
LUDS case not only the far nelghbours mxght become negative, but also the
closest, nelghbours can become negative if the Peclet number is greater than'
8/3 on a uniform grid, see Lai (1983) Also, the transportive proporty is not-
obtained since a downstream point is used in the discretization. Even if the
QUDS is the most accurate scheme considered until now (seen from a TSE
analysis) it is not used to a great extent because of the violation of
boundedness and transportiveness.

Skew Upwind Differencing Scheme (SUDS).

In order to take ad{réhtage of boundedn'ess and transpértiveness of the
UDS Raithby (1976b) designed a scheme which evaluates the cell face value
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by tracking back along the local streamline and then using linear
interpolation. A two-dimensional situation where the "e" face value is found
by linear interpolation between ¢, and Vg is shown in fig. 3.9 . In a 2-D flow
calculation the scheme uses 9 points whereas 27 points are needed in a 3-D
situation.

NW N NE

SW SE

Fig. 3.9 Interpolation in skew upwind differencing

The main advantage by the SUDS is that false diffusion is highly
reduced compared with UDS, but the scheme is still only first order accurate,
see Lai (1983). The transportiveness is maintained, but the scheme is not
always bounded. The corner coefficients (SE, SW, NE, and NW) are always
positive whereas the other coefficients (F, S, W, and N) might become
* negative. To obtain the stable and bounded features of the UDS and the high
accuracy of the SUDS an elegant blending of the two schemes has been
developed by Lai (1983) and named Bounded Skew Upwind Differencing
Scheme (BSUDS). The blending of the two schemes takes the form

BSUD = ¢-SUD + (1-0)-UD. (3.27)
The blending factor ¢ is chosen to maximise BSUD contribution while
maintaining boundedness e.g. by requiring a_ 2 0. Usually the UDS is used to
obtain boundedness and/or transportiveness in blending schemes, but other
"highér" order schemes than the SUDS can be chosen. Neither the BSUDS nor
the SUDS is widely used, at least in 3-D calculations, because of the 27
diagonal matrix that the schemes produces.
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Discussion.

From the above differencing schemes it is seen- that the leading
truncation error derived from a TSE analysis does not give information about
the accuracy of the scheme when relatively high Peclet numbers are ‘

considered. This is because the desired properties of a differencing scheme,
covered in section 3.5, is violated. Lai (1983) states that a TSE analysis is
only valid for |Pe| . 1 At large Peclet numbers, truncated higher order
terms may dominate the discretization error and a TSE analysrs can only
mdrca,te the "nature" of the error. The error can be categorised as either

° dispersive |

or

° diffusive.
The dispersive error is the error Whlch is encountered when the scheme is

unbounded, e.g. the CDS for |Pe| > 2. It is an error which gives rise to
overshoots, undershoots, or wiggles. The diffusive error is characterised by
smearing of a gradient which is observed with the UDS. The truncatlon error

i3 proportional to o Where ‘odd valies of n glve a dlsperswe type of error
and even values of n gwe a diffusive type. of error. Both types of errors thus
appear in each drfferencmg scheme but the leading truncation term
determmes the nature of the error

Hybrid Scheme (HS). |

In a.ll the schemes described 80 fa.r, the conservation property is
preserved, but only the UDS (except from BSUDS with the right blendmg
factor) possesses all the desired proporties of a dlfferencmg scheme. LUDS and
SUDS have the ability of transportlveness but are not unconditionally
bounded. QUDS will under certain circumstances be unbounded and does only
partially satisfy the transportive proporty The CDS possesses the same
dlsadventa,ge as the QUDS, but is very attractive for low Peclet numbers
where it is both bounded a,nd g1ve hlghly a.ceurate results. Unfortunately, to
keep the CDS bounded £ very fine gr1d is needed which is rarely possable for
prectlcal apphcatlons 1r1 view of computer storage and cpu consumption. The
only scheme which then seems ugable for practlca,l apphcatlons is the UDS
Even if UDS has all the desired proportles it will, at least at low Peclet
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numbers and for the cases discussed in the section of UDS, suffer from
excessive false diffusion which can outweigh the actual diffusion of the flow
considered, Raithby (1976a) and Lai (1983).

To take advantage of the desired properties of UDS and the high
accuracy of CDS, Spalding (1972) designed the hybrid scheme. The HS can be
thought of as a simple blending scheme where either the CDS is used or the
UDS is used, depending on the cell Peclet number. On a uniform grid the
CDS is used whenever |Pe| < 2 and otherwise the UDS. This ensure positive
coefficients and hence a bounded scheme.

Until now only the convective terms have been considered in the
differencing schemes whereas central differencing has been used for the
diffusive fluxes in all schemes. In the HS, central differencing is only used for
the diffusive fluxes when the Peclet number is less than 2 on an uniform grid
and otherwise the diffusion term is set to zero. The reason why no diffusion is
applied at high Peclet numbers is described in the following section.

In the convective term the "e" face value is given by

(PP! if Pe > 17-
. — .f 1 € < 1
o, = gl + (I-fep iz $PeSF (3.28)
| s if Pe & - T%' €
e
and the diffusive conductance is given by
v 1 1
D if < Pe ¢
p={° ¥ [AY (3.29)
¢ o otherwise

With the convective term and the diffusive term treated as in eq. (3.28) and
eq. (3.29), respectively, the a coefficient is given by

6, = max(f C,, - (1-£)C, D) - £C, (3.30)

The HS is used in a few applications for the present work (e.g. the inlet
problem).

The Exponential Scheme (ES) and the Power-Law Scheme (PLS).
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The governmg convection and diffusion equation in one dirménsion is

'JE(PW) (ra&g) B D

w1th the convection ﬂux pmp and the dlffusmn ﬂux - I‘%g An analytlcal 7
solut_lpn wﬂ_'_,_h p, o and T taken as consta,nts a,nd subJect to the boundary

conditions

P= ¥p at{—-(}
v =9p. até"L

th__e_so_lﬁtioﬁ of eq. (3.'31) is

“é";p ' exp(Pe §/L)-1 : ) |
Yp~ ¥p T Texp(Pe] -1 | (3.32)

-

where Pe = pulL/T.
In fig. 3. 10 eq. (3. 32) is plottet for different values of the Peclet number.

When | Pe| is 1arge %% is nea.rly zero at £ = L[2 and -diffusion is almost
sbsent. This shows why the diffusion term was sef to zero in the hybrid
scheme for numerically large Peclet numbers. It also shows it to be 1eg1t1mate
to set the face value equal to the upstream node valiue for numerically large’

Peclet numbers.

—Pe>>1

vp |-

Fig. 3.10° Plot o f equation (8.32) jor different Peclel numbers.
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With the total flux J made up of the convective flux and the diffusive
flux eq. (3.31) is written

J = pup - rg%’, (3.33)

and with use of the conservation law in one dimension eq. (3.31) is given by

dJ
= 3.34
=" (3.34)
which, when integrated over a one—dimensional control volume, gives
J -J, = C. (3.35)
Using eq. (3.33) and eq. (3.32), the "e" face flux is given by
¥p ~ Y&
J, = s+ amptper 1) (3.36)

Substitution of eq. (3.36) and a similar expression for J into eq. (3.35) gives,
after a little algebra, see Patankar (1980),

e Pp = 0¥ + a6, Y (3.37)
where
CE
% = &p(Pe ) = T (3.382)
C exp(Pe, )

— w

by = exp(Pe_) - I’ (3.38D)
e =a¢ + a_. (3.38c)
P e w

Equation (3.37), with eq. (3.38c), is now cast in the standard form, see the
general form in eq. (3.17). From a computational point of view the a
coefficient is never calculated as stated in eq. (3.38b), but as a,_ + C, where
a, and C’ must be taken from the previous CV to the "west" of P. ThJS
should be obvious to the reader since the scheme is conservative.

Since the scheme is exact in one-dimension it may then be regarded as
an attractive scheme. Even if it looks attractive, the scheme does not make
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allowance for two— and three-dimensional situations which do not justifie the

use of the exp-function which is very cpu consuming. Patankar (1980) then

suggests a scheme which has the same advantages as the exponential scheme
and is inexpensive to compute; the power-law scheme. With eq. (3.38a)

rewritten as

e, Pee_ o : R
IF; = exp(Pee) — (3.39)

and plottet as function of Peclet number, ﬁg 3.11 gives with the solid line
the exact variation of a /D and with the dotted line the variation of the HS.
In the PLS the vatiation of a /D is apprommated with a power—law function
to fit the exact curve. The expression of the a coefficient is given by

_ 0.1 Ce! 5 )
6, = De-max[ﬂ, -.{1 - _D—e—] ] + max(0, = C). (3:40)
Th'e' difference between the exact variation of a / D_ and the variation
obtained with the PLS is not visible in fig. 3.11. The PLS is used in-all the .
flow calculations for the present work except for a few cases to be mentioned

where the HS is used.

Fig. 3 11 Varzatzan of a /D in the power- Iaw scheme and in the hybrid
: - scheme.

(Ontrolled Numerical Diffusion. with Internal Feedback (CONDIF scheme).
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Except for the SUDS and the BSUDS all the schemes are based on an
one—dimensional analysis. Many attempts to take into account the
cross—stream fluxes have been made. In compressible flow, where schock
capturing is essential, it is of great importance t0 take into account the
cross-stream fluxes for the accuracy of the flow calculation. In papers by
especially Harten et al (1987) the technique for incorporating the cross-stream
fluxes is outlined and can perhaps be used also with advantage for
incompressible flow situations.

One remedy to get rid of false diffusion is to use an adaptable grid
where the grid is aligned with the flow direction. Tn practise, grid adaptation
can lower the angle between grid and flow direction but usually not ensure a
perfect alignment why accurate differencing schemes are still big challenge in
CFD. ‘

In all the schemes worked out only convection—diffusion terms have been
considered whereas the source term has been neglected. Thiart (1988) has
proposed a scheme where 2 one—dimensional exact solution to the
convection—diffusion problem with source term has been used in a form similar
to the power-law scheme. The scheme has been extended by Thiart (1989) to
take into account the cross-stream fluxes by treating them as source
expressions in an explicit manner.

Even though cross-stream fluxes and source terms are important factors
in obtaining accurate differencing schemes the CONDIF scheme which will be
outlined in the following for a one—dimensional case does not take these
factors into account. The CONDIF scheme retains the essential nature of the
CDS, but eliminates the over— snd undershoots, see Runchal (1986). This is
done by introducing a controlled amount of numerical diffusion based on local
gradients of the unknown. It is known from the earlier section on central
differencing scheme that this may be written, on an uniform grid, as

(a, + aw)tpP = a9+ 0,0 (3.41)

where
¢ =D - CJ[% e« =D + C [2
e e e w w W

In the CONDIF scheme, eq. (3.41) is modified as
| (3.42)

(¢ + at)pp = Gvp + Py T B (0p— vp + 8,(¢p - Oyp)
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where =~ 7 . o Tt e
i =D, + (1) - O - ay =Dy +UG]+ € 4

w

R GRS LA

With the introduction of the terms _ _
g9, = ae({‘oP - (pE) = ECRC(KPW— QDP); _;,._GPP% P

| ce . Re: (('OE —(pp)/((pp'— 4 )
and |

G = awa(‘j"E - @P?; opt Pp

R, =(opm oy lop ™ [0 1

eq. (3.42) is rewritrten,@:s__

(e + e!)pp = o gt 0Py Lo (343)

where

© Al the coefficients in eq. (3.42) are non-negative whereas the coefficients in -
eq. (3.43) can' be negative through the R-parameter. An examination of the
R-parameter shows that for.the "e" face it may be written as '

- [,

Thus, Re represents the ratio of the gradient of ¢ at the two interfaces of the
integration cell. B, is then positive for monotqnically increasing or decreasing
values of  and only when i goes through an extremum within the integration
cell B, becomes negative. This motivates to use of UDS whenever- the
R-parameter is negative. Whenever the R-parameter is positive and |Pe| < 2
the CDS is used and elsewhere the CONDIF scheme is used.

The ‘R—-patameter determinies the amount by which the gradient varies
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from one grid node to the next one and plays the role of introducing a
controlled amount of numerical diffusion in the scheme. A sharp variation in
R may give numerical instabilities why a limit is imposed so that

R<R

= ""max’

(3.44)

The R value does usually not exceed 10, Runchal (1986).

Use of the HS whenever the R-parameter becomes negative ensures
boundedness for the CONDIF scheme. The transportive proporty is also
ensured because a downstream value is not used explicitly in the differencing.
Instead, the downstream gradient of the unknown is used. This provides the
scheme with a hyperbolic nature which is essential at high Peclet numbers.

Several test examples made by Runchal (1986) show that CONDIF is
second order accurate, it contains very little false diffusion when flow to grid
is not aligned, and it gives very accurate results even for source dominated
flows. The only drawback of the scheme is that eq. (3.43) has become
quasi-linear since the R-parameter has become a function of the unknown.
This non-linearity is rather weak since the coefficients in eq. (3.43) depend on
the gradient of the unknown and not on the unknown itself. The non-linearity
gives rise to extra computation in solving the equations, but the higher
accuracy justifies the extra computation.

The technique used in the CONDIF scheme can as well be used in a
"higher" order scheme to eliminate over— and undershoots. This has been done
with the LUDS where good results have been obtained, Collins (1988). Lately
" 4 refinement of the CONDIF scheme has been made to obtain quasi-linear,
positive coefficients in the extremum points too. This scheme is named
NONDIF (NO Numerical Diffusion with Internal Feedback), Hedberg (1989).

3.7 THE FINAL DISCRETISATION EQUATION
In the above schemes only a discretization in the E-W (East ~ West)
direction has been applied. The same can be done in the N-§ (North - South)

direction as well as in the U-D (Up — Down) direction in a three-dimensional
case. With the general transport equation cast into the form

ap{’DP = % am(’am + b,
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and the PLS used. as the interpolation practice for the face values, the

coefficients are
o = De.ma.x[(], (- 0.1|Peel)5] + max(0, - C),
0, = D,max|0, (1 - 01|Pe,|)’] + max(0, C,)r

.,..g,n = Dﬂ_-max[();- (1 - 0.1|Pen|) ] + ma)F(O, - Cn)’ ey

e = ‘Dﬁ'ma?‘[“f (1- _0.1|Peu|)] + max(0, - C,),

a"_i = Dd-ma,x[[]',- (1 -0-.1]Ped|)-] + max(0, C):

The mass flow rates and the diffusion conductances are given by

¢, = (puAnAQ) ;- D, = (CANAG/AG

C = (Al - D, = TAnA{/AY,,
¢ = (wAEAl); D, = (TAEAC/An), s
C. = (puAEAQ) D = (PALAL AN,

¢, = (punéAn),; D, = (TALATAQ,

C,= (pudéldn)y Dy = (TAEAD/AQ -

3.8 CLOSURE
In order to avoid numerical errors due to the form of the equations it is

— 60 —




shown that a strong conservation form is preferred. For the present work a
semi-strong conservation form is chosen. The equations are outlined in
physical dimensions with the matching source terms which contain the
curvature terms and give rise to the semi-strong conservation form.

The discretised equations are cast into a general form where neighbour
node values give the influence on the center node value. In order to obtain
high accuracy and stability it is desirable that a differencing scheme possesses
the conservativeness, boundedness, and transportiveness. A violation of these
requirements may introduce overshoots, undershoots or wiggles. Among the
investigated differencing schemes the power-law scheme has been chosen and
the final discretised equation is given.
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CHAPTER 4

41 INTRODUCTION - ..

In the preceding chapter the discretised transport equation was given. In order to
solve. the equations it.is necessary to divide the domain into- control volumes
where the: variables are held at.nodes.-The velocity-and pressure nodes do not
need to be held in the same control volume and even the three velocity
components do not need to coincide.

In section 2 two alternative ways to derive a grid are given, on which the
discretised equations can be solved.

The third section introduces the staggered grid in which the three velocity
components and the pressure are staggered relative to each other.

Closing remarks are given in section 4.

4.2 GRID ARRANGEMENT

Two types of grid arrangements are encountered when control volume faces
are to be located in relation to grid points. Fig, 4.1 shows the practice where a
grid point is placed at the intersection of two grid lines (for ease of illustration
the grid is drawn for a two—dimensional case). The control volume faces are
drawn halfway between the grid lines, giving a main node which is not placed at
the geometric center of the control volume.

The other practice is shown in fig. 4.2 where the grids lines give the control
volume faces. The main node can then be placed at the center of the control
volume, but the control volume faces are not placed halfway between two main
nodes. Even if the control volume faces are not placed halfway between two main
nodes the second approach of grid arrangement will be used for the present work.
The advantage of the first practice is that higher accuracy may be obtained in
calculating the flux across the face. Providing a linear variation of the unknown
between P and E the halfway value takes the same expression ag if a parabolic
variation was used. The disadvantage is that the value at a main node may not
represent the whole control volume very well because it is not in the geometric
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Fig. 4.1 Main nodes placed at grid intersections defining control
volume faces halfway between grid lines.

] . . s N . !

77/
.

] . . 2.5 .

Fig. 4.2 Main node placed at the geometric center o f the control volume.
Grid lines define control volume faces.
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center. Also the face fluxes are not calculated in the middle of the faces why the
flux, which is assumed to prevail over the entire face, entails some inaccuracy.
These disadvantages do not apply to the second practice why the second practice
is preferred in a finite-volume formulation. The first practice is usually used in
finite—difference fori_ﬂul'a,tions. o

The control volumes adjacent to the _bou_ndary leads to additional
consideration for the first practice because':a half control vdl{;me is needed, see
fig. 4.1. The second practice does not need' any épecia,l treaﬁment, because one
control volume face coincides with the boundary, see fig. 4.2 The different

boundary conditions are treated in chapter 6.

4.3 LAYOUT OF VARIABLES

In the above section, the node in a control volume was named the main
node. All the unknowns could be located at the main node, but this practice will
ot be used. Before the location of the different. unknowns are given it is
necessary to take into account the pressure term or rather the pressure gradient
term. With reference to fig. 4.3 it is seen that the pressure difference in the P
control volume of unit length on an uniform grid is

pW_pP pP—pE pW—.pE
Py~ P, T2 T 2 =7 (4.1)

This implies that if the velocity uP'were held at the same node as pressure p p» 88
. gketched in fig. 4.3, the pressure p, would not take part in the pressure gradient
acting in the momentum equation involving up '

e &

-
[ ]

Fig. 4.3 Pressure and velocity held at the same nodes.

Fach velocity node "feels" the two adjacent pressure nodes; but not the pressure
held at -the same _pgdg., This gives a velocity field which is influenced by a.
pressure field from a :;:_(')él'?sé;'_ gnd th_ag_fhe Qne.actually_ employed. The coarser
erid influence not only gives a lower accuracy but it also creates a velocity field
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and a pressure field which have zig-zag structure. A pressure field where every
second pressure node has the same value different from the other values will
satisfy the momentum equations ag well as an uniform pressure field would do. A
zig-zag pressure field arising during the iterative solution will persist until
convergence, Patankar (1980). The problem arises in two~ and three-dimensions
as well. ; | '
| One remedy, to get rid of the zig-zag fields and at the same time obtain the
accuracy which the actual pressure field allows, is to use a staggered grid. In the
staggered grid, which will be used for the present work, the u velocities are stored
at the center of the "e" and "w" faces, v velocities are stored at the center of the
"' and "s" faces, and w velocities are stored at the "u" and "d" faces. The
velocity control volumes have been displaced half a main control volume in their
respective directions, see fig. 4.4a, fig. 4.4b, and fig. 4.4c. Only the velocities are
staggered from the main node whereas all other quantities are stored in the main
node, e.g. pressure, viscosity, concentration etc. This staggering was suggested by
Harlow & Welch (1965) and named the MAC (Marker And Cell) arrangement.

The advantage is neatly seen in fig. 4.4 where the pressures adjacent to a
velocity control volume "drive" the momentum associated with the velocity. In
chapter 3 the general transport equation was cast into the form

ap, = 1% 6,9, T b. (4.2)

When dealing with transport of momentum it is convenient to separate the
pressure term from the rest of the source term, so eq. (4.2) is written

o, = La p + Aip) + b, (4.3)

where A is an area and the operator § is a difference operator. Taking the
u-momentum equation as an example eq. (4.3) for an "e" face of a main volume
is written

ap,=La o + Alpy —pp) + b, (4.4)
The "driving” pressure term in eq. (4.4) consists of the two adjacent pressures.
This arrangement avoids zig-zag fields and consequently gives a higher accuracy.

Recently a non-staggered arrangement without the disadvantages mentioned
has been proposed. ‘A special interpolation practice has been introduced to
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- Fig. 4.4a £n plane o f main cantrol volumes showing layout of variables. .

\\\\\x

Fig. 4.4b n( plane o f main control volumes showing layout of variables.

:'321
e

e
n

Fig. 4.4c (€ plane of main_control volumes showing layout of variables.
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evaluate the face velocities of the main control volume to avoid the zig-zag field,
see Peric (1985), among others. The face velocities are needed in solving the
continuity equation (the face values are easily found in our case where the "e"
face velocity, for example, is found from eq. (4.4)). A comparison of the staggered
arrangement to the non-staggered arrangement is made by Peric et al (1988)
where the accuracy of the two arrangements is nearly identical with a little
advantage to the staggered grid. The main advantages of the non-staggered grid,
also named the colocated grid, to the staggered grid is a little faster convergence
and easier extension to multigrid and non-orthogonal grids.

4.4 CLOSURE

Two grid arrangements have been considered, one with main contro! volume
nodes located at grid line intersections and one with main control volume faces
made of grid lines. For the present work the last practice is chosen because the
main node is located in the geometric center and the flux is evaluated in the
center of a boundary surface. |

To avoid a pressure field and a velocity field which have a zig-zag structure
the velocity control volumes are staggered in each individual direction from the
main control volume. The velocity nodes are located on the boundary of the main
control volume. This arrangement will evidently not necessarily place the velocity
node in the geometric center of a velocity control volume.

Y i



CHAPTER.S

COLUTION ALGORITHMS

5.1 INTRODUCTION

In-chapter three, the-discretised-general transport equation was set up with
no special attention given neither to the continuity equation: nor t0 the pressure. .
term in the momentumn equations. In this chapter, algorithms based on the
pressure—velocity coupling in incompressible flow problems are described.
Probably the most widely used algorithm is the §IMPLE method (Semi—Tmplicit .
Method for Pressure Linked Equations). Proposed by Patankar & Spalding (1972),
later Patankar (1980) presented the SIMPLER ‘method (SIMPLE Revised), and
Issa (1985) the PISO: method (Pressure Implicit with Splitting of ‘Operators).
Below, the aforementioned.three methods will be described. However, other -
methods have been proposed, for example, SIMPLEG, Van Doormaal & Raithby -
(1984), FIMOSE, Latimer & Pollard (1985) and PUP, Raithby & Scheider (1979).
These methods also work with pressure—velocity coupling. -

In section 2, the vorticity—stream tunction formulation contra the primitive.
variable formulation is discussed and their merits and- the drawbacks are. outlined.

- In the following three sections the SIMPLE method, the SIMPLER method,

and the PISO method are described. S - -

Final remarks are given in section 6.
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52 THE PRESSURE TERM AS THE MISSING "LINK"

In incompressible flow the pressure does not have its own governing
equation. It has to be determined through the equation of continuity. If the
correct pressure field is substituted into the momentum equations, the resulting
velocity field satisfies the continuity equation. Several methods to determine the
pressure field together with the momentum equations are developed. |

A method which does not calculate the pressure field explicitly is the
vorticity-stream function method. It is restricted to two—dimensions and involves
two equations, those of the stream function and the vorticity. In order to enforce
boundary conditions, the vorticity is a major difficulty and may cause
convergence problems in the vorticity-stream function formulation, Patankar
(1980). On the other hand, the primitive variable formulation causes no problems,
in order to enforce the boundary conditions, see chapter 6. The major problem of
the vorticity—stream function formulation is that no stream function exists in
three-dimensions. A velocity—vorticity formulation can be made in
three—dimensions, but 6 equations have to solved, the three components of the
velocity vector and the three components of the vorticity vector. This compares
to only 4 equations in the primitive variable formulation. Because of ease in
handling boundary conditions, simple extension from two- to three-dimensions,
and less computation in three-dimensions compared to other methods the
primitive variable formulation is preferred for the present work.

Writing the incompressible, unsteady Navier-stokes equations in
two—dimensions in a conservative form

2 2 2
2 B 2 2

a Poisson equation for the pressure is obtained by differentiation and addition of
eq. (5.1) and eq. (5.2), see Ames (1977) who incorporates the continuity eqUatioh.
Solving eq. (5.1), eq. (5.2), and the Poisson equation in a iterative manner with
appropriate boundary conditions ensures balance of momentum and mass through
the pressure term. The pressure term thus becomes the term which links the
continuity to the momentum equations. This method is not used in practice
because instabilities are often encountered.

Instead, in the finite volume method, the coupling between the velocities
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and the pressure is obtained by satisfying the continuity equation for each main
control volume. With the grid arrangement chosen, where the calculated velocities
are located on the cell faces of a main control volume; the pressure is used to
correct these velocities to ensure continuity. The pressure becomes again. the
"ink" between the momentum: equations and the continuity equation or, in other
words, the continuity equation becomes the equation from which the pressure is
determined. In compressible flow :where the pressure has its "own" equation the
continuity equation is a conservation equation of the density. In-the folowing
section, three algorithms for coupling of the velocity field-and the pressure field
are outlined for incompressible flow of concern here. - '

5.3 SIMPLE ALGORITHM
. The momentum equations already derived as eq. /(3.17) can- be written as

@ U p i'-H(uz.,T.ﬁ) + A8{p) + b, - (5.3)
where P «:, P is:one ‘of the three velocity components, ulz:fu, U, = VOT Uy = w, in
the central point P, H(ui’m) = .gamui-,,m,' m is the neighbor points to the central
point, A is an-area, 6‘3.(-) is a difference operator in direction 4, and- b, is the:
source term associated with u.. ' o - g

In the following, superscript n denotes the solution at step n in the iterative
process, while * denotes the solution at the predictor level, and ** denotes the

" golution at the corrector level.

Predictor level.

At the predictor level the v_eloc_ity field ut ig solved for an_es_tima,ted___ _
pressure field which will be _ta,ken as the pressure from the previous itera,tion step,

a-u’j; P = H(uf-,m} + AS(P") + b, " (5.4)

The velocity field u’: satisfies the momentum equation for the predicted
pressure field but in general it does not satisfy ‘the continuity equation. The
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source terms b, and the coefficients e, and a_ are all functions of the velocity
field which is taken from step 7.

Corrector level.

A correction to the pressure field is sought such that the matching velocity
field satisfies the continuity constraint. Therefore corrections to both pressure and
velocity fields are introduced, '

pt=o"
u*f* =y '+ w.. |

1 t ‘ 1
Subtraction of eq. (5.4) from eq. (5.3) will result in a corrector equation

au;p= H(u’l.’m) + AS(p). - (5.5)

b

The velocity correction u7, if determined according to €q. (5.5), is found in

a fully implicit manner and the term H(u".,m) will have to be expressed in terms-
of the pressure corrections and the velocity corrections at the neighbors of Ui
Solution of eq. (5.5) together with the continuity constraint is very complex and
is not recommended. Therefore the velocity correction is obtained by omitting the

H-term, resulting in

au; p= As(p’) (5.6)

or '
u’:TP = u’:,P + dé{p’), (5.7)
where d= Af a, ' (5.8)

The pressure correction equation is obtained by substituting eq. (5.7) into .
the discretized continuity equation eq. (3.14) around the main grid node which
has the following form '

app = H(p’) + b, (5.9)
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where .
Hip;) = apy+ a,0p + 0p5t 025 T 62y + 4Pp

a, = (pAd) = (PAd) 6, = (pAd)s.: e, = (pAd)na
(pAd)d, - (aa,

r‘b—-F—F+F F+F Fy

where
F o= (pdA), F, = (pu* ), F,= (0" A), F, = (00" A),
F = (p'w*A)u, F,= (pu* A),

. The source term b in eq..(5.9) represents a miass. defect which is equal to

ZETO 1f the continuity is satisfied.
. -After solution of eq. (5. 9) the velocu;y field is updated by eq. (5.7) and the

pressure ﬁeld 1s updated as p =p" + A p where Aisa rela.xatron pa,rameter

and p are ta.ken as the new values at step n+1 In summary, the sequence of
steps in the SIMPLE algorrthm are,

1) " Calculate the coefﬁcrents of the momentum equatlon lea. (5 4)] aud SOlve the

' wequa,tlon with a predlcted pressure field p, taken from the prevrous 1terat10n
step.

- 9) ~ Solve the pressure corrector equation [eq (5 9}].

3) Calculate p as p =p" + Ap .

4)  Update velocities v, [eq.(5. 7).

5)  Treat the corrected velocities and the underrelaxed pressure as new values
_ at the next step and repeat from step 1) until convergence is reached.

_ . The-updated velocity. field u * i the selutlou to the momentum equation,
Where the H-term is- treated in an exphclt manner.. This can be seen if eq. (5 6)*
is added to eq. (5. 4) to give the approximate momentum equetron

Sk i gkt L g (K
apui p= (“{,m) + Adf{p) + b, (5.10)
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Omitting the H(u".’m) term in the velocity correction equat'ion results in
strong underrelaxation, suppressing the effects of the nonlinearities. Patankar
(1980) suggests a relaxation factor of about 0.5 for the velocity field and about
0.8 for the pressure field. One reason for the small relaxation factors and, at the
same time, the main reason for the drawback of the SIMPLE method is that the
continuity constraint is not kept in the H-term in eq. (5.10). This violation
results in a strong sensitivity to the values of relaxation factors. It implies a
considera)bler increase in computational effort if optimum relaxation is not chosen
(see the discussion of relaxation later).

5.4 SIMPLER, ALGORITHM

Omitting the H—term in the velocity correction equatibn .causés a slow
convergence of the pressure field but the equation does a good job _correct_i_ng the
velocity field, Patankar (1980). This fact is used in the SIMPLER algorithm
where the pressure field is solved in another way. To explain this, let eq. (5.3) be
written as | | |

. + b, . -
¥, , = Pa T !+ déf). (5.11)

If [H(x, ) + b/ o, is defined as a pseudo velocity ¥, , then eq. (5.-11) takes the

form
v p= &1., pt ds(p), ' (5.12)
hich is similar to eq. (5.7) in the SIMPLE method. Eq. (5.7) was used to define-

- a pressure correction equation, while eq. (5.12) is now used to define a pressure
equation on the form -

app= H(p) + b, (5.13)
where

H(p) = app+ o Pyt 0Py + 805 +eppt 40y
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Sequence of steps in the SIMPLER algorithm are, R

1) Calculate thé ps'eudo velocities '&3.' P ffdlfn z_i predic_téd_ yelQCity field ofteﬁ
taken from the previos iteration step. . -

2)  Calculate the coefficients of the pressure equation [eq. (5.13)] a.nd solve for

" the 'u;pda,te'd pféssure field. L . . )

3)  Use the updated pressure field as a prediéted pressure field and solve the
momentum equation.

4)  Solve the pressure corrector equation [eq. (5.9)] as in the SIMPLE-method.

5)  Correct the velocity field by the velocity correction equation [ec{. (5.7}

6) Repeat from stqp\,l) until convergence. L

" Themam adva,ngeof SIMPLER is that if a co_rre,_ctl velo(iity;_,ﬁeld;-is kr';c')‘wn,
the__corfeét pressure field is calculated in one iteration. In SIMPLE, on the other
hand, the situation deteriorates in the first iteration which creates a wrong
pressure distribution. o

Even though SIMPLER requires also the calculation of pseudo velocities and
a pressure equation in every iteration the‘ overall computational effort is lowered
compared with that of the SIMPLE method. Another advange is that the overall
stability is greater with SIMPLER than with SIMPLE. This means that optimum

relaxation is not very critical.

5.5 PISO ALGORITHM

. The PISO algorithm develop by Issa (1985) was aimed to handle time
marching nnjste'a:dy;comp,rQSSible flows, with no iterations in each time step. Both
STMPLE and SIMPLER has been extended to handle unsteady and compressible
flow situations but require several iterations in each time step. :

~ The PISO algorithm will be described for an unsteady incompressible
situation. In the following, the superscript and ##%x are taken as time level and
value at the second corrector step, respectively. The superscripts * and ** have
the same meaning as in the SIMPLE method.

The time—-dependent momentum equation has the form
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pAVy, atl _ o ntl atl pAV _a
(ap + "Z’t')u"P = H(".',m )+ A&i(p )+ b + AT u p
(5.14)

in a fully implicit scheme, where an implicit Euler time step is used.

Predictor level.
The velocity field u’: is implicitly expressed as

Epu";P=H(u’:,m)+Aéi(p“)+bi+_fuifp, o (5.18)

H

where
=AY %

. p#ap+ﬁ

The p_réssure field fro_m the previous time step is used in the solution of the

predicted velocity field u’: which in general does not satisfy the zero divergence -
condition. | -

First correction.
A corrected form of the momentum equation is written as
~ k% _ * * n '
eu. = H(u‘.’m) + AS(p7) + b, + fu.'.,P, (5.16)

which is of explicit type because the H—term is not updated. Subtracting eq:
(5.16) from eq. (5.15) gives the increment equation for the velocity

u’f* p=pt ds(p"), | (5.17)
where
.
b p=Yip~ d&i(p), (5.18)



Substitution of eq. (5.17) into the continuity equation results in a pressure
equation on the ,sameﬁo_rm._as eq:_(f_).l;’,);; i_p_r. the SIMPLER gpetl}oq, ‘:Wi__th, the

pseudo velocities taken as eq. (5.18). With a known presgure field p* the

corrected velocity field u** can be obtained and it should be recalled that the

zero—divergence condﬁ,lon is satisfied.
If the strategy from the SIMPLE method were uged one would end up with

a pressure corrector equation which 'would give the same corrected velocity field

u";* It is worthwhile noticing that no overall difference will appear using a
SIMPLER or a SIMPLE version on the corrector levels, in PISO.

Second corrector.

When the first corrected form of the momentum equamon was used the
contmulty wa Tiot satisfied in the H-term. The second corrector equetlon

contains a new Velocity field u *and a new pressure ﬁeld r Where the '

velocity field u’t** should satisfy the zero—divergence condition,

~
au

s z.,}; = H(u";’fm) + AS(PTY + b fl (5.19) "

Subtracting eq. (5.19)-form eq. (5.16) results in the second corrector -

equation for the velocity field

ok ok N I *%k
g pS et ) (5.20)

where d is given .b'y' eq. (E;.ISe,)?arid: '

. e ri Ek | . *V R «
bp=u; pt [H(ui,m) = H(u:.,m)]/ap — d8(p)- (5.21)
Again, as for the first corrector step, the new velocity field is solved with

use of the continuity equation and. the updated values u’:*’;, and p** are taken as
i B o iy ’ b)
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the values at the new time level, n+1. More corrector steps could be taken but
the increase in accuracy per time step would increase the overall computa.tlonal
effort, Issa (1985). In appendix C is given a discussion of an estimation of the
accuracy and stability. Jang et al. (1986) have made a comparison between
SIMPLEC, SIMPLER and PISO and have shown that PISO is superior to
SIMPLER and SIMPLEC conserning computational effort when solving the
momentum equations alone. However, when a active scalar is involved both |
SIMPLER and SIMPLEC are faSter than PISO. Neither SIMPLER nor SIMPLEC
is superior to each other. In dealing with the PISO method together with an -
active scalar they found that it was only robust for small time steps. This has to
do with the accuracy and, as shown in appendix C, an extra corrector step might
make the PISO method superior to SIMPLER and SIMPLEC when an active
scalar is involved too. Issa et al. (1985). have shown PISO's very substantial
stability when used on steady-state calculations and have demonstrated the
stability, even for very large time—steps. Because of PISO's great stability the
method is excellent for both unsteady and steady—state flow problems. |

Discussion of relaxation.

Sotution of eq. (5.3) as described in the SIMPLE method needs _
underrelaxation to suppress the effects of nonlinearities, but in the PISO method
no under relaxation is needed for the velocity and pressure fields. Instead, the
relaxation is obtained through the time step A#. There is a close relationship
" between underrelaxation in steady—state iteration methods and relaxation through
the time step in time—dependent methods. Underrelaxation has the form

"+1(used) - Au”+1 (1-Ny" 5 (5:22)

in which u"+1(used) is the updated velocity field which is used in the next
iteration. The relaxa.tionshlp between the underrelaxation factor A and the time
term pA V/At can be seen if eq. (5.22) is substitutet into eq. (5.14) without the |
time term, to obtain '

a
Pyt liged) = H(u"+1) + A&(p"+1) + b, + e u”
X F p
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By comparison of-eq.8 (5.3) and (5.14) follows. -~

I ST

L igay e Ty R SV o o -
R = POV o Xz P (B2
';f?%%ﬂ'a%At_' u“ap-¥.pAVlAt A

which states-that A‘-"de‘pehdehds on ap‘ ‘which in tufn_‘dépét;deﬁds on the'spa,t'i'al
discretisation and b’n"”’q 3 It -can then bé”stated that ‘A evolves Wit_h the 'sp’a;tial
disciatisation and the intermédiate solution in time—marching algorithms. This 1s
unlike the steady-state iteration where X usually does ‘ot evolve during the
computations. S T TR

" Two‘cases of the dependency zbf X and a, i‘stdnsidéréd.

1) a convection dominated flow (I' =0), the coefficient ¢, can be
describod & 0, = pudyAz + prels + pwAzAy. Combination of this expression
of @, and eq. {5.24) goss o o ior

_i__: a/pAV:_-'tféi_}_ pA L + 'wAt. (5.25)
1—A PTAL Az Ay Az

In cases where one velocity component is dominating, for instance u, &4 (5.25) is

given by

oa _wbt_gox=_9, o (B20)
lfA-f AI. ' R 1+C : . . .

wherée Clsthe Courant number. ; - )

In explhiéit“ iﬁethbdé, the Courant number has to be less than one to obtain
stability during the solution. In semi—implicit methods a value around one is
usually used. In the PISO meéthod the Courant ‘wumber can easily be one order
higher than for the semi—implicit methods without loosing stability.

2) . Ina diffusion dominated flows the coefficient. o, can be described as

a ZQPAyAz+2FAzAz +2rAa;Ay_
4 Az Ay Az

Combining a-p:_a,n‘d'-eq_.' ‘(5.24), giveé' R

_ T8 -
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1—A pAzT? pAy?  pAz? :

In general, the relaxation factor A is a combination of eq. (5.26) and eq. (5.27).
In iterative steady—state calculations, where underrelaxation is necessary, it is
usually not possible to find an optimum value of A unless ad hoc methods are
used. Tt means that the optimum has to be found from calculations with different
values of A. The PISO method has only been described as a time marching
method which is based on no iterations in each time step. However, a simplified
iterative version for steady—state calculation can be extracted from the time
version. The iterative version can be intérpreted as an extension of the SIMPLE
method, in which a second corrector level is added. As in the time marching
version of PISO, no relaxation is needed when updating the pressure field but
when updating the velocity field underrelaxation is necessary. In the SIMPLE
method, underrelaxation of about 0.5 i8 used but in the iterative version of PISO,
underrelaxation as high as 0.95 is used. Because of the great stability of the PISO
method, and of the iterative version as well, the optimum value of A is not that
critical for the cost of the computation.

5.6 CLOSURE

To avoid the difficulties associated with the determination of pressure a
vorticity—stream function formulation can be used in a two-dimensional flow
 calculation. In a three-dimensional flow calculation a primitive variable
formulation is to be preferred to a velocity-vorticity formulation because of less
computation. The velocity-pressure coupling used for the present work is the
PISO algorithm which is used in a iterative version even though the method is
developed for unsteady flow calculations. Here, an underrelaxation factor of about
0.9 is used for the momentum equations The PISO algorithm is built around the
SIMPLE algorithm which has been the most used algorithm in the past and is
still widely used.
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CHAPTER 6
BOUNDARY CONDITIONS

6.1 'INTRODUCTTON o

Tn: order to get an uniquely solution to the linearised and drscretrsed
equatlons appropnate botindary conditions have ‘to be applied. Even if the
hneerrsed équations with approprlate boundery condrtrons have a umque solution
there is no guarartee’ ‘of convergence towards the unique solution w1th iterative '
solvers. One necessary requlrement a8 discussed in chapter 3, is use of a bounded
drfferencmg scheme. Contrary to a linear differential equatlon, a non-linéar =
differential equation does not a.lways have an umque solutlon For the’ present
work, where only laminar flows are considered, umqueness 18 a,lways encountered
and in order to obtain a converged ‘solution’ of the overall non—hnea,r equatrons
splitting technique -and felaxation as discussed in chapter 5areused.

Most boundary conditions are usually of a D1r1ch1et type (spec:1ﬁed fanction
value), a Neumann type (specified normal gradlent) or a Robbin type (a mixed
type, where a weighted linear combination of a Dirichlet condition and a
Neumann condition are specified}. The two first conditions are often used in
computational fluid dynamics whereas the last one is limited to a few
appIications It ‘is, for example used in potentlal ﬂows to enhence sta,blhty end
accurdcy near sharp corners. e o

In section 2, three physmel boundarles are encountered and therr SR
incorporation into the discretised equations are described. SRR

“Two types of mimerical boundaries, the syrmnetry bounda,ry and the cychc
boundary, are described in section'3. '

" The physical ‘boundaries-and the numerlca.l boundaries hold for the general
transport equation and thereby for the moémentunt equa.trons too which a,re a
special case of the tra.nsport “equation. The physu:al and numerical boundarres
count as well for the pressure field, but the pressure field gives usually only rise
to a Neumann condition and thereby the problem does not become a boundary |
value problem. This is discussed in section 4.

Closing remarks are given in section 5.
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6.2 PHYSICAL BOUNDARY CONDITIONS

~ The physical boundaries which are going to be introduced in the manner in
which they appear in the discretised equations are a wall boundary, an inlet
boundary, and an outlet boundary.

Walls.

In the near wall region where steep variation in the dependent variables -
occur a large number of control volumes are needed, but because of limitations in
numbers of control volumes, especially in three—dimensional calculations, a wall
function is usually introduced. A wall is modeled with a Dirichlet condition where
the velocity at the wall is specified. A no-slip condition indicates that the
velocity at the wall is zero whereas a slip condition indicates a non zero velocity
at the wall. We will apply a no-slip condition at the wall which leads to high
amount of diffusive fluxes because of the steep variation in the dependent
variables. In order to calculate the diffusive fluxes with high order of accuracy
without an excessive number of control volumes a one-dimensional Couette flow
behavior is assumed in the near-wall region. The wall shear stress in laminar flow
in a one-dimensional Couette flow is given by

viscosity:*
viscosity ' Uy,

Ty

A6
TW =

where viscosity is the apparent viscosity, either the constant viscosity p or the
shear dependent viscosity 7, ¥p is the parallel velocity at the edge of the
near-wall region, and 7_is thickness of the layer.

The incorporation of the constant 7, is done via the source term. First, the
 coefficients which link the control volumes next to the wall to the wall node are
set to zero. Second, the source coefficient A for the u~-velocity is set to '

_ viscosity+ A
BETT o
P

where A is area of control volume face. The constant wall shear stress is treated
in the same way when the v and w velocities are considered.
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Inlet.

. ..At.the inlet, the values of the dependent. -v’f@ria.bles are normally known and
no special numerical treatment has to be done. 1f the values are not known an -
estimation can be dangerous because a deviation from the one which actually.-
should have been applyed is carried downstream and will influence the
caleulation. If the influence region is limited to a small part of the domain the
inlet boundary can for some geometries be placed further upstream t0 minimize ..
errors, but at the expense of more grid points and consequently larger cpu
consumption. Another way t0 obtain inlet values is to extract-them from
experimental or analytical data.. - ST

Because the boundary condition is of dominant importance in computational
fluid dynamics it is: worth to notice the restriction different boundary conditions :
make on the. calculation. Let a;Neumann condition be given by 9ff/9¢ =0 ‘which.
states that the. gradient.of a function falong the ¢~direction. is zero, but nothing:
is staj;ed about the.value: or: the gradients in the other. directions. Any constant
added to fdoes still satisfy. the Neumann: condition.  A-Neumann condition. is said
to be legs-restrictive. than a Dirichlet condition and if higher order boundary

conditions. (anff 3¢ with n-bigger than 1) are used they are even less restrictive.
It might seem preferable to use a. less res-trict,ive, boundary condition, but
instabilities and loss of convergence can: 0CCur. Roache (1976) suggests to use a
boundary condition which is most restrictive for the particular problem and when
a solution is obtained the restriction of the boundary condition can be reduced.
At the inlet boundary where the flux is known, a Dirichlet condition is |
- usually applyed for each velocity component. Thus, if the flux is normal to the
inlet plane the main flow component is given a value according to inlet flux and
the others are set to ero. A tvio-dimensional situation would give o

'y =-const,
pE 0

A less restrictive inlet boundary condition would be to apply a Neumann
condition, according to the equation of continuity, t0 the variables which at the
first condition were set to zero. This gives for a two—dimensional situation

o u= const,

o _
-a—g— .
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The last condition might be a physically more correct condition because a
boundary layer which is built at the wall is "felt" already at the inlet and does
not have to have a zero component normal to the main flow.

The two different boundary conditions were tried and gave different results
in the near inlet region where it was observed that the boundary layer was built
faster with the second condition than with the first condition. A more detailed
study of inlet and outlet boundary conditions is made by Sgrensen & Loc (1989).

Qutilet.

Even if the inlet boundary condition can be crucial for the accuracy of the
flow calculation the outlet boundary condition can be even more crucial if the
outlet is not located a suitable place. Normally, the values of the dependent
variables are not known at an outlet boundary why the outlet has to be placed
where the flow is expected to be everywhere outwards-directed and a Neumann
condition must be imposed. The Neumann condition at the outlet, stating that
the gradient of the dependent variables should be zero, can legitimately be used
where the downstream conditions do not influence upstream regions and the flow
is said to be parabolic.

The parabolic flow condition at the outlet is implemented by setting the
coefficients linking the upstream node to the node prevailing at the outlet
boundary to zero. This corresponds to equating the boundary node value with the
node value immediately upstream. A linear or a quadratic extrapolation could be
- used as well.

When dealing with fluid flow the velocities at the outlet have to be
estimated according to a parabolic flow condition, but the equation of continuity
must also be satisfied. In chapter 5, several methods to satisfy the equation of
continuity together with the momentum equations were outlined, but there is no
guarantee of convergence if the equation of continuity is not satisfied overall. This
is done by correcting the outlet values in a way that the outlet flux is equal to
the inlet flux. The final solution will satisfy both the equation of continuity and
the parabolic flow condition at the outlet. '

At first sight, the outlet condition might not be that critical because a
deviation from a more correct outlet condition is neither convected into the
computational domain nor transported by diffusion provided the outlet is placed
where the flow is everywhere directed outwards. Yet, a deviation might influence
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the calculation domain through the pressure field which is always fully elliptic.
Nevertheless, the elliptic influence from a perturbation of the pressure field in a '
given point is rapidly reduced with distance from the point and in practice only a
limited region of the domain is influenced.

6.3 NUMERICAL BOUNDARY CONDITIONS

The physical boundary conditions described in the preceding section are the
most often encountered boundary conditions in flow calculations, but often the E
numerical problem can be reduced if a plane or an axis of symmetry appears in
the domain or/and a cyclic boundary condition can be introduced’in the problem.
Symmetry and cyclic boundary conditions are deéscribed in this section.

Symmetry.
At a plane or an axis of symmetry, two conditions can be stated

. zero convective flux;
e  zer¢ normal gradient of the dependent variables which implies zero diffusion

flux.

No modification of the coefficients have to be introduced from the first condition,
only the velocity normal to the symmetry plane or axis has to be initialized to
sero value. The last condition can be introduced by setting the coefficients for the
dependent variables linking nodes next to the symmetry: plane to nodes prevailing
at the symmetry plane to zero. The values at the symmetry plane must then take
the same values as the immediate neighbours next from the symmetry plane.

Cyclic boundaries.

Cyclic béundaries can be used in-two cases: The first case is flow where a
periodic relation appears in the flow and only one period of the flow has to be
calculated. The outlet is-linked:by some cyclic Telations with conditions at the
inlet. This'is, for example, uséd in calculations of flow in rod bundles, see- :
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Antonopoulos et al (1976). The other case where cyclic boundary conditions are
used is when a fully developed solution is sought. In both cases the periodic
relations can be handled by a guess—and—correct technique, see Antonopoulos €t al
(1976) by which a guess is initially made of the inlet conditions and the outlet is
handled as if the flow is paraboiic. Then, the resulting outlet conditions are feed
in as & new set of inlet conditions and this is repeated until the inlet and outlet
conditions are equal. This method works but does not ensure the fastest
convergence. A faster convergence is obtained if inlet and outlet are treated
numerically as if they were linked together. This means that the
outwards—directed coefficients should not be set equal to zero as if the flow were
parabolic, but the coefficients should link the outlet node with the corresponding
inlet node. The same procedure should be used at the iniet where the coefficlents
which point upstream should be linked to the corresponding outlet nodes. The
corresponding coefficient mairix does not have the same structure as sketched in
fig. 3.3, but now an extra small band in the outer corners are now added. The
extra compustation is small compared with the gain in convergence rate.

64 BOUNDARY CONDITIONS FOR THE PRESSURE

The boundary conditions described in the preceding sections are given for
the general transport equation of which the momentum equations are special
cases. In chapter 5, the pressure equation was outlined or more correctly the
pressure correction equation was outlined and since it is not a special case of the
general transport equation it has to be treated separately.

As in the general case, either a Dirichlet condition or a Neumann condition
can be applied at the boundary. With a Dirichles condition, the pressure a the
poundary is given and consequently the value of p” at the boundary will be zero
and no modification of the boundary coefficients take place. In most flow
calculations, the normal velocity at the boundary is given which is the case of ail
the boundary conditions considered until now. Since the normal velocities are
given, no correction must take place through the pressure, and a pressure
correction normal to a boundary is not needed. But because the pressure
correction at the interior of the domain is influenced, the pressure correction at a
boundary node and the corresponding neighbour node normal to the boundary
must take the same value. This is equivalent to impose a Neumann condition on
the boundary, stating that the gradient normal 0 the boundary must be zero for
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the pressure correction equation. Thus, the coefficients linking an-interior pressure
node with that at the boundary are set 1o zero.

With a Neumann condition imposed at all the boundaries the problem does
not become a boundary value problem and no unique solution can be obtained.
With one solution obtained all other solutions which differ by a constant from the
first are also solations. This is in no contradiction to the Navier—Stokes equations
in which the pressure field itself does not appear, but instead the pressure
gradient. It means that if one pressure field is & part of a solution to the
Navier—Stokes equations an unlimited namber of pressure fieids which differ only
by a constant are also a part of a solution. Tt counts also for fluids which do not
satisfy the Navier-Stokes equations.

The associated coefficient matrix to the pressure field is not diagonal
dominant and hence not positive definite. Instead, the coefficient mairix becomes
semi—positive definite. A semi-positive definite matrix has eigenvalues which are
all non—negative in contrast 0 a positive definite matrix which has only positive
eigenvalues. The presence of zero eigenvalues gives rise 10 special attention in
computing the preconditioning matrix used in the conjugate gradient method to
solve the pressure—corrector equations. This is discussed in details in chapter 7.

6.5 CLOSURE

The two most often‘encountered boundary conditions when solving partial
differential equations, the Dirichlet condition and the Neumann condition, were
introduced. The numerical treatment of the physical boundaries, a wall, an inlet,
and an outlet boundary, involves either a Dirichlet or a Neumann condition. The
Dirichlet condition is associated with the values of the dependent variables at the
boundary and the Neumann condition is associated with the flux at the boundary.
Problems which involve either a symmetry plane or axis and/or a cyclic refation
can reduce the computational domain with the implementation of symmetry
boundary conditions and /for cyclic boundary conditions.

The boundary condition of the pressure field is usually of a Neumann type
where the normal gradient is specified to zero value. The associated coefficient
matrix is semi-positive definite and consequently has eigenvalues which are zero.
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CHAPTER 7
SOLUTION OF DISCRETISED EQUATIONS

7.1 INTRODUCTION

When the momentum and continuity equations are discretised and linearised
a linear system of algebraic equations result,

Az = b (7.1)

A is a sparse square matrix of order N, where N is the number of interior
points multiplied by a number of dependent variables, z is the dependent variable
vector and b the source vector. The number of non—zero elements in each row of
A is depending on whether it is a two — or three — dimensional problem, on the
grid arrangement and on the differencing scheme used. On a rectangular grid
arrangement, each row possesses five and seven non—zero elements for hybrid
schemes in two — and three — dimensional pioblems, respectively.

There are two groups of methods by which eq. (7.1) can be solved: direct
and iterative. By a direct method, the exact solution can be achieved directly in
one pass by manipulation of the coefficient matrix if no roundoff errors occur. An
iterative method will, at each iteration, generate an approximate solution which
will converge towards the exact one in the limit.

The two most well—known direct methods are Gauss elimination and
factorization. Computation involves operations on all elements in the coefficient
matrix which for sparse matrices implies the creation of fill-ins. For large sparse
matrices this requires a lot of computation and a lot of storage and consequently
is not advisable. A direct method employing sparse matrix techniques, which
means that ﬁll——iris less than a certain value are neglected, may be used to
minimize creation of fill-ins and only an approximate solution will be obtainable.
The resulting approximate solution can be adjusted by iterative refinement. Direct
methods for elliptic problems have been developed and for the Poisson equation
very fast solvers using Fast Fourier Transformation (FET) and/or cyclic reduction
are used. The direct solution of the Poisson equation is described, for example, by
Dorr (1970), Buzbee et al. (1970) and Swarztrauber (1977). For a general
non—separable elliptic equation, direct methods, such as FFT a,nd-cyclic reduction
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must be used iteratively. This involves large execution times and the .conjugate'
gradient method (see later) looks more attractive for this case, Hockney (1980).
Because the direct methods do ot {or only’ partially) take advantage of the -
sparsity, iterative methods, which succeed in this respect, are more likely to be
used.

A class of iterative methods is the stationary iterative methods, in:which
the matrix A is decomposed into two matrices M and R, where Mis a

nonsingular matrix -
A=M+ R (7.2)

Equation (7.2) is called a splitting of A. Equation (7.1) and eq. (7.2) can be
combined to the stationary iterative method, ~

oM = R:: b Ca=0,12. (13

where n ie tﬁhé iteration numbe:r' ioris an 'arb'ii:ra.ry_li‘uitial solutioil vectdr and :cn
will converge to the. solution if p(—M R) <1, where p( ) is the spectra.l radius,-
Hageman & Young (1981).- o pegns oo e

. The-simplest- sphttmg of a stationary point-iterative method is the Jacobi .
method where M.= D and R-= A — D, D being the diagonal matrix of 4, -
Jennings (1977). Other point iterative methods are Gauss—Seidel, SOR and SSOR,
and their respectlve M matrices are: D~ L, Dfw— L, and :

w/(2—w)(Df w—-L)D 7 {(DjwtL). Lis alower tnangular matrlx and wis a
relaxation para,meter lymg in the range 0 < w < 2. '

*"Another important group of iterative methods is the line iteration. It haga’
better rate of convergence than the point iteration methods but more computatlon
in each iteration has to be done. A subset of an individual line is soIved at once
On a rectangular mesh, it will be either a row or a column line: A sphttmg as
shown for the point iterative methods can be denved in 4 similar way for the hne
iterative methods by con51der1ug M as a row or a column line relaxation matrix.’
Thé interchangeability of the sweep dlrectlon is used in the alternating d1rect10n
"1mphclt procedure (ADI) where the TOW and column duectlons respectlvely, a.re '
swept alteruately . "

From eq (7 3) it must be expected that the ”closer” the matiix M is to the
coefficient matrix A, the fister the rate of convergence, In the Stone's strongly -
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implicit procedure (SIP), Stone (1968), the solution matrix M is "closer" to the
coefficient matrix A than for point and line iteration, which gives a more effective
solver for a wider class of problems than the ADI, Jennings (1977). A systematic
comparison between the ADI and the SIP on a Poisson like problem is made by
Tsui (1987) who shows that the SIP is faster than the ADL

It is characteristic of the above mentioned stationary iterative methods that
a large fraction of the residual is reduced in the first few iterations, but then the
convergence is lowered. This is because the high frequency errors die out more
quickly than the low frequency ones, Brandt (1987). To overcome this the
multigrid method has been developed. These methods use the fact that different
error frequencies are smoothed on different grid densities. The method consists of
three well known elements (Stuben & Trottenberg, 1982),

e  error smoothing by relaxation,
. calculation of corrections on coarser grids and recursive application,
° combination with nested iteration.

Any solver can be used as a relaxation method, but often a simple method
as a point iterative method is used because most of the solution is done on coarse
grids where it is usually not necessary to use advanced solvers. Another widely
used relaxation method is the zebra solver which is similar to the ADI solver,
except that in each sweep the even lines are solved before the odd lines. Even
though the zebra solver is more costly per iteration than the point solver it is
usually to be preferred because of its faster convergence.

The last iterative solver to be mentioned is the conjugate gradient (CG)
method. It is often considered as a direct solver because the solution is found in
at most N iterations if rounding errors are absent, where N is the number of
unknowns. The method was originally worked out for symmetric positive definite
(SPD) matrices, but has been extended to handle nonsymmetric matrices as well.
Tt is then called the generalized conjugate gradient method. The CG method is a
minimization method where the rate of convergence is proportional to the spectral
condition number s(A) of the coefficient matrix A. The minimization problem is .
often solved with a preconditioning matrix B, wherefore the method is called the
preconditioning conjugate gradient method (PCG). The advantage of the PCG
method is that the condition number is lowered compared with that of the CG
method and hence it has a better rate of convergence. The preconditioning matrix
B can be found from the splitting of A as shown in eq. (7.2) and eq. (7.3), and B
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can then be any of the M matrices described earlier or, as will be described latter,
an incomplete factoriazation of A. The description of the CG method and, in
addition, the PCG method is the outline of this chapter. B -

. In section 2 a discussion about choice of solvers-is given. ‘The choice of
solver used for the momentum equations is the ADI solver ‘which is briefly
discussed in section 3. General aspects of the gradient methods are discussed in
section 4 and three gradient methods, the steepest descent method; the conjugate
gradient method, and the preconditioned ‘conjugate gradient method are outlined
in section 5; 6, and 7, respectively. The assessment of CG and PCG is described
in section 8 and conclusions and closure are given in section 9. o

79 WHICH SOLVER FOR WHICH PROBLEM ?

Any of the aforementioned. solution methods can not be unambiguously
superior to the other, because the choice of solver is closely connected to the
problem, the strategi of solution for the problem, and the boundary conditions. A
line-solver will often be a good solver for parabolic and hyperbolic fluid mechanic
problems because the information is egrried in the direction of the streamlines, in
which lines the line—solver should- be used. Often the streamlines are not known
in advance whence the line=solver used in alternating directions often is a better
choice: - L ' ' : ' '

" In elliptic problems there is no certain directions in which information. is
carried. Elliptic problems can be characterised as if a disturbance, taking place at
one spot, can then be felt in whole the solution ‘domain. The CG method does not
take care of any information line(s) and with a good preconditioning it works very
efficiently on elliptic problems. The method is used to solve the "
pressure—correction equation, which is a Poisson type equation. -

. As mentioned earlier the choice of an efficient solution method is problefn‘
dependent and in many cases the solution method can be the critical point for
fast solutions of fluid mechanic problems. SRR o

7.3 THE ALTERNATING DIRECTION IMPLICIT PROCEDURE

- - The general transport equation is an elliptic equation, but by dropping
diffusion terms and letting s = 0 the equation becomes hyperbolic. In hyperbolic
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equations the information is propagated along streamlines in the direction of flow
from upstream to downstream. This is used when solving the momentum
equations which, when discretised, should obey the transport proporty. Thus
information is not propagated in lines, but rather in ndirected clouds" as sketched
in fig. 3.4. The ADI solver developed by Peaceman and Rachford (1955) is used
to solve the momentum equations. '

The ADI solver was originally developed for two—dimensional calculations
where an interchangeability of the rows and columns can take place. The
coefficient matrix A can according to the interchangeability be split into

A=H+V, (7.4)

where H and V are tridiagonal matrices. For a five point difference molecule with
equal grid spacing the row-wise listing of the mesh nodes of H and V are,
respectively

[Hz]j =-T; 1 22::.’ - X (7.5a)

Tt ity

{Va:]j =% 11 + 2$i,'— X (7.5b)

5

The matrices H and V are employed in two alternating sweeps to produce
an ADI iteration step as follows

(H + whdtt = b— (V- ubd (7.6a)

(V+ wl):r;k+1 = b- (H- wl)z“%. (7.6b)

In a three-dimensional calculation the coefficient matrix A is split into three
tridiagonal matrices and the same procedure as outlined above is used to solve
the matrix system where one ADI iteration step now is composed of three
alternating sweeps. The relaxation parameter w is set to one in our calculations,
but it may take another fixed value or change from iteration to iteration.

7.4 GRADIENT METHODS

The error function.
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" The problem of solving & linear system: of equations Az = b can be turned
into the problem of finding a minimum of an ertor function. The remdual vector ¢
corresponding to the trial vector zis o '

g=Az—b (7.7)

Tn the following; the matrix A will be assumed symmetric and positive definite
(SPD). An error function corresponding to the residual vector can be written

e(s) = (5)' Ag (7.8)

When A is assumed SPD the inverse of A is also SPD and eq. (7.8) will only take
posmve va,lues (or null if g is the’ null—vector which correSpond to z =z’ ineq.
(7.7), where 7’ is the solution vector). If eq. (7. 7) is substituted into eq. (7. 8) the
error function takes the form

e(x) = Az — 207z + e 1 (7.9)

or, written in the more common way, the error function will subsequently be

written as
fiz) = 457 Az — bz + ¢, (7.10)

* which shows that f{z) is quadratié in .

Le;vel surfaces of the error fllIl(_:tiO]l.

In the followmg, the error funcmon eq. (7 10) will be exa.mmed more closely
(a more thorough descflptlon is given in Axelsson & Barker, 1984)

It is eagily seen that the gradlent of fat zis the vector g(z) and then the
gradient vector and the residual vector, a,ccordmg to eq. (7 7), are equal to each
other. At 7= 7’ the gradient g vanishes and z = 2, which, besides being the

solution vector, represents a stationary point and f{z) represents a minimum. On -

that basis the error function can be written
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fz) = $(z—2) A(z—2) + ¢ (7.11)

where
¢’ = —%sz’ + ¢

To the matrix A, a set of eigensolutions can be written as {/\z.,'vi.}’:=1 where
Av'. = Ai":‘ ,i=1, 2,..,N. Since A is SPD the eigenvalues are ordered as 0 < ’\1
€ A88 A, and the eigenvectors satisfy the orthogonality condition - v = 61.3. ,
ij =1, 2, ...N. Let the eigenvalues be written as A = diag(,\'.) and V= [”1’ Uy
vN] the eigensolution to A can be written AV = AV, where V is an orthogonal

matrix for which the condition V! = V7 is valid. With the information that

v! = VT and with the introduction of the variable z = V(z — z’) eq. (7.11) can
be written

[z} = fiVe+ z) = 12T VAVZ + ¢’ = ngAz+ ¢’ (7.12)

or
f&) = %5‘ A+ e (7.13)
1=1

Since f(z) = f(z) under the transformation z = VT(::— z’) our attention can be
turned from fto f '
Equation (7.13), for f(z) = k¥ > ¢’, can be expressed as

k= 2(k—c) = g \Z (7.14)

=1

which represents an N — dimensional ellipsoid with level surface ¥’ In fig. 7.1
level surfaces representing an ellipse for 3 different &’ values are drawn.

For N = 2, eq. (7.14) can be written as k' = A 2 + A,22, which can be
turned into the more commonly used equation for an ellipse
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1L 2 =1, . (7.15)

where y/E7X; and YA, represent ‘the 1ength of the principal axes. It is seen that

if A; = A, then eq. (7. 15) represents a circle. The ratio A / A, is a measure of the

d1stortzon from a circle:and for a general N — dlmensmnal elhpsmd the ratio
/ A represents the- spectral COIIdlthIl number. n(A ). ‘

—

Fig. 7.1 Level surface of a SPD matriz of order 2.
Mlmmlzmgthe error function.
As briefly described in the intredﬁtion, the sta‘,ﬁ'iena;'r}; iteration methods find

a new trial vector based on the old one through an iteration matrix. Each step in
the gradient methods is governed by a line search which is given by

=L rrd, S #(T16)

wher# 2% is the trial. vector at ItEI'&thIl n, d"is a search vector 7' is a pa.ra,meter
- n+1 Tt

proportional to the d1stance between # and 7 e,nd is the new trial
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vector. The new trial is found through a minimization of f{z) for z = £+ which
corresponds to a new lower value of the error function. Substitution of eq. (7.16)
into the error function f eq. (7.10), gives

fz + 7d) 7-=_12~(J: + Td)TA(:r: + 7d) — bT(z + 7d) + ¢
(7.17)

or
flz+ rd} = %'rszAd + 'rdTg + ¢, - {7.18)

where ¢’ = ngAa: ~bTz+ cis independent of r. Since A is SPD then dTAd > 0
and eq. (7.18) has a minimum at '

8f/ar = rd Ad + d g =0,

by which 7 is determined as

r=—dlg/dTAd. (7.19)

75 THE METHOD OF STEEPEST DESCENT

In the last section it was seen that whenever a search direction is known a
value of 7 can be determined to minimize the error function f A choice of the
search direction is the direction in which the error function decreases most
rapidly. The negative gradient of frepresents this direction and it can be written
as d = — grad[f (z)] = b — Az = — g. An algorithm where the search directions
are based on the negative gradient of f is called the method of the steepest
descent and it takes the following form

g =A"-b _ (7.20a)

ro= @76 A" (7.20D)
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where n =0, 1, ... and ¢* = g(z").

From eq. (7.20) it is seen that two matrix vector products must be made at
each iteration; but if eq. -(7.’20(:) is multiplied and subtracted, respectively, with A
and b, the relation

F=g - 7 Ag" (7.20d)

is obtained according to eq. -67.‘-20&). The initial résidual vector has to be

calculated as gO = 42 —b.

* " The rate ‘of ‘convergence of the steepest descent method is-very slow if the -
spectral condition number x(4) is large. Large s(A)} corresponds to & very
elongated ellipsoid where the minimum of the error function can be regarded as
the lowest point on a very f_lai_;, steep — sided valley. The steps in the steepest
descent method results in back and forth traverses in the valley rather than down
the valley, Golub & Van Loan (1983}

CdﬁVéfgence analysis.
As shown in eq. (7.11) the error function fcan be written
fE = iz~ z’)rA(z_f_ )+ ¢
where .
e=—blr e
or

fig) = 4(z=2)TAlz— o) + fiz). (7.21)

A measure of the error. can then-be quantified as f(z} — f{z’). If the energy inner
product and energy norm are defined as
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(zy) 4 = 7’ Ay
and

lal, = (9 = (s Az,

respectively, the error in the energy norm is defined as

f) - fix) = 43— 2) Az —2) = Hllz — 71| ,}*
(7.22)

When the energy norm is used as a measure for the error a convergence analysis
can be made and the convergence of the steepest descent can be written

2+ 2, < (B =] - 1 (729
or, if p(e) is the smallest integer for which |
12" = o1, < el - 7 and € >0,
" then eq. (7._23) can be written
ple) < 4k(A)n(1]e) + 1. (7.24)

The difference between the energy norm and the more commonly used
Euclidean norm is illustrated in fig. 7.2.

T
1 level surface

Fig. 7.2 Level surfaces at which the "energy" is constant.
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Let eq. (7.21) represent a level surface at which the "energy" is constant then the

energy at z, is lower than z and according to that, (z2 — z’) i3 smaller than (zl —

z’) measured in the energy norm, but bigger if measured in the Euclidian norm. If
the ellipse sketched had been a circle the measure in the two different norms

would be equal.

7.6 THE CONJUGATE GRADIENT METHOD

In the preceding section the search: direction was takén as-the direction in
which fdecreased most rapidly in a neighborhood of the latest trial vector. In the
conjugate gradient method the search direction is chosen such that it contains as
much of the naturé'of thie steepest: descent’ method a5 possible: but with'the: -
overriding condition that ‘vectors indicating the direction are mutually < = :°
A—conjugate. To be A—conjugate means that the search vectors are orthogonal
with respect to 4 which can be written ' - :

(@)TAE = 0, forall i# 5 o

To choose a set of search vectors &, d.,..., which tepresents as nearly as possible
the directions of the steepest descent a search vector spanned by the latest known
residual vector and the search vector from the preceding iteration is formed:

o gt +-‘ﬁ'ndn-, n=0,1,. (7.25)

Geometrically the new search vector a! points. to the center of th_e__ipt_eréegtion
ellipse where its plane is determined by g”"'l and d", Fréberg (1965). The
parameter §_ in eq. (7.25) is determined by using the condition that s

A-conjugate upon d,...d" By multiplying each side of eq. {7.25) with Ad” the
parameter 8 is given'by . .

g = @A @A, ()

In eq. (7.20) it was shown that the residual vector in the method of the
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steepest descent can be calculated iteratively as gr"'*'1 =g - rnAg". In the
general case the residual is calculated as

@t =g+ r Ad, (7.27)
and if the inner product with (d" )T is formed the relation
(@) = (@)1 - 7 (@) A (7.28)

is obtained. As was shown previosly, 7 = —(d)Td/ (d" )TAd"™ minimizes =" -

n+1
g

'rnd”), but it also has the proporty to make the gradient orthogonal to the

search direction d", which can be seen if the expression for T, is compared with
eq. (7.28). Equation (7.28) is then equal to zero and by induction it can be shown
that the orthogonality relation

(gi)de =0 fori>j (7.29)

is satisfied.

The relation (g"*1)T¢" can be written
1,T ~1 —
()T = ()T + AT =
)T+ - d 4 g d) A (7.30)

and with the relation that the search vectors are mutually A—conjugate eq. (7.30)
is written

The procedure can be continued to obtain

(gn-i-l)Tgn = gﬂ+1)Tgl — (gn-{-I)T(gO - TOAQO —
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@)~ ()" g"Ag /g"Ag =0. . e (132)

Equation (7.32) shows that after n + 1 iterations the residuals gl, 92,..., g”‘+1 are

mutually orthogonal and the folldwi:ng‘orthogonél— relation is satisfied

S (@)g =0 foriti o . (1.33).

.. Applying the orthogonality relation eq. (7.29) with eq. (7.19) and eq. (7.25)
shows that 7_ can be expressed as |

Usirig: the-other orthogonality relation eq. (7 33) with eqs (7 25), (7.26), (7.27),
-and: {7:29) shows. that ,8 can be expressed:as. : G v

s, = (““)T "*1/(9) (7.35)

Wlth the foregoing expressions, the conjuga,te gradient method takes the

form , R

= (g”)Tg") (d")Téd";‘, B " (7.36a)
z”;l = VJ:” + Tndn, | (7.36b)
9’;+1 = -g“ + %;A&”, | (7.36¢)
g, = (g““)T "“/(g")Tg’: (7.364)
S o gty 8 &, - (7.36¢)

where n = 0, 1, ... The start vector 2 can be chosen'aibit'ra,ry and ‘gO and & are .

calculéted, respectively, as gO.:__.=_‘ AL — b.and = — gﬂ
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Convergence analysis.

When Hestenes & Stiefel (1952) proposed the CG method it was originally
thought as a direct solver, where the number of steps are equal to or lower than

the order of A. This can be verified from eq. (7.33) where it is known that g" for

n=0,1, .., N are mutually orthogonal. Since ¢" has the dimension N the
residual after N steps will be equal to zero. In fact, it can be shown that the
number of steps is equal to the number of distinct eigenvalues which are lower or
equal to the order of A. Even if the theory says that the exact solution can be
found in at most N steps it will not stand in practice. The reason is that
rounding errors are not absent in practice. Consequently, it results in search
directions that are not exactly A—conjugate and the orthogonality is lost among
residual vectors. Even though the effect of rounding errors will not show up until
the residual is very low the CG method is not used as a direct solver, but it has
gained a considerable interest as an iterative method for sparse matrices. To
quantify the error f(z) — f(z’) after a number of iterations, the energy norm is
used as in the method of the steepest descent. The number of iterations used to
lower the error a factor ¢ is shown in Axelsson & Barker (1984) to be

p(e) = Wr(An(2/¢) + 1. (7.37)

Let eq. (7.37) be compared with the corresponding equation in the method
of steepest descent, eq. (7.24). Then it is seen that the spectral condition number
" for the CG method enters as the square root of its value whereas it enters
without the square root in the method of steepest descent. Equation (7.37) is
usually pessimistic and is not principally dependent on the values of the limiting
eigenvalues but on the grouping of the full spectrum of eigenvalues, Stewart
(1975). Even if a grbuping of the eigenvalues gives a faster convergence than
- predicted by eq. (7.37) the rate of convergence is still too slow to be used as an
officient iterative solver and the CG method is usually not used as it stands
alone.

7.7 THE PRECONDITIONED CONJUGATE G_RADIENT METHOD

The number of iterations required to reach a certain error level can be
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estimated with eq. (7.37) but for ill-conditioned problems the rate of convergence
is hopelessly slow. An important way around this problem is to precondition A.
The original:system to be solved is transformed ‘to a system of improved-
conditions with a preconditioning nonsingular symmetric matrix B. Is B factored :

in_the form B = EEL (E:'E: because B is syminetric) Az = b'can be
transformed to the system.

where 4 = 'E'_IAET', T= ETz', and b = E%

Smce 2T Az = 27 Az and 17 Az > > 0, Yz # 0 then zTAJ: > 0 Vz aé 0 and A 15\’

-~ ~

also posmve deﬁmte Thesmularlty tra.nsformatlon -
‘TAET E‘TE 1A Bl

shows. that A and B! A have the same eigenvalues and with. convergence rate
described in eq. (7.37) the system Az = b has the convergence properties

according to the limiting eigenvalues of B 1A 1t is seen that the spectral
condition number x(4) is determined by A and the preconditioning matrix B, and

not by E, even though 4 = E ~14ET,
" The CG method can be used directly on the tra,nsformed system but the

spa,r31ty of A Imght be less than that of A, and the tna,l vector z is a,n |
approxzmatlon*to- z’ and not to 7’ Let the transformation A = £ 1AE y &=

ETz, and b = 1b be substltuted into the CG method of the transformed
system Then the precondltloned CG method (PCG) is deﬁned as follows

= @A, ‘.  (1.3%)
LA 7. d", (7.39.b).
=gy 7 AL, a C(7.39)
hn+1 _B —1 ) R (7.394)
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8= (@)W ()R, (7.39€)
&= - By g d, (7.398)

n=201, .. £ is chosen arbitrary and go, 10 and & are calculated as go = AP -

b, 1 = B¢ and £ = - .
To improve the PCG method over the CG method the preconditioning

matrix B should be chosen to give n(B—lA) < k(A). Two extreme matrices for
preconditioning would be B'"l_ = A and Bl=1 Bl=4" gives the optimal
choice, whereas B! = I does not change the eigenvalue distribution. At first

sight, B! ghould be as "close” to A_l' as possible but three other factors must
also be kept in mind: 1) the determination of the coefficients in B should cost

little computer time, 2) the solution of Bh" = ¢" should be done very quickly,
and 3) the storage of B, or rather, a factored form of B, should require no or
little extra storage. _

One class of preconditioning matrices is the stationary iterative methods
where the form is given in eq. (7.3). The advange of this class is that the
coefficients in B usually do not need to be calculated but can be taken directly

from A. Thus no extra storage is needed and the solution of Bh" = ¢" can be
solved by a forward — backward substitution. This class of preconditioning gives a
- fast convergence and in section 6 the CG method is compared with the PCG
method, where the preconditioning matrix is the M-—matrix in the SSOR method.
Tt was mentioned earlier that a preconditioning was made to improve the
conditions of the original system to be solved, but with a preconditioning matrix,
taken from a stationary iterative method the CG method can be classified as a
dynamic acceleration method of the stationary iterative methods, Gelub & Van
Loan (1983). In the following, a preconditioning of a system Az = b will only be
taken as a method to improve the conditions of the CG method.

Preconditioning by an incomplete factorization.

In the preceding, the stationary iterative methods have been considered as a
source of preconditioning matrices, but in the following a class of incomplete
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factorizations of A will be con51dered

In the stationary iterative methods a sphttzng of Ain the form A = M +
R was used. The same form will be used in the mcomplete factorization with the
M—matnx written as M = LU, where L and U are lower and upper triangular
matrices, respectively. The preconditioning matrix B will be taken as an
incomplete matiix. B= M= LU= LDLY, where diag(L) = L The defect matrix
R = A — LU depends on the factorization. When R = 0, i.e.. B = A, a complete:
factorization of A is-made, while R # 0 implies an incomplete factorization..

Dunng each iteration of the PCG method the precond1t1onmg system Bh =
g ha.s to be solved The cost of this has to be low and the factor L is therefore
chosen as a spa,rse matiix. The 1ncomplete factorization i§ based on an mcomplete
Cholesky factorization wheré a pointwise version will be described.

. The, p01ntw1se version is the Relaxed Incomplete Cholesky factorlzatxon, -
RIC wh1ch is.a genera.hza,tlon of the Incomplete Cholesky fa.ctorlzatlon IC and
the Mod1fied Incomplete Cholesky factonzatmn MIC. The IC is descnbed in
Meijerink & Vander Vorst (1977) and Gustafsson (1983) and MIC is descrlbed
in Glstafsson (1983) and Axelsson & Barker (1984). ' S

Another version, which is used in the calculations presented in cha,pter 8, is
the Relaxed Block Incomplete Cholesky factorization which'is a generahzatlon of
the (Modlﬁed) Block Incompléte Cholesky factorizatién, (MBIC), BIC. This is
described in Conéus et al (1985), Axelsson et al (1984), Axelsson (1986), and’
Gervang (1989). The RBIC. version gives a faster convergence as the one
‘presented here; but more cpu time is needed to calculate:the factorization.

The Relaxed (pointwise). Incomplete Cholesky factorization.

During-an incomplete factorization the amount, of fill-ins must be controlled
somehow.  The two main methods are either fill-ins controlled by size of the - - -
actual value, Munksgaard. (1978), or by some chosen subset J of indices (3,7) in
which fill-ins are permitted.: Outside this subset. fill-ins-are ignored. The last one
will be considered here.

A RIC factorization based on the notation in Axelsson & Barker
(1984),presented in a relaxed form, takes the following-algorithm. For r =1, 2,

., N-1 do '
=
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’af? I a(’") (r+1 < j< N)n ((4j) € J)

ir r2

V= 100, (M1 <GS NN ((J) ¢ J) (7.40)

T (r) () _1 4 =i
Lo () lsrar: T g3r+l Tk Izragk)’ I=1%

(i k)EJ

where i = r+ 1, r + 2, ..., N. The matrices L and A("'H), r=1,2,.. N-1are
completely defined N x N matrices when we add

IL.=

i}

0,for j> i
I, for j=1

S+ 0,‘ for j=1,..,ni=Hl.., N
“ij ag;) fori=1,.,nj=1t, . N

and the matrix U is then given by

0, forj+# ¢
% = 1,00
al.:. Jfori=1,2, .., N; j=14 i+l, .., N.

The RIC factorization of A is then given by

B= LU= LDLY,

where L and U are lower and upper triangular matrices, respectively, and D is a
diagonal matrix.

The relaxation parameter w takes the values 0 < w < 1. The IC factorization
is obtained by setting w = 0, and w = 1 corresponds to the MIC factorization.
For w = 0 fillins are totally ignored, but for w = 1 the fill-ins are added to the
diagonal elements. In the following, the subset J is only taken as J = {(i3); o, i #
0}, why L and D only will contain elements on the positions where A has
elements.

In Axelsson & Barker (1984) it is shown that for A a SPD matrix and w =
1 the factorization shown in eq. (7.40) is stable. With w = 1 the rowsum (and
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consequently the columnsum) of B = LDLY is retained, and the rbw'_*sum of the
defect matrix R is equal to zero. For a symmetric semi—positive definite (SSPD)
mafrix. the algorithm in eq. (7.40) will st111 be stable, but Dy is zero and the
solution of the preconditioned system Bh = gin the PCG method is not poss1b1e
As already described the CG method was developed for SPD matrices but it
works on SSPD matrices-as well,. Barker (1987). To work with the PCG method
on SSPD matrices, where the preconditidn matrix B is found from an incomplete
factorization, the relaxation parameter w can take the values 0 < w < 1. But it
can: take the value w = 1, too, if A is SPD, Barker (1988).’

7.8 ASSESSMENT OF THE CG AND PCG METHODS

The problem selected to test the efficiencies of the CG and PCG methods is
a two—dimensional Poisson equation with variable coefficients I', which resembles
the pressure—correction equation of a NavierFStles' Vsolv'er'

divil grad(¢)] = S(xy), nregion B, . (741)
where T is a function of z and ¥, and S is a source term subject to the constraint
] S4A" =0,

indicating that no net source exists in the domain. This corrésporids to the
requirement in the pressure—correction equations that the sum of the mass sources

should be zero to satisfy overall ¢ontinuity. Neumann boundary conditions are
1mposed on all bounda,rles, i.e.

1“9%—0

“Otie p wir of test fﬁnbtioﬁ?: {i}hiéh‘éa,tis_fy eq. (6.1), see Tsui (1987), is
T =1/ f) - (z-y) + 2]

L S=2(aey)
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and the exact solution is

b = LS i) — J(@riy) + jeay(1—52) + 52+ 1P)
— sy(i—2) + 2Az(a25—12)~(v-y)]

in the region —1/a < z < 1/a and —1 < y < 1. The parameter a i3 an aspect ratio
parameter which can model the region from a square region (a = 1) to a
non—square region (a > 1).

Equation (7.41) is discretised with a central differencing scheme and solved
with a finite volume method. The convergence requirement is that the 1-—norm
(sum of the absolute residuals at all interior nodes) falls below 10-4. The number
of interior nodes is of course equal to the number of unknowns and gives the
order of the coefficient matrix. For the chosen differencing scheme, a Poisson
equation has a five banded matrix structure on a rectangular region.

The residual histories of the CG for the two values ¢ = 1 and 5 of the
aspect parameter are plotted in fig. 7.3 on two grid densities, 20x20 and 40=40. It
is seen that on both grids the number of iterations to reach the stop criterion is
doubled if @ is raised from 1 to 5, and the number of iterations is doubled too if
the number of nodes is doubled in each direction of the region R (the number of
interior nodes is raised 4 times). From the convergence analysis of CG it was
shown that the residual was a monotonic decreasing function of iterations. The
wavy shape, especially in the beginning of the residual history, is due mainly to
the use of an Euclidian norm instead of the energy norm. In practice, a Euclidian
. norm is used because it requires less computation, even if the convergence
analysis is made in the energy norm. All figures show Euclidian norms.

The slope of the curves is lower in the beginning of the residual history than
in the end. This has to do with the start vector. The components of the start
vector might appear in a condition that the search vector is searching in a
direction very far from the minimun and on that basis it can take a few iterations
to "tune" the search vector to search in directions where the residual decreases
rapidly. On the other hand, if the start vector consists of components which are
important to the convergence, the convergence can be very fast already from the
beginning. The influence of the start vector on the residual history is being
studied in an accompanying paper.

Fig. 7.4 shows the residual history for the PCG method where the
preconditioning matrix is the M—matrix from the SSOR method. The grids and
the aspéct parameters are the same as for the CG method and the relaxation
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parameter in the SSOR method is w = 1.5. The residual history shows the same
tendency as for the CG method, even if the curves are more wavy, but the total
number of 1terat10ns to reach the stop criterion. 1s lowered a factor 3—4.

The curves in fig. 74 are only shown for one value of the SSOR relaxation
parameter w. Tabel 1 shows the influence of w upon the number of iterations for
a = 1 and the grid density 20x20. It is seen that the convergence is very
insensitive t0 w i & large mterval a.rc)und w= 1 5. S

Tabel 1. Number of iterations of PCG with SSOR, a = 1 and grid 20x20.
@ 01 05710 11 12 13 14 ‘15 1.6 17 18 19 199
N: 40 63 40 37 34 33 30 .30 30 3¢ 3343 66

Tabel 2 shows the sensitivity of w for the SSOR preconditioning with @ = 1
on the grid density 40x40. Again low sensitivity is seen'if w is selected near w ="
1.5. In ﬁg 7.4 all'the runs where made with w = 1.5 but, as seen'in table 2; the
opt1mal choice was not used on the grld dens1ty 40x40 w1th a=1.

Ta,bel 2. Number of rteratlons of PCG with SSOR;, a = 1 and grid 40x40.
@ 01 05 10 11 12 -13 i4 15 16 17 18 19 199
200 129 78 73 67 63 59 - 56 52 49 51 62 124 -

[=

“Fig. 7.5 shows the residual history for the RIC method. The same conditions
as for thé CG and the SSOR—PCG methods are used. The relaxation parameter
it thie incomplete fictorization i chosen as w= 0.9. The rate of convergence is"
increased dramatic compared with the CG method. Compared with the
SSOR-PCG ‘method, the convergence is increased a factor 2—3 and has much less
Wavy curves. The’ sensmvzty of w on the convergence is shown in tabel 3 and
tabel 4'for @ = 1 and on grid densities 20x20 and 40x40, respectively. It is seen =
that the relakation parameter takes the optimum miuch closer to one than to zero.
This in‘dic'ates:thart a partial addition of fill~ins on the diagonal is important for
the rate of convergence. In the followmg plots of the re31dua.l histories the
relaxatlon para,meter w is ta,ken as w= 0.9

Tabel 3. Number of iterations of RIC, ¢ = 1 and grid 20%20.
01 02 03 04 05 06 07 08 09 095 099 0.9999
2 2 _"21 20 90 19 18 17 16 16 17 2

w
hH
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Tabel 4. Number of iterations of RIC, @ = 1 and grid 40x40.
01 02 03 04 05 06 07 08 09 095 097 0.9999
41 41 39 38 37 35 33 30 27 24 23 32

@
N:

Fig. 7.6 is the same plot as fig. 7.5, but the x—axis has been blown up. The
figure should be used as reference for fig. 7.7 and fig. 7.8 where the number of
nodes and aspect ratio is examined. In fig. 7.7 the residual history is shown over
13 decades for the RIC method on a square grid with respectively 20x20 and
40x40 interior nodes. It is seen that the number of iterations to reach a certain
error level is raised less than 1.5, even if the number of points is raised a factor 4.
In fig. 7.8 the conditions around the aspect ratio is examined for the RIC on a
40x40 grid with @ values taken as 1, 10, 100,' and 1000. The differences in the
number of iterations to reach the stop criterion are due mainly to the phenomena
at the first iteration. At the very first iterzition, the CG, as well as the PCG,
takes a steepest descent step and for high g values the spectral condition number
may be assumed higher than for low a values. Because of the very fast
convergence for ill-conditioned matrices in the first step of the steepest descent
the RIC should give a very fast convergence at the first iteration when a is big,
which is observed in fig. 7.8. Even for the very high value of a the slope of the
curve is nearly as step as for the low value of ¢ which indicates that the use of
RIC as a preconditioning matrix is very attractive. An even more attractive
precondjtioning matrix is the RBIC which is chosen for the solution of the present
problem as stated in subsection "Preconditioning by an incomplete factorization".

7.9 SOLUTION PROCEDURE FOR FLOW PROBLEM AND STOP
CRITERION

In chapter 5 the solution algorithm for the non-linear problem was given
where, to repeat, the sequence leading to the final solution was given by

1) Initialise all values.
2)  Calculate the coefficients of the momentum equations and solve the
equation, with suitable underrelaxation, employing a predicted pressure field.

The predicted velocity fields are solved with the ADI‘solver and u*, ¥, and ’

w"* are obtained.
3)  Calculate the coefficients of the pressure corrector equation and solve the
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first pressure corrector equation with the PCG method. _
4)  Calculate the first corrected:pressure ﬁeld and velocrty ﬁelds Wthh are

denoted, respectively, by » 5, 0™ and W
5)  Calculate a new right hand side and solve the second pressure correction
© ' equation with the PCG method. ' . '
6) Calculate the second corrected pressure field and velocity fields which are ="

'denoted reSpectrvely, by p , 'S *, y and w***

; value ﬂelds at the next step and repeat from step 2 untrl convergence IS

i _':obtamed

and treat them as new f

| _The solutlon sequence mvolves stoprng crltena for each mornentum equatlon,

each pressure corrector equatlon and the non—hnear equatrons m solvmg the
steady state problem The res1dual for each momentum equation is lowered a
factor 100 1000 in each step wh1ch requ1res form 1to 10 ADI 1teratlons The
1-norm is used to calculate the res1duals The large number of rteratlons is”
required when nonlmear ﬂllld rheology of v1scar1n is snnulated The calculatmns
are made at low Reynolds number due to the lngh wscos1ty which creates hlgh
amount of drffuswe ﬂuxes and makes the ADI solver less effectrve than when _
water is sunulated _ _ '

At each pressure correctron level the res1dua1 is lowered a factor 50~ 100
where aga.m the 1-norm is used to calculate the residuals. The number of |
1terat10ns reqmred to reach the convergence ‘criterion are from 1t0 30 dependent
on whether it is a two- or a three—dimensional problem and on the type of flow
fields encountered, but the number of iterations are very insensitive to the
number of unknowns ;

In order to solve the non-linear problem several linear matrix systems have
to be solved in each step leading to the final solution. A residual vector for each
hnearlsed matrrx system based on an updated coefficient matrix and right hand

side is wntten
= AP - p, - (7.42)
or, if the general form, eq. {3.17), is used the residual at each point is written

n_nn—' -nﬂ—l_n
"o = %¥p Laog b, | (7.43)
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where n is number of steps. The total residual is calculated with use of the
1-norm

Rn=g|r" |. '
p 1 B |

To non—dimensionalise the residual R:, the residual is normalised with the
corresponding inlet flux

RNOR = R;/Inlet_ﬂux,
"

where, for example, the inlet flux used is the total mass inlet flux when solving
the pressure corrector equations and the total momentum inlet flux when solving
the momentum equations.

A solution to the total flow problem is usually obtained when the maximum
RNOR¢ is below 10-3, but for viscarin at high velocities a residual as low as 1074
is needed.

7.10 CLOSURE

In this chapter, the efficiencies of the conjugate gradient method, as well the
preconditioned conjugate method, were examined. The two preconditioning
- methods employed were the SSOR and an incomplete factorization.

The conjugate gradient method showed, next to slow convergence, a high
dependency on aspect ratio as well as on the the number of unknowns and is
consequently not very attractive as a iterative solver. In the preconditioned
conjugate gradient methods, the dependency on aspect ratio and number of nodes
was considerably lowered. The incomplete factorization was superior to the SSOR
and the number of iterations to reach a certain error level was lowered a factor 10
over the CG method and a factor 2—3 over the SSOR—PCG method. _

In the overall solution algorithm for the non-linear problem the residuals of
the momentum equations are lowered a factor 100-1000 and the residuals for the
pressure corrector equations are lowered a factor 50-100 at.each non~linear step.
The overall problem is stopped when the residual for the linearised matrix
systems with updated coefficient and normalised by their respective values at
inlet falls below 10-3-10-4.
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CHAPTER 8

APPLICATIONS AND EXPERIMENTS

8.1 INTRODUCTION

The numerical model described in the preceding chapters will be applied to
flows in straight and curved dudts, all with a cross section of 16-10°6 m2. The
fluids which will be considered are the Newtonian fluid water and the
Non-Newtonian fluid 2% viscarin which is a 2% solution of viscarin in water. The
results will be compa.red'v}ithj experimental results where possible.

First, in section 2, applications. of the method to water flows are presented.
The calculations are concentrated on the entrance problem of a straight duct and
on primary and secondary ﬂow of a curved duct '

Next, in section 3, a 2% v1scar1n solutmn is simulated and the results are
presented for both stragght and curved ducts with emphasis on the straight ducts.

Pressure drop experiments with 2% viscarin solution is carried out in section
4 and compared with the calculated results.

Finally, in section 5, closing remarks are given.
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3.2 SIMULATION OF WATER IN DUCTS

The application of water in the entrance flow between parallel plates will
mainly be used as a test case to compare the numerical result with numerical
results obtained by other's calculations. Fully developed velocity profiles are also
shown for a straight duct with cross section dimensions of 1x16 mm. The main
study is the study of the secondary flow in the curved ducts. One geometry is
studied for both fully developed flow and developing flow.

Throughout the simulations, the density p will be set to 1000 kg/m3 and the
dynamic viscosity g is set to 0.001 Pa-s which are the values of water at 200C.

8.2.1 STRAIGHT DUCT
Entrance flow.

The entrance flow between parallel plates has been solved for the Reynolds
numbers 20, 200, and 2000. The Reynolds number is referred to the height of the
duct and to the mean velocity. The inlet boundary condition is that commonly
used of uniform and parallel flow. The centerline velocity and the entrance length
i of interest in the entrance flow. In fig. 8.1 (taken from Walter & Larsen, 1981)
the centerline velocity normalized with the mean velocity is shown as function of
distance from the inlet normalized with the half duct height and divided by the
Reynolds number. The solution by Schlichting is based on a boundary layer
- formulation and is an approximation valid for Re - . The present results are
shown in fig. 8.2 and it is seen that they agree very well with the results in fig.
8.1.

The calculation was carried out with the hybrid scheme. The grid involved
15 control volumes across the duct with a cell length ratio of 1.2 growing from
the walls towards the centerline and 30 control volumes along the duct with a cell
length ratio of 1.04 growing trom the inlet to the outlet. The outlet boundary |
condition was set at z/Re = 0.16, where z denotes axial position from inlet
normalized by half height. '

Schlichting (1979) gives an expression for the entrance length which is I, =
0.08h(u2h/v) = 0.08hRe, where h is half the height of the duct. With this
expression the normalised velocity should reach its maximum value at z/Re =
0.08. This is not the case, and should not be, since the Reynolds numbers, in our
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case, are finite.
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Fig. 8.1 Centerline velocity on entrance flow (iaken'ﬁ-om Walter & Larsen; 1981).
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Fully developed flow.

The geometry and the matching coordinate system of the straight duct is
shown in fig. 8.3. With a cross section of 1x16 mm the computational grid is 13
control volumes in the 1 mm direction and 39 contro! volumes in the 16 mm
direction, respectively. The ratio between successive grid cell lengths in each
direction is 1.2 in the rectangular grid, strained according to geometric
progression. The symmetry conditions at the midplanes were not used.

| — 9H -
Fig. 8.3 Geometry and coordinate system for straight duct, 2h = 1 mm and
2H = 16 mm,

With the chosen geometry the aspect ratio of the total 5 dimension (width)
and the total ¢ dimension (height) becomes 16 and consequently the main
velocity profile along the height at 7 = 8 mm is approximately a parabola. The
~ velocity profile at midplane of height and midplane of width are shown in figs. 8.4
and 8.5, respectively, for a mean velocity of 0.5 m/s which gives a Reynolds
number of 993.

Bardur et al (1987) have made a thorough study of primary velocity
distributions for the chosen geometry and fluid where the Laser Doppler
Anemometry (LDA) technique was used. They show both raw data and smoothed
data and the present results agree very well with the measured results.

The problem considered has a simple geometry and very well agreement
with experimental results is not surprising, but even if the problem is easy to
handle the distribution of control volumes and the distance at which the
inlet-outlet conditions are applied are of interest from a numerical point of view. .
The distribution of control volumes across the height of the duct was first
evaluated
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from the fully developed flow between parallel plates separated the height of the
duct. Tt is well known that the analytical expression for the velocity profile is a
parabola and the gradient of the velocity varies then linearly across the duct. The
first distribution of control volumes was found by dividing the velocity profile
evenly according to the number of control volumes and then assign a (-value to
the corresponding velocity value. This gave high concentration of control volumes
near the walls and little concentration around the middle of the duct and
consequently the cell length ratio of successive control volumes is not a constant.
The numerical solution of this distribution of control volumes was compared with
solutions of distributions with a constant cell length ratio between successive
control volumes and with the analytical solution. For a constant number of 13
control volumes the distribution which showed the highest level of accuracy was
the one with a constant cell length ratio of 1.2. It was expected that the first
distribution gave the best result, but because the cell length ratio was much
higher near the center than near the walls the highest level of inaccuracies was
encountered near the center and this gave worse results compared with the other
distributions. The distribution which was found to be the best result for the fully
developed flow between parallel plates separated the height of the duct was then
used as the distribution across the height of the duct.

Several distributions across the width of the duct were tried. From fig. 8.5
it must be obvious that high concentration of control volumes are needed near the
walls and very few are needed where no variation in the velocity occurs. This was
tryed and it was found that the "ghoulders" of the velocity profile became the
critical areas in which high resolution was needed. The cell length ratio between
" control volumes in the "shoulder” areas where a variation in the velocity profile
occurs and the middle of the width where no variation occurs is of great
importance. A too high cell length ratio will introduce wiggles in the converged
solution in the "shoulder" areas. A constant cell length ratio between successive
control volumes of 1.2 was found to resolve the velocity profile for the chosen
- number of control volumes. This might be too conservative as seen from fig. 8.5
where several grid points are situated where no variation in the velocity profile
occurs, but indeed no wiggles appear. ’

The other problem which is also of interest from a numerical point of view
is the distance at which the eyclic boundary conditions at the inlet—outlet are
applied in order to obtain a fully developed solution. Different distances will all
give the same result, but the cpu consumption can vary dramatic. It turns out
that the optimum distance is on the order of the inlet length at which a fully
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developed ‘solution is found in a developing flow for the same geometry. With a
distance which. is longer than the optimum the aspect ratio of the individual
control volumes becomes large and this will introduce numerical errors and longer
cpu time is needed to remove these errors before a fully developed solution is
attained. Longer distances than the optimum will usually only increase the total
cpu: consumption slightly, but is the distance lowered compared with: the optimum
high increase in the cpu' consumption can occur..This has to due with the way the
velocity field develops during the calculations. The inlet -condition at the first -
cycle is given through a Dirichlet condition for each velocity component where the
primary’ velocity component is given the value corresponding to the mean velocity
and the: others are set to zero. The initial inlet conditions give rise to a flow. -
pattern: which .during the calculations will move fluid from:the walls towards the
center: If the distance at which this occurs is shorter than the distance a fully
developed-solution is-attained the number of cycles the outlet ‘conditions are fed
in at the-inlet are increased and consequently an: increase in cpu consumption
occurs. The physics behind the acceleration of the inner core is further discussed
im:the section of developing flow in'a curved duct.

8.2.2. CURVED DUCTS

- Cirved ducts are widely observed in engineering application where much
atterition has-been paid to the flow. Owing to the presence of secondary flow
caused by centrifugal forces, fluid flow in a curved geometry differs significantly
" from flow in.a straight channel. Much larger pressure drop or friction, heat
transfer, and mixing rates: are expected for a flow in a curved duct, except for -
very slow flow.-

.+ The centrifugal force is proportional to u2/R, where R is radius of curvature
of the duct. See fig. 8.6 for'the geometry and coordinate system where the cross
section. may- be viewed in fig. 8.3. The.centrifugal force acts outward from the
center-of curvature on the fluid particles and generate a streamwise vorticity, or
secondary flow, within the duct. With the addition of the primary flow, the fluid
particles follow helical trajectories. Eustice, see Soh & Berger (1984) was one of
the first who discovered spiral motion in a curved pipe from dye-injection
experiments. The secondary flow results, as-already mentioned, in a pressure loss
and increased heat transfer compared with a straight duct, but also in a spatial
redistribution of streamwise velocity which in addition to the secondary flow will
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Fully developed flow.

The fully developed flow in a curved duct with cross section 1x16 mm and
curvature radius 0.1 m is shown in figs. 8.7 to 8.12. The grid used in each case
consists of 9 control volumes across the height and 40 control volumes across the
width. A symmetry condition is used at half the height why the calculations are
carried out over only half the total height. The cell length ratio of successive grid
cell lengths is 1.2 across the height and 1.25 across the width, respectively.

Table 8.1 shows the mean velocity, the correspondjng' Reynolds number, the
maximum u-velocity, and the maximum e-velocity for 7 different runs of the |
considered geometry. The first 6 runs are shown graphically in figs. 8.7 to 8.12.
Each figure shows three different plots for the same flow situation. Plot a shows
the primary flow along the width at half the total height. Plot b shows the
»-component of the flow at the same position as plot b. Plot ¢ shows again the
»-component of the flow, but along the height at balf the total width. Only the
variation of the v-component of half the height is shown in plot ¢ due to the '
symmetry condition at ¢ = 4 mm. '

Re % v Re, Figure

u
mean maz maz

(mfs) | () (m/s) (m/s) )

1 1882 1.80 1.42-107 267 8.12
0.5 941 8.08-101 4.15-10-2 78.1 8.11
0.25 471 4.05-1071 1.13-1072 213 8.10

1-10°! 188 1.65-1071 1.90-1073 3.68 8.9
1-10°2 19 1.65-102 1.92-10°% 3.61-1072 8.8
1-10-3 1.9 1.65-103 1.92-1077 3.61-104 8.7

1-1074 0.19 1.65-10"4 1.92-1079 3.61-10°6 -

Table 8.1 Calculated Uy oo and v values for different Reynolds
numbers and corresponding u_  values. The Reynolds numbers for the
secondary flow and figure numbers for 6 runs are also shown.
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Caption for figs. 8.7 to 8.12. The 6 figures show plots for Reynolds
numbers 1.9, 19, 188, 471, 941, and 1886 in the order shown. The a plots in
each figure show the u—velocity profiles at midplane of width, the b plots show
the v-velocity at midplane of width , and the ¢ plots show the v-velocity at
midplane of height.

From the ¢ plots it is seen that the nature of the secondary flow at half the
width does not change as the Reynolds number is raised even if the velocity
profile of the v~component along the width at midplane changes, which is seen
from the b plots. For the chosen geometry the secondary flow follows the regular
pattern of secondary flow in curved ducts and pipes with two main secondary
flow vortices.

The secondary flow pattern is in general composed of 4 forces: pressure
force, centrifugal force, viscous force, and inertia force. By defining a Reynolds
number for the secondary flow as

vmax' EI
Rev = TR

where H is the hydraulic diameter of the duct, we see, by comparing with table
8.1, that whenever U, o 15 €8S than or equal to 0.1 m/s Re, is less than or of
the order of one. This means that the flow in the cross plane is of a creeping flow
situation which is characterized as a flow dominated by viscous force. The

~ secondary flow i8 then created by an interplay of pressure force, centrifugal force,
and viscous force. The pressure force and centrifugal force dominate along the
width at the midplane whereas the pressure force and viscous force dominate near
the wall. If no viscous force appeared the centrifugal force and the pressure force
would counterbalance each other with the highest pressure at the outer wall and
the lowest at the inner wall and no secondary flow would occur. The primary
velocity is moving more slowly near the walls due to the viscous force and
consequently the centrifugal force can not counterbalance the pressure force and
fluid will flow along the bottom and top walls towards the inner wall, see fig.
8.13 for a sketch of the secondary flow. At the midplane, where the primary
velocity is highest, the pressure gradient across the duct can not counterbalance
the centrifugal force and fluid will flow from the inner wall towards the outer
wall. The pressure gradient built along the width of the duct at midplane in
trying to balance the centrifugal force is enforced not only at midplane but, due
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to the very little pressure drop along the inner and outer walls, nearly the same
pressure gradlent is apphed along the bottom and top walls. '

inner outer

wall wall

Fig. 8.13 Sketch 0 f secondary ﬂow n cur'ved’ rectangular duct.

“Isobats are shown in fig. 8.14 for a flow with the mean velocity’ of 0.5 m/ 5
(Re = 993). The last isobar before the outer wall is curved slightly, but otherwise
no pressure difference across the height is observed graphically. In incompressible
flow, the specific pressure is of no interest from a numerical point of view, but
rather the pressure difference. The pres"sure difference between the isobars in fig.
8.14 is 2.82 Pa which gives a total pressure difference between the outer and inner
wall of 62.1,Pa, or a pressure gradient across the duct of 3875 Pa/m: :

: F1g814 Isobars in curved duct with Re = 993.. Height scaléd -1:16."

The physics behind the secondary flow just described holds for all-7 runs in
table 8.1, but at the high Reynolds numbers the inertia force has an influence.
This is observed by looking at the fourth column in table 8.1 where, going from
the bdttom.towar.ds the. top, vmdz'_is- increased an order of two whenever the
Reynolds number and mean velocity is increased an order of one. This continues
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antil the mean velocity is about 0.1 m/s whereafter v increases slightly less
than an order of two due to the influence of inertia. The quadratic dependence of
Vg OB oo for a high range of Reynolds numbers is unsurprising since the
centrifugal force is proportional to u?/R. Fig. 8.15 shows v___ versus v . where
the slope of the straight line is 1.976. The deviation from a slope of 2 comes from
the influence of inertia at high Reynolds numbers.

1

V—max (m/s)

10.. 'II'HIS.,I 'IIIII{B.,. "'1‘1‘8_|' ||lll1
U-overoge (m/s)

Fig. 815 v __ versusu . ..
It was stated that the secondary flow does not change its pattern for the
range of Reynolds numbers shown, but as seen from the a plots in figs. 8.7 to
8.12 the primary flow does. It is seen that maximum of the primary velocity is
" pear the inner wall for low Reynolds numbers whereas the maximum moves
towards the outer wall as the Reynolds number is raised. At low Reynolds
numbers where the secondary flow grows with the square of the primary flow the
secondary flow has no influence on the primary flow. In a fully developed flow the
pressure gradient between two Cross sections is the same all over the section. This
means that the fluid near the inner wall fells a higher "driving" force than the
fluid near the outer wall since the constant pressure gradient works over a shorter
distance and consequently the fluid near the inner wall has a higher velocity than
the fluid near the outer wall. As the Reynolds number grows, the secondary flow
gets an influence on the primary flow. The faster moving fluid at the middle of
the duct is moving outwards, pushing the fluid in the boundary layer at the outer.
wall to the top and bottom, and along the top and bottom walls towards the
inner wall. Thus fresh fluid with high momentum is being continually brought
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into the néighbourhood of the outer wall and then forced round towards:the inner
wall, being -continually réetarded. There is thus an accumulation-of retarded fluid.
at the inper wall and an accumulation of high:momentum fluid near the outer
wall; ‘Goldstein (1950)., The change in primary flow along the width for different
Reyuolds iumbers is viewed in the a plots in figs. 8.7 to 8.12. The corresponding :
»-velocity is shown in the b plots for the same position as-the a plots where it i
seen that the velocity towards the outer wall is highest for the high Reynolds
numbers. :
In trying to relate some of the calculated results to measurements
isovelocity curves of the prlmary flow and streamlines of the secondary flow are
calculated for v = 0.5 m/s (Reynolds number = 993) and compared with
measurements. Isovelocity curves are shown in fig. 8.16 where both calculated
data and measured data are plotted. The 9 curves shown from the calculated data
are equally distributed between the lowest value and the highest value which are
zero and 0.804 m/s, respectively. With one isovelocity curve which coincides with
the boundary each velocity jump is then (0.804 m/s)/9 = 0.089 m/s.

Streamlines are, of both calculated data and meaéﬁred data, shown in fig.
8.17. The streamlines shown for the numerical part are distributed evenly between
the lowest value, ¥, = -5.2+10°6 m2/é"3nd' the highest value, whigh = 0 m?/s. 9
curves are shown where one coincedes with, the boundary. This gives a difference
between two streamlines of —5.78-10°7 m2/s. Comparing the numerical results of
figs. 8.16 and 8.17 to the experimental results, shown in the same figures, shows
satisfactory agreement in view of the experimental uncertainty. The measured:
data are taken frorh Hansen et al (1988). |

Developing flow: -

" Developing flow in-a 1x16 mm duct for two Reynolds numbers are:calcula—
ted overa total angel of 1800, se¢ fig: 8.6. The two Reynolds numbers are 64 and
1886, respectively, and correspond to a mean velocity of 0.0334 m/s and 1.0 m/s,
respéctively. Velocity vector plots at 5 cross'sections (only onehalf of the height-
is-shown due-to the symmetry condition) located at 1.59, 5.89, 11.29, 23.60, and
91.49 from inlet are:shown and the corresponding primary velocity at midplane. -
along the widtli-at the same locations are also shown. The inlet condition is taken
as u - :a “for the w=component and zero for the v and w-components. :

The 5 velocity vector plots ‘at Reynolds number 64 are shown in figs. 8.18a
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Fig. 8.16 Calculated (a) and measured (b) isovelocity curves o f secondary
, =03 m/s.

.ﬁow, v

Fig. 8.17 Calculated (a) and measured (b) streamlines of secondary flow,

U = 0.5 m/s.
mean
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to 8:18e and the corresponding primary plots in fig 8.19. At the.first' 3 velocity
vector plots ng indication of a roll superposed the primary flow is seen. The
'n'e'f:'tors indicate that fluid is moved from the wall regions to the center region
:where it is accelerated. This is seen in fig. 8.19 where especially an acceleration:
__between § =1.50 and @ = 5.80 take place. During the development, of the velocrty
_j_t___"reld the maximum of primary velocity is felt already at the first cross section
_:f\:n]ie're it is seen that fluid does niot move evenly towards the symmetry plane, but
irather towards the place where the maximum velocity is located. This is seen in’
'ﬁg 8.18b too, but a tendency to inner and outer wall vorticity is viewed in
addition. This tendency is further pronounced in fig. 8.18¢, and in fig. 8.18d the
-fully developed solution is reached. This is seen both by comparing figs 8.18d and.
8 8¢ 'in which no difference is observed and in fig. 8.19 where there is no
rgrephrcally différence in the plots for § = 23.60 and’ # = 91.49, From the _
‘_graphrcai da,te it can be stated that the developrng zone extend into 1/8 of the

'duct

At Reynolds number 1886 the velocrty vector plots et 5 €TSS sectrons are
shown in figs. 8.20a to 8.20e and the corresponding primary velocity plots along
the width at midplane are shown in fig. 8.21. The first velocity véctor plot shows
a movement of fluid from the wall regions to the center region in which the
-velocity-vectors are distributed more regularly than for the low Reynolds. number
.case, This must due to the fact that the fully developed flow field is attained
;'rnuch further downstream than for the low Reynolds number case and the
'_;rnarxrmum velocity attained near the outer wall is not felt near the inlet. Even if
___;_the fully developed solution is attained much further downstream than for the Iow
' ;fReynolds number. case the roll pattern is attained elreedy at the second cross
_plane, but the fully developed solution is first obtained after half the duct is
-Zreeched The difference between velocity vector plot i in figs. 8.20d and 8.20e is -
: only minor, but the prrmary ‘velocity at midplane changes greatly from the second
',last cross section to the last cross section. _
- Even if a secondary flow is attained very early in the developing zone it
: does not ha,ve a great influence on the primary velocity distribution until the .
_1nner core of the flow is accelerated and has reached its maximum veiocrty on the
mean. This is seen from fig. 8.21 where the increase in velocity is viewed for the
first 4 plots but no. mcrease of velocity on the mean is seen in the last plot, only
a redistribution of the primery velocrty field. This was not observed for the low
Reynoids number case, and it should not be, since the secondary flow has no or
hardly any influence on the primary flow as discussed in the section on fully
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developed flow.

The accelaration of the inner core is clearly viewed in fig 8.21, but the inner
core is not accelerated evenly. This is best viewed in fig. 8.19 for ¢ = 1.50 where
it is seen that the area near the inner and outer walls is accelerated faster than
the middle of the core. To understand this, we have to remember that fluid is
moved from the wall regions towards the inner core and due to limited speed and
fulfilment of the equation of continuity the velocity near the inner wall and outer
wall is increased faster in the first part of the developing zone.

In the section of fully developed flow in a straight duct it was stated that
the lowest cpu consumption was attained if the digtance at which the cyclic
boundary conditions was applied was approximately equal to the distance of the
~ developing zone in a developing flow of the same geometry and Reynolds number.
If the distance is shorter the cpu consumption increases dramatic. This has to do
with the higher velocity in the "shoulder” areas which has to be moved into the
center core. This is done very slowly if the distance 1s too short.

1500 from the inlet, where the fully developed solution is reached, isovelocity
curves of the primary flow and streamlines of the secondary flow are calculated
for both Reynolds numbers. Calculated and meagsured isovelocity curves and
streamlines for Re = 64 are shown in fig. 8.22 and 8.23, respectively. The
calculated isovelocity curves in fig. 8.22 are evenly distributed between the lowest
value (0 m/s) and the highest value (0.0548 m/s) and the jump between each
curve becomes 6.09-10°2 m/s. The maximum calculated value of the
streamnfunction is ¥ = 9.67-10-8 m2/s and the minimum is ¥ . =0 m?2/s for
Re = 64. This gives a jump between each curve of 2.97-10°9 m2/s. The plots in
© fig. 8.22 and 8.23 made from measured data are taken from Nielsen (1989). The
wavy pattern, especially in fig. 8.22, is due to a combination of few measurements
and a bad graphic packet, see Nielsen (1989).

Figs. 8.24 and 8.25 show only the calculated isovelocity curves and
strearnlines of the secondary flow for Re = 1886. Maximum velocity in fig. 8.24 is
1.81 m/s and minimum is 0 m/s. With evenly distributed isovelocity curves this
- gives a jump between the curves of 0.20 m/s. Maximum streamfunction in fig.
82518 W = 1.86-10"5 m2/s and minimum is ¥ _. =0 m?2/s. With evenly
distrubuted curves this gives a jump of 2.07-107 m2/s between each curve.

Due to uncertainty of the measurements and not very good plots of the
measured data it must be stated that the calculated data and the corresponding
plots are much more accurate than data and plots from measurements. The
Newtonian fluid water which has been used in all the calculations so far can to
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full extend be calculated in the geometries used.
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Fig. 8.18a Vector plot at § = 1.5% Re = 64;- 10x40 control volumes.
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Fig. 8.18b Vector plot at 6 = 5.8% Re = 64; 10x40 control volumes.
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Fig. 8.18¢c Vector plot at § = 11.20; Re = 64; 10x40 control volumes.
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Fig. 8.18d Vector plot at § = 23.6% Re = 64; 10x40 control volumes.

Fig. 8.18¢ Vector plot at 6 = 91.4% Re = 64; 10x40 control volumes.
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Fig. 8.24 Calculated isovelocity curves, half cross section shown, Re = 1886.

Fig. 8.25 Culeulated streamlines, half cross section shown; Re = 1886.
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8.3 SIMULATION OF VISCARIN IN DUCTS
Determination of the three viscometric functions.

Simulating water at a constant temperature required only the density and
viscosity given as constants. This is not the case when viscarin is simulated. In
chapter two the CEF-equation, which is going to be used as the Non-Newtonian
model, was outlined. It was shown that besides the constant density three
viscometric functions were needed. These are the shear rate dependent viscosity 7
and the first and second normal stress coefficients ¥, and ¥,, respectively, each
of which also dependents on the shear rate. All three viscometric functions are
modelled with a powerlaw where, for example, the viscosity takes the form

n= k7

At the University College of Wales (UCW) an extensive measurement
programme, searching for model fluids for milk, has been carried out. This was
set up as a part of a BRITE project as mentioned in chapter one. In trying to
find a model fluid which will behave like some milk products the behaviour of
several Non-Newtonian fluids were investigated in three basic rheometrical flows,
Walters et al (1987)

o - steady simple shear flow;
® small amplitude oscillatory shear flow;
® extensional flow.

The model fluid used for the present work is a 2% viscarin solution which is a

suitable substitute for 40% full cream homogenized milk as far as n(%) is
concerned, but it shows higher normal stress differences than milk. Plots showing
the viscosity as function of shear rate has been prepared at UCW, see Walters et
al (1987), from which the n and k values can be deduced. At 200C it was found

that n = 0.37 and k = 8.5 Pa-s™. Neither the first nor the second normal stress
coefficient are measured directly. The first normal stress coefficient has to be
deduced directly from measurement of the first normal stress difference. In fig
3.26 measured and extrapolated data from UCW are shown. The measured data
are marked with asterisks and the extrapolated data with circle. The extrapolated
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data are used in order to find the second normal stress difference in a wider range
than that in which the first normal stress difference has been measured. The
curve giving the lowest values of ¥, Is ‘based on measured and extrapolated data:
from UCW whereas the curve giving the highest values is an extrapolation
obtained at-TUD based on the measured data from UCW.- The curve obtained at
TUD is used in a sensitivity analysis of the secondary flow, section 8.3.1.
‘From the measured and extrapolated data for the first normal stress
difference obtained at UCW the first normal stress coefficients is deduced. Values.
of \IJ are'plofted _i_zi fig. 827 from which 2 powerlaw,of the form \II- =k 7"1 is
n,+2

obtained, Here the constants are found to be” n — -1.35 and k — 5.96° Pa gt

The ability to measure the viscometric functlons 5 and lI' has become a standard
feature of many modern commercial rheometers, but accurate results for the
second normal stress coefficient have not yet been possible. Walters (1975)
discusses approximate methods of determining the second normal stress difference
N For the present work a relation between \Nl and N2 of N2 = a0.15-N1 based
on work at' UCW is used. - e o C

-Throughout the smulatlons the three viscometric functlons are used with
the values given above and the density is set to 1000 kg/m3. Only in the
sensitivity analysis of the secondary flow other values than the above mentioned
are used. To summarize, the viscometric functions are given by

n=k""l k=85Pas", n=037,

n n+2"

s 1 _ o 1 _
¥ =ky ' k=59 Pas  ,n =-135 (8.1)

KI’Q = -0.15- 1111.

83.1 STRAIGHT DUCTS

| In cha,pter two, ‘the CEFwequatlon was set up to handle the stress
dlstnbutlon in a viscoretric flow of which rectilinear shear flow is a class. One
requirement of rectilinear shear flow was that the fluid particle pa,thhnes are
straxght lines. T¢ is well known that pathlines of a Newtonian fluid follow stra1ght
lines in a fully developed flow in straight ducts. This is usually not the case for a
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Non-Newtonian fluid and some secondary flow is to be expected. The stress
distribution of the non-viscometric flow situation will be discribed with the
CEF—equation and it is hoped that an equation which is exact for viscometric
flow may also be (approximately) valid for nearly viscometric flows, Dodson et al

(1973).

Fully developed primary flow.

The fully developed solution of duct flow with rectangular cross section is
calculated for four different aspect ratios. The aspect ratios are 4x4 mm, 3x5.33
mm, 2«8 mm, and 1x16 mm, all having a cross section of 16-106 m2. For the
Newtonian fluid water, the fully developed velocity profile at midplane of height
and midpla,ne of width in a duct with cross section 1x16 mm and mean velocity
of 0.5 m/s were shown in figs. 8.4 and 8.5. The same calculation is made with the
Non—Newtonian fluid 2% viscarin and the results are given in figs. 8.28 and 8.29.
The figures show the primary velocity profiles at the same positions and for the
same mean velocity as figs. 8.4 and 8.5 calculated with both the powerlaw model
and the CEF-equation. It is seen that the primary velocity does not change
whether the powerlaw model or the CEF-equation is used which indicates that for
the chosen geometry and mean velocity the secondaiy flow which arises using the
CEF-equation, see later in this section, does not have any influence on the
primary flow or at least it can not be seen graphically. Comparing figs. 8.28 and
8.29 with the same plots for water, figs. 8.4 and 8.5, it is seen that the velocity
* profile along the height has a steeper gradient along the walls and consequently a
lower maximum value. The velocity profile along the width is nearly the same,
but with a wider "shoulder” area and similar to the other plot a lower maximum
value. B

An analytical expression for the velocity profile obtained for the fully
developed flow between pa;rallei-plates separated the height of the duct can, for a
powerlaw fluid, be written

where ¢ = (/h having origo halfway between the plates.
It is seen that if » takes the value of one the velocity profile is a parabola.
For lower values of n the velocity profile becomes more flat near the center and
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Fig. 8.28 Primary velocity profile shown at half the width along the height.
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steeper near the walls. This is the well known powerlaw profile and Fig. 8.28
shows the characteristica of a powerlaw proﬁle.'

Even if figs. 8.28 and 8.29 are calculated for the same mean velocity as figs.
8.4 and 8.5 the Reynolds number is different. For a powerlaw fluid the Reynolds
number in a developed flow between parallel plates is "deﬁned;'as, Larsen &
Christensen (1985),

9~ o

N Y I I W LA

Ren,k o K gn 1 [fn + l] T (82)
For ducts with-large aspect Tatios eq. (8.2) is taken as a good approximation

for the actual Reynolds number. For the flow shown in figs. 8.28 and 8,29 the

Reynolds number becomes Re = 15.5 which should be compa.red t0 a Reynolds

number of Re = 993 for the same mean velocity usmg water

Fully developed secondary flow.

The behaviour of Non-Newtonian fluids in ducts has been paid much
consideration in the past, where most of the attention has been designated to the
"nature" of the secondary flow and to the role of seconda:ry flow on the total flow
rate. In a paper by Dodson et al (1973) the role of secondary flow in straight
ducts of noh—circular cross section was studied using a perturbation method where
 terms were expended in powers of 1112. The velocity distribution was of the form

v= € (8.3)

where ¢ = lIf Equatzon (8 3) is s1mply a perturbation about the rectilinear
velocity ﬁeld With ¥, taken as a constant in the perturbation analysis a
quardratic shear rate dependence on the second normal stress difference is
obtained: This was not the case.in the work by Townsend et al (1976) where
derivatives of v, with respect to shear rate were also possible and € in eq. (8.3)
was taken as a sepa.rate quantlty With the work done by Dodson et al (1973)
they concluded that’ the direction of streamlines reverse if the gign on \I! ‘was’
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changed, but by the work of Townsend et al (1976) it was implied that it was the
magnitude of departﬁre of _lIf)2 from a constant multiple of 7 that determines the
direction and strength of the secondary flow and consequently, if ¥, is a constant
multiple of ‘5, there:will be no secondary flow.

The constitutive equation used by both Dodson et al (1973) and Townsend
et al (1976) was the CEF-equation. For the present work we use the same
constitutive equation to model the non-linear rheology, but we do not use a
perturbation method. ‘Instead we model the full CEF-equation as described in
chapter two. This, as will be seen later, gives a more detailed information of the
secondary flow, thus extending earlier work.

First, a 2% viscarin solution is simulated in 4 straight ducts of rectangular
cross section of same area and same mean velocity u, = 0.5 m/s of primary flow.
For each aspect ratio a set of 3 plots are shown. The @ plots show velocity vector
plots, the b plots show streamlines, and the ¢ plots show perspective of the
streamfunction of secondary flow. All plots are shown for one quadrant due to the
symmetry along midplane of height and midplane of width.

All the a plots show that fluid is streaming along the walls towards the
corner and leaving the corner in order to form two vortices. The two vortices
differ in magnitude and size depending on aspect ratio, but at the large aspect
ratio of 16 (1x16 mm) an additional very weak vortex appears. This vortex may
be of a similar type as the additional vortex structure known from a driven cavity
flow of increasing aspect ratio. Examination of the computational results in figs.
8.30 to 8.33 (shown at the end of this chapter) suggests a systematic parametric
trend where the large, dominant vortex for large aspect ratios moves away from
the corner to make room for the initially small vortex at the short end wall. At
unity aspect ratio these two vortices take the same size as seen in fig. 8.30.

In order to understand the physics of the vortices we use the CEF-equation
to obtain the relevant stress distribution in the cross plane including only first
order terms,

Ton~ T = Hg%r - [g%ﬁ Ty &4

Using eq. (84) along the line AB in fig. 8.34 it is seen that Ju/d¢ varies less than
duf gy (this must be a good assumptidn when considering the velocity profiles in
fig. 8.28 and 8.29). Introducing this assumption together with the equation of ¥,

into eq. (8.4) the stress distribution in the cross plane takes the form
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T ™ Te” —[%]{J[[g%] * [%] ]} Lo e

where , = -1.35 for 2% viscarin. Equation (8.5) shows that. the difference of Ton
7., along the line "AB depends mainly on the difference of duf Oy (remember

du/A¢ is assumed nearly constant). Due to the great velocity variation moving
away from the wall, as seen in figs: 8.28 Va,nd 8.29, the stress di’ffe_ren(_:e~.r-ﬂm =T
has a greater negative value in A than B.(remember the negative sign-of T,
introduced in eq. (8.1)).-With the sign convention used in eq..2.2b, stress being
positive in compression, eq. (8.5) indicates that the greater negative value of Tos
~-rin: A compared to the value in B-makes the fluid move from B towards A.
The same argumentation can be used along a line of constant 5 (sketched in fig.
8.34) a,nd.cdnsequently;ﬂuid- will flow along the walls towards the corner as:
sketched in fig. 8.34 and as already seen iﬁ-ﬁgs. 8.30 to 8.33 (shown at: the end of
this. chapter}. . ’ = Lo

-

e e g - —s - =~

A B
A //////////////// 7

\i\\{\ﬁ\}{\\\\\\

-Fig. 8.34 Sketch of streamlmes near & corner.

In order to demonstrate the legality or the illegality of eq. (8.5) and the
conclusions stated by Townsend et al (1976) the programme was tested for
different values of ny (the exponent in the powerlaw model of v, and thereby also
in the powerlaw model of ¥ ) First, it was tested if the seconda.ry flow
dlsappeared if IIf is a consta,nt multxple of n. A "test" ﬂllld with n =1 and k

: n,+2 '
=0.9Pais ' was sxmulated and the results are, among other results, given in

tabel 8.2. Table 8.2 shows the maximum and minimum values of the v-component
and the streamfunction, respectively, and it is clearly seen that the secondary
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flow is extremely small for the "test" fluid. The numerical prediction of any
secondary flow may be due to the higher order terms in the CEF-equation (and
round—-off errors). The lower value used for the &, compared to the value used
when viscarin is simulated was necessary in order to obtain convergence. The
reason for that is not clear, but the values of 111 and IIIJ | increase dramatically
as n, is altered from -1.35 to -0.63 for the same shear rate and it caused loss of
convergence if k; was not lowered.

In order to see how the variation of lI! with shear rate affects the strength
and direction of the secondary flow the programme was tested with #, = -1.2 and
n, = -2.8 for the same geometry (3x5.33) and the same mean velocﬂ;y (v =10
m/s). With use of eq. (8.5) it is expected that the secondary flow becomes
stronger with n, = -1.2 which is clearly seen in table 8.2. A higher negative value
will consequentiy make the secondary flow weaker, but again with use of eq. (8.5)
for a certain high negative value of #, it is expected that the flow direction
should reverse (for dufd( set to zero 1t is, according to eq. (8.5), expected that
the secondary flow will reverse whenever n, becomes smaller than —2). The
reversal of the secondary flow was not observed only a weakening. Even if the
whole secondary flow field did not reverse the structure did change. The smallest
vortex became smaller and the greater vortex became greater. This is viewed in
fig. 8.35. For the chosen geometry and mean velocity the variation of \I! '
(obtained upon variation of n, and k ,) did not affect the direction of the
secondary flow, only the strength A reversal was gnly obtained by changlng the
- sign of W, _The teversal of the secondary flow which was expected for high
negative va.lues of n, was based on eq. (8.5) which again was based on no or little
~ variation of du/d¢ from A to B in fig. 8.34 and including only first order terms.
These limitations might very well be of importance for high negative values of n,
where the actual value of \If becomes lower with respect to shear rate even if the
variation of v, becomes greater

The ﬂow pattern for the geometry with cross section of 3x5.33 mm is shown
in figs. 8.36 and 8.37 for two different mean velocities of 0.1 m/s and 10 m/s,
respectively. It is seen that the center of the greater vortex moves towards the
longest wall for the high mean velocity. This creates a little jet of fluid moving .
along the longest wall towards the corner and leaving the little vortex in an even
more squeezed "world". The proportion of the maximum value of the
streamfunctions of the little vortex becomes 111 whereas it becomes 140 for the
greater vortex indicating that the greater vortex is growing faster than the little
vortex. The actual magnitude of the maximum and minimum of the

- 149 -




|

MY R A A B e g

(4

7

P IIEE N / A7 _/_

| d

-~

wrbt bt 2 7

-7

) —

W

-

T .1._ _,,,///,.;z%_

A

_ :e
I
R

R

w////é_%

it
.fm\\\\&s
T
A
STl

- T;\ﬁ_w\\\\&z

ittt f 1 /‘ VAR

Fig. 8.35 Change of streamline pattern for high negative values of nl. The *

little vortex disappears leaving extra space for the great vorter.

- 150 -



Fig. 8.36a Velocity vector plot. Geometry: 3x5.33 mm. v = 0.1 m/s.
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Fig. 8.36b Streamline plot. Geometry: 3x5.33 mm. u_ = 0.1 mfs.

- 151 -




| (il (e

W‘Hf*‘\* +o4 7 A -

-
-
—
—

-

LY

| T

priive s

N
RS

f11
nﬁmf‘f/./;«z,? U
|

Fig. 8.37b Streamline plot. Geometry: 5x5.88 mm. u_ = 10.0 m/s.

-~ 152 -




streamfunctions and the s-components are shown in table 8.2 where values for
other primary mean velocities are also shown. The cross section geometry is
3x5.33 mm.

U v v Stream function Stream function
mean maz min .
mazr mian
(m/s) (m/s) (m/s) {m?/s) (m?/s)
0.1 8.46-10 | -1.43-107 1.19-1077 ~5.61-107
0.3 3.41.103 | -5.82-1073 4.89-107 -2.27-10°6
0.5 6.59-103 | -1.12-1072 9.24-1077 ~4.38+1076
1.0 1.63-102 | —2.72-1072 9.04-10°6 ~1.06-108
1.0 |
n,=n=0.63} | 1.18- 107 | —1.44-107 4.52.10°16 -7.63-10711
k= 0.9
L0 saea02 | 87107 4.20-10° 2.11-10°
1.0 1.31-10% | ~1.30-10° 1.77-101 ~8.72+10"9
nlz—-Q.S
3.0 589.102 | —1.14:1072 4.73-10°6 ~4.03+10°
5.0 8.26-102 | -2.33-1071 6.73-10°6 ~6.20+107
10.0 1.00-101 | —4.96-107 1.33+107 ~7.87-10°5

Table 8.2 Calculated mazimum and minimu
the streamfunctions for different corresponding u_

stated n, = —-1.35 and kl = 5.96 Pa-s

Grid.

In order to determine the secondary flow to a high or
grid densities were tried. The velocity

m values for the v-components and
n values. Unless other i3

240 The cross section i8 8x5.33 mm.

der of accuracy several
profile along the width at midplane of

height for the duct with cross section geometry of 3x5.33 mm is plotted in fig.
3.38 for three different grid densities. It is seen that the two grid densities 22x22
and 44x44 give the same results whereas the 11x11 grid gives a result which
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differs from the others. The chosen grid used for the 3x5.33 geometry is taken as
the grid involving 22x22 gridpoints (20x20 control volumes) and shown in fig. .8.39
(remember that the computation takes place in only one quadrant of the cross - -
section). The number of grid points and the ratio between successive grid cell
lengths in each direction used in the computations for the 4 different cross

sections are shown in table 8.3.

Geometry | Aspect | Grid points | Cell length ratio
(mm) atio | 9 ¢ | m <
4x4 1 22 22 1.2 1.2

3x5.33 1.78 22 22 1.22 118
2x8 4 22 22 1.23 1.14
1x16 16 22 18 1.25 110

Table 8.3 Grid points and cell length ratio Jor { different
the cross sections.

Convetgénée' and cpu consumption.

In order to get a fast convergence it was preferable to start the computation
including only the shear rate dependent viscosity (powerlaw model) in the |
constitutive equation and after the residual is lowered a factor 1000, or 5o, the
extra terms in the CEF-equation were coupled to the powerlaw. In order to start
the computation with the full CEF-equation employed it was necessary to use
excessively small relaxation parameters except for the duct with aspect ratio 1
where the relaxation parameter for the uw—velocity was set to /\ = 0.85 and for
the v and w-velocity they were set to A = A, = 0.75. A typlcal plot of residual
versus number of iterations is shown in ﬁg 8. 40 for a duct with aspect ratio of 1
and primary mean velocity of umt-z.‘O.Sr m/s. The residual is the highest - -
normalized residual defined in chapter seven where the residual could be either
the residual from one of the momentum equations or from the pressure corrector.
equation. For the present residual-plot, the residual is the normalized residual of
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Fig. 8.38 Secondary flow for different grid densities.

Fig. 8.39 Grid for the cross section 3x5.33 mm.
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the y-momentum equation which is the leading residual for this type of duct
computations. The bend in the residual curve seen after nearly 20 iterations has
to do with the way the inlet—outlet conditions are treated. As stafued earlier in
order to find the mlet condition the inlet condition is cyclic related to the outlet
condition which is fed in as a new inlet condition at each iteration until the flow
repeats itself. The outlet condition is treated as if the flow were parabolic. After
nearly 20 iterations the changes in the flow is as in a developing flow. The rate of
convergence could be raised if the relaxation parameters were changed to a higher
value after 20 iterations.

in*

RESIDUAL

0 40 B0 120 | 160 200 240
: [TERATIONS |
'Fig. 8.40 Residual historie. Geometry: 4x4 mm. Fluid: 2% viscarin.

"The cpu consumption for a computation involving 22x22 grid points, aspect
ratio 1,and 3 =05 m/s with the residual historie shown in fig. 8.40 is 200 sec | __
- on an Amdahl 5890 model 180E. This gives a cpu consumption of o
200/ 20x20x240) = 6.9- 104 sec/point /iteration. For comparison, the caleulation 7
" made with water of a developing flow in a curved duct the consumption of 51073 T

" géc/point fiteration. This indicates that the Non-Newtonian fluid requires about
~an order of magnitude more cpu consumption than the Newtonian fluids. The -
_ main reason is that the constitutive equamon is updated after each outer loop

: makmg the v1scoszty and the normal stress coefficients lag behind the flow and

e pressure ﬁeld Another factor, when comparing convergence rates of water and :
" yiscarim, i8 that the same. mean veloc1ty does not give the same Reynolds number.~

="~ 'Flow of polymer: solutions ag viscarin-is usually chara_,ctemz_ed by low Reynolds

numbers indicating high amounts of diffusive fluxes which usually require more
computation than flows at a high Reynolds number in the laminar range.
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Sensitivity analysis and evaluation of accuracy-

The accuracy of the flow field can be divided into two groups. One which
has to do with accuracy of the primary flow and one which has to do with
accuracy of the secondary flow. The Navier-Stokes equations can completely
describe the nature of Newtonian fluids whereas the CEF-equation can only
describe the stress distribution of viscarin (it is assumed that the flow is of 2
viscometric type) if the three viscometric functions are known to a high level of
accuracy. LDA measurements of both primary flow and secondary flow in straight
ducts are made by Bardur et al (1987) and Hansen et al (1988) where it is seen
that the measured primary flow agrees very well with the calculated primary
flow. The fully developed solution of 2% viscarin in a straight duct can, with the
CEF-equation or the powerlaw model used as the constitutive equation,
completely describe the nature of the prirﬁary flow. The appearance of secondary
flow does not alter the primary flow noticably,as seen in figs. 8.28 and 8.29. This
means that each model will nearly describe the nature of the primary flow of
viscarin to the same accuracy as the Navier-Stokes equations describe water.
This, with the conclusions made for water, tells that the primary flow can to full
extend be described in the geometries used and the level of accuracy is higher
than the accuracy obtainable from measurements.

The most interesting flow is the secondary flow where high level of accuracy
is a big challenge both the experimentalist who i interested in LDA and the
experimentalist who is interested in rheometry. If it is believed that the .
CEF-equation can describe the stress distribution in a straight duct even if the
flow is not a viscometric flow the accuracy depends on the level of accuracy of
the three viscometric functions where ¥, is the most difficult one to measure,
Walters (1975). ' ‘

The secondary flow was studied for different \I’l-—functions and different
\I!Q—functions as shown in fig. 8.41. The two functions of ¥, found by UCW and -
TUD based on measurents and extrapolated data of N, was earlier shown in fig.

8.26. The ¥ ,~function found by TUD is v, = 52532 and ¥, is still used as
T, = -0.159 . It is seen that hardly any difference is observed using ¥, found by
TUD compared to the one found by UCW. Even if hardly any difference was '
observed using two different functions of ¥, a great difference is observed when
v, is changed which also was expected because ¥, is directly related to the
secondary flow. Also, \I'g—values are known only to within 50% accuracy or even

less.
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In order to evaluate the calculated results of the secondary flow in duct -
with aspect ratio 1.78 and-u - ='1 m/s the v-component along the width 1.1 mm
from the wall was compared with measured results." The measured results |
(Christensen & Larsen, 1989) are shown in fig. 8.42 and the calculated results in
fig 8.43. Due to the symmetry condition only half of the width is shown in fig. - -
8.43. Exactly the same trend is seen in both the plots where a small negative -
value i§ seen near the wall changing to a high positive value moving along the
width ending at zero value at the symmetry line. The very few measured data: -
near the walls are due to the extend of the measuring volume which prevents one
from going closer to the wall. Even if the trend is the same in figs. 8.42 and 8.43
the values and thereby the strength of the secondary flow is not the same: This
must- due to the very great uncertainty of both the measured velocity data and. -
the measured rheology data for N,,. ‘The uncertainty of the measured velocity data
comes mainly from the great difference in magnitude of the velocity component of
the primary flow and the secondary flow which makes it extremly difﬁcult to
measure the ‘secondary. ﬂow without. some blendmg of the primary flow. Even 1f
the viscometric functions were measured to a higher level of accu.racyrlt is also.
necessary. t0 measure them in a higher range of shear rates. The shear ra.tés in the
duct of aspect ratio 16 are higher than 20000 1/s which should be compared to
the measured values in fig. 8.26 where the highest shear rate is in the order of
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500 1/s. Due to the great uncertainty of both the measured velocities and the
measured viscometric functions the caleulated strength of the secondary flow can
not be verified, but it is believed that the behaviour of the secondary flow is
accurate since both the calculated and measured data show the same trend. Even
if only one plot of measured data will be shown the same trend as seen in fig.
8.42 and 8.43 was also observed for other aspect ratios and mean velocities.

8.3.2 CURVED DUCTS

To extend the study of flow in straight ducts to curved ducts the same
constitutive equation is used. The flow is surely not a viscometric flow any more
due to secondary flow initiated from curvature effects, but again we hope that an
equation which is exact for viscometric flow may also be (approximately) valid for
nearly viscometric flows. The calculations are carried out over half the cross
section of the duct due to the symmetry condition along the width at half height.
The primary flow along width at half height in a duct with aspect ratio 16 is
shown in fig. 8.44 for 3 different primary mean velocities. The 3 différent mean
velocities are 0.01 m/s, 0.1 m/s, and 1.2 m/s, respectively, with corresponding
Reynolds numbers of 0.04, 1.6, and 92, respectively, obtained from eq. (8.2). The
b plot shows the primary flow calculated with both the powerlaw model and the
CEF-equation indica,tihg that the secondary flow has no noticable influence of the
primary flow. This also was seen in the straight duct. It i8 clearly seen that the
highest velocity appears near the inner wall which also was expected when
remembering the same plots for water at low Reynolds numbers.

Isovelocity curves for the primary flow for ¥ = 1.2 m/s is shown in fig.
8.45 for both calculated and measured data. Maximum velocity in fig. 8.45 is 1.81
m/s and minimum is 0 m/s for the calculated isovelocity curves. With evenly
distibuted 1soveloc1ty curves this gives a jump between the curves of 0.23 m/s.
The measured data are taken from Nielsen (1989). Due to the limited number of
measured data points near the inner and. outer wall the agreement is not as good
as could have been expected, but elsewhere the agreement is fine.

Streamlines of the secondary flow for the same geometry a,ﬁd mean velocity
is shown in fig. 8.46 where both plots obtained from measured data and
calculated data are shown. It is seen-that the strongest vortex situated near the
inner wall is shown for both the measured data and the calculated data and
consequently the weakest vortex is situated near the outer wall. The main
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difference on the measured and calculated data are the extend to which the
vortices reach into the domain. The strong vortex extends over the greatest
domain when the measured data are considered whereas it is opposite for the
calculated data. At first glance, it seems most logical that the strongest vortex
extends the furthest, but no conclusion will be given here. In addition to the
vortices already discussed an extra little vortex is calculated very near the inner
wall. This is easily seen in fig. 8.47b which shows the streamfunction in
perspective. Fig. 8.47a shows a velocity vector plot of the same situation. Similar
results as shown in figs. 8.46 and 8.47 have been obtained for » = 0.1 m/s and
u_ = 0.01 m/s, but only the calculated data will be given. Table 8.4 shows the
maximum value for all three velocity components and the maximum and
minimum ‘values for the streamfunctions for the three mean velocities of 1.2 m/s,
0.1 m/s, and 0.01 m/s, respectively.

U o | Ymar U ) W Streaz{gnction Strea::_f:nction
(m/s) |(m/s) (m/s) (m/s) (m?/s) (m?/s}
0.0 |.0155 |8.11-105 [4.5-10% |  8.34.100 -1.28-108
0.1 0151 [1.52-10°3 |8.8-104 1.59:107 -2.45+1077
1.2 1.81 |3.80-102- |2.0-10°2 3.79-10°6 —6.23+1076

Table 8.4 Mazimum u, v, and w components and mazimum and mMinimum
streamfunction for cross section of 1x16 mm and different mean velocities.

8.4 PRESSURE DROP - MEASUREMENTS & CALCULATIONS

In order to calculate the effect of secondary flow on the pressure drop in
straight ducts a measurement programime was set-up on an already existing test
section for LDA measurements. The experimental set—up will not be described
only the results of the measurements.

The pressure drop in 4 ducts with cross section of 4x4 mm, 3x5.33 mm, 2x8
mm, and 1x16 mm were measured for mean velocities ranging from 0.05 m/s to 3
m/s. The fluid was 9% viscarin. Fig. 8.48 shows measured and calculated data
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where open symbols indicate the measured data and asterisks and cross symbols
indicate the calculated data The straight lines are based on curved fit of the
measured data. '

For a powerlaw ﬂuld fully developed laminar flow in straight ducts can be
shown to have the relation between mean velocity and pressure drop of

. g%’ = F(nkh,H) u". | (8.6)

It is seen from the data tha.t for each geometry F is a constant. The
relations between the mean ve10c1ty and pressure drop obtained from the curve
fits of the measured data are shown in table 8.5. It is seen that the agreement on
the measured exponent obtained from pressure drop measurements and the
exponent extracted from v1scos1ty measurements is indeed very fine (remember
that n was found to be n = 0.37 obtained from UCW measurements). The
increase of the function F was expected for increasing aspect ratios. |

Geomerty { F-function | Exponent

(mm) Pa(s/m)" )

4x4 1.48 0.369

3x5.33 1.59 0.379
2x8 2,29 0.363
1x16 5.36 0.369

Table 8.5 Constants in eq. (8.6) obtained
from measurements.

Two set of calculations were made. One set which concentrated on one mean
velocity of v, = 0.5 m/s and all the geometries and one which concentrated on
one geometry w1th cross section of 3x5.33 mm. Using eq. (8.2), the Reynolds
number for ¢ = 0.5 m/s is Re , = 15.5 for the aspect ratio = . This number
must be a good approximation for the aspect ratio of 16. Note that Reynolds
number increases as unit aspect ratio is approached due to the increase of
hydraulic diameter. It is seen that calculated pressure drop (indicated by crosses
in fig. 8.48) is slightly lower than those measured, indicating that the constant in
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the powerlaw model may be-toosmall. Earlier measurements made at TUD -

showed that the constant should be kTUD = 9.6 Pa-s”. ‘Calculations with this'

value showed a shghtiy higher pressure drOp than measured Thrs 1ndrcates that
the value of k should be. between 8.5 Pa- 8" a.nd 9 6 Pa s Only the calculatlons
for the set of all geometries show lower va.lues than measured whereas the
calculations for the cross section geometry of 3x5.33 mm show high level of
agreement for a high fange of velocities. This indicates, that if it is believed that _
the measurements have been carried out with a too low value of k the 3x5.33 mm
duct must be expected to have a shghtly greater Cross sectlou that stated.

| The measured pressure drop in the ducts foru_ = =05 m/ s is shown in table
8.6. The pressure drOp is calculated usmg both the powerlaw model ‘and the
CEF—equatlon showmg a shghtly hlgher pressure drop us1ng the powerlaw model
than the CEF—equatron This is beheved to due to the extra shear thlumng
arising from the secondary flow. '

Geometry | Pressure drop (~bar/m)
(mm) Powerlaw |  CEF .
4x4 ] 1.1077 1.1074

3x5.33 1.2122 - 1.2117
2x8 1.7149 - 1.7142
1x16 3.9960 - 3.9955

Table 8.6 Calculated pressure drop using the powerlaw
model and the CEF-equation. u_ = 0.5 m/s.

- Comparing the results from table 8.6 with the results in table 8.7, showing
the pressure drop in the duct with cross section 3x5.33 mm for different mean-
velocities, it is seen that pressure drop using the CEF-equation is also lower than
the pressure drop using' the powerlaw model for low mean velocities whereas it is
higher: for high mean velocities. This means that at high velocities the effect of -
having vortices, which carry high momentum fluid from the center of the duct
out-near the walls and low momentum fluid from the corners into the middle of -
the duct; has a greater effect on the pressure losses than the shear thinning effect
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from the secondary flow.

“Mean-
velocity .

~ (m/s)

Pressure drop (~bar/m)

- Powerlaw CEF

0.1
0.3
- 0.5
1.0
3.0
5.0
10.0

0.66825 0.66814

1.0035 1.0031
1.2122 - 12117
1.5667 1.5661
2.3525 2.4077
2.8423 3.1262
3.6730 4.6986

Table 8.7

model and the CEF-equation. Geometry: 3x5.33 mm.

Caleulated pressure drop using the powerlaw

10

PRESSURE DROP (bar/m)

00000 Measurements, 16+1

Measurements, B8+2

+H+++ Measurements, 5.33#3
*kkkk Measurements, 4*4

COXrD Calculations, Umen=0.5 m/s
AAMAA Calculations, 5.33+3
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Fig. 8.48 Measured and calculated pressure drop in siraight ducts.
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Since the secondary flow has very little influence on the pressure drop-in the -
parameter range studied the measurements can mainly be used to check that the
exponent in the powerlaw is-right- (it is believed that-the exponent is right
considering the great accordance of the exponents.in-table 8.5 -and the exponent
extracted from the UCW ddte). Unfortunately it was not possible to measure the
pressure drop for high mean velocities, buﬁ the significant deviation at high mean
velocities between calculated pressure drop and extrapolated pressure drop
(indicated by a dashed line) seems to justify that the secondary flow has a
significant influence on the pressure drop at high' mean velocities. Equation (8.2)
gives a Reynolds number of 2040 for v = 10 mi/s, but due to change in
hydraulic diameter the Reynolds number is higher, indicating that the
computation may be carried out in’the transition range, hence these results
should be interpreted with ca,utlon e

8.5 CLOSURE

Calculated results in straight and curved ducts with moderate and large
aspect ratios for. the Newtonian fluid water and the Non—-Newtonian fluid viscarin
have been compared with measurements. The main study has been that of
secondary flow due to either ‘eurvature effect or non-linear rheology or both.

The inconipressible, steadyANavier—Stokes equations describe to full extent,
the "nature" of water, hence the calculated results are believed to be more
accurate than the measured results In curved ducts with water, the well known
secondary flow pattern with fluid flowing from the outer wall towards the inner
wall along the top and bottom walls and going back into itself ﬂowmg from the
inner wall to the outer wall in the middle of the duct was seen. This flow pattern
is set up through a balance of centrifugal forces, pressure forces, and viscous
forces. The influence of secondary flow on primary flow in a fully developed flow
change considerably with Reynolds number. At low Reynolds numbers, hardly any
influence is observed and the primary. flow has the highest values near the inner
wall which is expected smce the constant pressure gradient in the primary flow
direction acts over a shorter dlstance at the inner wall than at the outer wall.
This is also-the case at hlgh Reynolds numbers. However, due to influence of the
secondary flow hlgh momentum fluid is camed towa,rds the outer wall increasing

primary flow here.
In developing flow of water in a curved duct, the secondary flow is set up
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very late in the developing phase for low Reynolds numbers whereas it starts
early at high Reynolds numbers. Even if the secondary flow starts early, the
influence on the primary flow is first seen when the fluid at the center of the duct
has been accelerated to its maximum value. _

The Non-Newtonian fluid 2% viscarin, showing normal stress differences in
a steady simple shear flow, has been simulated for fully developed flow using the
CEF-equation as the constitutive equation to give the stress distribution. The
second normal stress difference gives rise to secondary flow in the cross plane.

With a negative second normal stress coefficient all the calculations showed
that fluid is flowing along the walls towards the corner leaving the corners in
order to form two vortices in each quadrant. The two vortices differ in magmtude
and size depending on aspect ratio, but at the large aspect ratio of 16 an
additional very weak vortex appears giving a total of 12 vortices over the cross
section. At unity aspect ratio the two vortices formed in each quadrant take the
same size and strength. ‘.

In the curved duct, three vortices are found at each half section of the duct
with aspect ratio of 16. An extremely small vortex is found close to the inner wall
in addition to two larger ones where one is found near the small one and the
other one near the outer wall. The vortex near the outer wall has the greatest
size. _
Comparison of calculated and measured secondary flow in straight ducts
shows the same pattern for all geometries, but higher values are calculated than
measured. The difference between measured and calculated data are due to great
uncertainty of both the measured velocity data and the measured rheology data
for the second normal stress difference.

The effect of secondary flow on pressure drop in straight ducts was
calculated and found to be negligible. Experiments also showed no significant
effect in the range of velocities measured. For high velocities the calculations
showed a significant difference between the results obtained using the powerlaw
model and the results obtained using the CEF-equation. The measured results
were mainly used to check that the exponent used in the powerlaw model for the
viscosity was right. ' ' "
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Fig. 8:30a. Velocity vector plot of secondary flow in straight channel, fully .
developed flow. Geometry: {x4 mm? (one quarter of the cross section is shown,
symmetri condition on 2 sides), Fluid: 2% viscarin. U on = 0.5 m/s,

v = 0.815 m/s, U 5.02<103 m/s, W= 4.86x1073 m/s
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Fig. 8.30b Streamline plot o f secondary flow in straight channel, fully developed
flow. Geometry: 4x4 mm? (one quarier o f the cross section is shoum, symmetr:
condition on 2 sides), Fluid: 2% viscarin. v__ = 0.5 m/s, |

U o= 2.11x10¢ m2/s, ¥ . = —2.14x106 m2/s
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Fig. 8.31a Velacity vector plot o f secondary flow in straight channel, fully
developed flow. Geometry: 3x5.33 mm? (one quarter of the cross section is shown,
symmetri condition on 2 sides), Fluid: 2% viscarin. v, = 0.5 m/s,

u_ = 0.802 m/s, v_ = 6.17%1 03 mfs, W = 7.08<10°% m/s

Fig. 8.31b Streamline plot of secondary flow in straight channel, fully developed
flow. Geometry: 3x5.33 mm? {one quarter of the cross section is shown, symmeiri
condition on 2 sides), Fluid: 2% viscarin. u_ . = 0.5 m/s,

U= 8.66x107 mfs Uy = —4.10x10°6 m2 /s
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Fig. 8.31¢ Conditéfons'aé in ﬁg 8.315.‘_’ Plot s_haﬁ_m in perspective.
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Fig. 8.32a Velocity vector plot o f secondary flow in straight channel, fully
developed flow. Geometry: 2x8 mm? (one quarter of the cross section is shown,
symmetri condition on 2 sides), Fluid: 2% viscarin. %_ = 0.5 m/s,

u_. = 0.779 m/s, v = 1.02<10°2 m/s, w_. = 6.44x10°3 m/s

=

Fig. 8.32b Streamline plot o f secondary flow in straight channel, fully developed

flow. Geometry: 2x8 mm? (ome quarter of the cross section is shown, symmeiri
= 0.5 m/s, :

condition on 2 sides), Fluid: 2% viscarin. v_ .

U= 820107 /s, ¥ = —3.54x10° m2/s
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Fig. 8.33a Velocity vector plot of secondary flow in straight channel, fully
developed flow. Geometry: 1x16 mm? (one quarter of the cross section is shoum,
symmetri condition on 2 sides — the height is scaled 1 :2),
Fluid: 2% viscarin. u = 0.5m/s, u___ = 0.685 m/s,

mean max
v = 9.59x103 m/fs, w___ = 5.64x10°3 m/s
max max

Fig. 8.33b Streamline plot of secondary fow in straight channel, fully developed
flow. Geometry: 1x16 mm? (one quarter o f the cross section is shown, symmetri
condition on 2 sides — the height is scaled 1:2), Fluid: 2% viscarin.

w =05 m/s, ¥ . = 191107 m2/s, ¥ _. = —1.61x10* m?/s

mea
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Fig. 8.33c Conditions as in fig. 8.33b, but without scaling. Plot shown in

perspective.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

The prediction of secondary flow due to either curvature effects or
non-linear rheology in straight and curved ducts of moderate and large aspect
ratios forms a major part of the present work. In addition to the fluid dynamic
aspects of the work the numerical part has been aimed towards fast linear solvers
for sparce matrix systems.

The fluid dynamic model incorporates the finite volume method combined
with an orthogonal curvilinear coordinate formulation of the governing equations
in semi-strong conservative form (the developed computer code is based on
experience with the ROBOT code developed at Imperial College, London). The
fluxes are discretised by finite differences. The orthogonal curvilinear coordinate
system employed 18 general curvilinear orthogonal in two dimensions and cartesian
orthogonal in the third. The incompressible, steady Navier-Stokes equations are
solved using a velocity-pressure coupling based on the PISO method (Pressure
Implicit with Splitting of Operators) which is a predictor—corrector method using
two corrector steps to satisfy divergence free velocity field at each outer loop. In
order to solve the momentum equations at the predictor level an ADI solver is
used. At each corrector level a Poisson type of equation obtained for the
pressure—corrector equation has to be solved. A preconditioned conjugate gradient
method is used. Several preconditioning matrices were tried and the one used is &
relaxed block incomplete Cholesky factorization. Only laminar flows are simulated
in ducts having a cross section area of 16106 m2. The 4 different cross sections
considered are 4x4 mm, 3x5.33 mm, 9x8 mm, and 1x16 mm.

In order to handle Non-Newtonian fluids in addition to the Newtonian fluids
the CEF—equation is used to obtain the stress distribution in the ducts. The
CEF-equation can to full extend describe the stress distribution in a steady
simple shear flow for & Non—Newtonian fluid where the stress distribution is
described through knowledge of the shear rate dependent viscosity and the first
and second normal stress differences. The first and second normal stress
coefficients used to describe the normal stress differences are modelled, as the
viscosity, by a powerlaw function of the shear rate. In general the CEF-equation
can describe the stress distribution whenever the flow is a viscometric flow.
Rectilinear shear flow is a type of viscometric flow. It is well known that
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pathlines of a Newtonian fluid follow straight lines in a fully develo'péé'ﬂéﬁv in"
straight ducts and thus form a rectilinear flow. This is usually not the case for a
Non—Newtonian fluid and some secondary. flow is to be expected. The presence of
secondary flow makes the flow a non-viscometric flow, but due o the small
deviation from a rectilinear flow the CEF-equation is used to describe the stress
distribution of the Non—Newtonian fluids 2% viscarin investigated. L

Results obtained simulating water.

- Mainly, the secondary flow in curved ducts using water was studied. The
well known pattern of fluid flowing from the outer wall towards the inner wall
along the top and bottom walls and-going back into itself, flowing from the inner
wall to the outer wall in the middle of the duct was seen. This flow pattern is set
up through a balance of centrifugal forces, pressure forces, and viscous forces. The
influence of secondary flow on primary flow in a fully developed flow changes
with Reynolds. number. At low Reynolds numbers. the pressure gradient in the
primary flow direction dominates the flow and the highest values are observed: .
near:the- inner wall. ‘This is not the case for high Reynolds numbers where the -
strong increase in secondary flow now is able to move high momentum fluid out-
towards the outer wall increasing the primary flow here: - '

In developing flow of water in a curved duct the secondary flow is set up
very late in the developing phase for low Reynolds numbers whereas it starts
early at high Reynolds numbers.: Even if the secondary flow. starts early, the
influence on the primary flow is first seen when the fluid at center of the duct has
been accelerated to its maximum- value. : '

The calculated results have been compared with LDA measurements where
fine agreement is observed: It is-believed that for the range of velocities simulated
the calculated results are more accurate than the measurements. - '

Results obtained simulating 2% viscarin.

The model fluid used in the simulations of a Non-Newtonian fluid is a-
polymeric-solution of 2% viscarin in water. The model fluid is a suitable
substitute for. 40% full cream homogenized milk -as far as the shear rate dependent
viscosity is- concerned, but it shows higher normal stress differences than milk. -
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The second normal stress coefficient is given as a small, negative constant
multiplied by the first normal stress coefficient. However, the coefficient is very
difficult to measure to a high level of accuracy leaving the secondary flow, which
is primarily dependent on the second normal stress coefficient, difficult to
caleulate accurately. :

With the negative second normal stress coefficient all the calculations
showed that fluid is flowing along the walls towards the corner leaving the corner
in order to form two vortices in each quadrant. The two vortices differ in
magnitude and size depending on aspect ratio, but at the large aspect ratio of 16
a additional very weak vortex appears, giving a total of 12 vortices over the cross
section. At unity aspect ratio the two vortices formed in each quadrant take the
game size and strength. In order to determine the dependence of the second
normal stress coefficient on the flow direction the coefficients in the powerlaw of
the second normal stress coefficient were altered in order to seen any effect. For
high negative values of the exponent in the powerlaw model for the second normal
stress coefficient the secondary flow was weakened and the smaller vortex at
aspect ratios different from unity became smaller in size. Equating the exponent
in the powerlaw model for the viscosity and the second normal stress coefficient
made the secondary flow nearly disappear in full agreement with the observations
made by Townsend et al (1976). The only way to change the direction of the
streamlines was to change the sign of the second normal stress coefficient.

Comparison between the measured and calculated secondary flow show the
same pattern, but higher values are calculated than measured. The difference
between the measured and calculated data are due to the very high uncertainty of
the measured velocity data and, as already mentioned, the uncertainty in
measuring the second normal stress difference.

The effect of secondary flow on pressure drop in straight ducts was
calenlated and found to be negligible. Experiments also showed no significant
offect in the range of velocities measured. For high velocities the calculations
showed a significant difference between the results obtained using the powerlaw’
model and the results obtained using the CEF-equation. The measured results
were mainly used to check that the exponent used in the powerlaw model for the
viscosity was right. -
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APPENDIX A

SCALE FACTORS

In. using Gibbs notation to describe the conservation-of the transport
equations in fluid dynamics; the equations-are valid for:any coordinate system.
Let us define z, z,, and z, to be a set of coordinate lines in an orthogonal
curvilinear coordinate system with the corresponding unit vectors e, ¢, and

€y which ‘are:mutually orthogona,l and’ let’ yl, Yor and y3 be the cartesian =

system ‘with unit vectors:-4 1, 2, ‘and: z “see ﬁg Al.

By

Fig. Al Orthogonal curvilinear coordinate system.
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The cartesian coordinates are related to the curvilinear coordinates by

the transformation

¥y = y,(2),2,,2,)
y2 = (2,5, 3) (A1)
= y3($1,x2,x)

and if the Jacobian J, see Anderson et al (1984),

_ Kypypys)
N

is nonzero, then the inverse transformation exists

5, = 7,(Y;50pYs)
5y = Ty(Y;s¥g¥s) (A2)
I =z (y15y23y3)

The relation between the X—system and the Y-system is given through
either eq. (A1) or eq. (A2), but often the scale factors or the metrics are
introduced. Let us look at the elemental arc length which in cartesian
coordinates are given by

(ds)2 = (dy, )2 + (dyy)? + (dy). (43)

Differentiation of eq. (Al) takes the form, in matrix notation,

Oy, 0y Oy, ] | dr, [ dy, -

351 352 353

Yo %Yy Y dz, dy

T, O, W || S| T (A4)
Byy Oy Oy dz, dy, |

0z, 0z, Oz,

where each column represents the components of the "natural" base vectors.
The "natural” base vectors are tangential to their coordinate line T, and are,
as the unit vectors ¢, ¢, , and £ mutually orthogonal and differ only in
length. With the introductlon of eq. (A4) in eq. (A3), and using that the
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matrix in eq.:(A4) is:the Jacobian J; the elemental arc length is described in

matrix notation as
(ds)? = (do)"J" (da), (A5)

which takes the form

K00 :
(ds )2-—(d:|:)T 0 BO | ds (A6)
' 0 0 h2

or
(d5)2 = (hydz,)2 + (hydz)? + (hgdzy)? (A7)

where™

S
li
3
+
S
¥
3

= loz) *lw,) T (T,

The metric is given through the scale factors hl, Py and A The
off-diagonal elements in the matrix in. eq. (A6) are zero because the base
vectors are mutually orthogonal In a non—orthogona.l system the off-diagonal
elements are in general ndt zero. The 1mp0rta.nce of the scale factors can be
viewed by looking at the physwal dlstance along a. coordma,te line.

In general, the dlsta.nce At between the pomts withi orthogonal
curvilinear coordinates :r;l, Toy T and I, +dx Tyr Ty is not given by d:f: but
by Al;’ =k dz;’ ‘whereh; is & functlon of the coordinates:z;, . T, and z,.

I the follewmg, A{, An, and . A(-denote. the. distance in physmal
dlmensmn of. length in-the: E}’ 2, -and. Ty direction; - respectlvely, and are gwen ‘

by
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Ag = hds,,
An = hydz,, (A8)
AC = hyds, ‘

The symbol A is used instead of d because finite distances are used in

practical computation.
The square root of the determinant of J is written h and takes the form

h = 7 = JRIREHE = hyhohy.
In physical dimensions a finite volume is given by

AV = h1h2h dzld:czdz3 = hdzldx2dx3 = AEARAG.

Physical components of a vector.

As already mentioned, the matural” base vectors e‘.(natural) are tangential
to their coordinate line z, and are defined as :

dy.

— J
e:.(natural) = -35; i (A9)

Any vector v may then be resolved into components according to
v = ve natural). (A10)

The components + are called the contravariant components and represents
then the components of a vector v along the "natural" base vectors.
Another base, the "dual natural” base, represents the base in which

ei(dua.l) are normal to the coordinate surfaces of constant Z, and are defined as

i Oz ,
e (dual) = 7. i (A11)
J

The components of a vector v resolved into components according to

-193 —



v = v¢(dual)- (A12)

are called the covariant components of the vector .

It is seen that JShe base vectors ¢ (natural) and. e (dual) oollapse m an
orthogonal system but do not necessa,rlly ‘have the same length In -
non-—orthogonal systems the base vectors do not collapse. L ”

In general ‘the base vectors are normally neither nondzmensmnal nor
unit vectors, and hereby it is seen that neither the contravariant nor the
covariant components of a vector o have the same dimension as the vector
which is resolved.

In a polar coordinate system, forexa,mple, ‘where ot = r and # = = 8 the
first one has the dzmensmn of Iength and the secOnd one has no. dlmensmn

Thus the contra,va.rxant velocity components # = do' / dt Would not have the
same dimensions. The associated covariant vectors are in no better position.
However, to make the components of a vector v have the same dimensions as:-.
v itself, we write \ |

{. R e

Mz = (hlvl)?'-i? (h2”2)2 ,4(53.03)2 :'.~:'(A:1-3f); .

where: h o have the same physma.l dlmensxons as-the ma,gmtude of the vector
. Equatmn (A13) is evidently given by Pythagoros' theorem (it is the

counterpart to eq. (A7)). The;components hz.v are called the physical . -
components of a vector » and the components are written ¢(s) in order to
distinguish them from the contravariant and covariant components. With the
physical components (i) a vector v may be resolved as

ey e by ()

where ¢ are the init contravariant nondimensional base véctors and according
to.eq:. (A13)-and eq. (Al4) they-are obtained as: ... ‘

e, = e[natural)/h; (no summation). (Al5)

In eq. (A13) the contravariant components were used, but if the
covarient; components-were used the physical. components would be. given by

— 194 —




v. -
o) = ¢ (no summation) (A16)
i
and the nondimensional unit base vectors through
¢ = ei(dual)hl. (no summation). (ALT)

Since the base vectors c:.(natural) and ei(dual) collapse in an orthogonal
curvilinear coordinate system and only differ in length it is convenient to

- work with the unit base vectors e, (= ¢ for an orthogonal systém) which
resolve all vectors in physical components, see fig. A2 for the geometrical
representation of contravariant base vectors and covariant base vectors.

A more thorough description of tensor algebra may be found in books by

Aris (1962), Hawkins (1963), and Fligge (1972).

cl‘

Fig. A2 Geometrical representation of contravariant base vectors (ei)

and covariant base vectors (¢).
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APPENDIX B

COMPONENTS OF THE CEF-MODEL . -~ ; °
| The extra-stress tensor.in the QEF-equa,tipgjx_l_ghapte;r 2 was given by
A
where 713 given- by’ eq. (2;1‘5);- and @ o

-7 D;7+{(Vv) 7+7(Vv)}

The components of the second and third terms ‘will be outlined ‘where, ia the =
general transport equation, they will appear as expressions in the source term.
The second term, assuming steady state, is given by

A
. 92( z) P2y k) v k
By = {”U)[az o5, t o dz} e+ 2_5Lz'l ‘Bm 6 N
qﬁﬂ%@} (52
where each component of tﬂé"‘tensgr "y? ta,kesr the form e
1 v(1 v 1 2) 1
s = {2v(1) L+ 22) ;—E,l +2 (3)3—%lx 14y +
9 'D(2! v(2!+2 '03 01!3)_!_201)(2)‘3@)_3_2_5_(_}%&)_}
A 7
. v%l) 821:%2! Po(1Y - 02v(2).
¥, = {”(1 [ 7,0 T :z:} + 1’(2)[3:0 oz, + 0z, da:} s
e [2v(1) ,--'-6205-2[ Av(1) dv(l) ; L0v(2) 9v(2)
3) ['5‘5‘3£§z2 +7 I, :.:1] +3 7, 0% +3 z, 01 +
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g R S
Er

19,55 = (o (Gl + B3N] - v [+ ) +
ol 8]
g

A A

1Yy = ¥y

wl?ym ) { prat +21(23—§;l+2v(3)g;—”%1+2 u(1) Oull) 4
A AR

19,5 = P (B2 B+ 0[]+ ] +
oo G2+ G+ o0 Y+ %R
B0 50 0 g 040 048 540 540
81)33 Q_g{z_g)_}’

3 3

A A

#95; = ¥y
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AT AL
1y = 4

1732 17937

é‘I’lf}33 = {2v(1) 2 3 + 21(2) gzi’%glzv(s)gf%il + P 1 0y 1 +

The third term is: glven by

'(w _\1;){7;77],6}—~_ { ‘am 617(31 +6v(z) -39; + _dm 7»”1
+7}ﬂ—3@} o

and each component of the tensor takes the form

(% 2){71]1}—x11_\1,{4§%m_3@+202 M+!_
7?@-3@1 ,3@,3@}

(2 - %){mjg} @, -.-qs;)-{z%ll Qaill _.i_...“?awxz_ -31.,-; e
‘3@1%_11-1—2‘3(2_5(_1 ‘gjﬁ v2 .

26 3”( ) 4 5?5(3)'3.( ) 311(3) 81}(2)}

z, Oz | 05, O " O% 623

(¥, - 0ty = (8, -~ w)(p0sl i) 22 D
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(¥,

(¥

(‘1’1 -

(¥

(L, -

(Y

1

L~

1

0 0 L840 01
L

- 11;2){72 "711} = (11’1 - ‘1'2){;71]':7]2},

2){'rg'rﬁ} 2){2-3(11‘%@ 4%('21 et +
2%%%?+%%%%+%%3”%+
o ) . 230 50)

coa 1 — av(1) dv(2 dv(2) dv(2
W)y} = (¥ - ‘1’2){ Jz, 0%, * Yo, oz,

A g g0
g o 00 )

\I'2){;73j;7j1} = (\I‘l - ‘1’2){;}’1;?1-3})

\1’2){;733'7]2} = (\I’ - ‘1’2){721-713}, 7

= Ui v} = 2){2_5111 %@l + 90Y (2 v 3) .,

(3 Bv(l (3) dv(3) |, dv(3) dv(3
xl 6xl + 7, Z, +

T, Bx
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APPENDIX C.

ACCURACY OF sto |

This appendlx follows the analyms made by Issa (1985) _
In the following, the accuracy during each tlme step will be exammed for a
fixed spatial dlscretlsatlon, ba.sed on a Taylor senes analysm The error on each

level will be descnbed as e a,nd e * for the ve10c1ty and pressure respectwely ek'
is taken as ;

f = ymt —of, - (C1)

fk:’pnﬂ—l-pﬁq T e,

where k takes one of. the values n, ¥, ** e L

The error at each level in a time step is estxmated from the dlfference
between the momentum and pressure fields at time. step n+1 and the momentum
and pressure ﬁelds at each. intermediate level The momentum equation at time
step n+1 is given by eq. (5.14). A specific pressure eqqatlon at the same time
step is given below. o

The pressure at time step n+1 will be derlved usmg eq (5 14) and the
discretised continuity equation. Using the momentym equation, eq. (5.14), as the
u—momentum at the east face of a main grid volume, eq: (5.14) takes the form

a"u H"’+1 F A (pP pE)“‘“ + b + fu ()
which can be writte_n as L
n+1

(pAu)"“ =F™ 44 (pp pp)" " +b, + Ful, (C)

where
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- 1 - - -
gkt s (pAE)SEL 5 (pA2), f _ (p4D), 7o (hAS),
¢ e ¢ T &%. ¢ T a_ e
P P p : 2
An equation as (C4) can be written for all six faces and substituted into the

discretised continuity equation to yield the pressure equation at time step n+1

itz = 50™a) - div(B"TY) — div(b) — div(fu"),
(C5)

~ where ¥ is a summation over the neighbours to pp. The pressure equation at the
first and second corrector level, respectively, takes the form

piEA = S(*A) - div(H") - div(b) — div(fu") (C6)
and |
pirEA = S™A) - div(E) - div(h) — div(fu"). (c7)

At the corrector levels a pressure equation, as eq. (5.13), based on an
increment equation for the velocity, eq. (5.17), was used. Equation (C6) and (CT7),
respectively, is based on the actual velocity field and does not require additional
information, as compared to eq. (5.13), but is only another way of writting the
pressure equation. A pressure equation on the form as eq. (5.13) is to be preferred
because of reduction in computer time and storage, Issa (1985), and the pressure
equation written on the form as eq. (C5) is only used in estimating the error.

The error intraduced at the predictor level can be taken as

(a, + P_g‘T’)e: = H(c) + A(eD), (c8)

which is obtained by subtracting the momentum equation, attained at the
predictor level, eq. (5.15), from the original momenturn equation, eq. (5.14). The
error of the pressure is

E: — pn-’rl _ pn _ (C9)

- 201 —



and, based on a Taylor series expansion, the error is written .

="+ oA — " = O(AY), (C10)

which Staics hat the error of the pressure ¢ in eq. (C8) is of firs order. The
first order accuracy in the pressure field does 1ntroduce second order accuracy in
the velocn:y field, however. This is seen by d1v1dmg every term in eq (C8) by At

and then letting At approach infinity. Eu will only vanish if eu is of second order
accuracy in At

" At the first corrector level, the erfor introduced in the momentum and
pressure equations, respectively, can be written as

AV :
(ap“‘ fm)f:* =H(f:) + Aﬁt(f:) e (C12)

and

. f:Z‘;i = E(AE:)--le(IEI(C:)) R (63 5<)
Equation {C12) is'found by subtraction of eq. (5.16) from eq. (5.14) and eq. |
(C13) is found by substractlon of eq. (06) from eq. (C5). From eq. (013) itis

seen that e deca,ys w1th the same order as E a,nd hence ep is of order O(Aﬁ) :

which gives third order accuracy of e *in- eq (012)
For the second corrector level, the errgr on.the momentum and pressure

equatlons can be found by subtraction of eq. (5:19) from eq. (5.14) and
subtraction of eq. (C7) from eq. (C5), respectively, which is written as

(o, + PENGT SR s oy

and
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E:*Z;l = E(;lf:*) - diV(;I(f:*)). (C15)

It is seen that e:** is O(Att) and c:* is O(At3). More corrector steps will
increase the accuracy, but usually two corrector steps are enough because the
original equations are discretised to second order accuracy, Issa (1985). The values
obtained for the velocity and pressure fields at the second corrector step are taken
as the values at step n+1.
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