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ABSTRACT

This technical note documents the equations for primal-dual interior-point quadratic programming
problem solver used for MPC. The algorithm exploits the special structure of the MPC problem
and is able to reduce the computational burden such that the computational burden scales with
prediction horizon length in a linear way rather than cubic, which would be the case if the structure
was not exploited. It is also shown how models used for design of model-based controllers, e.g.
linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium
points, making the presented extension of the controller formulation equivalent to that of the
extended Kalman filter compared to an ordinary Kalman filter.
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1 Introduction

State-space control methods based on linear models such as linear quadratic control (LQ), model
predictive control (MPC) etc. are typically based on linearizations around equilibrium points,
where the control objectives seek to minimize the distance from the current point of operation
to the equilibrium point. Gain scheduling frameworks for different operating conditions can be
used to handle nonlinearities. The classical gain scheduling framework, consisting of a Jacobian
linearization family as described by Rugh and Shamma [1], is comprised of a family of lineariza-
tions all done at equilibrium points depending on the chosen scheduling variable. The mentioned
control methods all have the same shortcoming, linearizations around equilibrium points are not
guaranteed to resemble the actual dynamics at the current operating point. More advanced gain
scheduling methods such as linear parameter varying (LPV) methods enable linearizations within
a finite parameter space and are not limited to a set of equilibrium points. With an increasing
number of scheduling variables and with an increasing discretization of the scheduling variables,
the dimensions of the parameter space quickly grows and renders the practical implementation
close to impossible, especially if constraints on states, outputs and inputs are to be handled by
the controller. The easy fix to avoid the explosion of dimensions in the parameter space is to
re-linearize the model online at each sample time and design a controller based on the linearized
model, taking non-equilibrium residuals of the linearization into account in the controller design.
No theoretical guarantees concerning stability etc. can however be given to this ad-hoc procedure
compared to the theoretically better founded LPV framework.

If one or more outputs are to be steered towards their desired reference values several methods
exits: The first is to augment the system with an integrator for each reference tracked output and
seek to minimize the integrated the error between the output and the reference value. For varying
reference values or constraints on e.g. control signals or control signal rates, integrator wind-up
can occur, giving rise to unwanted overshoot performance of the closed-loop. A second option is to
use target calculation to determine the new steady state target values for states and control signals
and use an origin-shifting controller framework, e.g. as proposed by Pannocchia and Rawlings [2].
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In this note, it is shown how to gather reference tracking and relinearization at non-stationary
points, into a unified formulation, which serves as an extension to the standard Linear Quadratic
(LQ) formulation. Model Predictive Control (MPC) with quadratic cost functions is similar to
the standard LQ control and the unified control formulation can be applied to MPC as well. Rao
et al. [3] has shown how to ease the computational burden of MPC by exploiting the structure
given by an inequality constrained optimal control problem. The method suggested by Rao et al.
[3] is extended to accommodate the unified formulation presented in this paper. Similar algo-
rithms exploiting the structure of the interior-point optimization problem have subsequently been
implemented by others, e.g. Edlund et al. [4] and Haverbeke et al. [5] for MPC and Moving Hori-
zon Estimation purposes, respectively. The extended MPC formulation is also able to act as the
quadratic programming problem (QP) solving algorithm used by a sequential quadratic program-
ming solver, when applied to Nonlinear Model Predictive Control (NMPC) as done by Tenny et al.
[6].

This documents outline is: In the first section unconstrained MPC and reference-tracking non-
stationary LQ control is presented. In the second section it is shown how to exploit the structure
of an inequality constrained MPC adapted to the unified control framework when solving the QP.
To relate the second section to a quadratic programming problem solver, theory for a general
purpose primal-dual interior-point quadratic programming is revisited in the third section. In the
last section it is shown how to obtain time discrete dynamic models at non-stationary points.

2 Unconstrained linear model predictive control

The finite horizon optimal control problem is given as

minφN (xN ) +

N−1∑
k=0

φk(xk,uk) (1a)

where the stagewise cost function

φk(xk,uk) =
1

2
‖r − gr(xk,uk)‖2Wr

+
1

2
‖gz(xk,uk)‖2Wz

(1b)

consist of two terms: The first term seeks to drive the plant reference outputs gr(·) towards the
desired reference r. The second term seeks to minimize dynamic variations given by gz(·) such as
e.g. velocities, accelerations. The optimization problem is subject to an initial constraint

x0 = x̄ (1c)

and to the nonlinear state progress equation constraint

xk+1 = f(xk,uk), for k = 0, . . . , N − 1 (1d)

The nonlinear equations can be assumed linear throughout the entire prediction horizon to ease
the problem solving. The state progress equation as well as the equations for the reference outputs
gr(·) and the dynamic outputs gz(·) are linearized around (x̄, ū)

f(xk,uk) ≈ Axk + Buk + δ (2a)

gr(xk,uk) ≈ Crxk + Druk + γr (2b)

gz(xk,uk) ≈ Czxk + Dzuk + γz (2c)

The linearized stagewise cost function can be put on a more general form

φk(xk,uk) =
1

2
(xTkQxk + uTkRuk + 2xTkMuk + 2qTxk + 2rTuk) (3)
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where

Q = Cr
TWrCr + Cz

TWzCz (4a)

R = Dr
TWrDr + Dz

TWzDz (4b)

M = Cr
TWrDr + Cz

TWzDz (4c)

qT = [γr − r]TWrCr + γz
TWzCz (4d)

rT = [γr − r]TWrDr + γz
TWzDz (4e)

and the final state cost

φN (xN ) =
1

2
(xTNΠNxN + 2πTNxN ) (5)

The Lagrangian to optimal control problem is

L = φN (xN ) +

N−1∑
k=0

φk(xk,uk) + νT0 (x̄− x0) +

N−1∑
k=0

νTk+1 (Axk + Buk + δ − xk+1) (6)

The optimal solution is given by ∇L = 0, which can be found by a recursion of the stagewise
Lagrangian gradients

∇xkL = Qxk + Muk + q + ATνk+1 − νk (7)

∇ukL = MTxk + Ruk + r + BTνk+1 (8)

starting a the end of the prediction horizon

∇xNL = ΠN + πN − νN (9)

inserting the final stage Lagrangian gradient (9) and the state progress equation (2a) into the N−1
stage Lagrangian gradient yields

∇xN−1
L = [QN−1 + ATΠNA]xN−1 + M̃N−1uN−1 + q̃N−1 − νN−1 (10)

∇uN−1
L = M̃T

N−1xN−1 + R̃N−1uN−1 + r̃N−1 (11)

where

R̃N−1 = R + BTΠNB and M̃N−1 = M + ATΠNB (12)

and

q̃N−1 = q + ATΠNδ + ATπN and r̃N−1 = r + BTΠNδ + BTπN (13)

are introduced to simplify notation. A control law can be derived from (11)

uN−1 = −KN−1xN−1 − κN−1 (14)

where

KN−1 = R̃−1
N−1M̃

T
N−1 and κN−1 = R̃−1

N−1r̃N−1 (15)

which can be inserted into (10) giving

∇xN−1
L = ΠN−1 + πN−1 − νN−1 (16)

where

ΠN−1 = Q + ATΠNA− M̃N−1KN−1 and πN−1 = q̃N−1 − M̃N−1κN−1 (17)

3



The recursion can then be continued for the stages N − 2, N − 3 etc. until the beginning of
the prediction horizon. The variables can be reconstructed, if needed, with a forward recursion
initiated with

x̄ = x0 (18)

ν0 = Π0x0 + π0 (19)

and then going from k = 0, . . . , N − 1 where

uk = −Kkxk − κk (20)

xk+1 = Axk + Buk + δ (21)

νk+1 = Πk+1xk+1 + πk+1 (22)

For a LTI system and N →∞ the solution becomes an algebraic set of equations. The quadratic
cost for the terminal cost is found by the discrete-time algebraic Riccati equation (DARE)

Π = Q + ATΠA− M̃K (23)

where to simplify notation, the matrices

M̃ = M + ATΠB and R̃ = R + BTΠB

are introduced, leading to the feedback gain K = R̃−1M̃T . The linear terminal cost term π is
determined from the same recursion as the DARE

π = q − M̃κ+ ATΠδ + ATπ (24)

where the control action contribution κ

κ = R̃−1[r + BTΠδ + BTπ] (25)

is part of the optimal control law

uk = −Kxk − κ (26)

The DARE should be solved using a specialized DARE solver [7] to achieve fast and robust results
and the linear cost term can be found from (24)

π = [I−AT + KTBT ]−1[q −KT [r + BTΠδ] + ATΠδ] (27)

3 Inequality constrained MPC

In this section, the temporal subscript k has been omitted for the Jacobians A,B etc. even though
that they can vary within the prediction horizon, if used within a NMPC framework. This is done
to ease notation and because they remain constant within the iterations of the QP solver.

The model predictive controller entails the computation of the control signal within a prediction
horizon in the range k = (0, . . . , N − 1). The MPC is formulated as a dual mode horizon where
the first part, i.e k = (0, . . . , N − 1), is considered constrained. In the second horizon, i.e. k =
(N + . . . ,∞), it is assumed that the plant has reached a state where the unconstrained solution is
feasible [8]. The dual mode optimization problem is

min

N−1∑
k=0

φk(xk,uk) +

N−1∑
k=1

‖σk‖2Wσ
+

∞∑
k=N

φk(xk,uk) (28a)

where the stagewise cost function is φk(·) is given by (1b). The term ‖σk‖2Wσ
is only included in

the first part of the prediction horizon and seeks to minimize the violation of the soft constraints
σ. The optimization problem is subject to an initial constraint as in (1c) and to the state progress
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equation (2a) in the interval (k = 0, . . . ,∞). Whereas the soft and hard inequality constraints are
only active in the first part of the prediction horizon

gs(xk)− σk ≈ Csxk + γs − σk ≤ s, k = (1, . . . , N − 1) (28b)

σk ≥ 0, k = (1, . . . , N − 1) (28c)

gh(xk,uk) ≈ Chxk + Dhuk + γh ≤ h, k = (0, . . . , N − 1) (28d)

The constants contributions and the inequality limits can be combined in a redefined inequality
limit to ease notation

s̄ ≡ s− γs and h̄ ≡ h− γh

The second part of the optimization problem can be reduced to a terminal cost, consisting of a
quadratic ΠN and a linear term πN

φN (xN ) =

∞∑
k=N

φk(xk,uk) = xTNΠNxN + πTNxN (29)

given by the unconstrained DARE (23) and (27). The Lagrangian for the inequality constrained
problem can written as

L = φN (xN ) +

N−1∑
k=0

φk(xk,uk) +

N−1∑
k=1

‖σk‖2Wσ

+ νT0 (x̄− x0) +

N−1∑
k=0

(
νTk+1(Axk + Buk + δ − xk+1)

)
+

N−1∑
k=0

(
(λhk )T (Chkxk + Dhuk − h̄)

)
+

N−1∑
k=1

(
(λsk)T (Csxk − σk − s̄)

)
+

N−1∑
k=1

(
(λσk )T (−σk)

)
(30)

where ν0 is Lagrange multiplier for (1c); νk for k = 1, . . . , N is the Lagrange multiplier for (2a);
λhk ,λsk and λσk are the Lagrange multipliers for (28d),(28b) and (28c) respectively.

The Karush-Kuhn-Tucker (KKT) conditions for optimality are

∇L = 0 (31)

x̄− x0 = 0 (32)

Axk + Buk + δ − xk+1 = 0 (33)

Chxk + Dhuk − h̄ ≤ 0 (34)

Csxk − σk − s̄ ≤ 0 (35)

−σk ≤ 0 (36)

diag(λhk )diag(Chxk + Dhuk − h̄)e = 0 (37)

diag(λsk)diag(Csxk − σk − s̄)e = 0 (38)

diag(λσk )diag(−σk)e = 0 (39)

(λhk ,λ
s
k,λ

σ
k ) ≥ 0 (40)

where (37), (38) and (39) are the complementary slackness conditions. By the introduction of the
slack variables thk , tsk and tσk for λhk , λsk and λσk respectively, the KKT condition can be rewritten
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to

F =



∇L
x̄− x0

Axk + Buk + δ − xk+1

Chxk + Dhuk − h̄+ thk
Csxk − σk − s̄+ tsk

−σk + tσk
ThkΛhke
TskΛ

s
ke

TσkΛσk e


= 0 (41)

(λhk , t
h
k ,λ

s
k, t

s
k,λ

σ
k , t

σ
k ) ≥ 0 (42)

where there appropriate ranges of k are omitted for ease of notation. Thk ≡ diag(tλk ), Λhk ≡
diag(λhk ), Tsk ≡ diag(tsk), Λsk ≡ diag(λsk), Tσk ≡ diag(tσk ), Λσk ≡ diag(λσk ) and e = [1 1 . . . 1]T .
The Jacobian of the Lagrangian ∇L consist of

∇x0
L = Qx0 + Mu0 + q0 − ν0 + ATν1 + CT

hλ
h
0 (43)

∇xkL = Qxk + Muk + qk − νk + ATνk+1 + CT
hλ

h
k + CT

s λ
s
k (44)

∇xNL = ΠNxN + πN − νN (45)

∇ukL = Ruk + MTxk + rk + BTνk+1 + DT
hλ

h
k (46)

∇εkL = Zσk + z − λsk − λ
σ
k (47)

The Newton like step

∇F∆w = −F = r (48)

will be used to iterate towards a solution. The full KKT matrix ∇F multiplied with the variable
step ∆w = [∆x0 ∆u0 . . .] and the residual vector r = [rx0 r

u
0 . . .] are

∇F∆w =



Q∆x0 + M∆u0 −∆ν0 + AT∆ν1 + CT
h∆λh0

Q∆xk + M∆uk −∆νk + AT∆νk+1 + CT
h∆λhk + CT

s ∆λsk + qk
ΠN∆xN −∆νN

R∆uk + MT∆xk + BT∆νk+1 + DT
h∆λhk

Z∆σk −∆λsk −∆λσk
−∆x0

A∆xk + B∆uk −∆xk+1

Dh∆uk + Ch∆xk + ∆thk
Cs∆xk −∆σk + ∆tsk
−∆σk + ∆tσk

Thk∆λhk + Λhk∆thk
Tsk∆λsk + Λsk∆tsk
Tσk∆λσk + Λσk∆tσk



(49)
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rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

rλ
h

k

rλ
s

k

rλ
σ

k

rt
h

k

rt
s

k

rt
σ

k



= −F =



−Qx0 −Mu0 − q0 + ν0 −ATν1 −CT
hλ

h
0

−Qxk −Muk − qk + νk −ATνk+1 −CT
hλ

h
k −CT

s λ
s
k

−ΠNxN − πN + νN
−Ruk −MTxk − rk −BTνk+1 −DT

hλ
h
k

−Zσk − z + λsk + λσk
−x̄+ x0

−Axk −Buk − δ + xk+1

−Chxk −Dhuk + h̄− thk
−Csxk + σk + s̄− tsk

σk − tσk
−ThkΛhke− Ωh
−TskΛ

s
ke− Ωs

−TσkΛσk e− Ωσ



(50)

where Ωh = diag(∆thk )diag(∆λhk )−σµe, Ωs = diag(∆tsk)diag(∆λsk)−σµe and Ωσ = diag(∆tσk )diag(∆λσk )−
σµe are the centering terms for the corrector step in the predictor-corrector algorithm.

The slack variables ∆thk , ∆tsk and ∆tσk are eliminated using (∆thk = (Λhk )−1(rt
h

k − Thk∆λhk ),
(∆tsk = (Λsk)−1(rt

s

k −Tsk∆λsk) and (∆tσk = (Λσk )−1(rt
σ

k −Tσk∆λσk ) respectively, giving

∇F∆w =



Q∆x0 + M∆u0 −∆ν0 + AT∆ν1 + CT
h∆λh0

Q∆xk + M∆uk −∆νk + AT∆νk+1 + CT
h∆λhk + CT

s ∆λsk
ΠN∆xN −∆νN

R∆uk + MT∆xk + BT∆νk+1 + DT
h∆λhk

Z∆σk −∆λsk −∆λσk
−∆x0

A∆xk + B∆uk −∆xk+1

Dh∆uk + Ch∆xk −Σhk∆λhk
Cs∆xk −∆σk −Σsk∆λsk
−∆σk −Σσk∆λσk


(51)

where Σhk = (Λhk )−1Thk , Σsk = (Λsk)−1Tsk and Σσk = (Λσk )−1Tσk

rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

r̄λ
h

k

r̄λ
s

k

r̄λ
σ

k


=



rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

rλ
h

k − (Λhk )−1rt
h

k

rλ
s

k − (Λsk)−1rt
s

k

rλ
σ

k − (Λσk )−1rt
σ

k


(52)

Eliminating ∆λhk , ∆λsk and ∆λσk (using ∆λhk = (Σhk )−1(Dh∆uk + Ch∆xk − r̄λ
h

k ), ∆λsk =
(Σsk)−1(Cs∆xk − ∆σk − r̄λ

s

k ) and ∆λσk = (Σσk )−1(−∆σk − r̄λ
σ

k )), and afterwards eliminating
∆σk (using ∆σk = Z̄−1(CT

s (Σsk)−1∆xk + r̄σk )) where r̄σk = rσk − (Σsk)−1r̄λ
s

k − (Σσk )−1r̄λ
σ

k yields

∇F∆w =


Q̄0∆x0 + M̄0∆u0 −∆ν0 + AT∆ν1

Q̄k∆xk + M̄k∆uk −∆νk + AT∆νk+1

ΠN∆xN −∆νN
R̄k∆uk + MT

k ∆xk + BT∆νk+1

−∆x0

A∆xk + B∆uk −∆xk+1

 (53)
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and the residuals
r̃x0
r̃xk
r̃xN
r̃uk
rν0
rνk+1

 =



rx0 + CT
h (Σh0 )−1r̄λ

h

0

rxk + CT
h (Σhk )−1r̄λ

h

k + CT
s (Σsk)−1r̄λ

s

k + CT
s (Σsk)−1Z̄−1

k r̄
σ
k

rxN
ruk + DT

h (Σhk )−1r̄λ
h

k

rν0
rνk+1


(54)

where

R̄k = R + DT
h (Σhk )−1Dh (55)

M̄k = M + CT
h (Σhk )−1Dh (56)

Z̄k = Z + (Σsk)−1 + (Σσk )−1 (57)

Q̄0 = Q + CT
h (Σh0 )−1Ch (58)

where

Q̄k = Q−CT
h (Σhk )−1Ch + CT

s [(Σsk)−1 − (Σsk)−1Z̄−1
k (Σsk)−1]Cs (59)

using

∆uN−1 = −KN−1∆xN−1 + κN−1 (60)

where

R̃N−1 = [R̄N−1 + BTΠNB] (61)

M̃N−1 = [M̄N−1 + ATΠNB] (62)

KN−1 = R̃−1
N−1M̃

T
N−1 (63)

ΠN−1 = Q̄N−1 + ATΠNA− M̃N−1KN−1 (64)

κN−1 = R̃−1
N−1[r̃uN−1 + BT r̃xN + BTΠNr

ν
N ] (65)

πN−1 = r̃xN−1 + ATΠNr
ν
N + Ar̃xN − M̃N−1κN−1 (66)

The recursion can be continued for k = N − 1, . . . , 0

R̃k = [R̄k + BTΠk+1B] (67)

M̃k = [M̄k + ATΠk+1B] (68)

Kk = R̃−1
k M̃T

k (69)

Πk = Q̄k + ATΠk+1A− M̃kKk (70)

κk = R̃−1
k [r̃uk + BT r̃xN + BTΠNr

ν
k+1] (71)

πk = r̃xk + ATΠk+1r
ν
k+1 + Ar̃xk+1 − M̃kκk (72)

A forward recursion can be used to construct variables

∆x0 = −rν0 (73)

∆ν0 = Π0∆x0 − π0 (74)

For k = 0, . . . , N − 1

∆uk = −Kk∆xk + κk (75)

∆xk+1 = A∆xk + B∆uk − rνk+1 (76)

∆thk = −Dh∆uk −Ch∆xk + rλ
h

k (77)

∆λhk = (Thk )−1(rt
h

k −Λhk∆thk ) (78)
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For k = 1, . . . , N − 1

∆σk = Z̄−1(CT
s (Σsk)−1∆xk + r̄σk ) (79)

∆νk = Πk∆xk − πk (80)

∆tsk = −Cs∆xk + ∆σk + rλ
s

k (81)

∆tσk = ∆σk + rλ
σ

k (82)

∆λsk = (Tsk)−1(rt
s

k −Λsk∆tsk) (83)

∆λσk = (Tσk )−1(rt
σ

k −Λσk∆tσk ) (84)

4 Linear constrained quadratic optimization

This section describes the underlying quadratic programming problem (QP) solver based on a
interior-point primal-dual formulation. The algorithm (Alg. 1) is taken from Rao et al. [3], similar
algorithms can be found in Wright [9] and Nocedal and Wright [10]. The mentioned algorithms
are all based on the predictor-corrector method developed by Mehrotra [11]. The standard QP is
given as

min
x

1

2
xTQx+ cTx (85a)

subject to

Ax = b (85b)

Cx ≤ d (85c)

where the Hessian Q is a symmetric positive semidefinite matrix. The Lagrangian to (85) is

L(x,λ,ν) =xTQx+ cTx+ λT (Cx− d) + νT (Ax− b) (86)

Leading to the Karush-Kuhn-Tucker (KKT) conditions

Qx+ c+ ATν + CTλ = 0 (87a)

Ax− b = 0 (87b)

Cx− d ≤ 0 (87c)

λ ≥ 0 (87d)

λT (Cx− d)e = 0 (87e)

where (87a) is the stationarity condition, (87b) and (87c) are the primal feasibility conditions,
(87d) is the dual feasibility condition and (87e) is the complimentary slackness condition for the
primal-dual problem. Introducing the slack variable t to (85c) simplifies the KKT conditions and
gives the following system to solved

F(w) =


Qx+ c+ ATν + CTλ

Ax− b
Cx− d− t

ΛTTe

 = 0, s.t. (λ, t) ≥ 0 (88)

where Λ = diag(λ) and T = diag(t) , w = (x,ν,λ, t). Newton like steps ∇F∆w = −F = r
can be taken to iterate towards the solution. Multiple methods exist but one the most used is the
predictor-corrector method by Mehrotra [11]. The method starts with a predictor step

Q AT CT 0
A 0 0 0
C 0 0 −I
0 0 T Λ




∆xaff

∆νaff

∆λaff

∆taff

 = −


rx

rν

rλ

rt

 (89)
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where

rx = Qx+ c−ATν −CTλ (90)

rν = Ax− b (91)

rλ = Cx− t− d (92)

rt = ΛTe (93)

The largest possible step size without violating the inequality constraints is calculated

αaff = arg max{α ∈ [0, 1]|(λ, s) + α(∆λaff ,∆saff ) ≥ 0} (94)

The current complementary measure

µ = λTs/dim(λ) (95)

is a measure of the current feasibility and the affine complementary measure

µaff = (λ+ αaff∆λ)T (s+ αaff∆s)/dim(λ) (96)

is a measure of the feasibility if the full predictor step was taken. The predictor step is followed
by a corrector step which takes the centering parameter into account

σ =

(
µaff

µ

)3

(97)

to keep the iterate at the central path between the primal and the dual problem and thus
away from infeasibility. This is done by modifying the residual rt with the corrector term
Ω = diag(∆taff )diag(∆λaff )e− σµe

Q AT CT 0
A 0 0 0
C 0 0 −I
0 0 T Λ




∆x
∆ν
∆λ
∆t

 = −


rx

rν

rλ

rt + Ω

 (98)

The corrected step size can then be calculated

α = arg max{α ∈ [0, 1]|(λ, s) + α(∆λ,∆s) ≥ 0} (99)

and the variables can be updated

w+ = w + αβ∆w, 0 < β < 1 (100)

where β is a damping factor typically close to 1, this damping is imposed on the step to improve
the numerical stability of the algorithm. Convergence is assumed if

µ ≤ tolµ and ‖r‖∞ ≤ tolr‖(Q,A,C, c, b,d)‖∞ (101)

Care should also be taken when determining an initial guess, see e.g. Mehrotra [11] to determine
good starting points for λ and t such that they are sufficiently far away from infeasibility but at
the same time not to far away from each other as convergence speed would be impaired otherwise.

5 Linearization of models

A dynamic system can be described by the differential state equation and an output equation

ẋ(t) = f(x(t),u(t)) (102a)

y(t) = g(x(t),u(t)) (102b)
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Algorithm 1: Interior-point primal-dual quadratic programming solver

Initial guess;
if Constraints are not violated then

Return with result;

for ITER from 1 to IMAX do
Solve ∇F∆waff = −r;

Calc. αaff = max
{
α ∈ (0, 1]|(t,λ) + α(∆taff ,∆λaff ) ≥ 0

}
;

Calc. µ = tTλ/m;

Calc. µaff = (t+ αaff∆taff )T (λ+ αaff∆λaff )/m;

Calc. σ = (µaff/µ)3;

Calc. residuals with corrector terms: rcorr = (rx, rν , rλ, rt + Ω);
Solve ∇F∆w = −rcorr;
Calc. α = max {α ∈ (0, 1]|(t,λ) + α(∆t,∆λ) ≥ 0} ;
Update variables: w+ = w + αβ∆w ;
Calc. residuals used by next predictor step: r;
if Convergence then

Terminate algorithm;

For the application of model predictive control several methods of time-discretization exits, for
nonlinear model predictive control where the model is re-linearized at each temporal point in
the prediction horizon, the time-discretization method influences the convergence properties of the
NLP solver. Forward Euler time integration is probably the most simple choice. Runge-Kutta time
integration schemes are common choices for time discretization of the models. The computation
of the sensitivity/Jacobian matrices (A,B) of the state progress equation can be computationally
expensive. Methods such as the one suggested by Kristensen et al. [12], seeks to minimize the
computational burden by reusing already calculated information. Yet another time discretization
method, which can be used for NMPC is collocation of time-discrete points [13], which shall not
be discussed further in this work.

If the models can be assumed to be linear within a time step of the prediction horizon, the
computational burden of time-integration might be reduced significantly. The differential state
equation and the measured outputs are linearized around (x̄, ū) using first order Taylor series
approximation

f(xk,uk) ≈ Axk + Buk + δ (103a)

g(xk,uk) ≈ Cxk + Duk + γ (103b)

where the constant contributions δ and γ are

δ = f(x̄, ū)−Ax̄−Bū (104)

γ = g(x̄, ū)−Cx̄−Dū (105)

The time-discrete state progress equation

xk+1 = xk +

∫ tk+1

tk

f(x(t),u(t))dt︸ ︷︷ ︸
f(xk,uk)

(106)

can, under the assumption of being linear and having a constant input u within a time step, be
time-discretized by the zero-order-hold method [14] and written as

f(xk,uk) ≈ xk +

∫ tk+1

tk

Ax(t) + Bu(t)dt+

∫ tk+1

tk

δdt = Axk + Buk + δ (107)

where

δ = ∆tδ (108)
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and where [
A B
0 I

]
= expm

(
∆t

[
A B
0 0

])
(109)

where expm is the matrix exponential function, usually approximated by a Padé approximation
with scaling and squaring [15]. Linear forward Euler time integration can be used instead of the
zero-order-hold method. The time step ∆t can be divided into n even smaller equidistant time
steps and a forward recursion can calculate the state values at the next time step

xi+1 = xi + ∆t
n ẋi = xi + ∆t

n (Axi + Bui + δ) (110)

where i is the local time index between time tk and tk+1. The time discrete state and input
matrices A and B are initiated as

A = I and B = 0 (111)

and updated as

A = (I + ∆t
n A)A and B = (I + ∆t

n A)B + ∆t
n B (112)

during the n number of time steps, if the time discrete sensitivity matrices are needed.
Notice that the linearized functions (103) are functions of the original variable and not pertur-

bations around the linearization points. If used for NMPC, the iterations within the sequential
programming solver uses the perturbations instead of the actual value and a reformulation is
required.
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