Technical University of Denmark

Chockbølge exiterende pulsationer af luftbobler i vand

Jensen, Finn Bruun; Jensen, Leif Bjørnø

Publication date: 1971

Document Version Også kaldet Forlagets PDF

Link back to DTU Orbit

Citation (APA):

Jensen, F. B., & Jensen, L. B. (1971). Chockbølge exiterende pulsationer af luftbobler i vand. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU).

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Afdelingen for Fluid Mekanik
DEN POLYTEKNISKE LÆREANSTALT
Bygning 404
Lundtoftevej 100
TH. 88 46 22

CHOKBØLGE EXCITEREDE PULSATIONER AF LUFTBOBLER I VAND

AF

F. C. BRUUN JENSEN

AFDELINGEN
FOR
FLUID MEKANIK

DANMARKS TEKNISKE HØJSKOLE LYNGBY 1971

FORORD

Denne afhandling er en del af et licentiatstudium udført på Afdelingen for Fluid Mekanik ved Danmarks tekniske Højskole i årene 1969-71.

Jeg takker afdelingens leder professor K. Refslund for den interesse, han har vist projektet, og for megen værdifuld vejledning.

Jeg vil desuden takke lektor, lic. techn. Leif Bjørnø for mange udbytterige diskussioner og for den opmuntring, jeg har fået, når tilsyneladende uoverstigelige vanskeligheder opstod. Jeg er desuden taknemlig for hans kritiske gennemlæsning af manuskriptet til afhandlingen.

Lyngby, august 1971.

Tien Breun Jensen

INDHOLDSFORTEGNELSE

FOR	RORD.	•		•	•		•		•	•	•	•		•	•	•	٠	ii.
ABS	TRAK	T.		•		•	•			•					•	•		V
ABS	TRAC	T IN	EN	GLIS	SH	•		•									•	vi
NOM	1ENKI	LATUF	RLIS'	ΤE	•			•	•	•			•	•	•			vii
I.	INTE	RODUK	(TIO	N.		•	•			•	•	•	•	•	•	•	•	1
II.	መድረገ	RI FO	ים בו	ORTI	ווסיד	r.S 2.1	אַראַי	IEN	_									3
11.									•									3
		inkon -	-					•	•	•	•	•	•	•		_	_	4
	В. К	rqmo>	ress	ıbe.	T V	æsk e	∌ •	•	•	•	•	•	•	•		•	_	
ııı.	T.TNI	EERE	PIIT.	SAT:	TON	ER							•	•		•		7
		rie					eae	n fi	rekt	ens	3.							8
		.rre Dæmpi												•	• -			12
								<i>.</i>				_	_					12
	-	l. Te 2. Al	ermi Kust	sk isk	dæ dæ	nau:	ing	•	•	•	•				•	•		13
		3. V	isko	s d	æmp	ning	g.	•	•	ė	•	•	•	•	•	•	•	14 15
		4. De							•	•	•	•	•	•	•	•	. *	
	C. 1	Pulse	ereņ	de	bob	ler	s to	erm	odyı	nam:	ik	•	•	•	•	•	•	16
IV.	ULI	NEÆR	E PU	ILSA	TIO	NER	•	•	•	•	•	•	•	•	•	•	•	20
	Α. :	Frie	pul	.sat	ion	ers	eg	enf	rek	ven	s.	•	٠	•	•	•	•	22
		Puls							•		•	•		•	•	•	•	24
		Chok							lsa	tio	ner		•			•	•	33
		Bobl					•	•	4		•	•	• .	•	•	•	•	35
٧.	BER	EGNI	NG A	AF T	'RYK	VAR	TAI	ION	ERN	E I	EN	PU	LSE	REN	IDE	BOE	3LE	39
VI.	NUM	ERIS	KE N	ÆTC	DEF	₹.	•	•		•	•	•		• ,		•	. •	50
		Grun											etc	der	ne	•	•	51
		Nume																53
WTT.	FOR	SØGS	OPST	rili	LINC	G OG	МÅ	LEU	DST	YR	•		•		•	•		56

VIII.	FO	RSØC	SRES	ULTA	TER				•	•	•	•	•	•	•	•	62
	A.	Mak	sima.	ltry	k o	g in	npul	stæt	thed	fo	r c	hokl	bø1	gen	•	•	62
		2.	Syste Korre	ekti	.one	r ti	ll m	ålte	e P _m	 og	·	vær	die:	r.	<i>.</i>	•	64 67
		3.	Fors	øgsi	esu	ltat	er.	•	•	•	•	•	•	•	•	•	71
	В.		ritat: ringe:		bob •	lers	in	dfly •	ydel •	se •	på •	bob.	lef	otog •	ra-	•	77
	C.	Di:	ffrak	tior •	af	cho	okbø •	lge •	bag •	pl	ade •	me	d c	irkų •	ılæı •	rt •	84
	D.	Tei	cmody:	nami	ske	for	rhol	d fo	or b	ob1	epu	lsa	tio	nen	•	•	90
			Bere						•	•	•		•	•	•	•	91 95
	E.		csima	-					sere	nđe	bo	ble	•	•	•	•	101
			Samm											de n	nak	si-	
			malt			•		•	•	•	•	•	•	•	•	•	103
	F.	Bol	olers	ene	ergi	abso	orpt	ion	•	•	•	•	•	•	•	•	111
-	G.	ΗØ	jhast	ighe	eds	foto	ogra	fer	ing	af	pul	.ser	end	e bo	bl.	er ,	116
IX.	KO	NKL	USION	•	•	•	• •		•	•	٠	•	•	•	•	•	118
CON	CLU	SIO	ns in	ENG	GLIS	Н		ò		•		•	•	•	• •	•	120
APP	END:	IKS		•		•		•		•	•	•	٠	•	٠	•	122
REF!	ERE	NCE	LISTE							•				•	•	•	124

ABSTRAKT

Denne rapport omhandler en teoretisk og eksperimentel undersøgelse af ulineære pulsationer af luftbobler i vand. Pulsationerne startes af chokbølgen fra en undervandseksplosion. Der er anvendt en ladning på 0,8 g Tetryl, og undersøgelsen omfatter bobler af størrelsen 10 - 30 mm i diameter. Ved at omslutte boblen med en tynd gummihinde muliggøres direkte trykmåling inde i boblen. Maksimaltrykket er målt som funktion af boblediameteren og afstanden fra eksplosionsstedet. Resultatet er derefter sammenlignet med de beregnede tryk opnået ved numerisk løsning af den ulineære differentialligning for boblepulsationen. Endvidere er de termodynamiske forhold for en pulserende boble undersøgt såvel teoretisk som eksperimentelt. Endelig er den maksimalt absorberede energi i en pulserende boble beregnet, da denne størrelse er et udtryk for en enkelt bobles dæmpende egenskaber over for en chokbølge.

ABSTRACT

This report deals with a theoretical and experimental investigation of non-linear pulsations of air bubbles in water. The pulsations are initiated by the shock wave from an underwater explosion produced by a charge of 0.8 g Tetryl. The diameters of the bubbles studied are in the range 10-30 mm. By enclosing the bubble in a thin rubber membrane, direct pressure measurement inside the bubble is made possible. The maximum pressure is measured as a function of the bubble diameter and the distance from the explosion. The experimental results are compared with the calculated pressures obtained by a numerical solution of the non-linear differential equation for the bubble pulsation. In addition, the thermodynamic behaviour of a pulsating bubble is investigated both theoretically and experimentally. Finally, the maximum energy absorbed in a pulsating bubble is calculated as an expression of the attenuation effect of a single bubble on a shock wave.

NOMENKLATURLISTE

- a Afstanden fra eksplosionsstedet.
- A Dimensionsløst tryk $\left[= \frac{P_m}{P_{hy}} \right]$.
- B Konstant ($\simeq 3000$ bar for vand).
- c Lydhastighed i væsken.
- c_{q} Lydhastighed i gassen.
- C Lydhastighed i væsken ved bobleoverfladen.
- C_k Kapacitet i målekredsen.
- Specifik varme pr masseenhed af gassen ved konstant tryk.
- C Specifik varme pr masseenhed af gassen ved konstant volumen.
- C' Specifik varme pr volumenenhed af gassen ved konstant volumen.
- C' Specifik varme pr volumenenhed af væsken ved konstant volumen.
- d_{Ω} Ligevægtsdiameter af boblen.
- d, Minimumdiameter af boblen.
- D Diameter af transducerens trykfølsomme flade.
- e Den akkumulerede energi pr fladeenhed af boblens tværsnitsareal $\left[=\frac{E}{\frac{\pi}{4}d_0^2}\right]$.
- e Energitæthed i chokbølgen.
- E Den maksimalt akkumulerede energi i boblen.
- f Frekvens.
- f_{\circ} Lineære egenfrekvens for boblepulsationen.
- f_A Svingningsfrekvens af lydfeltet.

```
Fo Fourier-tallet \left[ = \frac{\alpha_g \tau}{R_o^2} \right].
```

g Funktion defineret på p 10.

h Enthalpi.

H Enthalpi i væsken ved bobleoverfladen.

I Impulstæthed i chokbølgen.

Den målte impulstæthed i chokbølgen.

 k_1 Konstant (= 0 eller 1).

K_f Korrektionsfaktor.

Hovedakserne i den ellipsoide, hvorved boblen approksimeres.

 L_g Termisk diffusionslængde for gassen $\left[=\sqrt{\frac{\alpha_g}{\omega_A}}\right]$.

 L_v Termisk diffusionslængde for væsken $\left[=\sqrt{\frac{\alpha_v}{\omega_A}}\right]$.

M Mach-tallet $\left(=\frac{u}{c}\right)$.

n Mode-nummer for boblesvingningen.

P Tryk.

P* Det målte trykforløb i chokbølgen.

P Trykket i boblen i ligevægtstilstanden.

Pl Maksimaltrykket i en pulserende boble.

 P_{∞} Trykket i væsken langt fra boblen.

PA Trykamplituden i lydfeltet.

Pg Trykket inde i boblen.

Phv Hydrostatisk tryk.

 P_{m} Maksimaltrykket i chokbølgen $P = P_{m} \cdot e^{-\frac{t}{\theta}}$.

P Maksimaltrykket i chokbølgen uden anvendelse af beskyttelsesplade.

 $P_{m.1}$ Funktion defineret på p 69.

 P_{m}^* , Funktion defineret på p 70.

P Trykket i væsken ved bobleoverfladen.

q Varmeovergangstallet mellem gas og væske.

Q Varmeenergi i boblen.

Q Varmeenergi i boblen til t = 0.

r Afstanden fra symmetriaksen i fig 84.1.

R Radius af boblen.

 \dot{R} $\frac{dR}{dt}$

 $\ddot{R} = \frac{d^2R}{dt^2}$.

R Ligevægtsradius af boblen.

R_k Ohmsk modstand i målekredsen.

t Tid.

t₁ Chokbølgens rise-time.

 T_{∞} Temperatur af væsken langt fra boblen.

T_G Temperatur af gassen i boblen.

u Partikelhastighed.

W Sprængstofmængden i detonatoren i {kg}.

x Sweep-hastighed på oscilloskopet.

y Dimensionsløs radius $\left[=\frac{R}{R_{o}}\right]$.

z Dimensionsløs tid $\left[=\frac{t}{\theta}\right]$.

 z_1 $\frac{dy}{dz}$

 $z_2 \frac{d^2y}{dz^2}$

- $\alpha_{_{\mathbf{q}}}$ Temperaturledningsevne for gassen.
- $\alpha_{_{_{\mathbf{V}}}}$ Temperaturledningsevne for væsken.
- β Funktion defineret på p 10.
- $\gamma \qquad \text{Varmefyldeforholdet for gassen } \left[= \frac{C_p}{C_v} \right].$
- δ Dæmpningskonstant for boblepulsationen $\left[=\frac{\Lambda}{\pi}\right]$.
- δ_{λ} Akustisk dæmpningskonstant.
- $\delta_{_{\mathbf{T}}}$ Termisk dæmpningskonstant.
- $\delta_{
 m V}$ Viskos dæmpningskonstant.
- η_v Dynamisk viskositet for væsken.
- $-\frac{t}{\theta}$ Tidskonstant for chokbølgen P = $P_{m} \cdot e^{-\frac{t}{\theta}}$.
- Tidskonstanter for et eksponentielt aftagende tryk.
- θ_k Tidskonstant for målekredsen.
- κ Polytropeksponenten.
- λ_{A} Bølgelængde for lydfeltet $\begin{bmatrix} = \frac{c}{f_{A}} \end{bmatrix}$.
- λ_{c} Bølgelængde for chokbølgen (= $c \cdot \theta$).
- λ_g Akustisk bølgelængde for gassen $\left[= \frac{c_g}{f_A} \right]$.
- A Logaritmisk dekrement for R=R(t).
- $\mu \qquad \text{ Dimensionsløs parameter } \left[= \frac{\lambda_c}{d_o} \right].$
- ξ Funktion defineret på p 34.
- ρ Massefylde.
- Massefylde af gassen i boblens ligevægtstilstand.
- ρ_m Massefylde af væsken langt fra boblen.
- ρ_{v} Massefylde af væsken.
- o Overfladespænding.

- Kontraktionstid for boblen.
- τ^* Integrationsgrænse ved bestemmelse af I*.
- Tider defineret i fig 65.1.
- $\phi = \sqrt{\frac{\pi f_o}{\alpha_q}}.$
- ψ Konstant (\simeq 7 for vand).
- ω_{λ} Cyklisk frekvens af lydfeltet.

I. INTRODUKTION

Studiet af pulserende luftbobler i vand er i de senere år intensiveret ganske betydeligt. Dette skyldes dels en øget interesse for de fysiske fænomener i forbindelse med gasbobler i væsker, og dels at den tekniske udvikling nu har medført, at der ved hjælp af datamater og højhastigheds fotoudstyr kan foretages detaljerede studier af pulserende bobler.

En boble kan fysisk defineres som et lille volumen af et kompressibelt fluid, der befinder sig i et større volumen af et fluid, der normalt kan betragtes som inkompressibelt. Et sådant system kan bringes i svingninger, hvor væsken omkring boblen er den svingende masse, og hvor gassens kompressibilitet repræsenterer systemets stivhed.

Arsagen til den store interesse for studiet af gasbobler i væsker er dels, at disse spreder og dæmper lydbølger, og dels at der i en voldsomt pulserende boble opstår høje tryk og temperaturer, som kan virke ødelæggende på faste materialer i boblens nærhed, jyf kavitationsboblers erodering af skibspropeller.

I denne rapport koncentreres interessen om boblers dæmpende egenskaber over for trykbølger. I de senere år har man flere gange benyttet sig af dette forhold ved havnebyggeri i bl a Canada [35] og Sverige [46]. Hvis et havneanlæg skal udvides under anvendelse af en undervandseksplosion, må den eksisterende del beskyttes mod trykbølgen fra eksplosionen. Dette kan fx ske ved at lade trykbølgen passere et dæmpende luftbobletæppe, før den rammer kajanlægget.

Et nøjere kendskab til de vigtigste dæmpningsmekanismer i et bobletæppe vil være ønskeligt, idet man hidtil har været henvist til at benytte spredte empiriske resultater ved beregning af bobletæppers dæmpningseffekt over for en chokbølge. Studiet af bobletæppers dæmpningseffekt kan også betragtes

som en fortsættelse af et tidligere licentiatarbejde ved Afdelingen for Fluid Mekanik, idet BJØRNØ [6] har undersøgt chokbølgers dæmpning ved passage af plader af polyurethanskum nedsænket i vand. Målinger viser, at et bobletæppe har større dæmpningseffekt end en skumplade.

Forudsætningen for at kunne klarlægge de vigtigste dæmpningsmekanismer i et bobletæppe er et nøje kendskab til, hvad der
sker med en enkelt luftboble i vand, som rammes af chokbølgen fra en undervandseksplosion. Derfor har man i dette licentiatarbejde koncentreret undersøgelserne om en enkelt boble, og derefter på grundlag af de opnåede resultater søgt at
opstille retningslinier for et bobletæppes udformning, når
dæmpningseffekten skal være størst mulig.

Formålet med denne rapport er primært at give en fremstilling af resultaterne af egne forsøg og beregninger, men desuden har det været hensigten at give en koncentreret oversigt over tidligere arbejder inden for området "pulserende bobler". Disse arbejder, der omtales i kap III og IV, kan naturligt opdeles i to hovedgrupper omhandlende henholdsvis lineært og ulineært pulserende bobler. Dette skyldes, at boblepulsationen ved små udsving fra ligevægtsstillingen (lineære pulsationer) kan behandles analytisk ved linearisering af den beskrivende ulineære differentialligning, medens der må foretages en numerisk løsning af den fuldstændige differentialligning ved beregning af store udsving fra ligevægtsstillingen (ulineære pulsationer).

II. TEORI FOR BOBLEPULSATIONEN

En teoretisk behandling af boblepulsationen kan kun foretages under visse simplificerende forudsætninger. De vigtigste er antagelsen om sfærisk symmetri for boblen og forudsætningen om ens tryk overalt i boblen. Symmetribetingelsen vil normalt være opfyldt for små bobler, idet den kuglesymmetriske form her stabiliseres af overfladespændingen. Det må dog samtidig kræves, at eventuelle trykpåvirkninger af boblen er kuglesymmetriske. Den anden betingelse om ens tryk overalt i boblen er med god tilnærmelse opfyldt, sålænge hastigheden af boblevæggen er lille i forhold til lydhastigheden i gasfasen [55]. I en simpel matematisk model af boblepulsationen vil det desuden være muligt at negligere en række fysiske egenskaber ved fluiderne som overfladespænding, viskositet, kompressibilitet, varmeledning m.m. Det må dog i hvert enkelt tilfælde nøje overvejes, hvorvidt alle disse fluideffekter er uden betydning for behandlingen af det betragtede problem.

En detaljeret gennemgang af teorien for boblepulsationen er omtalt i en række rapporter og artikler [20], [26], [29], [33], [34] og [55], og derfor vil kun de vigtigste resultater af teorien blive gengivet her. Adskillige ulineære differentialligninger kan opstilles til beskrivelse af boblepulsationen. FLYNN [20] omtaler således 4 forskellige ligninger, af hvilke en behandler væsken som inkompressibel, medens de 3 øvrige inkluderer kompressibilitetseffekten i beregningerne. Her vil den inkompressible plus den vigtigste af de kompressible beskrivelser blive omtalt.

A. Inkompressibel væske.

Under den antagelse at væsken er inkompressibel, og dermed at lydhastigheden er uendelig, kan følgende ulineære differentialligning opstilles for boblepulsationen:

$$R\ddot{R} + \frac{3}{2} \dot{R}^2 = \frac{1}{\rho_V} (P_V - P_{\infty})$$
 (4.1)

hvor

R: boblens radius

 $\dot{R}: \frac{dR}{dt}$

 $\ddot{R}: \frac{d^2R}{dt^2}$

 $ho_{\mathbf{v}}$: væskens massefylde

 P_{v} : trykket i væsken ved bobleoverfladen

P : trykket i væsken langt fra boblen

Denne simple ligning blev opstillet af RAYLEIGH [59] i 1917. En relation mellem trykket P_g inde i boblen og trykket P_v i væsken ved bobleoverfladen er givet af PLESSET [55]:

$$P_{q} = P_{v} + \frac{2\sigma}{R} + \frac{4\eta_{v}\dot{R}}{R}$$
 (4.2)

hvor σ er overfladespændingen og η_V den dynamiske viskositet for væsken. For at kunne løse ligningssystemet (4.1) + (4.2) må P_∞ være givet som funktion af tiden. P_g kan indsættes som funktion af R ved hjælp af følgende udtryk:

$$P_{q} = P_{o} \left(\frac{R_{o}}{R}\right)^{3\kappa} \tag{4.3}$$

som gælder for en polytropisk tilstandsændring af gassen. $_{O}^{p}$ og $_{O}^{c}$ er størrelser, som refererer til boblens ligevægtstilstand, medens $_{K}^{c}$ er polytropeksponenten. Karakteren af den termodynamiske proces for gassen bestemmer værdien af $_{K}^{c}$, idet $_{K}^{c}$ =1 svarer til isotermisk tilstandsændring og $_{K}^{c}$ =1,4 (for luft) svarer til en adiabatisk proces. For at kunne løse ligningssystemet må der specificeres en værdi for $_{K}^{c}$.

B. Kompressibel væske.

Som omtalt af FLYNN [20] findes der flere approksimative løsninger til bestemmelse af boblepulsationen i en kompressibel væske. Den bedst kendte er Kirkwood-Bethe approksimationen,

som giver følgende differentialligning:

$$R\ddot{R}(1 - \frac{\dot{R}}{C}) + \frac{3}{2}\dot{R}^{2}(1 - \frac{\dot{R}}{3C}) = H(1 + \frac{\dot{R}}{C}) + \frac{R\dot{H}}{C}(1 - \frac{\ddot{R}}{C})$$
 (5.1)

hvor H er entalpien i væsken ved bobleoverfladen, og C er væskens lydhastighed samme sted. Denne ligning blev først udledt af GILMORE [21]. Ligning (5.1) kan løses sammen med grænsebetingelsen (4.2), hvis H og C kendes som funktion af $\mathbf{p}_{\mathbf{v}}$. Til bestemmelse af H og C benyttes den isentropiske tilstandsligning for væsker [33]

$$\frac{P + B}{P_{\infty} + B} = \left[\frac{\rho}{\rho_{\infty}}\right]^{\psi} \tag{5.2}$$

hyor B og ψ er konstanter, som for vand antager følgende værdier: B = 3000 bar, ψ = 7.

Idet lydhastigheden er defineret som $c = \sqrt{\frac{dP}{d\rho}}$ s fås af (5.2)

$$C = \sqrt{\frac{\psi}{\rho_{\infty}}} \cdot (P_{\infty} + B)^{\frac{1}{2\psi}} \cdot (P_{V} + B)^{\frac{\psi-1}{2\psi}}$$
 (5.3)

Dette udtryk for C viser, at der skal optræde betydelige tryk i vandet før C ændres væsentligt.

Eks:
$$P_V = 100 \text{ bar} \Rightarrow \frac{\Delta C}{C} = 1.5 \%$$

Entalpien i væsken ved boblevæggen er bestemt ved $H\!=\!\!\int_{P_{\infty}}^{P_{V}}\frac{dP}{\rho}$ og derfor fås

$$H = \frac{\psi}{\psi - 1} \cdot \frac{(P_{\infty} + B)^{\frac{1}{\psi}}}{\rho_{\infty}} \cdot \left[(P_{V} + B)^{\frac{\psi - 1}{\psi}} - (P_{\infty} + B)^{\frac{\psi - 1}{\psi}} \right]$$
 (5.4)

Hermed er der opstillet et ligningssystem til beregning af boblepulsationen. Det er imidlertid en approksimativ løsning, der opnås, og for at se hvor god løsningen er, har HICKLING & PLESSET [26] sammenlignet den med en løsning til de eksakte bevægelsesligninger for et kompressibelt fluid. En kritisk

parameter i beregningerne er boblevæggens hastighed \mathring{R} i forhold til lydhastigheden C i væsken. Størrelsen \mathring{R}/C kaldes boblevæggens machtal. Ved små værdier af \mathring{R}/C kan væsken med god tilnærmelse regnes inkompressibel, og ifølge [26] gælder dette for \mathring{R}/C mindre end 0,3. Kirkwood-Bethe approksimationen kan derimod benyttes indtil et machtal på ca 5.

III. LINEÆRE PULSATIONER

Hvis en luftboble i vand udsættes for en trykpåvirkning vil den begynde at vibrere på en eller anden karakteristisk måde. De forskellige måder, hvorpå en boble kan vibrere, kaldes dens svingnings-"modes", og disse er beregnet af LAMB [42] i 1916. En grafisk fremstilling af de simpleste vibrationsformer er vist i fig 7.1. Den fuldt optrukne linie er boblens ligevægtsstilling, medens de stiplede linier viser yderpositionerne for boblevæggen. Det ses at 0. mode svarer til en simpel volumenpulsation med bibeholdt kuglesymmetrisk form. 1. mode er en translatorisk svingning, dvs en oscillation af massecentret med bibeholdt bobleform. 2. og højere ordens modes er udelukkende formændringer med fastholdt volumen. Hvis udsvingene fra ligevægtsstillingen er små, er de forskellige modes uafhængige. For n>l er egenfrekvensen af svingningerne ifølge [42] givet ved

$$f_n = \frac{1}{2\pi R_o} \sqrt{(n^2 - 1)(n + 2) \cdot \frac{\sigma}{\rho_v R_o}}$$
 (7.1)

hvor n er mode-nummeret og σ overfladespændingen. 1. mode har ingen egenfrekvens, men 0. mode har en egenfrekvens, der blev beregnet af MINNAERT [49] til

$$f_{O} = \frac{1}{2\pi R_{O}} \sqrt{\frac{3\gamma P_{\infty}}{\rho_{V}}}$$
 (7.2)

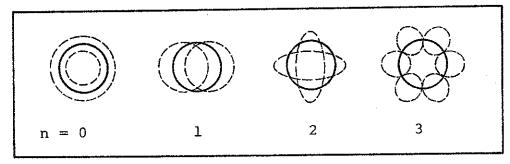


Fig 7.1 Forskellige svingningsformer for en boble [66].

Det er her antaget, at pulsationen er adiabatisk, idet $\gamma = C_p/C_v$ indgår i stedet for polytropeksponenten κ . En beregning af den energi, der er involveret i de forskellige svingningsformer, viser, at 0. mode er langt den vigtigste, og i det følgende vil kun volumenpulsationer blive omtalt.

Formel (7.2) til bestemmelse af f_o er opstillet for en sfærisk boble, men STRASBERG [65] har vist, at volumenpulsationens frekvens kun afhænger ganske lidt af boblens form. Således vil en ellipsoide med e=2 (forholdet mellem storaksen og lilleaksen) have en egenfrekvens, som kun er 2% større end frekvensen for en sfærisk boble med samme volumen. STRASBERG har også beregnet resonansfrekvensen for en boble, som berører en fast væg. Beregningerne er verificeret eksperimentelt af HOWKINS [28] for bobler med egenfrekvenser på 100-3000 Hz, og resultatet er en formindskelse af frekvensen med maksimalt 17% i forhold til pulsationer i et uendeligt medium.

A. Frie pulsationers egenfrekvens.

Siden MINNEART [49] i 1933 opstillede ligning (7.2) til beregning af en pulserende bobles egenfrekvens, har mange forskere arbejdet på at eftervise formlen eksperimentelt. Det har siden vist sig, at (7.2) ikke er helt korrekt under alle forhold, således må fx overfladespændingen inkluderes ved beregning af $f_{\rm O}$ for små bobler.

Den mest detaljerede bestemmelse af egenfrekvensen for en pulserende luftboble er gennemført af SHIMA [61] i 1970, idet han i sine beregninger har inkluderet såvel overfladespænding og viskositet som væskens kompressibilitet. Derimod har han negligeret diffusion og varmeledning. Udgangspunkt for beregningerne er Kirkwood-Bethe ligningen (5.1) for en kompressibel væske. Ved at antage små udsving fra ligevægtsstillingen for volumenpulsationerne kan ligningen lineariseres og resonansfrekvensen findes. Løsningen er:

$$f_{O} = \frac{1}{2\pi R_{O}} \frac{1}{1 + FG} \sqrt{N(1 + FG) - \frac{1}{4}(G + FN)^{2}}$$
 (9.1)

hvor

$$F = \frac{1}{\sqrt{\psi(1+K)}} \sqrt{\frac{\rho_{\infty}}{P_{\infty}}} , K = \frac{B}{P_{\infty}}$$

$$G = \frac{4\eta_{V}}{\rho_{\infty}R_{O}}$$

$$N = \frac{3\gamma}{\rho_{\infty}} \cdot \left[P_{\infty} + \left[1 - \frac{1}{3\gamma} \right] \cdot \frac{2\sigma}{R_{O}} \right]$$

I beregningerne er forudsat adiabatisk tilstandsændring for luften i boblen. Indsættes i (9.1) $\sigma = \eta_V = F = 0$, dvs at henholdsvis overfladespænding, viskositet og kompressibilitet negligeres, fås Minnearts formel (7.2). Medregnes overfladespændingen fås

$$f_{O} = \frac{1}{2\pi R_{O}} \sqrt{\frac{3\gamma}{\rho_{\infty}} \cdot \left[P_{\infty} + \left[1 - \frac{1}{3\gamma} \right] \cdot \frac{2\sigma}{R_{O}} \right]}$$
 (9.2)

en formel, som er opstillet af ROBINSON & BUCHANAN [60]. Inkluderes yderligere viskositeten fås en formel opstillet af HOUGHTON [27]

$$f_{O} = \frac{1}{2\pi R_{O}} \sqrt{\frac{3\gamma}{\rho_{\infty}} \cdot \left[P_{\infty} + \left[1 - \frac{1}{3\gamma}\right] \cdot \frac{2\sigma}{R_{O}}\right] - \left[\frac{2\eta_{V}}{\rho_{\infty} R_{O}}\right]^{2}}$$
(9.3)

På grundlag af Shimas beregninger kan følgende konklusioner drages angående bestemmelsen af egenfrekvensen:

- 1. Kompressibilitet og viskositet kan negligeres for $R_{\rm O}$ > 10^{-3} mm.
- 2. Overfladespændingen kan negligeres for $R_{0} > 10^{-2}$ mm.

Disse resultater fremgår af tabel 11.1, hvor egenfrekvenser udregnet efter de forskellige formler er sammenlignet. En alvorlig mangel ved Shimas formel (9.1) er, at den ikke tager hensyn til varmeledningen. Det gør derimod følgende formel for egenfrekvensen, som er opstillet af DEVIN [15]:

$$f_{O} = \frac{1}{2\pi R_{O}} \sqrt{\frac{3\gamma P_{\infty}}{\rho_{V}}} \sqrt{\frac{g}{\beta}}$$
 (10.1)

hvor
$$g = 1 + \frac{2\sigma}{P_{\infty}R_{O}} - \frac{2\sigma}{3\gamma P_{\infty}R_{O}} \cdot \beta$$

$$\beta = 1 + \frac{3(\gamma - 1)}{2\phi R_{O}} \left[1 + \frac{3(\gamma - 1)}{2\phi R_{O}} \right] \quad \text{for } 2\phi R_{O} > 5$$

$$\beta = \gamma - \frac{(2\phi R_{O})^{4}}{1890} \left[1 - \frac{2 \cdot 1(\gamma - 1)^{2}}{\gamma} \right] \quad \text{for } 2\phi R_{O} < 5$$

$$\phi = \sqrt{\frac{\pi f_{O}}{\alpha_{G}}}$$

 $\alpha_{\rm q}$ er temperaturledningsevnen for gassen.

Det ses, at (10.1) er identisk med Minnearts formel (7.2) bortset fra faktoren $\sqrt{g/\beta}$. Varmeledningens indflydelse på beregningsresultatet fremgår af tabel 11.1. En simplere formel for egenfrekvensen under hensyntagen til varmeledning og overfladespænding er opstillet af CHAPMAN & PLESSET [13] i 1970

$$f_{O} = \frac{1}{2\pi R_{O}} \sqrt{\frac{3\kappa}{\rho_{V}} \cdot \left[P_{\infty} + \left[1 - \frac{1}{3\kappa}\right] \cdot \frac{2\sigma}{R_{O}}\right]}$$
 (10.2)

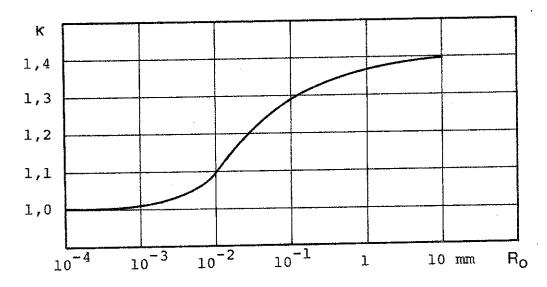


Fig 10.1 Polytropeksponenten for luftens tilstandsændring som funktion af boblens radius [13].

Formel (10.2) er identisk med (9.2), bortset fra at γ er erstattet med polytropeksponenten κ . Som omtalt senere pulserer store bobler adiabatisk (κ =1,4), medens små bobler pulserer isotermisk (κ =1,0). Chapman & Plesset har numerisk beregnet κ som funktion af R_O og angivet resultatet i kurveform, som vist i fig 10.1. Indsættes κ -værdier fra kurven i formel (10.2) fås de værdier for f_O , som er vist i sidste kolonne af tabel 11.1. Der er god overensstemmelse mellem f_O -værdierne beregnet efter henholdsvis (10.1) og (10.2), som begge inkluderer overfladespænding og varmeledning.

Ved at sammenligne resultaterne beregnet efter henholdsvis (9.2) og (10.2) ses, at varmeledningen kan negligeres for $R_{\rm O}>1$ mm. Man kan imidlertid også se bort fra varmeledningen for $R_{\rm O}<10^{-3}$ mm, hvis man i alle formlerne indsætter $\kappa=1$. Samme resultat fås direkte af fig 10.1, som viser, at boblepulsationen er adiabatisk for $R_{\rm O}>1$ mm og isotermisk for $R_{\rm O}<10^{-3}$ mm. Ved beregning af egenfrekvensen anbefales det at benytte formel (10.2), idet denne må skønnes at give de nøjagtigste resultater og desuden er simpel at anvende.

R _o	Minneart	Robinson & Buchanan	Houghton	Shima	Devin	Chapman & Plesset
mm	(7.2)	(9.2)	(9.3)	(9.1)	(10.1)	(10.2)
10		3,29·10 ²	3,29·10 ²	3,29·10 ²	•	3,27·10 ²
•	3,29·10 ³	3,29·10 ³	3,29·10 ³	3,29·10 ³	i	3,25·10 ³
10-1	3,29·10 ⁴	3,31·10 ⁴	3,31·10 ⁴	3,31·10 ⁴	3,18 10 ⁴	3,17.104
10-2	3,29·10 ⁵	$3,47 \cdot 10^{5}$	3,47·10 ⁵	3,47·10 ⁵	3,09·10 ⁵	3,06-105
10-3	3,29·10 ⁶	4,81·10 ⁶	4,73·10 ⁶	4,76·10 ⁶	3,89·10 ⁶	3,96·10 ⁶

Tabel 11.1 Egenfrekvensen f_0 i {Hz} for luftbobler i vand. P_{∞} = 1 atm, T_{∞} = 0 O C.

B. Dæmpning af boblepulsationen.

Svingningsamplituden for en frit pulserende luftboble i vand vil aftage med tiden, hovedsagelig på grund af følgende tre dæmpningsmekanismer:

- Termisk dæmpning, som skyldes varmeledning mellem boblen og det omgivende fluid.
- Akustisk dæmpning, som forårsages af den pulserende bobles energiudsendelse.
- 3. Viskos dæmpning, som skyldes de viskose kræfter i væsken ved bobleoverfladen.

Under antagelse af at boblen udfører lineære, harmoniske pulsationer kan ovenstående tre dæmpningsbidrag bestemmes teoretisk, som vist af DEVIN [15]. Indføres dæmpningskonstanten $\delta = \Lambda/\pi$, hvor Λ er det logaritmiske dekrement, vil den totale dæmpning kunne skrives som $\delta = \delta_{\rm T} + \delta_{\rm A} + \delta_{\rm V}$. Her er $\delta_{\rm T}$, $\delta_{\rm A}$ og $\delta_{\rm V}$ dæmpningskonstanterne for henholdsvis termisk, akustisk og viskos dæmpning.

1. Termisk dæmpning. I de to teoretiske ydertilfælde, hvor modstanden mod varmetransport mellem gas og væske enten er nul (isotermisk pulsation) eller uendelig stor (adiabatisk pulsation), vil den termiske dæmpning være nul, og tryk- og volumenændring for boblen vil være i fase. I virkeligheden er pulsationsprocessen polytropisk, hvilket resulterer i en faseforskel, som medfører, at kompressionsarbejdet udført af væsken på gassen er større end ekspansionsarbejdet udført ført af gassen på væsken [15]. Denne forskel i arbejde er i middel ensbetydende med en varmetransport fra gas til væske.

En teoretisk bestemmelse af den termiske dæmpningskonstant $\delta_{\rm T}$ blev først foretaget af PFRIEM [53] i 1940, men som påvist af DEVIN [15] er Pfriems resultat unøjagtigt på grund af bortkastning af 2. ordens led i ligningerne. Devins egne beregninger resulterede i følgende udtryk for $\delta_{\rm T}$:

$$\delta_{\rm T} = \frac{\frac{\sinh(2\phi R_o) + \sin(2\phi R_o)}{\cosh(2\phi R_o) - \cos(2\phi R_o)} - \frac{1}{\phi R_o}}{\frac{2\phi R_o}{3(\gamma - 1)} + \frac{\sinh(2\phi R_o) - \sin(2\phi R_o)}{\cosh(2\phi R_o) - \cos(2\phi R_o)}}$$
(13.1)

hvor
$$\phi = \sqrt{\frac{\pi f_o}{\alpha_g}}$$

Optegnes $\delta_{\mathbf{T}}$ som funktion af $2\phi R_{\mathbf{O}}$ som vist i fig 13.1 ses, at den termiske dæmpning går mod nul for såvel $2\phi R_{\mathbf{O}}^{} \rightarrow 0$ (isotermisk pulsation) som for $2\phi R_{\mathbf{O}}^{} \rightarrow \infty$ (adiabatisk pulsation). Den maksimale værdi for $\delta_{\mathbf{T}}$ fås for $2\phi R_{\mathbf{O}}^{} = 5$, hvilket svarer til en boble med $R_{\mathbf{O}}^{} \simeq 10^{-2}$ mm og en resonansfrekvens på 330 kHz. Hvis udtrykket (10.1) for egenfrekvensen som funktion af $R_{\mathbf{O}}^{}$ og ϕ indføres i ligning (13.1), kan $\delta_{\mathbf{T}}^{}$ findes som funktion af $R_{\mathbf{O}}^{}$ for resonanssvingninger. Resultatet ses i fig 14.1 for luftbobler i vand ved normalt tryk og temperatur.

2. Akustisk dæmpning. En boble, som udfører volumenpulsationer i en kompressibel væske, vil tabe en del af sin energi gennem udsendelse af sfæriske trykbølger. Devins beregninger resulterede i følgende formel for $\delta_{\rm A}$:

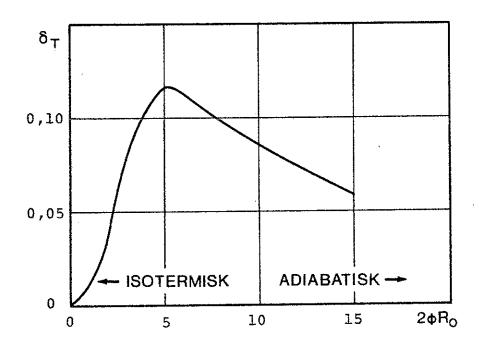


Fig 13.1 Den termiske dæmpningskonstant som funktion af den dimensionsløse parameter $2\phi R_{\Omega}$ [15].

$$\delta_{A} = 2\pi R_{O} \cdot \frac{f_{O}}{c} \tag{14.1}$$

hvor $f_{\rm O}$ er egenfrekvensen bestemt ved ligning (10.1) og c er lydhastigheden i væsken. Formel (14.1) blev først opstillet af SMITH [62] i 1935. En grafisk fremstilling af (14.1) er vist i fig 14.1, og som det ses, er $\delta_{\rm A}$ tilnærmet konstant uafhængig af $R_{\rm O}$.

3. Viskos dæmpning. Denne dæmpningsmekanisme har kun betydning ved høje pulsationsfrekvenser, dvs for små bobler. En fysisk forklaring på den viskose dæmpning gives af DEVIN [15]. Der betragtes et lille element af en kugleskal af væske nær boblevæggen. Under boblens ekspansion deformeres dette element, således at tykkelsen formindskes, medens overfladearealet forøges. Når boblen kontraherer finder den omvendte deformation sted. På grund af de viskose kræfters virkning under væskeelementets formændring sker der en vis energidissipation i væsken nær bobleoverfladen.

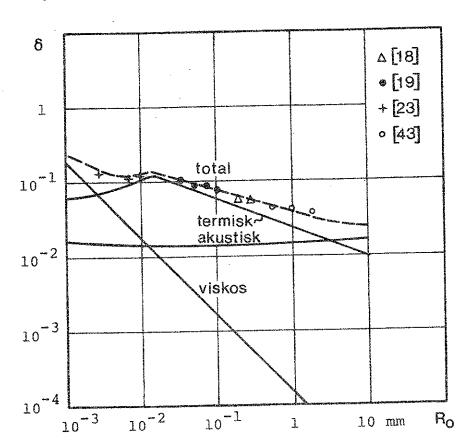


Fig 14.1 Den termiske, akustiske, viskose og totale dæmpningskonstant som funktion af boblens radius [15].

Devins beregninger resulterede i følgende formel for $\delta_{\mathbf{V}}$:

$$\delta_{\mathbf{V}} = \frac{2\eta_{\mathbf{v}}}{\rho_{\mathbf{v}}\pi R_{\mathbf{o}}^{2}} \cdot \frac{1}{\mathbf{f}_{\mathbf{O}}}$$
(15.1)

hvor $\rm n_{_{\rm V}}$ er den dynamiske viskositet og $\rm f_{_{\rm O}}$ egenfrekvensen bestemt ved (10.1). Indtegning af $\rm \delta_{_{\rm V}}$ som funktion af $\rm R_{_{\rm O}}$ i fig 14.1 viser, at den viskose dæmpning kun har betydning for $\rm R_{_{\rm O}}<10^{-2}$ mm.

4. Den totale dæmpning. I fig 14.1 er også kurven for $\delta = \delta_T + \delta_A + \delta_V$ indtegnet, og der bemærkes følgende karakteristika:

- 1. For $R_0 < 10^{-3}$ mm skyldes dæmpningen hovedsagelig de viskose kræfter.
- 2. For R_o > 10 mm er den akustiske dæmpning vigtigst.
- 3. Den termiske dæmpning er vigtigst for $10^{-2} < R_O < 1$ mm. Størrelsen af de enkelte dæmpningsbidrag er også beregnet af CHAPMAN & PLESSET [13], som angiver kurveforløb, der stemmer nydeligt overens med kurverne i fig 14.1.

En eksperimentel bestemmelse af dæmpningskonstanten for resonansbobler er gennemført af flere forskere [18], [19], [23], [41] og [43], og overensstemmelsen mellem teori og eksperimenter er god, hvilket fremgår af fig 14.1. En oversigt over disse eksperimentelle arbejder er givet af PETERS [52]. Der bemærkes en tendens til at måle for høje værdier af δ for store bobler, hvilket kan skyldes, at andre dæmpningsmekanismer får betydning. I nedenstående 4 punkter er forskellige forslag til alternative dissipationsfaktorer omtalt, men de har endnu ikke været underkastet en teoretisk behandling.

- SMITH [62] har foreslået, at pulsationen kan give anledning til betydelig turbulens i væsken, især hvis boblen ikke er kuglesymmetrisk.
- 2. CARSTENSEN & FOLDY [11] har bemærket, at pulsationen kan give anledning til periodisk kondensation og fordampning af vanddampe i boblen.

- 3. Benjamin & Strasberg (se DEVIN [15]) mener, at der kan optræde kobling mellem volumenpulsationen af 0. orden og højere ordens svingningsmodes, hvilket vil resultere i større energidissipation.
- 4. HOUGHTON [27] har foreslået, at tangentielle hastighedskomponenter forårsaget af strømning omkring boblen kan interferere med de radielle komponenter, hvilket vil resultere i øget dæmpning. Dette er især relevant for store bobler.

C. Pulserende boblers termodynamik.

De termodynamiske forhold for boblepulsationen er behandlet af DEVIN [15] og CHAPMAN & PLESSET [13] med det formål at bestemme varmeledningens indflydelse på pulsationens dæmpning og boblens egenfrekvens. En mere dybtgående undersøgelse er gennemført af PLESSET & HSIEH [56], som teoretisk har behandlet problemet for lineært pulserende bobler i et lydfelt. De har først undersøgt de termodynamiske forhold under antagelse af ens tryk og temperatur overalt i boblen, og dernæst med antagelse af temperaturgradient i boblen. Ud fra asymptotiske løsninger til ligningssystemet har de kunnet bestemme de gennemsnitlige termodynamiske forhold for boblepulsationen. Resultatet af beregningerne er angivet i tabelform af PLESSET [54], men en mere overskuelig grafisk fremstilling er vist i fig 17.1.

Som det ses, er kurvebladet inddelt i 3 områder, det isotermiske, det adiabatiske og et overgangsområde. I figuren er desuden vist kurven for resonansbobler, og det bemærkes, at boblerne pulserer adiabatisk for $\rm R_{\rm O}{<}10^{-1}$ mm og isotermisk for $\rm R_{\rm O}{<}10^{-3}$ mm. Specielt for resonansbobler fås dog et nøjagtigere billede af de termodynamiske forhold ud fra kurven i fig 10.1, som viser Chapman & Plesset's beregning af $\rm K$ som funktion af $\rm R_{\rm O}$. Der fås følgende resultat:

 $R_{O} > 1 \text{ mm:} \text{ adiabatisk}$

 $R_{\rm O} < 10^{-3}$ mm: isotermisk

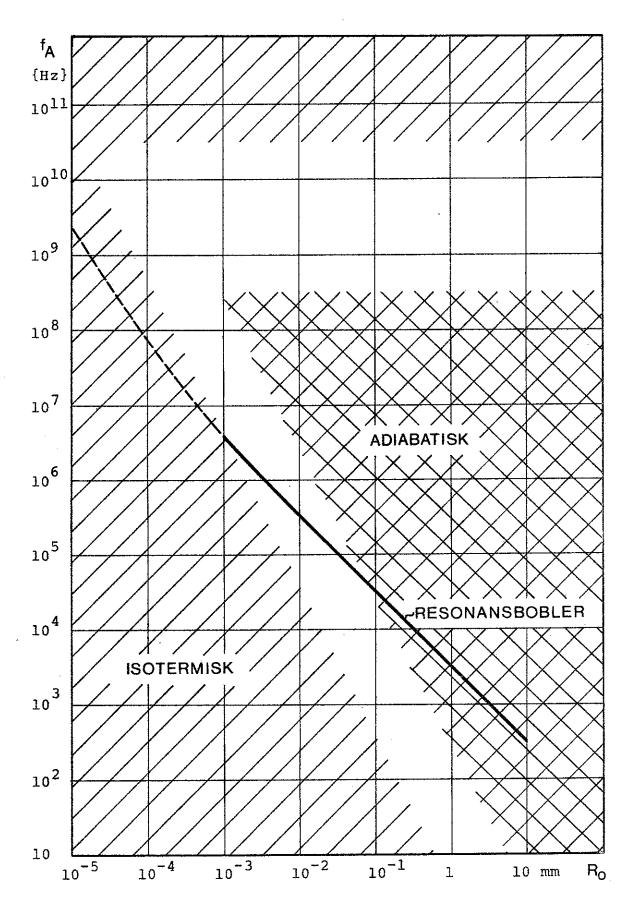


Fig 17.1 De termodynamiske forhold for en pulserende boble i et lydfelt. $f_{\rm A}$ er lydfeltets frekvens og R boblens ligevægtsrådius.

En boble med $R_0 = 10^{-1}$ mm vil som vist i fig 17.1 pulsere isotermisk ved meget lave og meget høje frekvenser, medens pulsationen er adiabatisk i mellemområdet. Dette overraskende resultat kan forklares ved fysiske overvejelser. Hertil kræves en definition af nogle karakteristiske længder, som Plesset & Hsieh opererer med:

$$\begin{array}{lll} L_g = \sqrt{\frac{\alpha_g}{\omega_A}} & : \text{ termisk diffusionslængde for gassen} \\ L_V = \sqrt{\frac{\alpha_V}{\omega_A}} & : \text{ termisk diffusionslængde for væsken} \\ \lambda_g = \frac{c_g}{f_A} & : \text{ akustisk bølgelængde for gassen} \end{array}$$

 ω_A er her den cykliske frekvens i lydfeltet, og α er temperaturledningsevnen. L_g og L_v er karakteristiske længder for varmeledning, når varmekildens temperatur svinger med frekvensen ω_{λ} .

De termodynamiske forhold for boblepulsationen kan ifølge PLESSET [54] beskrives ved de karakteristiske længder. Dette er vist i tabel 18.1, hvor C_g' og C_V' er den specifikke varme pr volumenenhed for henholdsvis gas og væske.

Frekvens- område	Sammenligning af længder	Relevant kriterium	Termodynamiske forhold
meget høje	λg<< Lg<< Ro	$\frac{L_g}{\lambda_g} >> 1$	isotermisk
høje	$L_g < \lambda_g < R_o$	$\frac{L_g}{\lambda_g} < 1$	adiabatisk
moderate	L _g < R _o < λ _g	$\frac{L_g}{R_o} < 1$	adiabatisk
lave	$R_0 < L_g < \lambda_g$	$\frac{C'_{v}L_{v}}{C'_{g}R_{o}} >> 1$	isotermisk

Tabel 18.1 Sammenligning mellem karakteristiske længder ved bestemmelse af de termodynamiske forhold for boblepulsationen [54].

Resultatet for lave og moderate frekvenser er ikke overraskende, og sammenligningen af de karakteristiske længder fører umiddelbart til et fysisk acceptabelt resultat. Hvis der nu betragtes frekvenser så høje at $\lambda_{\rm g} <$ Ro, kan egenskaber hos det omgivende fluid ikke længere være af betydning for tilstanden i boblens indre. De termodynamiske forhold for gasboblen kan derfor bestemmes, som om man har at gøre med et homogent medium. I et sådant medium vil svingningerne være adiabatiske for $L_{\rm g}/\lambda_{\rm g} <$ l og isotermiske for $L_{\rm g}/\lambda_{\rm g} >$ l. Som det ses, er dette ræsonnement i overensstemmelse med de teoretiske resultater.

IV. ULINEERE PULSATIONER

Som omtalt i kap II er ligningen for boblepulsationen en ulineær differentialligning. Kun ved meget små udsving fra
ligevægtsstillingen kan man med god tilnærmelse linearisere
denne ligning og dermed opnå den række af simple formler for
pulsationen, som er angivet i forrige kapitel. Ved store udsving fra ligevægtsstillingen er pulsationen beskrevet enten
ved ligning (4.1) eller (5.1), og disse ulineære differentialligninger kan kun løses ad numerisk vej. Dette betyder,
at der ikke kan opstilles eksplicitte udtryk for egenfrekvens,
dæmpning e.l. for pulsationen. Der må i stedet gennemregnes
en række eksempler, og løsningerne må angives på grafisk form.

De karakteristiske træk ved en typisk ulineær pulsation fremgår af fig 20.1, hvor radius for boblen er optegnet som funktion af tiden. Til sammenligning er vist R-t kurven for en
lineær pulsation.

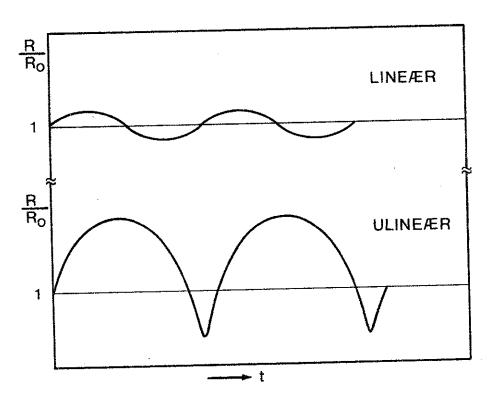


Fig 20.1 Sammenligning mellem radius-tid kurverne for en typisk lineær og ulineær pulsation.

Som det ses af fig 20.1, resulterer de ulineære effekter i en længere ekspansionsfase og en kortere kompressionsfase. Under den kortvarige kompression kan boblevæggen opnå meget høje hastigheder, og hvis disse bliver af samme størrelses-orden som lydhastigheden i væsken, må kompressibilitetseffekter for væsken medregnes, og følgelig må Kirkwood-Bethe ligningen (5.1) anvendes til beskrivelse af boblepulsationen.

Ved meget store udsving fra ligevægtsstillingen optræder der høje tryk og temperaturer i boblen i kontraktionsfasen. Disse forhold i forbindelse med boblevæggens høje hastighed kan forklare de fysiske fænomener, som er karakteristiske for kavitation. Forskellige teorier har i tidens løb været fremsat om kavitationens opståen og om årsagerne til de drastiske effekter, der optræder i forbindelse hermed. Der er dog enighed om, at fænomenerne skyldes kollaps af kavitationsbobler, som indeholder en ukendt blanding af luft og vanddamp. Disse bobler udvikles ud fra små partikler i væsken – de såkaldte kavitationskim – som kan være små uopløste luftbobler eller faste partikler med luftlommer. Udsættes disse kim for trykvariationer, begynder luftvolumenet at pulsere, og med den rette trykpåvirkning kan et voldsomt kollaps blive resultatet.

En nøjere gennemgang af de specielle forhold i forbindelse med kavitationsbobler vil ikke blive givet her. Der henvises i stedet til bøger af FLYNN [20] og KNAPP, DAILY & HAMMITT [40]. En fortegnelse over den store litteraturmængde, der eksisterer om kavitationsproblemer, findes ligeledes i disse bøger.

Et specielt eksempel på ulineære boblepulsationer skal kort omtales. Ved detonation af et kemisk eksplosiv i vand dannes en gasboble med høj temperatur og tryk. Denne boble vil ekspandere meget hurtigt under udsendelse af en chokbølge i vandet. Derefter vil boblen udføre ulineære pulsationer, som fortsætter, indtil boblen når vandoverfladen. Der er her tale om meget store bobler med en maksimaldiameter på ca 30 cm for en ladning på 1 g TNT.

Omfattende teoretiske og eksperimentelle undersøgelser af den pulserende gasboble fra en undervandseksplosion blev ud-

ført under 2. verdenskrig. En oversigt over dette arbejde er giver af COLE [14].

Til simulering af undervandseksplosioner benyttes ofte en elektrisk udladning i vand. Ved denne proces dannes også en ulineært pulserende gasboble, hvilket eksperimentelt er påvist af MELLEN [48].

A. Frie pulsationers egenfrekvens.

Medens materialet om lineære pulsationers egenfrekvens er meget omfattende, er der kun publiseret et par artikler, som omhandler egenfrekvensen ved store svingningsamplituder. Dette skyldes hovedsagelig, at løsning af den beskrivende differentialligning kræver anvendelse af en datamat, et hjælpemiddel som kun har været almindeligt anvendt de sidste 10 år.

Den mest systematiske bestemmelse af egenfrekvensen er gennemført af LAUTERBORN [44] i 1968. Hans udgangspunkt er følgende differentialligning, som løses numerisk:

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{\rho_V} \cdot \left[P_O \cdot \left[\frac{R_o}{R} \right]^{3\gamma} - \frac{2\sigma}{R} - P_{\infty} \right]$$
 (22.1)

Denne ligning er identisk med (4.1), idet der er antaget adiabatisk tilstandsændring for luften i boblen. Medens overfladespændingen er medregnet, er viskose og kompressible effekter i væsken negligeret.

Ligning (22.1) løses med følgende begyndelsesbetingelser: $R = R_{\rm max}$ og $\dot{R} = 0$ til t = 0. Dette betyder fysisk, at en boble med ligevægtsradius $R_{\rm o}$ ekspanderes til $R = R_{\rm max}$, hvorefter den slippes løs. Ligning (22.1) beskriver en udæmpet svingning, hvis frekvens kan findes som funktion af $R_{\rm max}/R_{\rm o}$. I fig 23.1 er resultatet angivet for forskellige boblestørrelser, idet frekvensen f er gjort dimensionsløs ved division med den lineære egenfrekvens bestemt af formel (9.2).

Fig 23.1 viser, at der findes to grænsekurver (a) og (e) for kurveskaren. Forklaringen herpå fås ved at sammenligne ledene $2\sigma/R$ og P_{∞} i ligning (22.1). Hvis boblen er så lille, at $2\sigma/R_{\text{max}} >> P_{\infty}$ fås kurve (e), medens kurve (a) fås for store bobler med $2\sigma/R_{\Omega} << P_{\infty}$.

Et forsøg på at opstille en tilnærmelsesformel til bestemmelse af frekvensen som funktion af R_{max} og R_{O} er gjort af såvel GÜTH [22] som LAUTERBORN [44]. Her skal blot angives Lauterborn's formel, som gælder for $R_{\text{max}}^{>}$ $2R_{\text{O}}^{-}$:

$$f = \frac{1}{1.83 \cdot R_{\text{max}} \sqrt{\rho_{\text{v}}}} \sqrt{P_{\infty} \left[1 - \left[\frac{R_{o}}{R_{\text{kor}}} \right]^{3\gamma} \right] + \frac{2\sigma}{R_{\text{kor}}} \left[1 - \left[\frac{R_{o}}{R_{\text{kor}}} \right]^{3\gamma - 1} \right]}$$
(23.1)

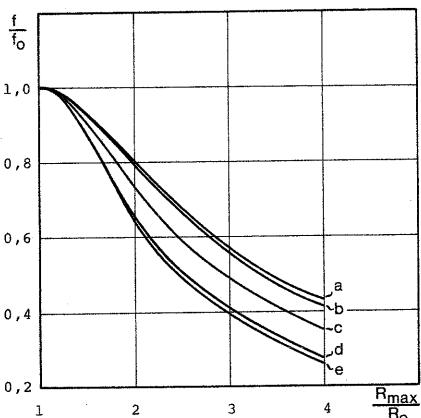


Fig 23.1 Pulsationsfrekvensen f som funktion af svingningsamplituden R_{max} for en luft-boble i vand [44].

a:
$$R_{O} \ge 10^{-1}$$
 mm $P_{\infty} = 1$ bar
b: $R_{O} = 10^{-2}$ mm $\gamma = 1,33$
c: $R_{O} = 10^{-3}$ mm
d: $R_{O} = 10^{-4}$ mm
e: $R_{O} \le 10^{-5}$ mm

I (23.1) er $R_{kor} = 0.915 \cdot R_{max}$, hvor faktoren 0.915 er en korrektion til Lauterborn's formel, som er indført af HUND [32].

Det i fig 23.1 viste resultat for den ulineære egenfrekvens som funktion af svingningsamplituden skal tages med et vist forbehold. Som nævnt er både varmeledning, viskositet og kompressibilitet negligeret, og som vist af SHIMA [61] for lineære pulsationer, er dette ikke tilladeligt. En stærkt ulineær svingning vil på grund af ovennævnte faktorer dæmpes kraftigt, således at pulsationsfrekvensen til stadighed ændres og konvergerer mod den lineære egenfrekvens. Det kvalitativt korrekte resultat, der kan udledes af fig 23.1, er at pulsationsfrekvensen aftager med voksende svingningsamplitude.

En nøjagtigere bestemmelse af egenfrekvensen kunne opnås ved numerisk løsning af Kirkwood-Bethe approksimationen (5.1) sammen med en varmeledningsligning. Dette er imidlertid en kompliceret beregningsopgave, som endnu ikke er gennemført.

Generelt er forskningsresultater vedrørende ulineære boblepulsationer sparsomme. Der eksisterer således ingen undersøgelser over de forskellige dæmpningsfaktorers størrelse ved ulineære pulsationer, ligesom de termodynamiske forhold kun er undersøgt for lineære svingninger.

B. Pulsationer i lydfelt.

En undersøgelse af boblers opførsel under varierende trykpåvirkning er af stor vigtighed for en bedre forståelse af sådanne fænomener som kavitation ved ultralyd, udbredelse af trykbølger i vand, kogning, samt flere andre fysiske processer inden for fluid mekanikken. I dette afsnit studeres bobler under påvirkning af en sinusformet trykvariation, medens næste afsnit behandler chokexciterede pulsationer.

Udgangspunktet for beregningerne er den ulineære differentialligning for boblepulsationen:

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{\rho_V} \cdot (P_V - P_\infty)$$
 (25.1)

hvor der for trykket i væsken langt fra boblen indsættes $P_{\infty} = P_A \cdot \sin{(\omega_A t)}$. Her er P_A den påtrykte svingningsamplitude og $\omega_A = 2\pi f_A$ er den cykliske frekvens. Der forudsættes altså kuglesymmetrisk belastning af boblen, hvilket kun gælder med tilnærmelse for $\lambda_A >> d_O$, hvor λ_A er bølgelængden for den påtrykte svingning og d_O boblediameteren. Denne betingelse kan omformes til

$$\frac{f_A}{f_O} \ll 225 \tag{25.2}$$

idet der indsættes $\lambda_{\rm A}$ = c/f_A, hvor c = 1500 m/s er lydhastigheden i vand, og desuden benyttes følgende tilnærmede udtryk for den lineære egenfrekvens: f_O= 6,6/d_O {Hz} for d_O i {m}.

Løsning af ligning (25.1) for forskellige værdier af P_A og ω_A giver et indtryk af de komplicerede svingningsformer, der kan registreres hos en boble i et lydfelt. En oversigt over de hidtil publiserede artikler herom er givet i tabel 25.1, sammen med variationsområder for f_A/f_O og P_A/P_{hy} , hvor P_{hy} er det hydrostatiske tryk. Som det ses, er betingelsen $\lambda_A>>$ do opfyldt i alle beregningerne, da $\left(f_A/f_O\right)_{max}=4.0$ << 225.

		£		P . / .
Forfattere (publikations	ir)	f _A ,	/f _o	P _{A/P_{hy}}
NOLTINGK & NEPPIRAS [51], FLYNN [20], BOROTNIKOVA & SOLOUKHIN [8], SOLOMON & PLESSET [63], AKULICHEV [1], AKULICHEV [2], CHAN & YANG [12], LAUTERBORN [45],	(1950) (1964) (1964) (1967) (1967) (1968) (1969) (1970)	0,05 0,001 0,15	-0,6 -1,5 3-0,15 -1,2	4,0 0,2-1,0 1,5-100 0,2-2,0 0,5-300 2,0-300 0,05-0,2 0,01-0,9

Tabel 25.1 Oversigt over teoretiske arbejder vedrørende ulineære boblepulsationer i lydfelt.

Der skal nu gives en kort oversigt over de enkelte arbejder, idet der især lægges vægt på de simplificerende forudsætninger for beregningerne, samt på de generelle konklusioner, som kan drages på grundlag af beregningsresultaterne.

Den første beregning af ulineære, tvungne svingninger af en gasboble i et lydfelt blev gennemført af NOLTINGK & NEPPIRAS [51] i 1950. De løste ligning (25.1) numerisk under antagelse af isotermisk pulsation og med inkludering af boblens overfladespænding. Der blev benyttet exciteringsfrekvenser såvel over som under den lineære egenfrekvens, men med en fast amplitude på 4 bar. Boblediameteren varierede mellem 10^{-2} og 10^{-3} mm. Deres beregninger viste, at amplituden af den ulineære boblepulsation er stærkt afhængig af forholdet $f_{\rm A}/f_{\rm O}$, idet de største amplituder optræder ved exciteringsfrekvenser lavere end egenfrekvensen.

Samme resultat opnåede FLYNN [20] i 1964, hvilket fremgår af fig 27.1, som viser et par typiske svingningsforløb. Også han benyttede ligning (25.1) til beskrivelse af boblepulsationen, men betragtede lidt større bobler, fra 10^{-1} - 10^{-2} mm i diameter. Flynn viste desuden, at svingningsmønstret og amplitudestørrelsen er meget afhængig af, om pulsationsprocessen regnes isotermisk eller adiabatisk.

BOROTNIKOVA & SOLOUKHIN [8] har under antagelse af adiabatisk pulsation udført beregninger for meget store værdier af trykamplituden $\rm P_A$ (max 100 bar), og opnået samme resultat som Noltingk & Neppiras. Et par karakteristiske svingningsforløb er vist i fig 28.1 og 28.2. Det ses, at R/R_O antager større værdier for $\rm P_A$ = 1,5 bar og $\rm f_A$
 $\rm f_O$ end for $\rm P_A$ = 50 bar og $\rm f_A$
 $\rm f_O$. Desuden bemærkes, at svingningsamplituderne vokser med tiden, hvilket kun kan forklares ved, at boblerne akkumulerer mere og mere energi under den tvungne svingning.

De viste resultater skal nok tages med forbehold, idet væsken er regnet inkompressibel. Dette er som omtalt i kap II kun tilladeligt for $\dot{R}/C < 0.3$, og denne ulighed er næppe opfyldt i alle ovennævnte beregningstilfælde, da boblevæggens hastighed under kontraktionsfasen vokser med voksende udsving fra ligevægtsstillingen. Også på andre områder er lige

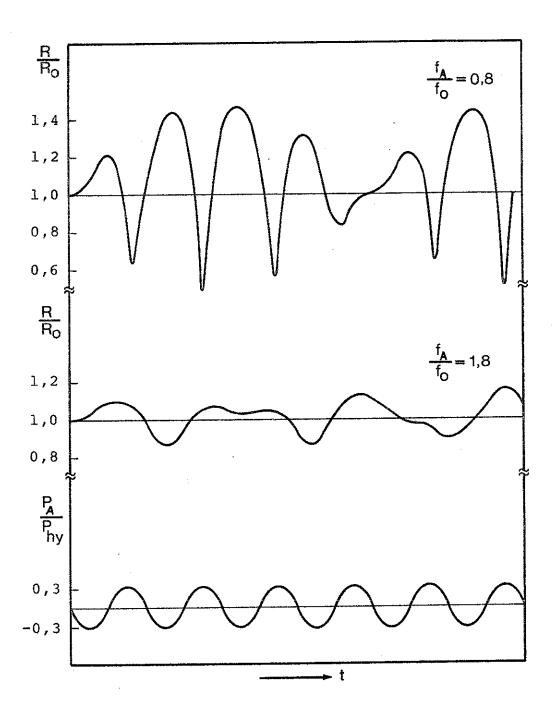


Fig 27.1 Typiske svingningsforløb for boble i lydfelt for henholdsvis $f_A < f_O$ og $f_A > f_O$. Nederst er vist trykvariationen i lydfeltet [20].

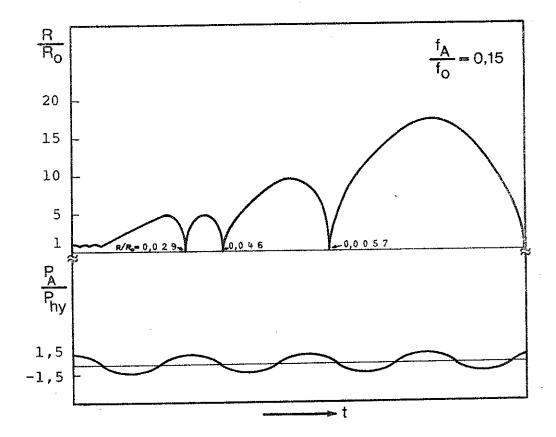


Fig 28.1 Typisk svingningsforløb for boble i lydfelt [8].

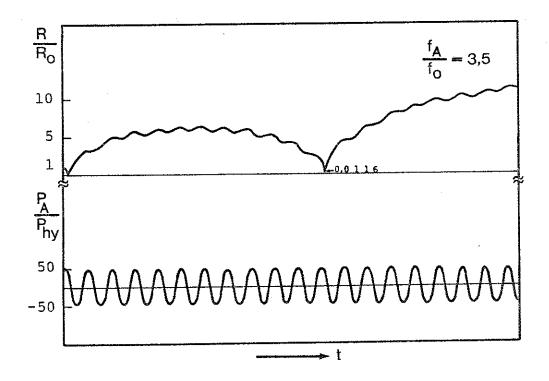


Fig 28.2 Typisk svingningsforløb for boble i lydfelt [8].

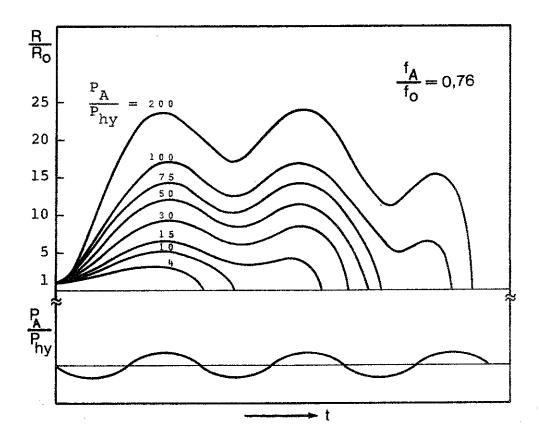


Fig 29.1 Typiske svingningsforløb for boble i lydfelt [1].

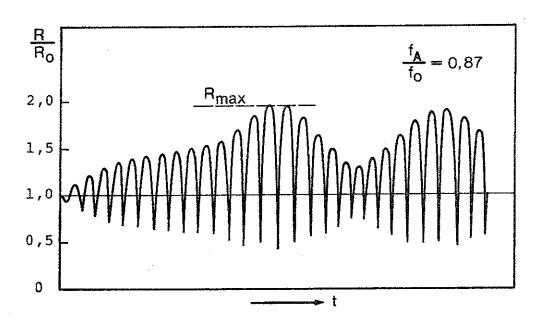


Fig 29.2 Typisk svingningsforløb for boble i lydfelt [12].

ningerne her og i alle øvrige eksempler i dette kapitel idealiserede, idet der ses bort fra usymmetri i bobleformen, ligesom muligheden for opsplitning af boblen under pulsationen negligeres.

Til sidst kan nævnes, at Borotnikova & Soloukhin også har beregnet boblesvingningen, når belastningen er et periodisk signal bestående af positive firkantpulser.

SOLOMON & PLESSET [63] har i deres beregninger fra 1967 kun behandlet tilfælde, hvor exciteringsfrekvensen er lavere end den lineære egenfrekvens. Der er regnet på bobler af størrelsen 10^{-1} – 10^{-3} mm i diameter og benyttet exciteringsfrekvenser på 3-20 kHz. Medens Borotnikova & Soloukhin betragter pulsationen som adiabatisk, regner Solomon & Plesset den isotermisk. De fundne kurver for boblepulsationen for forskellige værdier af P_A , f_A og d_O viser samme karakteristiske svingningsmønstre, som tidligere fundet af Flynn.

AKULICHEV [1],[2] har udført sine beregninger for store trykamplituder på op til 300 bar. Han benytter ligning (25.1) med antagelse af adiabatisk pulsation til at beregne svingningsforløbet for forskellige værdier af P_A . Et typisk resultat er vist i fig 29.1, hvoraf det fremgår, at der kan optræde flere lokale minima på R-t kurven, inden R/R_O bliver mindre end 1. Undersøgelsen omfatter bobler med diametre på 10^{-2} - 10^{-3} mm, som påtrykkes svingningsfrekvenser på 10 - 500 kHz.

CHAN & YANG [12] har studeret boblepulsationer i et lydfelt med meget små trykamplituder (P_A < 0,2 bar) og med exciteringsfrekvenser nær den lineære egenfrekvens. Formålet med deres beregninger var at finde boblesvingningens maksimalamplitude som funktion af den påtrykte frekvens. Et eksempel på Chan & Yang's beregningsresultater er vist i figur 29.2, hvoraf det fremgår, at den maksimale amplitude $R_{\rm max}$ først optræder efter adskillige pulsationer.

En mere detaljeret undersøgelse af samme problem er gennemnemført af LAUTERBORN [45] i 1970. Hans beregninger er det første forsøg på en virkelig systematisk bestemmelse af boblepulsationens amplitude som funktion af f_A og P_A . Han løser ligning (25.1) numerisk under antagelse af adiabatisk pulsa-

tion og med inkludering af boblens overfladespænding. De beregnede resonanskurver er vist i fig 31.1, hvor (e) er kurven for den ulineære egenfrekvens som funktion af $R_{\text{max}}/R_{\text{O}}$. Det bemærkes, at resonanskurvens bredde vokser med voksende trykamplitude P_{A} , samtidig med at den stejle venstre flanke rykker mod lavere frekvenser.

Udvides det undersøgte frekvensområde, konstateres det, at pulsationsamplituden har flere lokale maksima, hvilket ses af fig 32.1.

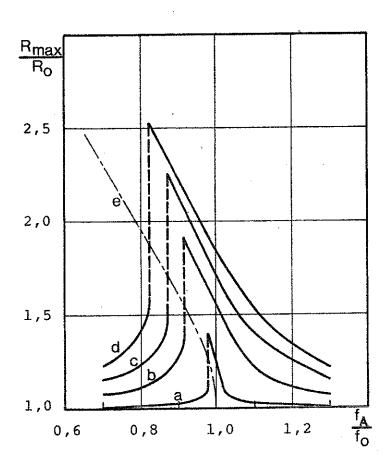


Fig 31.1 Svingningsamplituden R_{max} som funktion af exciteringsfrekvensen f_A for en luftboble i vand [45].

a:
$$P_A = 0.01$$
 bar $P_A = 0.1$ bar $P_{hy} = 1$ bar $P_{hy} = 1.33$ d: $P_A = 0.3$ bar

e: egenfrekvens for boblen.

De sekundære resonansspidsers beliggenhed i spektret er særdeles veldefineret for små trykamplituder (P_A < 0,5 bar), idet de optræder, når forholdet mellem exciteringsfrekvensen og den lineære egenfrekvens er en brøk af små heltal. Der findes altså resonansspidser for $f_A/f_0=1/2$, 1/3 ····· (harmonisk resonans), $f_A/f_0=2/1$, 3/1 ····· (subharmonisk resonans), $f_A/f_0=2/3$, 3/2 ····· (ultraharmonisk resonans).

Af disse mange resonanstilfælde har den første subharmoniske $(f_A/f_O=2)$ været genstand for specielle undersøgelser. Således har ELLER & FLYNN [17] foretaget en teoretisk beregning af boblepulsationen for $f_A/f_O=2$, og NEPPIRAS [50] har eksperimentelt påvist eksistensen af resonansspidsen.

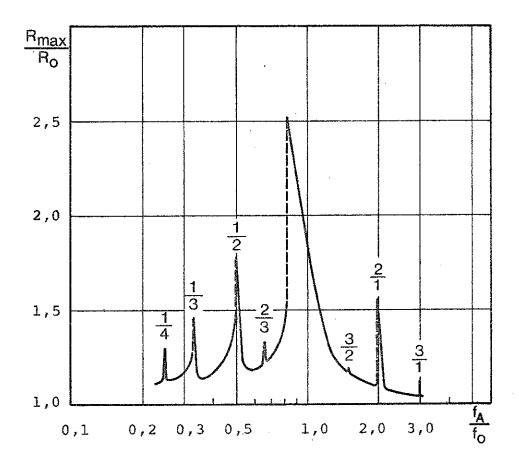


Fig 32.1 Svingningsamplituden R_{max} som funktion af exciteringsfrekvensen f_A for en luftboble i vand [45].

$$R_o = 10^{-2} \text{ mm}$$
 $P_{hy} = 1 \text{ bar}$ $P_A = 0.3 \text{ bar}$

C. Chokbølge exciterede pulsationer.

Da denne licentiatrapport primært omhandler chokexciterede pulsationer af luftbobler i vand, er en oversigt over de hidtil gennemførte undersøgelser af disse fænomener af særlig interesse. Studiet af chokexciterede boblepulsationer har fundet sted i Sovjetunionen siden 1961, men som det fremgår af det følgende, er der kun publiseret ganske få artikler om emnet.

Udgangspunktet for en teoretisk bestemmelse af boblepulsationen er igen den ulineære differentialligning (25.1), idet der for trykket i væsken langt fra boblen indsættes

$$P_{\infty} = P_{m} \cdot e^{-\frac{t}{\theta}}$$
 (33.1)

Her er P_m maksimaltrykket og θ tidskonstanten for en chokbølge med eksponentielt aftagende tryk bag fronten, se fig 33.1. Forudsætningen for at benytte ligning (25.1) er, at bølgelængden for choket er meget større end boblediameteren, således at belastningen af boblen kan regnes kuglesymmetrisk. For en chokbølge af ovennævnte type kan bølgelængden passende defineres ved λ_c = c· θ , hvor c er væskens lydhastighed.

Numerisk løsning af (25.1) sammen med (33.1) under antagelse af adiabatisk pulsation er gennemført af KEDRINSKIJ [38]

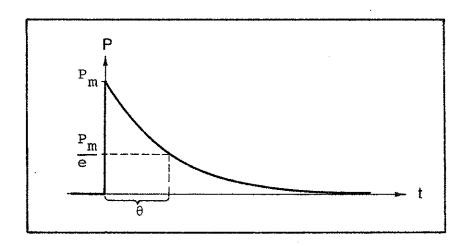


Fig 33.1 Tryk-tid kurve for chokbølge med eksponentielt aftagende tryk bag fronten.

for forskellige værdier af P_m og λ_c/d_o . I alle beregninger er bølgelængden større end boblediameteren, idet betingelsen $\lambda_c > 7.5 \cdot d_o$ er opfyldt. Kedrinskij ønskede primært at finde boblens minimumradius som funktion af chokbølgens parametre, og han angiver følgende tilnærmelsesformel:

$$\left(\frac{R_{0}}{R_{\min}}\right)^{3\gamma - 1} = 1 + \frac{\xi A^{2}(\gamma - 1)}{1 + \xi A}$$
 (34.1)

hvor

$$\xi = \left[\frac{\theta}{R_o}\right]^2 \cdot \frac{P_{hy}}{\rho_v}$$
 og $A = \frac{P_m}{P_{hy}}$

I tabelform sammenlignes de approksimative værdier med de eksakte, beregnet af ligning (25.1). Største afvigelse på 6% optræder ved små værdier af ξ , hvor bølgelængden $\lambda_{\rm C}$ $\simeq 10 \cdot {\rm d}_{\rm C}$.

I en artikel fra 1961 har også SOLOUKHIN [64] beskæftiget sig med chokexciterede pulsationer. Han har studeret en luftboble i vand, som rammes af chokbølgen fra en elektrisk udladning. De karakteristiske parametre i forsøget er d $_{\rm O}$ = 7 mm, $P_{\rm m}$ = 10 bar og θ = 100 μ s. Bølgelængden for choket bliver da 150 mm >> d $_{\rm O}$, og følgelig kan ligning (25.1) benyttes til en teoretisk bestemmelse af boblepulsationen.

Den beregnede R-t kurve søger Soloukhin at eftervise eksperimentelt ved højhastigheds fotografering af den pulserende boble. Denne er under forsøget indesluttet i en tynd gummihinde, hvorved den hindres i at stige op til vandoverfladen. I fig 35.1 er vist såvel den beregnede som den målte R-t kurve, og som det ses, fås omtrent samme værdi for $(R/R_0)_{\min}$ i de to tilfælde. Bortset herfra er overensstemmelsen mellem kurveforløbene kun acceptabel de første 100 µs.

Soloukhin's artikel [64] er den eneste, som behandler chok-exciterede pulsationer såvel teoretisk som eksperimentelt. I et forsøg på at fremskaffe yderligere materiale herom, blev der indledt en korrespondance med Dr. R.I. Soloukhin, hvilket resulterede i en kort rapport af KEDRINSKIJ & SO-LOUKHIN [39]. Denne gav dog ingen væsentlige nye informa-

tioner, så det materiale, der for øjeblikket eksisterer om chokexciterede boblepulsationer, er meget sparsomt.

En detaljeret undersøgelse - såvel teoretisk som eksperimentel - af trykvariationerne inde i en luftboble, som rammes af chokbølgen fra en undervandseksplosion, er omtalt i de resterende kapitler af denne rapport. Med forbillede i Soloukhin's undersøgelser gøres boblen stationær ved hjælp af en gummiballon, og diameterændringer registreres ved fotografering.

D. Boblestabilitet.

I de foregående afsnit er der for den pulserende boble forudsat, at dens ligevægtsdiameter d_o er konstant, samt at boblen under pulsationen beholder sin sfæriske form. Imidlertid er hverken bobleform eller størrelse stabil, hvilket bl. a. fremgår af de boblefotografier, der er optaget af HUND [31]. Også FLYNN [20] har foretaget fotografiske studier af pulserende bobler, og han nævner, at der kan optræde endog

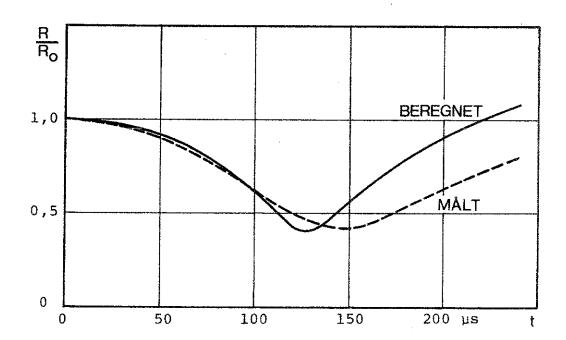


Fig 35.1 Sammenligning mellem beregnet og målt R-t kurve for luftboble i vand, som rammes af chokbølge [64].

store afvigelser fra den kuglesymmetriske form, hvilket i visse tilfælde kan resultere i opsplitning af boblerne.

En teoretisk undersøgelse af stabiliteten af den sfæriske form af en radielt oscillerende gasboble er gennemført af bl. a.BIRKHOFF [5], PLESSET & MITCHELL [57] og PLESSET [54]. De har alle forsøgt at fastslå, hvorvidt en lille perturbation - repræsenteret ved kugleharmoniske funktioner - af den sfæriske overflade vil vokse eller aftage. Resultatet af beregningerne er ret kompliceret, men generelt gælder, at boblers ekspansion er stabil, medens kontraktionen er ustabil. Imidlertid har også faktorer som pulsationsamplitudens og overfladespændingens størrelse betydning for stabiliteten af den sfæriske form.

Endring af en bobles ligevægtsstørrelse kan fx ske ved diffusion af gas fra væsken til boblen eller omvendt. Dette forhold viser sig ved, at bobler som genereres i en væske, der
ikke er mættet med pågældende gas, efterhånden vil opløses
og forsvinde, medens bobler i en overmættet væske på grund
af diffusion vil vokse. Ganske specielle forhold gør sig
gældende, hvis boblen er bragt i pulsationer af et lydfelt,
idet der da optræder et fænomen, der kaldes ensrettet diffusion, og som medfører, at også bobler i en umættet væske
vil vokse.

Under boblepulsationen vil trykket i boblen og dermed gaskoncentrationen variere. Således vokser koncentrationen under kompressionen, og gas diffunderer fra boblen til væsken,
medens processen går i modsat retning under ekspansionen.
Nu er diffusionsmængden proportional med bl. a. overfladearealet af boblen, og dette er i middel størst i ekspansionsfasen, når diffusionen foregår fra væsken til boblen. Yderligere er den tid boblen tilbringer i den ekspanderede fase
voksende med voksende ulinearitet for pulsationen, hvilket
også øger diffusionen fra væsken til boblen. I middel resulterer ovenstående forhold i en nettoforøgelse af gasindholdet i boblen, og ligevægtsdiameteren do vokser.

En oversigt over de hidtil publiserede artikler om ensrettet diffusion er givet af KAPUSTINA [37] i 1970. De to stan-

dardreferencer for en teoretisk behandling af diffusionsproblemet er af henholdsvis HSIEH & PLESSET [30] og ELLER & FLYNN [16]. En eksperimentel bestemmelse af ændringen af boblestørrelsen som funktion af tiden på grund af ensrettet diffusion er gennemført af KAPUSTINA [36]. Forsøgsresultaterne er vist i fig 37.1 for forskellige trykamplituder af lydfeltet. Det ses, at boblestørrelsen vokser ganske betragteligt i løbet af de ca 10 min, diffusionsprocessen er iagttaget.

I kapitlet om pulserende bobler i et lydfelt er boblernes gasindhold regnet konstant. Dette gælder med god tilnærmelse, sålænge der kun betragtes nogle få pulsationer, men hvis en boble studeres i flere millisekunder, må der tages hensyn til den ensrettede diffusion. Som det fremgår af fig 37.1 er

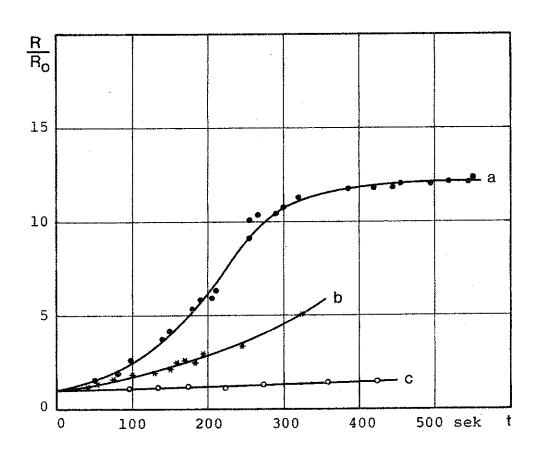


Fig 37.1 Endring af en bobles ligevægtsstørrelse på grund af ensrettet diffusion [36].

a:
$$P_A = 1.46 \text{ bar}$$
 $R_O = 0.1 \text{ mm}$
b: $P_A = 0.69 \text{ bar}$ $\frac{f_A}{f_O} = 0.8$

diffusionshastigheden meget afhængig af trykamplitudens størrelse, og det er tvivlsomt, om diffusionen overhovedet kan negligeres i de tilfælde, hvor $P_{\rm A}$ antager så høje værdier som 100-300 bar.

V. BEREGNING AF TRYKVARIATIONERNE I EN PULSERENDE BOBLE

En luftboble i vand, som rammes af chokbølgen fra en undervandseksplosion, vil pulsere ulineært omkring sin ligevægtsstilling. På grund af energitab til det omgivende vand vil svingningsamplituden aftage med tiden, således at det største tryk i boblen registreres under første kontraktion, se fig 39.1.

Når boblens volumen antager sin minimumværdi $(P=P_1)$ er partikelhastigheden i det omgivende vand nul, og den totale energi forbundet med boblepulsationen er derfor til stede som trykenergi inde i boblen. Denne energi, som er taget fra chokbølgen, er et udtryk for en enkelt bobles dæmpende egenskaber, og derfor har det interesse at bestemme netop denne størrelse. En bobles energiabsorption kan beregnes alene ud fra kendskab til P_1 , hvis de termodynamiske forhold for boblepulsationen er kendt. Som omtalt i de følgende kapitler viser forsøgene, at boblepulsationen med god tilnærmelse kan regnes adiabatisk for de aktuelle boblestørrelser,

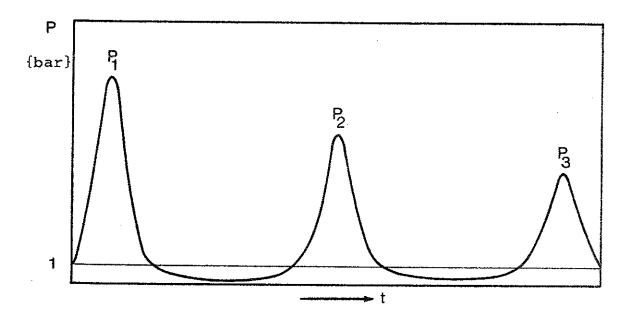


Fig 39.1 Typisk trykforløb i ulineært pulserende boble.

således at eneste ukendte parameter ved beregning af den maksimalt akkumulerede energi i boblen er maksimaltrykket P_1 .

I dette kapitel foretages en teoretisk bestemmelse af P_1 som funktion af d_0 , P_m og θ , hvor d_0 er boblens ligevægtsdiameter, og P_m er maksimaltrykket og θ tidskonstanten for en chokbølge med eksponentielt aftagende tryk bag fronten. Beregningerne er gennemført for følgende parameterværdier:

$$d_{O} = 10 - 30 \text{ mm}$$
 $P_{m} = 25 - 150 \text{ bar}$
 $\theta = 10 - 20 \text{ } \mu \text{s}$

Disse er valgt således, at en eksperimentel verificering af beregningsresultatet er mulig.

Som tidligere omtalt er en pulserende luftbobles bevægelse bestemt ved følgende ulineære differentialligning af 2. orden:

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{\rho_{V}} \cdot (P_{g} - P_{\infty})$$
 (40.1)

hvor P er trykket inde i boblen og P trykket i væsken langt fra boblen. Der er i denne ligning indbygget en række forudsætninger, af hvilke de vigtigste er:

- 1. Væsken betragtes som inkompressibel.
- 2. Alle dissipative processer negligeres.
- 3. Der ses bort fra overfladespænding og varmeledning.
- 4. Der forudsættes kuglesymmetri i alle parametre, også i belastningen P_m af boblen.

De 3 første forudsætninger medfører, at ligning (40.1) beskriver en udæmpet svingning, hvilket ikke er i overensstemmelse med de faktiske forhold. Dæmpningens indflydelse på trykforløbet i boblen under første kontraktion er imidlertid ringe, og da man kun er interesseret i at bestemme P_1 , ligger der ikke i punkterne 1-3 nogen hindring for at opnå rimelig overensstemmelse mellem målte og beregnede P_1 -værdier.

Forudsætningen i punkt 4 om kuglesymmetrisk belastning af boblen er ikke opfyldt for de aktuelle parameterværdier. Dette skyldes, at chokbølgen tilnærmet er en plan bølge, som rammer boblen fra den ene side, men det skyldes først og fremmest, at betingelsen $\lambda_{_{\mathbf{C}}}$ >> $d_{_{\mathbf{O}}}$ ikke er opfyldt. Defineres bølgelængden for choket ved $\lambda_{\mathbf{C}} = \mathbf{c} \cdot \boldsymbol{\theta}$ og indføres den dimensionsløse størrelse $\mu = \lambda_{\rm C}/d_{\rm O}$, kan parameterintervallet for $\lambda_{_{\mathbf{C}}}$ og $d_{_{\mathbf{O}}}$ skrives som 0,5 \leq μ \leq 3,0. Det ses, at bølgelængde og boblediameter er af samme størrelsesorden, hvilket medfører, at trykbelastningen på boblens bagside er betydeligt mindre end på forsiden. Målinger har vist, at trykket på bagsiden kun er nogle få procent af trykket på forsiden af boblen for μ = 1. Er bølgelængden stor i forhold til boblestørrelsen ($\mu >> 1$) diffrakteres choket så kraftigt bag boblen, at belastningen med god tilnærmelse kan regnes kuglesymmetrisk. Derimod er diffraktionen forsvindende i kortbølgegrænsen (μ << 1), hvor der findes en skarpt afgrænset skyggezone bag boblen.

Da punkt 4 ikke er opfyldt for de aktuelle parameterværdier, må der forventes en vis uoverensstemmelse mellem målte og beregnede maksimaltryk i boblerne. Årsagen til at ligning (40.1) alligevel vil blive anvendt ved en teoretisk behandling af boblepulsationen er, at det ikke er muligt at opstille en nogenlunde simpel matematisk model, som beskriver pulsationen for en usymmetrisk belastning. Visse nye numeriske metoder, som omtales i næste kapitel, synes dog at kunne overvinde disse vanskeligheder, men endnu er metoderne ikke udviklet tilstrækkeligt til at kunne benyttes i forbindelse med pulserende bobler.

Selv om der ved løsning af (40.1) ikke opnås korrekte værdier for maksimaltrykket i boblerne, kunne der måske forventes en nogenlunde korrekt funktionsafhængighed mellem P_1 og relevante parametre som $\lambda_{\rm C}/{\rm d_0}$ og $P_{\rm m}/P_{\rm hy}$. Denne mulighed sammen med den kendsgerning, at ligning (40.1) for øjeblikket er den eneste mulighed for en teoretisk behandling af boblepulsationen, har gjort en løsning af (40.1) ønskelig.

Antages pulsationen at være adiabatisk kan trykket P_g inde

i boblen skrives som en funktion af R ved hjælp af følgende ligning:

$$P_{g} = P_{hy} \left(\frac{R_{o}}{R}\right)^{3\gamma}$$
 (42.1)

hvor $\gamma = 1,4$ for atmosfærisk luft. For trykket i væsken langt fra boblen indføres:

$$P_{\infty} = P_{m} \cdot e^{-\frac{t}{\theta}} + k_{1}P_{hy}$$
 (42.2)

som er ligningen for en chokbølge med eksponentielt aftagende tryk bag fronten. k_1 er en konstant, som kan antage værdien 0 eller 1.

KEDRINSKIJ [38] har i sine beregninger benyttet $k_1=0$, hvilket betyder at $P_{\infty} \to 0$ for $t \to \infty$. Dette synes imidlertid ikke at være en fysisk realistisk model, idet et tryk på 0 i vandet omkring boblen medfører, at denne efter kontraktionen vil ekspandere i det uendelige og altså kun udføre $\frac{1}{2}$ svingning. Indsættes $k_1=1$ vil trykket i væsken nærme sig det hydrostatiske tryk for $t \to \infty$, og boblen vil følgelig kunne pulsere omkring sin ligevægtsstilling.

Hvilken af de to ovenfor nævnte approksimationer der i dette tilfælde bør benyttes, lader sig vanskeligt afgøre på forhånd, og beregningerne er derfor gennemført for såvel $k_1=0$ som $k_1=1$.

Hvis der indføres de dimensionsløse størrelser

$$y = \frac{R}{R_O}$$
, $z = \frac{t}{\theta}$, $\mu = \frac{\lambda_C}{d_O}$, $A = \frac{P_m}{P_{hv}}$

kan ligning (40.1) under anvendelse af (42.1) og (42.2) skrives på følgende form:

$$y \cdot \frac{d^2y}{dz^2} + \frac{3}{2} \left[\frac{dy}{dz} \right]^2 = \frac{4P_{hy}}{\rho_v c^2} \cdot \mu^2 \left[y^{-3\gamma} - A \cdot e^{-z} - k_1 \right]$$
 (43.1)

hvor størrelsen $\frac{4P_{\mbox{\scriptsize hy}}}{\rho_{\mbox{\scriptsize v}}c^2}$ er en konstant.

Ved indsættelse af $P_{\rm hy}=10^5~{\rm N/m^2}$, $\rho_{\rm v}=10^3~{\rm kg/m^3}$ og c = 1500 m/s fås talværdien for konstanten til 1,78·10⁻⁴.

Ved numerisk løsning af ligning (43.1) kan maksimaltrykket i boblen findes, og det ses, at P_1 kun er en funktion af μ og A. For at kunne løse ligningen må den omskrives til 2 sammenhørende 1. ordens differentialligninger, hvilket sker ved en simpel substitution:

$$Z_{1} = \frac{dy}{dz}$$

$$Z_{2} = \frac{d^{2}y}{dz^{2}} = -1.5 \cdot \frac{\left[\frac{dy}{dz}\right]^{2}}{y} + 1.78 \cdot 10^{-4} \cdot \frac{\mu^{2}}{y} \left[y^{-4.2} - Ae^{-z} - 1\right]$$
(43.2)

Der er her indsat $\gamma=1.4$ og $k_1=1$. Datamatprogrammet til løsning af ligningssystemet (43.2) er vist som appendiks, p 122. Det er opbygget omkring en standard procedure Mersn, som integrerer n sammenhørende 1. ordens differentialligninger under anvendelse af en 4. ordens Runge-Kutta metode. Programmet indeholder desuden en procedure, som ved hjælp af en parabolsk approksimation udregner y_{\min} hørende til første boblekontraktion. Maksimaltrykket kan derefter findes af følgende formel, som gælder for en adiabatisk tilstandsændring:

$$P_1 = (y_{min})^{-4/2} - P_{hy}$$
 {baro} (43.3)

hvor {baro} indicerer, at der regnes i overtryk.

I stedet for at anvende $A = P_m/P_{hy}$ som den primære parameter i beregningerne sammen med μ , er der benyttet afstanden a mellem boble og eksplosionssted, hvilket letter sammenligningen mellem de teoretiske og eksperimentelle resultater.

Som vist i kapitel VIIIA, kan A for den i forsøgene anvendte detonator (type 6) udtrykkes som funktion af a ved ligningen

$$A = 37,5 \cdot a^{-1,13} \tag{44.1}$$

hvor a indsættes i {m}.

Beregningerne er gennemført for $\mu=0.5$ - 3.0 og a = 30 - 150 cm. Den totale regnetid på DTH-GIER er ca $l_2^{\frac{1}{2}}$ time. Resultaterne er vist i fig 45.1, hvor de stiplede kurver gælder for $k_1=1$ (FBJ), og de fuldt optrukne for $k_1=0$ (Kedrinskij).

Som ventet giver Kedrinskij approksimationen de laveste P_1 værdier, da trykket i vandet går mod 0 og derved bremser boblekontraktionen kraftigt. Det ses desuden, at de to beregningsmetoder konvergerer resultatmæssigt dels for a \rightarrow 0 og dels for $\mu \rightarrow \infty$. Dette skyldes i første tilfælde, at trykpåvirkningen af boblen vokser med aftagende a, således at indflydelsen fra chokbølgens hale på det beregnede maksimaltryk bliver procentvis mindre. I det andet tilfælde vokser bølgelængden i forhold til boblestørrelsen, således at maksimaltrykket nås, inden trykket i vandet er faldet til under hydrostatisk tryk.

Medens de to beregningsmetoder giver samme resultat for små værdier af a og store værdier af μ , giver de i det aktuelle parameterområde meget forskellige værdier af P_1 . Det er derfor af stor betydning, at have nøje kendskab til trykforløbet i chokbølgens hale, men som omtalt i kapitel VIII A, lader dette tryk sig meget vanskeligt bestemme eksperimentelt. Da de benyttede matematiske modeller repræsenterer yderpunkterne for mulige trykforløb i chokbølgens hale, kan man i stedet lade beliggenheden af de eksperimentelt fundne P_1 -kurver i forhold til de beregnede afgøre, hvilken af de to modeller, der er mest realistisk. En sammenligning mellem målte og beregnede maksimaltryk er foretaget i kapitel VIII E.

De her gennemførte beregninger dækker kun et meget snævert variationsområde for μ , men det har interesse at kende det principielle forløb af hele kurven $P_1 = P_1(\mu)$, og derfor undersøges kurveforløbet for μ gående mod grænserne 0 og ∞ .

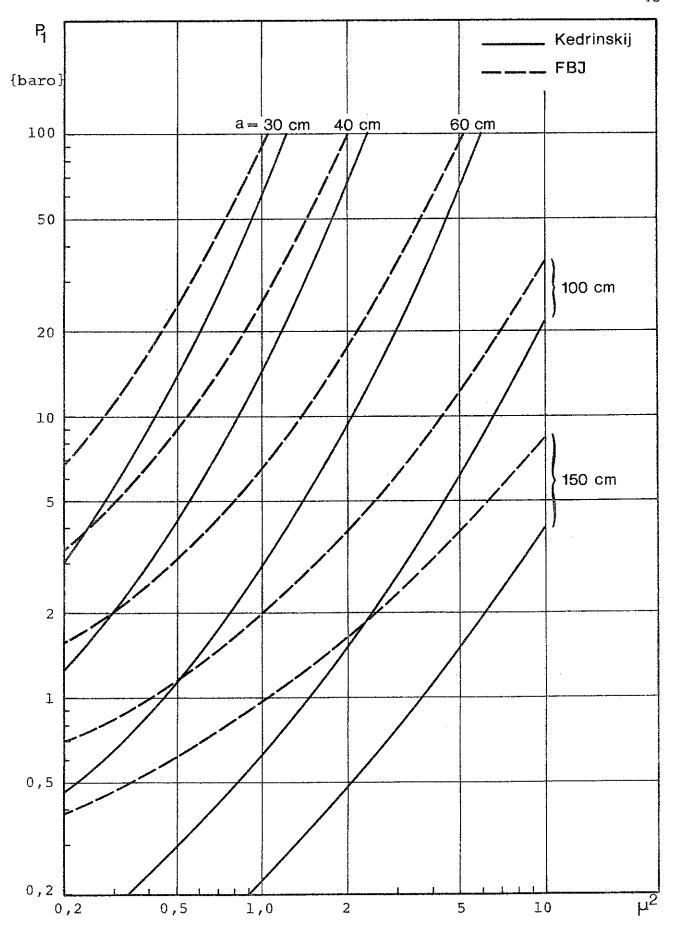


Fig 45.1 Sammenligning mellem beregnede maksimaltryk i boblerne ved anvendelse af henholdsvis FBJ og Kedrinskij approksimationen. μ er forholdet mellem bølgelængden for choket og boblens ligevægtsdiameter.

Fysiske overvejelser fører umiddelbart til betingelsen $P_1 \rightarrow 0$ for $\mu \rightarrow 0$. Derimod må differentialligning (40.1) løses for at finde P_1 for $\mu \rightarrow \infty$. Dette grænsetilfælde svarer til på-virkning af boblen med en stepfunktion. Indsættes $P_\infty = P_m$ i ligning (40.1) og indføres samtidig de dimensionsløse størrelser y = R/R_O og A = P_m/P_{hy} fås følgende differentialligning for boblepulsationen:

$$y\ddot{y} + \frac{3}{2}\dot{y}^2 = \frac{P_{hy}}{\rho_v R_0^2} (y^{-3\gamma} - A)$$
 (46.1)

Da trykpåvirkningen af boblen ikke længere er en funktion af tiden, men derimod konstant lig A, kan (46.1) integreres, og der fås

$$\frac{3}{2} \cdot \frac{\rho_{\mathbf{v}}^{R_{0}}^{2}}{P_{hy}} \cdot y^{3} \dot{y}^{2} + \frac{1}{\gamma - 1} \left[y^{3(1 - \gamma)} - 1 \right] + A \left[y^{3} - 1 \right] = 0$$
 (46.2)

Indsættes heri $\dot{y} = 0$ fås følgende ligning til bestemmelse af ekstremalværdierne for y = y(t):

$$\frac{1}{\gamma - 1} \left[y^{3(1 - \gamma)} - 1 \right] + A \left[y^{3} - 1 \right] = 0$$
 (46.3)

Som det ses, er y = 1 løsning, hvilket svarer til boblens maksimaldiameter. Ligningen har imidlertid også løsningen y = y_{min} svarende til minimumvolumenet, og indsættes i (46.3) $P_1/P_{hy} = (y_{min})^{-3\gamma}$, som gælder for en adiabatisk tilstandsændring, fås følgende ligning til bestemmelse af maksimaltrykket P_1 :

$$\left[\frac{P_1}{P_{hy}}\right]^{-\frac{1}{\gamma}} \left[\frac{P_1}{P_{hy}} + A(\gamma - 1)\right] = 1 + A(\gamma - 1)$$
(46.4)

Her er P_1 givet implicit som funktion af A for $\mu \to \infty$. Denne formel kan dog forenkles, idet $P_1/P_{hy}>> A(\gamma-1)$ for $A \ge 10$, og der fås da følgende simple formel:

$$\frac{P_1}{P_{hv}} = \left[1 + A(\gamma - 1)\right]^{\frac{\gamma}{\gamma - 1}} \tag{46.5}$$

Med kendskab til $P_1 = P_1(\mu)$ for $\mu \simeq 1$ samt for $\mu \to 0$ og ∞ kan det principielle forløb af kurven optegnes, som vist i fig 47.1.

Det er tidligere vist, at den beregnede værdi af P₁ er meget afhængig af trykforløbet i chokbølgens hale, og det skal nu undersøges, om også trykforløbet i starten af chokbølgen har indflydelse på beregningsresultatet. Dette sker ved at beregne maksimaltrykket i en given boble, som udsættes for forskellige trykpåvirkninger, se fig 48.1. Der er benyttet henholdsvis en firkantpuls, en trekantpuls og et chok med eksponentielt trykfald bag fronten, alle med samme bølgelængde og impulstæthed I, hvor I er defineret ved ligningen

$$I = \int_{0}^{\infty} (P - P_{hy}) dt \qquad (47.1)$$

I fig 48.1 er impulstætheden repræsenteret ved de skraverede arealer.

Der fås i de 3 beregningstilfælde samme værdi for P $_1$ inden for et par procents nøjagtighed. Dette resultat gælder dog kun sålænge $\mu \le 1$, idet der da er tale om impulsbelastning af boblen, således at I er en karakteristisk parameter i be-

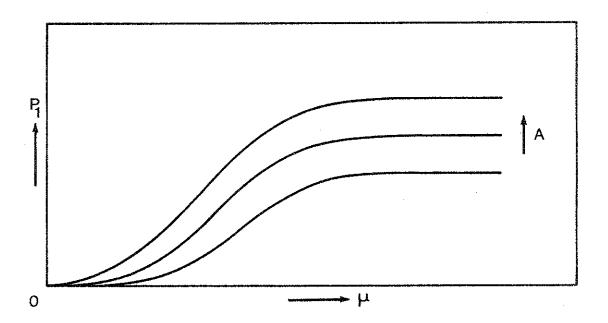


Fig 47.1 Det principielle forløb af kurven $P_1 = P_1(\mu)$ for varierende maksimaltryk A i chokbølgen.

regningerne. Bestemmelsen af $P_1 = P_1(\mu)$ i det foregående er gennemført for $\mu \simeq 1$, hvilket betyder, at impulstætheden I i den teoretiske model skal være korrekt, hvorimod valget af bølgeformen ikke er kritisk.

Et bevis for at I er en karakteristisk parameter i beregningerne for 0,5 \leq μ \leq 3,0 fås ved at plotte beregningsresultaterne for P₁ i et koordinatsystem som funktion af $(\text{I}/\text{d}_{\text{O}})^2$. Resultatet er vist i fig 49.1 for såvel Kedrinskij som FBJ approksimationen. Det ses, at de beregnede værdier samles om en enkelt kurve med en spredning på \pm 5%. Den største afvigelse fra kurven fås for μ = 3,0, medens overensstemmelsen bliver bedre jo mindre μ er.

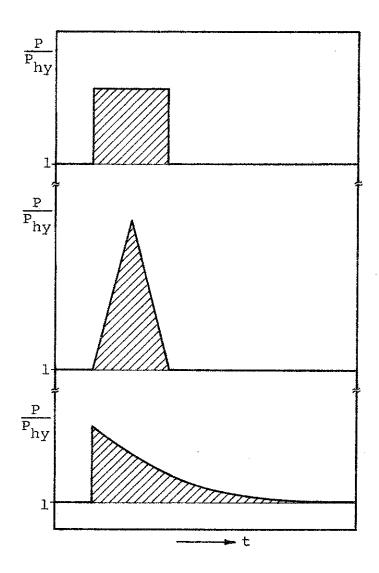


Fig 48.1 Forskellige trykpåvirkninger anvendt ved den teoretiske bestemmelse af maksimaltrykket i en pulserende boble.

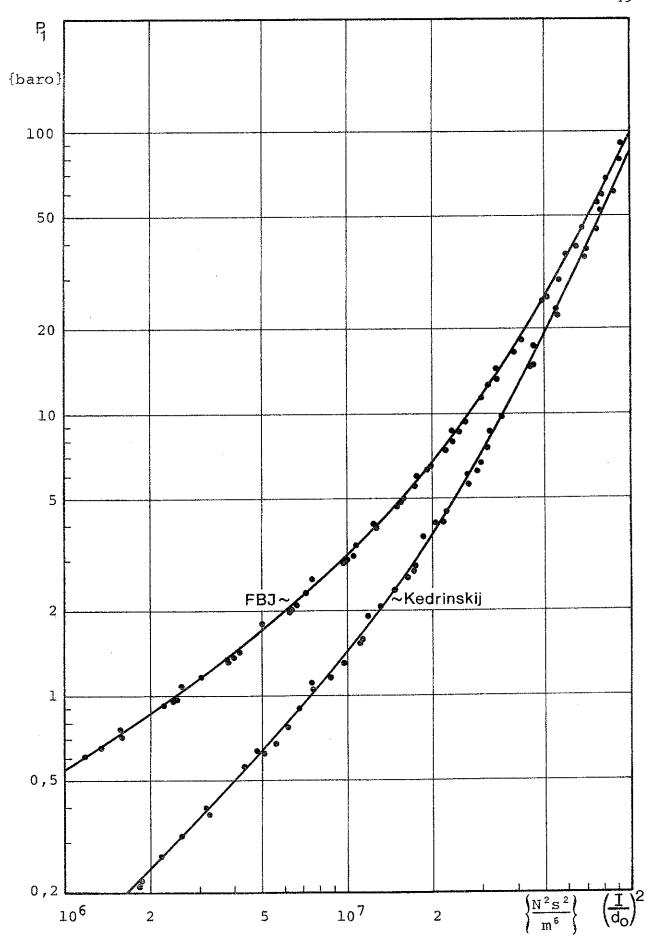


Fig 49.1 Beregningsresultaterne for maksimaltrykket P_l plottet som funktion af $(I/d_o)^2$, hvor I er impulstætheden i chokbølgen.

VI. NUMERISKE METODER

I erkendelse af at den klassiske differentialligning (4.1) til bestemmelse af boblepulsationen ikke giver helt tilfredsstillende resultater for $\mu \simeq 1$, se kap VIIIE, blev der indledt et litteraturstudium for at finde frem til alternative metoder til beregning af $P_g=P_g(t)$. Dette resulterede i, at interessen samledes om visse numeriske metoder udviklet ved Los Alamos Scientific Laboratory, New Mexico, USA. Disse metoder kan benyttes til beregning af transiente strømningsproblemer i flere dimensioner, og deres udgangspunkt er de fuldstændige Navier-Stokes ligninger. Reference [24] giver en oversigt over de vigtigste varianter, der i dag eksisterer af den grundlæggende Particle-in-Cell metode (PIC), som blev udviklet i Los Alamos i 1955.

De nye numeriske metoder har muliggjort løsning af en del komplicerede strømningsproblemer, som det ikke hidtil har været mulig at behandle teoretisk. Metoderne er nært knyttet sammen med udviklingen inden for datamatteknikken, da de stiller store krav til såvel regnehastighed som lagerkapacitet. I det følgende vil der blive givet en oversigt over metodernes fordele og ulemper, samt en kort beskrivelse af de grundlæggende principper for metoderne.

Ved numerisk behandling af problemer i fluid dynamikken skelnes der mellem kompressibel og inkompressibel strømning [58]. Hvis strømningshastigheden u er af samme størrelsesorden som lydhastigheden c, må fluidets kompressibilitet tages i betragtning, hvorimod strømningen kan regnes inkompressibel for u << c. Da lydhastigheden c er den hastighed, hvormed en lille forstyrrelse udbreder sig i fluidet, vil der beregningsmæssigt være betydelig forskel på de to typer strømning. Således vil et fluidelement for u \simeq c udelukkende være påvirket af fluidet umiddelbart omkring elementet, hvorimod et element for u << c vil være påvirket af alle øvrige dele af fluidet.

Ovenstående forhold har medført, at de numeriske metoder naturligt er blevet inddelt i to hovedgrupper:

- Metoder til beregning af kompressibel strømning (u ≃ c). Disse er repræsenteret ved Particle-in -Cell metoden (PIC) [3].
- 2. Metoder til beregning af inkompressibel strømning
 (u << c). Disse er repræsenteret ved Marker-and
 -Cell metoden (MAC) [67].</pre>

Uheldigvis har opdelingen mellem disse to grupper været så skarp, at ingen metode har kunnet behandle strømningsproblemer i det mellemliggende hastighedsområde.

A. Grundlæggende træk ved Los Alamos metoderne.

For at kunne behandle et kontinuum numerisk indlægges et 3-dimensionalt net, som opdeler dette i et endeligt antal celler. Disse celler har til opgave at definere små områder, inden for hvilke relevante parametre som tryk, tæthed, hastighed og energi kan regnes konstante. Jo flere celler der indlægges i fluidet, jo nærmere kommer man en differentiel beskrivelse, men samtidig vokser kravene til datamaten.

Cellerne kan enten betragtes som faste i rummet, idet fluidet så bevæger sig fra celle til celle, og der tales da om
et eulersk net. Hvis cellerne derimod bevæger sig med fluidet, således at det til stadighed er den samme fluidmængde,
der befinder sig i en given celle, kaldes nettet lagrangsk.

For at kunne visualisere strømningen anbringes der "marker" partikler i cellerne. Disse partikler flyttes med den lokale strømningshastighed, og ved til forskellige tider at plotte partiklernes positioner i nettet, fås et billede af ændringen i strømningsmønsteret. Dette er især en hjælp ved bestemmelse af frie overfladers beliggenhed og form. Denne måde at visualisere strømningen på refererer til MAC-metoden, medens der i PIC-metoden tillægges partiklerne andre egenskaber. Således repræsenteres fluidet udelukkende ved partikler i PIC-metoden, og der anbringes adskillige partikler i hver celle, og hver partikel tillægges masse. Også her

vil et plot af partiklernes positioner til forskellige tidspunkter afsløre ændringer i strømningsbilledet, men samtidig vil en stor partikeltæthed indicere stor densitet og højt tryk på det pågældende sted i fluidet.

Den matematiske model, som beskriver et fluids dynamik, er de fuldstændige Navier-Stokes ligninger plus kontinuitets – og energiligningen. Disse differentialligninger omskrives til differensform og benyttes til udregning af ændringen i tilstandsstørrelserne i de enkelte celler til tiden t+ δ t, når tilstanden er kendt til tiden t. Ud fra givne begyndelses- og randbetingelser er det således muligt at regne sig frem gennem tiden i små spring δ t og derved få kendskab til, hvorledes strømningsbilledet ændrer sig.

Den nære analogi mellem den numeriske beregningsgang og det fysiske eksperiment ses tydeligt, hvis marker partiklernes positioner til forskellige tidspunkter plottes på en film. Denne vil da vise strømningsbilledets ændring i tiden, nøj-agtigt som havde man fotograferet eksperimentet i laboratoriet.

Ved at betragte nogle eksempler på LA-metodernes anvendelse [3],[4] fås det indtryk, at ethvert instationært strømningsproblem kan løses med disse metoder. Der er dog visse begrænsninger angående strømningshastigheden, idet u som tidligere nævnt skal opfylde en af følgende betingelser: u = c eller u << c. Mange forskellige strømningsproblemer er løst numerisk, og overensstemmelsen med eksperimenterne er god.

Til løsning af inkompressible strømningsproblemer skal der benyttes en datamat med et lager på mindst 64K, og man kan da klare sig med regnetider på 5 - 15 min (CDC 6600) ved konventionelle problemer [4]. Ved beregning af kompressible strømninger er kravet til lagerkapacitet i datamaten normalt større, og regnetider på 1 - 2 timer er ikke usædvanlige.

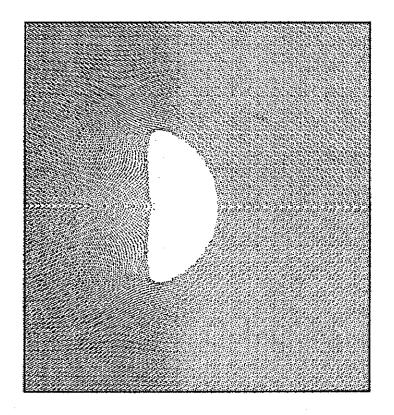
B. Numerisk beregning af boblepulsationen.

En gennemgang af betingelserne for anvendelse af Los Alamos metoderne viser, at disse ikke kan benyttes til beregning af boblepulsationen. Dette skyldes, at en luftboble i vand består af såvel et kompressibelt område (boblen) som et inkompressibelt område (vandet). Derfor kan hverken PIC eller MAC-metoden benyttes.

Et eksempel på at PIC-metoden under specielle forhold kan anvendes til at beregne R=R(t) for en luftboble i vand, som rammes af en chokbølge, er vist af MADER [47]. Han har imidlertid benyttet så kraftig en chokbølge (P_m = 120000 bar), at partikelhastigheden i vandet opfylder betingelsen u \simeq c. Derfor kan væsken betragtes som kompressibel, og følgelig kan PIC-metoden anvendes. Resultatet af beregningerne for en 30 mm boble ses i fig 54.1, hvor boblen er vist henholdsvis 3,5 og 5,0 µs efter at den rammes af chokbølgen. Overensstemmelsen mellem de beregnede resultater og nogle highspeed fotografier af boblen er god [47].

For om muligt at overvinde vanskelighederne ved en numerisk behandling af boblepulsationen blev der indledt en korrespondance med Dr. Francis H. Harlow i Los Alamos. Han anbefalede at anvende en ny version af MAC-metoden, som var under udarbejdelse, til løsning af problemet. Et fortryk omhandlende denne såkaldte ICE-metode forelå primo 1971 [25].

ICE er en forkortelse af Implicit Continuous-Fluid Eulerian. Ved at indføre visse ændringer i differensligningerne er der skabt en numerisk metode, som kan anvendes på strømningsproblemer i hele hastighedsområdet $0 < M < \infty$, hvor M = u/c er machtallet for strømningen. Endnu er den kun benyttet til ganske få beregninger, men resultaterne ser lovende ud. ICE-metoden kan anvendes ved strømning såvel med som uden fri overflade, og den gør brug af den fuldstændige viskose spændingstensor i modsætning til PIC-metoden, som opererer med en kunstig viskositet. Der ser således ikke ud til at være



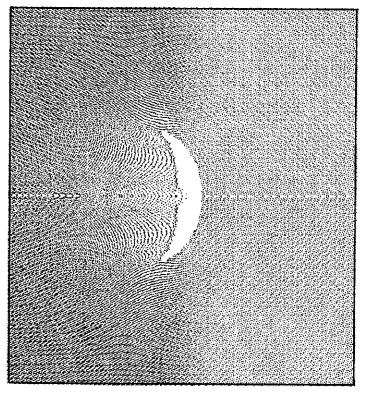


Fig 54.1 Numerisk beregning af deformation og volumenændring for boble, som rammes af chokbølge. Billederne er optegnet 3,5 og 5,0 us efter kollisionen [47].

nogen indskrænkning i ICE-metodens anvendelighed i sammenligning med PIC og MAC metoderne.

Hvis ICE-metoden viser sig at være så anvendelig som forventet, skulle den kunne benyttes til en teoretisk behandling af boblepulsationen. På den anden side forekommer det også at være den eneste numeriske metode, der i dag kan benyttes til løsning af dette problem.

Den foreløbige rapport [25] er ikke særlig detaljeret, og først når en endelig rapport foreligger med flowdiagrammer og et fuldstændigt datamatprogram, kan der gøres et forsøg på at beregne tilstandsstørrelserne i en pulserende luftboble i vand. En sådan rapport kan næppe ventes før i 1972.

VII. FORSØGSOPSTILLING OG MÅLEUDSTYR

I dette kapitel beskrives dels den vandkanal, hvori forsøgene er udført, og dels en kombineret boble- og transducerholder, som er specielt konstrueret med henblik på trykmåling i pulserende bobler. Desuden omtales detonatoren, som er benyttet til frembringelse af chokbølgen. Måleapparaturet omfatter primært forskellige tryktransducere, men også oscilloskoper, fotograferingsudstyr og belysningskilder indgår i måleopstillingen. Dette udstyr omtales ligeledes i det følgende.

Alle eksperimenterne er udført i afdelingens vandkanal, som er en åben kanal med dimensionerne 0,6 x 0,7 x 7 m. Den er opbygget af 5 mm jernplade, som er svejset sammen til sektioner af 1 m's længde. Sektionerne er derefter boltet sammen, og hele kanalen er anbragt på 80 cm høje bukke. Et snit gennem forsøgssektionen er vist i fig 56.1. Som det ses, er der anbragt vinduer såvel i siderne som i bunden af kanalen, således at en boble kan fotograferes fra flere sider samtidig. Det skal endelig nævnes, at der ikke er indført foranstaltninger til hindring af bølgereflektioner fra kanalvæggene.

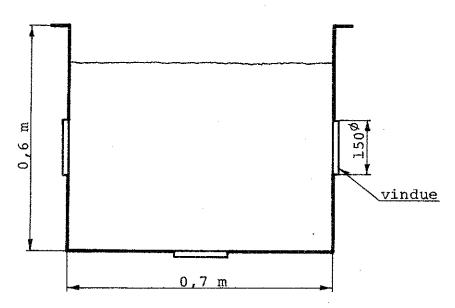


Fig 56.1 Tværsnit af forsøgskanalen.

For at kunne foretage direkte trykmålinger i en pulserende boble må luftvolumenet tvinges til at pulsere omkring transduceren, hvilket sker ved at indeslutte boblen i en tynd gummihinde, som fæstnes til transducerholderen. Dette arrangement er vist i fig 57.1. Det ses, at den yderste tynde del af holderen (5 mm $^{\emptyset}$) foruden at rumme ledningerne fra transduceren også indeholder et kanylerør (0,7 mm $^{\emptyset}$), gennem hvilket lufttilførslen til boblen foregår. Ballonen, som omslutter luftvolumenet, har en vægtykkelse på ca 0,05 mm, og den er monteret på holderen ved hjælp af et gummibånd. Selve transducerhovedet sidder inde i boblen for enden af holderen.

Til frembringelse af chokbølgen er der benyttet en aluminium sprængkapsel af type 6, fremstillet hos Nobel Dynamit i Tyskland. Den består af en primærladning på 0,25 g, hvoraf 70% er blyacid og 30% blytrinitroresorcinat, samt af en underladning på 0,55 g tetryl. Dette giver en total ladningsvægt på 0,8 g. Detonatoren, som tændes elektrisk ved hjælp af en 6 V akkumulator, er samme type som anvendt af BJØRNØ [6].

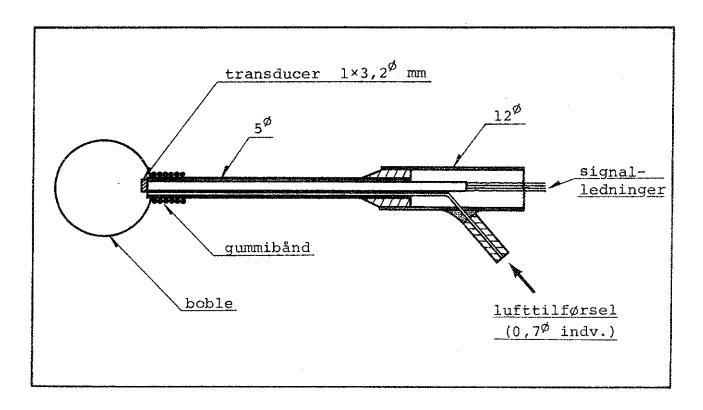


Fig 57.1 Kombineret boble- og transducerholder.

Til måling af chokbølgen fra undervandseksplosionen er der benyttet en turmalin-transducer fremstillet af Crystal Research Inc., Cambridge, Mass., USA. Det trykfølsomme element består af en stabel turmalinskiver med en diameter på 1/8" (3,2 mm). En nøjere beskrivelse af transducerens konstruktion er givet af BJØRNØ [6]. Registrering af trykvariationerne i en pulserende boble er foretaget med en strain-gauge transducer af fabrikat Kulite. Det trykfølsomme element er her en membran, hvis udbøjning måles ved hjælp af en påklæbet strain-gauge (SG).

Et omfattende forsøgsarbejde er gennemført for at finde frem til de bedst egnede transducere til de nævnte måleopgaver. Dette arbejde er refereret i [9], og resultaterne fremgår af tabel 59.1, hvor karakteristiske data for de undersøgte transducere er opsummeret. Som det ses, råder Afdelingen for Fluid Mekanik over 4 typer tryktransducere, omfattende forskellige krystaltransducere samt et par SG-transducere. De anvendte piezoelektriske eller elektrostriktive krystalmaterialer er turmalin, kvarts og blyzirkonattitanat (PZT).

Tabellen viser, at turmalin-transduceren har en meget høj egenfrekvens, hvilket gør den specielt anvendelig til måling af højfrekvente trykforløb. Forsøgsresultaterne viser, at det er den eneste af de omtalte transducere, som kan benyttes til måling af chokbølgen fra en undervandseksplosion, da de øvrige får anslået egenfrekvensen. På grund af den relativt lave lækmodstand på l $M\Omega$ i målekredsen, er turmalin-transduceren ikke anvendelig til måling af lavfrekvente trykforløb (f < 5 kHz), idet krystallen da taber en stor del af sin ladning, hvilket resulterer i fejlmåling.

Af tabel 59.1 ses desuden, at krystaltransducerne er meget temperaturfølsomme, hvilket skyldes den pyroelektriske effekt. For turmalin vil en opvarmning på 1 °C således give samme ladningsdannelse som et trykfald på 10 bar. Dette medfører, at krystaltransducerne alle er uegnede til måling i luft, hvor store tryksvingninger normalt er ledsaget af store temperatursvingninger.

Nedenstående tabelværdier skal opfattes som tilnærmelsesværdier og er kun beregnet som vurderingsgrundlag for størrelsesordenen af optrædende parametre.

Transducer	Trykfølsom flade	Egen- frekvens	Frekvens- måleområde	Dynamisk tryk- måleområde	Statisk temp. følsomhed	Tryk- følsomhed
	ø uu	KHZ	кнг	bar	bar °C	mV
Turmalin l	3,2	1500	5 < f < 1500	5 < P < 500	- 10	21
Turmalin 2	6,4	1500	5 < f < 1500	5 < P < 500	1 10	89
Kvarts	3,0	175	0 < f < 100	0.05 < P < 300	- 2,0	240*
PZT	Т'Т	200	0 < f < 100	0,01 < P < 100	+ 2,5	*0092
SG 1	2,2	130	0.5 f < 130	0.1 < P < 7	0	23
SG 2	2,2	200	0 ≤ £ < 500	1 < P < 70	0	2,3

*) Maksimal forstærkning på ladningsforstærkeren.

Fig 59.1 Karakteristiske data for tryktransducere tilhørende Afdelingen for Fluid Mekanik [9].

SG-transduceren er den eneste af de omtalte transducere, der ikke er temperaturfølsom, og som derfor er velegnet til trykmåling i luft. Der rådes over to transducere af samme geometriske størrelse men beregnet for forskellige trykområder. Da de begge har coatede membraner, kan de også benyttes til måling i vand, men egenfrekvensen er for lav til registrering af chokbølger. Det bemærkes, at SG-transducerne som de eneste af de omtalte transducere også kan anvendes til statiske trykmålinger.

Konklusionen af transducerundersøgelsen er, at de forskellige typer hver for sig er anvendelige til ganske specielle måleopgaver. Derimod savnes endnu den ideelle transducer med meget lille geometrisk udstrækning, høj egenfrekvens, stor trykfølsomhed, ingen temperaturfølsomhed og anvendelig til såvel lave som høje tryk i både luft og vand.

Ved at benytte en turmalin-transducer til måling af chokbølgen og en SG-transducer til trykmåling i boblerne har det vist sig muligt at opnå pålidelige og reproducerbare måleresultater. Det ville dog være ønskeligt at anvende endnu mindre transducere, men de ovenfor omtalte er de mindste, der forhandles i dag.

Til registrering af transducersignalerne er der benyttet to oscilloskoper af mærket Tektronix, dels en type 555 til de højfrekvente chokbølgemålinger, og dels en type 502A til de mere lavfrekvente trykmålinger i boblerne.

Affotografering af oscilloskopskærmen er foretaget med et polaroidkamera ved indledende målinger, medens der er brugt et småbilledkamera i de endelige forsøg. Det anvendte fotoudstyr bestod desuden af to konventionelle småbilledkameraer samt et high-speed kamera af mærket Fastax. Dette sidste, som har en maksimal billedfrekvens på 8000 B/s, er benyttet til at optage en række 16 mm film af pulserende luftbobler i vand.

Som belysningskilde ved optagelse af high-speed filmene er der anvendt en 1000 W lampe, medens der ved optagelse af enkeltbilleder af boblerne er brugt en blinkende lyskilde af mærket Strobotac fra General Radio. De fotografiske undersøgelser er foregået med mørklagt forsøgssektion og åbent kamera, og eksponeringen er sket ved trigning af lyskilden til et enkelt blink. Eksponeringstiden er bestemt af blinkets varighed, som for Strobotac'en er 0,8 - 3,0 µs afhængig af den ønskede lysintensitet. De anvendte film er Kodak Plus-X ved modlysfotografering og Ilford HP-4 ved fotografering med sidelys.

VIII. FORSØGSRESULTATER

A. Maksimaltryk og impulstæthed for chokbølgen.

Studiet af chokexciterede boblepulsationer forudsætter nøje kendskab til chokbølgens udseende i forskellige afstande fra eksplosionsstedet. De parametre, der ønskes bestemt, er maksimaltrykket $P_{\rm m}$ og impulstætheden I begge som funktion af afstanden a.

På grund af forsøgsanlæggets begrænsede dimensioner vil der i kanalen optræde en del reflekterede bølger, der ligesom hovedchokbølgen har indflydelse på boblepulsationen. Man er imidlertid kun interesseret i at bestemme trykvariationen i boblerne forårsaget af selve chokbølgen, og derfor må man søge at undgå alle reflekterede bølger.

Måling af trykforløbet midt i kanalen med en 1/8" turmalin transducer er vist i fig 63.1 for a = 50 cm. Til venstre ses det karakteristiske chokbølgeforløb med en stejl front efterfulgt af et tilnærmet eksponentielt trykfald. Den ekstra top på kurven ca 140 µs efter fronten er den reflekterede bølge fra kanalens bund. Denne reflektion kan imidlertid undgås ved på bunden at anbringe en energiabsorberende plade opbygget som vist i fig 62.1. Messingpladen tjener her som kontravægt, medens gummipladen skal hindre vandindtrængning i skummet.

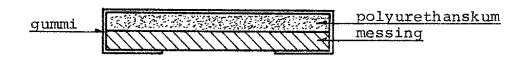


Fig 62.1 Skumplade til dæmpning af bølgereflektioner fra kanalbunden.

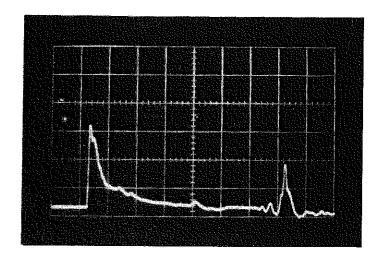


Fig 63.1 Chokbølge målt med 1/8" turmalin transducer.

 $x = 20 \mu s/div$, a = 50 cm.

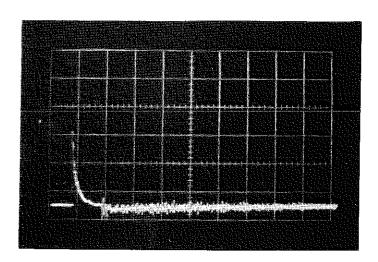


Fig 63.2 Chokbølgens udseende ved anvendelse af skumplade til dæmpning af reflektioner fra kanalbunden.

 $x = 100 \mu s/div$, a = 50 cm.

Med anvendelse af skumpladen måltes det trykforløb, der er vist i fig 63.2. Det ses, at bundreflektionen nu er forsvundet, og at der iøvrigt ingen reflekterede bølger findes de første 900 µs efter chokfronten. Der kommer altså ingen reflektioner fra kanalvæggene, hvilket er ret overraskende.

Da man som tidligere omtalt kun er interesseret i at bestemme maksimaltrykket P_1 i den pulserende boble, skal de reflekterede bølger blot undgås indtil minimumvolumenet nås. Forsøgene viser, at dette sker 200 - 600 μ s efter at chokbølgen har ramt boblen, og følgelig vil trykforløbet i fig 63.2 resultere i maksimaltryk, som udelukkende er forårsaget af hovedchokbølgen.

Måling af trykforløbet i kanalen er foretaget for a=25-150 cm med en 1/8" turmalin-transducer, og der er udført tre målinger for hver a-værdi. Forsøgsopstillingen ses i fig 64.1.

1. Systematiske målefejl. Som vist i fig 65.1 er der 2 vigtige kilder til fejlmåling ved registrering af chokbølgeforløbet, dels fortegning på grund af transducerens endelige størrelse, og dels fortegning forårsaget af ladningstab i målekredsen. I første tilfælde skyldes den systematiske fejlmåling, at transducersignalet er proportionalt med middelbelastningen på den trykfølsomme flade, hvorved variationer i trykket hen over fladen ikke registreres. Kun når bølgelængden

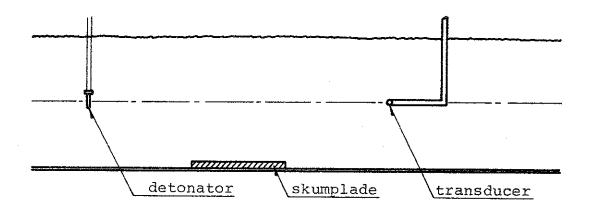


Fig 64.1 Forsøgsopstilling til måling af chokbølgen i forskellige afstande fra eksplosionsstedet.



Fig 65.1 Illustration af de systematiske målefejl ved registrering af trykforløbet i chokbølgen.

for trykvariationen er stor i forhold til diameteren af den følsomme flade gengives trykforløbet korrekt. Ved måling af den aktuelle chokbølge med en 1/8" transducer registreres en for lav P_m -værdi, som vist i fig 65.1 a.

Den anden kilde til systematisk fejlmåling er ladningstabet, som skyldes den relativt lave indgangsimpedans på 1 M Ω for det anvendte oscilloskop. Et diagram af målekredsen er vist i fig 66.1. Her er TT turmalin-transduceren med en indre modstand på ca 10 8 Ω . Ladningstabet gennem R $_k$ kan karakteriseres ved størrelsen θ_k = R $_k$ C $_k$, som er kredsens tidskonstant. Påtrykkes en bestemt spænding til tiden t = 0, vil denne være faldet til 1/e af sin oprindelige værdi til tiden t = θ_k . For den anvendte målekreds er R $_k$ = 10 6 Ω og C $_k$ = 357 pF, hvorved tidskonstanten bliver 357 µs.

Forudsætningen for at måle nogenlunde korrekt med turmalin transduceren koblet direkte på oscilloskopet er, at trykændringerne sker i løbet af så kort en tid Δt , at $\Delta t << \theta_k$. Da man ved måling af chokbølgen er interesseret i trykforløbet indtil 600 μs efter fronten, vil ladningstabet medføre betydelig fejlmåling i chokbølgens hale, hvilket fremgår af fig 65.1 b.

En sammenligning mellem det korrekte trykforløb og det faktisk målte på grund af transducerfortegning og ladningstab

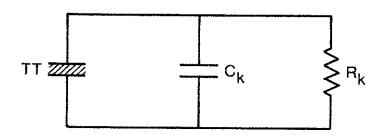


Fig 66.1 Diagram af målekredsen, som benyttes ved registrering af chokbølgen.

TT: turmalin-transducer

C_k: kredsens kapacitet

 $\mathbf{R}_{\mathbf{k}}$: oscilloskopets indgangsimpedans

forløb kan approksimeres ved to eksponentialfunktioner med forskellig tidskonstant θ_1 og θ_2 , hvilket har vist sig at nentialfunktion. Det antages desuden, at $p \to p_{hy}$ for $t \to \infty$, hvilket svarer til FBJ approksimationen i kapitel V. Som nævnt tidligere lader det faktiske trykforløb i chokbøl-

er vist i fig 65.1 c. Der er her antaget, at det korrekte

Som nævnt tidligere låder det faktiske trykforløb i chokbølgens hale sig vanskeligt bestemme på grund af lådningstabet i målekredsen. Imidlertid nævner COLE [14], at overtrykket i chokbølgen har en varighed på ca 10% af eksplosionsgasbobms. Derfor må overtryksfasen forventes at have en varighed på ca 2 ms. Da man kun er interesseret i trykforløbet de første 600 us efter chokfronten, må antagelsen $P>P_{\rm hy}$ være timelig, og følgelig er $P\to P_{\rm hy}$ for $t\to\infty$ en udmærket approksimation. Man kommer altså her til samme konklusion som i kapitel V, at Kedrinskij approksimationen $P\to P_{\rm hy}$ for $t\to\infty$ i kapitel V, at Kedrinskij approksimationen $P\to P_{\rm hy}$ of $P\to P_{\rm hy}$ for $P\to P_{\rm$

2. Korrektioner til målte P_m og I værdier. Af hensyn til beregning af korrektionen for P_m og I ønskes θ_1 , θ_2 , τ_1 og τ_2 bestemt eksperimentelt. Størrelserne er defineret i fig logaritmisk koordinatsystem kan θ_1 og θ_2 umiddelbart bestemmes som hældningskoefficienterne for de to liniestykker, hvorved kurveforløbet kan approksimeres. τ_1 fastlægges ud fra liniestykkernes skæringspunkt, medens τ_2 bestemmes ud fra liniestykkernes skæringspunkt, medens τ_2 bestemmes ud fra liniestykkernes skæringspunkt, medens τ_2 bestemmes ud fra liniestykkernes skæringspunkt, medens τ_1 fastlægges ud fra liniestykkernes skæringspunkt, medens τ_2 bestemmes ud fra liniestykkernes skæringspunkt, medens τ_2 bestemmes ud

Forsøgsresultaterne der er gengivet i tabel 68.1 viser, at hverken θ_1 eller θ_2 ændres systematisk med voksende a. De angivne middelværdier vil derfor blive benyttet ved bereger inng af korrektionsfaktorerne, Spredningen på θ -værdierne er \pm 7,5%. Også τ_2 kan regnes konstant, målenøjagtigheden er \pm 7,5%. Også τ_2 kan regnes konstant, målenøjagtigheden taget i betragtning. Derimod aftager τ_1 med voksende a, hvilket τ 7,5%. Også τ_2 kan regnes konstant, målenøjagtigheden traget i betragtning. Derimod aftager τ_1 med voksende a, hviltetelt med voksende afstand fra eksplosionsstedet.

tabet.

I det følgende udregnes korrektionsfaktoren til den I-værdi, vist i ref. [10] kan man i denne forbindelse negligere transvist i ref. [10] kan man i denne forbindelse negligere transvist i ref.

$$\mathbf{p}_{\mathbf{m}}: \quad \mathbf{K}_{\mathbf{f}} = \mathbf{1}, \mathbf{17}$$

Ved beregning af korrektionsfaktoren for P_m kan man se bort fra ladningstabet og nøjes med at tage hensyn til transducerfortegningen. Under antagelse af eksponentielt trykfald bag chokfronten kan korrektionen beregnes som funktion af tidskonstanten θ og diameteren D af den trykfølsomme flade. Dette er vist i reference [10], hvor der også er optegnet kurver for sammenhængen mellem målte og korrekte θ -værdier. Med θ_{1} = 8,7 μ s og D = 3,2 μ m er det ikke nødvendigt at korrigere den målte θ -værdi. Derimod skal maksimaltrykkene øges riger den målte θ -værdi. Derimod skal maksimaltrykkene øges med 17%, idet korrektionsfaktoren for P_m findes til

Tabel 68.1 Eksperimentelt bestemte parameterværdier for chokbølgen (se fig 65.1).

Middelværdier: $\bar{\theta}_L = 8,7 \text{ us, } \bar{\theta}_Z = 22 \text{ us}$

_	_	_	6'8	OST
_	g ' 9	0,62	٤,8	125
SL	0' <i>L</i>	5,02	6'8	00T
SL	g'L	5,22	8,8	08
08	0'8	5,02	8.48	09
08	S*8	ST'2	8'8	09
08	96	0'02	₽ ' 8	07
08	OT	55,0	8'8	30
08	TT	5,52	٤ '8	52
sn	ទ៧	ន៧	srt	wo.
Z 1	T ₁	۶	τ _θ	Б

69

som vist i fig 69.1, kan P=P(t) skrives IGER GER KOLLEKRE LLYKFORIØD i Chokbølgen antages at være

(1.69)
$$\begin{cases} I_{1} \ge J \ge 0 & \text{xof} & \frac{J}{\theta} \\ \frac{J}{\zeta \theta} - \frac{J}{\zeta \theta} \end{bmatrix} I_{1} - \frac{J}{\zeta \theta}$$

hvor
$$P_{m,1} = P_{m} \cdot e^{-t} \left[\frac{1}{t} - \frac{1}{t} \right]$$

alle trykangivelser i dette kapitel. Der er her regnet i overtryk, hvilket er kendetegnende for

Impulstætheden for chokbølgen er bestemt ved følgende udtryk:

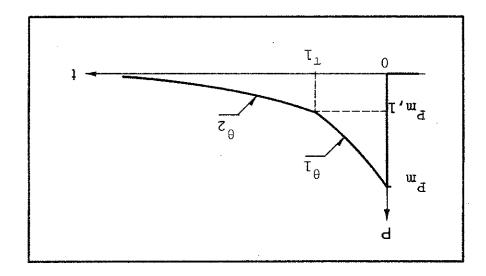
$$T = \frac{\tau_{\theta}}{\tau_{\theta}} - \frac{\tau_{\phi}}{\tau_{\theta}} + \tau_{\theta} = 0$$

$$T_{\theta} - \tau_{\phi} = 0$$

$$T_{\theta} - \tau_{\phi} = 0$$

$$T_{\theta} - \tau_{\phi} = 0$$

Ved integration og indsættelse af $P_{m,l}$ fås:



skellig tidskonstant. to eksponentialfunktioner med for-Idealiseret chokbølge sammensat af Fig 69.1

$$\left[\frac{I^{T}}{I^{\theta}} - \frac{I^{T}}{I^{\theta}} + \frac{I^{T}}{I^{\theta}} - I\right] \cdot I^{\theta}_{m} q = I$$

tølge cole [14] registreres som aftagende tryk beskrevet ved ligningen $P = P_m \cdot \exp(-t/\theta)$ i-På grund af ladningstab i målekredsen vil et eksponentielt

$$(2.07) \qquad \left[\frac{1}{1 - \frac{1}{\theta} \frac{\theta}{\theta}} - 1\right] \frac{\frac{1}{\theta}}{\theta} = q$$

hvor $\theta_{\mathbf{k}}$ er målekredsens tidskonstant. Indsættes dette udtryk

for P i (69.1) fås følgende ligningssystem for det målte

$$\text{PAOE } P_{m,1}^* = P_{m} \cdot e^{-\frac{1}{L}} \cdot \frac{\theta_k - \theta_1}{\theta_k - \theta_1 e^{-\frac{1}{L}}}$$

 ϕ vre integrationsgrænse * , og der fås Impulsen I* findes ved at integrere (70.3) fra 0 til en fast

$$\mathsf{T}_{\bullet} = \mathsf{D}_{\mathsf{M}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}} \cdot \mathsf{D}_{\mathsf{M}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}} \cdot \frac{\mathsf{D}_{\mathsf{M}}^{\mathsf{D}}^{\mathsf{D}}^{\mathsf{D}}}{\mathsf{D}_$$

$$(\xi \cdot L) \qquad \begin{cases} \frac{2}{8N} \\ \frac{8N}{6} \end{cases} \qquad \frac{2}{8} \cdot \xi_0 \cdot L \cdot 0 \cdot \zeta_0 = 1$$

$$p_{m} = 550 \cdot \left[\frac{3\sqrt{W}}{a}\right] L_{1}L_{3}$$
 {baro}

tilnærmelsesudtryk:

3. Forsøgsresultater. De opnåede forsøgsresultater er vist i tabel 72.1. Maksimaltrykkene er her korrigeret med faktoren 1,17 og impulstæthederne med 1,21. De enkelte måleværninger er udregnet som middelværdien af tre målinger, og spredninger er \pm 3% for $\rm P_m$ -værdierne og \pm 10% for I-værdierne. I fig 73.1 og 74.1 er måleresultaterne for henholdsvis $\rm P_m$ og I plottet som funktion af a og sammenlignet med følgende

Hyis der som øvre integrationsgrænse i stedet vælges $\tau^*=100$ ps fås $K_{\rm f}=1,16$. Ved bestemmelsen af I i det følgende er der udelukkende benyttet $\tau^*=50~{\rm \mu s}$.

$$I: K^{E} = T'ST \qquad (\Delta T \cdot T)$$

Beregning af korrektionsfaktoren for forskellige τ_1 -værdier us. Tindsættes de repræsentative værdier θ_1 = 8,7 µs, θ_2 = 24,2 µs, τ_1 = 10 µs og τ^* = 50 µs fås

Indexertes $\theta_{\rm K}$ = 357 µs og $\tau_{\rm Z}$ - $\tau_{\rm L}^2$ 70 µs finder man, at ligningen er opfyldt for $\theta_{\rm Z}$ = 24,2 µs.

$$\mathbf{p}^* = 0 \quad \text{for } \mathbf{\theta}_{\mathbf{k}} - \mathbf{\theta}_{\mathbf{k}} \cdot \mathbf{e}_{\mathbf{k}}$$

I formlerne indsættes a i $\{m\}$ og W i $\{kg\}$. W er den totale sprængstofmængde, som for en detonator af type 6 er 0,0008

resultater [6]: De fundne udtryk for P_m og I kan sammenlignes med BJØRNØ'S

ĸd.

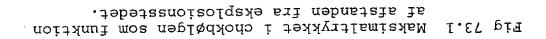
$$P_{m} = 506 \cdot \left(\frac{\sqrt[3]{W}}{8}\right) 1,10$$
 {baro}

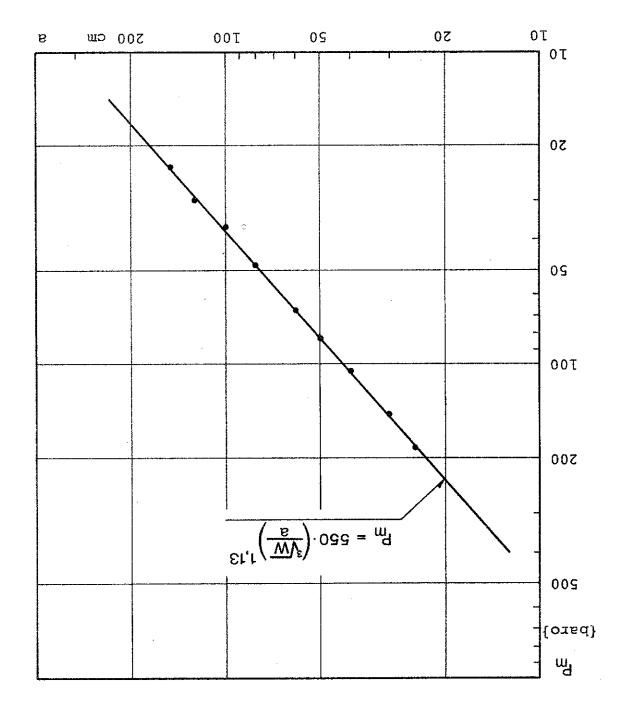
(2.27)
$$\left\{\frac{2N}{Sm}\right\} \qquad \left\{\frac{W\sqrt{\epsilon}}{Sm}\right\} \cdot \frac{W\sqrt{\epsilon}}{M} \cdot \frac{\epsilon}{M} \cdot \frac{1}{M} \cdot \frac{1}{M}$$

Der bemærkes visse divergenser både med hensyn til størrelsen af konstanterne og eksponenterne i de to sæt formler.

				,
9' 8£	3,35	۲ ٬ ٤۲	53,3	0 9 T
Z ' 9₹	g ' 6ħ	z ' 6Z	0'08	TS2
8,78	s ' ss	31,5	9198	ТОО
2,27	8 ' 69	Z*8ħ	ε′8₹	08
٤'96	9 ' 86	L*99	9'49	09
977	811	0,28	9 . T8	20
₽₽ፒ	£ħT .	901	90T	07
76T	68T	9₹⊺	₽₽I	30
237	230	780	\$8T	52
av Z m	aV Sm	ряко	ряко	cw
Iformel	Ī	P, formel	m d	Б

Tabel 72.1 Målte værdier af maksimaltryk og impulstæthed for chokbølgen sammenlignet med beregnede værdier efter de empiriske udtryk (71.2) og (71.3).





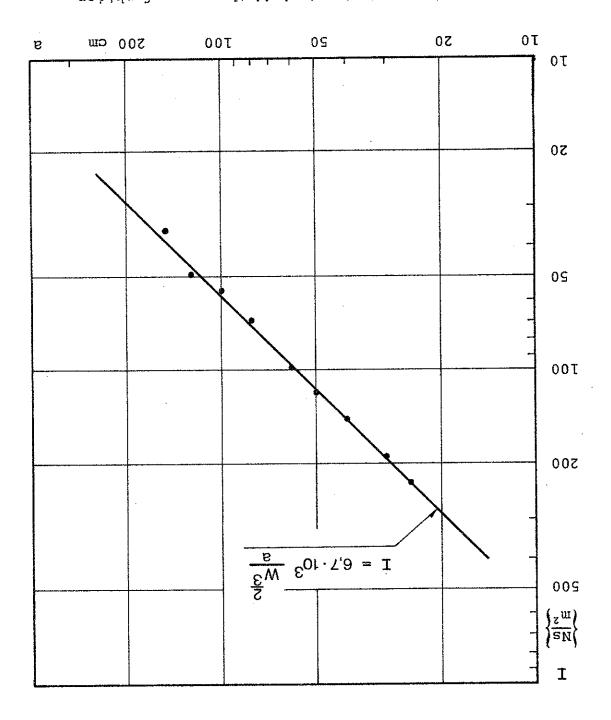


Fig 74.1 Impulstætheden i chokbølgen som funktion af afstanden fra eksplosionsstedet.

Jedes har Bjørnø ikke taget hensyn til ladningstabet, som i Afvigelsen mellem de to formler for I har flere årsager. Så-

crok.

torskelligt grundlag.

ved en eksponentialfunktion med varierende θ_{1} som funktion for p_m , idet Bjørnø har valgt at approkaimere trykforløbet konstant. Dette forklarer den ændrede eksponent i formlen rer, at korrektionen til maksimaltrykket P_m ligeledes er hængigt af a kan regnes konstant lig 8,7 μ s, hvilket medfø-Som tidligere omtalt har denne undersøgelse vist, at θ_{\perp} uaf-

Da energien i chokbølgens hale som tidligere nævnt vokser af a.

effer fronten, dvs $\theta_1 = 8.7$ µs. den værdi, som bestemmes af kurveforløbet de første 5-10 µs ning af korrektionsfaktoren, synes det rimeligst at benytte ef snþjektivt skøn, men da θ_1 kun har betydning for beregter kurvens top. Hvilken approksimation, der er bedst, er i så tilfælde en dårligere overensstemmelse umiddelbart efkurveforløbene indtil 15-20 µs efter fronten. Der fås dog ere med a, nemlig hvis der ønskes overensstemmelse mellem procentuelt med voksende a, kan man udmærket lade θ_1 vari-

der også er tale om små energimængder i chokbølden [10]. for trykbølger hidrørende fra gnistudladninger i vand, hvor konstant stemmer overens med de resultater, der er fundet sudres resultater for kraftigere trykbølger, hvorimod θ_{\perp} = Bjørnø's resultater for $\theta_1 = \theta_1$ (a) er i overensstemmelse med

er. Desuden er de benyttede korrektionsfaktorer udregnet på ser (1/8" og 1/4" turmalin-transducer) i de to forsøgsseri- $_{
m D}^{
m M}$ kan skyldes anvendelsen af forskellige transducerstørrel-Afvigelsen på ca 8% mellem konstanterne i de to formler for

hvilket er det samme, som andre har fundet for kraftigere ladning i vand [10]. Bjørnø har derimod fundet I a a .[0,8, resultat er i overensstemmelse med forholdene ved gnistudtional med a, hvilket svarer til akustisk udbredelse. Dette tryk-tid kurven. Som det ses af (71.3) er I omvendt propor-Bestemmelse at impulstætheden er sket ved planimetrering af

disse målinger giver en korrektion på 15%, men som kun andræger ca 5% i hans målinger, da han har benyttet en målekreds med større tidskonstant ($\theta_{\rm k}$ = 992 µs). Bjørnø har helet ikke korrigeret for at øvre integrationsgrænse ${\rm t}^*$ er endelig. Disse systematiske fejl forklarer dog ikke den ændrede funktionsafhængighed mellem I og a, hvilket derfor må skyldes anvendelsen af forskellige transducerstørrelser.

meterintervaller for a.

Det fundne udtryk (71.3) for impulstætheden I som funktion af a er behæftet med betydelig ubestemthed. Der kan ganske vist foretages en relativt nøjagtig bestemmelse af I de første loo us efter chokfronten, men derefter er trykforløbet i at finde den totale impuls, som påvirker boblen, inden den når sit minimumvolumen, må trykforløbet kendes indtil blot en smule fra P_{hy}, kan der komme et betydeligt bidrag til I i løbet af de sidste 500 us. Trykket i chokbølgens hale til I i løbet af de sidste 500 us. Trykket i halen lader sig imidlertid ikke bestemme eksperimentelt, og derfor må sig imidlertid ikke bestemme eksperimentelt, og derfor må sig imidlertid ikke bestemme eksperimentelt, og derfor må man acceptere den store ubestemthed på I.

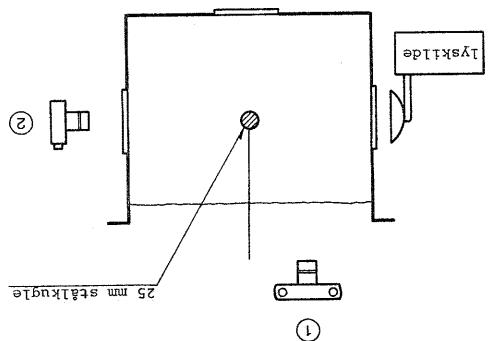
Det kan med rimelighed antages, at bidraget til I fra chok-bølgens hale er en fast brøkdel af den totale I, således at funktionsafhængigheden I « a $^{-1}$ er nogenlunde korrekt. Vel vidende at formel (71.3) kan være behæftet med en stor systematisk fejl, vil dette udtryk for impulstætheden alligevel blive benyttet ved optegning af maksimaltrykket P_{L} i boblerne som funktion af $\lambda_{\mathrm{C}}/\mathrm{d}_{\mathrm{O}}.$

B. Kavitationsboblers indflydelse på boblefotograferingen.

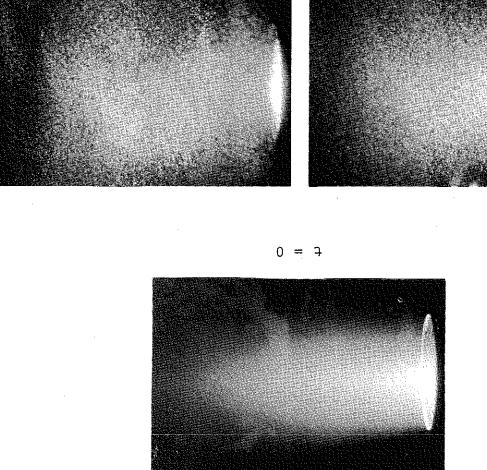
tationspobler i vandet. nuderbelyste billeder, hvilket skyldtes dannelsen af kavide de indledende fotograferingsforsøg i meget uskarpe og fotografi med en tydelig boblekontur. Imidlertid resulterepopjena vojnmen til et givet tidspunkt, kræves et skarpt For at kunne foretage en rimelig nøjagtig bestemmelse af mes nd fra sammenhørende værdier af bobletryk og -volumen. De termodynamiske forhold for boblepulsationen kan bestem-

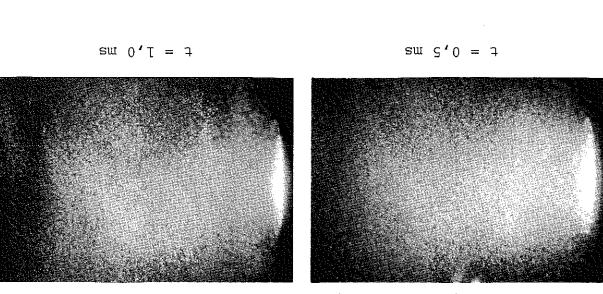
nslen til forskellige tidspunkter efter chokfrontens pasposition (1) er der taget en række billeder af vandet i kamåleopstillingen, der er vist i fig 77.1. Med kameraet i Kavitationsboblernes tilstedeværelse kan konstateres med

.I.87 sage af vinduernes centerlinie. Resultatet fremgår af fig



1 og 2 er de anvendte kamerapositioner. kavitationsbobler i vandkanalen. Forsøgsopstilling til fotografering af Fig 77.1





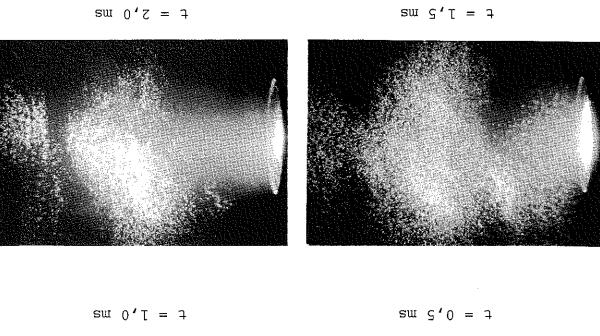
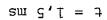
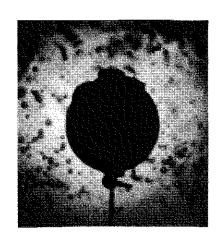
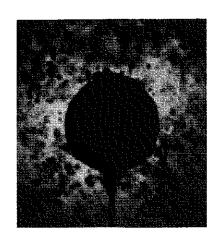


Fig 79.1 Fotografier af stålkugle omgivet af kavitationsbobler. De angivne tider er regnet fra chokfrontens passage af kuglens midte.

 $ext{sm} 0 \cdot c = 3$

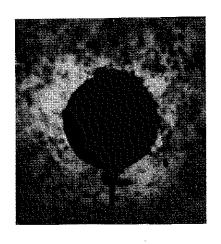


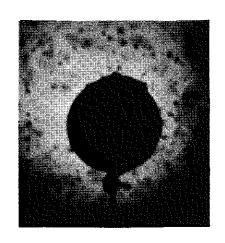




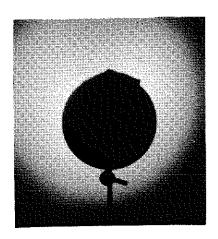
sm 0, 1 = 3

 $su \circ 0 = 7$





0 = 7



Fotografierne viser, at vandet er fyldt med bobler i hele kanalens bredde allerede for t=0.5 ms, samt at bobleantallet ikke reduceres væsentligt før ca 2,0 ms efter chokfrontens passage. En nøjere måling viser, at boblerne er synlitens i tidsrummet t=0.2-2.0 ms.

Med vandet fuldt af kavitationsbobler nedsættes lysgennemgangen betydeligt, hvilket resulterer i uskarpe billeder.

Dette ses af fig 79.1, hvor en stålkugle ophængt midt i kanalen er fotograferet fra kameraposition (2) (se fig 77.1).

Der er valgt samme fotograferingstidspunkter som i fig 78.1, og kopieringen er foretaget i forholdet 1:1. Billederne vinser, at de største kavitationsbobler er af størrelsen 1 mm.

Jear, at de største kavitationsbobler er af størrelsen 1 mm.

Jear for t = 1,0 og 1,5 ms er konturen af stålkuglen uskarp.

Jear voldsomme kavitation måtte undgås, før en tilstrækkelig nøjagtig volumenbestemmelse af de pulserende bobler kunne foretages ad fotografisk vej.

Tilstedeværelsen af kavitationsboblerne viser, at trykket i vandet må være faldet til under damptrykket for t=0,2 ms. Som omtalt i forrige kapitel har overtryksfasen for chokbølgen undertryk for t=0,2 ms akyldes bølgereflektioner fra vandverfladen. I den aktuelle forsøgsopstilling vil chokbølgen reflekteres fra overfladen som en ekspansionsbølge, der passeretlekteres fra overfladen som en ekspansionsbølge, der passeretlekteres fra overfladen som en ekspansionsbølge, der passerer vinduerne 0,1-0,2 ms efter chokfronten. Da mikroboblerne er en vis tid om at vokse til synlig størrelse, stemmer de betragtede tider udmærket overens.

Den mest benyttede metode til hindring af kavitation i væsker er en formindskelse af luftindholdet ved afgasning. I afdelingens hydrodynamiske chokrør blev kavitationsintensiteten derfor målt i forskellige vandprøver med varierende luftindhold. Afgasningen foregik ved kogning, og der blev anvendt såvel postevand som destilleret vand. Imidlertid anvendt såvel postevand som destilleret vand. Imidlertid kunne der ikke registreres nogen væsentlig forskel i antalter af kavitationsbobler mellem de forskellige prøver. Helmlet ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen ved at antalter ikke et forsøg på at undgå ekspansionsbølgen i vælet at antalter ikke et forsøg på at undgå ekspansionsbølgen i vælet at antalter at a

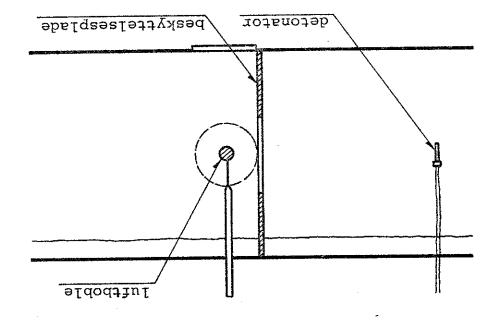
kavitationsintensitet. bringe en metalplade i vandoverfladen resulterede i mindre

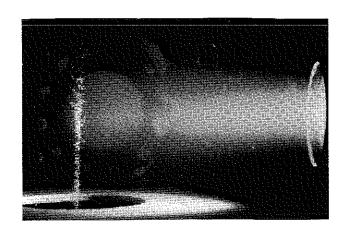
er i midten forsynet med et hul på 20 cm i diameter, hvor stk 3 mm jernplader. Den udfylder hele kanaltværsnittet, men fig 81.1. Pladen består af 10 mm polyurethanskum mellem to se af en beskyttelsesplade på tværs i kanalen, som vist i Løsningen på problemet viste sig i stedet at være anbringel-

тасииеш срокрфдаси кап развете.

pulserende luftbobler i vand. telsesplade anvendt ved de fotografiske undersøgelser af rede dog ikke fotograferingen, og derfor blev denne beskyttionsbobler ud for midten af hullet. Disse få bobler geneaf billederne, som er vist i fig 82.1, ses nogle få kavitaring til de samme tidspunkter som i fig 78.1. Kun på et med kameraet i position (1) (se fig 77.1), og med ekspone-Der er foretaget fotografering af kavitationen bag pladen

er taget til tiden t=0.6 ms efter chokbølgens passage. den rammes af chokbølgen, medens de to sidste billeder begge telsesplade er vist i fig 82.2. Billede a viser boblen før Et eksempel på boblefotografering såvel med som uden beskyt-





passage. Fig 82.1 Fotografi af vandet bag beskyttel-sespladen 0,5 ms efter chokbølgens

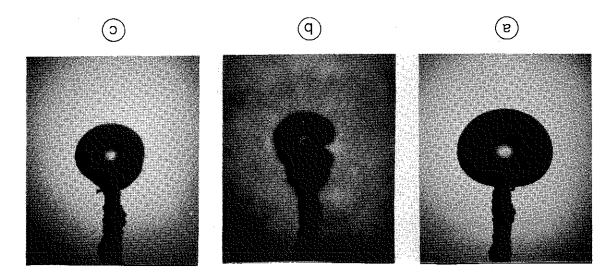


Fig 82.2 Fotografier af 25 mm luftboble i vand.

c: med beskyttelsesplade for t = 0,6 ms. p: ngew peskyttelsesplade for t = 0.6 ms. a: stationær boble.

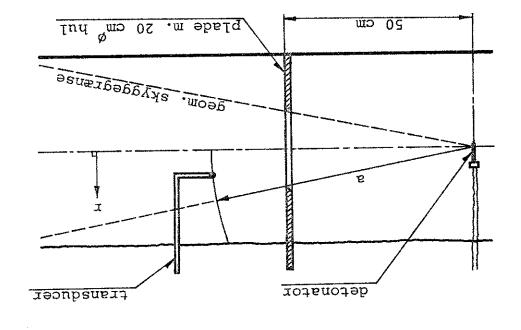
Man bemærker den stærkt forbedrede billedkvalitet ved anvendelse af beskyttelsespladen. Desuden ses, at boblerne i bilbetyder, at trykbelastningen er forskellig i de to tilfælde. Dette er ikke overraskende, idet netop det ændrede trykforbette er ikke overraskende, idet netop det ændrede trykforbette er ikke overraskende, idet netop det ændrede trykforbette i kanslen, er år-

Et nøjagtigt kendskab til chokbølgens udseende bag pladen er ikke påkrævet for at kunne bestemme de termodynamiske sammenhørende værdier af bobletryk og -volumen. Derimod er det af hensyn til fremtidige boblestudier ønskeligt at kende de trykforløbet bag beskyttelsespladen.

C. Diffraktion af chokbølge bag plade med cirkulært hul.

område kaldes lyszonen eller kærnestrålen. chokbølgen er upåvirket af pladens tilstedeværelse. Dette aksen vil der findes et område, hvor maksimaltrykket \mathbf{p}_{m} i eksisterer en udpræget skyggezone. I nærheden af symmetripølden diffrakteres bag pladen, således at der ikke længere teren, hvilket er tilfældet i de aktuelle forsøg, vil chokbølgelængden bliver af samme størrelsesorden som huldiameder findes et skarpt skel mellem lys- og skyggeområdet. Når den geometriske optik, men det er kun i kortbølgegrænsen, en iyszone og en skyggezone. Disse betegnelser stammer fra ske skyggegrænse, som deler området bag pladen i henholdsvis gen er vist i fig 84.1. I figuren er indtegnet den geometrider benyttet en 1/8" turmalin-transducer. Forsøgsopstillin-Til bestemmelse af trykfordelingen bag beskyttelsespladen er

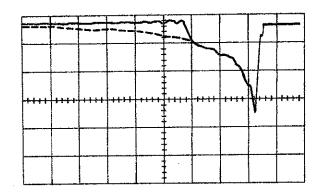
 ${\tt nemtort}$ wed beskyttelsespladen i en fast afstand på 50 cm impulstæthedens størrelse i kærnestrålen. Målingerne er genstemme kærnestrålens bredde, samt chokbølgens udseende og I denne forsøgsserie er man primært interesseret i at be-



Forsøgsopstilling til måling af trykforløbet

fra detonatoren. Som transducerafstande er der valgt a = 60, 80 og 100 cm, medens r varierer mellem 0 og 20 cm. Et karakteristisk forsøgsresultat ved måling i kærnestrålen ses i det sædvanlige chokbølgeforløb indtil 25 µs efter fronten, hvorefter trykket pludseligt falder til nul. Årsagen hertil i kærnestrålen og derved ændrer trykforløbet i chokbølgens i kærnestrålen og derved ændrer trykforløbet i chokbølgens i kærnestrålen og derved ændrer trykforløbet i chokbølgens i kærnestrålen og derved ændrer trykforløbet, og com til mindskes med voksende afstand fra symmetriaksen, og i kærnestrålens grænse er karakteriseret ved, at netop her indhenter ekspansionsbølgen chokfronten.

Den P_m -værdi, der måles i fig 85.1, skal som omtalt i kapitel Vill A korrigeres på grund af transducerfortegningen. For at kunne beregne korrektionsfaktoren må man kende såvel nentielle trykfald bag fronten (se fig 86.1). Hvis bølgen har chokkarakter er den virkelige risetime mindre end l µs, har chokkarakter er den virkelige risetime mindre end l µs, nar chokkarakter er den virkelige risetime mindre end l µs, sen på grund af transducerfortegningen måles t_1 til ca 3 µs, som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen dette tilfælde kan korrektionsfaktoren for θ_1 har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10]. Har bølgen som funktion af θ_1 , hvilket er vist i ref. [10].



Chokbølgens udseende i kærnestrålen bag beskyttelsespladen. Til sammen-ligning er vist trykforløbet i den $x = 10 \text{ } \mu s/\text{div}$, z = 60 cm, z = 4 cm.

E7d 82.1

afemme korrektionen.

time t_1 samt tidskonstant θ_1 for det eksponentielle trykfald bag fronten. Chokbølgens principielle udseende med rise-

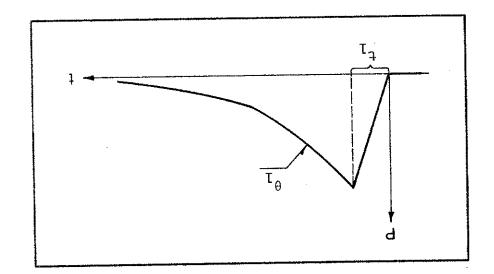
er målt θ_L -værdier på 2 - 15 µs. chokfronten, medens de største måles inde i skyggezonen. Der drænsen for kærnestrålen, hvor ekspansionsbølgen indhenter en del som funktion af r. De mindste θ_1 -værdier måles ved for a = 60 cm og r = 20 cm. Også tidskonstanten $\theta_{\rm L}$ varierer for kærnestrålen. Der er målt en maksimal risetime på 17 us 3 μs i kærnestrålen, hvorimod t $_{\perp}$ vokser med voksende r uden Forsøgsresultaterne viser, at t_{\perp} er nogenlunde konstant lig

de enkelte måleværdier da er behæftet med en betydelig ubebenytte de ukorrigerede P_m -værdier overalt, vel vidende at tor en arbitrær funktion P=P(t), har man i stedet valgt at det er en særdeles vanskelig opgave at bestemme korrektionen terence [10] angivne korrektionsformler kan ikke benyttes. Da Jertid har trykbølgen ikke chokkarakter overalt, så de i rereques en speciel korrektionsfaktor til hver P_m -værdi. Imid-Da t_1 og θ_1 varierer fra målepunkt til målepunkt, må der ud-

sionsstedet. $P_{m,o}$ er her maksimaltrykket i den uforstyrrede tegnet som funktion af r i forskellige afstande fra eksplo-Forsøgsresultaterne er vist i fig 87.1, hvor Pm/Pm,o er op-

·pəqjwəjs

суокрфуде·



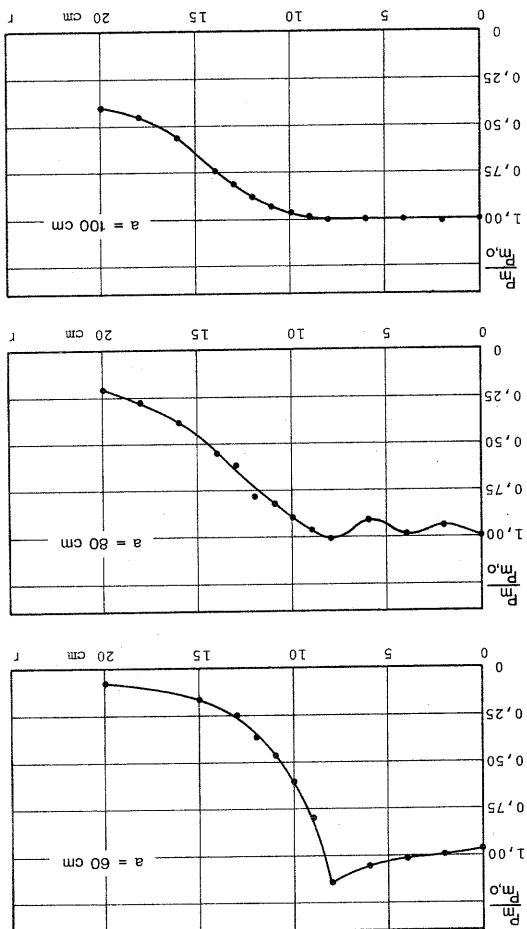


Fig 87.1 Målte maksimaltryk bag beskyttelsespladen som funktion af afstanden fra kærnestrålens symmetriakse.

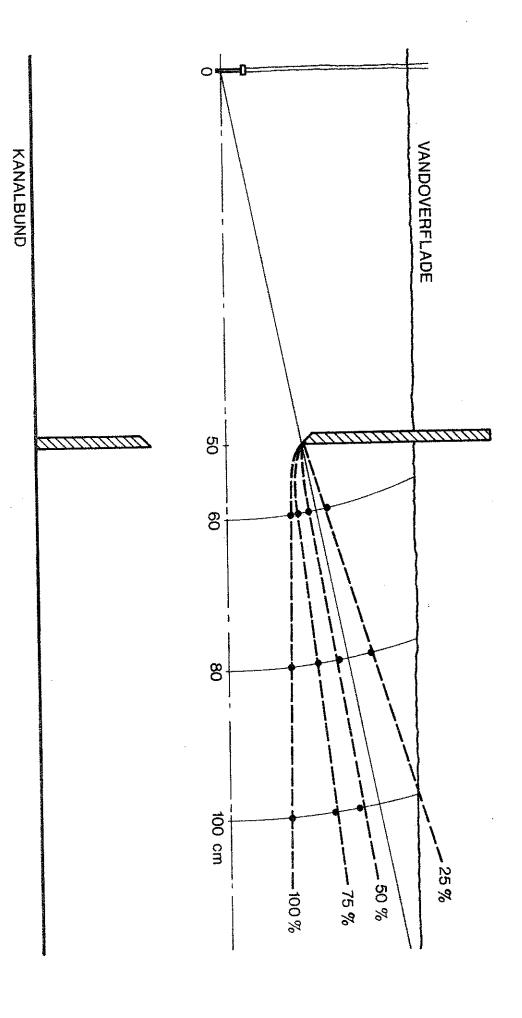


Fig 88.1 Niveaukurver for chokbølgens maksimaltryk bag beskyt-telsespladen i procent af trykket nær symmetriaksen.

middelbart før det kraftige trykfald ind over skyggegrænsen fraktionsbånd, og den største amplitude optræder normalt udiffraktion. Disse fluktuationer i trykamplituden kaldes difden er et fænomen, som altid forekommer i forbindelse med 100 cm. Trykvariationerne i kærnestrålen umiddelbart bag plasamt at trykket i kærnestrålen først bliver konstant for a= højere tryk i kærnestrålen med beskyttelsesplade end uden, Af fig 87.1 ses, at der for a = 60 cm registreres indtil 15%

tivt udtryk for trykfordelingen bag pladen, idet der ved kur-Måleresultaterne i fig 87.1 kan kun betragtes som et kvalita-

redistreres.

.JAnuq91km tidig med at der kun er foretaget en enkelt trykmåling i hvert vernes optegning er benyttet ukorrigerede maksimaltryk, sam-

delbart bag pladen. Desiden bemærkes, at trykgradienten d $_{\rm m}/{\rm dr}$ er størst umidlagt ved 100% kurven er nogenlunde konstant uafhængig af a. som vist i flg 88.1. Det ses, at kærnestrålens bredde fastder tegnes en række niveaukurver for P_{m} i procent af $P_{m,0}$ værdierne 1,0 - 0,75 - 0,5 bestemmes. Herefter kan Ud fra fig 87.1 kan de kurvepunkter, hvor Pm/Pm,o antager

lem billederne b og c i fig 82.2. anvendes beskyttelsesplade. Dette forklarer forskellen melstrålen medfører mindre belastning af luftboblerne, når der den fra skyggezonen. Den reducerede impulstæthed i kærneat arealet under kurven mindskes på grund af ekspansionsbølpladen anvendes. Dette fremgår klart af fig 85.1, som viser, imod er impulstætheden I betydeligt mindre, når beskyttelses- $_{\mathrm{m}}$ i kærnestrålen uafhængig af pladens tilstedeværelse. Der-I en vis afstand bag pladen er størrelsen af maksimaltrykket

D. Termodynamiske forhold for boblepulsationen.

I en pulserende luftboble vil såvel tryk som temperatur variere med boblens pulsationsfrekvens. I bobler af størrelsen 10 - 30 mm i diameter er der målt maksimaltryk på indtil 20 bar, hvilket svarer til en temperatur på 420 °C, hvis pulsationsprocessen er adiabatisk. Hvorvidt der optræder så høj en temperatur i boblen afhænger bl.a. af varmetabet til det omgivende fluid. I praksis kan varmeledning ikke fuldstændig undgås, og derfor er den adiabatiske pulsation et grænsetil-tande, som ikke lader sig realisere fysisk. Ligeledes er en isotermisk pulsation et grænsetilfælde, men afhængig af vartsotermisk pulsation et grænsetilfælde, som ikke lader sig realisere fysisk. Ligeledes er en isotermisk pulsation et grænsetilfælde, som ikke lader sig realisere fysisk. Ligeledes er en temperatur i boblen et grænsetilfælde, men afhængig af vartsotermisk pulsation et grænsetilfælde med god isoten.

Den teoretiske bestemmelse af maksimaltrykket P₁ i en boble, som rammes af chokbølgen fra en undervandseksplosion, blev som omtalt i kap V gennemført under antagelse af adiabatisk pulsation. At dette er en rimelig antagelse for bobler af størrelsen 10 - 30 mm i diameter viser forsøgene, som omtales størrelsen 10 - 30 mm i diameter viser forsøgene, som omtales senere i dette kapitel. Det kan imidlertid også gennem simple beregninger vises, at varmetransporten fra boblen til

væsken er forsvindende.

Forudsætningen for at kunne bestemme varmetabet fra en boble er et nøje kendskab til temperaturfordelingen inde i boblen som funktion af tiden. Som omtalt af PLESSET [55] er trykket det samme overalt i boblen, sålænge hastigheden af boblevæggen er lille i forhold til lydhastigheden i gassen. Målingerne viser, at denne betingelse er opfyldt i de aktuelle forsøg. Da trykket er ens overalt i boblen, vil temperaturen også være det, da hvert delvolumen komprimeres lige raturen også være det, da hvert delvolumen komprimeres lige raturen også være det, da hvert felvolumen komprimeres lige raturen også være det, da hvert felvolumen komprimeres lige raturen også være det, da hvert delvolumen komprimeres lige raturen også være det, da hvert delvolumen komprimeres lige

varmeledningen vil der være en temperaturgradient i boblen, og temperaturen vil være højest i boblens centrum. Imidlertid kan pulsationen foregå så hurtigt, at temperaturfaldet på grund af varmeafgivelse til væsken er begrænset til de aller yderste lag af boblen, således at temperaturen i ho-

vedparten af boblen ikke påvirkes af varmetransporten. At skal vises i det følgende.

1. Beregningsresultater. En eksakt beregning af de termo-dynamiske forhold for et pulserende luftvolumen kan ske ved numerisk løsning af en række sammenhørende ulineære diffeden tentialligninger. Dette er dog en så kompliceret opgave, at skæftiget sig med disse problemer. Derimod har såvel plesser skæftiget sig med disse problemer. Derimod har såvel plesser met under antagelse af små tryk- og temperaturvariationer i boblerne. Resultatet af disse beregninger er omtalt i kapimet under antagelse af små tryk- og temperaturvariationer i boblerne. Resultatet af disse beregninger er omtalt i kapimet under antagelse af små tryk- og temperaturvariationer i boblerne.

$$R_{\rm o} > 1 \, \rm mm$$
: adiabatisk $R_{\rm o} > 10^{-3} \, \rm mm$: isotermisk $R_{\rm o} < 10^{-3} \, \rm mm$:

Dette resultat kan ikke umiddelbart forventes at gælde for ner. Der fås dog af (91.1), at pulsationen er adiabatisk for $d_0=10-30$ mm, hvilket stemmer med forsøgsresultaterne.

En teoretisk bestemmelse af varmetabet fra en pulserende bobdet kan gennemføres under simplificerende forudsætninger, idet det er muligt at beregne varmeafgivelsen fra et sfærisk legeme, som har højere temperatur end omgivelserne. For at kunne benytte denne model på boblen, må temperaturændringer fiden t = 0 anbringes i vand med temperaturen $T_{\rm w}$ til tiden t = 0 anbringes i varme til tiden t = 0. Som den kaltider totale varmeenergi i boblen til tiden t = 0. Som den kaltider totale varmeenergi i boblen til tiden t = 0. Som den kaltider totale varmeenergi i boblen til tiden t = 0. Som den kantakteristiske tid τ vælges den tid, der går fra choket rammer boblen, til maksimaltrykket $^{\rm P}_{\rm l}$ nås, og som $^{\rm G}_{\rm l}$ indsættes en middeltemperatur for de adiabatiske temperaturvariationer en middeltemperatur for de adiabatiske temperaturvariationer i boblen. Den beregnede værdi for varmetabet vil da være et i boblen. Den beregnede værdi for varmetabet vil da være et

Fig 92.1 Temperaturfordelingen til forskellige tider i en boble med begyndelsestemperaturen $T_{\rm g}$. Omgivelsernes temperatur er $T_{\infty} < T_{\rm g}$ [7].

For at kunne beregne varmetabet må man kende varmeovergangs-tallet q mellem gas og væske. Da varmeledningskoefficienten god tilnærmelse indsætte $q=\infty$, hvilket medfører, at boblens overfladetemperatur bliver T_∞ . I fig 92.1 er vist det principlelle forløb af temperaturprofilerne i boblen til forskeltige toxløb af temperaturprofilerne i boblen til forskeltige tidspunkter efter boblens nedaænkning i væsken.

dette kun drejer sig om nogle få procent, kan pulsationspro-

udtryk for, hvor stor en procentdel af den akkumulerede var-

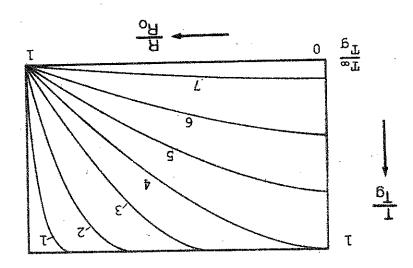
meenerdi, der kan bortledes under kontraktionsfasen. Hvis

cessen med dod tilnærmelse regnes adiabatisk.

De formler, der benyttes ved beregning af varmetabet, er opstillet for et fast legeme, men der skulle også kunne opnås realistiske resultater for en luftboble, når de nødvendige forudsætninger gøres. Den totale varmeenergi i boblen, målt relativt i forhold til omgivelsernes temperatur, er til t=0 vivet ved følgende udtryk:

$$Q_{o} = \frac{4}{3}\pi\pi^{3} \cdot pC_{v}(T_{g} - T_{g})$$

konstant volumen. Konstant volumen.



(5.29)
$$\{m\} \text{ is got } \{a\} \frac{Q}{0S} = r$$

poplens ligevægtsradius R_{O} er eksperimentelt bestemt til lestørrelsen. Relationen mellem den karakteristiske tid r og Det skal nu undersøges, hvorledes varmetabet afhænger af bob-

Jens yderste lag. kurve (1) i fig 92.1, idet temperaturfaldet kun berører bobfor j where inder to boblen for t = 0.5 ms er karakteriseret ved med god tilnærmelse betragtes som adiabatisk. Temperatur-2,4% af varmen i løbet af 0,5 ms, og processen kan derfor Under de simplificerende forudsætninger bortledes der kun

$$8 \text{ L. } 2 = \frac{Q}{Q}$$

giver et varmetab på

Ud fra disse værdier kan Fo beregnes til 0,5.10 $^{-4}$, hvilket

$$B_{O} = 0.01 \text{ m}$$

$$B_{O} = 0.90 \cdot 10^{-5} \text{ m}^{2}/\text{s}$$

$$B_{O} = 0.90 \cdot 10^{-5} \text{ m}^{2}/\text{s}$$

$$B_{O} = 0.90 \cdot 10^{-5} \text{ m}^{2}/\text{s}$$

tative parameterværdier: Til et beregningseksempel er der valgt følgende sæt repræsen-

fisk som funktion af Fo.

luft. I ref. [7] er den uendelige sum i (93.1) optegnet gra-Fo er her Fouriertallet og $\alpha_{\rm g}$ temperaturledningsevnen for

$$\frac{1 \cdot c}{R} = \frac{c}{c} \cdot \frac{1}{R}$$

(93.1)
$$\frac{Q}{Q} = 1 - \frac{6}{5} \sum_{n=1}^{\infty} \frac{1}{1-\epsilon} \cdot e^{-\frac{1}{3} \frac{2}{n}} \cdot Fo$$

& MARTINELL [7] til Varmetabet Q i tiden r angives af BOELTER, CHERRY, JOHNSON

Herefter kan Fouriertallet skrives Fo = $\alpha_g/20R_o$. Indsættes for α_g den tidligere angivne værdi på 0,9·10 $^-$ 5 $^-$ 8, fås de værdier der er vist i tabel 94.1 for varmetabet som funkti-

værdier der er vist i tabel 94.1 for varmetabet som runkti- on af R $_{
m O}$.

pulsationen:

På grundlag af tabelværdierne kan følgende uligheder opstil-

1 mm <
$$R_{\rm o}$$
 : adiabatisk sovergangsområde $R_{\rm o}$ < 10⁻³ mm: tsotermisk sovergangsområde $R_{\rm o}$ < 10⁻³ mm: tsotermisk

Disse resultater er i overensstemmelse med Chapman & Plesset's beregninger efter den lineariserede teori [13], hvilket er overraskende, eftersom der ved udledelse af (94.1) er

For de aktuelle boblestørrelser på 10 - 30 mm i dismeter kan pulsationen ifølge (94.1) regnes adiabatisk. En eksperimentel verificering af dette resultat omtales i det følgende.

00T	_{τ-} 0τ·s	T ⁰ -3
09	2- ^{01.9}	7- ⁰ T
22	e- ^{0T⋅S}	T-OT
9'L	₽-01.8	τ
₹′₹	9- ^{01.9}	0.1
િક	-	uu
Fo Q Q		я

Tabel 94.1 Beregnet varmetab fra luftboble i vand som funktion af bobleradius.

ceret som vist i fig 98.1.

nen er Poisson's ligning

 $\frac{\mathbf{b}^{O}}{\mathbf{b}^{T}} = \begin{bmatrix} \mathbf{q}^{T} \\ \mathbf{q}^{O} \end{bmatrix}_{3K}$ (T'96)

q^J er pestemt eksperimentelt, beregnes k af formel (95.1). l,4 (adiabatisk pulsation). Mår et sæt værdier for $ext{P}_{ extsf{I}}$ og K kan antage værdier mellem 1,0 (isotermisk pulsation) og værdier for tryk og diameter til et vilkårligt tidspunkt. Jens ligevægtstilstand, medens Plog dler sammenhørende paot κ er polytropeksponenten. P_0 og d $_0$ refererer til bob-

bestemmelse af de termodynamiske forhold for boblepulsatio-2. Forsøgsresultater. Udgangspunktet for en eksperimentel

vel oscilloskop som lyskilde trigges af PZT-transduceren, medens triggesignalet frembringes af en PZT-transducer. Såmåling i boblen anvendes der en strain-gauge transducer, telsesplade til hindring af kavitation i vandet. Til trykumiddelbart til venstre for vinduerne er anbragt en beskytog diameterbestemmelse, er vist i fig 96.1. Man ser, at der Forsøgsopstillingen, der er benyttet til samtidig trykmåling

karligt tidspunkt i pulsationsforløbet, idet man blot ænsinker. Herved opnår man at kunne tage et billede på et vilidet lyskildens triggesignal dog først sendes gennem en for-

ret til et andet tidspunkt. quer torsinkelsens størrelse, hvis boblen ønskes fotografe-

Fotograferingstidspunktet falder her næsten sammen med reser signalet fra lyskilden og nederst transducersignalet. ringstidspunktet. Dette er vist i fig 97.1, hvor man øverst wan allæse, hvilket tryk der findes i boblen på fotografeved at sammenligne kurveforløbene på oscilloskopskærmen kan den anden stråle registreres trykforløbet inde i boblen, og 10 mV, for det registreres på oscilloskopets ene stråle. På 200 A' sow dennem en sbændingsdeler transformeres ned til Når lyskilden blinker udsender den et elektrisk signal på

Ved fotografering at boblen er der benyttet to kameraer pla-

distreringen af maksimaltrykket.

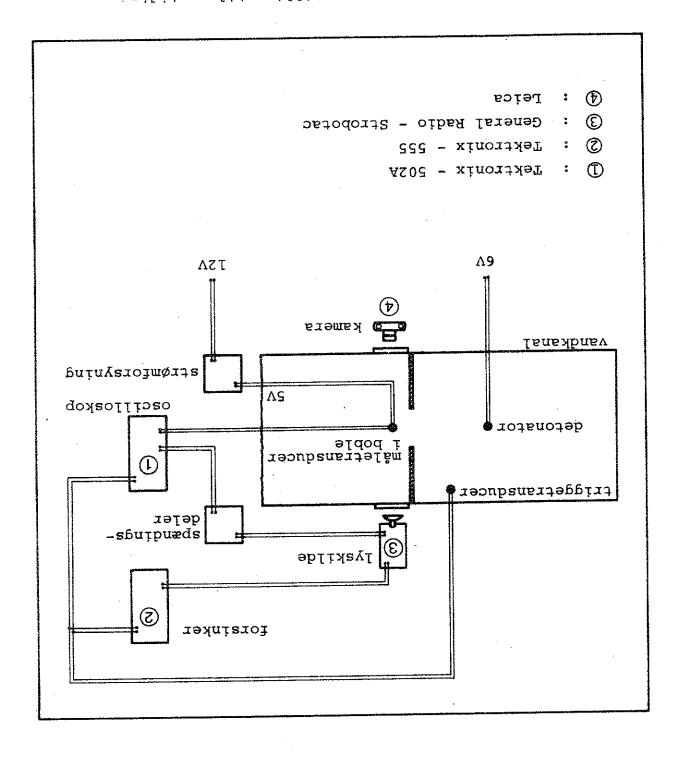
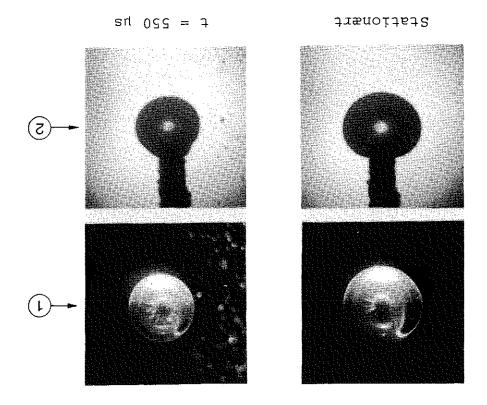


Fig 96.1 Diagram over forsøgsopstilling til samtidig diameterbestemmelse for boblen og trykmåling inde i boblen.

 $d_{o} = 20 \text{ mm}, \quad a = 60 \cdot \text{cm}.$

Fig 97.2 Pulserende boble fotograferet samtidigt fra henholdsvis kameraposition \bigcirc og \bigcirc .



 $x = 200 \text{ ps/div, } d_0 = 20 \text{ mm, } a = 60 \text{ cm.}$ popje. Nederste kurve: Trykmåling i pulserende viser det eksakte fotograferingstidspunkt. Overste kurve: Signal fra lyskilde, som Fig 97.1

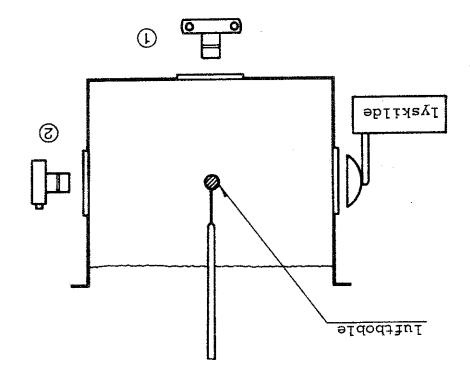
agtigere volumenbestemmelse. ser fra den kuglesymmetriske form og dermed opnå en nøjbundvinduet er, at man da kan afsløre eventuelle afvigel-Fordelen ved at fotografere boblen både gennem side- og

trykpåvirkning. I fig 97.2 bevæger chokbølgen sig fra ven-Iladtrykt for t = 220 ps, hvilket skyldes den usymmetriske måling af fotografierne konstateres det, at boblen er svagt derne til højre viser boblen i dens minimumfase. Ved opstre er taget før chokbølgen rammer boblen, medens billegen i fig 97.1 er vist i fig 97.2. De to billeder til ven-Resultatet af boblefotograferingen svarende til trykmålin-

stre mod højre.

Ved bestemmelse af volumenet antages det, at bobleformen

pestemmes q^{T} at lormlen: lente kugleformede boble har volumenet $\frac{6}{8}a_{1}^{3}$, og følgelig hvor $1^{J}1^{2J}$ er produktet af de tre hovedakser. Den ækvivakan approkaimeres ved en ellipsoide med volumenet $\frac{6}{11}$ $\frac{1}{12}$ $\frac{1}{2}$ $\frac{1}{3}$



· renoifieoq rende boble. Dog 2 er de anvendte kamera-Forsøgsopstilling til fotografering af pulse-

$$a_{\perp} = \sqrt[3]{L^{\perp}L^{\perp}L^{\perp}}$$

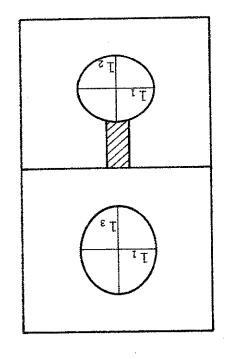
metrisk, giver planimetreringen det nøjagtigste resultat. stor, men hvis boblen i en af projektionerne er meget usymskellen mellem de to metoder til volumenbestemmelse er ikke J^3 by wherete pillede od volumenet $\frac{e}{u} \cdot J^{T} J^{S} J^{3}$ udredues. Forskrive dette som en ellipses areal $\frac{1}{p^a}$ $\frac{1}{4}$. 1 1 Derefter måles melse fås ved at planimetrere arealet i nederste billede og ne, som vist i fig 99.1. En lidt nøjagtigere volumenbestem-De tre hovedaksers størrelse kan måles direkte af billeder-

den del af boblens indre, som opfyldes af transduceren og Ved beregning at volumenet for små bobler må man fraregne

Forsøgene er gennemført med boblerne i en fast afstand på 15 mm boble i minimumfasen. være 18 mm 3 , hvilket er ca 2% af det totale volumen for en enden af bobleholderen. Denne korrektion er anslået til at

nyttes som længdereference ved bestemmelse af de absolutte des der på hver film et billede af en l" stålkugle, der be-60 cm fra eksplosionsstedet. Foruden boblefotografierne fin-

.Låm



soide, hvorved boblen approkaimeres.

				1
77°T	66 ' 0	T'LT	τ ' 0Ζ	6
ε ∌' τ	50' T	0'LT	τ'οΖ	8
8E'T	48 ′0	ε ' ΔΤ	T'0Z	L
ε , τ	50 ' T	0.77	Z0'I	9
8E'T	3,75	T0'3	0'ST	S
8E'T	3,55	∌' 0T	0'ST	₽
O†'T	97.€	5'0 T	0'ST	ε
T∌'T	0 5 'E	9 ' 0T	0'ST	7
6E'I	52 1 E	9'01	0'9T	τ
_	pgro	uu	mn	-
К	Т _д	τ _p	Ор	Nr

eksbouenten k. Tabel 100.1 Eksperimentelt bestemte værdier af polytrop-

Forsøgsresultaterne er gengivet i tabel 100.1. Der er gennemført ialt 9 målinger på to forskellige boblestørrelser. Som det ses, er de beregnede værdier for k meget nær l,40, hvilket svarer til adiabatisk pulsation. Aflæsningsubestemtmotilket svarer til adiabatisk pulsation.

Konklusionen af ovenstående er, at bobler af størrelsen 10-30 mm i diameter pulserer adiabatisk, hvilket er i overens-stemmelse med det teoretiske resultat. Det skal i denne formiske forhold er forsvindende, da gummihindens tykkelse kun miske forhold er forsvindende, da gummihindens tykkelse kun er 0,05 mm, samtidig med at varmeledningskoefflicienten for

Det ville være ønskeligt også at måle på bobler med betydelastning af boblerne deformeres de så kraftigt, at en tilstrækkelig nøjagtig volumenbestemmelse ikke længere er mulig.

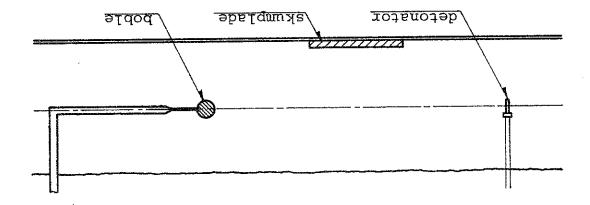
E. Maksimaltrykket i en pulserende boble.

deue et deunemi ϕ tf [ot $q^0 = 10 - 30$ mm od g = 30 - 120 cm. bobler i varierende afstande fra eksplosionsstedet. Forsø-pjev k målt til 1,4, og her gengives resultatet af en for-Jen og værdien af polytropeksponenten k. I forrige kapitel nudervandseksplosion, hvis man kender maksimaltrykket i bobrede energi i en luftboble, som rammes af chokbølgen fra en Som tidligere omtalt kan man bestemme den totalt akkumule-

indspændt på bagsiden, som får den mindste trykpåvirkning tilnærmelse til en frit pulserende boble, idet ballonen er peniffet en vandret bobleholder, hvilket giver den bedste Forsøgsopstillingen er vist i fig 101.1. Som det ses, er der

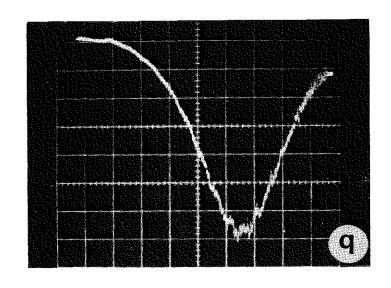
tioner fra kanalbunden er der anvendt en skumplade. od dermed den mindste flytning. Til hindring af bølgereflek-

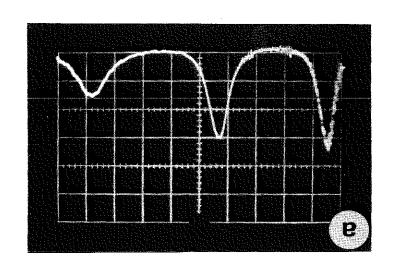
hastighed og forstærkning, kun viser første trykamplitude. ner, medens nederste billede, som er optaget med større sweep de viser trykforløbet i boblen under de tre første pulsatio-En karakteristisk trykmåling ses i fig 102.1. Øverste billegauge transducer koblet direkte på et oscilloskop (502A). Trykregistreringen inde i boblen er foretaget med en strain-



boble. Forsøgsopstilling til trykmåling i pulserende Fig 101.1

Fig 102.1 Trykforløbet i pulserende boble målt med strain-gauge transducer. a: x=1,0 ms/div, $d_0=30$ mm, a=50 cm. b: x=0,2 ms/div, $d_0=30$ mm, a=50 cm.





Ud fra nederste billede i fig 102.1 kan maksimaltrykket P $_{\rm L}$ bestemmes med en nøjagtighed på \pm 3%.

Boblestørrelsen er bestemt ved fotografering, på samme måde som omtalt i forrige kapitel. Der er gennemført to trykmålinger for hvert sæt parameterværdier (a,d $_{\rm O}$), og middelværresultaterne i fig 104.1 og 105.1. Det ses, at de fundne værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$ og a uden værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$ og a uden værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$ og a uden værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$ og a uden værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$ og a uden værdier af maksimaltrykket P $_{\rm I}$ som funktion af d $_{\rm O}$

Måleresultaterne er yderst reproducerbare, idet to trykmålinger taget umiddelbart efter hinanden højst afviger 5%. Denne ubestemthed inkluderer ubestemtheden fra chokbølgen, samme boble taget til forskellige tidspunkter måltes d $_{\rm O}$ værdier, som maksimalt af afviger 2%. Denne ubestemthed inkluderer ikke den fejl, der ligger i at tilnærme boblen ved en derer ikke den fejl, der ligger i at tilnærme boblen ved en ellipsoide ved volumenbestemmelsen, men hvis den totale ubestemthed for d $_{\rm O}$ sættes til \pm 2%, er alt inkluderet. Bestem-stemthed for d $_{\rm O}$ sættes til \pm 2%, er alt inkluderet. Bestem-

Af fig 104.1 ses, at målepunkterne for P_{1} kan repræsenteres ved den indtegnede kurveskare med de fundne ubestemtheder på P_{1} , d_{0} og a. Et par værdier falder dog tydeligt uden for kurverne, hvilket kan skyldes fejl ved eksperimenternes ud-

melsen af afstanden a er kun behæftet med en usikkerhed på

1. Sammenligning mellem målte og beregnede maksimaltryk.

tørelse.

re.

I kapitel V blev P_{1} beregnet som funktion af μ og a, hvor $\mu = \lambda_{c}/d_{o}$ er forholdet mellem bølgelængden for choket og boblens ligevægtsdiameter. For at kunne sammenligne de måle μ_{1} -værdierne svarende til de enkelte målepunkter. Dette indebærer, at λ_{c} skal beregnede, må man derfor først bestemte μ_{1} -værdierne svarende til de enkelte målepunkter. Dette indebærer, at λ_{c} skal beregnede for chokbølgen i forskellige afstande fra eksplosionsstedet.

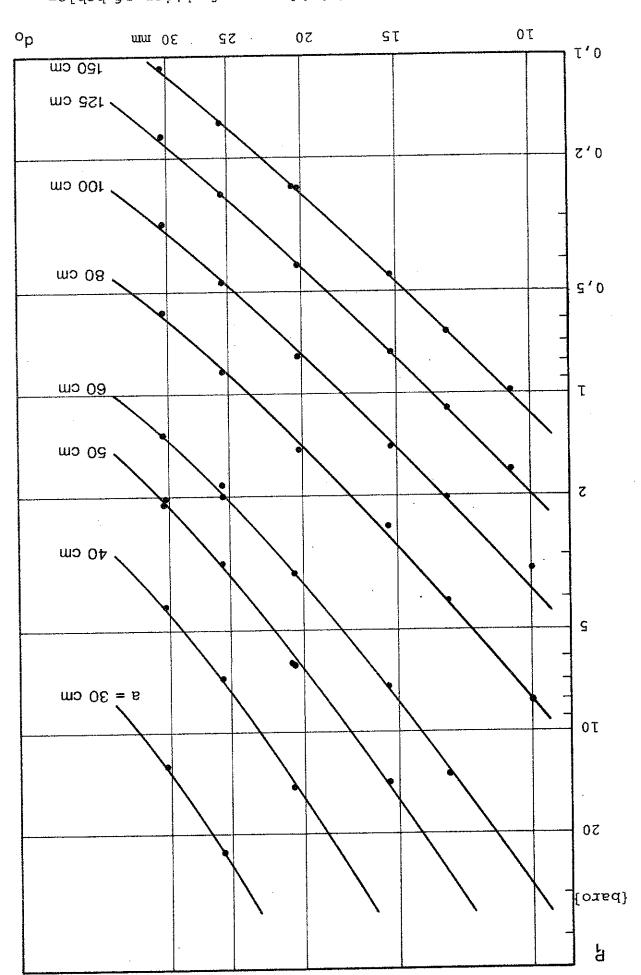


Fig 104.1 Maksimaltrykket i boblen som funktion af boblediameteren og afstanden fra eksplosionsstedet.

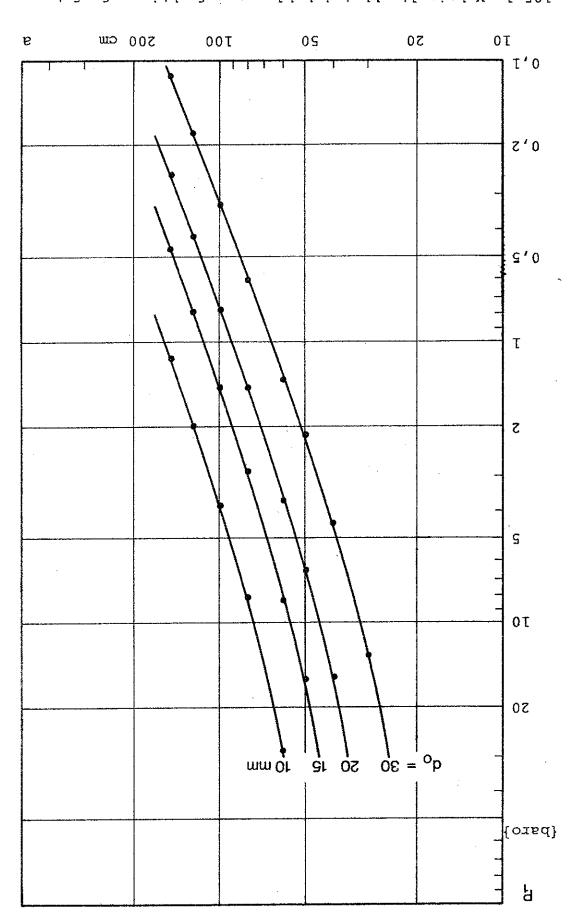


Fig 105.1 Maksimaltrykket i boblen som funktion af afstan-den fra eksplosionsstedet og boblediameteren.

For et eksponentielt aftagende chok er bølgelængden definetet ved $\lambda_{\rm c} = {\rm c.6}$, hvor c er lydhastigheden i vandet og 0 bølgens tidskonstant. 0 er imidlertid en fiktiv størrelse for temstilles ved en eksponentialfunktion. Forskellige kriteblølgen, men det rimeligste er nok følgende: Der ønskes overbølgen, men det rimeligste er nok følgende: Der ønskes overensstemmelse mellem impulstætheden for den virkelige og den ensstemmelse mellem impulstætheden for den verkerstingen.

Man tilnærmer den virkelige chokbølge ved en simpel eksponentialfunktion, således at impulstætheden og maksimaltryk-ket er korrekt. Derefter kan θ og dermed $\lambda_{\rm c}$ beregnes.

Som omtalt i kapitel V er der benyttet to teoretiske chokmodeller, dels P \rightarrow Phy for t \rightarrow ∞ (FBJ), og dels P \rightarrow 0 for t \rightarrow ∞ (Kedrinskij). De to trykforløb er vist i fig 107.1 og de skraverede, der på figurerne er repræsenteret ved de skraverede arealer, er defineret ved

(1.601) dt
$$(P - P_{\chi})$$
 dt

Idet kun positive bidrag til 1 medregnes, fås følgende lig-ninger til bestemmelse af θ :

$$\theta = \frac{\frac{1}{P_m - P_{hy}}}{\frac{1}{P_m} - \frac{1}{P_{hy}}}$$
 (FBJ) (106.2)

Der indsættes heri de eksperimentelt fundne værdier for I

og \mathbf{r}_{m} . Af (106.2) kan \mathbf{y}_{c} beregnes for chokbølgen i forskellige afstande fra eksplosionsstedet. De målte maksimaltryk kan derstande fra

efter plottes som funktion af p og a, og sammenlignes med de

90T

Fig 107.2 Chokbølgens udseende i Kedrinskij approksimationen.

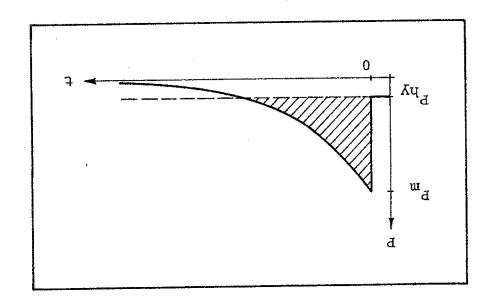
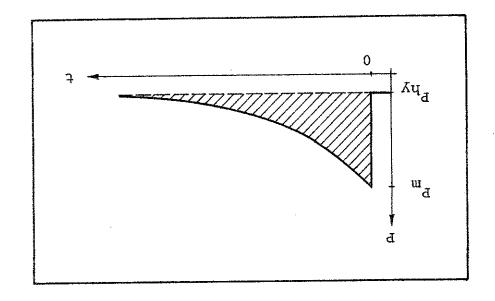


Fig 107.1 Chokbølgens udseende i FBJ approksimationen.



spprokeimationen. Resultatet er vist i fig 109.1 og 110.1.

Som det ses af kurverne, ligger de eksperimentelle \mathbf{p}_1 værdier betydeligt lavere end de teoretiske, Den bedste oversammelse inden for det betragtede interval af μ fås ved sammenligning med Kedrinskij beregningen. Dette betyder dog ikke, at denne approksimation er den mest korrekte, idet man beregner. Årsagen hertil er at $\lambda_{\mathbf{c}} \simeq \mathbf{d}_{\mathbf{o}}$, hvilket betyder, at der man der findes en udpræget skyggezone på boblens bagside, at

For $\lambda_{\mathbf{c}}^{>>} > d_{\mathbf{o}}$ dvs for $\mu \to \infty$ skulle teoretiske og eksperimentelle kurver gerne konvergere, idet chokbølgen da diffrakteres så kraftigt bag boblen, at belastningen kan regnes at FBJ beregningerne konvergerer mod de eksperimentelle værdier for voksende μ , medens Kedrinskij beregningerne divergerer. Det bemærkes desuden, at funktionsafhængighedivergerer. Det bemærkes desuden, at funktionsafhængighedivergerer.

Alt i alt må man sige, at overensstemmelsen mellem de eksmationen er tilfredsstillende, når det tages i betragtning, hvilken forskel der er mellem den teoretiske kuglesymmetri-ske forskel der er mellem den teoretiske kuglesymmetri-ske forskel der er mellem den teoretiske kuglesymmetri-ske forskel der er mellem den teoretiske kuglesymmetri-

Forskellige forsøg på at modificere teorien til at inkludere den skæve belastning gav ikke noget positivt resultat. Man ved ligning (4.1) ikke kan beskrive de fysiske forhold forhol

poplediameteren.

·uə_T

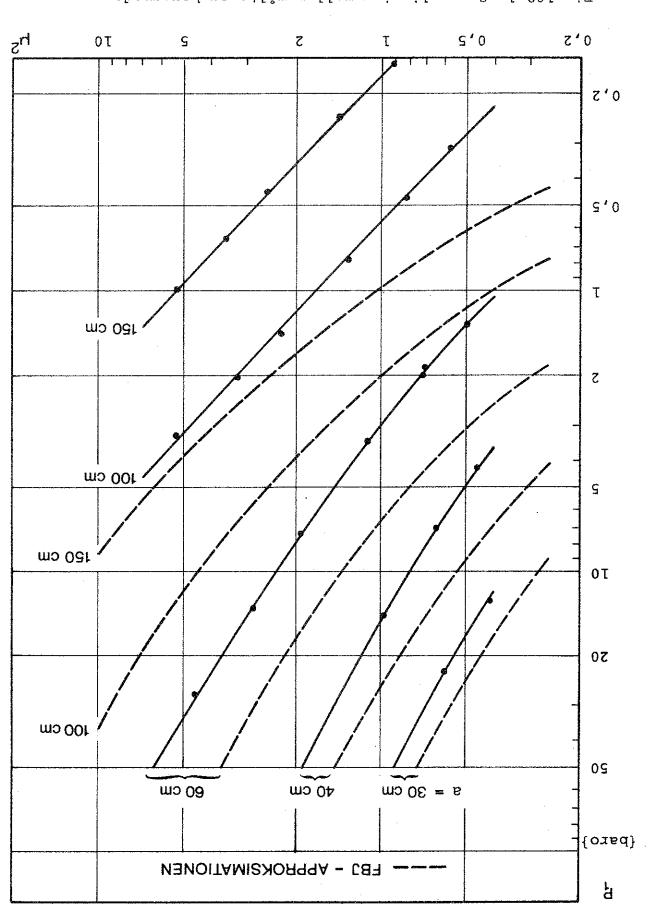


Fig 109.1 Sammenligning mellem målte og beregnede mellem chokets bølgelæng-de og boblens diameter.

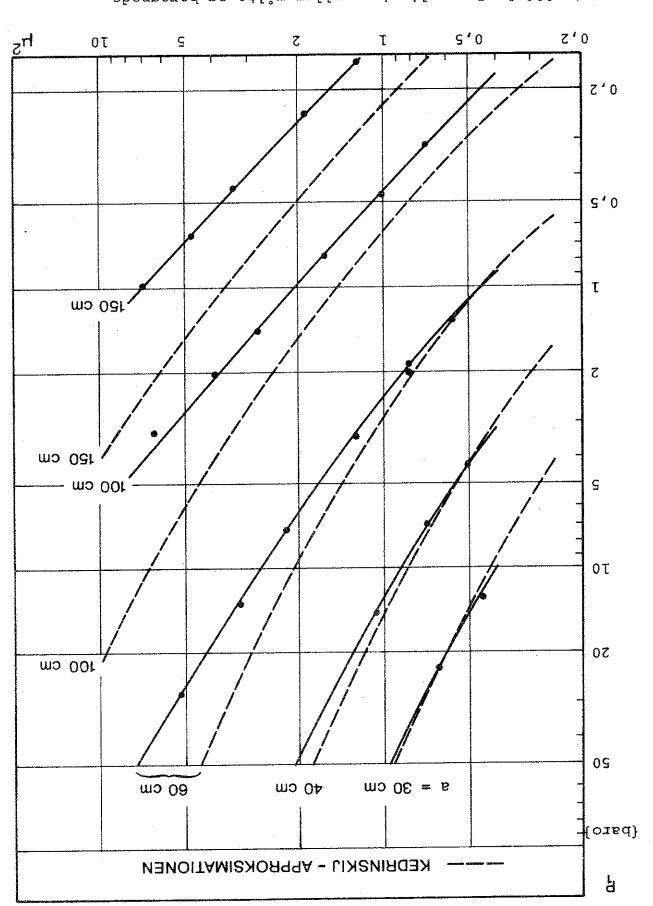


Fig 110.1 Sammenligning mellem målte og beregnede diameter.

de og boblens diameter.

de og boblens diameter.

rigerly for de dæmpende egenskaber hos boblerne. Man kan også benytte energiabsorptionen pr fladeenhed som

le, hvilket betyder, at en stor boble har større dæmpningsabsorberer 3,5 - 4,5 gange så meget energi som en 10 mm bobnet af BJØRNØ [6]. Det ses af fig 112.1, at en 30 mm boble

som funktion af d_O og a. De benyttede værdier af e_C er bereg-I fig 112.1, 113.1 og 114.1 er vist henholdsvis E, e og e/ec

idet denne størrelse kan sammenlignes med chokbølgens ener-

 $e = \frac{\frac{\sqrt{4} \cdot q}{L}}{E}$

i den akkumulerede energi pr fladeenhed af boblens tværsnits-

 $E = \frac{e^{d}}{\pi} d_{3} \cdot \frac{\gamma - I}{p_{0}} \cdot \left[\left[\frac{p_{0}}{L} \right] \frac{\gamma}{\gamma - L} - L \right] \quad \{J\}$

I stedet for den totale energi E kan man være interesseret

Indexties heri P_0 lar og γ = 1,4 kan energien beregnes

difæthed ec, som er defineret ved ligningen

 $e^{c} = \frac{b^{\Lambda}c}{T} \left(b - b^{p\lambda} \right)_{S} q \epsilon$

Z_m

(7777'5)

effekt end en lille boble.

great

som funktion af q^O og p^{T_*} .

de formel til bestemmelse af E: Tigevægtstrykket P_{O} til maksimaltrykket P_{I} . Der fås følgenudføres ved en adiabatisk tilstandsændring af luften fra vand da er nul. Energien kan beregnes som det arbejde, der minimumvolumenet, idet partikelhastigheden i det omgivende de luftboble, er til stede som trykenergi inde i boblen i Den totale energi, som chokbølgen afleverer til en pulseren-

E. Boblers energiabsorption.

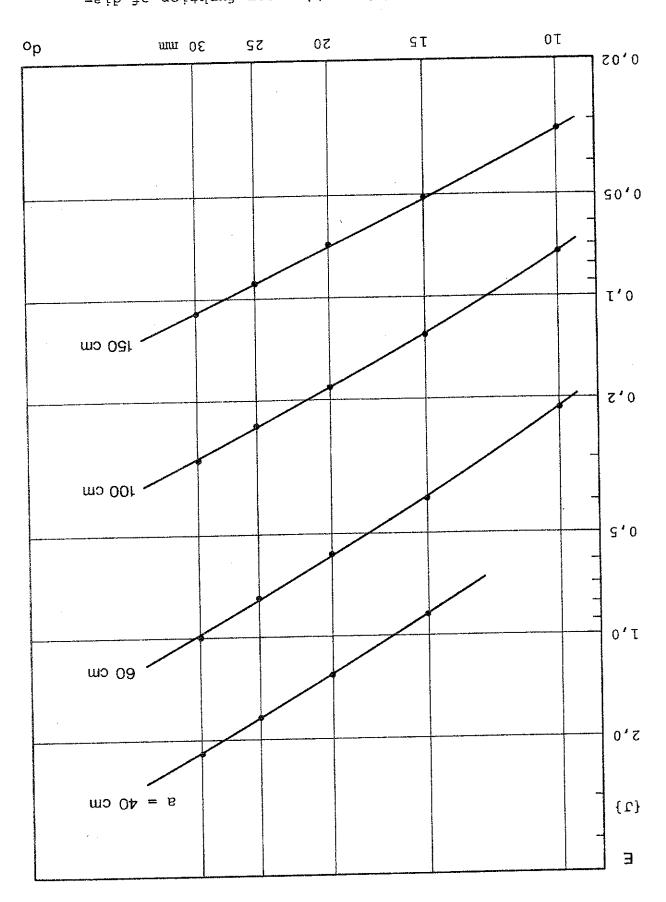


Fig 112.1 Boblens energiabsorption som funktion af diameteren og afstanden fra eksplosionsstedet.

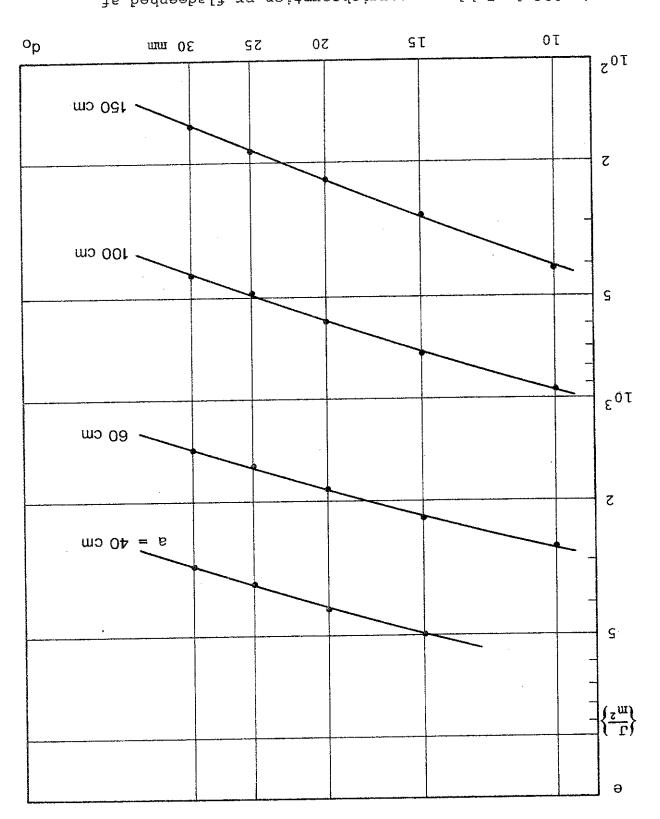


Fig 113.1 Boblens energiabsorption pr fladeenhed af twærsnitsarealet som funktion af diameteren og afstanden fra eksplosionsstedet.

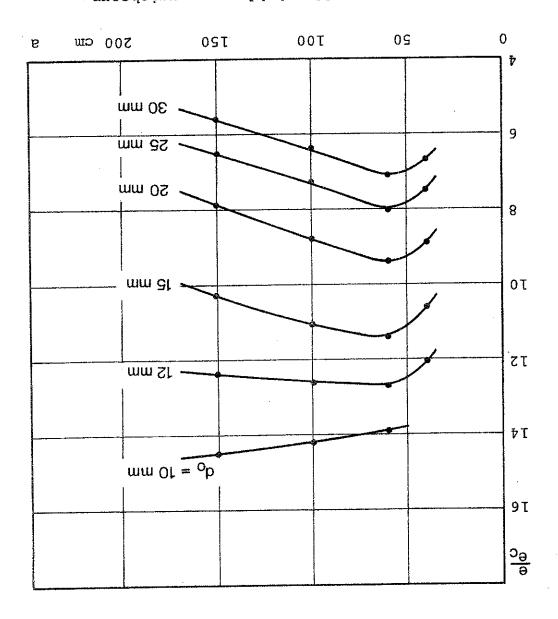


Fig 114.1 Forholdet mellem boblens energiabsorption pr fladeenhed og energitætheden i chokbølgen som funktion af afstanden fra eksplosionsstedet.

Af fig 113.1 ses, at e er størst for små bobler, hvilket betyder, at et 2-dimensionalt bobletæppe bestående af mange små bobler absorberer mere energi end et tæppe med få store bobler, når den procentdel af arealet, som optages af luften, er den samme i de to tilfælde. Disse betragtninger forudsæter den samme i de to tilfælde.

Fig 114.1 viser, at kurverne for $e/e_{\rm c}$ har et maksimum ved a = 60 cm for ${\rm d}_{\rm o}$ ≥ 12 mm. Dette betyder, at et bobletæppe bestående af store bobler yder maksimal dæmpning i en given afstand fra eksplosionsstedet, hvilket er et overraskende resultat, som ikke umiddelbart lader sig forklare fysisk. For ${\rm d}_{\rm o} \le 10$ mm vokser dæmpningen derimod med voksende afstand fra eksplosionsstedet. Af fig 114.1 ses desuden, at den procentvise energiabsorption er størst for små bobler, st hvilket betyder, at boblen absorberer al energi inden for et areal på 14 gange boblen absorberer al energi inden for et areal på 14 gange boblens tværsnitssteal.

Hvis der skal fremstilles et bobletæppe, som yder maksimal dæmpning, skal der ifølge kurverne benyttes så små bobler som muligt, og bobletæppet skal placeres så langt fra eksplosionsstedet som muligt. Dette gælder dog kun, hvis vekselvirkningen mellem de enkelte bobler kan negligeres. I selvirkningen mellem de enkelte bobler kan negligeres. I det tilfælde, hvor bobletæppet er tæt pakket med bobler, er det ikke muligt på grundlag af disse forsøgsresultater at det ikke muligt på grundlag af disse forsøgsresultater at det sig om boblestørrelsens betydning for dæmpningen.

sker der dæmpning forårsaget af boblernes energiabsorption.

· poprerepper

redligeres.

G. Højhastigheds fotografering af pulserende bobler.

Alle bobleundersøgelser omtalt i denne rapport er gennemført med luftvolumenet indesluttet i en ballon. For at få et indetryk af ballonens indflydelse på boblepulsationen blev der optaget en række high-speed film af frit pulserende luftbobsom rammes af chokbølgen fra en undervandseksplosion, opsplittes i mange små bobler allerede i løbet af de første splittes i mange små bobler allerede i løbet af de første bylittes i mange små bobler allerede i løbet af talvum [20], bar pulsationer. Samme fænomen er iagttaget af FLYNN [20], hvilket er nævnt i kapitel IVD under omtale af stabiliteten af frit pulserende bobler.

Af filmene ses desuden, at boblerne endnu er sammenhængende i pulserende bobler indesluttet i en ballon også må gælde for frie bobler.

Sålænge en boble er sammenhængende, vil den pulsere med stadigt aftagende amplitude på grund af energitab til det omgivende vand. Derimod ophører pulsationen næsten helt ved givende vand. Derimod ophører pulsationen næsten helt ved energi ikke i dette tilfælde afgives til vandet i form af energi ikke i dette tilfælde afgives til vandet i form af energi ikke i dette tilfælde afgives til vandet i form af

deling.

del

t@ldende punkter:
Man kan sammenfatte ballonens indflydelse på luftboblen i

I) Den hindrer opsplitning af boblen.

•uəuoraes[nd

- 2) Den resulterer i større dæmpning af boble-
- bobler, som ellers er paddehatteformede.

Da en frit pulserende boble er sammenhængende under første kontraktion, må de fundne resultater for maksimaltryk og absorberet energi også gælde for frie bobler. Desuden er ballonens indflydelse på de termodynamiske forhold forsvindende,

som omtalt i kapitel VIII D. Det kan derfor konkluderes, at aå gælder for frit pulserende luftbobler i vand.

IX' KONKINZION

De termodynamiske forhold for boblepulsationen er bestemt såvel teoretisk som eksperimentelt. En simpel beregning af varmeafgivelsen fra en pulserende boble viser, at pulsati-onsprocessen med god tilnærmelse kan regnes adiabatisk for kontraktionsfasen kun andrager nogle få procent af den to-talt akkumulerede varmeenergi i boblen. Dette resultat er verificeret eksperimentelt ved hjælp af ligningen $\mathrm{P}_{L}/\mathrm{P_{o}}=$ diameteren under en polytropisk tilstandsændring af luften. Værdien af polytropeksponenten k er bestemt til ly40, hvil-

- en betingelse som ikke er opfyldt i de aktuelle forsøg.

De målte maksimaltryk \mathbf{P}_1 i boblerne som funktion af boblersstedet lader sig restørrelsen og afstanden fra eksplosionsstedet lader sig repræsentere ved en simpel kurveskare med en nøjagtighed på tisk løsning af den ulineære differentialligning for bobler simaltryk viser, at de eksperimentelle \mathbf{P}_1 -værdier er betydeligt lavere end de teoretiske. Dette skyldes, at den teoretiske model forudsætter kuglesymmetrisk belastning af boblen tiske model forudsætter kuglesymmetrisk belastning af boblen

Studiet af chokexciterede boblepulsationer forudsætter nøje kendskab til chokbølgen i forskellige afstande fra eksplosionsstedet, Derfor er der opstillet empiriske formler for maksimaltrykket P_{m} og impulstætheden I begge som funktion af formler for P_{m} og I bemærkes visse divergenser, hvilket væsentligst må skyldes anvendelsen af forskellige transducere sentligst må skyldes anvendelsen af forskellige transducere sentligst må skyldes anvendelsen af forskellige transducere for P_{m} og I bemærkes visse divergenser, hvilket væsentligst må skyldes anvendelsen af forskellige transducere ført for P_{m} og I bemærkes visse divergenser, hvilket væsentligst må skyldes anvendelsen af forskellige transducere

seret i endelig form. broblemet, men metoden er endnu ikke gennemprøvet og publiboratory, skulle imidlertid kunne anvendes til løsning af tode, som er under udvikling ved Los Alamos Scientific Lationen for en usymmetrisk trykpåvirkning. En ny numerisk meat opstille en matematisk model, som beskriver boblepulsaresultat, og det synes ikke for øjeblikket at være muligt st inkludere den skæve belastning gav ikke noget positivt poplerne. Forskellige forsøg på at modificere teorien til overensstemmelse mellem målte og beregnede maksimaltryk i ustwelse regnes kuglesymmetrisk, og først da kan der ventes i forhold til boblediameteren, kan belastningen med god tilque end på forsiden. Kun når bølgelængden for choket er stor skyggezone på boblens bagside, hvor trykbelastningen er minlediameteren, og dette medfører, at der findes en udpræget Bøldelændden for choket er af samme størrelsesorden som bob-

De optegnede kurver for boblernes energiabsorption viser, at den maksimale dæmpning af chokbølgen fås ved anvendelse af et bobletæppe bestående af så små bobler som muligt og placeret så langt fra eksplosionsstedet som muligt. Dette resultat gælder dog kun, hvis vekselvirkningen mellem de enkelte bobler kan negligeres. Når bobletæppet er tæt pakket med bobler, er det ikke muligt på grundlag af disse forsøgsresultater at udtale sig om boblestørrelsens indflydelse på

dæmpningen.

Alle bobleundersøgelser omtalt i denne rapport er gennemført en række high-speed film af frit pulserende luftbobler i vand, en række high-speed film af frit pulserende luftbobler i vand, at de væsentligste forsøgsresultater også gælder for frie

popjer.

The measured maximum pressures 'P $_1$ ' inside the bubbles, as a function of the bubble diameter and the distance from the explosion, can be represented by a simple family of curves with an accuracy of \pm 5%. The maximum pressures are also determined theoretically by solving numerically the non-linear differential equation for the bubble pulsation. A comparison between measured and calculated maximum pressures shows that the experimental values of 'P $_1$ ' are considerably smaller than

The thermodynamic behaviour of a pulsating bubble is determined both theoretically and experimentally. A simple calculation of the heat transport from a pulsating bubble shows that the pulsation with good approximation can be considered during the contracted phase amounts only to a few percent of the total heat energy accumulated in the bubble. This result is verified experimentally by means of the equation p_1/p_0^- is verified experimentally by means of the equation p_1/p_0^- the bubble diameter during a polytropic change in state. The the bubble diameter during a polytropic change in state. The verified experimentally by means of the bubble to the bubble diameter further accounts the bubble diameter further and the polytropic exponent k is found to be 1.40, which was that the pulsation can be considered adiabatic.

CONCLUSTONS

method has not yet been published in a final form. spould however be applicable for solving the problem, but the is now being developed at Los Alamos Scientific Laboratory, the pressure load is asymmetric. A new numerical method, which set up a mathematical model for the bubble pulsation when been successful, and at the moment it seems impossible to modify the theory to include the asymmetric load have not culated pressures inside the bubble. Various attempts to then accordance can be expected between measured and $\cos 1$ proximation be considered spherically symmetric, and only pubble diameter, the load on the bubble can with good apwhen the wavelength of the shock is much larger than the load is much less than on the front side of the bubble. Only tinct sysdow region behind the bubble where the pressure magnitude as the bubble diameter, and this results in a disgation. The wavelength of the shock is of the same order of bubble - a condition which is not fulfilled in this investitheoretical model assumes spherically symmetric load on the the theoretical values. This is due to the fact that the

The curves for the energy absorption of air bubbles show that the maximum attenuation of a shock wave is obtained by using a bubble screen consisting of as small bubbles as possible and placed as far from the explosion as possible. This result is only valid if the interaction between the individual bubble can be neglected. When the bubble screen is packed with bubbles it is not possible, on the basis of this investigation, to state anything about the influence of the bubble size on the attenuation.

All bubble investigations mentioned in this report have been carried out with the air enclosed in a balloon. However, some show that the most essential results of the experiments are also valid for free bubbles.

VPPENDIKS

Datamatprogram i Algol 4 til beregning af boblepulsationen.

```
VETIE
                              1 2:1 Z'X
s, A, my, Pi, x, xe, ymin, yminus, ym, yplus;
                                             real
                                          pegin integer
                                              algol, 1 <
```

is continuously adjusted to the optimum value. The parameters are: Computers, p. 56). The interval will if necessary be subdivided so as to of the accuracy to be made (see Lance: Numerical Methods for High Speed ta method which by using five points in each interval allows an estimate ations from a given point x, y[k] (k = 1 to n) to another point defined array y; procedure F; value xe, n, delta, first; integer n; real x, xe, delta; boolean first; procedure Meran(F, x, y, xe, n, delta, first);

comment Mersn will integrate n simultaneous first order differential equ-

secure a given accuracy, delta, in y[k]. At the same time the step length by x = xe. The integration uses Merson, s modified fourth order Runge Kut-

parameters. Thus x must be a real variable while y and z are arrays K = 1 to m using the values of x and y supplied in the first two F(x, y, z) it must assign the derivatives dy[k]/dx to z[k] for a procedure defining the equations to be integrated. When called:

an array[1: n], which upon entry must be supplied with the initial Λ a real variable, of n components. x and y must be left unaltered by F.

ior x = xe. values and which upon exit will contain the final values x, y[k]

the number of equations. u ЭX the final value of x.

first This should be true for a first or isolated entry, false at subsedelta a positive number defining the required accuracy.

of the step length is available or not; quent entries. It is used as an indication of whether an estimate

Degin real h, x0, ho3, eps, q; own real step; integer i; boolean last; array y0, k1, k3, k4, k5 [1: n];

procedure next(k, expr); real expr; array k;

pegin F(x, y, k);

 $\underbrace{\text{for i:= cxpr*no5}}_{\text{for i:=}} = \underbrace{\text{cxpr*no5}}_{\text{for i:=}} = \underbrace{\text{cxpr*no5}}_{\text{for i:=}}$

If first then begin try last: last:= true; h:= xe - x end eug uext:

ejse pegin p:= scep:

last:= false R: II abs(xe - x) < abs(h) then go to try last;

xo:= x; for i:= 1 step 1 until n do yo[i]:= y[i]; fpuə

```
:puə
                                                                             : puə
                                                                       :puə
                                                               Write
                                  yminh(-μ.2) - 1;

γπίτη (-μ.2) - 1;

δ. d. ddu+dh, P1);
     beregn:
                  Mersn (F,x,y,ixxe,2,0,001,false);
                                                           pegin
                             A:= 57.5\ε\1.15; xe:= my\(-2);

ym:=yplus:=x:=y[2]:=0; y[1]:=1;

Mersn(F, x, y, xe, 2, 0,001, true);

Mersn(F, x, y, xe, 2, 0,001, true);

1:=2 step 1 until 500 do
                                                                     pegin
            <u>for</u> my:= 0.5,0.6,0.8,1.0,1.5,1.6,2.0,2.5,3.0 <u>do</u>

<u>begin</u> writecr; write ({d.d}, my);

<u>for</u> a:= 0.50,0.40,0.50,0.60,0.80,1.00,1.25,1.50 <u>do</u>
                                                                                     *(*
                                                                              0ξ
                                                         05
                                                                   Opt
                                               09
                                     08
                 152
                           001
       051
                                                                             og a [cm].
  Beregning at makeimaltrykket Pi [baro] som funktion af my = lambda/dO
                              Afd, for Fluid Mekanik, civ. ing. Bruun Jensen.
                                         select(8); writechar(42); writetext(4<
         procedure F( x, y, z ); value x; real x; array y, z;
                                                                             eug Wersn;
                                                                                  :stull
              IL ebs = O flen go to try last;
                if stgm( y[2] )= 1 then go to beregn;

If last then begin if first then step:= h; go to finis end;
                                          Auruna:= Au: Au:= Abras: Abras= A[1]:
                     comment Følgende to linier er en tilføjelse til Mersn;
begin for i := 1 step 1 until n do y[i] := y0[i]; x := x0; go to Q end;
                                                                 TI delta < eps then
                                                                  eba:= ebaxapa(yo):
                                          it d > ebs then ebs:= d end;
             \frac{\text{for } 1:= 1}{\text{begin } q:= \text{abs}(k1[1] \times .^2 - k5[1] \times .9 + k4[1] \times .8 - k5[1] \times .1);}
```

:0 =:sdə

next(K1, K1[1]); X:= X2 + K3; next(K1, K1[1]); X:= X3 + K3; next(K3, K4[1]); X3.

Afdelingen for Fluid Mekanik, rap. SR-67-07, 1967. gnistudladninger i vand.

- Bruun Jensen & Møllenberg Jensen: *0T Lıxkpolder Era
 - Afdelingen for Fluid Mekanik, rap. BG-201, 1970. • 6
- Tryktransducere. Bruun Jensen: Sov. Phys.-Acoust., v 10, p 28-32, 1964.
- ject to a Periodically Varying Pressure.
- tions of Gas Bubbles in an Incompressible Liquid Sub-Borotnikova & Soloukhin: A Calculation of the Pulsa-. 8
- McGraw-Hill Book Co., New York 1965, 775 pp.
- Boelter, Cherry, Johnson & Martinelli: Heat Transfer ٠. Afdelingen for Fluid Mekanik, rap. LFM R 68-1, 1968. af shockbølger gennem skumplader nedsænket i vand.
 - Om undervands eksplosioner og transmission Bjørnø: • 9
 - Quart. Appl. Math., v 13, p 451-53, 1956. Stability of Spherical Bubbles. BILKHOII: • 9
- Los Alamos Scientific Laboratory, Rep. LA-4370, 1970.
- nique for Calculating Incompressible Fluid Flows. • ₽
- Amsden & Harlow: The SMAC Method. A Numerical Tech-
- Los Alamos Scientific Laboratory, Rep. LA-3466, 1966. tion of the Dynamics of Compressible Fluids.
- The Particle-in-Cell Method for the Calcula-3.
 - Sov. Phys.-Acoust., v 13, p 455-58, 1968. Describing the Pulsations of Cavitation Voids.
 - Structure of the Solutions of Equations * 7 YknŢīchev:
 - 20A. Phys.-Acoust., v 13, p 149-54, 1967. Field of an Ultrasonic Wave.
 - Akulichev: Pulsations of Cavitation Bubbles in the • T

BELEBENCETIZLE

Calif. Inst. of Tech., Rep. 26-4, 1952. Bubble in a Viscous Compressible Liquid. CT TWOKE:

Chapman & Plesset: 13. Thermal Effects in the Free Oscil-J. Acoust. Soc. Amer., v 46, p 205-10, 1969. Fluid Subject to Periodically Varying Pressure. Chan & Yang: Bubble Dynamics in a Non-Newtonian .SI J. Acoust. Soc. Amer., v 19, p 481-501, 1947.

Carstensen & Foldy: Propagation of Sound Through a

- lations of Gas Bubbles.
- Calif. Inst. of Tech., Rep. 85-50, 1970.
- Dover Publications Inc., New York 1965, 426 pp. Underwater Explosions. * 7 T Cole:

Liquid Containing Bubbles.

·II

- Survey of Thermal, Radiation and Viscous 'ST
- Damping of Pulsating Air Bubbles in Water.
- J. Acoust. Soc. Amer., v 31, p 1654-67, 1959.
- Pulsations of Cavitation Bubbles. ·9T Rectified Diffusion during Nonlinear Eller & Flynn:
- Generation of Subharmonics of Order EJJer & Flynn: ·LT J. Acoust. Soc. Amer., v 37, p 493-503, 1965.
- Measurement of the Damping of Pulsating Air .81 Exver: J. Acoust. Soc. Amer., v 46, p 722-27, 1969. One-Half by Bubbles in a Sound Field.
- Akust. Beih., v 1, p 25-33, 1951. Bubbles in Water.
- Acustica, v 3, p 67-72, 1953. Damping of Pulsating Air Bubbles in Water. Exner & Hampe: Experimental Determination of the .6I
- Mason (ed): Physical Acoustics, v 1B, Physics of Acoustic Cavitation in Liquids. .02
- The Growth or Collapse of a Spherical .12

Academic Press, New York 1964, 376 pp.

- frequencen von Gasblasen in Flüssigkeiten.
 Acustica, v 21, p 54-56, 1969.
- 32. Hund: Zur Näherungsweisen Berechnung der Eigen-
- bei 10 Hz in einer Wassergefüllten Druckkammer. Acustica, v 21, p 269-82, 1969.
- 31. Hund: Untersuchungen zur Einzelblasenkavitation
- Mass into Gas Bubbles.
 J. Acoust. Soc. Amer., v 33, p 206-15, 1961.
- 30. Haieh & Pleaset: Theory of Rectified Diffusion of
- 1. Basic Engn., v 87, p 991-1005, 1965.
- 29. Haleh: Some Analytical Aspects of Bubble Dynamics.
- a Bubble near a Rigid Boundary. J. Acoust. Soc. Amer., v 37, p 504-08, 1965.
- 28. Howkins: Measurement of the Resonant Frequency of
- J. Acoust. Soc. Amer., v 35, p 1387-93, 1963.
- Spherical Bubble in Water.

 Phys. Fluids, v 7, p 7-14, 1964.

 27. Houghton: Theory of Bubble Pulsation and Cavitation.
 - Se. Hickling & Plesset: Collapse and Rebound of a
 - lation Method for All Flow Speeds.
 Los Alamos Scientific Lab., Rep. LA-DC-12190, 1971.
 - 25. Harlow & Amsden: A Numerical Fluid Dynamics Calcu-
- Annotated Bibliography.

 Los Alamos Scientific Laboratory, Rep. LA-4281, 1969.
 - 24. Harlow: Numerical Methods for Fluid Dynamics, an
 - Range 100-300 kc/s.
 - 23. Haeske: Experimental Determination of the Damping of Pulsating Air Bubbles in Water in the Frequency
 - Aasser. Wasser.
 - 22. Güth: Nichtlineare Schwingungen von Luftblasen in

- Ph.D. Thesis, Nuclear Engn. Dep., University of Compressible Liquid. Collapse of a Cavitation Bubble in Viscous,
- Ivany & Hammitt: Cavitation Bubble Collapse in

Michigan, 1965.

- J. Basic Engn., v 87, p 977-85, 1965. Viscous, Compressible Liquids - Numerical Analysis.
- Ontario Hydro Research News, no 2, 1954. Air-Bubble Curtain to Cushion Blasting. 1gcopseu: .25
- Sov. Phys.-Acoust., v 11, p 94-97, 1965. sound on the Growth of an Air Bubble in Water. Kapustina: Investigation of the Influence of Ultra-.98
- Kapustina: Gas Bubble in a Small-Amplitude Sound .75
- Sov. Phys.-Acoust., v 15, p 427-38, 1970.
- NASA Rep. TT-F-11653, 1968. Bubble in Fluid. Kedrinskij: Dynamic Features of a Spherical Gas
- Hydrodynamic Inst., Novosibirsk, Rep. PMTF-1, 1961. a Shock Wave in Water (in Russian). Kedrinskij & Soloukhin: Compression of a Cavity by . 6٤
- McGraw-Hill Book Co., New York 1970, 578 pp. Knapp, Daily & Hammitt: Cavitation. ·07
- Koger & Houghton: Damping and Pulsation of Large • T 5
- J. Acoust. Soc. Amer., v 43, p 571-75, 1968. Nitrogen Bubbles in Water.
- Dover Publications Inc., New York 1945, 738 pp. Hydrodynamics. 45. : dms.1
- Wkust. Beih., v 1, p 12-24, 1951. Verschiedener Gase in Wasser. Lauer: Uber die Thermische Dämpfung von Blasen 6.5

- Elsevier Publishing Co., Amsterdam, 1964. Davies (ed): Cavitation in Real Liquids.
- bjessef: Buppje Dingmics.
 - Akust. Z., v 5, p 202-12, 1940. Schwingenden Gasblasen.
- Inr Thermischen Dämpfung in Kugelsymmetrisch . 53 Pfriem:
 - M.Sc. Dissertation, Phys. Dep., Chelsea Coll., 1966.
 - .22 The Behaviour of Bubbles in a Sound Field. Proc. Phys. Soc. (B), v 63, p 674-85, 1950. cource.
 - Noltingk & Neppiras: Cavitation produced by Ultra-·T9 J. Acoust. Soc. Amer., v 46, p 587-601, 1969.
 - sion from Bubbles in Sound-Irradiated Liquids. Subharmonic and Other Low-Frequency Emis-.05 Neppiras:
 - Phil. Mag., v 16, p 235-48, 1933. Running Water.
 - On Musical Air-Bubbles and the Sounds of Minnaert: J. Acoust. Soc. Amer., v 28, p 447-54, 1956. Spherical Cavity in Water.
 - Mellen: An Experimental Study of the Collapse of a .84
- Los Alamos Scientific Laboratory, Rep. LA-3235, 1965. · 17 The Two-Dimensional Hydrodynamic Hot Spot.
 - Befästningsbyrån, nr. B 32, 1963. Tekn. Medd., Kungl. Fortifikationsförvaltningen, tryckreducerande luftbubbelridå.
 - Lindh & Landelius: Undervattenssprängning med
 - Acustica, v 23, p 73-81, 1970. aṛdĸeṛteu•
 - Resonanzkurven von Gasblasen in Flüsranterborn: •91 Acustica, v 20, p 14-20, 1968.
 - ranterborn: Eigenfrequenzen von Gasblasen in

Flüssigkeiten.

- J. Acoust. Soc. Amer., v 25, p 536-37, 1953. Gas Bubbles in Liquids.
- 2frasberg: The Pulsation Frequency of Nonspherical • 59
- sov. Phys. Doklady, v 6, p 16-17, 1961. in a Liquid.
- Soloukhin: The Effect of Bubbles in Shock Detonation · 1/9
 - Calif. Inst. of Tech., Rep. 85-38, 1967.
 - Solomon & Plesset: Nonlinear Bubble Oscillations. · £ 9
 - Phil. Mag., v 19, p 1147-51, 1935. through a Liquid. Gasbubbles liberated by the Passage of Intense Sound
 - Smith: On the Destructive Mechanical Effects of the .29
- J. Basic Engn., v 92, p 555-62, 1970. in a Viscous Compressible Liquid.
- The Natural Frequency of a Bubble Oscillating :emid2 ·T9
- Proc. Phys. Soc. (B), v 69, p 893-900, 1956. . alddud Isable.
- Robinson & Buchanan: Undamped Free Pulsations of an 109 Phil. Mag., v 34, p 94-98, 1917.
 - during the Collapse of a Spherical Cavity. On the Pressure developed in a Liquid Кау leigh: • 69
- Los Alamos Scientífic Laboratory, Rep. LA-DC-9780,1969. Computer Simulation of Fluids in Motion. hracht: *85
 - Quart. Appl. Math., v 13, p 419-30, 1956. cal Shape of a Vapor Cavity in a Liquid.
 - Plesset & Mitchell: On the Stability of the Spheri-* LS
 - Phys. Fluids, v 3, p 882-92, 1960. Oscillating Pressure Fields. Plesset & Hsieh: Theory of Gas Bubble Dynamics in .95
 - Calif. Inst. of Tech., Rep. 85-46, 1969. Plesset: Cavitating Flows. •99
 - **T**56

- J. Acoust. Soc. Amer., v 28, p 20-26, 1956. Strasberg: Gas Bubbles as Sources of Sound in Liquids. •99
- pressible, Transient Fluid-Flow Problems Involving A Computing Technique for Solving Viscous, Incom-Welch, Harlow, Shannon & Daly: The MAC Method. · L9
- Los Alamos Scientific Laboratory, Rep. LA-3425, 1969. Free Surfaces.

