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Abstract: Handling of multiple simultaneous faults is a complex issue in fault-
tolerant control. The design task is particularly made difficult by the numerous
different cases that need be analyzed. Aiming at safe fault-handling, this paper
shows how structural analysis can be applied to find the analytical redundancy
relations for all relevant combinations of faults, and can cope with the complexity
and size of a real system. Being essential for fault-tolerant control schemes that
shall handle particular cases of faults/failures, fault isolation is addressed. The
paper introduces an extension to structural analysis to disclose which faults could
be isolated from a structural point of view using active fault isolation. An example
and results from a marine application illustrate the concepts.
c©copyright IFAC 2006.
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INTRODUCTION

Fault-tolerant control uses control or sensor re-
configuration to accommodate failures in instru-
ments, plant components or actuators. Aiming
at utilizing existing redundancy in instrumenta-
tion and control devices as far as possible, fault-
tolerant control can be applied to minimize the
hazards associated with malfunction, even when
several sensors or actuators fail, but several mod-
ifications need be made to the usual single fault
FTC schemes in order to achieve the necessary
level of safety.

Structural analysis is a theoretic method that
aims at offering such possibility. Structural con-
cepts were studied early in the applied math-

ematics community (Dulmage and Mendelsohn,
1959) various theoretical algorithms were devel-
oped in (Dulmage and Mendelsohn, 1963) and
(Hopcroft and Karp, 1973). Structural analysis
has been used intensively in Chemical Engineer-
ing for solving large sets of equations and is-
sues on solvability have been pursued in a num-
ber of publications, see (Unger et al., 1995) and
(Leitold and Hangos, 2001) and the references
herein. The structural approach and the features
it offers for analyzing monitoring and diagnosis
problems was first introduced in (Staroswiecki
and Declerck, 1989) and further developed in
(Staroswiecki et al., 1993). Extensions to analysis
of reconfigurability and fault-tolerance emerged in
(Staroswiecki et al., 1999) and (Staroswiecki and
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Gehin, 2000). The structural analysis approach
was brought into a digested form in (Blanke et
al., 2006). Structural analysis has hence evolved
during several decades. However, the salient fea-
tures of the theory and the possibilities it offers
have only become apparent to a larger community
in the field of automation and automatic control
over the last few years (Åström et al., 1986),
(Izadi-Zamanabadi and Staroswiecki, 2000) with
applications reported in e.g. (Izadi-Zamanabadi et
al., 2003) and (Lorentzen et al., 2003). Reasons
for the slow penetration into applications origin
mainly in the lack of widely available tools to sup-
port the structural analysis method for automated
industrial systems.

This paper considers the safety of fault-tolerant
control schemes when multiple faults may be
present. It is shown how structural analysis can
be applied to analyze cases of multiple faults and
to syntetisize residual generators. Fault isolation,
which is instrumental for correct fault handling,
is addressed and a new result shows how active
isolation could be achieved from a structural point
of view.

The paper first reviews the concept of behaviors
and shows how the behavior of a system is equally
well applied on the services offered by hardware
and software components. It then interprets the
impact on safety of a system that is supposed to
work under conditions of multiple faults. Isolabil-
ity conditions are highlighted, and a new concept
active structural isolability is introduced. An ex-
ample illustrates the aspects of this extension to
the structural analysis approach. An application
on a marine system briefly illustrates analysis for
operation under multiple faults.

1. RECONFIGURABILITY AND SAFETY

A system consists of a set of components which
each offer a service and performs this service
through defined normal behaviours. A component
can offer different versions of services and com-
mand to the component can define which version
of a service is made available. Within a com-
ponent, fault-tolerant techniques can use fault-
diagnosis and fault-handling to switch between
services or offer a service in a version with de-
graded performance if local malfunction should
make this necessary.

1.1 Subsystem services

A system breakdown in Fig.1 shows three dif-
ferent architectures, i.e. arrangement of the sys-
tem components and their interaction. Compo-
nent k has input uk , output yk, parameters θk

1 2 3

1

2a 3a

1 2ft

3a

3b

3b2b

1: single string

2: redundant HW

3: fault-tolerant

Figure 1. Three architectures, single line with
no redundancy (1), hardware redundancy
(2) and combined fault-tolerance and redun-
dancy (3)

and a behavior ck(yk, uk, θk) = 0. The behav-
ior may be constructed from a set of constraints
{ck1, ck2, ..., ckn} associated with the subsystem
and the exterior behavior of the component is the
union of internal behaviors ck = ck1∪ck2∪....∪ckn

or for brevity, ck = {ck1, ck1, ..., ckn}. Following
the generic component definition in (Blanke et
al., 2006), the service S(k) offered by component
k is to deliver produced variables (output), based
on consumed variables (input) and available re-
sources, according to the specified behavior S

(k)
(v)

where v ∈ {1, 2, 3, ..} is the version of the service.
Clearly, the exterior behavior is associated with
the service offered by the component, we denote
this behavior by c

(v)
k .

In this context we particularly wish to consider
versions of the same service that follow from
the condition of the component, from normal
over degraded to none. If a component has an
internal failure, fault-tolerant techniques may still
provide a version of the service with degraded
performance

(
S

(k)
(d)

)
or the service may not be

available at all
(
S

(k)
(o)

)
. Hence, we consider the

set of versions v ∈ {n, d1, d2, .., o} where n :
normal; d1 : degraded1; d2 : degraded2; o : none.

1.2 Service at system level

The service obtained by the system as an en-
tirety is a function of the component architec-
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ture A and the versions for the present condi-
tion ki of components. With m components in a
system, each component in one out of p condi-
tions, ki ∈ Npi , we have a versions vector v =
[v1(k1), v2(k2), ..., vm(km)], and the set of avail-
able behaviors Cv =

{
c
v(k1)
1 , c

v(k2)
2 , ..., c

v(km)
m

}
.

Definition 1. The overall service available from a
system is S(s)(cv(ki)

i ) = A(Cv|v(k)), i = 1, ...,m.

With a single string architecture from Fig. 1, we
obtain

S(s) = S(1) ∩ S(2) ∩ S(3) (1)

With redundancy in the system, the hardware
configuration with two parallel, totally redundant
lines with only one component in common,

S(s) = (2)

S(1) ∩
((

S(2a) ∩ S(3a)
)
∪

(
S(2b) ∩ S(3b)

))

This solution is expensive as it requires two com-
pletely redundant subsystems. A cost effective
solution would be to have some components in-
trinsically safe S(1), have others equipped with
fault-tolerant properties so their service S

(2)
v(2) will

be available but in degraded version when local
faults occur, and just have hardware redundancy
for few essential components (3a, 3b). The fault
tolerant architecture shown in part C of Fig. 1 is
based on this idea. The service at system level is

S(s) = S(1) ∩ S
(2)
v(2) ∩

(
S(3a) ∪ S(3b)

)
(3)

The paradigm in this architecture is that com-
ponent failures should be detectable and control
be switched to obtain a fault-tolerant service or
reconfigure the system bypassing faulty compo-
nents. This should be achieved by controlling the
signal flow in the software of the system.

1.3 Availability and safety

The plant at the system level is available as long
as the predefined normal service is offered in some
version, normal or degraded. A fault-tolerant ver-
sion of the service is obtained when one or more
of the component services are offered in a fault-
tolerant version. A fail-operational version of the
service is obtained when hardware reconfiguration
has been made to bypass a failure in the redun-
dant component.

When multiple local failures are present, the ser-
vice at system level is

S(s) = A (Cv|v)

Definition 2. Available. The system is available
when S(s) ⊆ S where S =

{
S

(s)
1 , S

(s)
2 , ..., S

(s)
n

}

is the set of admissible services that meet spec-
ified overall objectives for behaviour O of the
system:∀S(s)

i (cv(ki)
i ) : Cv ⊆ O.

Definition 3. Fault. A fault is a deviation from
normal behavior, ∃i : ci 6= 0.

Definition 4. Critical fault. A fault in ci is critical
ci ∈ Ccrit if it will cause the system’s behavior
to be outside the set of admissible behaviors,
ci ∈ Ccrit iff ci 6= 0 ⇒ Cv " O.

Definition 5. Safe version of service. A version is
safe if all critical faults are detectable, ∀ci ∈ Ccrit :
ci ∈ Cdet ectable

Assumption 6. It is a natural assumption that
shut-down of the system is intrinsically safe and
that the system can be shut down to the safe mode
from any condition where S(s) ⊆ S.

Definition 7. Reconfiguration. A system is recon-
figurable if ci 6= 0 ⇒ ∃j 6= i,v(j) 6= v(i) : Cv(j) ⊆
O

The task of fault-tolerant control is to find an
appropriate v(j) when the fault ci is detected and
isolated and bring the system from version v(i) to
v(j).

Having defined the system properties in terms
of behaviors, it is natural to employ structural
analysis where behaviors are defined in terms of
constraints between variables and graph theory
methods offer rapid and rigorous analysis.

2. STRUCTURE GRAPH

A structural model of a system can be represented
as a bipartite graph that connects constraints and
variables. The structure graph (Staroswiecki and
Declerck, 1989) of a system (C, Z) is a bipartite
graph G = (C, Z,E) with two set of vertices whose
set of edges E ⊆ C × Z is defined by (ci, zi) ∈ E
iff the variable zi appears in constraint ci.

The variables in Z are divided into known K and
unknown variables X. Similarly, the constraints
C are divided into constraints CK that only apply
to the known variables and CX that involve at
least one unknown variable. An incidence matrix
S describes the structure graph where each row
in the matrix represents a constraint and each
column a variable. S(i, j) = 1 means that variable
xj appears in constraint ci, S(i, j) = x denotes a
directed connection.
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2.1 Constraints

Constraints represent the functional relations in
the system, i.e. originating in a physical model
using first principles. The constraints needed for
structural analysis are far more simple. Instead
of using the explicit system equations, structural
analysis need to know whether a certain constraint
makes use of a particular variable. Parameters
that are known from the physics of the plant or
from properties of the automation system, e.g. a
control gain, are treated as part of the constraint
in which the particular parameter is used. A
constraint can be directed. This implies that a
variable on the left hand side of the constraint
can not be calculated from the right hand side of
the constraint.

2.2 Variables

There are three different kinds of variables: Input
variables are known, externally defined; Measured
variables are entities measured in the system;
Unknown variables are internal physical variables.
Input and measured variables both belong to
the set K but are separated for calculation of
controllability.

2.3 Matching and results

The central idea in the structure graph approach
is to match all unknown variables using avail-
able constraints and known variables, if possi-
ble. If successful, the matching will identify over-
determined subgraphs that can be used as analyt-
ical redundancy relations in the system.

Results of the structural analysis are

• List of parity relations that exist
• Auto-generated suggestion of residual gener-

ators
• List of detectable faults
• List of isolable faults

When a matching has been found, backtracking
to known variables will give a suggestion for
parity relations that could be used as residual
generators. A system with m constraints and n
parity relations will give a relation showing which
residuals depend on which constraints.

One view on these relations is the boolean map-
ping,

F : r ← M ⊗ (ci 6= 0) (4)

from which structural detectability and isolability
can be found.

Lemma 8. A fault is structurally detectable iff it
has a nonzero boolean signature in the residual,
ci ∈ Cdet ectable iff ∃j : ci 6= 0 ⇒ rj 6= 0

Lemma 9. A fault is structurally isolable iff it
has a unique signature in the residual vector,
i.e. column mi of M is independent of all other
columns in M, ci ∈ Cisolable iff ∀j 6= i : mi 6= mj

Example 10. With m = 6 and n = 4, the result
could have the form




r1

r2

r3

r4


 ←

c1 c2 c3 c4 c5 c6


0 0 1 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
1 0 1 1 0 1




(5)

Since columns (2, 3, 4, 5) are independent, but
(1, 6) are dependent, {c2, c3, c4, c5} are isolable
and {c1, c5} are detectable. The pair (c1, c5) is
isolable.

3. ACTIVE ISOLATION

In some cases faults are group-wise isolable, i.e
within the group individual faults are detectable
but not isolable. This implies that with the given
architecture of the system, these faults are group-
wise not isolable. This does not necessarily imply
that isolation can not be achieved in other ways.
Indeed, although the same set of residuals will
be ”fired” when either one or the other of non-
structurally isolable constraints is faulty, the time
response of the residuals may be different under
the different fault cases. Exciting the system with
an input signal perturbation may therefore make
it possible to discriminate different responses of
the same residual set when different constraints
within the group are faulty. The proof of the
following result is obvious :

Proposition 11. Active isolation is possible if and
only if both a structural condition and a quanti-
tative condition are true.
Structural condition : the known variables in the
set of residuals associated with a group of non-
structurally isolable constraints include at least
one control input.
Quantitative condition : the transfer from control
inputs to residuals is affected differently by faults
on different constraints.

Lemma 12. Input to output reachability. Let p(i,j)

= {cf , cg, ..., ch} be a path through the struc-
ture graph from input uj output yj and

∏(i,j)

the union of valid paths from uj output yj . Let

C
(i,j)
reach =

{
cg | cg ∈

∏(i,j)
}

. A constraint ch is
input reachable from input uj if a path exists from
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u1

u2

x1

x2

x4

x3 y1

y2

y3

c1

c2

c3

c4

c5

c6

Figure 2. Structure graph for the example

uj to any output yk and the path includes the
constraint, ch ∈ C

(i,k)
reach

Lemma 13. Active isolability. Two constraints cg

and ch are actively isolable if ∃i, j, k, l : cg ∈
C

(i,j)
p , ch ∈ C

(k,l)
p and {cg.ch} /∈ C

(i,j)
reach ∩ C

(k,l)
reach

Algorithmic aspects. A path through a graph can
be determined from an adjacency matrix,

A : [C,Ki,Km] y [C, Ki,Km]

that shown which nodes in a graph are connected.
As the graph is bipartite, the adjacency matrix is
easily obtained from the incidence matrix (?) as

A =
[

O S
ST O

]

The adjacency matrix shows the result of a walk
of length 1. A walk of length n will be described
by An. Reachability of element i from element j
in the graph can be determined by investigating
the element (i, j) in the sequence of matrices

A1,A2,A3, ...,A2cn

where cn is the number of elements in {C,Ki,Km}.
With the ith column of A being an input, and
the jth row a measurement, a path of length m
exists from i to j iff Am

ij 6= 0. The nodes passed
on the walk are determined by tracing the nonzero
elements of Am,Am−1, ..,A1. While this algebraic
method is intuitive and is related to the structure
graph S, it is computationally inefficient, and al-
gorithmic methods exist that can find all paths
from a given input in a graph.

4. EXAMPLE

Let a system be given by the structure graph
shown in Figure 2. Inputs are Ki = {u1, u2} ,
outputs are Km = {y1, y2, y3} , unknown variables
are X = {x1, x2, x3, x4}. The associated incidence
matrix is shown in Table 1

↗ u1 u2 y1 y2 y3 x1 x2 x3 x4

c1 1 0 0 0 0 1 0 0 0
c2 0 1 0 0 0 0 1 0 1
c3 0 0 0 0 0 1 1 1 0
c4 0 0 1 0 0 0 0 1 0
c5 0 0 0 1 0 0 0 1 0
c6 0 0 0 0 1 0 0 0 1

Table 1. Incidence matrix for example

↗ c1 c2 c3 c4 c5 c6
r1 1 1 1 1 1 0
r2 0 0 0 0 1 1

Table 2. Dependency table for the ex-
ample

A complete matching on the unknown variables
can be achieved using the ranking algorithm (?),
leaving c6 and c3 as unmatched constraints. The
path found by the matching is:

c1(u1) → x1; c4(y1) → x3;
c5(x3) → x4; c2(u2, x4) → x2

⇒ c3(x1, x2, x3) = 0
⇔ c3(c1(u1), c2(u2, x4), c4(y1)) = 0
⇔ c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1)) = 0

and

c6(y3, x4) = 0 ⇔ c6(y3, c5(x3)) = 0
⇔ c6(y3, c5(c4(y1))) = 0

The analytical redundancy relations associated
with c3 and c6 constitute two parity relations for
the system considered in the example and two
residual generators are

r1 = c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1))
r2 = c6(y3, c5(c4(y1)))

. The dependency matrix between residuals and
constraints are shown in Table 2 shows detectabil-
ity and isolability as achievable from the two resid-
uals. Linearly independent columns show that the
violations of constraints {c5, c6} can be isolated.
The set {c1, c2, c3, c4} is block-wise isolable but
violation of any of the individual constraints will
only be detectable.

4.1 Active structural isolation.

In a fault-tolerant control setting, inputs u1 and
u2 can be individually perturbed by the control
system. The expected behavior of an output to
perturbation at an input follows from Lemma 12 .
The set of paths through constraints from u1to the
outputs are represented in the reachability table
3

The reachability from u2 is shown in Table 4.
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u1 ↓ c1 c2 c3 c4 c5 c6
y1 1 0 1 1 0 0
y2 1 0 1 0 1 0

y3 0 0 0 0 0 0

Table 3. Output reachability from u1

u2 ↓ c1 c2 c3 c4 c5 c6
y1 0 1 1 1 0 0
y2 0 1 0 0 1 0

y3 0 1 0 0 0 1

Table 4. Output reachability from u2

a b m

f1 f2 1 2 1 2 3 1 2 3 4 5 6

a3 m5 i i i i d d i i i − d

a3 m6 i i 0 0 d 0 i 0 i 0 −
a3 m7 i i i i d d i i i 0 d

Table 5. Analyzing two simultaneous
faults in marine application

Following Lemma 13 , it is easily seen that
{c1, c2, c3} are structurally isolable when active
isolation is employed, while c4 remains detectable.

4.2 Scenarios with multiple faults

Scenarios of multiple faults are dealt with, in the
structural analysis context, by removing one or
more constraints that represent the faulty parts of
the system. Should c6 be subject to a local failure,
the remaining system Sf = S \ {c6} need be re-
analyzed. The results can show which residual
generators exist for the faulty system, and which
further faults could be isolated or detected.

An application to a marine control system was
treated in (Blanke, 2005) where analysis of mul-
tiple faults was a part of a fault-tolerant design.
The tool SaTool (Lorentzen and Blanke, 2004)was
used to generate the analytical relation.

5. CONCLUSIONS

Aiming at safe fault-handling, this paper showed
how structural analysis was applied to find the
analytical redundancy relations for all relevant
combinations of faults. Being essential for fault-
tolerant control schemes that shall handle par-
ticular cases of faults/failures, fault isolation was
addressed. The paper suggested an extended anal-
ysis of the results from a structural analysis to
disclose which faults could be isolated from a
structural point of view using active isolation.
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