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Abstract

This thesis deals with vortices in stacked long Josephson junctions and in two-gap superconductors.
The first part is about Josephson vortices, or fluxons, in stacked long Josephson junctions. The thesis
introduces the model which is related to high Tc superconductors. Some of the well-known and very
important solutions to the non-linear equations are discussed. A possible relationship between the linear
and non-linear modes is investigated numerically. The fluxon-solutions can be made to shuttle back and
forth in the junctions and they may emit radiation near the junction edge. This radiation is typically
in the THz range. The main problem is, however, that the radiated power in a single junction is too
small for applications. This is usually solved by stacking more junctions and getting the fluxons in the
different junctions to bunch, radiate coherently, and thus increase the emitted power. The main problem
is that the vortices repel each other and therefore prefer to be far apart, preventing coherent radiation.
Some different ways of obtaining bunched solutions are discussed. A microwave field is shown to be
able to introduce bunching in weakly coupled systems. This may also be done using a cavity instead of
a microwave field. And finally, the very important flux-flow modes are investigated numerically. It is
shown, that in some cases the flux-flow modes spontaneously jump from a triangular fluxon-lattice to a
square fluxon-lattice, even in stacks with a strong inductive coupling.

The second subject is vortices in two-gap superconductors, such as MgB2. These superconductors
are investigated through the two-component Ginzburg-Landau theory. The usual Abrikosov vortex is
investigated in the two-component version. The equations are solved in the far-field and the effect of a
Josephson-type coupling is considered. The subject of vortex-vortex interaction is briefly discussed in
the case of zero Josephson coupling. Due to the added complexity of having two order parameters, new
features arise. A texture vortex solution is found analytically and numerically in the two-component
theory for the case of zero magnetic field. The case of non-zero magnetic field is investigated numerically.
The textured vortex seems to be unstable in even a small applied magnetic field.

Dansk Resumé
Denne afhandling omhandler vortex’er i stakkede lange Josephson dioder og i to-gabs superledere. Den
første del omhandler Josephson vortex’er, ogs̊a kaldt fluxoner, i stakkede Josephson dioder. Afhandlingen
introducerer modellen, som er relateret til høj Tc superledere. Nogle af de velkendte og meget vigtige
løsninger til de ikke-linære partielle differentialligninger bliver diskuteret. En muligt sammenhæng
imellem de linære og ikke-linære løsninger bliver undersøgt numerisk. Fluxon-løsningerne kan man f̊a til
at løbe frem og tilbage i dioderne og de vil udsende str̊aling n̊ar de rammer ind i diode-kanten. Denne
str̊aling er typisk i THz omr̊adet. Hovedproblemet er, at effekten af den udsendte str̊aling i en enkelt
diode er for lille til anvendelser. Dette problem løses normalt ved at stakke flere dioder og f̊a fluxonerne i
de forskellige dioder til at udstr̊ale i fase og derved øge den udsendte effekt. Problemet er, at fluxonerne
frastøder hinanden og de vil derfor foretrække at være langt fra hinanden og ikke udstr̊ale i fase. Nogle
forskellige måder at f̊a fluxonerne til at “bunche” p̊a bliver undersøgt. Det vises, at et mikrobølgefelt er
i stand til at presse de frastødende fluxoner sammen. Det samme kan man ogs̊a gøre vha. en kavitet.
Desuden bliver de meget vigtige flux-flow løsninger undersøgt numerisk. Det vises, at i nogle tilfælde
vil disse løsninger spontant hoppe fra et triangulært gitte til et firkantsgitter, ogs̊a selvom dioderne er
strækt induktivt koblede.

Det andet emne er vortex’er i to-gabs superledere, s̊asom MgB2. Denne type superledning undersøges
vha. en to-komponent udgave af Ginzburg-Landau teorien. Det velkendte Abrikosov vortex bliver
undersøgt i to-komponentsteorien. Ligningerne løses i fjern-feltet og effekten af en Josephson kobling
bliver diskuteret. Vortex-vortex vekselvirkningen vil ogs̊a bliver diskuteret kort, i det tilfælde hvor
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der ingen Josephson kobling er. Det vil ogs̊a blive vist, at der opst̊ar nye interassante fenomener pga.
de ekstra frihedsgrader. Et textureret vortex bliver fundet analytisk og numerisk for tilfældet uden
magnetfelt. Tilfældet med magnetfelt bliver undersøgt numerisk. Det texturerede vortex lader til at
være ustabilt, n̊ar der sættes et lille magnetfelt p̊a kanten af superlederen.
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Chapter 1

Introduction

1.1 Historical Overview

Though it is not extraordinarily cold in the Netherlands, the country hosted “the coldest place on earth”
in 1908, more precisely the physics laboratory in Leiden where Kamerlingh-Onnes had successfully
liquefied Helium[1], boiling at a temperature of only 4.2K at atmospheric pressure. The liquefaction of
helium opened up for many new low temperature experiments. One unresolved question in the beginning
of the 20th century was how resistance in metals behaves at very low temperature. It was known that
resistance drops with temperature, and at room-temperature this effect is linear, yielding the possibility
that resistance will go to zero when the temperature goes to zero. At the time, it was also known
that the temperature-dependence of resistance in metals weakened when the temperature was lowered,
which naturally lead some to suggest that the resistance reaches a finite value at 0K. A third possibility
suggested at the time was, that since resistance is due to atomic motion it will decrease with decreasing
temperature, but when the atomic motion is very small at very low temperature, the electrons may bind
to the atoms, resulting in lack of electron mobility. From this scenario, the resistance will drop with
temperature, reach a finite minimum, then increase, and go to infinity as the temperature goes to zero.

Being the only one on earth with liquefied helium at his disposal, Kamerlingh-Onnes had the best
possible position for solving the question about the temperature-dependence of resistance in metals.
The metal had to be extremely pure for this type of measurement in order to rule out the influence of
impurities. Initial experiments had shown a purity dependent residual resistance to be present in samples
of platinum and gold. Kamerlingh-Onnes decided to study mercury, as it could be made the purest of all
metals at the time. Measurements on mercury showed a surprising effect. The resistance did approach
zero when the temperature was lowered, but not in a continuous fashion. Near 4.2K the resistance
suddenly dropped below the measuring capabilities of the experimental apparatus. Kamerlingh-Onnes’
measurement can be seen in Fig. 1.1. Initially, he was cautious and reported “the resistance would,

Figure 1.1: Measurement of the superconductivity of mercury by Kamerlingh-Onnes[2, 3].
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within the limits of experimental accuracy, become zero.”. However, after studying more mercury
samples he wrote in 1911 that mercury “passed into a new state, which on account of its extraordinary
electrical properties may be called the superconducting state.”. Later, he discovered that also lead and
tin became superconducting and in 1913 he was awarded the Nobel prize “for his investigations on the
properties of matter at low temperatures which led, inter alia, to the production of liquid helium”[4].

Just as surprising as zero resistance is the Meissner effect. In 1933 Meissner and Ochsenfeld discovered
that superconductors expel magnetic fields from their interior. If some material has zero resistance,
then it is known from Maxwell’s equations that it will not allow a magnetic field to enter through the
boundaries. If, however, the magnetic field is present before the material becomes a perfect conductor,
then it will remain inside the material. If a superconductor, which is also a perfect conductor, is placed
in a magnetic field and then cooled below the transition temperature, it will expel the magnetic field
from the interior of the superconductor. A superconductor is thus not merely a perfect conductor, but
it also has some special magnetic properties. A, by now, classical table-top experiment of the Meissner
effect is to take a superconductor, place a small magnet on top of it, and cool the superconductor
below the transition temperature. The Meissner effect will then make the magnet levitate above the
superconductor.

Theorists always strive to understand new and strange phenomena, but it took more that 20 years
after the experimental discovery by Kamerlingh-Onnes to make the first theory of superconductivity.
The phenomenological London-theory was proposed by the London brothers in 1935[5]. They proposed
the relationship

∇× Js = −nse
2

mc
H, (1.1)

where Js is the supercurrent density, ns is the density of supercurrent carriers, m is the mass of a
supercurrent carrier, and H is the magnetic field. Such a relationship together with Maxwell’s and
Newton’s equations leads to the Meissner effect, but also superconducting vortices may be described by
the theory.

Another phenomenological theory was put forth in 1950 by Landau and Ginzburg. The theory
combined Landau’s theory of second order phase transitions with a Schrödinger-like wave equation,
and has great success in explaining many properties of superconductors. A breakthrough was made
by Abrikosov who showed the existence of two types of superconductors and the vortex state, only
found in Type-II superconductors. It is known that in some limit the theory reduces to the London
theory. Ginzburg, Abrikosov, and Legget (superfluids) received a Nobel prize in 2003 “for pioneering
contributions to the theory of superconductors and superfluids”[6].

Since both the London theory and the Ginzburg-Landau theory are phenomenological theories, they
do not provide a true explanation for superconductivity. Such an explanation came in 1957 in the form
of a quantum-theory for superconductivity. The theory is named the BCS theory after its inventors
Bardeen, Cooper, and Schrieffer. All three were awarded the Nobel prize in 1972 “for their jointly
developed theory of superconductivity, usually called the BCS-theory”[7].

In 1959 Gor’kov showed that the BCS theory reduces to the phenomenological Ginzburg-Landau
theory when the temperature is close to the transition temperature[8]. This is tremendously impor-
tant, since it explains the validity of the Ginzburg-Landau theory allowing in many cases for simpler
calculations than the BCS theory.

The extremely important phenomenon of tunneling in superconductors was discovered around 1960.
Giaever did experiments on superconducting tunneling systems and a few years later, Josephson ex-
plained tunneling in superconductors theoretically. Giaever, Josephson, and Esaki (semiconductors)
received a Nobel prize in 1973 for their work. Esaki and Giaever “for their experimental discoveries
regarding tunneling phenomena in semiconductors and superconductors, respectively”[9] and Josephson
“for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular
those phenomena which are generally known as the Josephson effects”[9].

Another milestone in the field of superconductivity came in 1986 when Müller and Bednorz discov-
ered superconductivity in copper-oxide based compounds. For this discovery they were awarded the
Nobel prize as soon as in 1987 “for their important break-through in the discovery of superconductivity
in ceramic materials”[11]. The accomplishment of Müller and Bednorz was that they showed a measure-
ment with a transition temperature above 30K of a compound consisting of La, Ba, Cu, and O. This
measurement was at first met with skepticism since the previous record in transition temperature was
around 23K. However the measurement was reproduced in Japan, and in the end of 1986 Müller and
Bednorz measured La1.85Ba0.15CuO4 to have a transition temperature of 35K. As soon as in January
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Figure 1.2: The atomic structure of the high Tc superconductors Bi2Sr2CuO6 (Tc=36K) and
Bi2Sr2CaCu2O8 (Tc=96K)[10].

1987, Chu and Wu discovered the, now famous, high Tc superconductor YBa2Cu3O7 (YBCO) with
Tc = 95K. With this discovery superconductivity entered a new era, since superconductors could then
be cooled with liquid nitrogen, boiling at 77K and much cheaper than liquid helium.

The quest for even higher transition temperatures continues, and the present record is 164K for
the compound HgBa2Ca2Cu3O8 at high pressure (30GPa). The Holy Grail would be to find a room-
temperature superconductor, which has not yet happened. What has also become clear is that the BCS
theory can not account for the high Tc superconductors. Nobody knows for sure how they work, if a
completely new theory of superconductivity is needed, and if a modified BCS theory might is “enough”.

The latest major excitement in the field of superconductivity came in 2001, when a transition tem-
perature of 39K was detected for MgB2[12]. While the transition temperature is quite low compared to
the high Tc cuprates, it is higher than the classical low temperature superconductors. It has been found
that MgB2 behaves like a superconductor described by a modified version of the BCS theory allowing
for two “types” of charge-carriers, a so-called two-gap BCS theory[13].

1.2 Outline

This thesis will try to explain the basic concepts of superconductivity with the Ginzburg-Landau theory
as the foundation. Most terms are explained in the text, such that it may be read without too much
prior knowledge about superconductivity. The main subject of the thesis is vortices in the new super-
conductors, as the title suggests. Three different kinds of vortices are considered: The Josephson vortex,
the Abrikosov vortex, and the textured vortex. The three vortices are quite different from one another
and each posses some unique properties. The Josephson vortex is considered mostly in the context of
building a microwave oscillator in the THz range, but also some generic properties are investigated. The
Abrikosov vortex in a two-component system is important for the application of the compound MgB2,
but also interesting in its own right. The textured vortex is a vortex without a magnetic field and does
not have an analogue in ordinary Ginzburg-Landau theory because it is present due to the two order
parameters.

Chapter One is the present chapter. It introduces superconductivity and explains the structure of
and the philosophy behind this text.

Chapter Two will serve as an introduction to superconductivity with special emphasis on Ginzburg-
Landau theory and the Josephson effect, since these two subjects are the cornerstones of the Ph.D.
project. Some basic consequences of the Ginzburg-Landau theory of superconductivity are derived
and explained, including the Meissner-effect, the phase diagram of superconductors, and the Abrikosov
vortex. The chapter also contains an introduction to the Josephson junction and its basic solutions and
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solution methods. All this will serve as an introduction to chapters three, four, and five which presents
the main results of the project.

Chapter Three introduces the reader to the Josephson junction stack. The model is derived and
explained in detail. The similarity between stacked Josephson junctions and high Tc superconductors
is discussed. Many important solutions are demonstrated analytically, which serve to understand many
of the phenomena in these systems. The model is highly complex and non-linear and the last section
deals numerically with a possible relationship between linear solutions (plasma modes) and non-linear
solutions (fluxons) in the model.

Chapter Four looks at the possibility for using a stack of Josephson junctions as an oscillator,
potentially operating in the THz range. The idea is to get the junctions to radiate coherently to greatly
increase the emitted power above that of a single junction. Investigated first is how much the emitted
power is increasing by using more than one junction and it is shown that all the junctions does not
necessarily have to be in the all-fluxon in-phase mode for the stack to radiate effectively. The next
section is kind of the reverse situation, because it shows that it is possible to obtain coherent motion
by applying an external microwave field to two coupled junctions containing one fluxon each. In the
following section it is discussed how a stack of junctions radiating into a cavity allows for the possibility
to enhance and induce coherence, because the cavity feedback to the junctions behaves much like an
external microwave field. The fourth section looks at the idea of applying a large homogeneous magnetic
field to the stack. This will generate Josephson vortices at one end, traveling to the other end of the
junction where they are annihilated and radiation is emitted. The connection between the fluxon-lattice
and features of the voltage vs. magnetic field characteristics of stacks is discussed in detail.

Chapter Five looks at an extended version of the Ginzburg-Landau theory, applicable to two-gap
superconductors like MgB2. First, the Abrikosov vortex solution is considered. The interaction between
two Abrikosov vortices are derived in the extended theory and compared to the usual Ginzburg-Landau
theory. Next, it is shown how a so-called textured vortex solution may be constructed analytically in
the theory. This vortex shows depression of the superconducting order parameter without a magnetic
field. The effect on the textured vortex of a Josephson type coupling between the two order parameters
is considered. The last section shows numerically what happens when a magnetic field is applied to the
textured vortex solution.

Chapter Six summarizes the new results for an easy overview and concludes the thesis.

1.3 Publications

The main purpose of this thesis is to tell about the research which has been conducted during the three
years of Ph.D. study. The work has been done in close collaboration with Niels Falsig Pedersen, Yuri B.
Gaididei, Peter Leth Christiansen, Niels Grønbech-Jensen, and Giovanni Filatrella. The contributions
from all of these people have of course been invaluable. Most of the research has already been published;
nine papers in international journals with referee and two in conference proceedings. The papers are
listed as numbers 3-13 in Appendix A. Publications 1 and 2 are previous publications by the author.

Since most of the research have already been published, many of the figures and sections of this
thesis are almost direct copies from the papers in Appendix A, though the text and figures have been
edited (some more than others) to fit seamlessly into the context of the thesis. The table on page 5
shows how the sections and figures in the thesis relates to the papers in Appendix A.

In addition to the results published in the papers, Sections 4.3, 5.2, and 5.4 contains previously
unpublished material. Section 4.3 deals with a cavity coupled to a long Josephson stack. The previously
unpublished results are the connection with the applied external microwave field considered in Section 4.2
and the analytical analysis of the system in the weak coupling limit with fluxons modeled as δ-function
pulses to the cavity. Section 5.2 looks at the Abrikosov vortex in the two-gap Ginzburg-Landau theory
and the interaction between two vortices are derived for zero Josephson coupling. Section 5.4 looks
numerically at what happens to the textured vortex when a magnetic field is applied to the system.
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Section α contains results and/or text from paper no. β in Appendix A.
Fig. γ in the thesis is the same as Fig. δ in paper no. β.

α β γ δ

3.2.2 3
3 3.3 2

3.2.2 5
3.3 3

3 3.6 3
3 3.9 4
3 3.10 5
3 3.11 6
3 3.12 7

3.3 4
4 3.9 2

3.3 5
5 3.7 2
5 3.8 3
5 3.13 4

4.1 4
4 4.1 4
4 4.2 5
4 4.3 6
4 4.4 7

4.2 10
10 4.6 1
10 4.7 2

4.3 6
6 4.10 4
9

4.4 12
12 4.15 2
12 4.16 3
12 4.17 4
12 4.19 5
12 4.20 6
12 4.21 7

4.4 13
13 4.18 2,3,...,10

5.3 11
11 5.3 1
11 5.4 2
11 5.5 3
11 5.6 4
11 5.7 5
11 5.8 6

B 11





Chapter 2

General Properties of
Superconductors

This chapter gives the reader a quick introduction to superconductivity though the use of Ginzburg-
Landau theory. Many important concepts will be derived and discussed. Most important are the
Abrikosov vortex and the Josephson junction which are central subjects of the text. It must be noted,
though, that the situation in real superconductors are sometimes more complicated than presented here
where only the case of isotropic low Tc superconductors are considered. Anisotropy may be included
in the calculations but it makes the calculations considerably more complicated and the introductory
aspect will be lost. High Tc superconductors is considered in Chapter 3 as a stack of Josephson junctions.

2.1 The Ginzburg-Landau Theory

The Ginzburg-Landau theory was first introduced in 1950 by Ginzburg and Landau as a phenomeno-
logical theory[14]. Later it was shown by Gor’kov[8] that the theory could be derived in the limit where
T is close to Tc of the microscopic theory of superconductivity, the BCS theory[15]. The theory has
been very successful in explaining many aspects of superconductors and it is thus very actively studied
today. The theory is non-linear in nature and it is therefore hard to work with analytically. It is also a
very popular choice when simulating superconductors on a computer.

Although the Ginzburg-Landau theory can be derived from the BCS theory, it will not be done in
this text. Rather, the view that it is a phenomenological theory, which has been shown to work well by
experiment, will be taken. The heart of the theory is called the order parameter, denoted here by ψ.
One may think of the order parameter as the wave-function of the charge-carriers, Cooper-pairs, in the
superconductor and |ψ|2 is then the density of Cooper-pairs. The order parameter is subject to a 4th
order potential[14, 16]

V (|ψ|) = −α|ψ|2 +
β

2
|ψ|4 . (2.1)

Two “constants” are present in this potential, α and β, where α is taken to be a function of the
temperature, such that a phase transition happens at T = Tc. This can be obtained if

α(T ) = K(1 − T/Tc) , (2.2)

where K > 0 is some constant, to be determined by experiment, and β > 0 is independent of tempera-
ture. With this choice it is seen that T > Tc ⇒ α < 0 making the sign in front of the |ψ|2 term in the
potential positive, while T < Tc gives the |ψ|2 term a negative sign. This means, that the minimum of
the potential for T > Tc is at ψ = 0 and for T < Tc the minimums are at non-zero values of ψ, resulting
in the generation of Cooper-pairs when Tc is crossed. Fig. 2.1 shows a plot of Eq. (2.1) for the two
cases, α < 0 (T > Tc) and α > 0 (T < Tc).

Another important effect of superconductivity is the Meissner-effect, where magnetic fields are ex-
pelled from the interior of a superconductor. To explain such an effect, magnetism must obviously be
taken into account. This is done in the standard way by introducing a vector potential and replacing
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Figure 2.1: The minimum of the potential depends on the sign of the parameter α. For α < 0 (T > Tc)
the minimum is when ψ = 0, corresponding to the normal phase. α > 0 (T < Tc) is the superconduct-
ing phase, where the minimum of the potential is for non-zero order parameter, corresponding to the
existence of Cooper-pairs.

derivatives with covariant-derivatives[17]. A free energy functional, including the order-parameter and
magnetism, thus becomes[16, 18]

G =

∫

Ω

d3R

(

1

2m

∣

∣(i~∇ + qA)ψ
∣

∣

2 − α|ψ|2 +
β

2
|ψ|4 +

(Ba − B)
2

2µ0

)

, (2.3)

where the vector A is the vector potential, B = ∇×A, Ba is the applied magnetic field1, m = 2me and
q = 2e are the mass and charge of a Cooper-pair, respectively. The free energy functional, G, can be
interpreted as a Gibbs free energy of the system[16, 18]. Time-dependence may also be introduced into
the theory, but it will not be considered explicitly here, though it is actually used when the equations
are solved numerically.

Minimizing the free energy functional in Eq. (2.3) by applying standard variational calculus, the
Ginzburg-Landau equations together with boundary conditions are obtained to be[16, 18]

1

2m

(

i~∇ + qA
)2

ψ − αψ + β|ψ|2ψ = 0 in Ω , (2.4)
(

i~∇ψ + qAψ
)

· n = 0 on ∂Ω , (2.5)

∇× B

µ0
= − q~

2m

(

i(ψ∗∇ψ − ψ∇ψ∗) +
2q

~
|ψ|2A

)

≡ J in Ω , (2.6)

B = Ba on ∂Ω , (2.7)

where Ω is the system domain, ∂Ω is the surface of Ω and n is a normal vector to ∂Ω. Introduced
in these equations is the supercurrent, J, as can be justified by comparing Eq. (2.6) with Maxwell’s
equations.

2.1.1 Numerical Method

The Ginzburg-Landau Eqs. (2.4)-(2.7) are very general equations possessing a lot of interesting solutions.
A good way to see some of these solutions are to solve the equations numerically. A program has been
written to solve the more general Eqs. (5.4)-(5.9), which are going to be discussed in Chapter 5. The
program is also able to solve the normal Ginzburg-Landau equations since Eqs. (5.4)-(5.9) reduce to
Eqs. (2.4)-(2.7) when ψ1 ≡ ψ and ψ2 ≡ 0. The present section contains some details on how the
numerical solutions are obtained, using, for simplicity, Eqs. (2.4)-(2.7) as the example. The extension
to solve Eqs. (5.4)-(5.8) is straight forward and will not be discussed.

The method used here is the link-variable approach[19, 20] combined with an Euler method[21].
The reader interested in details is advised to look in Refs. [19], [20], and [21], as only a rather short

1The phrase “magnetic field” will be used throughout the text for both B and H since B = µ0H is usually assumed.
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description is given here. The method is based on finite-differences to discretize the partial differential
equations. The straight-forward discretization has, however, one problem, because the resulting discrete
equations are not gauge-invariant. Lack of gauge-invariance does not render the straight-forward method
useless[22], but maintaining gauge-invariance in the discretized equations improves convergence for high
magnetic fields[19]. The equations which are solved are actually not exactly Eqs. (2.4)-(2.7), but rather
the time-dependent Ginzburg-Landau equations, which may be written as[20]

1

2m

(

i~∇ + qA
)2

ψ − αψ + β|ψ|2ψ = − ~
2

2mD

(

∂

∂t
+ i

q

~
φ

)

ψ in Ω , (2.8)

(

i~∇ψ + qAψ
)

· n = 0 on ∂Ω , (2.9)

∇× B

µ0
+
q~

2m

(

i(ψ∗∇ψ − ψ∇ψ∗) +
2q

~
|ψ|2A

)

= −σ
(

∂A

∂t
+ ∇φ

)

in Ω , (2.10)

(

∂A

∂t
+ ∇φ

)

· n = 0 on ∂Ω , (2.11)

B = Ba on ∂Ω . (2.12)

D is termed the diffusion constant. Before trying to solve the equations numerically, they are of course
normalized first, see Refs. [19] and [20] for the details. Normalization of the time-independent equations
is discussed in Chapter 5.

The time-dependent Ginzburg-Landau equations are invariant under the gauge-transformation2

ψ → eiχ(r,t)ψ , A → A − ~

q
∇χ(r, t) , φ→ φ+

∂χ(r, t)

∂t
(2.13)

where χ(r, t) is some function depending on space and time. The transformation enables one to remove
the dependence of the scalar potential, φ, in the equations. This is called the zero potential gauge, and
it is common to use in numerical solutions of the Ginzburg-Landau equations. The equations will after
such a gauge-transformation only contain the time-derivative of A and ψ on the right hand side. If
these time-dependent equations are solved and the numerical code is stopped when the conditions

∂φ

∂t
= 0 and

∂A

∂t
= 0 (2.14)

are fulfilled, then a solution to Eqs. (2.4)-(2.7) have been obtained.
The link-variables, Uaµ , enters through the vector potential as

Uaµ = e
i

R

a
µ0
Aµdµ , µ = x, y, or z , (2.15)

where µ0 is some point common for all link-variables with direction µ. The actual derivation of the
discretized time-dependent Ginzburg-Landau equations in terms of the link-variables is a bit tedious, so
only some of the properties of the link-variables will be shown here to give the reader a feeling of what
the link-variables are. Refs. [19] and [20] provide more information on the subject.

The product of a link-variable and the conjugate of a link-variable is
(

Uaµ
)∗
U bµ = ei

R

b
a
Aµdµ ≡ Uabµ . (2.16)

Consider a square in two dimensions with corners a = (−L/2,−L/2), b = (L/2,−L/2), c = (L/2, L/2),
and d = (−L/2, L/2). The magnetic field at (x, y) = (0, 0) may then be calculated by

Uabx U
bc
y U

cd
x U

da
y = e−i

H

abcda
A·dr = e−

R

Area(abcd)
BzdS ≈ 1 − iL2Bz(0, 0) . (2.17)

Using relations similar to the above and finite differences for the order parameter, one is able to express
the time-dependent Ginzburg-Landau equations in terms of the link-variables and the order parameter
without breaking the gauge-invariance.

The time-stepping is done using an Euler procedure and stopped when the conditions in Eq. (2.14)
are satisfied within some tolerance. Due to the slow nature of the Euler-procedure, the program is only
designed to solve the Ginzburg-Landau equations in two spatial dimensions. It is possible, however,
to formulate other schemes for solving the discretized equations, which are much faster and allows for
solutions in three dimensions[26]. The simple Euler procedure is nevertheless good enough for the small
number of calculations in this text.

2This transformation is also called a local U(1) transformation in mathematical physics. The time-dependent Ginzburg-
Landau theory may thus be considered as a non-relativistic version of the Abelian Higgs model, widely used in particle
physics and cosmology[23, 24, 25].



10 General Properties of Superconductors

2.2 Basic Consequences of the Ginzburg-Landau Equations

The first thing to check with a theory is if it explains the very simple things. In this case, solutions
corresponding to a normal phase and to a perfect Meissner phase must exist. The normal phase solution
is seen to exist if ψ is set to zero (i.e. no Cooper-pairs) in Eqs. (2.4)-(2.6) which simplifies to ∇×B = 0.
This equation has a solution where B is constant. To satisfy the boundary conditions, this constant
must be Ba, resulting in B = Ba. This is precisely the solution of a normal phase with no Cooper pairs
and the magnetic field is just penetrating the superconductor like if it was not there. To construct the
Meissner phase solution A is put equal to zero in the Ginzburg-Landau equations, yielding

− ~
2

2m
∇2ψ − αψ + β|ψ|2ψ = 0 , (2.18)

which can be solved by |ψ|2 = α/β. This give a constant non-zero Cooper-pair density and no magnetic
field in the sample, thus a perfect Meissner phase.

One may also be more ambitious and derive the H−T phase diagram of a superconductor using the
Ginzburg Landau theory. Looking at Eq. (2.3) and interpreting the integrand as a Gibbs free energy
density, the energy of the normal phase and of the Meissner phase may be compared. Inserting the
normal phase solution and the Meissner phase solution into Eq. (2.3), the energy density is obtained to
be

gN = 0 (2.19)

for the normal phase and

gM = −α
2

2β
+

B2
a

2µ0
(2.20)

for the Meissner phase. It is seen, that for zero applied magnetic field, the Meissner phase has lower
energy density than the normal phase. Equating the two energy densities, the point where the normal
phase becomes energetically favorable over the Meissner phase may be calculated. This defines the
thermodynamic maximum field, Hc, to[16]

Hc =

√

α2

µ0β
. (2.21)

An expression for the maximum magnetic field where superconductivity can exist, Hc2, will now be
found. If the magnetic field is so high that the sample is in the normal state and it is lowered just
enough to make the system slightly superconducting, it is fair to assume that |ψ|2 is small, and the
non-linear term may be neglected in the scalar Eq. (2.4), which reduces to

1

2m
(i~∇ + qA)

2
ψ = αψ . (2.22)

Since the system is close to the normal phase, the magnetic field must, to a good approximation,
penetrate the superconductor. Thus, A = (0, µ0xHz , 0) is a good guess for the vector potential, since it
corresponds to a constant magnetic field in the z-direction. This turns Eq. (2.22) into

1

2m

(

−~
2∇2 + 2iµ0q~xHz

∂

∂y
+ (µ0qxHz)

2

)

ψ = αψ . (2.23)

This equation is formally equivalent to the Schrödinger equation for a charged particle in a magnetic
field, and the solution may be looked up in most textbooks on quantum mechanics. The solution to the
eigenvalue equation may be expressed as[16, 27]

Hz = 2
mα− 1

2~
2k2
z

µ0q~(2n+ 1)
(2.24)

where n is the “energy quantum number” and kz is the “momentum quantum number” as normally
defined in the Schrödinger equation[27]. The main interest is here for the highest Hz, which is found
when n = kz = 0. This Hz is named Hc2 and becomes[16]

Hc2 =
2mα

µ0q~
=

√
2κHc , where κ ≡

√

2m2β

µ0q2~2
. (2.25)
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Figure 2.2: Sketch of the phase-diagrams for Type I (left) and Type II (right) superconductors as derived
from Ginzburg-Landau theory.
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Figure 2.3: Plot of the solution in Eq. (2.30) showing how the density of Cooper pairs, |ψ|2, changes in
space from a normal state to a Meissner state.

The new parameter, κ, is called the Ginzburg-Landau parameter. Depending on the size of the Ginzburg-
Landau parameter, superconductors are divided into two categories. If κ < 1/

√
2 then Hc2 is lower than

the thermodynamic field Hc, and superconductivity may exist in the sample up to Hc. But if κ > 1/
√

2,
then Hc2 is larger than Hc, which means superconductivity survives beyond Hc and up to Hc2. It is
therefore custom to classify superconductors according to[16, 18]:

Type I Superconductor if κ < 1√
2

Type II Superconductor if κ > 1√
2

In addition to the fields Hc and Hc2 one may also derive a field named Hc1 for Type-II supercon-
ductors. The fields correspond to a new phase, where the superconductor is in a sort of a mixture of the
normal-phase and the Meissner-phase. This phase is named the vortex phase. The derivation of Hc1

will not be done here due to the complexity. Hc1 was first calculated by Abrikosov and it lead him to
postulate the existence of the vortex-phase. His calculations showed that[28]

Hc1 =
1

2κ
(lnκ+ 0.08)Hc . (2.26)

Using the temperature dependence of α in Eq. (2.2) the H − T phase-diagram of the two types of
superconductors has been sketched in Fig. 2.2.
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Returning to Eq. (2.18), it is clearly seen that the normal phase solution, ψ = 0 and the Meissner
phase solution, |ψ|2 = α/β, are not the only solution to this equation because it resembles the famous
non-linear Schrödinger equation[29]. A simple solution will now be demonstrated. Looking at the one
dimensional case and letting ψ =

√

α/β ψ̃ and x =
√

~2/(2mα) x̃, the normalized equation

ψ̃′′ + ψ̃ − |ψ̃|2ψ̃ = 0 (2.27)

is obtained where primes denotes differentiation with respect to x̃. A simple solution can be found if
the order parameter is assumed to be real. The first integral then is found to be

1

2
(ψ̃′)2 +

1

2

(

ψ̃2 − 1

2
ψ̃4

)

= E , (2.28)

which has the form of a mechanical energy equation, thus it seem natural to assume E > 1
2

(

ψ2 − 1
2ψ

4
)

such that the “kinetic energy”, (ψ̃′)2/2, is positive. Under this assumption, the variables are separated
and the equation becomes

∫

dψ̃
√

E − 1
2

(

ψ̃2 − 1
2 ψ̃

4
)

=
√

2 x̃ , (2.29)

where a ± sign has been omitted. The integral on the left hand side can be evaluated in the general
case using Jacobi elliptic functions, but when E = 1/4 it may be written using elementary functions.
Inserting the Meissner solution into Eq. (2.28), the value of E is luckily found to be 1/4, justifying this
choice. Now, using that f < 1 and setting the constant of integration to zero in Eq. (2.29), the solution
is found to be

ψ =

√

α

β
tanh

(

x√
2 ξ

)

, (2.30)

where a transformation back to the original variables were used and

ξ ≡
√

~2

2mα
, (2.31)

is called the coherence length. A plot of the square of this solution can be seen in Fig. 2.3. It is seen,
that it is zero at x = 0 and it goes to α/β for x → ∞, thus approaching asymptotically the Meissner
solution. This corresponds intuitively to an infinite superconductor in the positive half-plane. The
coherence length, ξ, introduced above determines how quickly ψ changes from, here, 0 to

√

α/β.
Note, that although the solution intuitively corresponds to a normal-superconductor interface it

actually does not satisfy the boundary condition in Eq. (2.5) for A = 0 since ∇ψ|x=0 6= 0, though
∇ψ2|x=0 = 0. The solution is a domain wall separating the ψ = −

√

α/β (x → −∞) domain from the

ψ =
√

α/β (x→ ∞) domain.
The magnetic field Eq. (2.6) can be solved in a similar way, to get a more detailed look at the

magnetic field in the Meissner phase. Setting ψ =
√

α/β in Eq. (2.6), it reduces to

∇× B

µ0
= −q

2α

mβ
A . (2.32)

Taking the curl on both sides, the 2nd London equation is recovered as

∇2B =
1

λ2
B ,

1

λ2
=
µ0q

2α

mβ
. (2.33)

Here, the new parameter, λ, is called the (London) penetration depth of the superconductor and is the
“coherence length” of the magnetic field. Note, that the Ginzburg-Landau parameter, κ in Eq. (2.25),
may now be written as the ratio between the penetration depth and the coherence length,

κ =
λ

ξ
, (2.34)

which is the form usually used in the literature.
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Figure 2.4: To solve the 2nd London Eq. (2.33), the simple case where Ba and B only have a z component
and the variation of B in the y and z direction can be neglected is considered. This corresponds to
looking at the magnetic field along the thick line. The origin is arbitrarily placed in the picture.
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Figure 2.5: The magnetic field in Eq. (2.36) (left) and the current in Eq. (2.37) (right) for d = 10.

To solve the 2nd London equation (2.33), a simple one-dimensional case is considered. Ba and B
are assumed to have only a component in the z direction and a place deep inside the superconductor
is considered, such that B does not change in the y and z directions. This situation is depicted in Fig.
2.4. The 2nd London equation reduces to the simple ordinary differential equation

d2Bz
dx2

=
1

λ2
Bz , (2.35)

which can be solved, together with the boundary conditions Bz(±d) = Ba, by

Bz =
cosh(x/λ)

cosh(d/λ)
Ba . (2.36)

This solution is plotted in Fig. 2.5. The magnetic field is seen to decrease exponentially into the sample
and becomes zero in the interior.

According to Eq. (2.6) a spatially changing magnetic field induces a supercurrent. Using the solution
for B in Eq. (2.36), the current density can easily be calculated by insertion, yielding

Jx = 0 , Jy = − 1

µ0λ

sinh(x/λ)

cosh(d/λ)
Ba , Jz = 0 . (2.37)
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Figure 2.6: Plot of the Cooper pair density |ψ|2 (left), the current (Jx, Jy) (middle), and the magnetic
field Bz (right) from a full numerical solution of the Ginzburg-Landau equations with κ =

√
2 and

Ba = 0.15Bc2. A detailed view of the situation far from the corners, y = 0, is shown in the lower row.
The plots show the same overall behavior as the plots in Figs. 2.3 and 2.5. Note that space is normalized
to the coherence length, ξ, in all plots.

Shown in Fig. 2.5 is the above current associated with the magnetic field. From the directions of the
current in the figure, a magnetic field opposite to the applied field is seen to be generated. This results
in a screening of the interior of the sample from the applied field, thus creating the Meissner effect.

The Ginzburg-Landau equations have been solved numerically for a square of size 8ξ × 8ξ and the
result is presented in Fig. 2.6. Far from the edges, behavior similar to the one derived analytically in
Figs. 2.3 and 2.5 is found.

From the previous discussion it is evident, that superconductors have some unique material proper-
ties. The Ginzburg-Landau theory is only a phenomenological theory, and it does not allow for a direct
calculation of the parameters for different superconductors. Many explicit formulas for the important
parameters were given above, but they usually contain the phenomenological constants α and/or β.
These two constants are not a priori known and the theory provides no means of calculating them. For
this, a microscopic theory is needed. However, the parameters may be determined by experiment. If the
coherence length and the penetration depth of some superconductor is measured at a given temperature,
the Ginzburg-Landau theory enables us to calculate many more properties. A list of physical properties
of some common superconductors is provided below:

Low Tc Material Tc/K ξ/nm λ/nm Hc2/T
Nb[30] 9.25 40 85 0.198
Pb[30] 7.2 90 40 0.08
NbTi[30] 9.5 4 300 13
PbBi[30] 8.3 20 200 0.5
High Tc Material Tc/K ξab/nm ξc/nm λab/nm λc/µm Hc2⊥/T Hc2‖/T
Bi2Sr2CaCu2O8+δ[18] 94 2 0.1 200-300 15-150 >60 >250
YBa2Cu3O7−δ[18] 93 1.6 0.3 150 0.8 110 240

It is easy to spot the difference between the low Tc and high Tc superconductors in the above table.
The high Tc materials in the table above are very anisotropic. It means that direction plays a role in
the compound and, for example, the coherence length is different when measured in different directions.
The subscript ab refers to the parameter in the CuO-plane while subscript c is perpendicular to the
CuO-plane for the two high Tc superconductors BSCCO and YBCO. It should be noted, that also
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some low Tc materials posses anisotropy. Nb is for example slightly anisotropic. The Ginzburg-Landau
theory discussed in this text does not take anisotropy into account, but it may be modified to do so,
for example by introducing the charge-carrier mass, m, as a tensor instead of a scalar[16]. The extreme
anisotropic nature of Bi2Sr2Ca2Cu3O10 (BSCCO) will be explored later by viewing it as a stack of long
Josephson junctions.

2.3 The Abrikosov Vortex

As stated in the previous section, the Ginzburg-Landau equations have a great variety of solutions. One
of them is the Abrikosov vortex solution[28], which will now be examined in some detail. The order
parameter may be written as

ψ =

√

α

β
eiφ , (2.38)

where φ is a general phase and may be a function of the spatial coordinates. This choice of order
parameter corresponds to a Meissner solution with constant Cooper-pair density, which may be inserted
into the current density in Eq. (2.6) to give

J =
q~α

mβ

(

∇φ− q

~
A
)

. (2.39)

This current density is then integrated following a closed circular path to get the total current, I, along
this path. Using Stokes theorem, noting that the phase, φ, changes by 2πn where n ∈ N, the current is
obtained to be

I ≡
∮

C

J · dr =
q~α

mβ

(

2πn− q

~

∫

S

B · dS
)

, (2.40)

where C is the closed circular path and S is the area enclosed by C. Choosing C to be at a place without
current, I = 0, and noting that the last term is the magnetic flux, Φ, through the area S, the equation

Φ = n
h

q
≡ nΦ0 (2.41)

is obtained. This equation shows that the magnetic flux through an area, S, of the superconductor is
quantized in terms of the flux quantum, Φ0 ≡ h/q ≈ 2.1 × 10−15Tm2 for q = 2e.

Odd as it may seem to consider the magnetic flux through a superconductor in the Meissner phase,
this type of solution is extremely important for Type II superconductors and will be considered in more
detail. As it was shown, the phase changes by 2πn when one revolution around the circle C is made.
Using cylindrical coordinates, it thus seem natural to try with an order parameter of the form

ψ =

√

α

β
f(r)einθ, (2.42)

where r is the radius and θ is the polar coordinate. The simplest case for the magnetic field is having
only a z-component. Taking

Ar = 0 , Aθ =
~

q

n− P (r)

r
, Az = 0 , (2.43)

and calculating the magnetic field by B = ∇× A, gives

Br = 0 , Bθ = 0 , Bz = −~

q

P ′

r
, (2.44)

which shows that only the z-component of B is non-zero with the above ansatz on A. The ansatz is
referred to as the Nielsen-Olesen ansatz after the paper in Ref. [31].

Inserting the above ansatz for the order parameter and vector potential, Eqs. (2.42) and (2.43), into
the Ginzburg-Landau Eqs. (2.4) and (2.6) yields

ξ2
(

f ′′ +
1

r
f ′ − P 2

r2
f

)

+ (1 − f2)f = 0 , (2.45)

λ2

(

P ′′ − 1

r
P ′
)

− f2P = 0 . (2.46)
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Space is now normalized to the coherence-length, ξ, which turns the above Eqs. into[23]

f ′′ +
1

r
f ′ − P 2

r2
f + (1 − f2)f = 0 , (2.47)

P ′′ − 1

r
P ′ − 1

κ2
f2P = 0 . (2.48)

Boundary conditions for f and P will now be derived. First, the flux through a circular surface, S, with
radius r is calculated to be

Φ(r) =

∫

S

B · dS = Φ0

(

n− P (r)
)

. (2.49)

The flux through a surface with zero radius should of course be zero, leading to P (0) = n. Since the flux
through the superconductor is quantized, limr→∞ P (r) = 0 leads to the quantization from Eq. (2.41).
Now, multiplying Eq. (2.47) by r2, taking r → 0, and using P (0) = n gives n2f(0) = 0 yielding the
boundary condition f(0) = 0. For the last boundary condition, it is required that the order parameter
in Eq. (2.42) approaches the Meissner solution as r → ∞ leading to limr→∞ f(r) = 1. To summarize,
the boundary conditions on the functions f and P have been obtained to be[23]

f(0) = 0 , lim
r→∞

f(r) = 1 , (2.50)

P (0) = n , lim
r→∞

P (r) = 0 . (2.51)

An analytical solution to the coupled Eqs. (2.47) and (2.48) subject to the boundary conditions
(2.50) and (2.51) is, to the authors knowledge, now known. One may, however, find analytical solutions
in the two cases r → ∞ and r → 0. The trick is straight forward: To get the solutions for, say, f the
boundary condition for P is inserted into Eq. (2.47) and the uncoupled equation is then solved in the
limit of the boundary condition. Taking r → ∞, Eq. (2.47) reduces to

f ′′ + (1 − f2)f = 0 , (2.52)

which is the same as Eq. (2.27) when ψ̃ is real and ψ̃ = f . One solution is therefore given in Eq. (2.30)
with α/β = 1 and ξ = 1 since the f -equation is normalized, thus

f∞ = tanh

(

r − r0√
2

)

(2.53)

is the solution in the far-field. Near the origin, the non-linear term in f may be neglected since f is
small, and the equation

f ′′ +
1

r
f ′ +

(

1 − n2

r2

)

f = 0 (2.54)

must be solved. This is an example of a Bessel equation, so the solution is easily found to be

f0 = C0Jn(r) , (2.55)

where Jn is the Bessel function of the first kind of order n and C0 is an undetermined constant.
For r → ∞, Eq. (2.48) reduces to

P ′′ − 1

r
P ′ − P

κ2
= 0 . (2.56)

Luckily, this equation can be re-arranged to a modified Bessel equation on the form

(

P

r

)′′
+

(

P

r

)′
−
(

1

κ2
− 1

r

)(

P

r

)

= 0 , (2.57)

which has the solution

P∞ = B∞rK1 (r/κ) , (2.58)
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Figure 2.7: Plot of the near- and far field solutions in Eqs. (2.53), (2.55), (2.58), and (2.60) in terms of
the magnetic field in Eq. (2.44) and the Cooper-pair density, |ψ|2 = f2, which are the physically relevant
quantities. Unknown constants has been put equal to 1 except r0 = 0. Note that Bz corresponding to
Eq. (2.60) is constant and equal to B0.
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Figure 2.8: Numerical solutions to Eqs. (2.47), (2.48), (2.50), and (2.51) shown in terms of the magnetic
field, Bz , and the Cooper-pair density, |ψ|2 = f2 for one flux quantum to ten flux quanta with κ = 1.
At first sight the approximate solutions in Fig. 2.7 may look somewhat different from these solutions,
but when one fits the unknown constants in the approximate solutions and only considers the range in
which they were derived, the resemblance is quite good.

where K1 is the modified Bessel function of the second kind of order 1 and B∞ is an undetermined
constant. Near r = 0, Eq. (2.48) simplifies to

P ′′ − 1

r
P ′ = 0 (2.59)

which is solved by

P0 = n−B0r
2 , (2.60)

where B0 is an undetermined constant.
In Fig. 2.7 the near- and far-field solutions in Eqs. (2.53), (2.55), (2.58), and (2.60) have been

plotted in terms of the Cooper pair density and the magnetic field for the cases n = 1 and n = 2, i.e.
one quantum and two quanta of magnetic flux. It is seen, that the magnetic field is constant near the
center and so is the Cooper-pair density, especially if there are more than one quantum of flux in the
vortex. The Cooper pair density goes to the Meissner phase and the magnetic field goes to zero as
r → ∞.

One way to get more accurate solutions to Eqs. (2.47) and (2.48) with boundary conditions (2.50) and
(2.51) is to solve the equations numerically. There are two common methods for solving such equations
where the boundary conditions are not all at the same point; Shooting and Relaxation. Shooting does
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Figure 2.9: |ψ|2 shown for four different superconducting samples with κ =
√

2 and Ba = 0.8Bc2. The
figure shows the differences between the vortex-lattice in large and small systems. In the small systems
the boundary plays a major role for the vortex-arrangement. The length-scale is normalized to the
coherence-length.

not work very well for this type of equations, so a relaxation method has been used[21]. The resulting
solutions can be seen in Fig. 2.8, which are seen to agree well with the analytical solutions in Fig. 2.7
in the limits where the analytical solutions were derived.

In addition to the Abrikosov vortex-solution presented here, anti-vortex solutions (n < 0) may also
be found. The reader with too much spare time is advised to find these solutions.

It was mentioned in Section 2.2 that Abrikosov vortices start to enter the superconductor when the
magnetic field is raised above Hc1 and the superconductor enters the vortex phase. The vortex solutions
considered in the above analysis were isolated, which is usually not the case in a real superconductor.
The vortices enter the sample and form what is called a vortex-lattice. The formation of the lattice
depends on at least two things, the vortex-vortex interaction and the interaction with the boundary.
The latter plays a minor role in large samples, but recently there has been a lot of interest in mesoscopic
samples where the boundary plays a major role. These mesoscopic superconductors have usually been
investigated by numerically solving the Ginzburg-Landau equations[32]. Fig. 2.9 shows the vortex-lattice
of such a numerical solution for four different systems with the same penetration depth, coherence length,
and applied magnetic field. The system-size is large in the top plots, while smaller in the bottom plots
to show the effects of the boundary in mesoscopic systems. The total superconducting area is the same
for the square and the triangle geometries. One could easily push one more vortex into the large system
without disturbing the remaining vortices too much, while it inevitable would completely change the
lattice-structure in the small systems. The interaction with the boundary is repulsive and so is the
vortex-vortex interaction, which is why the vortices will try to maximize the distance to each other
and to the boundary. The vortex-anti vortex interaction is, however, attractive. The vortex-vortex
interaction in a two-component Ginzburg-Landau theory will be investigated in detail in Section 5.2.
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Figure 2.10: Schematic view of a one-dimensional Josephson junction.

2.4 The Long Josephson Junction

As the Ginzburg-Landau theory shows, superconductivity in a closed system can be described quite well
by a single wave-function (order parameter). Due to this, superconductivity is sometimes referred to
as a macroscopic quantum phenomenon. An important consequence of this fact, called the Josephson
effect, was discovered by Brian D. Josephson in 1962[33]. Two separate superconductors are moved
really close together, but still separate. Classically, they do not interact with each other, but due to
the quantum mechanical nature of superconductivity the wave-functions of the superconductors are
not zero outside the superconductors, but decays exponentially. If the two superconductors are really
close, the wave-functions will penetrate into the other superconductor and there is thus a probability
for Cooper-pairs to tunnel from one superconductor to the other. This is the Josephson effect, and two
superconductors separated by a very thin layer of non-superconducting material is called a Josephson
junction.

Assuming no magnetic fields, the scalar Ginzburg-Landau equation is

− ~
2

2m
∇2ψ − α(T )ψ + β|ψ|2ψ = 0 . (2.61)

To model the one-dimensional Josephson junction shown in Fig. 2.10, α(T ) is chosen as

α(T ) =







−|αS | for z < −d/2
|αN | for − d/2 < z < d/2

−|αS | for z > d/2
, (2.62)

corresponding to a superconducting state for |z| > d/2 and a normal state for |z| < d/2 (see Fig. 2.1).
The superconducting order parameter is expected to decay exponentially outside the superconductors,
so for the normal part of the system |ψ|2 is small. This means, that the non-linear term, β|ψ|2ψ, may
be dropped3. The resulting linear equation is

~
2

2m
ψ′′(z) + |αn|ψ(z) = 0 . (2.63)

The solution to this equation may be expressed as

ψN = C1 cosh (z/ζ) + C2 sinh (z/ζ) , (2.64)

with ζ =
√

~2/(2m|αn|), called the decay length of the normal material. Solutions inside the supercon-
ductors are also needed, which unfortunately require the solution of the general non-linear Ginzburg-
Landau equation (2.61) for α(T ) = −|αS|. Avoiding to solve this complicated non-linear equation, the
order parameters of the superconductors are chosen, without loss of generality, to

ψS1 =
√

n1(z) e
iφ1(z) , (2.65)

ψS2 =
√

n2(z) e
iφ2(z) . (2.66)

Demanding the order parameter to be continuous throughout the entire system, the equations ψS1(−d/2) =
ψN (−d/2) and ψS2(d/2) = ψN (d/2) may be solved for C1 and C2, yielding

C1 =

√
n1e

Iφ1 +
√
n2e

Iφ2

cosh (d/(2ζ))
, (2.67)

C1 =

√
n1e

Iφ1 −√
n2e

Iφ2

sinh (d/(2ζ))
, (2.68)

3See Ref. [34] for a treatment including the non-linearity of the problem.
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Figure 2.11: Schematic view of a long Josephson junction.

with n1 ≡ n1(−d/2), n2 ≡ n2(d/2), φ1 ≡ φ1(−d/2), and φ2 ≡ φ2(d/2). Inserting the solution of the
normal area into the current, Eq. (2.6), for zero magnetic field,

Jz =
q~

√
n1n2

mζ sinh (d/ζ)
sin (φ2 − φ1) ≡ JJ sin (φ2 − φ1) (2.69)

is obtained as the supercurrent across the normal area. If there is a difference in the complex phase
between the two superconductors, there is a current across the normal material, which has an absolute
maximum value of JJ for φ2 −φ1 = (1/2+n)π, n ∈ N. Eq. (2.69) is called the Josephson current-phase
relation[30].

The Josephson current-phase relation, Eq. (2.69), was derived assuming no magnetic fields and
the resulting equation is therefore not gauge-invariant. The Ginzburg-Landau equations (2.4)-(2.7) are
invariant under the gauge-transformation

ψ → eiχ(r)ψ , A → A− ~

q
∇χ(r) , (2.70)

where r is short for (x, y, z). Under a gauge-transformation phases are added χ(r) and the phase
difference in Eq. (2.69) is added χ(z = d/2) − χ(z = −d/2). To make Eq. (2.69) gauge invariant, the
extra phase must be subtracted, and

Jz = JJ sinφ , φ = θ2 − θ1 −
q

~

∫ d

−d
Azdz , (2.71)

is obtained as a gauge-invariant version of the Josephson current-phase relation which holds in the
presence of a magnetic field. φ is correctly termed “the gauge invariant phase difference”, but often it
is referred to just as “the phase”.

A long Josephson junction will now be considered, where the width in the x-direction is taken into
account. See Fig. 2.11 and consider the path c1 + c4 + c2 + c3. Assuming the superconductors are in
the Meissner-phase, the relation between the current, phase and vector potential is given by Eq. (2.39).
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Re-arranging terms and integrating Eq. (2.39) along segments c1 and c2 gives

∫

c1

∇θ · dl +

∫

c2

∇θ · dl = θ2(x+ dx) − θ1(x+ dx) − (θ2(x) − θ1(x))

=
λ2µ0q

~

∫ x+dx

x

(J2 − J1) dx+
q

~

∫

c1+c2

A · dl , (2.72)

where θi(x) is short for θi(x, zi) and J1 and J2 are the current densities at sides 1 and 2, respectively.
The integration path is chosen such that it extends far inside the superconductors where there are no
currents, thus J1 = J2 = 0. The integral of q

~
A along segments c3 and c4 is now added on both sides

of the above equation, and using that the magnetic field is only non-zero between z=−d/2 − λ and
z = d/2 + λ, the equation

~

q(d+ 2λ)

∂φ

∂x
= By (2.73)

is obtained as a relationship between the magnetic field in the normal area and the gauge invariant
phase difference, which has been defined as

φ(x) ≡ θ2(x) − θ1(x) −
q

~

∫ z2

z1

Azdz . (2.74)

To get a relation for the electric field, consider the Maxwell equation

∇× E = −∂B
∂t

, (2.75)

and use Eq. (2.73) to calculate E to

Ex = 0 , Ey = 0 , Ez =
~

(d+ 2λ)q

∂φ

∂t
. (2.76)

From this equation, the voltage across the junction may be calculated to

V =
~

q

∂φ

∂t
. (2.77)

Now, the equation of motion for the long Josephson junction is obtained by using the Maxwell
equation

∇× B = µ0J + ǫ0µ0
∂E

∂t
, (2.78)

which yields the Klein-Gordon equation

~

(d+ 2λ)q

∂2φ

∂x2
= µ0Jz +

µ0ǫ0~

(d+ 2λ)q

∂2φ

∂t2
. (2.79)

Jz is the current density across the junction4 found in Eq. (2.71), turning the equation into

~

(d+ 2λ)q
φxx −

µ0ǫ0~

(d+ 2λ)q
φtt − µ0JJ sinφ = 0 , (2.80)

which is a special case of the Klein-Gordon equation named the sine-Gordon equation. Here, a subscript
is used for the differential operators, in agreement with most literature on the sine-Gordon equation.
The equation describes the electro-dynamics of the long Josephson junction in the loss-less case. From
microscopic theory an additional term appears, which describes losses due to tunneling electrons[35]. In
experiments a bias current is usually applied in the +z direction, yielding yet an additional term. With
these two extra terms, the equation is called the perturbed sine-Gordon equation, given by

~

µ0(d+ 2λ)q
φxx −

ǫ0~

(d+ 2λ)q
φtt − JJ sinφ =

~

qR
φt − JB . (2.81)

4It is often custom to include the displacement current density, ǫ0∂E/∂t, in a quantity called Jz
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This equation is one of the classical equations of non-linear science, see for example Ref. [29] for a good
review.

To simplify the perturbed sine-Gordon equation, it will be normalized according to

x =

√

~

JJµ0d′q
x̃ ≡ λJ x̃ , t =

√

~ǫ0
JJd′q

t̃ ≡ ω−1
0 t̃ ,

B =

√

JJµ0~

qd′
B̃ , Jz = JJ J̃z , (2.82)

α ≡
√

~d′

JJǫ0qR2
, γ ≡ JB

JJ
,

where the tilde-variables are the normalized ones. Some new symbols were introduced here: λJ is the
Josephson penetration depth, ω0 is the Josephson plasma frequency, α is controlling the amount of
dissipation, γ is the normalized bias current, and d′ ≡ d+ 2λ is the effective width of the junction. The
normalization scheme yields

φxx − φtt − sinφ = αφt − γ , (2.83)

where the tildes have been skipped.

2.5 The Josephson Vortex

A particular interesting solution to Eq. (2.83) is the Josephson vortex. Since the equation is non-linear,
conventional methods such as Fourier-analysis can not readily be used to solve the equation. Looking
at the unperturbed case, α = γ = 0, and consider a traveling wave solution of the form

φ(x, t) = φ(x− vt) . (2.84)

This yields the ordinary differential equation

(1 − v2)φ′′ = sinφ , (2.85)

where prime denotes differentiation with respect to ζ = x− vt. This equation can be integrated once to

1

2
(1 − v2)(φ′)2 = C − cosφ , (2.86)

where C is a constant of integration. This equation has several different solutions depending on the
value of C, which plays the role of energy of the system[29]. The case of C = 1 allows one to write the
equation as

1

2
(1 − v2)(φ′)2 = 2 sin2

(

φ

2

)

(2.87)

which can easily be integrated to yield the solution[29]

φ(x, t) = 4 tan−1 exp

(

±x− vt− x0√
1 − v2

)

. (2.88)

This is the Josephson vortex (+ is a vortex, − is an anti-vortex), which is also termed a sine-Gordon
soliton, a sine-Gordon kink, a 2π-kink, and a Josephson fluxon. The solution has several interesting
properties, which have been plotted in Fig. 2.12 in terms of ξ = x−vt−x0. Shown first is the difference
between the vortex and the anti-vortex. The vortex goes from 0 to 2π while the anti-vortex goes from
2π to 0 as ξ goes from −∞ to ∞. Next is the solution plotted for several different values of the speed, v.
As v → 1 the vortex becomes more narrow and more steep due to the Lorentz-contraction and invariant
under the Lorentz-transformation[29]

x→ χ =
x− vt− x0√

1 − v2
, t→ τ =

t− v(x− x0)√
1 − v2

. (2.89)
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Figure 2.13: The speed of the Josephson vortex given by Eq. (2.97) plotted as a function of γ/α. As γ
is increased with constant α, the vortex speed increases asymptotically towards 1.

The vortex solution thus have some similarities to a relativistic particle.

Real systems have finite size, so in order to consider these in detail, some boundary conditions should
be derived for the phase, φ. These have, in fact, already been derived. If a system of length L in the
x-direction is considered, the boundary conditions are found by evaluating the normalized version of
Eq. (2.73) at x = 0 and x = L, giving

∂φ

∂x

∣

∣

∣

x=0
= By(0) ≡ Γ ,

∂φ

∂x

∣

∣

∣

x=L
= By(L) ≡ Γ , (2.90)

where the applied magnetic field at x = 0 and x = L was labeled Γ.

The Hamiltonian of the long Josephson junction is given by[29, 36]

H =

∫ L

0

(

1

2
φ2
x +

1

2
φ2
t + 1 − cosφ

)

dx . (2.91)

Using the sine-Gordon Eq. (2.83), the rate of change in energy is calculated to be[29, 36]

dH

dt
= −α

∫ L

0

φ2
tdx+ η

∫ L

0

φtdx+ (φt(L) − φt(0)) Γ . (2.92)

There are thus three ways to add and subtract energy to the system. The dissipative α-term always
subtracts energy from the system, the bias current term, η, may add energy, and the surface terms may
add energy in one end and subtract energy in the other. There is thus a wide range of way to perturb
the system using these three terms.
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Consider the case of zero applied field, Γ = 0, and the case where the system is infinite. Inserting
the Josephson vortex solution, Eq. (2.88), into the Hamiltonian, the energy of the Josephson vortex is
calculated to

HJ =
8√

1 − v2
, (2.93)

and the rate of change of energy, given by Eq. (2.92), is

dHJ

dt
=

−8v2α√
1 − v2

− 2πvη . (2.94)

Now, consider the case where v is a function of time in Eq. (2.93), and dH/dt may be calculated to

dHJ

dt
=

8v(t)

(1 − v(t)2)3/2
v′(t) . (2.95)

Equating the two expressions for dHJ/dt gives an approximative differential-equation for the develop-
ment of the speed of the Josephson vortex as a function of time. The equation is[29, 36]

v′(t) = −α(1 − v(t)2)v(t) − 1

4
πη(1 − v(t)2)3/2 . (2.96)

To obtain the steady-state speed of the Josephson vortex under a constant α and γ perturbation, the
equation is solved using v′(t) = 0, yielding

v =
±1

√

1 + 16α2

π2γ2

. (2.97)

Since α is a property of the junction and cannot be change easily in an experimental setup, the bias
current can be used to change the speed of which the Josephson vortex moves through the junction.
Fig. 2.13 shows a plot of Eq. (2.97).

Fig. 2.14 shows some physical properties of the Josephson vortex, which allows for an easy under-
standing of why the fluxon speed is increasing when the bias current is increased. The top left plot in
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the figure shows the Josephson current derived from Eqs. (2.71) and (2.88). It is seen to be positive
on the left side of the vortex and negative on the right side, corresponding to a flow in the +z and −z
directions respectively. The top right plot shows the magnetic field derived from Eq. (2.73), which is
seen to be in the +y direction. The bottom right plot shows a schematic version of how the situation
in the Junction is in the vicinity of the Josephson vortex. There are circulating currents around the
vortex and the vortex has a magnetic field in the +y direction. When the bias current is applied, the
vortex is subject to a Lorentz force between its magnetic field and the applied bias current, driving the
vortex along the junction and giving rise to the relation in Eq. (2.97). Also shown as the bottom left
plot in Fig. 2.14 is the electric field derived from Eq. (2.76), which is pointing in the −z direction. The
electric field depends on the direction of the motion of the vortex, such that if the vortex moved in the
−x direction instead, Ez would point in the +z direction.

The Josephson vortex is not the only exact solution to the unperturbed sine-Gordon equation, Eq.
(2.83) with α = γ = 0. Ref. [29] contains a derivation of various solutions. Of particular interest to this
text are the so-called multi-fluxon solutions, which describe collisions between vortices and (anti)vortices
in the Josephson junction. They may be derived by a Bäcklund transformation[29], but this is outside
the scope of this text. Instead, a particular important two-fluxon solution will be given as

φ(x, t) = 4 tan−1

(

sinh(v(t− τ)/
√

1 − v2)

v cosh(x/
√

1 − v2)

)

, (2.98)

and the reader is advised to check by insertion that this is indeed a solution to Eq. (2.83) when
α = γ = 0. The above solution describes a collision between a vortex and an anti-vortex at time t = τ .
The solution is shown in Fig. 2.15 for different values of t when τ = 0. A vortex is moving from the
right towards x = 0 while an anti-vortex is moving from the left towards x = 0. At t = 0 they collide
at x = 0. The motion after the collision is not change by the collision, such that they move away from
each other, each with (asymptotic) speed |v|.

Of particular importance in Fig. 2.15 is the shape of φ at x = 0. The x-derivative of φ at x = 0 is
seen to be zero at all times, thus φx(x = 0, t) = 0 for the above two-fluxon formula. This is precisely the
boundary condition in Eq. (2.90) for zero applied magnetic field. Eq. (2.98) thus models a collision of
a vortex with the left boundary at x = 0. What happens in the collision is that the vortex is reflected
by the boundary and moves in the opposite direction as an anti-vortex with (asymptotic) speed v.
The boundary condition in Eq. (2.90) for zero magnetic field are therefore termed reflective boundary
conditions.
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2.6 Flux-Flow Solutions

When applying a uniform magnetic field in the y direction to a long Josephson junction it will be expelled
from the superconductors due to the Meissner effect. If it is large enough, however, it may generate a
fluxon at one end of the junction. This fluxon is forced to move to the other end of the junction, if the
bias current is large enough to overcome losses, generating a flux-flow through the junction. Reaching
the other end of the junction, the fluxon will be annihilated by the applied magnetic field. The problem
is difficult to analyze when the applied magnetic field is small, because the generated fluxons are spaced
far apart and appear as individual fluxons, thus the problem is non-linear. The case of a large magnetic
field (or small junction length) will generate closely spaced fluxons, and the overall phase in the junction
will look like a linear background with small disturbances, allowing for a linear analysis of the small
disturbances.

In Ref. [37] it is argued, by comparing with numerical solutions of the sine-Gordon equation, that a
good trial-function for the situation with a large applied magnetic field is

φ = φ0 + Γx+ ωt+ δφ(x, t) (2.99)

which allows for small disturbances in the junction through the function δφ << 1 which must satisfy
the boundary conditions δφx(0, t) = δφx(L, t) = 0 for the above trial-function to satisfy the boundary
conditions φx(0, t) = φx(L, t) = Γ. Inserting into the perturbed sine-Gordon equation and expanding
the sin-term around φ0 + Γx+ ωt to first order in δφ gives

δφxx − δφtt − sin (φ0 + Γx+ ωt) − cos (φ0 + Γx+ ωt) δφ = α(ω + δφt) − γ , (2.100)

as an equation for δφ. This equation is a linear wave-equation, and the solution may be expressed as a
Fourier-series[37],

δφ =

∞
∑

n=0

(An cosωt+Bn sinωt) cos knx (2.101)

with kn = nπ/L. The series does not contain sin knx components, since these do not satisfy the boundary
conditions for δφ. The amplitudes An and Bn may be determined by inserting the Fourier series into
the equation of motion, multiplying by coskmx, and integrating over the spatial extend of the system,
resulting in[38]

An =
2

1 + δn,0

(ω2 − k2
n)Is + αωIc

(ω2 − k2
n)

2 + α2ω2
, (2.102)

Bn =
2

1 + δn,0

(ω2 − k2
n)Ic − αωIs

(ω2 − k2
n)

2 + α2ω2
, (2.103)

where δn,m is the Kronecker delta function and

Is = ΓL
cosφ0 − (−1)n cos(ΓL+ φ0)

Γ2L2 − k2
nL

2
, (2.104)

Ic = ΓL
(−1)n sin(ΓL+ φ0) − sinφ0

Γ2L2 − k2
nL

2
. (2.105)

Eqs. (2.99) and (2.101) and the constants An and Bn determine the solution in the case of a large
applied magnetic field.

Eq. (2.92) gives the rate of change of energy in the system. For a steady-state solution, the average
of dH/dt over one period (or over infinite time) must be zero. The above flux-flow solution is oscillating
with frequency ω, and a steady state solution must therefore satisfy the power balance equation[36]

ω

2π

∫ t0+2π/ω

t0

dH

dt
dt = 0 . (2.106)

Inserting the flux-flow solution, Eqs. (2.99) and (2.101), into the above condition yields[37]

γ = αω +
αω

4

∞
∑

n=0

(1 + δn,0)
(

A2
n +B2

n

)

, (2.107)
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Figure 2.16: Flux-flow solution from Eq. (2.108) with L = 5. Left is the current as a function of the
voltage, with Γ = 5, showing a linearly increasing background with resonances at ω = πn/L. The
right plot shows the voltage as a function of the applied magnetic field obtained by solving Eq. (2.108)
numerically for γ = 0.5 and α = 0.1.

as the current voltage characteristic of the flux flow mode. Insertion of An and Bn gives[37]

γ = αω

(

1 +
1

2

∞
∑

n=−∞

Γ2L2

(Γ2L2 − k2
nL

2)2
sin2

(

ΓL−knL
2

)

(ω2 − k2
n)2 + α2ω2

)

, (2.108)

after some tedious manipulations. Note the lack of dependence of the constant phase θ0, because it
only corresponds to a translation of the time-coordinate. The first term on the r.h.s. gives the Ohmic
part of the current-voltage characteristic and the second part gives an infinite number of resonances,
having distance ∆ω = π/L and width α. The left plot in Fig. 2.16 shows a plot of γ(ω) from the above
solution. It is easily seen that the current increases linearly with the voltage and at some specific points
there are resonances. In measurements of current-voltage characteristics of Josephson junctions such
resonances are also visible and they are named Fiske steps[37, 39]. The above theory thus explains these
equidistant singularities in the current-voltage characteristics as cavity-resonances.

In some measurements, the current through the junction is fixed and the voltage is measured as a
function of the applied magnetic field, Γ. Eq. (2.108) is also applicable in this case, although one has
to solve it numerically to obtain such a plot, which is shown in the right side of Fig. 2.16. For a large
value of Γ, oscillations appear with a period of 2π/L due to the cavity resonances[40].

2.7 The McCumber Solution

The normalized version of Eq. (2.77) states that the normalized voltage across the junction is equal to
φt. The Josephson vortex from the previous section generates a localized voltage-pulse, see Fig. 2.14.
It can also happen that the phase generates a constant (in space) voltage-drop. Such a solution is called
a McCumber solution[41], and it is found by first considering solutions to Eq. (2.83) with α = γ = 0
and φxx = 0, resulting in the equation

φtt(t) = − sinφ(t) . (2.109)

Multiplying by φ′ and integrating once gives

φ′2 = 2 cosφ+ C1 , (2.110)

where C1 is the constant of integration. This equation is easily integrated to[43]

φ = 2am

(

± t− t0√
m

∣

∣

∣m

)

, (2.111)

where the second constant of integration is t0 and am is the Jacobi amplitude function with modulus[42]
m = 4/(2 + C1). The voltage at time t is[43]

V (t) =
2√
m

dn

(

± t− t0√
m

∣

∣

∣m

)

, (2.112)
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Figure 2.17: Current-voltage characteristic of a Josephson junction in the McCumber state, obtained
from Eqs. (2.113) and (2.115) with α = 0.1. When |γ| ≤ 1 there is an additional solution given by
〈V 〉 = 0, resulting in hysteretic behavior.

which is periodic with a period of 2
√
mK(m), where K(m) is the complete elliptic integral of the first

kind. Using this periodicity, the average voltage over one period may be calculated as[43]

〈V 〉 =
1

2
√
mK(m)

∫ t0+2
√
mK(m)

t0

φtdt = ± π√
mK(m)

. (2.113)

The modulus m is still undetermined, but if it is assumed that Eq. (2.111) solves the perturbed
sine-Gordon equation (with φxx = 0) in the power balance approximation, the modulus may then be
calculated. The power balance is determined from Eq. (2.92), yielding

〈

dH

dt

〉

=
L

2
√
mK(m)

∫ t0+2
√
mK(m)

t0

(

γφt − αφ2
t

)

dt = 0 . (2.114)

Inserting Eq. (2.111), the relation[43]

γ =
4αE(m)

π
√
m

(2.115)

is obtained, where E(m) is the complete elliptic integral of the second kind. Together, Eqs. (2.113) and
(2.115) determines the current-voltage characteristic of the junction in the McCumber state.

Fig. 2.17 shows a plot of γ(〈V 〉) obtained from Eqs. (2.113) and (2.115). It is easy to see from the
plot that for large 〈V 〉 the relation 〈V 〉 ≈ γ/α is true. This is also seen from the equations by expansion
when m is small. Moving from large to small 〈V 〉 on the graph, the point where 〈V 〉 becomes zero and
the graph touches the y-axis is determined by setting m = 1 in Eq. (2.115), giving γ = 4α/π.

In the case of zero voltage, φt = φtt = 0, the perturbed sine-Gordon equation reduces to

sinφ = γ , (2.116)

with solutions for real φ when |γ| ≤ 1. Thus, in addition to the McCumber solution given by Eqs.
(2.113) and (2.115) there are, at a given value of |γ| ≤ 1, also the zero-voltage solution and measurements
on Josephson junctions in the McCumber state therefore show hysteretic behavior. The zero-voltage
solution is also shown in Fig. 2.17.

Just because a solution can be found analytically, does not make it show up in experiments. The
fluxon and McCumber solutions are, however, well known from experiments, because both types of
solutions are stable in some regions of parameter-space. An interesting relationship between fluxon
solutions and the McCumber solution was found in Ref. [43], where the stability of the above McCumber
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solution was analyzed. It was found that instabilities of the McCumber solution leads to the presence
of zero-field steps, which are solutions with fluxons shuttling back and forth in the junction.

As a curiosity, it should be noted that while it is not possible to obtain an exact analytical solution
to the equation considered here, φtt + αφt + sinφ = γ, the seemingly more complicated equation,
φtt + αφ2

t + sinφ = γ, is known to have exact solutions[44].

2.8 Applications of Superconductors

The discovery of superconductivity led scientists to dream of the devices which could be made using
superconductors. Since there is zero resistance, a superconducting coil would be the ideal solution for
storing electrical energy produced at night when the load is low and used during the day when more
energy is needed in the cities.

Similar superconducting coils can also be used to generate a large permanent magnetic field. Such
coils are widely used in particle accelerators to bend the particle beam. The use of superconducting
technology greatly reduces the energy consumption by the magnet, since the current is permanent and
thus, essentially only energy for cooling is needed.

The Meissner effect can be utilized as a frictionless bearing in many applications. An alternative
energy storage device could be made of a large fly-wheel rotating in vacuum with a superconducting
bearing resulting in near zero resistance. The fly-wheel is set to rotate and energy is stored as mechanical
energy in the rotation which can be harvested as needed.

One obvious possibility with superconductors is to replace all copper-wire by superconducting wires
to reduce losses due to resistance, thus reducing the power-consumption of almost any device. Associated
with such a replacement are of course some technical difficulties. For example a complete overhaul of
the electrical systems would be required since the wires would have to be cooled by liquid nitrogen
or a new superconductor working above room temperature would have to be found. It has, however,
been tried to use superconducting wires inside power plants to transport large amount of currents. A
well-prepared superconducting cable with internal cooling system can carry much more energy than
an equally sized system of copper-wire, making this type of superconducting technology interesting for
power applications[45].

In addition to the more obvious applications, the special properties of superconductors can also be
utilized. One example is the SQUID (Superconducting Quantum Interference Device) which consists of
two Josephson junction connected in parallel by superconducting wires. Such a device is able to measure
magnetic fields generated by the human brain (≈ 1fT), and is thus used in hospitals all over the world.

The Josephson junction can also be utilized to generate radiation in the THz range. This is the
subject of Chapter 4 and an essential part of this thesis. Usual crystals used for generating oscillators
can hardly be used in the THz range and Josephson junctions present a very interesting alternative.
Applications for such oscillators can be found in many areas, for example in astronomical detection
equipment and full-body scanners in airport security.

An obstacle to widespread applications is the fact that most high Tc superconductors are ceramic
based, and consequently does not handle bending well. One current solution is to make tapes from
the ceramics. A piece of silver tube is filled with some superconductor, for example BSCCO, which
is then drawn into a long tape. The tape then has a superconducting core (usually several filaments)
surrounded by a softer shell. Such a system is able to bend a lot more than the bare ceramic supercon-
ductor and is much better for many power applications. The relatively new superconducting compound
MgB2 is also being considered for tapes. The next generation of wires are so-called coated conductors
where the high temperature superconductor, for example YBCO, is coated on a Nickel-Tungsten alloy
substrate[46]. These wires are able to carry more current and sustain higher magnetic fields than the
BSCCO multifilament tape.

The potential amount of applications for superconductor is immense, but a major shift to super-
conducting technology has yet to happen. Most predictions about when this will happen have failed.
This is partly because a room-temperature superconductor has yet to be found and because supercon-
ducting technology is competing with the fast development of existent technology. Superconductors
are, nevertheless, extraordinary materials possessing unique properties and it seems likely that someday
superconducting technology will be part of our everyday life. When, is outside the scope of this thesis
to predict.





Chapter 3

The Long Josephson Junction Stack

This Chapter takes a theoretical view of the long Josephson junction stack. First, the model is introduced
and a relationship to high Tc superconductors is discussed. It has become very popular to use high Tc
superconductors as Josephson stacks in experiments. Some of the analytical solutions to the coupled
non-linear partial differential equations of the model are then presented. The last section looks at a
possible relationship between linear plasma modes and non-linear fluxon modes.

3.1 The Model

To derive the equations for a stack of long Josephson junctions, Ref. [47] will be followed in the case
of identical junctions. A similar type of derivation can be found in Ref. [48], although Kleiner and
Müller only consider the static case. The model geometry is sketched in Fig. 3.1. There are N + 1
superconductors in the stack resulting in N Josephson junctions, each characterized by a gauge-invariant
phase difference φi(x, t). The superconductors are assumed to be in the Meissner-phase, such that Eq.
(2.39) may be used inside the superconductors. Isolating the phase leads to

∇θ =
λ2µ0q

~
J +

q

~
A . (3.1)

Integrating this equation along C1 and C2 in Fig. 3.1 results in
∫

C1

∇θ · dl +

∫

C2

∇θ · dl = θi+1(x+ dx) − θi(x + dx) −
(

θi+1(x) − θi(x)
)

=
λ2µ0q

~

∫ x+dx

x

(

J i+1
L − J iU

)

dx+
q

~

∫

C1+C2

A · dl , (3.2)

where J i+1
L denotes the current density at the lower edge of superconductor i + 1 and J iU denotes the

current density along the upper edge of superconductor i. Adding to both sides of the equality the

integral of A along C3 and C4 and using
∫ x+dx

x
Jdx = J(x)dx, the equation becomes

~

µ0q

∂φi

∂x
= λ2

(

J i+1
L − J iU

)

+
1

µ0
Bid , (3.3)

where

φi(x) ≡ θi+1(x) − θi−1(x) − q

~

∫ zi+d

zi

Az(x, z)dz (3.4)

is the gauge invariant phase difference across junction number i. The screening current densities, J i+1
L

and J iU may be related to the magnetic field between the two superconductors by solving the 2nd London
Eq. (2.33) to obtain the magnetic fields inside the superconductors. For the geometry in Fig. 3.1, the
solution becomes

Bi =
Bi−1 sinh

(

t−2z−2zi
0

2λ

)

+Bi sinh
(

t+2z+2zi
0

2λ

)

sinh (t/λ)
(3.5)
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Figure 3.1: Schematic view of the stacked Josephson junctions. White layers are superconductors and
gray insulators. Ba is an applied magnetic field in the y-direction and γ is an added bias current. The
case where γ depends on the junction number and becomes γi is considered but only the case where
γi = γ seems experimentally feasible for N > 2.

leading to the current densities

J i+1
L =

−1

µ0

∂Bi+1

∂z

∣

∣

∣

z=zi+1
0 −t/2

=
Bi cosh(t/λ) −Bi+1

µ0λ sinh(t/λ)
(3.6)

and

J iU =
−1

µ0

∂Bi

∂z

∣

∣

∣

z=zi
0+t/2

=
Bi−1 −Bi cosh(t/λ)

µ0λ sinh(t/λ)
. (3.7)

Eqs. (3.3) now become

~

q

∂φi

∂x
= d′Bi + s

(

Bi−1 +Bi+1
)

(3.8)

with the definitions

d′ ≡ d+
2λ cosh(t/λ)

sinh(t/λ)
and s ≡ − λ

sinh(t/λ)
. (3.9)

These equations are valid for all junctions, i = 1, ..., N , if B0 = BN+1 ≡ Ba are defined. The corre-
sponding equation for the electric field is obtained using ∇× E = −∂B/∂t, resulting in

~

q

∂φi

∂t
= d′Ei + s

(

Ei−1 + Ei+1
)

, (3.10)

where Ei is the electric field in the z-direction in the i’th junction and E0 = EN+1 ≡ 0 are defined.
Integrating the magnetic induction along the path P gives

∮

P

B · dl = w
(

Bi −Ba
)

= µ0

N+1
∑

n=i+1

In (3.11)
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where In is the current along the x-direction in the n’th superconducting layer. This current may be
related to the current in the z-direction by using ∇× B = µ0J with B = By ŷ, resulting in

∂Jx
∂x

= −∂Jz
∂z

. (3.12)

Using ∂J iz/∂z|z=zi
≈ (J iz − J i−1

z )/t and Ii ≈ wtJ ix, the relation

1

w

N+1
∑

n=k

∂In

∂x
= Jk−1

z , (3.13)

valid for 1 ≤ k ≤ N is obtained, with zi being the middle of the i’th superconducting layer. By
differentiating Eq. (3.8) with respect to x, the system of equations can now be written as[47]

~

µ0q

∂2φ

∂x2
= S Jz , (3.14)

where the i’th element of φ is φi, and the N ×N coupling matrix, S, has the form[47]

S =
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. . .
. . .

s d′ s
s d′



















, (3.15)

and the i’th element of Jz is the current across junction i in the z-direction, J iz . From the perturbed
sine-Gordon equation of a single junction, Eq. (2.81), the total current density in the z direction over
a single junction can be read off, thus[47]

J iz =
~C

q

∂2φi

∂t2
+

~

qR

∂φi

∂t
+ JJ sinφi − J iB , (3.16)

where C ≈ ǫ0ǫr/d
′ is the unit area capacitance, R is the unit area resistance, JJ is the maximum

Josephson current density, and J iB is an added bias current density, which in the general case is taken to
be dependent of the junction number, but only the case where the sign of J iB changes from junction to
junction will be considered. However, only the case where all J iB are equal seem experimentally feasible
for N > 2.

Boundary conditions are obtained by evaluating Eq. (3.8) at x = 0 and L, giving[47]

~

q

∂φi

∂x

∣

∣

∣

x=0,L
= (d′ + 2s)Ba (3.17)

showing that the uniform applied magnetic field enters through the boundaries.
It is of course more convenient to work with normalized equations. The equations for the long

Josephson stack can be normalized in the following way

x = λJ x̃ =

√

~

qµ0JJd′
x̃ , t = ω−1

0 t̃ =

√

~C

qJJ
t̃ , (3.18)

B =

√

~µ0JJ
qd′

B̃ , J iz = JJ J̃
i
z , (3.19)

where the tilde denotes normalized variables, λJ is the Josephson penetration depth, and ω0 is the
Josephson plasma frequency. This yields

∂2φ

∂x̃2
= S̃ J̃z , (3.20)

J̃ iz =
∂2φi

∂t̃2
+ α

∂φi

∂t̃
+ sinφi − γi , (3.21)
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, (3.22)

with boundary conditions

∂φi

∂x̃

∣

∣

∣

x̃=0,L̃
= (1 + 2S)B̃a ≡ Γ . (3.23)

In the above equations, the following definitions where used

S ≡ s

d′
, α ≡

√

~

qJJCR2
, γi ≡ J iB

JJ
. (3.24)

Note, t→ ∞ ⇒ S → 0 and t→ 0 ⇒ S → −1/2.

Equations (3.20)-(3.23) are the normalized equations describing a stack of inductively coupled long
Josephson junctions, which will be used in the rest of this text, except the tildes will be skipped from
now on.

Finally, it must be noted, that Eqs. (3.20)-(3.23) where derived by assuming all junctions are
equal. Usually when looking at a stack with, say, only two junctions, the two junctions have the
outer superconductors much larger than the inner superconductor, thus the two junctions are not equal
leading to slightly different expressions. The form of the equations are the same, but the definitions of
the parameters are slightly different and usually the boundary conditions are changed to ∂φ1,N/∂x =
(1 + S)Ba for the two outer junctions. This also applies for the usual single junction case[35], which is
only recovered if S = 0 (corresponding to infinitely thick superconducting layers).

3.1.1 Artificial Stacks and High Tc Superconductors

The structure of the Josephson stack can be made in the laboratory using low Tc superconducting mate-
rial. The parameters such as thickness of the insulating layer and even the superconductor characteristics
such as the London penetration depth can be controlled by using different types of superconductors.
The stack may thus be made with just the right properties for some application. Example values of the
parameters for a low Tc stack are[49]

N S I λ λJ c0 JJ

2 Nb AlOx 90nm 25µm 7×106m/s∗ 200A/cm2

L W d t S ω0

200µm 40µm 5nm∗ 30nm -0.46∗ 100GHz∗

The values marked with ∗ have been estimated from the values given in Ref. [49].

The structure of a stack of Josephson junctions have some similarities to the structure of the high
Tc superconductor shown in Fig. 1.2, which also consists of alternating superconducting and insulating
layers. It is known that the superconduction takes place in the copper oxide planes of high Tc super-
conductors, and the other atoms essentially acts as insulating spacers, making both structures in Fig.
1.2 behave as a stack of Josephson junctions[48]. One disadvantage of using such naturally occurring
stacks is that the parameters cannot be easily controlled as in the artificial case, i.e. one has to work
with what nature provides. The major advantage is of course that they are readily available and much
easier to make than the artificial counterparts. Some example parameters for a Josephson stack made
out of BSCCO are[50]

N High Tc Material λ λJ c0 JJ

120 Bi2Sr2CaCu2O8 170nm 0.34µm 4 × 105m/s∗ 1015A/cm2

L W d t S ω0

10µm 1.8µm 12Å 3Å -0.5∗ 500GHz∗
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The values marked with ∗ have been estimated from the values given in Ref. [50].
It is easily seen that the width of both the insulators, d, and the superconductors, t, are somewhat

different in the two cases shown here. Also, the London penetration depth is about two times larger in
the intrinsic stack than in the artificial stack. The smaller width of the insulator and the larger London
penetration depth of the intrinsic stack leads to the larger absolute value of S because the magnetic
field from surrounding junctions penetrates the superconductors more easily. It should be noted that
the values provided above are temperature dependent and the strength of the inductive coupling in the
low Tc stack may easily be made much smaller.

One important parameter in both artificial and intrinsic stacks are the number of junctions in the
stack. The effect of the number of junctions plays a major role in the dynamics, as will be evident from
the later parts of the text. Though it might not at first seem to be the case, the number of junctions
in an intrinsic stack is also a controllable parameter. People have even succeeded in making only a
few number of Josephson junction from BSCCO[51]. The process is first to start with some number of
junctions and then etch down into the stack by a known rate. The etching process is then stopped when
there is exactly the desired number of junctions left.

3.1.2 Numerical Method

Eqs. (3.20)-(3.23) are coupled non-linear partial differential equations and a general analytical solution
seem unlikely. Numerical solutions are, however, very likely and some remarks on how these are obtained
in this text are presented here. The equations are straight-forward to discretize using symmetric second
order finite differences for the spatial derivative with spacing ∆x. The boundary conditions, Eq. (3.23),
are also discretized using second order finite differences. This gives, for example, the following

φi1(t) − φi−1(t)

2∆x
= Γ (3.25)

condition at x = 0, where the subscript referrers to the x-coordinate by φi(xn, t) ≡ φin(t) with xn = n∆x.
The above condition enables one to determine the value of φ at the virtual point x−1 in such a way that
the desired boundary condition is satisfied. In this case it gives

φi−1(t) = φi1(t) − 2∆xΓ . (3.26)

The N∆x ODEs in t, resulting from the discretization of the spatial variable, is solved using a
fifth-order Runge-Kutta method with adaptive step-size control[21]. Sometimes it is desired to have the
solution at evenly spaced times, and in this case a 2nd or 4th order Runge-Kutta method is employed[21].
A 2nd order Verlet integrator is also a popular choice.

3.2 Solutions

Analytic solutions to the non-linear coupled partial differential equations describing the inductively
coupled Josephson stack, Eqs. (3.20)-(3.23), are of great practical interest. Here, a few special cases
will be examined, which all have tremendous importance for the understanding of Josephson stacks and
the stack-like behavior of high Tc superconductors.

3.2.1 Plasma Oscillations

The Josephson plasma oscillations are small amplitude solutions to Eqs. (3.20)-(3.23). The solutions
have previously been derived in Refs. [52, 53, 54, 55, 56]. It is assumed that α = 0, i.e. there are no
losses in the system. The phase is assumed to be small amplitude oscillations around the equilibrium
on the form

φ = ai cos(kx− ωt) + sin−1 γi , (3.27)

where φi0 ≡ sin−1 γi is the equilibrium of the i’th junction. Assuming ai << 1 the non-linear term in
Eq. (3.21) may be expanded to obtain the eigen-value equation

Sa =
k2

ω2 − ω2
p

a ≡ λma , (3.28)
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Figure 3.2: Plot of the dispersion relation, Eq. (3.30), for positive ω with γ = −0.2 and S = −0.49.
Left plot shows N = 5 and right plot shows selected modes for N = 50.

with ω2
p ≡

√

1 − γ2 and where it was used that the bias currents are restricted to the case of a change

of sign, thus γ2 ≡ (γi)2 = (γj)2 for all i, j. The term ω2
p is called the (bias dependent) plasma frequency

of the stack.

The solution to the eigen-value Eq. (3.28) can be found in Ref. [53], and may be expressed as

aim =

√

2

N + 1
sin

(

i(N −m+ 1)π

N + 1

)

, (3.29)

λm = 1 − 2S cos

(

mπ

N + 1

)

, m = 1, ..., N ,

which of course are N eigen-vectors, am, together with N eigen-values, λm. Using the definition of λm
from Eq. (3.28) together with Eq. (3.29), m dispersion relations are found to be

ω2 = ω2
p + c2mk

2 , (3.30)

where the group velocity, cm was defined as

cNm ≡ lim
k→∞

dω

dk
=

1
√

1 − 2S cos
(

nπ
N+1

)

. (3.31)

These velocities, cNm, are also termed the characteristic velocities of the stack, and m is referred to as
“the mode”. The explicit form of the oscillating part of the plasma solution is denoted by Aim and
trivially given by

Aim(x, t) =

√

2

N + 1
sin

(

i(N −m+ 1)π

N + 1

)

cos(kx− ωt) . (3.32)

A plot of the dispersion relation, Eq. (3.30), can be seen in Fig. 3.2 for two different stack-sizes. For
the large stacksize it is seen, that the low order modes are very close.

3.2.2 Fluxon Solutions

The fluxon solutions for a single junction were considered in great detail in Section 2.5 and similar
kink-solutions are known to exist for the stack. Starting out in the same way as for the single junction,
the case α = γ = 0 is considered, such that the coupled equations become

(

S−1φxx
)i

= φitt + sinφi , (3.33)
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which is easily seen to be N coupled equations, where the l.h.s contains φixx for i = 1, ..., N , thus coupling
the different junctions. For the simplest stacked case, N = 2, the equations read

1

1 − S2
φ1
xx −

S

1 − S2
φ2
xx = φ1

tt + sinφ1 , (3.34)

1

1 − S2
φ2
xx −

S

1 − S2
φ1
xx = φ2

tt + sinφ2 . (3.35)

It is easily seen that they are symmetric with respect to exchanging φ1 and φ2 (as they should be), and
it thus seem natural to try with a solution of the form φ1 = ±φ2 ≡ φ, resulting in the single equation,

1

1 ± S
φxx = φtt + sinφ , (3.36)

for the phase. This is just the sine-Gordon equation with a re-scaled length coordinate, and the fluxon-
solutions are easily found to be[57]

φ(x, t) = 4 tan−1 exp

(

σ
√

1 ± S
x− vt− x0

√

1 − (1 ± S)v2

)

, (3.37)

where σ = ±1 is the polarity of the solution. Since φ is real, the condition

v2 <
1

1 ± S
(3.38)

is obtained. The two solutions thus have different maximum velocities for the fluxon. The solution
φ1 = −φ2 has a maximum fluxon velocity of 1/

√
1 − S and the solution φ1 = φ2 has a maximum fluxon

velocity of 1/
√

1 + S. These two velocities are exactly the two characteristic velocities obtained in Eq.
(3.31) when N = 2, i.e. c21 = 1/

√
1 − S and c22 = 1/

√
1 + S. It is common to rename c21 to c− and c22 to

c+ and write the bunched fluxon solutions as

φ(x, t) = 4 tan−1 exp



σ
1

c±

x− vt− x0
√

1 − v2/c2±



 . (3.39)

In-Phase Mode of a Three Junction Stack

For stacks with more than two junctions, the situation becomes more complicated. Notice that the
outer junctions only couple directly to one junction, while an inner junctions couple directly to the
junctions on both sides. This means, that the simple solutions in the two-junction case can not be
trivially generalized to more junctions. One possibility is to devise a more advanced method to study
the fluxon-solutions, which was done by Gorria et. al. in Refs. [58, 59] by piece-wise linearizing the
sin-term in the equations for N = 3, resulting in linear equations which are fitted together to make the
solution continuous. Here, however, a more simple approach will be taken for the N = 3 case, where only
the in-phase solution is studied. The in-phase solution in three stacked junctions should have φ1 = φ3

due to symmetry and it seems fair to assume that φ2 only deviates slightly from the other two phases.
The following ansatz is therefore adopted

φ1 = φ+ δφ = φ3 ,

φ2 = φ− κδφ , (3.40)

where κ is some, yet, unknown constant, and δφ represents a small difference between the solutions,
such that κδφ << 1. Introducing the ansatz into Eqs. (3.20) yields

J1 =
1

1 − 2S2

(

(1 − S)φxx + (1 + κS)δφxx

)

,

J2 =
1

1 − 2S2

(

(1 − 2S)φxx − (κ+ 2S)δφxx

)

. (3.41)

Using κδφ << 1, the difference J1 − J2 becomes

δφtt + αδφt + cos (φ) δφ = (3.42)

1

(1 + κ)(1 − 2S2)

(

Sφxx +
(

1 + 2S + (1 + S)κ
)

δφxx

)

.
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Figure 3.3: Plot showing a numerical solution of the bunched mode of the 3 junction stack which clearly
shows the oscillating tail. Also plotted is the analytical expression in Eq. (3.45) and the exponential
decay curve is shown separately. The constants A1 and A2 have been fitted numerically. Parameters
in the numerical solution are α = 0.1, γ = −0.48, v = 1.13 and S = −0.2. φ3 is not shown, because it
is indistinguishable from φ1. The analytical expression fits well away from the fluxon center, which is
expected from the assumptions made in the derivation of Eq. (3.45).

This equation is coupled to an equation for φ (obtained by calculating J1+J2), and a general solution of
these two coupled equations will probably be quite complicated. Consider the case sinφ = φxx = 0 for a
2π-kink, corresponding to looking at solutions to δφ away from the fluxon-center, located at x = vt+x0.
Doing this, the equation

δφξξ −
1

v2 − 1+2S+(1+S)κ
(1+κ)(1−2S2)

(

αv δφξ − δφ
)

= 0 (3.43)

is obtained, where the self-coordinate, ξ ≡ x− vt−x0, has been introduced. If only the interval ξ < 0 is
considered, the solution of this type of equation has an exponential decaying term and an exponential
growing term. The exponential growing term contradicts the assumption that κδφ is small and is
discarded. The nature of the remaining term depends on the magnitude of v2. Thus, if

v2 >
1 + 2S + (1 + S)κ

(1 + κ)(1 − 2S2)
(3.44)

an oscillating solution (discarding terms of second order and higher in α) is obtained. Oscillations,
termed Cherenkov radiation, are found when the in-phase solution is moving with a velocity above
c−[60]. By equating the l.h.s. and the r.h.s. in Eq. (3.44) and inserting v = c−, the value κ =

√
2

is obtained. The amplitude in junction 2 is therefore about
√

2 times bigger than the amplitude in
junctions 1 and 3. The oscillations in the junctions 1 + 3 and 2 are in anti-phase and exponentially
decaying (due to dissipation) with a decay constant, k, given by k = αv/(2(v2 − c2−)). The angular

frequency, ω, of the oscillations is ω = 1/
√

v2 − c2− and the solution becomes

δφ = ekξ
(

A1 cos(ωξ) +A2 sin(ωξ)
)

, (3.45)

valid for ξ << 0 and v > c−, where A1 and A2 are unknown constants. Fig. 3.3 shows the solution δφ
and compares it to a numerical solution of the partial differential equations. The constants A1 and A2

has been determined by fitting to the numerical solution. The oscillating tail is seen to fit quite well
with the numerical solution.

Cherenkov radiation for different fluxon modes was considered by Goldobin et. al in Ref. [61] and
it was found in Refs. [62, 63] to be very important for the formation of stable bunched fluxon modes.
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Figure 3.4: Schematic view of a circular Josephson stack. “S” is short for Superconductor and “I” for
Insulator. In this configuration, all junctions are on an equal footing.

Circular Stack

A simple way to get some idea on how a large stack may behave is to restore the symmetry broken by
the outer junctions and consider a circular stack, see Fig. 3.4, where one neglect the curvature of the
stack[64]. This is equivalent to the case N → ∞[64]. In both cases, every junction is an “inner” junction
and the stack is describes by Eqs. (3.20) and (3.21) with S given as

S =



















1 S S
S 1 S

S 1 S
. . .

. . .
. . .

S 1 S
S S 1



















, (3.46)

where blank elements are zero. It then seem likely to find the symmetric solution where φi = φi+1 for
all i ∈ [1;N ], defining φN+1 ≡ φ1. The anti-symmetric case, φi = −φi+1, is only possible for an even
number of junctions. For this reason the case φi = ±φi+1 ≡ φ with an even number of junctions is
considered, and the equation

1

1 ± 2S
φxx = φtt + sinφ (3.47)

is obtained in the unperturbed case (α = γ = 0). It is easily seen, that the maximum fluxon velocities of
the two solutions are 1/

√
1 − 2S and 1/

√
1 + 2S for the anti-phase and in-phase solutions respectively.

The characteristic velocities of the modes 1 and N in Eq. (3.31) when N → ∞ gives exactly these two
velocities. The fluxon solutions to the above sine-Gordon equation are easily found to be Eq. (3.39)
with c− = 1/

√
1 − 2S and c+ = 1/

√
1 + 2S.

Empty-Junction Solutions

Continuing with simple ways to get fluxon-solutions to the stacked Eqs. (3.20)-(3.22), one of the inner
junctions is considered to be empty (does not contain a fluxon). The inner junctions are described by

φixx = J iz + S
(

J i−1
z + J i+1

z

)

. (3.48)

If φi, for some i, is the constant sin−1 γi, the above equation states that J i−1
z = −J i+1

z . This condition
is satisfied if

φi−1 = −φi+1 and γi−1 = −γi+1 . (3.49)
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Thus, if there is an “empty” junction in the stack, the stack may be divided into two substacks which
are related by the relations (3.49).

The simplest case where this can be used is in the case of 3 junctions, where J2
z = 0 is considered.

The top and bottom junctions are then related through Eq. (3.49), meaning that if junction 1 contains
a fluxon, then junction 3 must contain an anti-fluxon, resulting in the solution

i 1 2 3
↑ 0 ↓

for the stack of 3 junctions. Here ↑ means a fluxon, 0 means no fluxon (φi is constant), ↓ means an
antifluxon, and i referrers to the junction number. A single junction has the maximum fluxon velocity
c11 = 1 which is the same as c32 (c32 is sometimes denoted by c0), thus c32 is a maximum fluxon speed for
the above solution. For the single junction an exact analytical solution is known when α = γ = 0 which
thus leads to an exact solution for N = 3.

A little more complicated example is to take a stack of 7 junctions and consider J4
z = 0. Two

substacks of size 3, which are related through Eq. (3.49) is then found. The in-phase mode was
previously considered in the case of three junctions, and the following solution

i 1 2 3 4 5 6 7
↑ ↑ ↑ 0 ↓ ↓ ↓

is then found for the stack of 7 junctions. The solution of the 3 junction substack has the characteristic

velocity c33 = 1/
√

1 +
√

2S so the above solution of the 7 junction stack must also have this characteristic
velocity. Inspecting the plasma modes for the 7 junction stack, Eq. (3.31) with N = 7, it is found that

the above solution corresponds to mode 6 (m = 6), having a characteristic velocity of c76 = 1/
√

1 +
√

2S.
Consider again the case N = 7 with J4

z = 0. The above solutions for the 3 junction stack with the
empty middle junction may be used as a solution for the 3 junction substack of the N = 7 case, resulting
in the solution

i 1 2 3 4 5 6 7
↑ 0 ↓ 0 ↑ 0 ↓

consisting essentially of single junctions having a maximum fluxon speed of 1. The 7 junction stack
characteristic velocity c74 = 1.

One could continue this way to build different fluxon solutions using Eq. (3.31) from the known
solutions in the case of 1, 2 and 3 stacked junctions, however, only the first condition in Eq. (3.31)
were really used. The second condition states that the bias current should have opposite sign for the
different sides of the empty junction. This seem hard to realize in an experimental setup, especially for
intrinsic BSCCO stacks where one would have to attach electrodes to the individual atomic sized layers.
The bias current interacts with the magnetic field of the fluxons through the Lorentz force and since
a fluxon and an anti-fluxon have different directions of the magnetic field, they will be pushed in the
same direction only if the bias currents are opposite. With the much more realistic unidirectional bias
current (referred to as “natural” biasing) the fluxons and anti-fluxons would move in opposite directions
and break the first (and second) condition in Eq. (3.31). In Section 3.3, these types of solutions will,
among other things, be considered numerically with both types of bias currents. Numerical solutions
showing the empty-junction solutions can be found in that Section: The empty-junction solution for the
3 junction stack is shown as the middle plots of Fig. 3.7 while the case with natural biasing is shown as
the middle plots of Fig. 3.10. The solutions for the 7 junction stack are shown as the middle and right
plots of Fig. 3.8.

3.2.3 Flux-Flow Solutions

Like in the case of a single Josephson junction, the external magnetic field may generate vortices at one
edge of the long Josephson junction stack, which move to the other end by means of the bias current
and gets annihilated by the external magnetic field. A similar analysis as the one in Section 2.6 may be
done for the case of coupled junctions. Here, however, only the case of two coupled junctions will be
considered due to the simplicity. The analysis is due to Ref. [65], which will be followed closely.

The equations of motion for a stack of two junctions may be expressed in the variables

u =
1

2

(

φ1 + φ2
)

, v =
1

2

(

φ1 − φ2
)

, (3.50)
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turning the equations of motion, Eq. (3.20), into

c2+uxx = utt + αut + sinu cos v − γ+ , (3.51)

c2−vxx = vtt + αvt + sin v cosu− γ− , (3.52)

with c+ ≡ c22, c− ≡ c12, γ
+ = (γ1 +γ2)/2, and γ− = (γ1−γ2)/2. Eq. (3.23) are the boundary conditions

which become

ux(0) = ux(L) = Γ , vx(0) = vx(L) = 0 . (3.53)

If Γ is large, the direct generalization of Eq. (2.99) is[65]

φ1 = φ1
0 + Γx+ ωt+ δφ1(x, t) , (3.54)

φ2 = φ2
0 + Γx+ ωt+ δφ2(x, t) , (3.55)

where δφi << 1 are small perturbations in each of the junctions. The above form describes φi as having
a constant phase of φi0 and a spatial slope of Γ across the junctions, each having a voltage drop of ω. To
satisfy the boundary conditions, it must be required that δφix(0, t) = δφix(L, t) = 0. The ansatz, Eqs.
(3.54) and (3.55), translates into

u = u0 + Γx+ ωt+ δu , (3.56)

v = v0 + δv, (3.57)

when expressed in terms of u and v, where u0 = (φ1
0 +φ2

0)/2, v0 = (φ1
0 −φ2

0)/2, δu = (δφ1 + δφ2)/2, and
δu = (δφ1 − δφ2)/2. This ansatz is inserted into Eqs. (3.51) and (3.52) and expanded to first order in
δu and δv, resulting in two coupled linear equations for δu and δv (not shown). The variables δu and
δv may then be expressed as Fourier series

δu =

∞
∑

n=0

(

U1
n cosωt+ U2

n sinωt
)

cos knx , (3.58)

δv =

∞
∑

n=0

(

V 1
n cosωt+ V 2

n sinωt
)

cos knx , (3.59)

with kn = πn/L. Inserting into the coupled linear equations for δu and δv (not shown), multiplying
by cos knx, and integrating over the spatial dimension, equations to determine U1

n, U2
n, V 1

n , and V 2
n are

obtained as[65]
(

ω2 − c2+k
2
n

) (

U1
n cosωt+ U2

n sinωt
)

+ αω
(

U1
n sinωt− U2

n cosωt
)

=

cos v0 (Zn cos (u0 + ωt) − Yn sin (u0 + ωt)) , (3.60)
(

ω2 − c2−k
2
n

) (

V 1
n cosωt+ V 2

n sinωt
)

+ αω
(

V 1
n sinωt− V 2

n cosωt
)

=

sin v0 (Yn cos (u0 + ωt) − Zn sin (u0 + ωt)) , (3.61)

where

Yn = − 2ΓL

1 + δn,0

(−1)n sinΓL

k2
nL

2 − Γ2L2
, (3.62)

Zn = − 2ΓL

1 + δn,0

1 − (−1)n cos ΓL

k2
nL

2 − Γ2L2
. (3.63)

In the coupled case, there are two constant phases, v0 and u0. It is clear from Eqs. (3.54) and (3.55)
that these phases can be changed by choosing a different zero-point for the time-coordinate. This is
done such that u0 becomes zero, and the constants U1

n, U2
n, V 1

n , and V 2
n are determined to[65]

U1
n =

Zn
(

ω2 − c2+k
2
n

)

+ Ynαω

(ω2 − c2+k
2
n)2 + α2ω2

cos v0 , (3.64)

U2
n =

Yn
(

ω2 − c2+k
2
n

)

− Znαω

(ω2 − c2+k
2
n)2 + α2ω2

cos v0 , (3.65)

V 1
n =

Yn
(

ω2 − c2−k
2
n

)

− Znαω

(ω2 − c2−k
2
n)2 + α2ω2

sin v0 , and (3.66)

V 2
n =

−Zn
(

ω2 − c2−k
2
n

)

− Ynαω

(ω2 − c2−k
2
n)

2 + α2ω2
sin v0 . (3.67)
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Figure 3.5: Flux-flow solution from Eq. (3.69) with L = 5, S = −0.1, v0 = 0, and v0 = π/2. Also shown
are the corresponding curves from the single junction case, Eq. (2.108). Left is the current as a function
of the voltage, with Γ = 5, showing a linearly increasing background with resonances at ω = c±πn/L.
The right plot shows the voltage as a function of the applied magnetic field obtained by solving Eq.
(3.69) numerically for γ = 0.5.

The flux-flow solution in the case of two coupled junctions with a large applied magnetic field is now
complete. The solution is seen to depend on v0, which expresses the phase-difference between the two
junctions. The case v0 = 0 makes the constants V 1

n and V 2
n zero, such that only terms with c2+ survive.

In the same way, in the case v0 = π/2 only terms with c2− are left. These two extreme cases of the
phase-difference contains the same two characteristic velocities as the in-phase (c+) fluxon mode and
the anti-phase (c−) fluxon mode. But unlike the case of fluxon modes, the flux-flow solutions are know
in the cases corresponding to mixtures of the in-phase and anti-phase modes, i.e. 0 < v0 < π/2. Both
the in-phase, v0 = 0, and anti-phase, v0 = π/2, modes have been observed experimentally in Ref. [66].

Exactly like the case of the single junction, the current-voltage curve may be derived in the power-
balance approximation. The rate of change of energy in the two junction perturbed coupled case is[65]

dH

dt
=

Γ

1 − S2

[

(1 − S)φ1
t + (1 − S)φ2

t

]L

0
− α

∫ L

0

(

(φ1
t )

2 + (φ2
t )

2
)

dx+ γ

∫ L

0

(

φ1
t + φ2

t

)

dx . (3.68)

Requiring power-balance (the total change of energy in one period is zero), the current-voltage charac-
teristic is obtained as[65]

γ = αω +
αω

4

∞
∑

n=0

(1 + δn,0)
(

(U1
n)2 + (U2

n)2 + (V 1
n )2 + (V 2

n )2
)

(3.69)

= αω + 2αω

∞
∑

n=−∞

Γ2L2 sin2
(

(ΓL − nπ)/2
)

(Γ2L2 − n2π2)2

(

cos2 v0
(

ω2 − c2+n
2π2/L2

)2
+ α2ω2

sin2 v0
(

ω2 − c2−n
2π2/L2

)2
+ α2ω2

)

.

Note here the mixing of the two terms involving the characteristic velocities, c+ and c−, controlled
by the phase-difference v0. Plots of the current voltage characteristic can be seen in Fig. 3.5 which
compares the coupled case for v0 = 0 and π/2 to the single junction case. The resonances are located at
ω = c±nπ/L in the coupled case and at ω = nπ/L in the single junction case, such that the inductive
coupling has the effect of shifting the resonances on the ω axis. For the ω(Γ) plots, the phase of the
oscillations is unchanged from the single junction case, since no c± is present in the terms containing
ΓL−nπ. These terms are responsible for the oscillations in the voltage as a function of applied magnetic
field curve and the oscillations thus have a period of 2π/L in both the coupled and single junction cases.
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Figure 3.6: Illustration of the could-be relationship between the plasma oscillations and the fluxon modes
of the 2 junction stack with unnatural biasing. The top plots are mode 1 (γ1 = −γ2) and the bottom
plots are mode 2 (γ1 = γ2). The right-most figures are the trajectories of the fluxons. Parameters are
α = 0.1, S = −0.2, γ = −0.2 (top), −0.44 (bottom) and v = 0.75 (top), 1.07 (bottom).

3.3 Fluxons and Plasmons - Any Relation?

In this section, a proposed relationship between the plasma modes and the fluxon modes will be investi-
gated numerically. First, the case where γi can be ±γj will be considered, and referred to as “unnatural”
biasing, because it is hard, if not impossible, to realize this in an experimental set-up for N > 2. For
N = 2 it has been done experimentally, see Ref. [67]. After this, the focus will be on “natural biasing”
(γi = γj) which is of greater practical interest. The results presented in this section should be regarded
as “experimental” numerical observations and not as exact results. Only the case without an applied
magnetic field, Γ = 0, is considered.

For the 2 junction stack, there are two plasma modes: The anti-phase oscillations and the in-phase
oscillations. Following Ref. [67], there are, however, more fluxon modes than two. With one fluxon in
each junction and the bias current having the same direction in both junctions there are

(i) an in-phase moving fluxon-fluxon mode with characteristic velocity c+ and
(ii) an anti-phase moving fluxon-antifluxon mode with characteristic velocity c−.

If the bias current has opposite directions in the two junctions (see Refs. [67] and [56]) there are in
addition

(iii) an in-phase moving fluxon-antifluxon mode with characteristic velocity c− and
(iv) an anti-phase moving fluxon-fluxon mode.

The latter is not discussed, but (i)-(iii) are shown in Figs. 3.6 and 3.9. The phase-plots are supplemented
by trajectories of the fluxons, which are found numerically by determining the position of a fluxon in
junction i by finding the lowest value of φit. In order to get the value as good as possible, without too
large a number of x-mesh points, the shape of φt around the minimum was approximated by a second
order polynomial. Doing this at several times and plotting the positions as a function of time, the
trajectory-plots are obtained. It is easy to see the fluxon motion of the three modes in this type of plot.

3.3.1 “Unnatural” Biasing

For the 2 junction stack, the two plasma modes may be mapped into two in-phase moving fluxon modes.
It is proposed, that the anti-phase plasma oscillations maps into the in-phase moving fluxon-antifluxon
mode (iii) and the in-phase plasma oscillations maps into the in-phase moving fluxon-fluxon mode (i).
This requires the bias current to be chosen in different ways for the two modes, i.e. in opposite directions
for (iii) and in same directions for (i). The velocities of the two modes are expected to be smaller than
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Figure 3.7: Numerical solutions of mode 1 (left), 2 (middle) and 3 (right) of the 3 junction stack. The
empty junction solution in the middle plots and the oscillating tail of the right plots were considered
analytically in Section 3.2.2. The bias current is chosen such that fluxons and antifluxons are driven
in the same direction. Parameters are α = 0.1, S = −0.2 and γ = −0.2 (left), −0.35 (middle), −0.45
(right). The relative signs of γi can be deduced from Aim which are also shown in the plots.

the characteristic velocity for each mode[67]. The mapping is illustrated in Fig. 3.6. Note that the
plasma-oscillations in this and all other plots in this section have been multiplied by 3 in order to
show them more clearly. The two fluxon modes were found analytically in Section 3.2.2, and their
maximum velocities are exactly the characteristic velocities of the plasma modes in the unperturbed
case (α = γ = 0).

The above illustrates the mapping for the 2 junction stack, which will be generalized, such that a
mode consists of at most one fluxon (or antifluxon) in each junction and the polarity of the fluxons are
determined by the relative phases of the plasma oscillations. To be more precise, the following scheme
is used to generate the fluxon/antifluxon configuration in mode m1:

a. aim > 0: Junction i contains a fluxon and γi = γ.
b. aim < 0: Junction i contains an antifluxon and γi = −γ.
c. aim = 0: Junction i has no 2π phase shift and γi = γ.

aim is given by Eq. (3.29). The velocity of the fluxons of mode m should be in the interval [0, cNm],
because cNm is the maximum velocity of the mode. It is not expected that the upper bound should be
exactly valid, because it is known that, when examined carefully, it does not hold in the perturbed
case[64].

The bias current is chosen such that it drives all the fluxons and antifluxons in the same direction.
The careful reader will here notice, that for the highest mode (m = N , where all fluxons have the
same polarity) this “unnatural” way of choosing the bias current actually becomes the “natural” way.
Nevertheless, this will be referred to as the “unnatural” way of choosing the bias current, although it is
only “unnatural” in N − 1 modes out of a total of N modes.

As have already been shown, the above proposed mapping holds for the 2 junction stack. In the
following it will be shown how it generalizes for up to 7 junctions.

1The terms fluxon and anti-fluxons are of course arbitrary, because reflective boundary conditions are used. What is
meant, which should be clear from the context, is that the relative polarities of the fluxons are determined by the signs of
ai

m
.
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In order to find the modes, an initial fluxon configuration using the above scheme is generated and
some values of α, γ, L, and S are chosen. It is then observed how the configuration evolved in time. If a
satisfactory steady-state solution is not found, the value of the bias-current, γ, is changed while holding
α, L and S fixed. The lowest order mode is usually found first. From IV-curves of small stacks it is
known that the different modes will probably only exist for some finite range of γ, and that the lowest
value of |γ| where a modes is stable is increasing with the mode number[68]. This is why the searching
is started at the lowest mode, to get a lower bound on the value of γ which can be used to find the
modes.

The above procedure generates three fluxon modes for a 3 junction stack. Mode 1 is the anti-phase
mode which contains a fluxon, an anti-fluxon, and a fluxon in junctions 1, 2, and 3 respectively. Mode
2 has an empty middle junction and junctions 1 and 3 contain a fluxon and an anti-fluxon respectively.
Mode 3 is the highly desirably in-phase mode with fluxons in all junctions. These three modes have
been found numerically and they can be seen in Fig. 3.7.

The remaining modes, forN ≤ 7, generated by the above procedure have also been found numerically,
but with some minor discrepancies, which will now be pointed out. For stack sizes of more than 3
junctions, it was observed that the modes with the highest mode number, m = N , the outer junctions
are switching to the McCumber curve (see Section 2.7), but everything else is as expected. More
comments on these modes can be found in the next section about natural biasing. In addition to this,
4 other modes have been found, which only showed the expected behavior if some of the junctions had
switched to finite voltage. In addition to the switched m = N -modes, the following discrepancies were
observed:

N m Expected Found
4 3 ↑ ↑ ↓ ↓ ↑MM ↓
6 4 ↑ ↑ ↓ ↓ ↑ ↑ ↑M ↓ ↓M ↑
6 5 ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑MM ↓ ↓
7 5 ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑M ↓M ↑ ↑

Here, ↑ means aim > 0, ↓ means aim < 0 and M means that the junction has switched to the McCumber
curve. Junction number 1 is the leftmost arrow in each row, and the junction number is increasing to
the right. The results were calculated with S = −0.2 and α = 0.1, but other values were tried and the
results seem to be valid for a wide range of parameters. The scheme thus predicts, rather reliably, a
number of different fluxon configurations. Some of these configurations have a junction without a fluxon
(aim = 0) and were considered analytically in Section 3.2.2. The 2nd mode of the 3 junction stack can
be mentioned as an example. This modes has a1

2 > 0, a2
2 = 0, and a3

2 < 0 and maps into a fluxon mode
with a fluxon in junction 1, nothing in junction 2, and an anti-fluxon in junction 3, see the middle plots
of Fig. 3.7. This was precisely the fluxon solution shown analytically to exists in Section 3.2.2. For
N ≤ 7, the empty-junction configurations obtained from the mapping of the plasma-modes are

N m Configuration
3 2 ↑ 0 ↓
5 2 ↑ ↓ 0 ↑ ↓
5 3 ↑ 0 ↓ 0 ↑
5 4 ↑ ↑ 0 ↓ ↓
7 2 ↑ ↓ ↑ 0 ↓ ↑ ↓
7 4 ↑ 0 ↓ 0 ↑ 0 ↓
7 6 ↑ ↑ ↑ 0 ↓ ↓ ↓

which are all seen to be derivable from Eq. (3.49) and the solutions found in Section 3.2.2, assuming the
solution ↑ ↓ ↑ exists in the 3 junction stack (this solution can easily be found numerically, see Fig. 3.7
left). The proposed plasma mode to fluxon solution map also has the bias-current chosen in accordance
with Eq. (3.49), and the maximum fluxon velocity found from the exact solutions is also in accordance
with the proposed plasma-fluxon relationship. Modes 2, 4, and 6 of the 7 junction stack can be seen in
Fig. 3.8.

3.3.2 “Natural” Biasing

For the case of natural biasing, it was proposed in Ref. [69] that there also in this case could exist a
relationship between the linear modes and the fluxon modes of a Josephson stack. For a 2 junction stack
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Figure 3.8: Numerical solutions of mode 2 (left), mode 4 (middle), and 6 (right) of the 7 junction stack.
These solutions are cases of the empty junction solutions considered in Section 3.2.2. Compare with
mode 1, 2, and 3 of the 3 junction stack from Fig. 3.7. Parameters used: α = 0.1, S = −0.2, and
|γi| = 0.2 (left), 0.35 (middle), 0.45 (right). The relative signs of γi can be deduced from Aim, which are
also shown in the plots.
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Figure 3.9: Illustration of the could-be relationship between the plasma oscillations and the fluxon
modes of the 2 junction stack with natural biasing. The top plots are mode 1 and the bottom plots are
mode 2. The right-most figures are the trajectories of the fluxons. Parameters are α = 0.1, S = −0.2,
γ = −0.3 (top), −0.44 (bottom) and v = 0.87 (top), 1.07 (bottom).
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Figure 3.10: The plasma oscillations and the fluxon modes of the 3 junction stack with natural biasing.
The middle figures has no fluxon in the middle junction, thus only the first and third junction are
present in the trajectories plot. Parameters for the simulations are α = 0.1, S = −0.2, γ = −0.2 (top),
−0.375 (middle), −0.44 (bottom) and v = 0.79 (top), 0.89 (middle), 1.12 (bottom).

it was noted, that the anti-phase plasma oscillations with characteristic velocity c− could correspond
to the mode (ii) which has an anti-phase fluxon motion, and the in-phase plasma oscillations with
characteristic velocity c+ could correspond to the mode with in-phase fluxon motion (i). The similarity
of the plasma oscillations and the fluxon mode is illustrated in Fig. 3.9 for the 2 junction stack. For the
anti-phase mode in Fig. 3.9, the smaller peak is not a fluxon but the trace of the fluxon in the other
junctions. This was also observed in Ref. [47].

The above behavior is expected if the map from plasma modes to fluxon modes proposed in Section



48 The Long Josephson Junction Stack

-3

 0

 3

-10  0  10

x

3A1
2

-3

 0

 3

-10  0  10

x

3A2
2

-3

 0

 3

-10  0  10

x

3A3
2

-3

 0

 3

-10  0  10

x

3A4
2

 0

 4

 8

-10 -5  0  5  10

φ

x

→

→

φ1,φ4

φ2,φ3

 0

 5

 10

-10 -5  0  5  10

10
t

x

φ1,φ4

 0

 5

 10

-10 -5  0  5  10

10
t

x

φ2,φ3

Figure 3.11: Top plots are the plasma-oscillations of the 2nd mode of the 4 junction stack with natural
biasing. The bottom-left plot is the phases, φi, of this mode, and the bottom-right is the trajectories of
the fluxons. Parameters for the plots are α = 0.1, γ = −0.35, S = −0.2 and the velocity is v = 0.92.

3.3.1 is assumed. The relative polarities of the fluxons are the same as in Section 3.3.1, so the only
difference is the bias current. If the bias current is chosen to be the same in all junctions, then fluxons
and antifluxons will be driven in different directions. It is therefore expected, that mode m = 1 with
unnatural biasing for a 2 junction stack will translate into fluxons moving in an anti-phase pattern, i.e.
that the situation (ii) discussed in the beginning of this section is obtained.

In this section, the proposal from Ref. [69] will be investigated, by searching for similar modes in
stacks with more than two junctions. The procedure is simply to see if there is a fluxon mode which
corresponds to a given plasma mode. The idea is to generalize the observation in Ref. [69] of the 2
junction stack. To be more precise, there should exists a steady-state fluxon configuration in mode
m, where the relative fluxon polarities are chosen according to the scheme in Section 3.3.1. Fluxons
should move in an anti-phase manner with anti-fluxons, since the bias current drives them in opposite
directions. And finally, the velocity, v, of the fluxons should approximately belong to the interval [0, cNm].

In Fig. 3.9 it was already seen that the 2 junction stack behaves like proposed. After being encour-
aged by the 2 junction stack, the 3 junction stack is analyzed. The 3 junction stack has been investigated
by several groups[49, 58, 59, 63], since it represents a manageable non-trivial system.

The results from the 3 junction stack are presented in Fig. 3.10. This figure shows, that the lowest
mode (top) has the plasma-oscillations of junctions 1 and 3 in-phase and junction 2 anti-phase with
junctions 1 and 3. A fluxon mode where the fluxons in junctions 1 and 3 are moving together and the
fluxon in junction 2 is moving in an anti-phase manner with the fluxons in junctions 1 and 3 has been
found. The magnitude of the velocity of all the fluxons is the same, namely v = 0.79 for the parameters
used in the figure, i.e. in the range [0, c31] where, from Eq. (3.31), c31 ≈ 0.88 when S = −0.2.

Although the present section is meant as an empirical observation of a plasma mode-fluxon mode
relationship, it is noted that a careful calculation of the trajectory in the top right of Fig. 3.10 shows
that the φ2 velocity is slightly different from the φ1 and φ3 velocity, and may even exceed the c31-velocity.
Such subtleties (mostly not visible to the naked eye) are sometimes observed, but beyond the empirical
scope of the present section.

The second mode of the 3 junction stack is seen as the middle plots of Fig. 3.10. Here, the plasma-
oscillations shows, that a fluxon mode where fluxons in junctions 1 and 3 are moving in anti-phase and
junction 2 contains no fluxon should exist. This is indeed found, and the magnitude of the velocities of
the fluxons in junctions 1 and 3 are calculated to be v = 0.89, which is well below c32 when S = −0.2,
and therefore in the desired range.

The third mode predicted by the proposal was also found, and it is the well-known and very desirable
in-phase mode of the 3 junction stack, which was also discussed in Section 3.2.2. It is shown in the
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Figure 3.12: The top 4 plots are φx of the 4th mode of the 4 junction stack with natural biasing together
with the plasma-oscillations of this mode. It is hard to tell from φx, that no fluxon is present in the 1st
and 4th junctions. The bottom plot is the trajectories of the “fluxons”. Parameters for the plots are
α = 0.1, γ = −0.54, S = −0.2 and the velocity is v = 1.17.
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Figure 3.13: In mode 3 of the 5 junction stack with natural biasing, the center fluxon is found to
move slower than the outer fluxons when started in the expected anti-phase movement configuration.
This results in the configuration depicted here, where all fluxons move with the same velocity. This
configuration was not expected from the plasma oscillations. Note that the arrow marks the place of
the fluxon, and junctions 2 and 4 do not contain a fluxon, but they only contain the image from the
fluxons in junctions 1, 3 and 5. Parameters used are α = 0.1, γ = −0.53, L = 20, and S = −0.2.

bottom plots of Fig. 3.10. Again, it is found that the mode conforms to the proposal, and that the
velocity is in the desired range.

A very interesting question is now how well the proposal predicts the fluxon modes when there are
more than 3 junctions. The numerical calculations show, that it can predict many fluxon modes, but
with some discrepancies. Here, some of the modes which deviate from the proposed behavior will be
explained in detail. It must be noted, though, that in the non-predicted modes the basic symmetries of
the plasma modes still seem to be preserved.

For the 4 junction stack, the second mode deviates from what is expected. From the plasma-
oscillations, fluxons in junctions 1 and 4 should bunch and so should fluxons in junctions 2 and 3.
This is also found, but the fluxons in junctions 1 and 4 should move anti-phase with respect fluxons in
junctions 2 and 3, which is not observed. Instead, a configuration where all fluxons are almost bunched
is found. Fluxons in junctions 1 and 4 are moving together, lightly in front of the fluxons in junctions 2
and 3. All fluxons are moving with the same velocity, which is in the desired interval [0, c42]. The mode
can be seen in Fig. 3.11.

The 4th mode of the 4 junction stack deviates from the expected behavior, which was also noted
in Section 3.3.1. This is the mode which should be totally bunched, but it has been found that the
fluxons in the two outer junctions have disappeared, and instead the junctions have switched to the
McCumber-curve. Although there is no fluxon in the outer junctions, an image in the outer junctions
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from the fluxons in the middle junctions is still seen. This means, that φix looks more or less like there
is a fluxon in all the junctions, as can be seen in Fig. 3.12.

Mode 3 of the 5 junction stack should have fluxons in the two outer junctions moving in-phase and in
anti-phase with an anti-fluxon in the center junction. When the numerical simulation is started out in
this configuration, the center fluxon moves with a somewhat different velocity than the outer junctions,
and they thus do not move in an anti-phase manner. The outer fluxons move faster than the middle
fluxon, and they then, after some time, end up in the configuration depicted in Fig. 3.13, where they
move with the same velocity with a small distance between the outer-fluxons and the fluxon in the
middle junction.

In order not to go through every discrepancy in detail, the results have been summarized in Table
3.1. For up to a 7 junction stack, Table 3.1 shows the validity of the initial proposal: That it is possible
to predict a family of fluxon modes by just looking at the analytical expression of the plasma modes.
Note, that a different short-hand notation than in the previous section us used in the table to emphasize
the fluxon motion and not the fluxon polarity.

In Table 3.1 the horizontal direction gives the number of junctions in the stack, N , and the vertical
direction gives the order of the mode, with mode 1 always being the clean anti-phase mode and mode
N being the in-phase mode (at least for the plasma excitations). In each square, the right hands side
shows the plasma-mode prediction, and the left part shows the fluxon-mode obtained from numerical
simulations. The trivial case N = 1, that has both a plasma mode and a fluxon mode in agreement
with the prediction, has been omitted in Table 3.1.

Moving horizontally, the first set of squares shows the predicted anti-phase moving fluxon modes
with every fluxon moving in opposite direction to that in the neighboring junction. If the squares
are followed in the direction of the diagonal, the plasma mode prediction method suggests in-phase
fluxon modes. This is also found, except for N ≥ 4. Here the two outer junction fluxons are replaced
by a similar looking pulse (in-phase with the other fluxons) but on top of the voltage corresponding
to the McCumber curve. A different value of the inductive layer-to-layer coupling strength, S, could
presumably convert the outer pulses back to clean fluxon pulses. However, the predicted pulse geometry
is preserved, and the change is not essential to the total power output from the in-phase pulses, as will
be shown in Section 4.1. Even the squares with crosses, which indicate discrepancies, show that the
numerically obtained fluxon mode has some of the features in common with the prediction from the
linear plasma modes.

3.4 Conclusion

In this section the equations of motion for a stack of Josephson junctions were derived. The equations
were coupled non-linear sine-Gordon equations, and thus difficult to handle analytically. It was, however,
shown that some simple solutions could be found which provided insight into the dynamics of the stack.
Some of the solutions were later found numerically in a connection with a numerical experiment to see if
there exists a simple relationship between fluxon modes and plasma modes. The proposed relationship
first required the bias current to be chosen (potentially) differently for each junction in the stack. In this
case of unnatural biasing, the proposed relationship was seen to hold up quite well. The proposal was
then modified to account for a natural, or unidirectional, bias current and it was checked numerically to
see if it still could predict non-linear fluxon modes from the linear plasma oscillations. The number of
discrepancies increased and the predictive capabilities were thus diminished. However, in all cases the
fluxon modes seemed to exhibit some of the symmetries of the plasma modes. Since the investigation
was based on numerical experiments it does not provide or suggest a deep mathematical relationship
between linear and non-linear solutions of non-linear differential equations. Such a deep relationship
in the simple form presented here would seem to be a kind of a Holy Grail for non-linear science and
probably too much to ask for. The investigation does, however, suggest that one can obtain some kind of
information about non-linear solutions from the linear limit, which is likely since some of the symmetries
present in the linear equations are also present in the non-linear ones, for example φ → −φ since sinφ
is an odd function.
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Table 3.1: Summary of what have been found with natural biasing. An arrow means a fluxon, a line
means no fluxon, a dashed line means the junction is on the McCumber-curve, a dashed arrow means
McCumber with a clear image of a fluxon, × means that something is not according to the proposal, M
means that some junctions have switched to the McCumber-curve but otherwise OK and

√
means that

everything is according to the proposal. The arrows to the left of the symbols,
√

, M and ×, show the
mode found numerically, and the ones to the right show the mode expected from the proposal. A small
horizontal shift between arrows implies that the fluxon distance (away from the boundaries) in x-space
is greater than λJ , and no spacing means that the distance is much smaller than λJ .





Chapter 4

The Long Josephson Junction as an
Oscillator

The previous chapter introduced the long Josephson junction stack and looked at different types of
solutions to the equations of motion. This chapter is devoted to the use of some of these solutions to
make an oscillator in the THz regime, which is hard to make by conventional oscillator technology. The
chapter will discuss two methods for making such an oscillator. One method is trying to utilize a fluxon
shuttling back and forth in a stack, previously discussed in Section 3.2.2. The trick is then to obtain a
solution where all fluxons in the stack are moving in phase to increase the radiated power. The other
method applies a large magnetic field to the edges of the stack such that fluxons are created at one end,
traveling under the bias current to the other end where they are annihilated and radiation is emitted, i.e.
the flux-flow solution discussed in Section 3.2.3 is utilized. Due to the practical nature of this chapter,
only the case of an uniform bias current will be considered, i.e. γi ≡ γ for i = 1, ..., N .

4.1 Microwave Output

In the loss-less case with zero applied magnetic field, the fluxons are totally reflected when they arrive
at the edge of the junction, see Fig. 2.15. In reality, this does not happen. Due to the loss-term, αφt,
the fluxons may be annihilated even at zero field if the bias current is too small[70]. In addition, some
fraction of the fluxons energy is emitted out of the junction as radiation, and only if the radiated fraction
is small enough is the fluxon is reflected back into the junction, even with an applied bias current.

A greatly simplified model of this scenario is depicted in Fig. 4.1. Total voltage, V (t), over all of the
oscillators (junctions) and the power dissipated in the load resistor RL may be related for RL >> RG
as

P (t) ≈ 1

2

V (t)2

RL
. (4.1)

GR

Oscillators
N V RL

Figure 4.1: Simplified model of the stacked Josephson junction being used as an oscillator.
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size used in the in-phase mode and the bottom x-axis is the number of fluxons arriving at the boundary
at the same time in the anti-phase mode. Parameters used: α = 0.1, L = 20, and S = −0.2.

Using Eq. (3.10), the approximate expression

P (t) ∝
(

N
∑

i=1

φit(L, t)

)2

(4.2)

is obtained. This is a measure of the potential maximum output one can hope for in a stack of N
junctions. The real output is expected to be a lot smaller, but the potential maximum output may
always be maximized in order to maximize the real output.

The usual way to maximize the output is to make all the fluxons in all the junctions arrive at the
end of the stack at the same time. This is exactly what they do in the in-phase mode. It is therefore
expected that the maximum output is larger in the in-phase modes than in the anti-phase modes. Fig.
4.2 shows the total voltage squared calculated at one of the end of a stack with two junctions as a
function of time for both the anti-phase mode and the in-phase mode. It is easy to see that V 2 is much
larger for the in-phase mode. Also, note that the time between the pulses for the anti-phase mode is
about half that of the in-phase mode, in agreement with the fluxons moving in anti-phase.

In Section 3.3.2 it was shown that it is hard, if not impossible, to find the in-phase mode with
N fluxons in a stack with more than three junctions. Instead a mode where the outer junctions had
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switched to finite voltage was found. However, the image from the inner junctions in the outer junctions
showed a pulse in φit which looked much like a fluxon, although it is important to stress, that there is
no fluxon and only a voltage pulse in the outer junctions. One can now ask, if it matters to the output
of the stack, if the top and bottom junctions have switched to the McCumber-curve, when the image of
the inner fluxons in the top and bottom junctions looks like a fluxon-pulse.

In Fig. 4.3 the total voltage of the junction at x = L have been integrated over one fluxon collision
with the boundary and the square of this have been plotted for different stack sizes. Both the in-
phase modes and the anti-phase modes from Section 3.3.2 are considered. For the in-phase modes with
switched junctions, the DC-voltage due to the switched junctions has been subtracted in order to get
only the pulse. The main thing seen in the plot is, that it does not seem to matter much that the outer
junctions have switched in the in-phase modes. For ideal in-phase fluxon motion, it is expected that
the power is increasing with the square of the number of junctions. With the switched modes, it is
proportional to N1.8 for the parameters used, showing that the switched junctions only deteriorate the
output power slightly. The system with outer junctions switched to the McCumber curve is still very
useful for microwave generation in terms of available power.

One can ask what to expect if the inductive layer-to-layer coupling strength, S, is changed. For
a single junction, this coupling is not present, so the output is independent of S. It is also expected,
independently of S, that the output is growing as N2. Thus, ideally the output is expected to be largely
independent on the inductive layer-to-layer coupling strength. This being said, it is expected that it
will be slightly different though, because the number of switched junctions may depend on S. Also the
(slight) separation of the in-phase fluxons may depend on S. Altogether, the output is expected to be
relatively insensitive to S. A plot similar to Fig. 4.3 but for S = −0.4 shows very similar looking curves,
signaling the insensitivity to S. The plot is not shown.

Holding the number of fluxons arriving at the boundary fixed and looking at the anti-phase modes,
the output gets smaller when the stack size increases (going vertically at constant N in Fig. 4.3). In
the anti-phase mode, the neighboring junction of a fluxon is in some sense empty. When the stack size
is increased, more of these “empty” junctions will appear. It turns out, that the image of the fluxons
in the “empty” junctions is having a negative effect on the maximum output for the anti-phase mode.
This is easily seen in Fig. 4.4, where the images in the neighboring junction has the opposite sign of the
fluxon, thus giving rise to a decrease in the maximum output. Then, when the two fluxons in junctions
2 and 4 are hitting the boundary, they will give rise to less voltage than two fluxons of the anti-phase
mode of a 4 junction stack, because the 5 junction stack has three junctions with negative images and
the 4 junction stack only has two. This is quite the opposite of what is happening in the in-phase mode,
where the image in the switched junctions was giving more output.
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Figure 4.5: Energies given by Eqs. (4.5) and (4.8) for S = −0.2. The anti-phase bunched state is
energetically stable while the in-phase bunched state is energetically unstable.

4.2 Bunching using an External Microwave Source

As shown in the previous section, to make an oscillator is just a matter of starting a stack of many
coupled Josephson junctions out in the in-phase mode and harvest the emitted radiation. It sound
very easy, but there is at least one obstacle for doing this. When fluxons are somehow induced in the
junctions in an experimental setup, the fluxons are likely to be induced at different times in different
junction such that they do not initially move in an in-phase configuration. Thus, some way to bring
them into in-phase motion is needed.

In this section, the case of two coupled junction will be considered to show how one may bring the
shuttling fluxons from an anti-phase configuration into an in-phase configuration. To help a bit on
the analytical calculations, it is a good idea to re-normalize space in Eqs. (3.34) and (3.35) by letting
x→ (1 − S2)−1/2x giving

φxx − φtt − sinφ− Sψxx = αφt − γ , (4.3)

ψxx − ψtt − sinψ − Sφxx = αψt − γ , (4.4)

where φ ≡ φ1 and ψ ≡ φ2. These equations are simpler to work with analytically, and since they only
corresponds to a change of the length-scale they are completely equivalent to Eqs. (3.34) and (3.35).
Also, notice that the old and the new length-scales are equal up to first order in S.

The energy of the in-phase and anti-phase bunched fluxon solutions may be calculated from the
Hamiltonian,

H =

∫ L

0

dx

(

1

2
(φx)

2 +
1

2
(φt)

2 + 1 − cosφ+
1

2
(ψx)

2 +
1

2
(ψt)

2 + 1 − cosψ − Sφxψx

)

,

for the two junction stack. Straight forward insertion of Eq. (3.39) gives[62]

Hσ =
16cσ

√

1 − v2/c2σ
, (4.5)

if the integration is extended to go from −∞ to ∞ and σ = ±1. H+ is the energy of the bunched in-phase
solution and H− is the energy of the bunched anti-phase solution. Note, with the new normalization of
space the characteristic velocities are given by cσ = c± = c±1 =

√
1 ∓ S. It is worth considering how

these two energies compares to the energy of a solution with one fluxon (or anti-fluxon) in each junction
separated by some distance, r, each traveling with a velocity v. This situation may be approximated
well by the phases

φ = 4σφ tan−1 exp

(

1

cσ

x− vt− r/2
√

1 − v2/c2σ

)

, (4.6)
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ψ = 4σψ tan−1 exp

(

1

cσ

x− vt+ r/2
√

1 − v2/c2σ

)

, (4.7)

if the coupling S is small, σφ = ±1, σψ = ±1, and σ = σφσψ . Insertion into Eq. (4.5) gives[57]

Hσ(r) =
8(1 + c2σ)
√

c2σ − v2
− 8Sσφσψr

(c2σ − v2) sinh
(

r/
√

c2σ − v2
) . (4.8)

A plot of the different energies can be seen in Fig. 4.5 for S = −0.2. For the anti-phase solution
(σ = −σφ = σψ = −1) the energy for the bunched state, Eq. (4.5), is seen to be lowest and the energy
is rising if r is increased in Eq. (4.8) for σ = −1. For the in-phase solution, the opposite is true. The
bunched state (σ = σφ = σψ = 1) has the highest energy, and the energy is decreasing if the distance is
increased in Eq. (4.8) for σ = 1. This means that the bunched in-phase state is energetically unfavorable
while the bunched anti-phase is energetically favorable over an unbunched state with equal polarity[62]
and that the interaction between two fluxons of equal polarity is repulsive[57]. Due to this, it might
seem strange that the bunched in-phase state was observed numerically in Fig. 3.6, but Grønbech-
Jensen et. al. have found, by linear stability analysis, the bunched in-phase state to be stable if |v| > c−
and unstable otherwise[62]. The stability of the energetically unfavorable mode is due to Cherenkov
radiation from the incommensurate characteristic velocities, c±.

Despite the existence and stability of the energetically unfavorable bunched in-phase fluxon mode
it is not clear how to experimentally obtain such state, due to the repulsive nature of the interaction
between equal polarity fluxons. It is thus highly unlikely that an experimental situation, which is usually
initiated at low fluxon velocity, will spontaneously result in formation of a bunched fluxon state. In
fact, while several other types of excitations have been shown to exhibit both branches of in-phase and
out-of-phase modes[63, 71], direct observations of the bunched, repulsive fluxon mode are not easily
made.

In the following it is investigated how the energetically unfavorable in-phase bunched fluxon mode
can be obtained by experimentally controllable parameters. A recipe is demonstrated by which the
bunched fluxon state is produced starting from an initial energetically favorable unbunched mode of
two mutually repulsive fluxons, and explicit expressions for experimental parameters are developed,
such that this may happen in weakly coupled systems. The method is to apply an oscillating magnetic
field through the edges of two coupled junctions. Such a microwave field can phase-lock a shuttling
fluxon[72, 73], and may therefore provide an effective force between the fluxons and the microwave
phase that can overcome the repulsive force between the fluxons of the different junctions.

To model an external microwave field, the boundary conditions

φx(0) = ψx(0) = φx(L) = ψx(L) = Γ sin(Ωt) , (4.9)

are used together with Eqs. (4.3) and (4.4) for the junctions. The boundary conditions model a
microwave field with amplitude Γ and frequency Ω, both in normalized units.

Since the interest is in single fluxon modes and their interaction with an external magnetic field
acting through the junction boundaries, solutions generalizing Eq. (2.98) to two coupled junctions are
considered. The solutions[74]

φσ = 4σφ tan−1





cσ
v

sinh
(

t−τ1√
1−σS vγ(v/cσ)

)

cosh
(

x√
1−σS γ(v/cσ)

)



 , (4.10)

ψσ = 4σψ tan−1





cσ
v

sinh
(

t−τ2√
1−σS vγ(v/cσ)

)

cosh
(

x√
1−σS γ(v/cσ)

)



 , (4.11)

to the semi-infinite (L→ ∞) system describe two single fluxons moving with the asymptotic velocity v
and distance r = v (τ2 − τ1), where τ1 and τ2 are the collision times for the fluxons of φ and ψ system,
respectively. The Lorentz factor is

γ(v) =
1√

1 − v2
. (4.12)
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These functions, Eqs. (4.10) and (4.11), are exact solutions to the l.h.s. of Eqs. (4.3) and (4.4) for
L → ∞, τ1 = τ2, and Γ = 0 when φ = σψ and σ = σφσψ . Inserting the above ansatz into the
expression for the total energy clearly reveals that the σ = σφσψ = 1 solution is energetically unstable
and that σ = σφσψ = −1 provides a stable state for τ1 = τ2, like it was shown above for the case of the
single-fluxon solutions in Eqs. (4.6) and (4.7).

The ansatz for the perturbed problem will be adopted, such that the solutions for σ = −1 is used
for all cases where φ 6= ψ; thus, σφσψ = 1 will generally be assumed regardless of σ. Since the objective
of the present section is to investigate if phase-locking to an external magnetic field can force τ1 = τ2,
the phase-locking properties of the system will first be explored by adapting the wave profiles of Eqs.
(4.10) and (4.11) to the phase-locking analysis found in Ref. [73].

Phase-locking requires two conditions to be fulfilled. The first is that a fluxon must travel one half
period through the junction in the time it takes for the external ac magnetic field to complete a quarter
period (or any integer, N , multiples thereof). Defining the fluxon positions to be at φ = π and ψ = π,
the condition becomes[73]

cσ
v

sinh

(

πNvγ(v/cσ)

2Ω
√

1 − σS

)

= cosh

(

Lγ(v/cσ)

2
√

1 − σS

)

, (4.13)

from which the asymptotic velocity, v, can be determined for a given set of parameters. The other
condition is that the net flux of energy into the system must be zero when averaged over one period of
steady state motion; i.e.

∆H =

∫ t0+ πN
2Ω

t0−πN
2Ω

Ḣdt = 0 , (4.14)

where the rate of change in energy, Ḣ , is given by Eq. (3.68), yielding

dH

dt
= −α

∫

(

φ2
t + ψ2

t

)

dx+ γ

∫

(φt + ψt) dx+ (1 − S)
[

φt + ψt

]L

0
Γ sin(Ωt) , (4.15)

for the new spatial normalization. The spatial integration is understood to be over the system size.
However, because the ansatz (4.10) and (4.11) are used, which is a solution to the semi-infinite system
(L→ ∞), the spatial integrations will for mathematical convenience be completed for the semi-infinite
system when developing analytical results. The consequence of this slight inconsistency is minor since
the fluxon position is considered to be located only in the interval [0, L/2].

Inserting the ansatz (4.10) and (4.11) into Eq. (4.14) gives

∆H = −α
∫ ∫ t0+ πN

2Ω

t0−πN
2Ω

(

φ2
t + ψ2

t

)

dtdx + γI − ∆Hb , (4.16)

where the first term on the right hand side represents energy losses due to normal electron tunneling,
the second term represents the energy absorption from the bias current, I being given implicit by

sinh

(

Iγ(v/cσ)

8π
√

1 − σS

)

=
cσ
v

sinh

(

πNvγ(v/cσ)

2Ω
√

1 − σS

)

, (4.17)

and the third term is the energy exchange with the external magnetic field,

∆HB = 2κΓ sin(Ωτ0) cos(Ω
δτ

2
) , (4.18)

where τ0 = 1
2 (τ1 + τ2), δτ = τ2 − τ1, and

κ = 4π(1 − S)
cosh

(

Ω
√

1−σS
2vγ(v/cσ) cos−1

(

2 v
2

c2σ
− 1
))

cosh
(

πΩ
√

1−σS
2vγ(v/cσ)

) . (4.19)

For a given asymptotic distance, r = vδτ , between the fluxons, the condition for phase-locking is
therefore represented by

γ − γ0 = 2Γ
κ

I
sin(Ωτ0) cos(Ω

δτ

2
) , (4.20)
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with γ = γ0 for Γ = 0 and the fluxons can be phase-locked if the bias γ is in the current range

γ0 −
1

2
∆γ ≤ γ ≤ γ0 +

1

2
∆γ , (4.21)

∆γ = 4Γ
κ cos(Ω δτ

2 )

I
, (4.22)

γ0 =
α

I

∫ ∫ πN/Ω

0

(

φ2
t + ψ2

t

)

dtdx . (4.23)

In order to investigate if the phase-locked state will collapse into a bunched, r = δτ = 0, state, the
force

F = − Ω

Nπ

∫ Nπ/Ω

0

∂H

∂r
dt (4.24)

= − Ω

Nπ

(

ΩκΓ sin(Ωτ0) sin(
Ωr

2v
) +

∫ Nπ/Ω

0

∂HI

∂r
dt

)

must be evaluated for σ = −1 and with HI ≡ −S
∫

φxψxdx. F is an expression of the effective force
between the two fluxons, the first term representing the synchronizing force from the ac magnetic field
and the second term representing the inductive coupling induced fluxon-fluxon force. Steady state
dynamics must imply that F = 0 for a given steady state distance, r, between the fluxons. While
HI(r, t) can be evaluated analytically with the ansatz (4.10) and (4.11) for L → ∞, the expression
(not shown) is rather cumbersome and not suitable for explicit temporal integration. However, the
simple traveling wave solution in Eqs. (4.6) and (4.7), which is valid when the fluxons are far from the
boundaries, yields the last term in Eq. (4.8) as the interaction energy. This is a constant of motion
and easily differentiated with respect to r. Notice that this expression is used as a repulsive interaction
(σφσψ = 1) regardless of the value of σ = ±1. Assuming that the boundary effect is small, i.e., that
the time during which both fluxons interact with the boundary is small compared to the total time of
a half-period of motion,

∫

HIdt ≈
∫

H∞
I dt will be used with H∞

I being the interaction energy given by
the second term in Eq. (4.8). The transition, F = 0, is then given by

κΓ cos (Ωτ0) sin
(

Ω
r

2v

)

=
8Sσφσψπvγ

2(v/cσ)

Ω(
√

1 − σS) sinh
(

γ(v/cσ)r√
1−σS

)



1 −
γ(v/cσ) r cosh(γ(v/cσ)r√

1−σS )
√

1 − σS sinh(γ(v/cσ)r√
1−σS )



 . (4.25)

The maximum value of Γ cos(τ0Ω), necessary to ensure r → 0, is found for r = 0 (for σ = −1).
Notice, however, that the largest force between two traveling fluxons is not at r = 0, but at[57]

r0 ≈ 1.606

√
1 − σS

γ(v/cσ)
. (4.26)

For |r| ≪ 1 Eq. (4.25) gives

1

6

γ2(v/cσ) r
2

1 − σS
=

−Sσφσψ16πγ3(v/cσ) v
2

3(1 − σS)Γ cos(τ0Ω)κΩ2
− 1 , (4.27)

and for r = 0 the critical value, Γc, of the amplitude of the ac magnetic field beyond which two phase-
locked, mutually repulsive fluxons will collapse into a bunched state is obtained as

Γc = − 16Sσφσψπv
2γ3(v/cσ)

3κ(1 − σS)Ω2 cos (Ωτ0)
. (4.28)

This result shows that the ac magnetic field induced bunching of fluxons is most effective at the center
of a phase-locked step in the current-voltage characteristics, i.e. for γ ≈ γ0 since τ0 = 0. The focus will
therefore be on this case when conducting numerical simulations.

One more condition must be satisfied for inducing bunching through phase-locking; namely that
the resulting bunched state fulfills the phase-locking conditions for σ = 1 with the parameters used to
phase-lock and collapse the σ = −1 fluxons. This can be investigated directly by inserting σ = 1 and
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Figure 4.6: Distance, r, between two phase-locked fluxons as a function of magnetic field amplitude,
Γ. Continuous curves are obtained from Eq. (4.25) and markers represent the corresponding results of

numerical simulations. Parameters are: α = 0.1, γ ≈ γ
(σ=−1)
0 , Ω = 2.5/L, and S = −0.015.

δτ = 0 into Eqs. (4.21)-(4.23) and determine the threshold value Γb of the magnetic field for which the
applied bias current γ is in the phase locking range given by

γ
(σ=1)
0 − 1

2
∆γ(σ=1) ≤ γ ≤ γ

(σ=1)
0 +

1

2
∆γ(σ=1) . (4.29)

Thus, magnetic field induced bunching requires that Γ ≥ Γc and Γ ≥ Γb. It has been found that for
most relevant cases Γ ≥ Γc results in Γ ≥ Γb. Only for relatively high values of the damping parameter,
α, have the condition in Eq. (4.29) been observed to be unfulfilled.

4.2.1 Numerical Simulations

In order to verify the perturbation results above, direct numerical simulations of the coupled partial dif-
ferential equations (4.3) and (4.4) have been conducted. All simulations have been conducted with initial
conditions describing fluxons of the two different systems moving in anti-phase. Transient evolution of
> 100 periods of motion is conducted before the relative position between the fluxons is determined.

The study have been limited to γ ≈ γ
(σ=−1)
0 , since the anticipated effect is most profound in the center

of the phase-locked step.
Fig. 4.6 shows the steady state distance between two fluxons of different junctions, both phase-locked

to a magnetic field with frequency Ω = 2.5/L, as a function of the magnetic field amplitude Γ. Other

parameters are: α = 0.1, γ ≈ γ
(σ=−1)
0 , and S = −0.015. Solid curves represent the perturbation result

Eq. (4.25) (σ = −1), where κ is given by Eq. (4.19), τ0 ≈ 0, and v is given by Eq. (4.13). Markers
are the results of numerical simulations, where r = vδτ is determined from numerically measuring δτ
and evaluating the asymptotic velocity from Eq. (4.13). The figure clearly shows how the steady-state
distance between the fluxons decreases monotonically with increasing magnetic field amplitude until a
bunched state (r = 0) is obtained at Γ = Γc, where after the state remains bunched. It is clear from
the figure that the agreement between the simple perturbation treatment and the simulations results is
very good for all three system lengths. It is also noticeable that the agreement is best for the longer
junction. This is in agreement with the assumptions made in the analytical treatment. One assumption
is that the ansatz Eqs. (4.10) and (4.11) represent a half period of motion during a reflection at a
boundary. Another is that the mutual repulsion between the fluxons due to the inductive coupling can
be well described without the boundary effects. Both these assumptions are poor for a very short system
(small L). Nevertheless, very convincing agreement between perturbation results and direct numerical
simulations are shown in this figure.

The value of the magnetic field amplitude Γc, for which the mutual fluxon distance r becomes zero,
was studied in detail and the results shown in Fig. 4.7. Here, the two upper continuous curves show
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Figure 4.7: Critical magnetic field amplitude, Γc, for which phase-locked, mutually repulsive fluxons are
forced to bunch. Continuous curves represent the perturbation result Eq. (4.28) for two different applied
microwave frequencies (upper curves), and two lower curves represent the magnetic field amplitude Γb,
necessary for phase-locking the resulting bunched σ = 1 state (see Eq. (4.29)). Markers represent the

results of corresponding numerical simulations. Parameters are: α = 0.1 and γ ≈ γ
(σ=−1)
0 .

the critical field amplitude Γc as given by Eq. (4.28), for two different values of applied frequency, as
a function of the inductive coupling constant S. The two lower continuous curves represent the critical
value Γb necessary for sustaining phase-locking of the bunched state (σ = 1). All results are obtained
for α = 0.1, and the four plots show four different system lengths, L = 2.5, 5, 7.5, and 10. Markers
indicate the results of numerical simulations. As in Fig. 4.6, very consistent and good agreement
between the analytical results of the perturbation method and the direct numerical simulations over a
wide range of parameters are found. And again, the shorter systems are generally showing less good
agreement than the longer systems. It is also seen that the lower frequencies (lower velocities) seem
to produce larger discrepancies than higher driving frequencies do. This feature is again linked to the
approximation regarding the repulsive inductive coupling, since a slow fluxon will experience a relatively
longer contact time with the boundary during reflection than a fast fluxon will. This contact time is
completely neglected in the expressions leading to the continuous curves displayed in Figs. 4.6 and 4.7.
However, the consistent discrepancies observed in Fig. 4.7, for L = 2.5 and L = 5 (slow modes), are

more likely due to a poor determination of γ
(σ=−1)
0 . If the anticipated center of the phase-locked step

is not well determined, then τ0 6= 0 and all critical magnetic field amplitudes should be multiplied with
(cosΩτ0)

−1. Such a correction is consistent with the observed discrepancies in Figs. 4.7a and 4.7b.
Notice, that in spite of these observed discrepancies, the observed agreement is consistently good, and
the perturbation results seem to have predictive capabilities. Also, since the two lower continuous curves
on each of the four plots of Fig. 4.7 are well below the corresponding upper two curves, a bunched and
phase-locked σ = 1 states have indeed been produced since Γc > Γb for all displayed cases.

The method presented here should be readily applicable in an experimental setup, but one would, of
course, like to have the fluxons bunched after the microwave-signal has been turned off. The repulsive
force is increasing with the velocity of the fluxons, which is why the velocity (and, thus, frequency) must
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Figure 4.8: Model-system of a long Josephson junction coupled to a cavity. The cavity is modeled by a
RLC circuit, R being a resistor, L an inductor, and c0 a capacitor. The current in the cavity enters the
long Josephson junctions through the boundaries.

be kept relatively small in order to overcome the repulsion for not too large Γ and realistic junction
coupling, S. From Fig. 4.7 it is seen that for Γ ' 1, the numerical data stops, because the fluxons are
destroyed by the microwaves. Unfortunately, without microwaves the bunched state is only stable above
c−1[62], so all the solutions seen numerically may decay to the non-bunched state when the microwaves
are turned off; or they will accelerate to their c−1 < v < c+1 bunched steady state. Thus, to ensure a
stable bunched state after microwaves are turned off (after the “slow” bunched state has been obtained
with microwaves) one may increase the frequency of the microwaves slowly while keeping the system
in the locking range given by Eq. (4.29) until the velocity is above c−1. Then, the bunched mode will
be stable and the microwaves can be turned off. Numerically, the same effect can be accomplished by
simultaneously turning off the microwaves and increasing the bias current.

4.3 Coupling to a Cavity

The method of applying microwaves to the edge of the Josephson junction stack in the previous section
is a little artificial. The main goal is to use the junctions to generate microwaves, so it is not of practical
interest to apply microwaves to the stack to obtain the bunched fluxon state. The interest in the method
is theoretical but it would also be interesting to observe the bunched state in the laboratory and the
method provides a way of doing this. There is, however, the possibility to make a self-contained system
which itself generates the microwaves needed to obtain the bunched state. Such a system would be of
major interest to applications. If one edge of the long Josephson junction stack is inserted into a cavity,
it will radiate into the cavity which then reflects the radiation back to the stack, acting as the external
microwave source. The other end of the stack can then radiate into free space.

To really understand the Josephson junction-cavity system, one should solve Maxwell’s equations in
some dielectric outside the junctions and solve the Josephson-equations inside the junction. The electric
and magnetic fields should then be matched at the boundaries. Calculations of this sort (but not with
the same physics in mind) have been done by Tachiki et. al. in Ref. [75] and involves huge numerical
computations on the Earth Simulator in Japan, having 5120 processors and ranked as the 7th fastest
computer in the world as of November 2005[76]. Here, a simpler model will be used1, which should
show many of the essential features of the system. The model is shown in Fig. 4.8. The junctions in
the stack are coupled to a RLC circuit through one of the stack-boundaries. R is a resistance, L is
an inductance, and c0 is a capacitance. Similar models have been studied in Ref. [77], but also short
Josephson junction arrays coupled to a cavity have been studied in Ref. [78].

A Josephson junction stack with an in-line geometry has different boundary conditions than the
overlap geometry considered in this thesis. The in-line geometry as well as the overlap geometry was
considered in Ref. [47]. The boundary conditions for the in-line case are change by the current fed
through the boundaries, such that φix(0, t) = −η and φix(L, t) = η where η is the normalized current

1The calculations for this thesis were made primarily on a dual 2.8GHz Xeon system, thus a much simpler model must

be used.
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Figure 4.9: Numerical solution to Eqs. (3.20)-(3.22), (4.34), and (4.35) for L = 5, α = 0.1, γ = −0.208,
Q = 100, c = 0.0001, and Ω = 0.5 for a three junction stack operated in the anti-phase mode. Left
plot shows the beginning of the simulation where the fluxon pulses pumps up the cavity current and
the right plot is at later times when the cavity current has stabilized because losses in the cavity has
become equal to the gain due to fluxon pulses.

injected through the boundary at x = 0 and taken out at x = L. To connect the system to the cavity,
the current from the cavity-circuit into the junction is therefore modeled by the boundary conditions

φix(0, t) = 0 and φix(L, t) = ηi , (4.30)

where ηi is the current from junction number i to the cavity through the capacitor c0. In the model, the
voltage over junction i is approximated to ~φit/q. The boundary current can then be calculated from
the RLC circuit to

ηi = −c0
(

L
d3q

dt3
+R

d2q

dt2
− ~

q
φitt(L)

)

, (4.31)

where q is the charge in the cavity. By calculating the current through the inductance and the resistor
(the cavity current), the cavity equation is obtained to

L
d2q

dt2
+R

dq

dt
+

1

Nc0
q =

~

qN

N
∑

i=i

φit(L, t) . (4.32)

The equations are normalized by

t→ ω−1
0 t , q → Jc

ω0
q , Ω ≡ ωc

ω0
, Q ≡ ωcL

R
, c ≡ Nc0

cJ
, (4.33)

where ω2
c = 1/(NLc0) is the cavity frequency. The normalized equations are then calculated to

φix(0, t) = 0 , φix(L, t) =
q̇

N
− c

N2

N
∑

k=1

(

φktt(L, t) − φitt(L, t)
)

≡ ηi , and (4.34)

d2q

dt2
+

Ω

Q

dq

dt
+ Ω2q = Ω2 c

N

N
∑

i=1

φit(L, t) , (4.35)

which must be solved together with Eqs. (3.20)-(3.22).
Fig. 4.9 shows a numerical solution to Eqs. (3.20)-(3.22), (4.34), and (4.35) for L = 5, α = 0.1,

γ = −0.208, Q = 100, c = 0.0001, and Ω = 0.5 for a three junction stack operated in the anti-phase
mode. The left plot shows the initial “pumping” of the cavity current, which is changed each time a
fluxon hits the boundary. The right plot shows the situation after some time, when the cavity current
has stabilized, because the losses due to the resistance have become equal to the gain from the fluxon
pulses.

Fig. 4.10 shows a numerical solution for L = 5, N = 3, α = 0.05, S = −0.1, c = 0.0001, Q = 100, and
Ω = 0.67 for a three junction stack operated in the in-phase mode after the cavity current has stabilized.
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Figure 4.10: Numerical solution with L = 5, N = 3, α = 0.05, S = −0.1, c = 0.0001, Q = 100, and
Ω = 0.67 at two values of γ when the stack if operated in the in-phase mode.

The figure shows two different values of the bias γ. The left plot shows the three-fluxon in-phase mode
and the right-plot shows a mode where the middle junction has switched to the McCumber curve but
contains an in-phase trace from the outer junctions. The amplitude of the cavity current is almost equal
in the two cases, which signals that the switched in-phase modes discussed in Section 3.3.2 may also be
quite effective in the cavity system.

The cavity system will now be analyzed analytically. A general solution to the linear cavity Eq.
(4.35) is easily obtained to

q = c1e
m1t + c2e

m2t +
em1t

m1 −m2

∫

e−m1t
Ω2c

N

N
∑

i=1

φit(L, t)dt

− em2t

m1 −m2

∫

e−m2t
Ω2c

N

N
∑

i=1

φit(L, t)dt , (4.36)

with m1 ≡ −Ω
(

1 − i
√

4Q2 − 1
)

/(2Q) and m2 ≡ −Ω
(

1 + i
√

4Q2 − 1
)

/(2Q). c1 and c2 are constants

determined by the initial conditions. It will be assumed that q(0) = q̇(0) = 0 resulting in c1 = c2 = 0,
corresponding to the situation where the cavity charge is generated only by the Josephson stack.

As seen in the previous section, an oscillating boundary condition may phase-lock the junctions. To,
for example, see when this happens, the cavity current must be determined. The general non-linear
approach would be to use a kink-antikink collision solution for the Josephson phase in order to model
the collision with the boundary. This would make the integrals on the right hand side of Eq. (4.36) a
sum of kink-antikink collision profiles. Using this solution, the boundary current, ηi, can be calculated
and used as a boundary condition for the coupled sine-Gordon system. The phase-locking and bunching
conditions may then, for example, be calculated as in the previous section. This would, however, involve
huge analytical computations and one would most likely not be able to evaluate the resulting equations
and integrals. The situation is therefore approximated in the following way: The cavity sees the fluxons
in the stacked junctions as delta-function profiles and the Josephson stack sees the cavity as a boundary
current which is evenly divided by the junctions. The boundary current is thus approximated by

ηi ≈ 1

N

dq

dt
, (4.37)

and the solution profiles which must be used in Eq. (4.35) are approximated by “periodic” delta functions

φit(L, t) ≈
∞
∑

n=0

Aiδ

(

t− τ i − 2πn

ωi

)

, (4.38)

such that the cavity equation becomes

d2q

dt2
+

Ω

Q

dq

dt
+ Ω2q = Ω2 c

N

N
∑

i=1

∞
∑

n=0

Aiδ

(

t− τ i − 2πn

ωi

)

, (4.39)
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instead of Eq. (4.35). This approximates fluxon pulses with frequencies ωi and times of first collision
τ i arriving at times τ i + 2πn/ωi. The amplitudes Ai must be chosen such that the delta-function
approximation corresponds to a sine-Gordon fluxon.

The right hand side of Eq. (4.39) is inserted into the solution in Eq. (4.36) and the integration is
carried out, giving

q =
Ω2c

N(m1 −m1)

N
∑

i=1

∞
∑

n=0

AiH(t− τ i − 2πn

ωi
)
(

em1(t−τ i− 2πn

ωi ) − em2(t−τ i− 2πn

ωi )
)

(4.40)

for c1 = c2 = 0 with H(t) being the Heaviside step function. Insertingm1 = −Ω
(

1 − i
√

4Q2 − 1
)

/(2Q)

and m2 = −Ω
(

1 + i
√

4Q2 − 1
)

/(2Q) the cavity current, q̇, is then

dq

dt
=

Ω2c

N

N
∑

i=1

∞
∑

n=0

AiH(t̃i)e−
Ω
2Q
t̃i

(

cos

(

Ω

2Q

√

4Q2 − 1 t̃i
)

− 1
√

4Q2 − 1
sin

(

Ω

2Q

√

4Q2 − 1 t̃i
)

)

,

(4.41)

where t̃i ≡ t − τ i − 2πn/ωi is defined to shorten the expression. A large Q results in
√

4Q2 − 1 ≈ 2Q

and 1/
√

4Q2 − 1 ≈ 0, thus the sin-term in the above equation can be neglected. The result becomes

dq

dt
=

Ω2c

N

N
∑

i=1

Ai
∞
∑

n=0

H(t̃i)e−
Ω
2Q
t̃i cos

(

Ωt̃i
)

. (4.42)

At a given time, t, the Heaviside functions takes care that only pulses in the past are contributing to the
sum. In the limit t → ∞, the Heaviside functions may thus be neglected because all terms contribute
to the sum. The sum over n may now be carried out, giving

dq

dt
=

Ω2c

N

N
∑

i=1

Ai
e−

Ω
2Q

(t−τ i)
(

cos[(t− τ i)Ω] − e
πΩ

Qωi cos[(t− τ i + 2π
ωi )Ω]

)

1 + e
2πΩ

Qωi − 2e
πΩ

Qωi cos[ 2πΩ
ωi ]

, (4.43)

valid at large t. An interesting case is when the fluxon pulses are phase-locked to the cavity-frequency,
i.e. ωi = Ω for all i. This reduces the above equation to

dq

dt
=

Ω2c

N

N
∑

i=1

Ai
e−

Ω
2Q

(t−τ i) cos[(t− τ i)Ω]

1 − eπ/Q
. (4.44)

Provided that the delta-function approximation of the fluxon pulses is valid, the pulse frequency matches
the cavity-frequency and Q >> 1, the cavity current is a simple sum of exponentially damped cosine
functions, whose initial amplitude in junction number i is Nǫi with

ǫi =
Ω2c

N2

Ai

1 − eπ/Q
. (4.45)

ǫi is the amplitude of the boundary current, ηi, for the in-phase mode (τ i = τ j for i, j = 1, ..., N). The
amplitude of the boundary current in the anti-phase mode (τ i = τ i+1 − (i mod 2)π/Ω for i = 1, ..., N)
is ǫi/N if N is odd and ∼ 0 if N is even.

The amplitude of the delta-pulses, Ai, must be determined. Ai is here chosen such that a “collision”
with the boundary exchanges the same amount of energy as a fluxon would have. The energy-exchange
of a fluxon-pulse and an external microwave source was calculated in Section 4.2 for the case of two
coupled junctions. Following that calculation, the energy-exchange will be calculated for the case of N
weakly coupled junctions. The Hamiltonian of the long Josephson stack is

H =

∫ L

0

(

1

2
(φt)

Tφt +N −
(

√

cosφ
)T √

cosφ +
1

2
(φx)

TS−1φx

)

dx , (4.46)

where φ is the vector of size N with the components φi and φT is the transpose of this vector.
√

cosφ

is short for the vector whose N components are
√

cosφi. The rate of change in energy is then

dH

dt
=

∫ L

0

(φt)
T

(

− αφt + γ

)

dx+
[

(φt)
TS−1φx

]L

0
, (4.47)
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where the components of the vector γ are all equal to the bias current, γ. The last term gives the energy
exchange with the boundary. Integrating this term from t = −∞ to t = ∞ (note: φx(0, t) = 0) gives

∆Hb =

∫ ∞

−∞
(φt(L, t))

TS−1φx(L, t)dt . (4.48)

For small layer-to-layer coupling strength, S, the inverse of the coupling matrix may be expanded to
first order in S, resulting in

S−1 ≈















1 −S
−S 1 −S

. . .
. . .

. . .

−S 1 −S
−S 1















, (4.49)

and the energy exchange becomes

∆Hb =

N
∑

i=1

∫ ∞

−∞
φix(L, t)

(

φit(L, t) − Sφi−1
t (L, t) − Sφi+1

t (L, t)
)

dt , (4.50)

where two dummy-functions has been defined as φ0(x, t) ≡ φN+1(x, t) ≡ 0.
From the simplified boundary condition in Eq. (4.37) and the cavity current, Eq. (4.44), φix(L, t)

becomes a sum of damped cosines. The case of a high Q cavity is considered, so the exponential damping
of the cosines is negligible during the collision with the boundary, yielding

φix(L, t) ≈ ǫi cos[Ω(t− τ i)] . (4.51)

For the δ-function approximation, a single collision at time τ i gives

φit(L, t) = Aiδ
(

t− τ i
)

(4.52)

Inserting this and φx(L, t) from Eq. (4.51) into Eq. (4.50), the energy change for a collision becomes

∆Hδ
b =

N
∑

i=1

∫ ∞

−∞
ǫi
(

Aiδ(t− τ i) − SAi−1δ(t− τ i−1) − SAi+1δ(t− τ i+1)
)

cos[Ω(t− τ i)]dt

=
N
∑

i=1

ǫi
(

Ai − SAi−1 cos[Ω(τ i − τ i−1)] − SAi+1 cos[Ω(τ i − τ i+1)]
)

, (4.53)

with A0 = AN+1 ≡ 0.
The case of a fluxon colliding with the boundary is now calculated. Such a collision is modeled by a

fluxon-antifluxon collision at times τ i, thus

φi(x, t) = 4σi tan−1





c−
v

sinh
(

vγ(v/c−)
c−

(

t− τ i
)

)

cosh
(

γ(v/c−)
c−

(x − L)
)



 , (4.54)

where γ(v) is given by Eq. (4.12), σi = ±1, and c− is the lowest characteristic velocity, given by
(c−)2 ≈ 1 + 2S cos(π/(N + 1)) to first order in S. The collision profiles are exact solutions to Eqs.
(3.20)-(3.22) with α = γ = 0 in the cases N = 1, N = 2, and “N = ∞” when σi = −σi+1 for
i = 1, ..., N . Between these values of N they provide good approximations for small S. They will in the
following be used for σi = 1 for all i. Inserting the fluxon profiles into Eq. (4.50) gives

∆HFluxon
b =

N
∑

i=1

∫ ∞

−∞
ǫi
(

f i(t) − Sf i−1(t) − Sf i+1(t)
)

cos[Ω(t− τ i)]dt where (4.55)

f i(t) =
4v2γ(v/c−)

(c−)2

cosh
(

vγ(v/c−)
c−

(t− τ i)
)

v2

(c−)2 + sinh2
(

vγ(v/c−)
c−

(t− τ i)
) for i = 1, ..., N (4.56)
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Figure 4.11: Amplitude of the cavity current in Eq. (4.43) with amplitude, A1, given by Eq. (4.59) for
L = 5, Ω = 0.55, Q = 100, c = 1, α = 0.1, and N = 1. Shown is also the asymptotic velocity from Eq.
(4.13) (with Ω = ω).

and f0 = fN+1 ≡ 0. Carrying out the integration, the result becomes

∆HFluxon
b =

N
∑

i=1

ζǫi
(

1 − S cos[Ω(τ i − τ i−1)] − S cos[Ω(τ i − τ i+1)]
)

where (4.57)

ζ = 4π
cosh

(

c−
2vγ(v/c−)Ω cos−1

(

2 v2

(c−)2 − 1
))

cosh
(

c−
2vγ(v/c−)Ωπ

) . (4.58)

Equating ∆Hδ
b with ∆HFluxon

b , the amplitudes which give the correct energy-exchange of the δ-
function approximation may be found. Unfortunately, there is only one equation for the N unknown
amplitudes Ai. However, since the junctions are weakly coupled, it may be assumed that all Ai are
equal, A ≡ Ai. The single amplitude is then determined to

A = ζ = 4π
cosh

(

c−
2vγ(v/c−)Ω cos−1

(

2 v2

(c−)2 − 1
))

cosh
(

c−
2vγ(v/c−)Ωπ

) . (4.59)

The asymptotic velocities of all the fluxons, v = vi, can be determined from Eq. (4.13) with cσ = c−
and σ = 1.

Fig. 4.11 shows a plot of Eq. (4.43) for a single junction with t = τ1, amplitude, A1, given by Eq.
(4.59) and v given by Eq. (4.13) with cσ = c−, σ = 1, and ω1 ≡ ω. Two resonances are seen in this plot.
One when Ω = ω and one when Ω = 2ω. It is easy to see from Eq. (4.43) that resonances exist when
Ω = mω where m ∈ N

+. Only m = 1 and 2 are visible in the figure, since at very low fluxon-frequencies
the asymptotic velocity goes to zero and the fluxon can therefore not phase-lock to the cavity frequency.
The numerical calculations presented in the following are only for m = 1.

Shown in Fig. 4.12 is a comparison of Eq. (4.43) with a full numerical simulation of the system
in Eqs. (3.20)-(3.22) with boundary conditions given by Eqs. (4.34) and (4.35) for N = 1, α = 0.1,
c = 0.0001, Q = 100, and Ω = 0.5, 0.55, and 0.6. The numerical data is generated by scanning a range
of the bias current, resulting in different fluxon frequencies, ω1 ≡ ω. The simulation is allowed to run
for a fixed time, large enough to potentially stabilizing the cavity current. The power spectrum of the
voltage at x = L, φit(L, t), is then calculated and the dominant frequency is used as the fluxon frequency
ω. The maximum value of the cavity current obtained near the end of the simulation is then plotted as
a function of ω. To find the theoretical curve, Eq. (4.43) is solved numerically for to find its maximum
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Figure 4.12: Comparison of Eq. (4.43) (line) with a full numerical simulation (markers) of the system in
Eqs. (3.20)-(3.22) with boundary conditions given by Eqs. (4.34) and (4.35) for L = 5, N = 1, α = 0.1,
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Figure 4.13: Comparison of Eq. (4.43) (line) with a full numerical simulation (markers) of the system in
Eqs. (3.20)-(3.22) with boundary conditions given by Eqs. (4.34) and (4.35) for L = 5, N = 3, α = 0.1,
S = −0.1, c = 0.0001, Q = 100, and Ω = 0.5 when the fluxons are moving in the anti-phase mode.

value, which is plotted as a function of ω. The agreement is seen to be extremely good. The amount of
coupling to the cavity, c, has been chosen to be small such that the fluxons does not phase-lock to the
cavity current, allowing for an easier change of fluxon frequency, ω.

For three junctions Fig. 4.13 shows another comparison between Eq. (4.43) and a numerical sim-
ulation. The three fluxons are moving in the anti-phase configuration shown in the top of Fig. 3.10.
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Figure 4.14: Numerical solution with L = 4, N = 3, α = 0.1, S = −0.005, c = 0.015, Q = 100,
and Ω = 0.6. The cavity current becomes large enough to overcome the fluxon-fluxon repulsion. The
theoretical curve is made by assuming r = 0, resulting in the discrepancies for ω > 0.62. The calculation
did not succeed in obtaining ω = 0.6.

Parameters for the numerical simulation are L = 5, N = 3, α = 0.1, S = −0.1, c = 0.0001, Q = 100, and
Ω = 0.5. To model the anti-phase motion, τ1 = τ3 = 0 and τ2 = π/Ω were chosen in Eq. (4.43). This
makes the maximum height of the resonance 1/3 of the amplitude it would have been for the in-phase
mode (τ1 = τ2 = τ3). The agreement between the analytical and numerical results is again very good.
The maximum value of the resonance is a little too high. This must be because of the inductive coupling
and the assumptions that |S| is small made in the derivation of Eq. (4.43). Another assumptions was,
that the amplitudes, Ai, in Eq. (4.53) were all equal which is probably not true, as, for example, the
amplitudes of the plasma oscillations are a factor of

√
2 different from the center to the outer junctions,

see Fig. 3.3.
The real interest in the cavity system was to make a self-contained fluxon-bunching mechanism. To

illustrate that this can be done, Fig. 4.14 shows a calculation with L = 4, N = 3, α = 0.1, S = −0.005,
c = 0.015, Q = 100, and Ω = 0.6. Note the large value of c in order to overcome the fluxon-fluxon
repulsion. The fluxons are initiated in an anti-phase motion and the bias current is scanned to alter the
fluxon frequency. For high fluxon frequency, ω, the cavity current is small and the distance between the
center fluxon and the outer fluxons, r(ω), is large. As the frequency approaches the cavity frequency,
Ω = 0.6, the cavity current increases and the fluxon distance decreases. Near ω = 0.6 the fluxons are
only separated by a distance of ∼ 0.1 from the center fluxon to the outer fluxons and the state can thus
be considered to be bunched. The calculation did not succeed in obtaining the center of the resonance,
ω = 0.6. The analytical curve in Fig. 4.14 is made after the assumption that the fluxons are in the
bunched state, which holds up when r ≈ 0. This gives the minor discrepancies when ω > 0.62 and r is
large.

4.4 Flux-Flow Oscillator

When a magnetic field is applied along the layer direction it may generate Josephson vortices in the
junctions, resulting in a Josephson vortex lattice. Recently, the dynamic properties of this lattice in
BSCCO have been the subject of extensive experimental research[79, 80, 81]. Quite typically magnetic
field oscillations of the flux flow voltage or the flux flow resistance with either a Φ0 or a Φ0/2 periodicity
(in applied field times layer area) has been observed. A straight forward explanation of such periodicities
can be obtained by looking at the lattice structure. The vortex lattice is driven along the layers by the
Lorentz force from an applied bias current. Since this vortex flow gives rise to a voltage, a periodic
oscillation (in magnetic field) of the flux flow voltage can be expected. If fluxons in each junction
leave simultaneously (Φ0 periodicity) it may be an indication of a square vortex lattice (in-phase vortex
configuration). If, on the other hand, a Φ0/2 period is observed it may be an indication of a triangular
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vortex lattice[79] (anti-phase vortex configuration). The crucial test for this explanation is of course a
direct measurement of the frequency and power of the electromagnetic radiation emitted by the vortices
leaving the sample. As shown in Fig. 4.3 for the fluxon modes, the emitted power of in-phase oscillations
is much greater than that of anti-phase oscillations.

Attempts to fabricate a microwave oscillator based on the in-phase motion (square lattice) of vortices
in single crystals of the Bi2Sr2CaCu2Ox type has been reported[81]. The frequency range is typically in
the THz range which makes the ideas potentially very interesting but, at the same time, experimentally
difficult to verify. So far, no direct measurement of emitted THz radiation has been reported.

In Ref. [82] a numerical simulation was done for a single long Josephson junction. Both periodicities,
Φ0 and Φ0/2, were observed, very similar to experiments and numerical simulations on stacks. Since the
concepts of square and triangular vortex lattice have no meaning in a single junction, it was concluded
that there is no direct connection between the periodicity and the vortex lattice ordering. This was also
confirmed by numerical simulations on 3 and 10 layer stacks[83]. In Ref. [82], the origin of both the Φ0

and the Φ0/2 oscillations was identified as being due to the Fiske modes[37, 84] discussed in Sections 2.6
and 3.2.3. See also right plot of Fig. 2.16 for a similar calculation, but showing only one of the periods
(at high Γ).

In this section, numerical calculations trying to illuminate the conditions for the formation of a
square vortex lattice in Josephson junction stacks are presented. By looking directly at the phases of
the individual junctions, it is possible to unambiguously identify the lattice structure in the voltage vs.
applied magnetic field characteristics.

The simplest case having both in-phase and anti-phase flux flow modes is the case of two coupled
junctions. Flux-flow modes in this system were considered analytically in Section 3.2.3. The main result
was the current-voltage characteristic given by Eq. (3.69), originally derived by Grønbech-Jensen et. al
in Ref. [65]. Following Ref. [82] for the case of a single junction, Eq. (3.69) may be solved numerically
to yield the ω − Γ characteristic at constant bias current, which is often measured in experiments.
Unlike the case of a single junction, an undetermined phase difference, v0, enters the calculations in
the case of two coupled junctions. Since fluxons in different junctions repel each other (see Section 4.2
and Ref. [85]), the intuitively most stable configuration of a fluxon lattice is when the fluxon-fluxon
distance is largest, i.e. the anti-phase vortex configuration corresponding to v0 = π/2. Nevertheless, the
in-phase vortex configuration, corresponding to v0 = 0, has even in zero magnetic field been shown to
be dynamically stable[86], and it is also the most interesting configuration for applications. In Fig. 4.15,
the ω(Γ) curve have been plotted for both cases, by solving Eq. (3.69) iteratively. Starting at Γ = 50
and then solving Eq. (3.69) numerically to obtain ω, using ω = γ/α as an initial value (as ω(Γ) → γ/α
for Γ → ∞). Then Γ is slightly decreased and the previously found value of ω is used as an initial value
for the numerical solution of Eq. (3.69) with the new and smaller value of Γ. This is repeated until
Γ = 0 is reached. In the plots, Γ = nπ/L (n = 0, 1, ...), are marked by vertical lines, corresponding to
the different Fiske steps. For large Γ, a periodic behavior with a period of 2π/L is seen. At low values of
Γ some complex behavior, especially for v0 = 0, is evident. Oscillations with period π/L are not seen in
these plots. This is probably due to the small length. It is important to note, that the 2π/L oscillations
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Figure 4.16: 2 junctions, L = 2.5, and γ = −0.5. Average voltage, V (Γ) (top left), and dynamic
resistance, dV (Γ)/dγ (top right) obtained by a numerical simulation of Eqs. (3.20)-(3.23). Lower plots,
(a)-(h), show cos(φi) at selected values of Γ. Vertical lines at Γ = nπ/L, n = 0, 1, .... Other parameters:
α = 0.1 and S = −0.4. The in-phase fluxon configuration is observed in the range of magnetic field
between (c) and (d).

is seen for both the in-phase (v0 = 0) solution and the anti-phase (v0 = π/2) solution.
Starting with φi = 0 (i = 1, ..., N) and Γ = 0, Eqs. (3.20)-(3.23) have been solved numerically from

t = 0 to tm. Γ is then increased slightly, keeping all other parameters fixed. With the previous solution
as initial conditions, a new solution is generated, again from t = 0 to tm. This is repeated until a
maximum value of Γ is reached. Taking care that tm is large enough for the system to reach a possible
steady state at each value of Γ, the voltage vs. applied magnetic field characteristic of the system is
obtained. Since the individual voltages,

ωi = lim
t→∞

1

L(t− t0)

∫ t

t0

∫ L

0

φit(x, t
′)dxdt′ , (4.60)

can not be assumed to be identical for all junctions, the average voltage

V ≡ 1

N

N
∑

i=1

ωi , (4.61)

has been computed. To get a feeling of the total number of fluxons in the system, the phase difference,

∆φ ≡
N
∑

i=1

(

ϕi(L) − ϕi(0)
)

, (4.62)

is also calculated using

ϕi(x) ≡ lim
t→∞

1

t− t0

∫ t

t0

dt′φi(x, t′) . (4.63)

∆φ is approximately 2π times the number of fluxons in the system.
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dV (Γ)/dγ (right) obtained by a numerical simulation of Eqs. (3.20)-(3.23). Vertical lines at Γ = nπ/L,
n = 0, 1, .... Other parameters: α = 0.1 and S = −0.4. In-phase vortex configuration is observed, but
at higher values of Γ than for the higher bias current case shown in Fig. 4.16.

Fig. 4.16 presents the results of the above method used on two stacked junctions. To investigate
in detail what happens in the characteristics, cos(φi) is plotted for each junction at selected values of
Γ and at a selected value of t close to tm. Marked on these figures are the points cos(φi) = −1, which
approximates the position of a fluxon. Thus, the fluxon configuration can directly be seen at different
places in the V −Γ characteristic. For very low magnetic field (a), there are no fluxons in the junctions.
At some small field (b), Γ ∼ 2, fluxons start to enter the junctions and a large increase in the average
voltage is observed. The fluxons are in an anti-phase configuration. Increasing the field a little more
to point (c), the voltage drops a little and the two fluxons in the junctions have re-arranged themselves
from the anti-phase configuration to the in-phase configuration. Increasing the field to (d), more fluxons
enter the junctions, until another drop in the voltage is observed at point (e), where the fluxons have
jumped from the in-phase configuration to the anti-phase configuration. As the field is increased to
point (e), the voltage remains essentially constant but more and more fluxons enter the system in an
anti-phase configuration. At point (g), the voltage jumps up to about γ/α and from here-on, the 2π/L
oscillations appears and the fluxon always seem to be in an anti-phase configuration (h). Note that the
2π/L-oscillations appears when the phases seem approximately linear as a function of x. Judging from
these calculations, this happens when ∆φ/(2πLN) ≈ 1, i.e. when the length pr. fluxon pr. junction is
about unity.

Fig. 4.17 presents the V −Γ characteristic for a system with identical parameters as the one in Fig.
4.16, but with a smaller bias current, γ = 0.2. For large magnetic field the 2π/L-oscillations are seen,
and they start at a value of Γ which is a little smaller than it was for the case with γ = −0.5. Again,
the in-phase configuration of the vortices is observed, but for a different region of Γ, though still for Γ
below the 2π/L oscillation regime.

A calculation similar to the one in Fig. 4.16 but with L = 5 is shown in Fig. 4.18. First, no fluxons
are induced by the magnetic field and as the magnetic field is increased, the fluxons start to enter in a
triangular lattice. For a little higher value of Γ the fluxon lattice shifts to a square lattice. The values
of Γ where the square lattice is observed has moved up as compared to the L = 2.5 case, but the size of
the Γ-range is almost identical. Increasing the magnetic field, the lattice shifts back to the triangular
lattice and for even higher values of Γ the periodic oscillations are observed.

The phase difference, ∆φ, in Figs. 4.16 and 4.18 shows an almost linear dependence on Γ, though
small jumps on the curve can be observed. This fits well with Eqs. (3.54) and (3.55), which gives
∆φ ≈ NLΓ, neglecting δφi. Since ∆φ increases almost linearly, the fluxon entry happens almost
continuously. The plot of dV dΓ in the top right of Fig. 4.18 shows the difference ∆φ−2LΓ which is due
to the δφi’s in Eqs. (3.54) and (3.55). The seemingly most interesting region is the region of in-phase
fluxon motion. Here, the measure ∆φ − 2LΓ is large for some values of Γ and non-linear effects may
therefore be important for the formation of the square lattice.

In Fig. 4.19, the length of the system has been increased to L = 10. This gives room for more
fluxons in each junction. A large magnetic field shows again the 2π/L-oscillations. In contrast to the
short systems in Figs. 4.16 and 4.17 the in-phase mode is only observed for a high value of the bias
current, and even here the range of magnetic field where the in-phase mode is observed is severely
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Figure 4.18: 2 junctions, L = 5, and γ = −0.5. Average voltage, V (Γ) (top left), and dynamic resistance,
dV (Γ)/dγ (top right) obtained by a numerical simulation of Eqs. (3.20)-(3.23). Lower plots, (a)-(g),
show cos(φi) at selected values of Γ. Vertical lines at Γ = nπ/L, n = 0, 1, .... Other parameters: α = 0.1
and S = −0.4.

shortened as compared to the L = 2.5 and L = 5 systems. The in-phase mode starts at Γ ≈ 3 and
ends at Γ ≈ 3.7. For slightly higher values of Γ, the in-phase mode starts to become erratic. The
square lattice is not observed for some Γ-values in this range, but a slight increase in Γ may change
the structure of the lattice completely. This is also evident from the dynamic resistance plot, where the
region labeled “Partial in-phase” shows large peaks, signaling instability.

4.4.1 More Junctions

In order to use stacked Josephson junctions for oscillators in applications, the power of the emitted
radiation must be high. One way to obtain this is by increasing the number of junctions in the stack
and operating the stack in the in-phase mode. As it was shown in the previous section, the square lattice
is most easily obtained for a short system and a high bias current. Shown in Fig. 4.20 are calculations
on systems with 5, 7, and 10 junctions. The overall picture is the same as two junctions, but some
added complexity arising from the extra degrees of freedom is found. Fluxons enter around Γ = 2 and
at high values of Γ the 2π/L oscillations are found, with the fluxons always arranged in a triangular
lattice. Between these two values, complicated behavior is observed. Here the vortex-lattice is not very
rigid due to the low fluxon density and it may be distorted considerably by the perturbations arising
from the boundaries. In this “intermediate” region the lattice is quite erratic, but usually arranged in a
triangular fashion due to the repulsiveness of the fluxons. But typically, a small region of Γ-values shows
the interesting square lattice. Unfortunately, this region seems to become smaller when the number of
junctions is increased, at least for the finite number of calculations that have been done here. Also,
looking at the plots in Fig. 4.20 it is seen, that for the cases of 7 and 10 junctions, the fluxon density in
the range of the in-phase configuration is seemingly below one fluxon per junction, while for the cases
of 2 (Fig. 4.16) and 5 junction it may be higher. The plots of the individual phases do, however, show
one fluxon in each junction arranged in the in-phase configuration for 7 (bottom of Fig. 4.21) and 10
(not shown) junctions. Unlike the case of N = 2 where the fluxons are exactly identical in the in-phase
configuration, the fluxons for N > 2 in the in-phase configuration shows some dissimilarities and they
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Figure 4.19: 2 junctions, L = 10. Average voltage, V (Γ) (left), and dynamic resistance, dV (Γ)/dγ
(right) obtained by a numerical simulation of Eqs. (3.20)-(3.23). Vertical lines at Γ = nπ/L, n = 0, 1, ....
Parameters used: L = 10, α = 0.1, γ = −0.2 (top) and −0.5 (bottom), S = −0.4. Only for the high
value of the bias current is the in-phase configuration observed.

may be positioned very slightly out of phase, see right plot of Fig. 4.21. Also, since the fluxon density
per junction, where the in-phase configuration is observed, decreases with an increase in the number of
junctions, it is concluded that the system is having trouble phase-locking a large number of fluxons.

In the plots for N = 7 and N = 10 in Fig. 4.20, the in-phase configuration is observed close to the
first fluxon entry. Since the numerical code is started with φi = 0 for i = 1, .., N at Γ = 0, one might
suspect that the in-phase configuration is, in these cases, only obtained due to the symmetry of the
initial conditions. Shown in Fig. 4.21 is cos(φi) for Γ = 1.6 and Γ = 1.8 taken from the calculations
with N = 7 in Fig. 4.20. Before the in-phase configuration is obtained at Γ = 1.8, there is a transition
from zero fluxons to a state, at Γ = 1.6, where only some of the junctions contains fluxons, thus the
“in-phase symmetry” of the initial conditions has been broken.

Calculations on longer junctions and different values of the bias current have been made but not
shown. The larger length allows for more “freedom” in the region of low fluxon density, giving rise to
even more complicated characteristics. For high values of the magnetic field the system always seem
to exhibit 2π/L oscillations with the fluxons always arranged in a triangular lattice, and the longer
junctions seem to be less likely to exhibit in-phase configuration, like in the case of two junctions
considered in the previous section.

4.5 Conclusion

This chapter has looked at the long Josephson junction stack as an oscillator and different techniques
was discussed. First, the available power for output was calculated using the different fluxon modes
found in Section 3.3.2. Not surprisingly, the in-phase fluxon modes showed by far the largest available
power. It was also shown, that it does not matter much whether the outer junctions have switched to
finite voltage. This could be important for applications, since the in-phase mode with one fluxon in each
junction is hard to obtain, even in numerical simulations. The result in Section 4.1 shows that other
possibilities may be just as good.
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The problem of obtaining a bunched fluxon state was discussed in Section 4.2. The desirable bunched
fluxon-fluxon mode is energetically unfavorable, but may be stable once formed. It was shown, that
by applying microwaves to a pair of weakly coupled junctions, the bunched in-phase solution may be
obtained. The method had, however, some flaws. The trick was to apply microwaves to get the bunched
state, but generally one would like to use the bunched state to obtain microwaves. The fluxons had to
move quite slowly for the repulsive interaction to be small enough to be canceled by the force due to the
applied microwaves. This resulted in a bunched state which was only stable when phase-locked to the
microwaves. Turning the microwaves off, the fluxons would drift apart. In addition to these problems,
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the method only worked for weakly coupled junctions, and it is not applicable to intrinsic stacks such
as BSCCO which has a large coupling parameter, S.

The problems connected with the use of microwaves to obtain the bunched state was solved in Section
4.3 by coupling the stack to a cavity. In the weak coupling limit, the current in the cavity was calculated.
The analytical solution showed generally good agreement with numerical simulations. It was also shown
that the cavity may induce fluxon bunching in a weakly coupled stack of long Josephson junctions. Since
the method only works for weakly coupled junctions, it still can not induce fluxon bunching in intrinsic
stacks.

The last section looked at the flux-flow solutions. These solutions arise when a large magnetic field
is applied to the edges of a long Josephson stack. The voltage and dynamic resistance as a function
of an applied magnetic field for Josephson junction stacks with different parameters were calculated
numerically. By looking at the individual phases of the junctions, it was possible to clearly distinguish
between in-phase (square lattice) and anti-phase (triangular lattice) vortex configurations. The system
was mostly found to have a triangular vortex lattice, or a similar non-coherent vortex configuration.
The square lattice was observed in some systems. Small length, high bias current, and a low number of
junctions seemed to enhance the conditions for a square lattice, which was observed only for some values
of the magnetic field. The structure of the vortex lattice was found not to be connected to oscillations
in the voltage vs. magnetic field curves.



Chapter 5

Two-Gap Superconductivity

The discovery of two-gap superconductivity in MgB2[12, 87] has created a lot of interest in this subject,
both experimentally[88] and theoretically[89, 90, 91, 92]. This chapter deals with the theoretical side of
the problem. One may attack this problem from different angles, using either two-gap BCS theory or
a simpler approximate theory. There has been different proposals for approximate theories describing
two-gap superconductivity which can all be derived from the microscopic theory. One proposal is a
generalization of the Ginzburg-Landau theory to contain two order parameters[89]. In other works it
is stated that the generalized Ginzburg-Landau theory does not work for MgB2, because of the specific
nature of the two energy gaps present in this compound. Thus a more general approximate theory has
been derived[90, 91].

Here, the generalized Ginzburg-Landau theory will be used to investigate topological defects in
two-gap superconductivity. Using this approach, one may immediately identify some of the differences
between one- and two-component superconductivity. Also, one may be guided by some of the many
results already found in the one-component theory and similar field-theories. Although anisotropy plays
an important role in MgB2, the effects of anisotropy will not be considered in this thesis.

The long list of physical systems where topological defects plays an important role includes such
seemingly different fields as superconductivity[28], cosmology[24], and singular optics[93], to name a
few. The most famous topological defect in superconductivity is without doubt the Abrikosov vortex.
In cosmology, topological defects in the form of vortices have been considered as the seed of galaxy
formation by their gravitational field in various different gravitational theories[25]. In singular optics,
optical vortices[95] has been considered in connection with pattern formation in lasers[94]. The study of
topological defects in field theoretic models are thus of broad physical interest, and the present chapter
should also be interesting to people outside the field of superconductivity.

5.1 The Two-Component Ginzburg-Landau Theory

A two-gap superconductor has two different charge carriers (Cooper-pairs) due to the presence of two
different energy gaps. Since the Ginzburg-Landau theory describes one charge carrier by a charged
complex scalar field (order parameter) it seems natural that the two-gap version should have two such
order parameters, ψ1 and ψ2. Since the Cooper-pairs come from two different energy bands, it is likely
that there should be a coupling between these two order parameters, describing the tunneling of Cooper-
pairs from one order parameter to the other. This is precisely what is found in Ref. [89], which derives
the two-component Ginzburg-Landau theory from the two-gap BCS theory. The free energy functional
may be written as[89]

G =

∫

Ω

d3R

(

1

2m1

∣

∣(i~∇ + qA)ψ1

∣

∣

2 − α1|ψ1|2 +
β1

2
|ψ1|4

+
1

2m2

∣

∣(i~∇ + qA)ψ2

∣

∣

2 − α2|ψ2|2 +
β2

2
|ψ2|4 (5.1)

− η (ψ∗
1ψ2 + ψ1ψ

∗
2) +

(Ba − B)
2

2µ0

)

,

where η is strength of the direct tunneling between the order parameters, also called the Josephson
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coupling. There are four parameters, αi and βi, where the αi’s are dependent on temperature, like in
Eq. (2.2), such that each of the two fourth order potentials behave like in Fig. 2.1. Note, that since the
two types of charge carriers are both Cooper-pairs, the charge of both order parameters is q = 2e.

To work analytically with the two-component Ginzburg-Landau theory, it is a good idea to normalize
it first. This will be done using the transformations

ψi →
√
mi

~

√

a1

b1
ψi , αi →

~
2

mi
ai , βi →

~
4

m2
i

bi , x→ ξ1x , A → ~

qξ1
A , η → 2~

2a1√
m1m2

η , (5.2)

where i = 1, 2 and ξi ≡
√

~2/(2miαi) = 1/
√

2ai is the coherence length of the i’th order parameter.
The free energy functional then becomes

G ∝
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− η (ψ∗
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κ2
1

2
(Ba − B)2

)

,

where a ≡ a2/a1, b ≡ b2/b1, and κi ≡ λi/ξi is the Ginzburg-Landau parameter for the i’th order
parameter, using λi ≡

√

miβi/(µ0q2αi) =
√

~2bi/(µ0q2ai) as the London penetration depth of the i’th
order parameter. Note that the new parameters, a and b, are also given by a = ξ21/ξ

2
2 and b = κ2

2/κ
2
1

and hence a/b = λ2
1/λ

2
2. From the normalized free energy functional, the partial differential equations

for the order parameters and the magnetic field may be obtained by variational calculus to

(

i∇ + A
)2

ψ1 − ψ1 + |ψ1|2ψ1 − 2ηψ2 = 0 in Ω , (5.4)
(

i∇ψ1 + Aψ1

)

· n = 0 on ∂Ω , (5.5)

(

i∇ + A
)2

ψ2 − aψ2 + b|ψ2|2ψ2 − 2ηψ1 = 0 in Ω , (5.6)
(

i∇ψ2 + Aψ2

)

· n = 0 on ∂Ω , (5.7)

κ2
1∇× B =

i

2
(ψ1∇ψ∗

1 − ψ∗
1∇ψ1 + ψ2∇ψ∗

2 − ψ∗
2∇ψ2) −

(

|ψ1|2 + |ψ2|2
)

A ≡ J in Ω , (5.8)

B = Ba on ∂Ω . (5.9)

The equations of course look very similar to Eqs. (2.4)-(2.7) of the ordinary Ginzburg-Landau theory.
But there are interactions between the two order parameters, both directly through the Josephson
tunneling term and indirectly through the magnetic field. Even without any of these two interactions,
new effects arise because of the extra degrees of freedom in the system. The theory is thus not a trivial
generalization of the Ginzburg-Landau theory and deserves some interest.

To find an analogue of the Meissner-solution for the two-component theory, it is assumed that ψ1

and ψ2 are real constants and there is no magnetic field, A = 0. This gives the two coupled algebraic
equations

(

1 − ψ2
1

)

ψ1 + 2ηψ2 = 0 , (5.10)
(

a− bψ2
2

)

ψ2 + 2ηψ1 = 0 , (5.11)

which may be solved to obtain the constant values of ψ1 and ψ2 when the two-component superconductor
is in the Meissner-phase. The general solution is quite cumbersome and will now be shown. Instead,
Fig. 5.1 shows the “potential”

VM (ψ1, ψ2) = −1

2
ψ2

1 +
1

4
ψ4

1 − a

2
ψ2

2 +
b

4
ψ4

2 − 2ηψ1ψ2 , (5.12)

to which the solutions of Eqs. (5.10) and (5.11) are the extrema. It is evident that for η = 0, the minima
are at ψ1 = ±1 and ψ2 = ±

√

a/b, which gives VM = − 1
4 (1 + a2/b) at these 4 minima. The “potential”

is thus four times degenerate when η = 0.
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Figure 5.1: The Meissner solution corresponds to the minima of the potential VM in Eq. (5.12). Top
Left: a = b = 1 and η = 0. Top Right: 4a/3 = b = 1 and η = 1/2. Bottom Left: a = 4b/3 = 1 and
η = 0. Bottom Right: a = b = 1 and η = 1/8

For the case with a = b = 1 and non-zero η the four minima of VM are easily found to

ψ1 = ±
√

1 + 2η = ψ2 with VM = −1

2
(1 + 2η)2 , (5.13)

ψ1 = ±
√

1 − 2η = −ψ2 with VM = −1

2
(1 − 2η)2 . (5.14)

Note, that VM no longer contains four equivalent minima since the value of VM for ψ1 = ψ2 is different
than for ψ1 = −ψ2. The four fold degeneracy present in the η = 0 case is thus broken into a two fold
degeneracy by the η term and when |η| > 1/2 two of the minima disappear completely. VM for η = 1/8
and a = b = 1 is shown in Fig. 5.1 as the bottom right plot.

The two- and four-fold degeneracy shown in Fig. 5.1 is only a simplified version of the true situation
in the two-component Ginzburg-Landau theory, because in the general case the order parameters are
complex numbers. This makes plots equivalent to Fig. 5.1 five dimensional. The extension from 3d to
5d is not as complex as it may seem, because the free energy functional in Eq. (5.3) is invariant under
the gauge transformation

ψ1 → eiα(x,y,z)ψ1 , ψ2 → eiα(x,y,z)ψ2 , A → A + ∇α(x, y, z) , (5.15)

where α(x, y, z) is some real function depending on the spatial variables. For zero magnetic field, A = 0,
the above transformation corresponds to a rotation of the order parameters in the complex plane. Each
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minimum in Fig. 5.1 thus becomes a circle of degenerate minima in the five dimensional complex
analogue of the plots. In reality, the theory is not two or four times degenerate but has an infinite
number of degenerate minima.

The situation with flux-quantization is somewhat different from the one-component model[96]. Con-
sider the case of a Meissner-phase where ψ1 = v1e

iφ1 and ψ2 = v1e
iφ2 , where φ1 and φ2 are real functions

depending on space and the vi’s are the value of |ψi| corresponding to a Meissner solution of Eqs. (5.10)
and (5.11). The current density in Eq. (5.8) is then

J = v2
1 (∇φ1 − A) + v2

2 (∇φ2 − A) , (5.16)

which may be integrated along the closed curve C located at a place without current, i.e. the condition
for flux-quantization

v2
1 (2πn1 − Φ) + v2

2 (2πn2 − Φ) = 0 (5.17)

is found with Φ being the magnetic flux through the surface S, having the boundary C and where φi
changes by 2πni (i = 1, 2) when C is traversed once. The flux through S is now trivially given by

Φ = 2π
n1v

2
1 + n2v

2
2

v2
1 + v2

2

. (5.18)

The case known from ordinary Ginzburg-Landau theory is n ≡ n1 = n2 giving Φ = 2πn where the flux is
quantized in terms of Φ0 (= 2π in normalized units). Another possibility is that φ2 is constant, n2 = 0,
which makes the flux depend on v1 and v2 and it is thus not quantized in terms of Φ0. The problem
of flux quantization in the two-component Ginzburg-Landau theory is discussed in detail in Ref. [96].
The case n ≡ n1 = n2 is discussed in the next section.

5.2 The Abrikosov Vortex in a Two-Component System

Since the theory simplifies to the Ginzburg-Landau theory in the case ψ2 = 0, it should be possible to
find Abrikosov-type vortex solutions. The method used here is the same as in Section 2.3 but using the
generalized ansatz

ψ1 = f1(r)e
inθ , ψ2 = f2(r)e

inθ , Ar = 0 , Aθ =
n− P (r)

r
, Az = 0 , (5.19)

in a cylindrical coordinate system, (r, θ, z). Inserting the ansatz into Eqs. (5.4), (5.6), and (5.8) gives

f ′′
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r
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)

f1 + 2ηf2 = 0 , (5.20)
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f2P
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a− bf2
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f1 + 2ηf1 = 0 , (5.21)

P ′′ − 1

r
P ′ − 1

κ2
1

(

f2
1 + f2

2

)

P = 0 , (5.22)

where prime denotes differentiation with respect to r.
It is evident that the flux through a surface S with radius r is still given by Eq. (2.49) and the

boundary conditions for the magnetic field may still be expressed as P (0) = n and P (∞) = 0. The
boundary conditions for the order parameters at r = 0 are found by multiplying Eqs (5.20) and (5.21)
by r2. r = 0 then implies f1(0) = f2(0) = 0. For the order parameters at infinity, the situation is a
little different than in Section 2.3. The order parameters should approach one of the minima of the
potential, which are given as the solutions to Eqs. (5.10) and (5.11) (with ψ1 → f1 and ψ2 → f2)
which corresponds to global minima of the potential in Eq. (5.12). Since the general solution of these
equations is not very nice, but easily obtainable, the solutions are written as f1 = v1 and f2 = v2, such
that all the boundary conditions become

f1(0) = 0 , lim
r→∞

f(r) = v1 , (5.23)

f2(0) = 0 , lim
r→∞

f(r) = v2 , (5.24)

P (0) = n , lim
r→∞

P (r) = 0 . (5.25)
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The Abrikosov vortex in the two-component Ginzburg-Landau theory is then described by Eqs.
(5.20)-(5.22) with Boundary conditions (5.23)-(5.25). The equations may be solved generally by numer-
ical methods or analytically for near-zero or large r behavior as in Section 2.3. Here, however, only the
case of large r will be considered.

The asymptotic solution to Eq. (5.22) is easily obtained by following Section 2.3 to get

P∞ = BrK1(r
√

v2
1 + v2

2/κ1) , (5.26)

where B is a constant and K1(r) is the modified Bessel function of the second kind of order one.
To solve the order parameter Eqs. (5.20) and (5.21) for large r, P = 0 is inserted, fi = vi − αi(r) is

introduced, and the equations are expanded to first order in αi, giving

α′′
1 +

1

r
α′

1 − q21α1 + 2ηα2 = 0 , (5.27)

α′′
2 +

1

r
α′

2 − q22α2 + 2ηα1 = 0 , (5.28)

where (1 − v2
1)v1 + 2ηv2 = (a− bv2

2)v2 + 2ηv1 ≡ 0 was used and the constants

q21 = 3v2
1 − 1 and q22 = 3bv2

2 − a (5.29)

were defined. The boundary conditions for α1 and α2 are

lim
r→∞

α1(r) = 0 , lim
r→∞

α2(r) = 0 . (5.30)

These equations are two coupled modified Bessel equations which may be solved analytically by power
series, but the solution cannot, to the authors knowledge, be written in terms of known functions. In
the following, the two cases η = 0 and q1 >> q2 will be considered. q1 >> q2 corresponds, for example,
to one of the coherence lengths being much larger than the other, i.e. ξ1 >> ξ2.

The case η = 0 is almost trivial, since the two equations de-couple and the solutions become

f1 = v1 − C1K0 (q1r) , f2 = v2 − C2K0 (q2r) , (5.31)

where K0 is the modified Bessel function of the second kind of order zero and Ci are undetermined
constants (i = 1, 2).

The case q1 >> q2 is somewhat more complicated. Assuming that α2 is known, the solution to the
homogeneous equation for α1 is then

αH1 = D1I0 (q1r) +D2K0 (q2r) , (5.32)

where I0 is the modified Bessel function of the first kind of order zero.
A particular solution to the inhomogeneous equation may be expressed as

αP1 = 2ηI0 (q1r)

∫ r

r1

α2(x)xK0 (q1x) dx − 2ηK0 (q1r)

∫ r

r2

α2(x)xI0 (q1x) dx , (5.33)

where r1 and r2 are to be determined by the boundary conditions. To evaluate the integrals, the
asymptotic form of the modified Bessel functions are used, Kn(r) ≈ e−r/

√
2πr and In(r) ≈ er/

√
2πr,

valid for large r. The first integral is then

I1(r, r1) ≡
∫ r

r1

α2(x)xK0 (q1x) dx ≈
∫ r

r1

α2(x)x
e−q1x√
2πq1x

dx , (5.34)

which may be evaluated to an infinite sum by partial integration. Assuming

lim
x→∞

∣

∣

∣

∣

∣

(
√
xα2(x))

(i)

qi1
√
xα2(x)

∣

∣

∣

∣

∣

<< 1 (5.35)

for i = 1, 2, ..., the integral may conveniently be written as

I1(r, r1) ≈
[

xα2(x)

q1
K1 (q1x)

]b

a

. (5.36)
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Figure 5.2: The solution in Eqs. (5.42) and (5.43) when C = D = 1 and a = b = 1/15 for η = 0 and
η = 1/2. The choice of a and b corresponds to equal penetration depths, λ1 = λ2, and a

√
15 fold

difference in coherence-lengths, 15ξ21 = ξ22 . The Josephson coupling seemingly has the effect of washing
out the differences arising from different coherence-lengths.

Here, f (i)(x) means i differentiations with respect to x. Along similar lines, the second integral is
calculated approximately to

I2(r, r2) ≡
∫ r

r2

α2(x)xI0 (q1x) dx ≈
[

xα2(x)

q1
I1 (q1x)

]b

a

. (5.37)

Using Kn+1(x)In(x)+Kn(x)In+1(x) = −1/x and inserting the approximations of the integrals into Eq.
(5.33),

αP1 ≈ 2ηα2(r)

q21
+D3K0(q1r) +D4I0(q1r) (5.38)

is obtained where D3 and D4 are unknown constants.
The complete approximate solution to Eq. (5.27) is obtained by adding up the homogeneous and

the particular solutions. Since I0(x) diverges as x→ ∞, the constants D1 and D4 must be zero, giving

α1(r) ≈ DK0(q1r) +
2ηα2(r)

q21
(5.39)

with D ≡ D2 +D4. This may be inserted into Eq. (5.28) which yields

α′′
2 +

1

r
α′

2 −
(

q22 − 4η2

q21

)

α2 + 2DηK0 (q1r) = 0 . (5.40)

Since q1 << q2 it is expected that α2 is a much slower function than K(q1r) and the last term in the
above equation may thus be neglected, and the solution is then

α2 (r) ≈ CK0

(

r

√

q22 − 4η2

q21

)

, (5.41)

where it was used that α2(r) must be finite for r → ∞. The solution in terms of f1 and f2 is then
trivially given by

f1 ≈ v1 −DK0 (q1r) − 2η
C

q21
K0

(

r

√

q22 − 4η2

q21

)

, (5.42)
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f2 ≈ v2 − α2 (r) ≈ v2 − CK0

(

r

√

q22 − 4η2

q21

)

, (5.43)

valid when q1 >> q2. The constants B, C, and D can not be determined by the asymptotic analysis,
but must be determined from, say, a numerical solution like in Refs. [98] and [99]. Another possibility
is to derive an approximate solution near r = 0 and then match the near- and far-field solutions at some
intermediate point to determine the constants.

The rather strange condition in Eq. (5.35) may be interpreted by inserting the solution in Eq. (5.41)
for α2, resulting in

q1 >>

√

q22 − 4η2

q21
(5.44)

for i = 1, which is approximately the same as q1 >> q2 and (3v2
1 − 1) >> (3bv2

2 − a).
A plot of the solutions in Eqs. (5.42) and (5.43) is shown in Fig. 5.2 with C = D = 1 and

a = b = 1/15 for η = 0 and η = 1/2. a = b = 1/15 corresponds to equal penetration depths,
λ1 = λ2, and a

√
15 fold difference in coherence-lengths, 15ξ21 = ξ22 . This difference in coherence lengths

correspond approximately to the situation in MgB2, where the coherence lengths have been measured
to ξ1 = 13nm and ξ2 = 51nm[97]. Without Josephson coupling, the order parameter f2 have not yet
reached its asymptotic value of v2 = 1 at r = 6 while f1 reaches v1 = 1 at about r = 3. With Josephson
coupling, f1 reaches v1 ≈ 1.68 quickly and while f2 is a little slower to reach v2 ≈ 3.04 it is still much
quicker than the case without Josephson coupling. The Josephson coupling seemingly has the effect of
washing out the differences arising from different coherence-lengths.

5.2.1 Abrikosov Vortex Interaction

The purpose of this section is to briefly discuss Abrikosov vortex interaction in the two-component
theory. The derivation will follow Ref. [98] closely in the simple case of η = 0, but as long as it is
feasible, expressions for non-zero η will be used to illustrate what needs to be done in order to consider
the case of non-zero Josephson coupling.

A gauge is chosen such that the order parameters are real and they may therefore be written as

ψ1 = v1 − g1(x, y, z) and ψ2 = v2 − g2(x, y, z) , (5.45)

where v1 and v2 are the “vacuum values” of the order parameters, given as the minima of the potential
in Eq. (5.12), i.e. v1 and v2 satisfy Eqs. (5.10) and (5.11) with ψ1 = v1 and ψ2 = v2. The free energy
functional in Eq. (5.3) is then linearized by expanding all terms and keeping only terms up to second
order in the fields g1, g2 and A. This gives

GL = G0 +

∫

Ω

d3R

(

1

2
(∇g1)2 +

1

2
(∇g2)2 +

v1 + v2
2

A2 (5.46)

+
1

2

(

3v2
1 − 1

)

g2
1 +

1

2

(

3bv2
1 − a

)

g2
2 − 2ηg1g2 +

κ2
1

2
(Ba − B)

2

)

,

where G0 is a constant and hence does not contribute to the physics. Ref. [98] continues by adding
point-sources to the linearized theory, such that the solutions of the field equations in the linear theory
become the asymptotic solutions to the non-linear theory. The justification for doing this is, that far
away from the vortex center, the vortex will look like a point. And the motivation is, that it is easy
to calculate the interaction between two vortices, when one of them is considered to be a point-vortex.
Adding the point-sources, the total free energy functional becomes[98]

GT = GL +

∫

Ω

d3R (ρ1g1 + ρ2g2 + A · σ) , (5.47)

where ρ1, ρ2, and σ are the point sources. Note, σ is a vector with three components. The field
equations of the linearized theory with added point sources are

∇2g1 − q21g1 + 2ηg2 = ρ1 , (5.48)

∇2g2 − q22g2 + 2ηg1 = ρ2 , (5.49)
(

∇2A − q23
)

A = −σ , (5.50)
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where it was used that the divergence of A is zero, i.e. ∇ ·A = 0 and where

q23 ≡ v2
1 + v2

2

κ2
1

(5.51)

was defined.
The task is now to determine the sources, such that the solutions to Eqs. (5.48)-(5.50) becomes

the asymptotic solutions to the non-linear theory. The asymptotic solutions are given by Eqs. (5.26),
(5.42), and (5.43) together with Eq. (5.19). These asymptotic solutions are however not in the correct
gauge, so a transformation to a gauge where ψ1 and ψ2 are real must first be done. This is easily done
using Eq. (5.15) with α(r, θ, z) = −nθ, and the asymptotic solutions in the real gauge becomes

ψ1 = v1 −DK0 (q1r) − 2η
C

q21
K0

(

r
√

q22 − 4η2/q21

)

, (5.52)

ψ2 = v2 − CK0

(

r
√

q22 − 4η2/q21

)

, (5.53)

Aθ = −BK1 (q3r) , Ar = Az = 0 . (5.54)

For η = 0, Eqs. (5.45), (5.48), and (5.49) then provides two equations to determine ρ1 and ρ2

(

∇2 − q21
)

K0 (q1r) = ρ1 , (5.55)
(

∇2 − q22
)

K0 (q2r) = ρ2 , (5.56)

which are easily solved to find

ρ1 = Dδ(r) and ρ2 = Cδ(r) , (5.57)

using[98] (∇2 − q2)K0(qr) = δ(r). To obtain σ from Eq. (5.50) with A given by Eq. (5.54), notice that

A = Bκ1k × (∇K0(q3r)) , (5.58)

when k is a unit-vector in the direction of the vortex. Using this in Eq. (5.50) determines the last source
to

σ = −Bκ1k × (∇δ(r)) , (5.59)

such that Eqs. (5.48)-(5.50) have the asymptotic solutions

g1 = DK0(q1r) , (5.60)

g2 = CK0(q2r) , (5.61)

Aθ = −BK1 (q3r) , Ar = Az = 0 , (5.62)

when the sources are given by Eqs. (5.57) and (5.59). This means that the vortex is described by two
scalar monopoles and one magnetic monopole of charge D, C, and −B for the monopoles ρ1, ρ2, and σ

respectively.
The interaction energy of two vortices (a and b) in the point source approximation is[98]

GI = −
∫

Ω

d3R
(

ρ
(a)
1 g

(b)
1 + ρ

(a)
2 g

(b)
2 + σ(a)A(b)

)

. (5.63)

This energy may be calculated explicitly by inserting Eqs. (5.57) and (5.59)-(5.62) to give

GI = B(a)B(b)K0(q3|ra − rb|) −D(a)D(b)K0(q1|ra − rb|) − C(a)C(b)K0(q2|ra − rb|) , (5.64)

when the vortices, a and b, are located at ra and rb, respectively.
The interaction energy in Eq. (5.64) is a straight forward generalization of the interaction energy

between Abrikosov vortices in one-component Ginzburg-Landau theory[98]. Far from the vortex the sys-
tem must be in one of the minima of the potential, which are given by ψ1 = ±1 and ψ2 = ±

√

a/b. Since
both vortex (a) and vortex (b) asymptotically approach the same minimum and the order parameters
goes from zero at the vortex center to the value at the minimum, the products D(a)D(b) and C(a)C(b) are
always positive. The result is that when q1,2 >> q3, the vortex-vortex interaction is always attractive.
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The product B(a)B(b), however, must depend on the vorticity, n, due to the boundary conditions. This
means that B(a)B(b) < 0 when (a) and (b) have different polarity and B(a)B(b) > 0 when the polarity
is the same. The result is that when q3 >> q1,2, the vortex-interaction depends on the polarity of the
vortices and it is attractive for different polarities and repulsive for equal polarities.

In the case of ordinary Ginzburg-Landau theory, the vortex-vortex interaction vanishes when κ =
1/

√
2, which separates Type-I superconductors from Type-II superconductors[100]. The possibility for

this scenario is easily seen from the interaction energy in Eq. (5.64), when the case of one-component
superconductivity is considered, corresponding to Ca = Cb = v2 = 0 and v1 = 1 resulting in q21 = 2 and
q23 = 1/κ2

1. If the interaction due to the magnetic field should cancel with the interaction due to the
order parameters it must, as a minimum, be required that q1 = q3 resulting in κ1 = 1/

√
2, which is the

value separating Type-I and Type-II superconductors in ordinary Ginzburg-Landau theory. Note, for
the forces to cancel the factors in front of the modified Bessel functions should be equal, but the present
analysis is not able to determine these factors. If the forces should have a chance of canceling in the
two-component case, it must be required that q1 = q2 = q3. For the case of zero Josephson coupling,
v2
1 = 1 and v2

2 = a/b which together with q1 = q2 = q3 results in the condition

κ2
1κ

2
2 =

1

2

(

κ2
1 + κ2

2

)

(5.65)

for the possibility of zero net vortex-vortex interaction. The other condition reads B(a)B(b)−D(a)D(b)−
C(a)C(b) = 0, but as stated before there is no way of evaluating this condition from the present analysis.
It is worth noting, though, that trivially extending the result from one-gap superconductors to κ1 = κ2 =
1/

√
2 does not work in Eq. (5.65). The reason is, that both order-parameters contribute to the effective

London penetration-depth, 1/q3. In the case where the two order parameters are interchangeable,
κ1 = κ2, one of the conditions for zero net vortex-vortex interaction is κ1 = κ2 = 1.

5.3 A Vortex Without a Magnetic Field

In the present section the simplified case of equal coherence lengths (a = b = 1), real order parameters,
and no magnetic fields, A = 0, are considered. Even in this simple case, interesting features in the form
of topological defects are found. Both domain-walls and vortex type solutions are found even without
magnetic fields which were an integral part of the Abrikosov vortex considered in the previous section.

5.3.1 Domain Walls

A domain wall linking two phases is considered first. Assuming ψ1 = ±ψ2, the equations

∇2ψ1 + (1 ± 2η)ψ1 − ψ3
1 = 0 (5.66)

is obtained from Eqs. (5.4) and (5.6). Considering the case where ψ1 is independent of the y-coordinate,
a solution to the above equation becomes

ψ1 =
√

1 ± 2η tanh

(
√

(1 ± 2η)

2
x

)

, (5.67)

describing a domain wall located along the y axis. The solution is very similar to Eq. (2.30). The domain
wall links two minima of the potential in Eq. (5.12). For x→ −∞ the system is in one minimum and as
x→ ∞ and the system then moves along the line ψ1 = ±ψ2 to the minimum located opposite in the top
left and bottom right plots of Fig. 5.1. Note, for η > 0 (η < 0) the solution with ψ1 = ψ2 (ψ1 = −ψ2)
has a lower energy than the solution with ψ1 = −ψ2 (ψ1 = ψ2), see Eqs. (5.13) and (5.14).

Notice, that since the domain wall goes through ψ1 = ψ2 = 0 (the origin of the plots in Fig. 5.1),
it has a normal region and is thus somewhat similar to what is called a SNS Josephson π-junction[101].
This is a Josephson junction where the order parameters of the two superconducting sides differs (at
zero applied bias current) by π radians in the complex plane, i.e. ψ(x→ −∞) = −ψ(x→ ∞)[102].

5.3.2 Textured Vortices

The domain wall shown in the previous section linked two minima of the potential in Eq. (5.12). The
present section looks for so-called textured vortex solutions, which divides the superconductor into two
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or four areas, each corresponding to a minimum of the potential. Two areas comes out if the potential
only contains two equivalent minima and four if the potential contains four equivalent minima. Thus, the
number of areas the superconductor is divided into depends on the presence of the Josephson coupling
term, see Fig. 5.1.

The two real order parameters may be written as

ψ1 = F (x, y) cosφ(x, y) , ψ2 = F (x, y) sinφ(x, y) , (5.68)

where F and φ denote amplitude and phase, respectively. The field equations

∇ ·
(

F 2∇φ
)

+ 2ηF 2 cos 2φ+
F 4

4
sin 4φ = 0 (5.69)

and

∇2F − F (∇φ)2 =
F 3

4
(3 + cos 4φ) − F (1 + 2η sin 2φ) (5.70)

are then obtained from Eqs. (5.4) and (5.6) with A = 0 and a = b = 1.
An approximate analytical solution to Eqs. (5.69) and (5.70) in the far-field (near one of the minima

of the potential) is obtained by assuming vanishing derivatives of F in Eq. (5.70), leading to F = 0 or

F 2 =
4
(

1 + 2η sin 2φ− (∇φ)2
)

3 + cos 4φ
. (5.71)

Inserting the latter expression into Eq. (5.69) and neglecting ∇F , the approximate equation

∇2φ+ 4η cos 2φ+
1

2
sin 4φ = 0 (5.72)

is obtained. The equation is valid for φ ≈ π/4 + nπ/2 with n = 1, 2, ..., (i.e. cos 4φ ≈ −1).
Requiring two-fold rotational symmetry, the boundary conditions become

|ψi(r, χ)| = |ψi(r, χ+ nπ)| , i = 1, 2 (5.73)

where n = 1, 2, ..., thus

φ(r, χ) = φ(r, χ+ nπ) + nπ , (5.74)

where (r, χ) are polar coordinates in the (x, y) plane.
Appendix B shows that an approximate solution to Eqs. (5.72) and (5.74) may be written as

φ =
π

4
± tan−1

(

β sc

(

2K(m)

π
χ
∣

∣

∣m

))

, (5.75)

where sc(s|m) is the Jacobi elliptic function sc = sn/cn with modulus m[42], which is determined by
solving

2K(m)

π
= r

√

4c

2 −m
, (5.76)

K(m) being the complete elliptic integral of the first kind[42]. β and c are given by

β =

√

4c

2c+ 4η − 1

1 −m

2 −m
(5.77)

and

c =
2 −m

2m





2 −m

m
+

√

(

2 −m

m

)2

− 1 + 16η2



 . (5.78)

Thus, m depends on r as well as η.
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Figure 5.3: Far-field solution. Top row: F given by Eq. (5.71). Bottom row: Vector (cosφ, sinφ) (not
to scale). φ given by Eq. (5.75). η = 0. Left: Vortex (+ in Eq. (5.75)). Right: Anti-vortex (- in Eq.
(5.75)). F 2 in Eq. (5.71) becomes negative near the origin, signaling the breakdown of the far-field
assumption.
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Figure 5.4: Far-field solution. Top row: F given by Eq. (5.71). Bottom row: Vector (cosφ, sinφ) (not
to scale). φ given by Eq. (5.75). η = 0.05. Left: Vortex (+ in Eq. (5.75)). Right: Anti-vortex (- in
Eq. (5.75)). F 2 in Eq. (5.71) becomes negative near the origin, signaling the breakdown of the far-field
assumption.
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For η = 0, the two-fold symmetric boundary conditions, Eq. (5.73), become four-fold symmetric,
Eqs. (5.73) and (5.74) hold when n is half-integer, and

φ = tan−1

(

sinh(y/
√

2)

sinh(x/
√

2)

)

. (5.79)

becomes an exact solution to Eq. (5.72)[103].
Figs. 5.3 and 5.4 show the analytical solution F , given by Eq. (5.71), and the vector (cosφ, sin φ), φ

given by Eq. (5.75), for zero and non-zero value of the Josephson type coupling strength, η. Comparing
Figs. 5.3 and 5.4, it is clearly seen that the presence of the Josephson coupling term breaks the 4-fold
symmetry since the system only contains two equivalent minima.

5.3.3 Numerical Solutions

First, the textured vortex solutions for η = 0, described by Eqs. (5.71) and (5.79), are considered. Using
this analytical far-field solution as initial conditions for the numerical procedure discussed in Section
2.1.1, the plots in the left column of Figs. 5.5 and 5.6 have been obtained. Note, the initial conditions
in the square geometry have been rotated to fit the symmetry of the geometry. The overall agreement
between these plots and the plots in Fig. 5.3 is quite good, except near the origin where the numerical
solution has F = 0 which is far from the assumptions made in the derivation of Eqs. (5.71), (5.75) and
(5.79).

Next, the solutions for η 6= 0 are obtained as function of “time” by using the numerical solutions
for η = 0 (just obtained) as initial conditions for the numerical procedure. The result is shown in Figs.
5.5 and 5.6. The left column is the initial conditions, the middle column is the solution at a selected
time, and the right column is the numerical solution after convergence of the numerical procedure. The
four-fold symmetric solution for η = 0 develops towards a two-fold symmetric solution for η 6= 0. The
presence of the η-term changes the energy densities of the four phases, such that two of them has lower
energy density than the other two, leading to a motion of the domain walls to minimize the area of
the high-energy domains. This development occurs faster in the circular case (Fig. 5.6 shows only
two domains at t = 70) than in the square case (Fig. 5.5 still has all four domains at t = 327). The
difference between the “dynamics” in the square and circular geometries is caused by the Neumann
boundary conditions in Eqs. (5.5) and (5.7) with A = 0, which require that the domain walls are
perpendicular to the boundary of the system. They counter-act the minimization of the high-energy
domains in the square geometry. Thus, a complete elimination of the high energy domains occur for the
circular case, while all four domains remain in the square case. From this it is evident that by changing
η in the square geometry, the domain sizes may be changed.

To study the difference between the numerical solutions in Figs. 5.5 and 5.6, the winding number,
n, is calculated using[103]

2πn ≡
∮

C

(∂xφ(x, y)dx + ∂yφ(x, y)dy) , (5.80)

where C is an arbitrary contour around the vortex and φ is defined in Eq. (5.68). For vortex and
anti-vortex solutions n is an integer different from zero, n positive (negative) corresponds to a vortex
(anti-vortex). In Fig. 5.7, n is plotted as a function of “time” for the two cases corresponding to Figs.
5.5 and 5.6. The curve C have been chosen as a circle, centered at the origin. Two different radii have
been used in each case, r = 7 and r = 11. The figure shows, that in the square case the vortex remains
(i.e. n ≈ 1 as t increases) but for the circular case the vortex moves out of the system (i.e. n→ 0, after
reaching a maximum value, as t increases). Note that n differs from unity earlier for r = 7 than for
r = 11 in agreement with the outwards vortex motion.

The Neumann boundary conditions used in the numerical simulations causes the difference between
the dynamics of the square and circular geometries. For the circular system with a vortex at the exact
center, the Neumann boundary conditions correspond to an image anti-vortex located at infinity. When
the vortex is not located exactly at the center, the image anti-vortex lies at a finite distance. The
attraction between the vortex and the image anti-vortex results in a motion of the vortex along the
domain wall. For the square case, the boundary conditions lead to to multiple image anti-vortices
located outside the system, thus creating a more stable state than in the circular geometry. Note, that
for coarser discretization of the equations, vortex motion is also observed in the square system. Thus,
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Figure 5.5: Square geometry: “Time”-evolution of F (upper) and the vector (cosφ, sin φ) (lower) for
η = 0.02. Initial conditions: Numerical solution for η = 0. Snapshots at: t = 0 (left, initial conditions),
t = 35 (middle), and t = 327 (right, final stage).
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Figure 5.6: Circular geometry: “Time”-evolution of F (upper) and the vector (cosφ, sinφ) (lower) for
η = 0.05. Initial conditions: Numerical solution for η = 0. Snapshots at: t = 0 (left, initial conditions),
t = 14 (middle), and t = 70 (right, final stage).
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The analytical domain wall solution in Eq. (5.67) (line) fits the numerical data. Since η > 0 ψ1 = ψ2.

the difference between the dynamics in the square and circular geometry is due to finite size effects
which seem to play a major role.

For the circular geometry with η = 0.05 a system with only two phases linked by a domain wall is
obtained numerically. This is precisely the domain wall solution found in Eq. (5.67). To check this,
Fig. 5.8 shows the expression given by Eq. (5.67) as well as ψ1(x, 0) from the data in the right column
of Fig. 5.6. The agreement is seen to be excellent.

The solution for η 6= 0 plotted in Fig. 5.4 is not observed as a stationary state in the numerical
simulations. However, the solution in the middle column of Figs. 5.5 and 5.6 and in the outer part of
the 2nd and 4th quadrant of the square in the right column of Fig. 5.5 possess some resemblance to the
analytical solution plotted in Fig. 5.4. The corresponding expression in Eq. (5.75) was derived for the
static case near F 2 = 2(1± 2η). Thus, such a resemblance may not be expected to hold near the origin
and along the domain wall (shown in Fig. 5.6) which separates the two low-energy phases, since F 2 is
here very different from 2(1 ± 2η).

The average energy densities of the initial state (for η = 0) and final state (for η 6= 0) solutions
considered in Figs. 5.5 and 5.6 are roughly 10%−20% higher than the energy density of the homogenious
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Meissner state ψ1 = ±ψ2 =
√

1 ± 2η, thus the domain wall and textured vortex solutions are excited
states.

5.4 Textured Vortex in a Magnetic Field

The previous section dealt with the textured vortex solution which can be found in the two-component
Ginzburg-Landau theory. The two-component Ginzburg-Landau equations were solved analytically and
numerically with zero magnetic field and real order parameters, but generally the order parameters are
complex and couple to the magnetic field. To get some insight into the behavior of the textured vortex in
a magnetic field, this section will look at some numerical calculations where a magnetic field is applied
to the edge of a superconductor containing a textured vortex. These calculations are instructive for
formulating an analytical analysis of the problem, which will, however, not be done in this thesis. Only
the case of a square geometry will be considered, since the vortex disappeared in the circular case with
non-zero Josephson coupling shown in Fig. 5.6.

The first calculation shows how the textured vortex for η = 0 (shown in the left plots of Fig.
5.5) evolve in time when a very small magnetic field is applied to the system. Fig. 5.9 shows the
magnetic field and the total Cooper-pair density, |ψ|2 = |ψ1|2 + |ψ2|2 (not normalized to 1), at selected
times when the system is started out in the textured vortex state and then applied a magnetic field
of only Baz = 0.01 with κ1 =

√
2, a = b = 1, and η = 0. The dashed square marks the edges of

the superconductor and outside this dashed square ψ1 = ψ2 ≡ 0. Note that the color-axis is different
among the plots. The change of the system is quite dramatic even with such a small applied field. The
magnetic field penetrates the superconductor through all four domain walls of the vortex which seem to
act like channels for magnetic pulses, traveling to the vortex center. In this process, the domain walls
are washed out and a circulating current is generated around the vortex core (not shown). In the final
plots, the vortex looks much like an Abrikosov vortex with a maximum magnetic field of Bz ≈ 0.4 at
the center, much larger than the applied field. Convergence is reached at t = 93.6, but indistinguishable
to the naked eye from the plots at t = 17.1. The complex phases of the two order parameters from the
converged solution are shown in Fig. 5.10. The phase does not change continuously around the vortex,
as assumed in Eq. (5.19), but rather the change is localized to small areas where the domain walls of
the textured vortex used to be and the complex phases have some resemblance to the phase φ in Eq.
(5.79). Note that the two phases are rotated by π/2 relative to each other meaning that ψ1 6= ψ2, which
is not surprising since the initial textured vortex state also had ψ1 6= ψ2.

Fig. 5.11 shows a calculation similar to the one in Fig. 5.9 but with η = 0.02. In the initial state
the domain-sizes are changed by the Josephson coupling as compared to the textured vortex with η = 0
resulting in the state in the right plot of Fig. 5.5. Again the magnetic field penetrates the superconductor
through the domain walls and travels to the vortex center, creating an Abrikosov vortex. Convergence
is reached at t = 63.1, but to the naked eye the state is no different than the one at t = 13.2 in Fig.
5.11. In terms of |ψ1|2 + |ψ2|2 and Bz, the vortex looks no different from the final state in Fig. 5.9, but
the complex phases shown in Fig. 5.12 does not look like Fig. 5.10. Again the complex phases change
in localized places, similar to the phase in Eq. (5.75) for η = 0.02 but unlike Fig. 5.10, the phases for
η = 0.02 seems to be equal. This may be the effect of the Josephson coupling, in agreement with Fig.
5.2 where it was found that the presence of the Josephson coupling neutralizes the difference between
the two order parameters.

Applying a large magnetic field to the superconducting sample creates Abrikosov vortices, which
enter through the boundaries. Fig. 5.13 shows a calculation where a magnetic field of Baz = 0.7 has
instantaneously been applied to the textured vortex solution for η = 0, κ1 =

√
2, and a = b = 1.

Abrikosov vortices start to enter through the boundaries, but the first four vortices which enter do this
in an unconventional way. At t = 17.6 it is easy to see that there are vortices in the |ψ1|2 and |ψ2|2
plots which are not located at the same positions. These four vortices shows up in the |ψ1|2 + |ψ2|2 plot
as elliptical dots which does not have a normal core. These vortices are characterized by having a phase
change in only one of the order parameters and the flux is thus given by Eq. (5.18) with either n1 = 0
or n2 = 0 which is not quantized in terms of Φ0. Looking at the plots at t = 68.6, the separate vortices
in each order parameter have, however, merged and created the usual Abrikosov vortex (they are now
located closest to the vortex at the center). This suggests that vortices with only a phase-change in one
of the order parameters (i.e. n1 or n2 in Eq. (5.18) is zero) is energetically unfavorable over the usual
Abrikosov vortex (n1 = n2), which is also stated in Ref. [96].

A calculation similar to the one in Fig. 5.13 has been made using the textured vortex for η = 0.02 as
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Figure 5.9: Applying a small magnetic field, Baz = 0.01, to the textured vortex for η = 0 has dramatic
effects. Shown at selected times are |ψ1|2 + |ψ2|2 (left) and Bz (right) for κ1 =

√
2, a = b = 1, and

η = 0. Note the color-axis changes among the plots. The textured vortex disappears and an Abrikosov
vortex is created. The dashed line marks the edges of the superconductor.
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Figure 5.10: The complex phases of the order parameters after applying a small magnetic field, Baz =
0.01, to the textured vortex for η = 0. Left is φ1(x, y) and right is φ2(x, y) with ψi = ni(x, y)e

iφi(x,y).
The change in complex phase around the Abrikosov vortex at the center of the superconducting sample
is localized to the places where the domain walls of the textured vortex used to be. The dashed line
marks the edges of the superconductor.

initial conditions. The calculation is not shown but looks very similar to the one for η = 0, except that
the vortices with n1 6= n2 enters in different places, because the domain walls attach to the boundaries
in different places.

5.5 Conclusion

The two-component Ginzburg-Landau theory was discussed in connection with two-gap superconductiv-
ity. A small energy analysis was performed, which is instructive in order to discuss topological defects in
the theory. The Abrikosov vortex was discussed first and generalized from the one-component Ginzburg-
Landau theory in the case where one of the coherence lengths was much longer than the other, which is
the case in MgB2. The Josephson tunneling of Cooper-pairs from one order parameter to the other was
seen to wash out the differences arising from the two very different coherence-lengths. The interaction
between Abrikosov vortices was then discussed briefly and the subject of Type-I vs. Type-II behavior
was discussed. This division is not as clear-cut in the two-component theory as in the one-component
theory.

The subject of domain walls and textured vortices in the two-component Ginzburg-Landau theory
was investigated analytically and numerically. The effect of the Josephson coupling on the textured
vortex was considered in detail. Without Josephson coupling a textured vortex solution is found and
for non-zero Josephson coupling this textured vortex develops into a domain wall. As a consequence,
the vortex is lost in the system. By changing the geometry of the system, boundary effects may prevent
escape of the vortex.

Subjecting the textured vortex solution to an applied magnetic field proved to be disastrous for the
solution. Even a very small magnetic resulted in the vanishing of the vortex and the creation of an
Abrikosov vortex with an unusual change in complex phase. A high magnetic field created Abrikosov
vortices in the system, entering through the boundaries. It was seen that vortices with a phase-change of
2π in only one of the order parameters were created initially at the boundaries, but later they developed
into the usual Abrikosov vortex.
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Figure 5.11: Applying a small magnetic field, Baz = 0.01, to the textured vortex for η = 0.02 has
dramatic effects. Shown at selected times are |ψ1|2 + |ψ2|2 (left) and Bz (right) for κ1 =

√
2, a = b = 1,

and η = 0.02. Note the color-axis changes among the plots. The textured vortex disappears and an
Abrikosov vortex is created. The dashed line marks the edges of the superconductor.
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Figure 5.12: Complex phases of the order parameters after applying a small magnetic field, Baz = 0.01,
to the textured vortex for η = 0. Left is φ1(x, y) and right is φ2(x, y) with ψi = ni(x, y)e

iφi(x,y). The
change in complex phase around the Abrikosov vortex at the center of the superconducting sample is
localized to the places where the domain walls of the textured vortex used to be. The abrupt jump from
black to white is a phase-jump from −π to π. The dashed line marks the edges of the superconductor.
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Figure 5.13: Applying a large magnetic field, Baz = 0.7, to the textured vortex for η = 0. Shown at
selected times are |ψ1|2 + |ψ2|2 (top), |ψ1|2 (middle), and |ψ2|2 (bottom) for κ1 =

√
2, a = b = 1,

and η = 0. The textured vortex disappears as in Fig. 5.10 and Abrikosov vortices enters through the
boundaries. Note, four vortices do not have a normal core at t = 17.6, but the normal core is obtained
at t = 68.6. The dashed line marks the edges of the superconductor.





Chapter 6

Conclusion

The subject of this thesis is to investigate vortices in different superconducting systems, with special
emphasis on the new materials such as BSCCO and MgB2. The two systems are very different, but
both posses some unique properties and interesting vortex solutions.

In Chapter 3 the model of a stack of long Josephson junctions was introduced and some solutions
were discussed. The easily obtainable plasma-solutions was investigated in connection with the non-
linear fluxon solutions. Some solutions had an empty junction and was shown to exists as both plasma
and fluxon solutions. A possible relationship between linear and non-linear modes was investigated
through numerics. Plasma solutions and fluxon solutions having similar features were found, but not
every plasma solution had a corresponding fluxon solution. Since the method was purely empirical, no
deeper relationship between linear and non-linear solutions can be made from this study.

In Chapter 4, Josephson stacks were considered as an oscillator. The power available for radiation
was calculated for different fluxon solutions. The in-phase fluxon solutions had by far the most avail-
able power and it did not matter too much that the outer junctions had in some cases switched to
finite voltage. With weakly coupled junctions in mind, bunching of the shuttling fluxon solutions were
investigated. The conditions for bunching using an external microwave field were derived analytically
and numerically. It was shown, that an external microwave field is able to induce bunching, but only
in the weakly coupled system, thus the method will not work for high Tc superconductors. A stack of
junction was considered to be coupled to a cavity. The cavity equation was solved, and resonances were
shown analytically and numerically to exist in the cavity current. It was also shown, that the cavity
essentially acts as a microwave source and it will thus be able to induce bunching, but again only for
weakly coupled stacks. For strongly coupled stacks, the flux-flow modes seem to be the best solution
to obtain bunched states and thereby increase the power of the emitted radiation. The current-voltage
characteristics were calculated for different stacks operated in the flux-flow mode. By looking directly
at the phases for the individual junctions, the formation of a square lattice was found. The flux-flow
modes was typically forming a triangular lattice, but sometimes, the square lattice would spontaneously
form even for strongly coupled junctions.

The possibilities to extend the present studies of the Josephson stack are many. The stack-cavity
system was proven to provide a method of bunching in weakly coupled junctions, but a detailed study
of the parameters needed for phase-locking and bunching in the system is still missing. BSCCO crystals
are receiving a lot of interest in the research community and the flux-flow modes seemingly provide
a way of obtaining coherent radiation from BSCCO crystals. These systems are very hard to study
analytically, since the inductive coupling is extremely strong and perturbation methods do not work
well. Furthermore, the numerical calculations on flux-flow modes in this thesis showed that the square
lattice formed at low fluxon-density where non-linear effects are very strong. This adds to the complexity
of the problem of finding the conditions for the formation of a square lattice, since the linear cavity
modes may not be good enough in this region. And to make things even more complicated, Koshelev
and Aranson found in Ref. [104] that in-plane dissipation is important for BSCCO. This dissipation can
not be accounted for by the α-term in the equations used in this thesis, and more complex equations
results. Josephson stacks will undoubtedly be actively studied for years to come.

The concept of two-gap superconductivity was considered in Chapter 5 by the use of a two-component
Ginzburg-Landau model. The Abrikosov vortex in this model was investigated analytically and the effect
of a Josephson type coupling was considered. This coupling describes tunneling of Cooper-pairs from
one order parameter to the other, and it was shown to diminish the differences between the two order
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parameters. The vortex-vortex interaction was also discussed, though only in the case of zero Josephson
coupling. It was shown, that Type-I and Type-II superconductivity is not trivially defined for a two-
component system. Since new degrees of freedom arise due to the extra order parameter, a textured
vortex could be found in the theory for zero magnetic field. The vortex showed depression of the order
parameters without the need for a magnetic field as in the case of an Abrikosov vortex. The effects of
applying a magnetic field to a textured vortex solution were discussed and it was found that the vortex
is unstable even in a tiny magnetic field.

MgB2 is very actively studied at the moment. The preliminary analysis of a two-component system
presented in this thesis, shows that two-component superconductors has some interesting properties
and can be quite different from ordinary superconductors. The effect of the Josephson coupling on the
vortex-vortex interaction would be a good starting-point for extending the analysis of this thesis. This
could also lead to a classification of two-component superconductors into different types. The effects
of anisotropy and more advanced theories than the two-component Ginzburg-Landau theory used here
would also be interesting research subjects for future studies. Of particular interest could be numerical
calculations of vortices in mesoscopic system using the extension of the two-component Ginzburg-Landau
model presented in Ref. [90].

The possibility for exotic vortex solutions in the two-component Ginzburg-Landau model was also
considered in this thesis. It would be interesting if some new topological defects could be found exper-
imentally. This would of cause have importance for two-gap superconductivity, but also more exotic
physics could benefit from such a discovery[105]. Unfortunately, many studies have been conducted on
MgB2 and no evidence for such structures have, to the authors knowledge, been found yet.
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Appendix B

Approximate Solution of Eq. (5.72)

The partial differential equation

∇2φ+ a cos 2φ+ b sin 4φ = 0 , (B.1)

is considered, which for a = 4η and b = 1/2 becomes Eq. (5.72). Following Ref. [103] the approximation
∇2φ ≈ φ′′/r2 is made where primes denotes differentiation with respect to the angular coordinate, χ.
Equation (B.1) then reduces to

1

r2
φ′′ + a cos 2φ+ b sin 4φ = 0 , (B.2)

which shall be solved subjected to the boundary conditions in Eq. (5.74). Introducing the auxiliary
variable ϕ ≡ φ− π/4 and integrating,

1

2r2
(ϕ′)2 +

a

2
cos 2ϕ+

b

4
(cos 4ϕ+ 3) = c (B.3)

is obtained, where the integration constant is conveniently chosen as c − 3b/4. The analysis is limited
to solutions where c > a

2 + b > 0, and the auxiliary variable t ≡ tanϕ is introduced. Eq. (B.3) may now
be re-arranged as

dt
√

(t2 + α2)(t2 + β2)
= ±r

√
2c+ a− 2b dχ , (B.4)

which integrates into

F

(

tan−1 t

β

∣

∣

∣m

)

= ±αr
√

2c+ a− 2b (χ− χ0) , (B.5)

where F(u|m) is the elliptic integral of the first kind with modulus m[42], given by m = (α2 − β2)/α2,
χ0 is an integration constant, and the roots of the 2nd degree polynomial in t2

(c+ a/2 − b) t4 + 2ct2 + c− a/2 − b = 0 , (B.6)

are denoted by −α2 and −β2, respectively. They may be expressed as

α =

√

4c

2c+ a− 2b

1

2 −m
(B.7)

and

β =

√

4c

2c+ a− 2b

1 −m

2 −m
. (B.8)

Solving Eq. (B.5) for ϕ yields

tanϕ = ±β sc
(

αr
√

2c+ a− 2b (χ− χ0)
∣

∣

∣m
)

. (B.9)

Rewriting the boundary condition, Eq. (5.74), as tanϕ(χ+nπ) = tanϕ(χ) and using the periodicity
of the Jacobi amplitude function [106], am(s+ 2nK(m)|m) = am(s|m) + nπ, the relation

αr
√

2c+ a− 2b =
2

π
K(m) , (B.10)
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is found. From the above equation, m may be determined from

c = b
2 −m

m





2 −m

m
±

√

(

2 −m

m

)2

− 1 +
a2

4b2



 , (B.11)

which was obtained by insertion of Eqs. (B.7) and (B.8) into m = (α2 − β2)/α2.
In the limit m→ 1 Eqs. (B.7), (B.8) and (B.11) yield

lim
m→1

α =
a+ 2b

a
, (B.12)

lim
m→1

β = 0 , (B.13)

lim
m→1

c =

{

a/2 + b
a/2 + b/2

. (B.14)

Since limm→1K(m) = ∞, Eq. (B.10) states that m→ 1 must correspond to r → ∞. Thus, in order to
satisfy c > a

2 + b for all r, + sign in Eq. (B.11) must be chosen.
For a = 4η, b = 1/2 and χ0 = 0, Eqs. (B.7)-(B.11) yield the solution given by Eqs. (5.75)-(5.78).

Note, that χ0 only corresponds to a rotation of the frame of reference so, without loss of generality,
χ0 = 0 can be chosen.

For a = 0 and b = 1/2 Eq. (B.1) reduces to

∇2φ+
1

2
sin 4φ = 0 , (B.15)

which has the solution[107]

φ = ±1

2
am

(

4K(m)

π
χ
∣

∣

∣µ

)

, (B.16)

where am(s|µ) is the Jacobi elliptic amplitude function with modulus µ, where µ must be determined
from1

√

2

µ
rπ = 4K(µ) . (B.17)

The general solution in Eqs. (B.7)-(B.11) reduces to Eqs. (B.16) and (B.17) when a = 0, b = 1/2,
χ0 = −π/4, and

m =
4
√
µ

(1 +
√
µ)2

. (B.18)

B.1 Equivalence between Eqs. (5.75) and (B.16) when η = 0

It might seem like a trivial task to put η = 0 in Eq. (5.75) and get Eq. (B.16), but as usual with elliptic
functions this is not the case.

If the two solutions are to be equivalent, then c in Eq. (B.3) for the two solutions must be equal.
Calculating c by inserting the solutions and equating the two c’s, gives a relation between the two
moduli, m and µ, which can be written as

m =
4
√
µ

(1 +
√
µ)2

, (B.19)

where it was used that 0 < m < 1 and 0 < µ < 1. Using this in the expression for β in Eq. (B.8) it
simplifies to

β =

√

1 −√
µ

1 +
√
µ
. (B.20)

1Please note, in Ref. [107] there is a misprint in this expression.
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Transforming the sc function in Eq. (B.9) according to[108]

sn

(

s
∣

∣

∣

4
√
µ

(1 +
√
µ)2

)

=
(1 +

√
µ)sn(s/(1 +

√
µ)|µ)

1 +
√
µ sn2(s/(1 +

√
µ)|µ)

, (B.21)

and

cn

(

s
∣

∣

∣

4
√
µ

(1 +
√
µ)2

)

=
cn(s/(1 +

√
µ)|µ)dn(s/(1 +

√
µ)|µ)

1 +
√
µ sn2(s/(1 +

√
µ)|µ)

, (B.22)

and re-writing K(m) to K(µ) by[108]

K

(

4
√
µ

(1 +
√
µ)2

)

= (1 +
√
µ)K(µ) , (B.23)

yields the expression

tan
(

φ− π

4

)

=

(

1 −√
µ
)

sn(u|µ)

cn(u|µ)dn(u|µ)
, (B.24)

where u ≡ ± 2
πK(µ) (χ− χ0). It turns out to be easier to compare sinφ and cosφ instead of φ directly,

so after a little algebra, the equations

sinφ = ±
√

1

2
+

√
1 − µ cn(u|µ)dn(u|µ)sn(u|µ)

dn2(u|µ) − µcn2(u|µ)sn2(u|µ)
(B.25)

and

cosφ = ±
√

1

2
−

√
1 − µ cn(u|µ)dn(u|µ)sn(u|µ)

dn2(u|µ) − µcn2(u|µ)sn2(u|µ)
(B.26)

are derived.
Since Eq. (5.72) is invariant under the transformation χ→ χ−χ1 where χ1 is a constant, Eq. (B.16)

may be written more generally as

φη=0 =
1

2
am

(

±4K(µ)

π
(χ− χ1)

∣

∣

∣µ

)

. (B.27)

Choosing χ1 = χ0 − π/4 and calculating sinφη=0 and cosφη=0 gives

sinφη=0 = ±

√

√

√

√

1 − cn
(

4K(µ)
π (χ− χ0) |µ

)

2
(B.28)

and

cosφη=0 = ±

√

√

√

√

1 + cn
(

4K(µ)
π (χ− χ0) |µ

)

2
. (B.29)

Using[108]
cn (s+K(m)|m) = −

√
1 −m sd(s|m) (B.30)

and

sd(2s|m) =
2sn(s|m)cn(s|m)dn(s|m)

dn2(s|m) −msn2(s|m)cn2(s|m)
(B.31)

gives

sinφη=0 = ±
√

1

2
+

√
1 − µ cn(u|µ)dn(u|µ)sn(u|µ)

dn2(u|µ) − µcn2(u|µ)sn2(u|µ)
(B.32)

and

cosφη=0 = ±
√

1

2
−

√
1 − µ cn(u|µ)dn(u|µ)sn(u|µ)

dn2(u|µ) − µcn2(u|µ)sn2(u|µ)
, (B.33)

which are the same as Eqs. (B.25) and (B.26), and this shows the equivalence between the two solutions
when η = 0.





Bibliography

[1] H. Kamerlingh-Onnes, Proc. Roy. Acad. Amsterdam 11, 168 (1908).

[2] H. Kamerlingh-Onnes, Commun. Phys. Lab. 12, 120 (1911).

[3] H. Kamerlingh-Onnes, Nobel Prize Lecture:
http://nobelprize.org/physics/laureates/1913/onnes-lecture.html .

[4] http://nobelprize.org/physics/laureates/1913/index.html .

[5] F. London and H. London, Proc. Roy. Soc A 149, 71 (1935).

[6] http://nobelprize.org/physics/laureates/2003/index.html .

[7] http://nobelprize.org/physics/laureates/1972/index.html .

[8] L. P. Gor’kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 9, 1364 (1960).

[9] http://nobelprize.org/physics/laureates/1973/index.html .

[10] Image used with permission from http://radium0.stanford.edu/Projects/Sample/BSCCO .

[11] http://nobelprize.org/physics/laureates/1987/index.html .

[12] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

[13] H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

[14] V. L. Ginzburg and L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 1064 (1950).

[15] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

[16] T. Schneider and J. M. Singer, “Phase Transition Approach to High Temperature Superconduc-
tivity - Universal Properties of Cuprate Superconductors”, Imperial Collage Press (2000).

[17] E. M. Lifshitz and L. D. Landau, “The Classical Theory of Fields: Volume 2”, English Edition
3rd rev., Pergamon Pr. (1976).

[18] W. Buckel and R. Kleiner, “Superconductivity - Fundamentals and Applications”, 2nd Edition,
Wiley-VCH (2004).

[19] R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B 47, 8016 (1993).

[20] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, and V. M. Vinokur, Jour.
Comp. Phys. 123, 254 (1996).

[21] W. H. Press (Editor), S. A. Teukolsky (Editor), W. T. Vetterling, and B. P. Flannery, “Numerical
Recipes in C++”, 2nd edition, Cambridge University Press (2002).

[22] R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B 44, 6916 (1991).

[23] M. Christensen, Y. Verbin, and A. L. Larsen, Phys. Rev. D 60, 125012 (1999).

[24] A. Vilenkin and E. P. S. Shellard, “Cosmic Strings and Other Topological Defects”, Cambridge
University Press Cambridge England (1994).



106 BIBLIOGRAPHY

[25] See, e.g., Y. Verbin, S. Madsen, A. L. Larsen, and M. Christensen, Phys. Rev. D 65, 063503
(2002); Y. Verbin, S. Madsen, and A. L. Larsen, Phys. Rev. D 67, 085019 (2003) and references
therein.

[26] D. O. Guntherm H. G. Kaper, and G. K. Lead, SIAM J. Sci. Comput 23, No. 6, 1943 (2002).

[27] E. Merzbacher, “Quantum Mechanics”, 3rd Edition, Wiley (1998).

[28] A. A. Abrikosov, J. Exptl. Theoret. Phys. (U.S.S.R.) 5, 1174 (1957).

[29] A. Scott, “Nonlinear Science - Emergence & Dynamics of Coherent Structures”, Oxford University
Press (1999).

[30] T. P. Orlando and K. A. Delin, “Foundations of Applied Superconductivity”, Addison-Wesley
(1991).

[31] H. B. Nielsen and P. Olesen, Nuclear Physics B 61, 45 (1973).

[32] See, e.g., B. J. Baelus, F. M. Peeters, and V. A. Schweigert, Phys. Rev. B 63, 144517 (2001) and
references therein.

[33] B. D. Josephson, Phys. Lett. 1, 251 (1962).

[34] T. L. Boyadjiev and Z. D. Genchev, Journal of Physical Studies 5 no. 3/4 316 (2001).

[35] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, Wiley (1982).

[36] D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).

[37] M. Cirillo, N. Grønbech-Jensen, M. R. Samuelsen, M. Salerno, and G. V. Rinati, Phys. Rev. B 58
12377 (1998).

[38] M. Salerno and M. R. Samuelsen, Phys. Rev. B 59, 14653 (1999).

[39] M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).

[40] A. V. Ustinov and N. F. Pedersen, Phys. Rev. B 72, 052502 (2005).

[41] G. Costabile, S. Pagano, and R. D. Parmentier, Phys. Rev. B 36, 5225 (1987).

[42] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Dover, New York (1970).

[43] S. Pagano, M. P. Sørensen, R. D. Parmentier, P. L. Christiansen, O. Skovgaard, J. Mygind, N. F.
Pedersen, and M. R. Samuelsen, Phys. Rev. B 33, 174 (1986).

[44] N. F. Pedersen and K. Saermark, Physica 69, 572 (1973).

[45] O. Tønnesen, “Power Applications for Superconductivity”, Publication No. 9801, Department of
Electrical Power Engineering, Technical University of Denmark Dk-2800 Kgs. Lyngby.

[46] American Superconductor website:
http://www.amsuper.com/products/htsWire/images/2g hts detail lg.jpg .

[47] S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys. 73, 2411 (1993).

[48] R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).

[49] A. V. Ustinov, H. Kohlsted, M. Cirillo, N. F. Pedersen, G. Hallmanns, and C. Heiden, Phys. Rev.
B 48, 10614 (1993).

[50] S. M. Kim, H. B. Wang, T. Hatano, S. Urayama, S. Kawakami, M. Nagano, Y. Takano, T.
Yamashita, and K. Lee, Phys. Rev. B 72, 140504(R) (2005).

[51] L. X. you, P. H. Wu, Z. M. Ji, S. X. Fan, W. W. Xu, L. Kang, C. T. Lin, and B. Liang, Supercond.
Sci. Technol. 16, 1361 (2003).



BIBLIOGRAPHY 107

[52] R. Kleiner, Phys. Rev B 50, 6919 (1994).

[53] N. F. Pedersen and S. Sakai, Phys. Rev. B 58, 2820 (1998).

[54] R. Kleiner, T. Gaber and G. Hechtfischer, Phys. Rev. B 62, 4086 (2000).

[55] S. Sakai and N. F. Pedersen, Phys. Rev. B 60, 9810 (1999).

[56] A. Petraglia, A. V. Ustinov, N. F. Pedersen and S. Sakai J. Appl. Phys. 77, 3 (1995).

[57] N. Grønbech-Jensen, M. R. Samuelsen, P. S. Lomdahl, and J. A. Blackburn, Phys. Rev. B 42,
3976 (1990).

[58] C. Gorria, P. L. Christiansen, Yu. B. Gaididei, V. Muto, N. F. Pedersen, and M. P. Sørensen,
Phys. Rev. B 66, 172503 (2002).

[59] C. Gorria, P. L. Christiansen, Yu. B. Gaididei, V. Muto, N. F. Pedersen, and M. P. Sørensen,
Phys. Rev. B 68, 035415 (2003).

[60] E. Goldobin, A. Wallraff, N. Thyssen, and A. V. Ustinov Phys. Rev. B 57, 130 (1998).

[61] E. Goldobin, A. Wallraff, and A. V. Ustinov Jour. Low Temp. Phys. 119, 589 (1999).

[62] N. Grønbech-Jensen, D. Cai, A. R. Bishop, A. W. C. Lau, and P. S. Lomdahl, Phys. Rev. B 50,
6352 (1994).

[63] E. Goldobin, B. A. Malomed, and A. V. Ustinov, Phys. Rev. B 62, 1414 (2000).

[64] E. Goldobin, B. A. Malomed, and A. V. Ustinov, Phys. Lett. A 266, 67 (2000).

[65] N. Grønbech-Jensen, J. A. Blackburn, and M. R. Samuelsen, Phys. Rev. B 53, 12364 (1996).

[66] A. V. Ustinov and H. Kohlsted, Phys. Rev. B 54, 6111 (1996).

[67] G. Carapella, G. Costabile, A. Petraglia, N. F. Pedersen, and J. Mygind Appl. Phys. Lett. 69, 9
(1996).

[68] A. Ustinov, Physica D 123, 315-329 (1998).

[69] N. F. Pedersen and G. Filatrella, Physica C 369, 171-176 (2002).

[70] N. F. pedersen, M. R. Samuelsen, and D. Welner, Phys. Rev. B 30, 4057 (1984).

[71] See, e.g., Ref. [49] and [65]; G. Carapella, G. Costabile, J. Mygind, and N. F. Pedersen, IEEE
Trans. Appli. Supercond. 9, 4558 (1999); P. Barbara, Ph.D. thesis, The Technical University of
Denmark (1995).

[72] M. Salerno, M. R. Samuelsen, G. Filatrella, S. Pagano, and R. D. Parmentier, Phys. Lett. A 137,
75 (1989); Phys. Rev. B 41, 6641 (1990); N. F. Pedersen and A. Davidson, Phys. Rev. B 41, 178
(1990).

[73] N. Grønbech-Jensen, Phys. Rev. B 47, 5504 (1993); Phys. Lett. A 169, 31 (1992).

[74] N. Grønbech-Jensen, Ph.D. Thesis, The Technical University of Denmark (1991).

[75] M. Tachiki, M. Iizuka, K. Minami, S. Tejima, and H. Nakamura, Phys. Rev. B 71, 134515 (2005).

[76] See the top 500 list from November 2005 at: http://www.top500.org/lists/2005/11/basic .

[77] See, e.g., G. Filatrella, G. Rotoli, N. Grønbech-Jensen, R. D. Parmentier, and N. F. Pedersen,
J. Appl. Phys. 72, 3179 (1992); G. Filatrella and N. F. Pedersen, Physica C 372, 11 (2002); N.
Grønbech-Jensen, R. D. Parmentier, and N. F. Pedersen, Phys. Lett. A 142, 427 (1989).

[78] See, e.g., G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, Phys. Rev. B 61, 2513 (2000); E.
Almaas and D. Stroud, Phys. Rev. B 67, 064511 (2003).

[79] S. Ooi, T. Mochiku, and K. Hirata, Phys. Rev. Lett. 89, 247002 (2002).



108 BIBLIOGRAPHY

[80] I. Kakeya, M. Iwase, T. Yamamoto, and K. Kadowaki, cond-mat/0503498 (2005).

[81] T. Hatano, H. Wang, S. Kim, S. Urayama, S. Kawakami, S. J. Kim, M. Nagao, K. Inomata, Y.
Takano, T. Yamashita, and M. Tachiki, IEEE Trans. Appl. Supercond. 15 no. 2, 912 (2005).

[82] A. V. Ustinov and N. F. Pedersen, Phys. Rev. B 72, 052502 (2005).

[83] N. F. Pedersen and S. Madsen, IEEE Trans. Appl. Supercond. 15, 948 (2005); N. F. Pedersen and
S. Madsen, Proceedings of the Plasma 2004 conference, Tsukuba, Japan, II-48 (2004).

[84] I. O. Kulik, Pis’ma Zh. Eksp. Teor. Fiz. 2, 134 (1965)[Sov. Phys. JETP Lett. 2, 84 (1965)].

[85] N. Grønbech-Jensen, M. R. Samuelsen, P. S. Lomdahl, and J. A. Blackburn, Phys. Rev. B 42,
3976 (1990).

[86] N. Grønbech-Jensen, D. Cai, and M. R. Samuelsen, Phys. Rev. B 48, R16160 (1993).

[87] F. Bonquet, R. A. Fisher, N. E. Phillips, D. G. Hinks and J. D. Jorgensen, Phys. Rev. Lett. 87,
047001 (2001); S. Tsuda, T. Yokaya, Y. Takano, H. Kito, M. Matsushita, E. Yin, J. Itoh, H.
Marima and S. Shin, Phys. Rev. Lett. 91, 127001 (2003).

[88] C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001); M. Iavarone, G. Kara-
petrov, A. E. Koshelev, W. K. Kwok, G. W. Crabtree, D. G. Hinks, W. N. Kang, E. Chao, H.
Kim and S. I. Lee, Phys. Rev. Lett. 89, 187002 (2002) and references therein.

[89] M. E. Zhitomirsky and V. H. Dao, Phys. Rev B 69, 054508 (2004).

[90] A. E. Koshelev and A. A. Golubov, Phys. Rev. Lett. 92, 107008 (2004).

[91] A. A. Golubov and A. E. Koshelev, Phys. Rev. B 68, 104503 (2003).

[92] E. Babaev, Nucl. Phys. B 686, 397 (2004).

[93] M. S. Soskin and M. V. Vasnetsov, Progress in Optics 42, 219 (2001).

[94] C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys and V. B. Taranenko, Appl. Phys. B 68, 151
(1999).

[95] P. Coullet, L. Gil and F. Rocca, Optics Communications 73, 403 (1989).

[96] E. Babaev, Phys. Rev. Lett. 89, 067001 (2002).

[97] M. R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and Ø. Fischer,
Phys. Rev. Lett. 89, 187003 (2002).

[98] J. M. Speright, Phys. Rev. D 55, 3830 (1997).

[99] R. MacKenzie, M. A. Vachon and U. F. Wichoski, Phys. Rev. D 67, 105024 (2003).

[100] E. Babaev, cond-mat/0302218 (2004).

[101] S. M. M. Virtanen and M. M. Salomaa, J. Phys. Condens. Matter 12, L147 (2000).

[102] See, e.g., E. Goldobin, A. Sterck, T. Gaber, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 92, 057005
(2004) and references therein.
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