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Abstract

Anchorage of ribbed reinforcing bars is treated theoretically. The obtained
expressions for the load carrying capacity are compared to test results re-
ported in the literature.

The theory of plasticity is used as basis for the theoretical calculations. The
material properties of the concrete do not fulfill the conditions of the theory
and therefore modification factors are introduced. These factors are known
as effectiveness factors. The effectiveness factor for tension is examined in
particular. '

The anchorage failure is divided into three parts: The local failure imme-
diately around the reinforcing bar, the failure in the surroundings for one
reinforcing bar, and the complete failure which includes all the bars in the
section. The three parts are separated in the calculations.

The local failure is investigated by upper and lower bound calculations and
correspondence between the load carrying capacities are obtained. The fail-
ure in the surroundings in an axisymmetrical specimen is also investigated
using upper and lower bound calculations. Coinciding values of the load
carrying capacity are obtained for part of the actual interval. From these
calculations, it appears that upper bound solutions can be determined with
satisfactory accuracy by using a failure mechanism, where the surrounding
concrete is displaced away from the reinforcement as rigid bodies with a
constant velocity. Upper bound solutions for the load carrying capacity are
therefore in principle simple to determine.

Expressions based on upper bound calculations for anchorage at supports
with one and more than one layer of reinforcement and lap splices are
developed. The load carrying capacity from these expressions is compared
to test results. In the light of the comparison with tests, simple expressions
for calculations in practice are expounded for anchorage at supports with
one layer of reinforcement and for lap splices. ‘



Resume

Forankring af forkammet armering er behandlet teoretisk. De fremkomne
udtryk for baereevnen er sammenlignet med forsggsresultater refereret i lit-
teraturen. '

Som grundlag for de teoretiske beregninger er plasticitetsteorien benyttet.
Da betons materialemassige egenskaber ikke opfylder forudsztningerne til
plasticitetsteorien indfgres faktorer til korrektion af de fejl der begas. Disse
faktorer benzevnes effektivitetsfaktorer. Effektivitetsfaktoren for traek er
undersggt specielt. ‘

Forankringsbruddet opdeles i tre dele: Det lokale brud umiddelbart omkring
jernet, brud i omgivelserne fra et enkelt jern og det totale brud i hele
tveersnittet. De tre dele adskilles fra hinanden rent beregningsmassigt.

Ved gvre- og nedreveerdiberegninger er det lokale brud undersggt, og der
er fundet sammenfaldende veerdier for baereevnen. Bruddet i omgivelserne
af et rotationssymmetrisk legeme er ligeledes undersggt ved gvre- og ned-
reveaerdiberegninger. Sammenfaldende veerdier for bzereevnen er fundet for
en del af det aktuelle interval. Det viser sig ved disse beregninger, at
gvreveerdier med god ngjagtighed kan bestemmes ved at benytte en brud-
mekanisme, hvor den omgivende beton flyttes vaek fra armeringen som stive
dellegemer med konstant hastighed. @vreverdier for baereevnen er derfor
principielt simple at bestemme.

Udtryk, baseret pa gvreveerdiberegninger, for forankring ved vederla.g af et
og flere lag armering samt for overlapningsstgd er opstillet. Disse udtryk er
sammenlignet med forsggsresultater. I tilfeeldet forankring ved vederlag af
et lag armering og ved overlapningsstgd er der pa baggrund af forspgssam-
menligningen opstillet simple udtryk til brug for beregninger i praksis.
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Notations

The most commenly used symbols are listed below. Exceptions from the
list can appear, but this will then be mentioned in the text in connection
to the actual symbol.

Distance between ribs. .
Distance between mid of rib to the middle of the next rib.
Width of beam section.

Effective width of section.

Width of beam for a single bar.

Cohesion of the concrete or concrete cover.

Diameter of the reinforcement.

Diameter of transverse/surrounding reinforcement (stirrups
or spirals).

Number of end failure contributions (e € {0,1,2}).
Uniaxial cylindrical compressive strength of concrete.
Compressive strength of concrete measured on cubes.
Uniaxial tensile strength of concrete,

Splitting tensile strength of concrete.

Yield strength of reinforcement.

Yield strength of transverse/surrounding reinforcement.
Total depth of beam section.

Depth of ribs on the reinforcement.

Material constant, £ = 4 for concrete. ,

Anchorage length, support length, lap length.

Number of layers of reinforcement.

Number of stirrups or spirals over the anchorage length.
Number of stirrups or spirals crossed by the horizontal yield
line in the plate mechanism.

Number of main bars in a section.

Number of lap splices in a section.

Reaction stress, r = b—’i.

Distance.
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r1,72,73
721,742,743
s

Se

St

v

Ve

Ueiy Ucls Ve2y Ucd
Vs

©

QAR

e}

§§§§Hm“§£§b

SR

&

Distance.

Distance.

Vertical distance from the bottom of the beam to the center
of the reinforcement.

Vertical distance between two layers of reinforcement measured
from the center to the center.

Vertical distance from the top of the beam to the center of
reinforcement placed in the top.

Horizontal clear distance between bars in a lap splice.
Dimension of ribs on the reinforcement in the direction of the
bar axis.

Increment in displacement (velocity).

Increment in displacement (velocity) of the concrete.
Increment in displacement (velocities).

Increment in displacement (velocity) of the reinforcement.
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Chapter 1

Introduction

To be able to utilize reinforced concrete for structures, a transfer of forces
between the concrete and the reinforcement must be possible. If this trans-
fer of forces is not possible, one of the two, the concrete or the reinforcement,
must carry the applied load alone, which is probably impossible. Hence the
anchorage of reinforcement in concrete has interested designers for as long
as reinforced concrete has been used as a composite material for supporting
constructions.

The anchorage of a reinforcing bar in concrete is the resistance which pre-
vents the bar from being pulled out of the concrete. Bond or anchorage
stresses develop between the bar surface and the surrounding concrete so
that the stress in the bar is maximal at the loaded end and zero at the other
end. '

Anchorage will take place in different ways, depending mainly on the load
level and the type of reinforcement. Anchorage is often divided into the
following:

¢ adhesion resistance
e friction resistance

e mechanical resistance

The adhesion is a weak effect and is due to the chemical or micro-mechanical
interlocking of the steel-concrete interface. The effect is negligible when
- talking about the load carrying capacity because large displacements occur

before failure. - ] e
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The friction resistance appears as a result of the small indentations, the
surface roughness, in the steel appearing in the production. When the
reinforcement moves at failure, the surroundings offer resistance and friction
forces arise at the surface of the reinforcement. However, compared to
mechanical resistance, the friction is negligible.

Mechanical resistance is obtained as a result of deformations or ribs on the
reinforcement. The deformations hold on to the concrete, by which the fail-
ure appears between the concrete holding on to the reinforcement and the
rest of the concrete. This type of failure is satisfactory because the failure
occurs in the weaker of the two materials, and the interface between them
does not yield any weakening. In this report only the mechanical resistance
is considered. The failure in the interface between steel and concrete is not
taken into account; only failure between concrete and concrete is included.
Consequently the reinforcement is assumed to be deformed reinforcement.

The reinforcement is here denoted as deformed bars or ribbed bars. In both
cases it is the same type of reinforcement. The deformations or ribs are not
appeared by cold working.

Many parameters influence the anchorage strength. Hence it is very difficult
to treat the problem theoretically, and it is even more difficult to develop a
simple method for calculations in practice, which include the influence from
the various parameters with satisfactory accuracy. However, anchorage
theories have been developed over many years. The most important theory
is certainly the one presented by Tepfers [73.1] for lap splices with deformed
reinforcing bars. Some have taken the consequences of the complicated
conditions and have developed empirical expressions based on test results.
Anchorage problems have also been dealt with numerically by means of
finite element calculations. Regardless of the way in which the anchorage
problem is solved, the result strongly depends on the. basic assumptions.
Nevertheless two methods with different assumptions can yield almost the
same result. Unfortunately no workable rational method, which can be used
to treat various types of anchorage problems exists. However, Hess.[84:2]
has started the development of such a theory, where the theory of plasticity
has been used as foundation for the calculations. The main ideas evolved



by Hess will be used in this report.

In the literature many results of anchorage tests are reported. The test
methods vary from one test series to another, so it is difficult to compare
the results directly. However, there is general agreement that the anchorage
strength,; expressed by the shear stress along the surface of the reinforce-
ment, primarily depends on the type of reinforcement and the resistance
from the surroundings. For increasing rib height and decreasing distance
between the ribs, the strength increases, other things being equal. The resis-
tance from the surroundings depends mainly on the concrete strength, the
concrete cover, the diameter of the reinforcement, the anchorage length, lat-
eral pressure on the concrete, and possible surrounding reinforcement. The
stronger the surroundings are, the stronger the strength of the anchorage
will be, all other things being equal.

The failure in the concrete at an anchorage of ribbed reinforcing bars is
normally accompanied by the development of cracks and splitting of the
concrete. The cracks often appear rather close to the failure load, but it
is possible to increase the load even after cracks have developed. The final
failure can be very sudden and violent.

In this report the anchorage of deformed reinforcing bars is treated theo-
retically by means of the theory of plasticity. The concrete does not satisfy
the conditions of the theory of plasticity; hence modification factors on the
concrete strengths are introduced. The factors are multiplied by the uni-
axial concrete strengths and are usually named effectiveness factors. The
product between an effectiveness factor and the respective uniaxial strength
is a measure of the effective stress occurring in the actual section at failure.

The anchorage failure is divided into three parts:
o the local failure
o failure mechanisms

o complete failure mechanism.

The three types of failure are in principle treated separately.



4 CHAPTER 1. INTRODUCTION

The local failure is the failure in the concrete immediately around and along
the reinforcement. The local failure is assumed to be axisymmetrical.

A failure mechanism is the failure in the concrete surrounding the reinforce-
ment. A failure mechanism is composed of yield lines radiating out from the
reinforcement, the yield lines being perpendicular to the longitudinal direc-
tion of the reinforcement. Normally only one bar is included in a failure
mechanism, but exceptions occur..

The complete failure involves all bars in the section. The optimal complete
failure mechanism is composed of the failure mechanisms for one bar.

The failure mechanisms and, accordingly, the complete failure mechanisms,
are in principle independent of the local failure. The failures in the sur-
roundings can be considered without knowing anything about the local
failure.

The local failure is treated by lower and upper bound calculations and
coinciding solutions are obtained. The surroundings are not specified in
details; it is only stated that they can offer some resistance. The developed
expressions for the local failure are functions of dimensionless rib param-
eters, the effectiveness factors, and a quantity which is a function of the
resistance from the surroundings. Assuming that the reinforcement and
the effectiveness factors are known, it is only the value of the resistance
from the surroundings which needs to be determined before the anchorage
strength can be calculated. It appears that the failure in the surroundings
can be determined with sufficient accuraéy by means of simple upper bound
éalcu_}ations which have therefore been made.

The failure in the surroundings is treated in the case of anchorage at sup-
ports and lap splices. Expressions for various failure mechanisms are devel-
oped. It is possible to use the results to treat related anchorage problems,
for instance development length problems.

In the case of anchorage at supports and lap splices, the theoretical expres-
sions are compared to test results, and the value of the effectiveness factors
is determined. It was possible to find tests in the literature and those which
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were appraised to be applicable are included in the analysis. Because the
expressions are too complicated for practical use, they have been simplified
on the basis of the comparison with the test results.

All test results used, are from tests on specimens loaded by static load; no
tests with varying load, dynamic load, are included.

The dowell action is not taken into account in the theoretical considera-
tions, but the action is indirectly included in the determined values of the
effectiveness factors.

In chapter 2 the basic assumptions for the calculations are specified. A
short summary of the theory of plasticity is given. The effective plastic
tensile strength for the concrete is investigated and the results are used in
the subsequent chapters.

Some of the theories and methods found in the literature to determine the
anchorage strength, are in main points expounded in chapter 3.

Lower and upper bound calculations for the local failure around a deformed
reinforcing bar are carried out in chapter 4. Moreover, the failure in the
surroundings of an axisymmetrical specimen is treated. The results are
used as argumentation for the fact that the failure in the surroundings
can be treated by implementing upper bound calculations and using simple
mechanisms.

In chapters 5, 6, and 7, expressions for various failure mechanisms in the
case of anchorage at supports with one layer of reinforcement, anchorage at
supports with more than one layer of reinforcement, and for lap splices are
developed. These expressions are compared with test results in chapter 8,
9, and 10. In the light of this, simple expressions for the load carrying
capacity are expounded.

The most important expressions from the preceding chapters are summa-
rized in chapter 11. The expressions are valid for anchorage at supports
- with one layer of reinforcement and for lap splices.- :

Concluding comments appear in chapter 12.



Chapter 2

Basic Assumptions

This chapter contains a summary of the basic assumptions upon which the
subsequent calculations will be based. Firstly a brief survey of the theory
of perfectly plastic materials is given. Then the assumptions about the
concrete are discussed and the problems arising when applying the theory
of plasticity to concrete structures are discussed. Finally the assumptions
about the reinforcement are mentioned.

2.1 The Theory of Plasticity

A rigid-plastic material is defined as a material in which no deformations
occur for stresses up to a certain limit, which is called the yield point.
For stresses at the yield point, arbitrarily large deformations are possible
without any change in the stresses. A rigid-plastic material does not exist in
reality, but it is possible to use the model when the plastic strains are much
larger than the elastic strains. In the following only rigid-plastic materials
will be dealt with here.

The yield strength of a material can be described by the yield condition.
The yield condition is a mathematical description of the combinations of
stresses in which yielding may occur.

In a stress-coordinate system the yield condition describes a surface, which
is called the yield surface. The yield surface is assumed to be convez. For
stresses within the yield surface no yielding can occur. Stresses outside the
yield surface are not possible.

The ratios between the plastic strains at yield can be determined by the

6
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associated flow law. The associated flow law is also known as Von Mises’s
Flow Rule or the normality condition, because the plastic strains are an out-
wardly directed normal to the yield surface. The strains obtained using the
flow law are actually the rates of the strains. Because we are only concerned
with the instant of failure, the strains are understood to be incremental and
it is therefore not necessary to distinguish between strains and strain rates.

The yield condition, together with the flow law, forms the constitutive
equations for a perfectly plastic material.

As mentioned above no deformation occurs in a structure of rigid- plastic
material when the stresses are below the yield point. Increasing the load
to a point, where it can be carried only by stresses at the yield point,
unlimited deformations are possible without changing the load, if the strains
correspond to a geometrically possible displacement field. A structure in
this condition is said to be subjected to collapse by yielding. The load
corresponding to this state is called the collapse load, the yield load, the
failure load, or the load-carrying capacity of the structure.

The following extremum principles are useful when the load carrying ca-
pacity of rigid-plastic bodies is to be determined.

o The Lower Bound Theorem: A load for which it is possible to find a
safe and statically admissible stress distribution is less than or equal to
the load carrying capacity.

e The Upper Bound Theorem: A load for which it is possible to find a
kinematically admissible failure mechanism is greater than or equal to
" the collapse load.

o The Uniqueness Theorem: When the lowest upper bound and the high-
est lower bound coincide, the load obtained is equal to the exact load
carrying capacity of the structure.

In the theorems mentioned above different terms have been used. A stati-
cally admissible stress distribution is a distribution which satisfies the equi-
librium equations and the statical boundary conditions and a safe stress
distribution is a distribution which cdrresponds' to stresses within or on the
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yield surface. A kinematically admissible failure mechanism corresponds to
a displacement field which is in agreement with the geometrical boundary
conditions and which satisfies the conditions of compatibility.

A lower bound solution can be determined by finding out how the load can
be transferred through the structure to the foundations, without exhausting
the strengths of the materials. The principle in lower bound calculations
is simple, but nevertheless it often causes problems in finding good lower
bound solutions. An upper bound solution can be found by applying the
work equation to a geometrically possible strain field. The external work
done by the load in the failure mechanism is equated to the internal work
dissipated in the structure. It is often easy to carry out upper bound
calculations and in many cases the obtained results are satisfactory.

Gvozdev [38.1] was the first to give a complete formulation of the limit
analysis theorems, but Prager [52.1], Drucker et al. [52.2], [52.3] formulated
the theorem independently of Gvozdev. A more thorough summary of the
theory can be found in these publications or in, amongst others, Prager
[59.1] and Prager & Hodge [68.1]. Summaries can also be found in Jensen
[76.2] and Nielsen [84.1].

2.2 Concrete

Concrete cannot be characterized as an elastic or a plastic material for all
stress levels. For small stresses the elastic theory can normally be used,
but for stresses near to the material strengths this theory is not useful.
As is well known, concrete has a limited ductility. Therefore it does not
immediately appear that the theory of plasticity can be used to treat the
case of failure in concrete structures. In the case of reinforced concrete
structures, where the behavior is governed primarily by the reinforcement,
the theory of plasticity has been shown to be workable and has been used
for many years. The theory of plasticity is useful in this case, because the
properties of the reinforcement can be identified with those of a perfectly
plastic material. In the case of unreinforced structures and structures with
high ratios of reinforcement, the load carrying capacity is governed mainly
by the properties of the concrete. Employing the theory of plasticity in these
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cases does not result in a satisfactory agreement between test and theory.
This is probably because of the limited concrete ductility. Therefore when
using a rigid plastic material model for the concrete, modification factors
must be used for taking into account the lack of plasticity.

The modification factors can be introduced in such a way that the concrete
is considered to be a material having plastic strengths, instead of the normal
strengths. The plastic strengths are reduced in proportion to the normal
strengths by effectiveness factors. The plastic uniaxial compression and
tensile strengths can then be written as

fcp = vfe "(2'1)
ftp = tht = pfc (22)

where f, is the uniaxial compressive strength measured by a standard com-
pression test on a cylinder and f; is the uniaxial tensile strength measured
. by a standard procedure. The dimensionless quantities v, v; and p are the
effectiveness factors. The concrete strengths and the effectiveness factors
are discussed later in this section.

As a failure criterion for the concrete, the frictional hypothesis of Coulomb
together with a limitation of the tensile strength is used. The yield condi-
tion corresponding to this hypothesis is called the modified Coulomb failure
condition. For determining the modified failure condition three material
constants must be known. This can for instance be the uniaxial compres-
sion strength f., the uniaxial tensile strength f;, and the angle of friction ¢.
The angle of friction can, with sufficient accuracy, be taken as a constant
3 .

corresponding to tan ¢ = §, see below.

The condition for sliding failure in a section can be written as
|rl=c—otanyp ‘ a (2.3)

where 7 is the shear stress, o is a stress measured positive as tension, c is
the cohesion and ¢ is the above-mentioned angle of friction., Using principal
stresses 01, 03 and o3, where o1 > g3 > 03, the condltlon for sliding fallu.re
can be reformulated as ’ : ‘
koy — o3 =2cVEk : (29)
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Figure 2.1: Test results from triazial compression tests on cubes. Ezpression (2.7) is shown using k = 4 ~
tanp = 3/4, and fo = f.. which is the uniazial cube sirength. The figure is more or less taken from Wang
et al. [87.4]. The stresses are shown posilive as compression.

0

where 1+ sing
k= T—simg (2.5)

A compression test with 07 = 03 = 0 and 03 = ~f,, will always result in
sliding failure, therefore

f. = 2¢vk (2.6)
Using (2.6), expression (2.4) can be rewritten as

(241 g1

— = =1k 2.7
A el

(2.7) is shown. in figure 2.1 together with test results.

As can be seen in figure 2.1, expression (2.7), with k = 4, fits in very
well with the test results. However, Wang et al. [87.4] have carried out
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O34

Figure 2.2: The modified Coulomb failure condition in plain strain in the principal stress space.

two tests with %’; = i’: ~ 3.1, f.. being the uniaxial compression strength
measured on cubes, which are not shown in the figure. The correspondence
between (2.7) and these tests is not as good as for the tests shown in the
figure. However, these two tests represent a very high stress level which is
unusual in practice. Jensen [76.2] and Nielsen [84.1] have also compared the
expression for the sliding failure with test results and they find satisfactory
agreement using £ = 4. The frictional hypothesis can therefore probably
be used for concrete for stress levels occuring in practice. Other failure
conditions are used in the literature, but they.aré all more complicated
than Coulomb’s failure condition. Amongst others, Sandbye [65.2], Ottosen
[77.1], Chen [78.1], and Boswell & Chen [87.2] have presented proposals to
different descriptions of the yield surface. Ottosen [77.1] and Chen [78.1]
also presents surveys of the failure conditions which have been used in the
literature. o '

The modified Coulomb failure condition is shown in ﬁgure"’»2.12 in the case
of plane strain. "

In figure 2.3 photos-taken from different positions of the modified Coulomb
failure condition are shown. The arrows represent the principal stress space.

Figure 2.3 I to III shows the transition in the figure, when the position of
the camera is changed from (0,0, a) to (a,q,a), a being a pyois‘i,tive constant.
It must be noticed that the large hexagon in the background in figure III
does not represent one section, but three. '
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Figure 2.3: The modified Coulomb failure condition in the principal stress space. N
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Figure 2.4: Yield condition and equations for the dissipation in a yield line for a modified Coulomb material.

In figure 2.4 the modified Coulomb failure condition for plane strain and
equations for the dissipation, D, in a yield line are shown.

The effectiveness factors v and p are included in the yield condition and in
the expressions for the dissipation in the concrete. Two quantities, A and
i, are introduced in the table in figure 2.4. They are defined as

X=V—@—1M.-  S (2.8)

p=v—(k+1)p (2.9)
In the calculations <in, the following sections A and u are in some cases
modified to

X = ._1—w—1y- (2.10)°

I": wl>—«

w=t= _@+n§ (2.11)

The dissipation in a yield line of a modified Coulomb material as a function
- of the angle between the yield line and the displacement, o, is 111ustrated in
figure 2.5.
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As can be seen, the dissipation, D, decreases for increasing o, when £ is
less than ;}_—1- In the case of plane strain the dissipation in the yield line

will always be less than v fovg2; for 2<is,

Jensen [75.2] and [76.2] shows how the expressions for the dissipation in a
yield line can be formulated.

The compression strength of the concrete is defined as the peak value on
the stress-strain curve appearing from a standard compression test on a
cylinder, see figure 2.6. '

The stress-strain relationship for concrete in uniaxial compression, curve
I in the figure, does not fulfil the requirements of a rigid-plastic material.
After the peak, the stress decreases for increasing strain. In the case of
uniformly distributed strains, the stresses at failure will be equal all over
the section. If the strains are not uniformly distributed at failure it is not
certain  that the stresses are equal over the whole section. This can be
taken into account by reducing the uniaxial compressive strength by the
effectiveness factor, v, given in (2.1). The effective plastic strength can
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Figure 2.6: Ezample of a uniazial siress-strain relationship for concrele in compression, curve I, and an
elastic- plastic relationship with the yield strength vf,., curve II.

be considered as a uniform stress over the section with a value of vf,, see
figure 2.6, curve II.

The value of the effectiveness factor can be determined in such a way that
the area under the stress-strain curve is equal for the real and the elastic-
plastic relationship. Such calculations have been carried out by Exner [79.5]
using stress-strain curves measured by Wang et al. [78.5]. These calcula-
tions show that the effectiveness factor will be a function of the compression
strength f. and the strain at rupture &, and it has been found that the ef-
fectiveness factor decreases with increasing concrete strength and strain at
rupture. This is in agreement with the empirical fact that the falling branch
of the uniaxial stress-strain curve is steeper for high concrete strengths than
for small strengths. In practice the effectiveness factor therefore depends
on the concrete strength and the strains in the structure at failure.

Exner [79.5], [83.1] has compared the load carrying capacity of two struc-
tures, the one having a concrete like stress-strain curve (curvelin figure 2.6)
and the other having an elastic-plastic stress-strain curve (curve II in fig-
ure 2.6). It is found that the load carrying capacity of structure I is greater
than or equal to the load carrying capacity of structure II, when the strain
in the plastic structure II does not exceed the rupture-strain &,.

The effectiveness factor was first introduced in 1969 by Nielsen [69.2] in
the case of shear strength of beams. The name effectiveness factor and
the symbol v was not used but the plastic uniaxial concrete strength was
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introduced as fF = 0,85f;. The term ‘effectiveness factor’ and the symbol
v were introduced in Breestrup [74.3] and Nielsen & Breestrup {75.3] in the
case of shear strength of beams. The arguments for using the effectiveness
factor are the same as in Nielsen [69.2]; the concentrated forces from the
bars are transferred to the concrete, whereas the entire web width of the
beam will not be active. The value of the effectiveness factor v was taken
as a constant equal to 0.88, found by comparing the theory with test re-
sults. In the case of shear problems, Jensen [75.2], [76.2] has also used the
effectiveness factor. He mentions that only a part of the section is active
at failure and therefore the failure section is multiplied by the effectiveness
factor. In the case of monolithic concrete, » was found by test results to be
equal to %, but other constant values are given for other cases.

Broestrup et al. [76.4] have treated punching shear strength by means of
the theory of plasticity. They concluded that the theoretical load carrying
capacity is generally higher than the test results, because of the strain-
softening and the limited deformability of the concrete. Therefore the stress
is probably not equal to the uniaxial concrete strength in all points of the
. failure section. Hence the effectiveness factor v = % is introduced. The
effectiveness factor for tension, p in (2.2), is also used because the failure
surface has no limit for p = 0. It is observed that v decreases for increasing
concrete strength, but v is taken as a constant equal to 0.835, where p = ‘ilﬁ
is used.

Shear tests are carried out in Bach et al. [77.2]. It is stated that the
tests does not show precisely, which of the varying parameters influence
the effectiveness factor. However, there is a tendency that v increases for
decreasing concrete strength and cover. The effectiveness factor is taken
as a constant between 0.64 and 0.75 in the different cases which are dealt
with. ‘

The theoretical expressions for the punching strength set up in Broestrup
et al. [76.4] are used by Hess et al. [78.3] to compare test and theory.
It is found that the effectiveness factor can be determined as a constant
--divided by the square root of the uniaxial concrete compression strength.
The effectiveness factor for tension, p , is taken as a constant equal to’ 4—(1)0.
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All the results mentioned above have been compiled in Nielsen et al. [78.4].
In the case of shear in beams with stirrups it is proposed that the effective-
ness factor, v, can be determined as a constant minus the uniaxial concrete
compression strength divided by another constant. In the case of shear in
beams without shear reinforcement, which is also treated in Roikjeer et al
[79.6], it is found that the effectiveness factor decreases for increasing con-
crete strength and beam height and increases for increasing reinforcement
ratio. It is also found that v decreases for increasing shear span, for the
shear span less than a certain value and increases when the shear span is
larger than this value. This effect is due to the fact that the tensile strength
is not included in the theoretical considerations.

A theoretical explanation of the effectiveness factor is given in Exner [79.5]
as mentioned above. It is the first time that the concrete strength f, and
the effectiveness factor v are connected in a figure, similar to those shown
in figure 2.6. By using stress-strain curves measured by Wang et al. [78.5]
it is shown that v decreases for increasing f, and &,. It is concluded that
the only problem in a special case is finding the strain at rupture in the
failure section.

More shear tests on beams with shear reinforcement are conducted in Bach
et al. [80.1]. It is concluded that the effectiveness factor can be determined
using the same expression used in Nielsen et al. [78.4].

The only now known case, where it is possible analytically to find the effec-
tiveness factor, is in the case of pure bending. Exner [83.2] has dealt with
this problem, again using stress-strain curves from [78.5]. The main result
is that the effectiveness factor in the case of pure bending can be determined
with sufficient accuracy as a function of the concrete strength f, and the
yield strength of the reinforcement f,, but the geometrical reinforcement
ratio also has an influence. Increasing f. and f, results in decreasing and
increasing v-values, respectively. From the analysis it appears that v is
rather close to 1 for low reinforcement ratios and low concrete strengths.
The function for v expounded by Exner is simplified in Nielsen & Feddersen
[83.3] in such a way, that the expressions for v can be used in practice. The
theoretical expressions for the bending strength, where v is determined from
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the simplified expressions, are compared with test results. The agreement
is quite good.

Pure torsion is dealt with by means of the plastic theory in Feddersen &
Nielsen [83.4]. It is concluded that the effectiveness factor can be deter-
mined as a constant with acceptable accordance. However, it is mentioned
that the concrete strength, the diameter of the main reinforcement, the ratio
between the edges of the section, and the yield strengths for the reinforce-
ment probably have an influence on the effectiveness factor. The results

from the bending and the torsion analysis are also mentioned in Feddersen
& Nielsen [84.4].

Anchorage is treated in Hess [84.2], Andreasen [84.3], [86.7], and Andreasen
& Nielsen [86.8]. The effectiveness factors are inversely proportional to the
square root of the uniaxial compression concrete strength.

Amongst other things, the results discussed above are mentioned in Nielsen
[84.1]. Membrane action in reinforced concrete slabs is dealt with in An-
dreasen [85.4] and Andreasen & Nielsen [86.3], [88.4], [88.5], and [88.6]. v
is here found to be equal to a constant divided by the square root of the
uniaxial compression concrete strength. Combined bending, shear and tor-
sion are currently being dealt with by B. Feddersen and bending and shear
in corbels, high beam and normal beams by Chen [88.7].

In the cases dealt with in the literature up till now, the effectiveness factor
has been considered as a certain quantity. However, Ditlevsen [87.5] has
suggested that the effectiveness factor approach can be extended to a model
uncertainty approach in random vector form for system reliability analysis.

The effectiveness factor v is a quantity which takes into account the lacking
plasticity with respect to compression where a rigid plastic material model
is used for concrete. In practice the effectiveness factor considers the strain
conditions and the load history in the case under consideration. Pure bend-
ing is up till now the only case where it has been possible to determine the
effectiveness factor v analytically. Normally » must be found by comparing
the theory with test results. In general the magnitude of v will be differ-
ent from case to case, but usually described by a simple function: In the
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Figure 2.7: Reprints of figure 1.17 and 1.18 in Van Mier [86.1].

cases dealt with in the literature, v is found to be a function of at least the
uniaxial concrete compression strength f,, where v decreases for increasing
concrete strength. Two types of functions are used

v= \I/“‘_ (2.12)
v= kz - %;- (2.13)

where k3, ko and k3 are positive constants.

Using the effectiveness factor in the way described above it is presupposed
that the stress-strain relationship is independent of the size of the specimen,
which is being tested. v is simply calculated as the ratio between the
effective plastic strength and the peak value. However, it is not the case in

tests carried out by Van Mier [86.1], [86.2] . In figure 2.7 some of the test
results are shown.

In the tests shown in figure 2.7 the friction between the concrete specimen
and the applied load is eliminated using a special loading system. As can be
seen from the figures, the stress-strain and the stress-displacement curves
in compression are similar to those found in tensile tests; there is a size
effect in the falling branch on the stress-strain relationship. The stress-
strain curves are equal in the pre-peak region and the stress-displacement
curves are almost equal in the post-peak region.
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These tests indicate that it should be impossible to use the theory of plas-
ticity for concrete structures where the strength is covered mainly by the
concrete. However, the theory of plasticity has been used for many years
to design many different concrete structures and the results are generally
remarkably good, when the concrete is modified to have the plastic com-
pression strength vf.. The reason for this is probably that in a practical
problem the dimensions do not change to such a degree that the size effect
has a large influence. Furthermore in most cases it is very likely that the
load carrying capacity is reached for a strain not very much larger than the
strain corresponding to the peak value f,. Therefore the difference in the
descending part of the stress-strain curves does not have much influence.
A reason why the size effect has not been remarked on earlier is probably
because of the normal scatter on the uniaxial strengths of the concrete. If
the strengths are encumbered by a scatter, the stress-strain curves, includ-
ing the falling branch, must also be encumbered by a scatter. The scatter
on the stress-strain curves is included in the values for the effectiveness fac-
tors, which have been found in such a way that the size effect is indirectly
included in the theory. In many of the cases dealt with in the above men-
tioned literature, the scatter on the ratio test/theory is less than or equal to
the scatter on the uniaxial concrete strength. The theory of plasticity seems
in the way it is used here for concrete structures to work satisfactorily. The
limitations for the theory must of cause not be forgotten and the use of the
plastic principle must not be used without considering the problem and the
solution critically.

Studying the failure patterns in figure 2.7 on the left, it can be seen that
the observed failure lines correspond to what should be expected according
to the theory of plasticity. ‘

In some cases it is necessary to include the tensile strength of the concrete
in the calculations. This can be done by introducing the plastic tensile
strength as given in (2.2). The tensile strength of the concrete is included
in many theoretical solutions expounded in the literature, but only in a few
cases when comparing the theory with test results is the tensile strength
considered to be other than zero. In Hess et al. [78.3] and Hess [84.2] the
tensile strength of the concrete is included both in the theoretical calcula-
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tions and in the comparison with test results.

In the case of anchorage the tensile strength is also included in the theoret-
ical expressions and in the comparison with test results. In an anchorage
the deformations at failure are small compared to other problems in con-
crete structures, wherefore it in this case is reasonable to take the tensile
strength into account.

In the case of uniaxial compression in concrete little or no size effect has
been recognised, but the test by Van Mier [86.1], [86.2] shows this is not
the case. In the case of uniaxial tensile in concrete it was for a long time
believed that the failure was brittle, but the test by Riisch & Hilsdorf [63.1]
shows that the stress-strain relationship for tension is similar to the one for
compression. The difference between compression and tension is therefore
mainly the absolute value of the stresses at failure. However, it is absolutely
not correct to determine the effectiveness factor for tension, p , in a similar
way as for the effectiveness factor for compression v by requiring the same
area under the stress-strain curve for the real and the plastic relationship.
A tension failure is concentrated in a few cracks and therefore the measured
strains depend on the measurement length. This is for instance shown by
Hillerborg et al [76.3] and Hillerborg [78.2]. The falling branch of the stress-
strain curve becomes steeper when the size of the test specimen is increased.
Using the area principle as with v, a tension failure in a small specimen will
result in a large value for p and a failure in a large specimen will give a
small p value.

The compression strength of concrete is influenced by various parameters,
but it seems that the tension strength is even more sensitive to the test
conditions than the compression strength. The tension strength and the
stress-strain curve are very much influenced by the test set up and the size
and shape of the test specimen, see figure 2.8.

Figure 2.8 shows that the observed stress-strain curves for tension in con-
‘crete are similar to those observed for compression. More test results are,
amongst others, given in Petersson [81.2], Gopalaratman & Shah [85.2], and
Cedolin et al. [87.3)]. :
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Figure 2.8: Complete stress-strain curves in direct tension. Reprints of figure 2c in Evans & Marathe [68.2]
and figure 4 in Hughes & Chapmann [66.2].

Figure 2.9: Tensile failure in a specimen.

It is an empirical fact that the uniaxial tensile strength of concrete f; can
be determined as a function of the uniaxial compression strength f.. This
can be due to the fact that the tension failure is in reality a lot of small
sliding failures, see figure 2.9.

The strength of failure by sliding depends on the compression strength of
the concrete, therefore the tension strength can very likely be described as
a function of the compression strength. The empirical relation between the
tension and the compression strength is often given by

fi = ke/fe o (2.14)

where k. is a positive constant.
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As previously mentioned, the effectiveness factor v is, in different problems,
found to be a function of the uniaxial compression strength and the relation

can be written as
k.

V= ﬁ (2.15)

which is also given in (2.12).

If it is assumed that the effectiveness factor for tension, p, can be calculated
in the same way as v, but as a function of f; instead of f,, the relation
between p and f; can be given as
— kt
P=VR
Using (2.14), (2.15), and (2.16) the following expressions are found
. k1
p= EE
P ki

v kc v ]th fc"

In theoretical calculations the ratio between p and v often appears. If 2

(2.16)

(2.17)

(2.18)

therefore can be assumed to be constant the theoretical considerations will
be more simple. The following is therefore introduced

P _
L=k, (2.19)

where k, is a positive constant. In this case the following expressions are
found by (2.14), (2.15), and (2.19)

p= Fackekr ' (2.20)
fe
ek, (2.21)

TV
it is not immediately clear whether assumptions (2.16), (2.19), or a third
one should be used to describe the plastic tensile strength of the concrete.
Test results are therefore used to clarify which of the two models set-up are
to be used here. In the following (2.16) - (2.18) are denoted as model A
and (2.19) - (2.21) as model B.

Gravesen & Krenchel [72.2] have carried out bending tensile strength tests,
where the compression strength is measured for every specimen. The stress
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Figure 2.10: Stress distribution according lo the theory of plasticity in a rectangular plain concrete section

subjected to pure bending.

distribution in a section according to the theory of plasticity is shown in
figure 2.10.

The unreinforced beam has a rectangular cross section with depth h and
width b and is stressed to pure bendlng The yleld moment in pure bending
can be determined by

= _bthfc

2.22
v+p (2.22)

Assuming the extension of the compression zone to be equal to zero, the
moment can be written as

1
My y=0 = §bh2Pfc (2.23)
which corresponds to v — oo.

In Gravesen & Krenchel [72.2] the bending tensile stress fy is defined as
the maximum stress appearing if the stress distribution is linear, according
to the elastic theory

1
My = gbh“’ fub (2.24)
Equating equations (2.22) and (2.24), the following expression is arrived
viw
= 2.25
*= 5 Ta (229)
If ¥ — oo the expression can be rewritten as
fo
= = 2.26
37, (2-26)

(2.26) is a good approximation to (2.25) because fy in the denominator in
(2.25) is small compared to 3vf,. This indicates that the analysis is not
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No.| fu f- v= \;«E v =00
[Mpa] | [Mpa] || p from (2.25) | 2 | pfrom (2.26) | 2
1 2.16 11.2 0.069 0.077 0.064 0
2 2.34 11.6 0.073 0.083 0.067 0
3 4.12 | 22.0 0.069 0.108 0.062 0
4 412 | 23.3 0.065 0.105 0.059 0
3 4.62 | 32.8 0.051 0.098 0.047 0
6 4.68 | 33.2 0.052 0.099 0.047 0
7 4.66 | 33.6 0.051 0.098 0.046 0
8 5.20 | 424 0.045 0.097 0.041 0
9 548 | 44.8 0.045 0.100 0.041 0
10 | 5.80 | 45.0 0.047 0.106 0.043 0
11 | 5.68 46.4 0.045 0.102 0.041 0
12 | 7.02 | 55.6 0.047 0.117 | 0.042 0
13 | 7.38 | 56.0 0.049 0.123 0.044 0

The specimens are made of rapid cement (14 days old) and are
stored in water in a horizontal position. The depth k- = 100mm,
width b = 150mm, and the length £ = 800mm.

Table 2.1: Bending tensile strength tests from Gravesen & Krenchel [72.2].

sensitive regarding the value of v. In table 2.1 the results from the tests are
shown.

In table 2.1 results from two analyses are also given. The first analysis is
carried out using (2.25) and (2.15) with k. = 3 and in the second expression
(2.26) is used. Comparing p obtained in the two analyses, it can be seen
that the difference is small, which was also to be expected. In figure 2.11
the p values obtained from (2.26) are shown as a function of the uniaxial
concrete strength f.. ' ‘

Curves from the previously mentioned two models A and B are also shown
in figure 2.11. The constants are determined in such a way that the corre-
spondence between the curves and the test results is the best possible. It
is not obvious from this analysis to say which of the two models, A and B,
is the best.

- The values obtained for £ using expression (2.25) are shown in figure 2.12,
together with curves representing models 4 and B. ‘
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Figure 2.11: Values of p oblained from (2.26), see table 2.1. The two curves represent model A and model
B, respektively.

As can be seen from the figure model A describes the test results indeed
very satisfactorily. For concrete strengths appearing in practice the constant
description, model B, is acceptable, but for all possible strengths model B
does not seem to be as good as model A.

The mean value of 2 from the analysis using (2.25) in table 2.1 is 0.101,
the standard deviation is 0.012 and the coefficient of variation is 0.120. For
k. = 2 the corresponding values are 0.160, 0.020, and 0.126, and for k., =5
the values are 0.058, 0.007, and 0.114. This indicates that the coefficient
of variation on the ratio £ is nearly independent of the value of v, but the
values for £ are of course influenced by v. In practice the constant k. is in
the interval 2 to 5, therefore £ in practice will probably be in the interval
of 0.01 to 0.150 depending on the absolute dimensions of the failure zone
in a special case. The specimen used by Gravesen & Krenchel [72.2] is
small compared with structures in practice, therefore the lower limit for 2
is reduced in proportion to the value obtained in the analysis.

In table 2.2 the functions obtained from the analyses are shown. p as a
function of f, can be seen to be almost equal for the two analyses with
different values of v.

From the previous calculations it can be concluded that model A, expres-
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Figure 2.12: Values a_ff obtained from (2.25), see table 2.1. The two curves represent model A and model
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— _3 e
V= A v =00
modelA | modelB | modelA | model B

Y
2 10.041f¢ 0.10 - -
P 0.125 0.30 0.12 0.27
13 N2 ra Je
0.069 0.095 - 0.085
? NA Je Je

Table 2.2: Expression (2.16) - (2.21) for the cases in table 2.1.
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No. fe Jis fe
[MPa] | [MPa] | [MPa]
If | 110 | 146 | 0.98
ot | 116 | 1.24 | 1.08
3t | 124 | 138 | 108
4 | 288 | 312 | 2.14
5t | 29.8 | 2.80 | 2.00
6t | 33.0 | 2.60 | 1.92
7t | 43.2 | 3.60 | 2.18 [ Specimen stored in water and air.
8t | 432 | 4.10 | 2.30 | t:standard cement, 28 days.

9t | 45.2 4.14 2.42 | I: rapid cement, 14 days.

10t | 56.2 | 4.66 | 2.58
111 | 16.6 2.04 1.54 | Dimensions:

121 | 16.6 2.64 1.46 | diameter d = 150mm,

13f | 21.8 | 2.28 1.64 | length of cylinder £ = 300mm,
141 | 222 | 2.56 | 1.74 | loading plate b = 15mm.

158 | 27.2 | 2.50 | 1.86
161 | 27.6 | 2.44 | 2.08 | The splitting tensile strength is defined as
171 | 31.6 3.38 2.12
18t | 386 | 3.40 | 216 | fi, =25

191 | 38.8 | 4.00 | 2.24

201 | 42.0 | 3.50 | 2.12 | where P is the load, see figure 2.13.
211 | 48.8 | 4.00 | 2.62

Table 2.3: Related values of the compression strength f., the tensile strength f; and the splitting strength fi,
Jfrom Gravesen & Krenchel [72.2].

sions (2.16) - (2.18) results in the best description of these tests. Model B
fits in very well with the test results, but if the interval for the concrete
cbmpression strength is limited to 15 - 50 MPa, the agreement is even better
than for model A.

Gravesen & Krenchel [72.2] have also carried out some tests, where the
uniaxial compression strength f. the uniaxial tensile strength f;, and the
splitting strength f;; are measured for the same concrete. The main varying
parameter was the strength of the concrete. The results from a test series
where the concrete was stored in water for the first half period and in air
for the last period, are shown in table 2.3.

‘In figure 2.13 the cylinder used in the splitting tension tests is shown.



30 CHAPTER 2. BASIC ASSUMPTIONS
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Figure 2.13: Cylinder used 1o the splitting tensile tests given in {able 2.3.

Applying the upper bound theorem to the failure mechanism shown in
figure 2.13, the load carrying capacity can be found to be

P d
bor = 5 (2B + )~ 1 (227)
where
1 4 cos
t0 = : ‘
cot 3 tanﬁ+cos¢\jl+%%(1_Sin‘a)_8in¢ 22

which has been set up by Chen & Drucker [69.3]. If cot 3 > ¢ in (2.28) then
cot 8 = ¢ should be used in (2.27).

The exact plastic solution for the splitting problem was developed by Izbicki
[72.3]. According to Exner [83.1] the upper bound solution corresponds
very well to the exact solution in some cases. For % > 0.05 and 2 > 0.1 the

difference between the correct solution and the upper bound solution is less
than 6% .

(2.27) and (2.28) do not give the load carrying capacity directly. The angle

B should first be found from (2.28) and the obtained value then inserted

into (2.27). However, it is possible to combine the expressions in such a way

that one can find the load carrying capacity by using only one expression.

It is seen that

2cot B+ tan pcot? 8 — tan
cot? 3 — 1 — 2tan pcot B8

tan(28 + ¢) = (2.29)
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Inserting (2.28) into {2.29) and inserting this expression into (2.27), the
following expression for the load carrying capacity is found

P d 3%(1 —singp) —sing
bl = b [ta,mp + 2cot 8 Toosy (2.30)

(2.28) can be inserted into (2.30) directly. Having done this and using (2.5),
the expression can be reformulated as

P 2—(k-1)| —(k-1)¢-2vEk 2vkd
_2 3 _ AV}
BoT, 9% [\/E T (k- 1) + (k-1 +(k+1) 1+%_(k_1)
(2.31)
For the case k = 4 (2.31) can be written as
P 1| v _d v 44
bzpfc_§[3;+65_17+5(;_3) 1+%_3} (2.32)

Using the test results in table 2.3 to find the plastic tensile strength of the
concrete at least two methods can now be used. In the first method % i§
assumed and inserted into (2.32); p can now be calculated. In the second
method p is assumed and % is then calculated by isolating this parameter
in (2.32). The value of the assumed parameter is determined so that the-
value is in accordance with one of the models A or B, expressions (2.16)
- (2.21). Calculations have been carried out using these two'methods and
some of the results are shown in figures 2.14 and 2.15. "

Calculations using constants in the functions other than in figures 2.14 and
2.15 and using the second method (p is assumed) have also been carried
out. These calculations indicate that the main result is not so sensitive
regarding the assumed values. Of course the absolute value of the calculated
parameters changes when the constants are changed, but the general view
is the same as shown in the figures. The functions, the standard deviation
around the used curve, and the corresponding coefficient of variation are
shown in table 2.4.

As can be seen by comparing figures 2.14 and 2.15 and the results in table 2.4
it seems as if the correspondence between the tests and model A is somewhat
better than with model B, but it is only a slight difference. The same was
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Model A Model B
functions | standard | coefficient || functions | standard | coefficient
deviation | of variation deviation | of variation
e | 0.040f - - 0100 | - -
0.168 0.022 0.132 0409 0.062 0.152
Pl 4 Vi
P % 0.015 0.151 0—'};‘—5 0.028 0.191
t .

Table 2.4: Functions, the standard deviation around the curves, and the corresponding coefficient of variation
using the two models A and B for the splitting tensile tests in table 2.3.

found previously in the case of bending of an unreinforced beam. It is not
possible in the light of the test results and the analysis used here to say if
one of the models is significantly better than the other.

It must be observed that the results obtained in using the assumptions
in model A are not as inaccurate as might be expected. As can be seen
from (2.15) and (2.16), model A, the effectiveness factor for tension, p,
depends on the uniaxial tensile strength, f;, as the effectiveness factor for
compression, v, depends on the uniaxial compression strength. From (2.15)
and (2.19) it can be seen that in the case of model B, p depends on f, in
the same way as v depends on f..

Model B, the constant model, is the easiest to use in practical calculations,
because the ratio between v and p often appears in the theoretical expres-
sions for the geometrical parameters and the load carrying capacity. If f
can be taken as a constant, it is easier to make simplifications from the
theoretically correct expressions, which in some cases are too complicated
to be used directly. Concerning practical calculations it is therefore prob-
ably the best to use the constant model. Because the analysis carried out
here does not show any significant difference between the two models, the
simplest one, the constant model (model B), will be used in the calculations
in the following chapters.

.. Other tests similar to Gravesen & Krenchel’s tests can amoungst others be
found in Torrent & Brooks [85.3]. These tests will not be discussed here.

If the simple models used here to describe the plastic tensile strength of con-
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crete show to be incorrect or inconsistent when comparing theory with test
results, another model and certainly a more complicated one must be used.
It is probably possible to use some of the results obtained from fracture
mechanics analysis for concrete structures!; particularly the bending tests
to determine the fracture energy, but also the simple tensile tests, which
are carried out to find out which parameters are decisive in determining
the stress-strain and stress-deformation curves. This will not be discussed
in detail here, but it should be mentioned that the size of the aggregates is
found to influence the stress-deformation curve in the post-peak region.

In most cases it is not possible to determine the effectiveness factors v and p
analytically. They must be found by comparing the theory with test results.
The value of the effectiveness factors is determined in such a way that the
correspondence between the theory and the test results is the best possible.

When the tensile strength of the concrete is not zero, there is a problem
in determining the two unknown parameters, ¥ and p. In plastic calcula-
tions the load carrying capacity is the only thing, which is unambiguously
determined. The theoretical load carrying capacity should be equal to the
test result which yield one equation. The theoretical load carrying capacity
is in general a function of at least v and p, therefore there is one equation
with two unknown parameters. This indicates that one of the parameters
must be determined in another way or a two dimensional statistical analysis
must be used. In some cases it will be simpler to use » and £ as parameters
instead of v and p. An estimate for the value of £ can then be found by
‘considering the obtained failure mechanism in the tests, if these are not
fixed by geometrical conditions. Doing this it must be remembered, that a
crack’ is not necessarily a yield line, therefore this method should be used
with caution. A way of solving the problem is to assume a value for 2, for
instance in accordance with model A or B, inserting this into the theoreti-
.cal expressions and then finding ». If the result is not satisfactory another
value for £ is assumed.

If there are two possible failure mechanisms in a concrete case using the
upper bound theorem, the best one can be found by comparing them theo-

! Amongst others Olson [85.6], [86.4], Gustavson [85.5], and Petersson [81.2] have dealt with this.
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Figure 2.16: The stress-strain relationship for the reinforcement.

retically and selecting the smaller one (the one with the smaller load-bearing
capacity). Doing this, it is assumed that the effectiveness factors are equal
for the two mechanisms. This is not necessarily the case. Another possi-
bility is to find the values for the effectiveness factors for all the tests? and
observe which of the two mechanisms results in the largest values. This
mechanism will be the best upper bound solution if the effectiveness factors
are equal in both cases. As with the method above, this is not necessar-
ily the case here either. It is not immediately possible to give a general
guide-line on how to solve the problem under specific circumstances; in all
considered situations there is a problem in finding the best mechanism when
the effectiveness factors are not known.

2.3 Reinforcement

The reinforcement is assumed to be a rigid-plastic material and to be ca-
pable of carrying longitudinal tensile and compressive stresses only. Thus
the dowel effect is neglected, which cannot always be considered inferiorly
according to Nielsen [69.4] and [84.1]. The stress-strain relationship for the
reinforcement is shown in figure 2.16.

2The values of the effectiveness factors are found by making the theoretical load carrying capacity equal
to the load obtained in the tests, i.e. if the ratio 2is determmed v can be found as the ratio between the
test value and the theoretical value using v =1



Chapter 3

Anchorage Theories

Anchorage of reinforcing bars in concrete is a complicated problem because
of the influence of many parameters. Until now only a few attempts to
create a theory for the problem have been made. Many design rules are
therefore empirical methods. Some of the theories presented in the liter-
ature will be discussed here. Moreover different methods of calculation of
the anchorage strength will be given. This review should be considered only
as a survey of the theories and methods. For a more thorough description
the reader is referred to the actual reports and papers.

Ferguson & Briceno [69.1] have made theoretical considerations on the lap
splice strength of deformed reinforcing bars. They state that besides the
longitudinal cracks along the reinforcing bars, there will also be internal
cracks radiating from each rib on the bar. It is assumed that the force
in the bar develops inclined compressive forces in the concrete with the
same inclination as the radiating cracks. The inclination is assumed, in the
light of photos from Goto, see [71.3], to be 45 degrees. Because of this, the
longitudinal and the radial component of the stress are equal. Tests indicate
that close to ultimate load the variation in steel stress along the splice is
approximately linear from zero at one end to' maximum at the other. The
shear stress along the anchorage are therefore determined as a constant

Ao  do
TS T W 8.1)

where A, is the cross sectional area of the bar, o is the steel stress, d is the
diameter of the bar and ! is the splice length.

Three kinds of failure patterns shown in ﬁguie 3.1 are considered.

36
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Figure 3.1: Failure patterns used by Ferguson & Briceno [69.1]. The stresses in the concrete in e horizontal
section through the bars at failure are indicated.

The failure pattern I in figure 3.1, side split failure, will be treated here. It
is assumed that if the splice is placed in a region with varying moment, the
load carrying capacity is determined from the average value of the stresses
in the bars. This is done by introducing a factor k' = omin/0maez- The total
outwarded force from two bars (one sphce) can then be written as, using
(3.1)

(1+K)d%
21
The tensile stress f; (average splitting stress) shown in figure 3.1 should be

in equilibrium with the outwarded forces from the bars, i.e.

(1 +&)do
2(5 -

21+ K')rd = (3.2)

fi= (3.3)

where b is the width of the beam.

The face-and-side split failure is treated in a similar manner, but the cal-
culations and the expressions are not as simple as for the side split failure.
It is assumed that the vertical cracks can transmit shear stresses by aggre-
gate interlock and that the stress distribution in the horizontal cover can
be determined by Navier’s expression. It is found that the expression for
f{ results in smaller values than (3.3), because the corner bodies are less
efficient than for the side split failure.



38 CHAPTER 3. ANCHORAGE THEORIES

The V-type failure will appear if the beam is very wide. This type of failure
is not dealt with theoretically, but it is expected that this failure forms an
upper limit for the values of f] found from the side split and the face-and-
side split failure.

The values of f] obtained from splice tests are compared with splitting ten-
sile cylinder tests and it is concluded that the agreement is quite reasonable.

Ferguson & Krisnaswamy [71.1] have used the same failure patterns as Fer-
guson & Briceno [69.1]. The longitudinal and the radial component of the
stresses from the reinforcement are at first assumed not to be equal, but
in the final expressions the inclination between them is 45 degrees. The
tensile stress in the concrete f] is taken as the splitting cylinder strength
multiplied by a factor o. The splitting strength is calculated as a function
of the uniaxial compression strength f. as f; spuir = 0.53v/fe ( ft,sptit and f in
M Pa). « takes into account that the stresses are not evenly distributed in
the longitudinal direction and across the splice and that the inclination of
the compressive stresses in the concrete changes with varying confinement
or cover. The outward force from two bars is then 2dl7, which referring
to (3.1) can be written as 0d?/2. This force is taken by an average tensile
stress in the concrete fs'l = a(0.53+/f;)s'l, where s' = b/2— 2d, from which
it is found that the splice length can be calculated using

0.940d?

T slon/T,

Comparing (3.4) with test results it is found that o can be determined from

(3.4)

1 09014053 (3.5)
= 09(1+05° .

for o less than approximately 400MPa. The splice length can then be
determined from (3.4) assuming the steel stress o to be equal to the yield
stress. Design rules are established for tension lap splices based on (3.4)
and (3.5). Special cases such as staggered splices, splices in a variable
moment region, interior splices in walls and slabs and splices w1th transverse
reinforcement are also treated. ‘

In Orangon et al. [75.1] and [77.3] the work done in the previously men-
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Figure 3.2: Circle o take the radial siress from the bar to the concrete according to Orangon et al. [75.1]
and [77.3].

tioned reports [69.1] and [71.1] and the huge work done by Tepfers! [73.1],
are discussed. It is mentioned that the transfer of stresses from a deformed
reinforcing bar to the concrete is mainly derived from the mechanical locking
of the lugs (the deformations) into the surrounding concrete. The resultant
stress from the lugs is inclined at an angle 3 to the axis of the bar. The
radial component of the stresses causes a splitting of the surrounding con-
crete at failure. The radial stress component is assumed to be carried by
the surrounding concrete inside the circle indicated in figure 3.2 on the left.

The circle is determined from the minimum value of the side cover, ¢, and
the bottom cover, ¢, in figure 3.2. For two bars lying next to each other
— the lap splice case — similar conditions occur, but the circle is now an
oval ring. Tepfers [73.1] has analysed the stresses in the circle by water
pressure analogy. No attempt has yet been successful in analysing the
stresses in the oval ring concrete cylinder analytically, but the problem is
treated numerically in the literature.

Orangun et al. consider the main problenfi to be the determination of the
angle 3 between the tangential and radial stress component from the lugs on
the bar to the concrete. Tepfers’ [73.1] theory for a partly cracked concrete
circle, shown on the right in figure 3.2, is used to analyse the problem. It is
found that the value of tan § can vary from 0.77 to 1.32, depending on the
assumptions used. It is concluded that dealing with the anchorage problem

1Tepfers’ work will be described below
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analytically will be very difficult, because of the large variations. Therefore,
it was decided to give up a theoretical approach in favour of an empirical
one. Nonlinear regression analysis was carried out using various functions
and test results from the literature. The best fitting curve has been found
to be

—\77_}: = 0.10+0.2772% 4 4.40%E + ﬁ%f”’
where 7 is the shear stress defined in (3.1), f. is the uniaxial concrete
compression strength measured in M Pa. ¢y, is the minimum of ¢, and c,,
d is the nominal bar diameter, ! is the anchorage length, A is the cross
sectional area of the transverse reinforcement, which has an angle of 90

degrees with the failure surface, f is the yield strength for the transverse

(3.6)

reinforcement, and n; is the number of transverse reinforcing bars over the
anchorage length. '

The contribution from the transverse reinforcement %%ﬁﬂ should always
be less than or equal to 0.25.

The large amount of test results from Tepfers [73.1] is not included in the
development of expression (3.6), but the expression is compared with the
test results. It is found that the ratio between Tiest a0A Tiheory has a mean
value and standard deviation of 1.18 and 0.32, respectively. The formula
is somewhat conservative in this case. For the other tests included in the
analysis the correspondence is satisfactory.

As previously mentioned the theoretical considerations on the strength of
lap splices by Tepfers [73.1] and [82.4] will be discussed. The local stresses
around a reinforcing bar anchored in a concrete body with the cover ¢, is
discussed first. ¢y is the thinnest of the concrete covers appearing around
the bar. Three different stages are considered:

I Uncracked elastic stage (ES)
II Partly cracked elastic stage (PCES)
IIT (Uncracked) plastic stage (PS)

The three situations are shown schematically in figure 3.3.
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Figure 3.3: The three stages in the local siresses around a reinforcing bar according to Tepfers [713.1].

The shear stress 7 is assumed, in the light of tests, to be evenly distributed
over the anchorage length. The stresses from the reinforcement are assumed
to be transferred to the concrete by a uniaxial compression which is inclined
with an angle o to the axis of the bar in stages II (PCES) and IIT (PS).
The radial component of the stresses is therefore 7tan«. In stage I (ES)
the concrete is uncracked and the properties of the concrete in tension and
compression are equal and the angle « is therefore 45 degrees.

In the elastic stage the stresses in the concrete ring surrounding the rein-

‘forcement are calculated assuming the concrete to be elastic. According
to Tepfers the solution in this case first appeared in the paper by Lamé &
Clapeyron [1833]. The stress distribution in the ring direction is shown in
principle in figure 3.3. The expressions for the stresses will not be given
here.

In the second stage, the partly cracked elastic stage, it is still assumed that
the concrete is an elastic material, but the concrete near the bar is assumed
to be cracked, because the tensile strength is exceeded in the ring direction.
The radial stresses from the bar are transferred through the cracked part
of the concrete without redistribution of the stresses, i.e. dmwp; = 2emp,,
see figure 3.3. The ring stress oy in the uncracked part is determined from
the expressions appearing in the elastic stage, assuming o, equal to p, for
r = e. The maximum value of oy must be less than the tensile strength fi,,
- which appears for r = e. Using this, the ratio I—%—i’—‘! can be written as a
function of e, amongst others, and the maximum load carrying capacity is
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then found by differentiating this expression with respect to e. Doing this,
it is found that the optimal crack-depth e — d/2 can be determined by

e = 0.486(cy + g—) 3.7

In the third stage, the plastic stage, the concrete is assumed to be a fully
plastic material. The radial stress component of the stresses from the re-
inforcement is assumed to be 7tan o and the stress in the ring direction is
assumed to be constant, and can be determined by

2¢y09 =drtana (3.8)

The load carrying capacity according to the elastic stage corresponds to
the cracks starting at the reinforcement and the partly cracked elastic stage
corresponds to the cracks going right through the total concrete cover. It
is mentioned that the full plastic stage is not to be expected. The load will
probably be between the partly cracked elastic stage and the plastic stage,
because the concrete will have some plastic deformations. Tests show that
the cracking load in fact lies between these two stages and can be given by

Tmaz tan o c
—— =0.154+ 13- 3.9
fts d ( )

where Ty is used in the theory to distinguish between in which way the
total load carrying capacity is to be determined.

Finite element calculations have been carried out to analyse the stress con-
ditions and the variation of the angle o around the bar. The calculations
were carried out, assuming the problem to be plane and the material to
be fully elastic and without limitations in the tensile strength. It is con-
cluded that o is approximately equal to 45 degrees at a line touching the
top surface of the ribs in the cases which are dealt with. It is mentioned
that the action would probably change if the tensile stresses were limited
to the tensile strength; the angle o must be determined from tests.

In the case of surrounding reinforcement two stages are considered. The
first stage covers the elastic, partly cracked elastic and plastic action of the
surrounding concrete. In the second stage the concrete around the anchored
bar has external longitudinal cracks.
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Figure 3.4: Resultant bond stresses perpendicular to the azes of the bars in the splice for the two cases.

In the first stage the force in the surrounding reinforcement is proportional
to the expansion of the concrete. In the elastic stage the deformations of the
concrete are very small, therefore the surrounding reinforcement has only
little influence on the load carrying capacity. It is therefore concluded that
at least internal cracking must appear. In the partly cracked elastic and
plastic stage the strains are assumed to be &;, ~ 0.00015 at the surface of the
anchorage bar, which corresponds to the fact that the concrete in the cover is
stressed up to ultimate tensile stress at cracking. The strain increases with
the radius of the concrete ring. The strain in the surrounding reinforcement
can be written as g, = etu%' assuming a complete bond between the steel and
the concrete. The load carrying capacity is found by adding the contribution
2.5:4un from the reinforcement to the concrete contribution; the right hand
side in equation (3.9).

In the second stage (external longitudinal cracks) the load is carried by
the surrounding reinforcement and the concrete cantilevers. In this case
the deformations are also small, otherwise the ribs on the reinforcement
could not maintain the connection between the concrete and the steel. The
surrounding reinforcement does not yield. Therefore it is the cross sectional
area which is decisive and not the yield strength.

In the case of lap splices the concrete ring model used for one bar can not
be used directly. Two cases, denoted A and B, respectively are considered,
assuming the radial stress component 7 tan o from the two bars in the splice
to be equal. The two situations are illustrated in figure 3.4.

The difference between case A and B is that in A it is assumed that the
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Figure 3.5: Failure patierns in beam sections with lapped splices without surrounding reinforcement according
to Tepfers [73.1].

stresses between the two bars have opposite directions, are equal and have
the same inclination to the respective bar. Therefore they carry each other.
In situation B it is assumed that no stresses carry one another and the
horizontal stresses in figure 3.4, on the right, are therefore multiplied by 2

The conclusion of the considerations and calculations is that B must be
considered to be the most critical and is therefore used in the calculations.
According to Tepfers these calculations and the conclusion are not as Well
founded as one could wish for.

Failure patterns in beam sections with lapped splices without surrounding
reinforcement are then treated. By studying the failure patterns observed
in tests, it is found that six types of failure patterns are to be considered,
see figure 3.5. It is assumed that the angle « is constant, that the shear
stress 7 is evenly distributed and that the shear stresses in the two bars in
a lap splice are equal.

In failure type 1 the stresses are evenly distributed over the beam width
and equal to the splitting tensile strength of the concrete f;, see figure 3.6,
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Figure 3.6: Stress disiribution in the failure lines

which is also the case in failure type 2, except in the covers, where the
stresses are assumed to be zero. The stress distribution in the skew failure
lines in failure types 4 to 6 is first assumed to be as shown in figure 3.6.B

It is assumed that the stresses from the bars act vertically and that the cover
acts like a cantilever. Tension, compression and shear stresses will therefore
appear in the concrete cover. However, it is observed that the load carrying
capacity for 7, obtained from these assumptions is too low compared with

- test results. Furthermore, the expressions are too complicated for practical
use. A uniform stress distribution as shown in figure 3.6.C is therefore used
instead. Expressions for the ultimate load carrying capacity 7, are set up
for the six failure patterns. The expression for failure type 5 appears as the
sum of failure types 2 and 4. For the cover ratio f-‘; less than one, failure
types 1, 2 or 3 are decisive and for ﬁ;‘- larger than one, failure types 1, 4, 5,
or 6 are decisive. The expression for the failure patterns can be used only if
the concrete cover is cracked, because the concrete can then be considered
to be in a plastic stage and accordingly it can be assumed that the shear
stress is evenly distributed over the anchorage length. It must therefore be
required that 7, > Tynqe, Where 7y, is determined from (3.9), corresponding
to the shear stress giving cracks in the concrete cover.

In the case of splices with surrounding reinforcement two models are used.
In the first model the concrete is assumed to be active and the surrounding
reinforcement is in an elastic or plastic stage. In the second model the
concrete is assumed to be inactive and the surrounding reinforcement yields.
The load carrying capacity is found by using the failure patterns from splices
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without surrounding reinforcement with some modifications. The largest
load obtained from the two models is used as the load carrying capacity.

In the first model the surrounding reinforcement has the same strain as the
concrete when it is uncracked. When the concrete is cracked the surround-
ing reinforcement and the concrete act together until the cracks open. The
stress in the surrounding reinforcement. is therefore determined according to
the following two principles: The surrounding reinforcement passes through
a

® closed crack: The surrounding reinforcement follows the concrete, i.e.
the stress in the reinforcement 0,5 can be determined as E,&y,, which
is valid just before the failure patterns develop. E, is the modulus of

~ elasticity for the reinforcement and ¢, is the ultimate tensile strain for
the concrete, which is taken as ~ 0.00015

¢ open crack: The stress in the surrounding reinforcement is calculated
by an equilibrium condition of moments. This situation is also assumed
to be valid for the case where the reinforcement yields.

The expressions for the six failure patterns are almost like these for splices
without surrounding reinforcement. The only difference is that an extra
term, taking the surrounding reinforcement into account, is included.

In the second model it is assumed that no forces are absorbed by the con-
crete; the surrounding reinforcement alone carries the forces. The surround-
ing reinforcement is assumed to yield. The yield force in the surrounding
reinforcement can be both less and larger than the force from the concrete
and surrounding steel acting together.

Tests show that the strains in the main reinforcement are approximately
linear just before failure when the concrete cover is cracked. This indicates
that the stress approximately increases linearly from the unloaded end,
which means the shear stress 7 along the anchorage must be approximately
uniformly distributed close to failure.

When the concrete is uncracked it is not certain that the shear stress is
evenly distributed over the anchorage length. This situation is analysed by
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the use of Modulus of displacement theory. Relatively simple expressions
for the tensile stresses in the two bars, the shear stresses and the stresses in
the concrete are shown to be valid. The stresses in the bars increase from
zero in the unloaded end to their maximum value in the other end. The
shear stress has a value other than zero in the unloaded end and, depending
on the actual parameters, it will decrease, more or less, until a point before

or equal to the middle of the anchorage length and it increases again in the
loaded end.

Using the simple formulas to determine the stresses, yields a distribution
of the stress in the reinforcement as described above. The shear stress
distribution is more simple because it is symmetrical about the middle
point of the anchorage length.

A combined theory for lapped splices, partly cracked with longitudinal
cracks, is set up. The anchorage length is separated into different parts.
In those parts where the concrete cover is cracked, the concrete is assumed
to be in a plastic stage and the expressions for the failure patterns, shown
in figure 3.5, are used to determine the load carrying capacity. The modu-
lus of displacement theory is taken to be valid, in those parts of the splice,
where no longitudinal cracks appear in the concrete cover. The load carry-
ing capacity is therefore in general the sum of a plastic and an elastic part.
The different parts can be found by assuming that the concrete is uncracked
and the distribution of the stresses is found according to the modulus of
displacement theory. If the shear stress is larger than the shear stress pro-
ducing cracks in the concrete cover, given by expression (3.9) multiplied by
% 2, the length in which the concrete is assumed to be elastic is limited, so
that the shear stress does not exceed this value. According to the simple
expressions for the stresses appearing from the modulus of displacement
theory, the shear stress has its maximal value at the ends of the splice.
The cracks in the concrete cover are consequently initiated here, if they do
appear.

This means three different situations can arise, as illustrated in figure 3.7

2Expression (3.9) is valid for one bar. In the case of lapped splices the ‘expression must be multiplied by
1 in accordance with the discussion in relation to figure 3.4.
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Figure 3.7: The distribution of the shear stress along the anchorage length in a lap splice according to Tepfers
[78.1].

Failure A: The shear stresses in each of the six failure patterns, 7y,
~1€{1,2...6}, are all larger than Tmaz. The concrete cover is cracked and
the shear stress is assumed to be evenly distributed. The load carrying
capacity is found to be the smallest load of the six failure patterns, i.e.

Tp = min 7,; where ie{1,2...6}.

Failure B: The load carrying capacity 7, from failure patterns 2, 3, 4 and
5 is less than 7y, and 7, from failure patterns 1 and 6 is larger than
Tmaz- The concrete is cracked at the ends of the splice and uncracked in
the middle. In the cracked parts 7, = min 7,; where i€{2,3,4,5} and in
the uncracked part the expressions from the modulus of displacement
theory are used with the maximal shear stress equal to Tyngg.

Failure C: The shear stress from each of the six failure patterns, T,
i€{1,2...6}, is in each case less than 7;,,,. The concrete cover will be un-
cracked and the modulus of displacement theory is used. The maximal
shear stress is determined as the smallest of 7, from failure patterns 1
and 6. '

In the case of failure B stress distribution, the shear stress in the plastic
cracked parts 7, is less than the maximal shear stress in the elastic uncracked
part T = Tmae- Lhis is because the stresses redistribute when the cover
cracks and the average value is less than the peak value.

The theory for the strength of lapped splices is compared with a large
- amount of test results. Reasonable agreement between test and theory is
found. The stress distribution in failures A and B is observed in the tests,
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while failure C' does not seem to appear, not in these tests at any rate.
Design recommendations are set up in the light of the theory and the test
treatment.

Many other problems than those discussed here are treated in Tepfers [73.1].
It will be too comprehensive to go through all these subjects, so for more
details the reader is referred to Tepfers [73.1]. Tepfers’ work is probably
the largest step forward to a understanding of how the anchorage between
concrete and deformed reinforcing bars takes place and how the stresses
from the bars can be carried by the surroundings.

In the case of anchorage of supports Nielsen [74.1] has set up a simple
formula to determine the load carrying capacity. It is assumed that the
relationship between the shear stress along the anchorage length 7 and the
axial stress at the support r is a straight line. The axial stress at the support
is defined as the reaction force divided by the support area. The connection
between 7 and r is written as

T=dc+u'r - (3.10)
where the constant ¢ can be considered to be the cohesion and p' the

coefficient of friction of the surface between steel and concrete. p' must not
be confused with p' defined in chapter 2.

By comparing test results it is found that ¢ is mainly a function of the
quality of the concrete and the type and diameter of the reinforcement. '
is found to be a function of the number of bars over the support and the
type of reinforcement. In the light of this, the relationship between the total
tensile force in the reinforcement T; and the reaction force R is obtained by

T; = nndld + n'lrg—p'R (3.11)

where n is the number of bars, d is the diameter of the bars, ! is the
anchorage length and b is the width of the beam.

Values for ¢’ and p' are given for different types of reinforcement. Using
the values for Danish Kam steel and using 7 and r instead of T} and R,
- respectively, (3.11) can be rewritten into

» ' T 095

7=t 0.7% , (312
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which is valid for n equal to 2. The concrete compression strength f. is
measured in M Pa. For n equal to 1 the expression yields

T 0.95 r
z = 7?—; + 1.4E (3.13)

These expressions are very simple, especially when the speak is about an-
chorage at supports, but they must be used with circumspection because
only one test series is used to check their validity.

The anchorage problem has been dealt with by many authors using the finite
element method. Amongst others Lutz [66.1] and [70.1], Eligehausen [79.2],
Bodén [85.7], Nagatomo & Kaku [85.1], Tsubaki et al. [85.8], Furuuchi &
Kakuta [86.5], Keern [87.1], and Sorouschian et al. [87.6] have used it. One
of the problems when using the finite element method is that only one case
is treated for every calculation. When changing the geometri or the material
properties, an entirely new calculation must be carried out. However, the
method is very useful in supporting analytical calculations as a means of
controlling whether the results obtained by the analytical calculations are
satisfactory. In the writings of the authors mentioned above the concrete is
assumed to be an elastic, elastic-plastic or plastic material. The results are
of course influenced by this. Therefore the assumptions for a calculation
must be examined before using the results.

The anchorage problem is treated as a fracture mechanics problem in Olsson
[85.6] and [86.4]. The finite element method is also used here; several times
for one calculation. An extension of the fictitious crack model is used as
the basis for the calculations, Calculations are carried out for the specimen
shown in figure 3.8.

The relative stress distribution in a horizontal section is illustrated in the
figure for the two specimens, which are dealt with. As can be seen, the
stress is practically evenly distributed in the case of small bar spacing and
% ~ 1. In the case of large bar spacing, the stress o is almost equal to
fi at the symmetrical line and decreases towards the bars. The fracture
mechanics method is probably very useful, but it requires a large computer
capacity?®.

3To get the stress distribution in the specimen with large bar spacing a finite element program was used
37 times.
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Figure 3.8: Spectmen and results from Olsson [85.6] and [86.4] The diagram shows the relative stress distri-
bution in the section emphasized by a dotled line.

In the Danish code of practice for the structural use of concrete, DS 411
[84.5], the anchorage length of deformed reinforcing bars is determined by

1 0.09 fy
32 { ?,C_g fi (3.14)

where the greater of the two values of /d is taken. d is the diameter of the
bar, ¢ is the so called anchorage factor, f, is the yield or 0.2 per cent proof-
stress of the reinforcement and f; is the tensile strength of the concrete.
Assuming yielding in the reinforcement, expression (3.14) can be rewritten
into

[ %
7 < B (3.15)
120 £,
A connection between f; and f, in DS411 is given by
_ | fe
f=\1o (3.16)

where f; and f, are measured in MPa. For f; < 0.003f, the upper ex-
pression in (3.15) will be decisive. Observing this and using (3.16) the
expression for the shear stress can be written as

T 0.88

- = 3.17

PR = (317
The anchorage factor ( is for ribbed, hot-rolled high yield bars in DS411
-given to be between 0.8 and 0.9. Using { = 0.85 and inserting this into

(3.17) the expression for the anchorage load carrying capacity for deformed
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b be writt
ars can be written as r 05

fo VT
If the stress o, in the reinforcement is less than f,, the anchorage length
may be reduced in the ratio % The anchorage length may be reduced

(3.18)

v
further if a favourable effect from a reaction or from increased transverse
reinforcement is shown to be present.

The theories and methods used to determine the anchorage strength of
deformed reinforcing bars, which have been discussed here, are all valid for
single cases or have been checked to be valid only in special cases. Hence
it would be valuable to extend these theories to be valid in more cases
or to develop a theory, taking into account the influence from the various
parameters. ‘



Chapter 4

Local Failure -

The local failure around a deformed reinforcing bar is defined as the failure
in the concrete immediately around the bar. The surroundings are not
specified in detail, except for the assumption that they can deliver a certain
resistance against failure and that they are axisymmetric in respect to the
axis of the bar. In chapter 1 it is explained how the anchorage failure in a
real structure is divided up into different failure types, and the names for
the different types are given.

A model of a deformed reinforcing bar shown in figure 4.1 will be used in
the calculations.

The ribs are assumed to be perpendicular to the longitudinal direction of
the bar, and the angle between the bar axis and the surface of the ribs; x in
figure 4.1, is assumed to be 90 degrees. The consequence of this assumptions
are discussed in section 4.4.

The adhesion and friktion between concrete and steel is disregarded. Be-

]l
G [

i
1
L i

’ >

Figure 4.1: Model of a deformed reinforcing bar.
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Reinforcing bar concrete

:

U e =
¢ AL
FAILURE SHAPE 1 FAILURE SHAPE 2
Figure 4.2: Possible failure shapes at an azisy tric failure around a deformed bar.

cause of the deformations, there is a mechanical interaction between the
concrete and the reinforcing bar. The local failure around a bar is consid-
ered to be axisymmetrical to the bar axis and, as previously mentioned, the
surroundings are also considered to be axisymmetric to the bar axis.

An upper bound calculation for the local failure is given in section 4.1. In
section 4.2 the corresponding lower bound solution is shown. Failure in
the surroundings is treated in section 4.3 and in section 4.4 the different
assumptions are discussed, amongst other things.

4.1 Upper Bound Solutions

The local failure depends on the strength of the surroundings. The strength
of the surroundings is a function of the cover thickness, the concrete strength,
the surrounding reinforcement, and stresses acting on the concrete surface,
but many other parameters influence the strength. Possible failure shapes
around a reinforcing bar are shown in figure 4.2.

The two types of considered failures are named failure shape 1 and failure
shape 2, see figure 4.2. In both failure types, concrete will be fixed to
the bar in front of or between the ribs. There is a contribution to the
dissipation only from the failure zones between concrete and concrete, not
from the zones between concrete and steel. The displacement in the failure
surfaces comes from a displacement of the bar in the direction of the force
in the bar acting in the direction of the bar axis, and a displacement of the
surrounding concrete in the direction perpendicular and axisymmetrical to -
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y

Vs Y

FAILURE SURFACE

FAILURE SURFACE

RELATIVE DISPLACEMENTS: vg, v= ——5 | vc= v, tanfa+y)
cosla+y)
Figure 4.3: Failure shape 1. Displacements of bar and surrounding concrete. The angle between the relative
displacement v and the truncated cone is denoted by o (see chapter 2).

the bar axis. The two failure types are treated separately. Firstly failure
shape 1 is considered.

The displacement of the bar and the surrounding concrete, and the relative
displacement in the yield surface are shown in figure 4.3.

The upper bound theorem is used. The external work can be found to be
WE = T’Us (41)

where T is the force in the reinforcement and v, is the (increment of the)
displacement of the reinforcement.

The internal work consists of two contributions, one from the concrete and
one from the surroundings. The internal work can be written

“hg £
os(a +7)sinya+u

W; = fc(/\ psina) w(d+ha)+Wisvs tan(a+y) (4.2)
where W;, is the internal work from the surroundings, £ is the anchorage
length and d, hg, a and u are geometrical parameters for the bar, see fig-

ure 4.1. (4.2) is valid for coty € [0; £] (7 € [arctan(®s); 7]).

From (4.1) and (4.2) the load carrying capacity for failure shape 1 can be

obtained , A\ s , L
- psina : : : » ‘

— I 4.

7= Dsin'y cos(@t ) + Ctan(a + ) (4.3)
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where
}T: = mf; z (4.49)
c = WZ}'}C (4.5)
- i

7 can be considered as an evenly distributed shear stress over the anchorage
length £ and around the diameter d. (4.3) must be minimized with respect
to o and 4. It is first assumed that the optimum value for « is ¢, the angle
of friction for concrete. (4.3) is then differentiated with regard to -, and the
expression obtained is equated to zero. The optimum value for v is found

to be
coty = F ((k 1) + (k+ 1)y|1 + \/E%) (4.7)

Differentiating (4.3) with respect to o and inserting o = ¢, yields the
following expression

_59_(1) _ D(Acosp + coty(Asing — p)) + C
0o \fe) gy cos?(p +7)

By inserting (4.7) into (4.8) it can be shown that (4.8) is always positive
for possible values of the other parameters included in the expression.

where k> 0.

(4.8)

The optimum expression for the load carrying capacity is then found by
inserting o = ¢ and (4.7) into (4.3), which gives

%:%{(k—l)(l+££) (k+1)\]1+\/_-] (4.9)
where £ > 0.

Failure shape 2 is now considered. The failure pattern and the displace-
ments are shown in figure 4.4.
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Flgure 4.4: Failure shape 2. Dzsplacements of bar and surrounding concrete.

The external work is again given by (4.1). The internal work can be found
to be
W; = fc(/\ psina)

a
s(a +7y)cosya+u

7(d+2hg—a tany)+W;, tan(a+y)
(4.10)
valid for +y € [0, arctan(%2)].

Using the upper bound theorem in (4.1) and (4.10) gives the following
expression for the load carrying capacity for failure shape 2

T a A — psina '
7= (F - od tan7)—___cosv cos(a +7) + Ctan(a +7) (4.11)
where
a 1 hd
F—a+u<§+7> (412)

(4.11) must be minimized with respect to o and 7. (4.11) is differentiated
- with respect to v and 1 is set equal to zero in this expression

7, ( T ) (F sina — & cosa) (A — psina) + C (4.13)
67 Je/ y=0 cos?a
It can be shown that (4.13) is larger than or equal to zero if
P 1 ( 1 a )
L iy | [ .
S A Y Yo (414)

which is satisfied for realistic values of the included parameters. (4.11)
therefore has a minimum for v = 0. Inserting.y = 0 into (4.11) and differ-
entiating the expressmn with respect to a, the followmg applies .

-gina = “—)‘E (4.15)
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o must be greater than or equal to . Using (4.15) this demand can be
rewritten into

C < F(p— Asing) = (1 - 2kp) (4.16)

kE+1
If (4.16) is not satisfied, the optimal expression for the load carrying capac-
ity for failure shape 2 is found by inserting o = ¢ and v = 0 into (4.11),
giving

r_Fy k-1

VR vk
This failure is named failure shape 2a. When (4.16) is satisfied, « is deter-
mined from (4.15). Inserting (4.15) and v = 0 into (4.11) yields

c (4.17)

(f-) +(C = Fu)? = (FAY (4.18)

from which 7 can be found. This failure is named failure shape 2b.

In a diagram showing 7’; as a function of C, failure shape 2a consists of par-
allel straight lines for different values of Fiv, when k is taken as a constant.
Failure shape 2b will, in the same diagram, consists of circles with center
(Fp,0) and radius FA. The circles and the straight lines intersects for a
value of C, which can be found using the equal sign in (4.16).

As can be seen from (4.9), (4.17) and (4.18) the effectiveness factor for
the tensile strength p directly influences only the load carrying capacity in
failure shape 2b. However, the intersection between failure shape 2a and
2b is also influenced by p.

In figure 4.5 the dimensionless shear stress 77+ f is shown as a function of
the dimensionless work from the sun'oundmgs . The intersection points
between the failure shapes are also illustrated in the figure.

In the example in figure 4.5 failure shape 2b will not occur. This is the case
when the intersection point between failure shape 1 and 2a, C}_g,, is larger
than the intersection point between 2a and 2b, Cy,_gs. This demand can

be written as 4 , D F ,
Py 2 — 42
o> 5Tl (1+4\/I;(4F D)) (4.19)
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Figure 4.5: The load carrying capacity as a function of the work.from the surroundings.
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Figure 4.6: Ezamples of failure around a deformed bar.

Using failure shape 1, cot<y € [0; 5] must be satisfied, where coty is deter-
mined from (4.7). It can be shown that failure shape 1 not will be decisive
in the situation where cot v exceeds the limits, wherefore it is not neccessary
to check if the requirement is fulfilled.

Examples of the two types of failure shapes are shown in figure 4.6. In the
case of failure shape 2, it is impossible to say whether failure shape 2a or
2b has been active.

The local failure around a deformed reinforcing bar is now solved by means
of an upper bound calculation. As can be seen from the expressions for
failure shapes 1 and 2, (4.9), (4.17) and (4.18), the only problem left, if the
load carrying capacity is to be determined, is to find the value of C, which
is a measure of the work done in the surroundings. However, before going
on to the problem of finding the value of C, the local failure will be treated
by means of the lower bound theorem.

The expressions for the local failure found by using the upper bound theo-
rem are also given in Hess [84.2] and Andreasen [84.3].
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Figure 4.7: Stress distribution for failure shape 1.

4.2 Local Lower Bound Solutions

The same assumptions as those used in the upper bound calculations will
also be used here. This means that only the local conditions around the bar
are considered. The increase in area (volume) from the surface of the bar
to the top of the ribs is taken into account, and the increase in area only
immediately outside this peripheri is included. Therefore the formulas are
valid only locally around the bar; thus the name local failure. The stresses
in the surroundings have to be considered before the complete lower bound
solution can be found.

A stress distribution as shown in figure 4.7 is considered. This stress distri-
bution is shown to correspond to failure shape 1 from the previous section.

It is assumed that the stresses in the concrete are given by o, and oy, as
shown in figure 4.7. The stresses in the reinforcement are given by o, and
o, as shown. The stresses are taken as positive in the directions indicated
in the figure. In the calculation the evenly distributed shear stress 7 will
be used instead of o,. o; in the concrete is determined as a function of o,
according to Coulomb’s yield condition. '

The connection between 7 and o, is T = 2Do, wherefore it is easy to
transform the one stress to the other. ' ’
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Horizontal and vertical equilibria for the triangle near the bar result in the
following equations

ir o sinw co.s('y +w) . sinw sifl('y +w) -0 (4.20)
2D siny “siny
lo, + o, S 51?(7 tw) o, 30 co‘s(fy + w) _
2D siny siny
where D is given by (4.6).

0 (4.21)

These equations are similar to the normal transformation formulas when
Mohr’s circle is used, except that the increase in area has been taken into
account. Inserting o; = */4=% into (4.20) and (4.21) and eliminating o,
from these expressions gives
A ((k — 1) coty tanw + tan’w + k) + 2 tanw (1 + cot?~)
Dvf, cotry (tan’w + k) — (k — 1) tanw
This expression must be maximised with respect to the two parameters

v and w. (4.22) is differentiated with regard to tanw and the expression
obtained is equated to zero. The optimum value for tanw is found to be

tanw = vk (4.23)

(4.22)

Differentiating (4.22) with respect to cotv, inserting (4.23) and equating
the coefficient of differentiation to zero yields

coty = ﬁ ((k— 1)+(k+1)4'1+\/1;1;1/"fc> (4.24)

Inserting (4.23) and (4.24) into (4.22) gives

% = % [(k -1) (1 + —?D?fc) +(k+ 1),‘ 1+ \/ED':j‘fc ] (4.25)

Comparing (4.25) with (4.9), shows that the lower and upper bound analy-
ses result in the same expression for the load carrying capacity for the local

failure around a deformed bar for failure shape 1 if C = 7

The concrete compression stress o, see figure 4.7, corresponding to (4.25)

is given by . . .
G 1 Oy .
L}:_z[l-""l.*_ﬁl)ufc] (4.26)
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Figure 4.8: Stresses in the concrele and the bar for o = 0 in failure shape 1.

As can be seen from (4.26), o, will always be larger than vf. for o, > 0.
Consequently oy will always be less than pf..

For o, = 0, o, will be equal to vf, and oy is equal to zero. coty is equal to
vk and the load carrying capacity is given by '

T =2Dvf, (4.27)
(4.27) might be given the alternative form
o, =vf, (4.28)

This means that in the case of o, = 0 a uniaxial compression state appears.
This is illustrated in figure 4.8.

In the previous calculations the stress in the ring direction, oy, is not in-
cluded. The equilibrium conditions used in setting up the formulas are
correct, even when the ring stress has not been taken into account. The
developed formulas are therefore theoretically correct. The ring stress oy
has to be considered, when the failure in the surroundings is to be treated,
see section 4.3.

The stress distribution shown in figure 4.9,> corresponding to failure shape
2 in section 4.1, is now considered.

Horizontal and vertical equilibria for the stresses shown in figure 4.9 give .

7' — (0 + 0,) sinw cosw =0 (4.29)

o)+ oycos’w — o, sinw = 0 (4.30)



64 CHAPTER 4. LOCAL FAILURE

Figure 4.9: Siress distribution for failure shape 2.

The tensile stress o; has to satisfy
ot < pfe (431)
The stresses 7 and a;, can be transferred to the stresses 7 and o, by
T=2F7 (4.32)
o, = 2Fa), ' ‘ (4.33)
where F' is given by (4.12).

Inserting (4.32), (4.33) and oy = %= into (4.29) a,nd.(4.30) and eliminat-
ing o, from the arrived expression gives

T o, i ) s1NWw Cosw ( 43 4)

2Fvf, ((k - 1)2F;fc

(4.34) is differentiated with respect to w and the expression obtained is
equated to zero. The following is obtained

-T_¥
w=1-3 (4.35)’

cos?w + ksin®w

Inserting (4.35) into (4.34) gives -
T _ Fv k-1lo,

}.‘c' ﬁ + WE‘}: (4.36)
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which is identical with expression (4.17), failure shape 2a, for C = . (4.36)
is valid when (4.31) is satisfied, which can be rewritten into

on _ 2Fv P

In s - k—) 4.37

foe " k+1 (1 2 v (4.37)
When (4.31) or (4.37) is satisfied by the equal sign, w is not necessarily de-
termined by (4.35). For ¢, = -"l‘—,:—"i = pf., w can be calculated by inserting

the expression for o, found from (4.30), into the expression for ;. This
results in the following expression

In_+ p) (4.38)

Inserting (4.38) into (4.34) gives

"2 /o 2
-] + ( - F) = (\F)? 4.39
(7) + (F-wr) -0n (439)
which can be seen to be similar to (4:18), failure shape 2b, if C = > (4.39)
is valid for
on _ 2Fv p
— 1—2k= 4.4
£ SE+1 ( 2 1/) (4.40)

The concrete compression stress o, corresponding to (4.36) and (4.39) can
be found to be

e 1 On

yfc — §<1+(k+1)2FUfC) (4.41)
— P

> fc = 1-# (4.42)

(4.42) is valid for failure shape 2b, i.e. 2 < 25 (1-2k2). The value of o for
failure shape 2b corresponds to oy = p fc The compression stress increases
for increasing values of o, for failure shape 2a, and for o= m(l — 2k2)
o, is equal to o for failure shape 2b. This is illustrated in figure 4.10.

The load carrying capacity 7 as a function of ¢, and Coulomb’s failure
condition are shown in figure 4.10. The correspondence between failure
type and the value of the stresses in the concrete o, and o, are illustrated.
Failure type 2b can be called a tensile failure, while type 2a can be called
a compression failure. For ,‘/—’E > k—}_—f failure shape 2a is decisive and there
must be a three dimensional compression stress distribution in the concrete,
- because the failure condition has to be fulfilled. In fact o, and o; are
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Figure 4.10: The load carrying capacity (”—}:) as a function of (fz—) and Coulomb’s failure condilion for
plane strain.
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Figure 4.11: Anchorage of a bar in a circular concrete body surrounded by a steel rihg. .

compression stresses. The third primary stress gy is not now known, but in
this case it has to be a compression stress.

In failure shape 1 there will also be a three dimensional stress condition
in the concrete near the bar. Hence oy is also, in this case, a compression
stress. The problem concerning the ring stress will be discussed in the
following section 4.3.

As previously mentioned, there is agreement between the expressions for
the load carrying capacity found from the upper and lower bound calcula-
tions, if the dimensionless internal work C from the surroundings is equal
to % This indicates that the dimensionless internal work C' and the in-
ternal dimensionless pressure % in principle are equal quantities. This is
investigated in the next section.

4.3 Failure in the surroundings

Anchorage of a deformed reinforcing bar in an axisymmetrical body will be
considered first. Afterwards the application of the theory for the axisym-
metrical local failure in practical cases is discussed, because anchorage of a
bar in a structure appearing in practice is not necessarily an axisymmetrical
problem. '

The problem considered is shown in figure 4.11.
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A reinforcing bar is anchored in an axisymmetrical concrete body sur-
rounded by a steel ring. The diameter of the bar is named d, the concrete
cover ¢ and the anchorage length £. The anchorage length is assumed to be
so long that it is not necessary to consider the special conditions at the end
section, near the force. The steel ring delivers a radial stress p at failure
where it yields in the ring direction.

Cylinder coordinates r, 8, z are used as shown in figure 4.11. According to
the assumption made, the stresses are independent of z; wherefore polar
coordinates r,# can be used. In the case of axisymmetrical surroundings,
the equilibrium conditions can be written

do, o,— 0

5 T 0 (4.43)
6Trz Trz .
S+ =0 (4.44)

assuming that the mass density of the body is zero. The stresses 7,5 and
Ty, are zero. The geometrical conditions, the strain-displacement relations,
are in this case given by

ou,
Er = “67 (4.45)
. Uy
Ep = 7 (4.46)
du,
Yrz = 26, = W (447)
and €, = €, = &9, = 0 (because %} = 0,%} =0 and up = 0).

As can be seen from the equilibrium condition (4.43), the ring stress oy has
to be taken into account.

The constitutive equations can be written
koy+o.~vf,=0 o0y>04> —0, (4.48)

kog+o,~vf,=0 04> 0;2> —0, (4.49)

ot and oy are positive as tension and o, is positive as compression. o; and
0. are the main stresses in the r, z plan, see figure 4.7. Because the concrete
is assumed to be a modified Coulomb material, the stresses o; and oy must
be less than the tensile strength of the concrete, pf..



4.3. FAILURE IN THE SURROUNDINGS 69

Using the normality condition in (4.48) and (4.49) gives the following strains
(strain rates)

Ep = k/\l , Eg= 0 y Ec = —/\1 (A] Z 0) (450)

eg=0 , Ep = k/\g s &t = /\2 ()\2 > 0) (4.51)

The yield surface has an edge where (4.48) and (4.49) intersect. In this case
a condition for the strains can be found from (4.50) and (4.51)

Et+eg+ke.=0 (4.52)

In the calculations below it is assumed that the local failure is failure shape
2, and that F, given by (4.12), is equal to ;. Expressions for the load
carrying capacity of the surroundings, using the lower bound theorem, will
be set up first.

For an arbitrary point r,8, z equations (4.29) and (4.30) can be written

Trz — (0% + 0¢) sinw, cosw, = 0 (4.53)
' - 0y + 0y cos’w, — o, sin®w, = 0 (4.54)
The angle w, is in general a function of r. For r = r; = %d, w, must be
equal to w obtained in section 4.2.
Inserting (4.48) into (4.54) gives

_ =ko, +vf, sin’w,

= 4.55
cos?w, + k sin’w, (4.55)
Inserting this expression into (4.49) gives an expression for oy
o, + vf,sin’w,
= 4.56
o cos?w, + k sinw, (4.56)
(4.43) can now be rewritten by inserting (4.56)
8
% _gO" (4.57)
o — 5 T
where 9
S k —1)sin‘w, .
(k —1)sin“w (4.58)

r= T
cos?w, + ksinw,
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Assuming that K, is independent of r and using the fact that o, = —0, for

= (”" + kyfcl) (%)K + kyfcl (459)

Using the fact that o, = —pforr=ry =c+ %d gives the following expres-
sions for o,

r=r; = %d gives

Uu 1 k-1 1
Vfc (er+———> *—-—k_l ~ (4.60)

where K, is determined by setting w, equal to w (see section 4.2) and
assuming that failure shape 2a is decisive, i.e. w, =w =1~ £. 7 in (4.60)
is given by

T c '
== - 4.61)
i - 1+2d (4.61)

Inserting (4.60) into (4.59) and inserting this expression into (4.56) gives

:;f;kil(l‘k;_(u(k—l) f)(")_) (4.62)

r

2& is shown as a function of = ~ for different values of 7 = 2 and 7 in
figure 4.12.

As it is seen in figure 4.12 04 is in some cases negative in a zone near the
bar and increases with the distance to the bar. If the tensile strength pf, is
less than 52% the expressions may be wrong, because oy must be less than
or equal to the tensile strength. Requiring oy < pf, for o =n=1gives
A 1

| 2 (1 -2t}) (469
For £ = 0.1 and k = 4 (4.63) gives A > 0.04. In this case oy will not
exceed the tensile strength.

It is possible to set up the correct solution taking account of the limited
tensile strength, combined with the solution given above, but this will not
be done here. Instead, a solution will be given in the case where oy is equal
to the tensile strength pf., for all values of .

Inserting o = pf, into (4.43) and requiring o, = —o, for r = r; gives
oy On P\T1 P : ’
=fl—— -] —=4= 4.64
vf, ( ) T + v (464)

v v
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Figure 4.12: ,Z,-’: (4-62) as a function of i for different values of 1 and ;‘}—‘ The material parameter k is
taken as 4.

Using that o, = —p for r = r, gives the following expressions for o,
%=<Viﬂ+§>n_§ (4.65)
The following symbols are introduced
T = 1_—(1”9_%-1)—5 (4.66)
P= 1—_;’?3(1_{_—_%75 : (4.67)

Inserting (4.65) into the expression for failure shape 2b (4.18) or (4.39)
using (4.66) and (4.67) gives

T = VP (1 —7P) (4.68)
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AT

Not necessarily intersection

{4.68) ~ failure 2a

{4.68) ~ failure 2b

=]
Figure 4.13: T as a function of P for the lower bound solution.
where F' = } has been used.

Similarly (4.60) is inserted into the expression for failure shape 2a (4.17) or
(4.36) which returns the following expression
1
2vk

Figure 4.13 shows the principle in expression (4.68) and (4.69).

T=—=n%(1+(-1)P) (4.69)

As is seen in the figure, the two curves do not in all cases intersect. This
is certainly because (4.69) is not valid in the cases where oy exceeds the
tensile strength.

It must be mentioned that it is not necessary to insert the expressions for
o, into the expressions for the local failure, if different solutions are to be
compared. o, can be compared directly.

An upper bound solution will now be given. It is assumed that the dis-
placement of the surrounding concrete at the edge of the reinforcement is
6. The external work can then be written as

W, = 27r10,6 (4.70)
The internal work in the concrete is generally given by

W= [ "o+ o+ (~oerdodr  (471)
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Using (4.48), (4.49) and (4.52), this can also be written as

W; = 27r’j_fc /rz(st +eg)rdr (4.72)
k Jn
the fact that &; and ¢y are independent of 6, is used here.

The following displacement is used

U =6 (4.73)
which by (4.45) and (4.46) gives the strains
=0, e=> (4.74)

Assuming &; = €, = 0 and oy = pf. the internal work is found using (4.71)
Wi = 2mpfo(ry — r1)6 + 27prab (4.75)

Using the upper bound theorem on (4.70) and (4.75) gives the following
expression for o,

In _(P_ P, _P
7= (vfc + V) -t (4.76)
Comparing (4.76) with (4.65) shows that the upper and lower bound solu-

tions are equal in this case. Therefore the same solution is obtained when
(4.76) is inserted into (4.18) or (4.39), as with the lower bound solution, i.e.

T = /nP(1 — nP) - (4.77)
Inserting (4.76) into (4.17) or (4.36) gives
1
T=-——=(14+(k-1)yP 4.78
s (L+ (b= 1)P) (4.79)

The intersection point between (4.77) and (4.78) can be found from the
intersection point between failure shape 2a and 2b, see section 4.1 and 4.2

1
P= D (4.79)
vk o
TE+1 (480)

T given by (4.80) is a constant. For k = 4, T is equal to .
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The displacement u, is now given by
1

up =16 (Tr—‘) ' (4.81)
The internal work is found by using (4.45), (4.46) and (4.72) to

1 - 1
m = 27('1”1(51/fc [( fc + *‘) n %1 - F:I] (4.82)
The upper bound solution is then found to be
On (P 1 ) L 1
ufc“(ufc“Lk—l v (4.83)

Comparing (4.83) with (4.60) shows they are almost identical. The only
difference is a factor % in the exponent on 7.

Using the displacement (4.81), the strain rate ¢, is found to be negative and
g¢ is found to be positive. Compared with the lower bound solution given
by (4.60), it can be seen from (4.62) and figure 4.12 that oy is negative near
the bar, especially when p is large, which is the case when (4.83) is decisive.
This means that, if the lower or upper bound solutions are assumed to
be correct with respect to these conclusions, there is a negative stress and
a positive strain, which is in agreement with the yield condition and the
associated flow rule. The principle in this part of the solution is therefore
probably correct. '

Inserting (4.83) into the expression for failure shape 2a gives

\/_n 1+ (k-1)P) (4.84)

In ﬁgure 4.14 the load carrying capacity found by the upper bound theorem
is illustrated.

The displacements given in (4.73) and (4.81) have also been used by Exner
[83.1]. Exner has not divided the failure into a local failure and a failure in
the surroundings, but the principle in the calculations is the same as used
here. Exner has also treated the same problem using the slipline theory
and he has found a correct solution to.the problem using this method.

In figures 4.15 — 4.18 the upper and lower bound solutions given here are

shown together with Exner’s [83. 1] correct solution for different values of

—_2
ry°
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{4.84) ~ failure 2a

{4.78) ~ failure 2a

/  6.77) ~ failure 2b

Figure 4.14: T as a function of P for the upper bound solution.

|

Exner’s correct solution is composed of an ellipse and a straight line con-
nected by a curve. The ellipse is given by the same expression as found here
by the lower and upper bound calculations. The straight line goes through
(P, T) = (—%4,0). Unfortunately no analytical expressions is given for the
straight line and the curve.

From the figures 4.15 — 4.18 it can be seen that the lower and upper bound
solutions describe the correct load carrying capacity fairly well. The abso-
lute error increases with increasing value of n = 7 and P, but the relative
error is constant for P larger than approximately 0.5. For small values of
P the lower and upper bound solutions are equal and therefore correspond
to the correct load carrying capacity in this area. For the special case
n = 1{n = 1%), the lower and upper bound solutions are equal for all values
of P, wherefore the given expressions in this case represent the correct load
carrying capacity.

The lower bound solution (4.60) can probably be improved by allowing the
angle w, to vary with r, and not considering it to be a constant. The differ-
ence between the upper bound solution and the correct solution is certainly
due to the fact that the expressions for the local failure do not include a
displacement in the concrete in the direction of the bar axis, u,. The con-
crete is assumed to move perpendicularly and axisymmetrically away from
the bar. Including u, in the calculations for the local failure shows that in
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Figure 4.15: The lower bound, the upper bound and the correct solution forn=1 (n —1).
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Figure 4.16: The lower bound, the upper bound and the correct solution forn = 2.
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the case of failure shape 2b, the optimal displacement condition appear, to
be the one where the concrete is displaced axisymmetrically and perpendic-
ularly to the bar axis. As can also be seen in figures 4.15 - 4.18, the correct
solution is obtained in the case where failure shape 2b is used.

Taking into account the displacement u, in the concrete will probably im-
prove the upper bound solution, but the calculations and the expressions
will be more complicated than they are already. Hence more details will
not be given.

Considering figures 4.15 - 4.18, it can be seen that the correspondence be-
tween the upper bound solution and the correct solution is fairly good,
especially for small values of P and T. In practice T is less than approx-
imately 1.5 and as can be seen, it is normally the constant displacement
field (4.73) which is decisive for T fulfilling this. This indicates that up-
per bound solutions for the load carrying capacity can in practice be found
by using a constant displacement field, i.e. a displacement field where the
concrete is displaced axisymmetrically and perpendicularly to the bar axis
with a constant displacement.

In most of the calculations and expressions in this section a value for the
rib parameter F' equal to % has been used. This is not always satisfied in
practice but it is a good approximation. The main conclusion from the
calculations will not be changed, even if F is not taken to be equal to %,
because the values for F' obtained in practical cases are close to this value.

As presented previously, failure shape 1 is not included in the calculations
for the failure in the surroundings. This must of course be done if the
purpose is to find the exact solution for the problem. The correct solution,
including all kinds of failure, is probably very complicated and is useful only
in theoretical calculations. This section shows only that the upper bound
theorem can be used in a very simple way with sufficient accuracy. In the
following calculations the upper bound theorem will therefore be used to
determine the load carrying capacity. The expressions for failure shapes 1
and 2 will be considered and the one giving the lowest value for the load
carrying capacity will be used.
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The resistance of the surroundings against anchorage failure can therefore
be found by considering the section perpendicular to the longitudinal direc-
tion of the bar, where the reinforcing bar is replaced by the outward stress
On, see figure 4.11. The surrounding concrete is displaced axisymmetrically
away from the bar by a constant velocity and the internal work from the
surroundings is determined. Using C given in (4.5), the calculations are
éa,r:ied out as when using o,, but the surrounding concrete moves away
from the bar with the constant velocity v = 1. It must be observed that the
relation between C and o, is given by C' = f‘f': The load carrying capacity
is found by inserting the value for C or % into the expression for the local
failure, failure shapes 1 or 2, which gives the lowest value.

In the preceeding discussion a reinforcing bar anchored in a axisymmetrical
concrete body, surrounded by a steel ring (a cylinder) has been considered.
The steel ring was assumed to yield in the ring direction, and to give an
inward stress p in the radial direction. Supposing that the cylinder instead
was a stirrup reinforcement placed in the same position and strong enough
to deliver an inward radial stress p, the connection between p and the force
in the longitudinal direction of the stirrup can be found from the ring stress
formula

rop = 2A,, fy,,% | (4.85)

where A,; is the cross sectional area of the stirrup reinforcement, fy, is the
yield stress, and n is the number of stirrups over the anchorage length.

The stirrup reinforcement degree is introduced by

_ Ass ys'ls _ ‘
Y= def, (d=2r) (4.86)
Using (4.86), expression (4.85) can be rewritten as
% = n% (4.87)

Inserting (4.87) into (4.65) or (4.76), the expression for o, can in this case
be given by '
On P

On _o5C P, 5% '
TRk PR | (4.88)

where it has been used that r; = %d and ro =c+4 -21-d.
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The increase in the load carrying capacity appearing for increasing = =
is primarily due to the way p is defined. Expressing the load capacity, 7,
as a function of v, the increase will be less pronounced. Using p or 3 will
of course produce the same final result. In the following calculations v will
be used. S

The way the local failure here is distinct from the failure in the surround-
ings, raises the possibility of estimating the load carrying capacity without
involving the expressions for the local failure in the optimizing procedure.
Using the upper bound theorem, the optimal solution is found by taking
the mechanism producing the lowest value of C = % The optimal value
for C is then inserted into the expression for the local failure giving the
lowest value for the load carrying capacity, 7+ This means that it is the
expressions for C = %{* which are minimized in an actual case and not the
expression for % This has been done once and for all in section 4.1.

4.4 Discussion

The assumptions on which the theory for the anchorage failure are based
are of course very important for the results obtained. If the assumptions are
not correct it is obvious that one will probably not get the correct results. If
the anchorage has a free edge perpendicular to the longitudinal direction of
the bar, see figure 4.19, it is very likely that the assumptions and therefore
the obtained expressions are not correct.

In this case the conditions at the free edge of the concrete will be different
from the conditions at the end of the bar in the concrete, which is not
included in the theory. An anchorage having a free edge will probably
produce a kind of a punching shear failure, especially if the anchorage length
is very short. It is very likely that an increase in the anchorage length will
yield a punching shear failure at the section near the free edge and an
anchorage failure, as assumed here, near the end of the bar. Under all
circumstances it will be very difficult to treat this problem theoretically
and it is improbable that the solution will be simple and easy to use.

Nagatomo & Kaku [85.1] have carried out anchorage tests using reinforc-
ing bars with only a single transverse rib. In figure 4.20 some of the test
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Free concrete edge

Figure 4.19: Anchorage of a bar in a concrete specimen with a free edge.

o

(a) Funnel Cracking (b) Splitting (c) Corner Shear
Fig.2 Failure Patterns

Figure 4.20: Anchorage test with reinforcing bars having only a single transverse rib from Nagatomo & Kaku
[85.1]. .

specimens after failure are shown.

Lutz [66.1] has carried out similar tests. Some of the specimens after failure
are shown in figure 4.21. '

The distance from the free concrete edge to the transverse rib. is increased
from case I to case II and III both in figures 4.20 and 4.21. As can be
seen from the figures, the failure pattern changes when the distance from
the edge to the rib is increased. For small distances the failure looks like
a punching shear failure, and for larger distances the failure is a sort of
a splitting failure. This problem will not be treated in more detail here,
but it should be noticed that the expressions set up previously may not be

- valid in some cases. This is especially so in situations with short anchorage
lé'ngth and free concrete edge as shown in figure 4.19.
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Figure 4.21: Anchorage test with reinforcing bars having only a single transverse rib from Lutz [66'1]

As described in chapter 2 the modified Coulomb criterion is used as yield
condition for the concrete. The sliding failure resistance 7 can be expressed
as
T=c+ puo , (4.89)
where c is the cohesion, p is the coefficient of friction and o is a stress
counted positive as compression. ¢ and p are positive constants. The angle
of friction ¢ and the coefficient of friction p are connected by
p=tanp = k—j—l
, 2k
and the cohesion c is connected to the uniaxial concrete strength by
2ccosp L
Vo=t g = 2eVk (4.91)
In Nielsen [74.1] (4.89) is used to describe the strength of an anchorage.
The cohesion ¢ and the coefficient of friction p are not taken as the values
used normally, but are found from a test series carried out by Rathkjen
[72.1], see chapter 3. :

(4.90)

The expression for the local failure 2a (4 17) or (4.36) can be written as
_2Fv fc -1 k-1,
ok f

(4.92)
where 0, = Cf,. »

The cohesion ¢ is here given by
- 2Fvf,

(4.93)
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and the coefficient of friction is given by
k-1
=— 4.94
H 2 \/E ( )
if o, is equal to o in (4.89).
The similarity between (4.89) and (4.92) must be noticed.

In Nielsen [74.1] the cohesion is found primarily to be a function of the
concrete strength, the type of reinforcement and the diameter of the bar.
As can be seen from (4.93), this is in good agreement with the expressions
set up here. The coefficient of friction is found to be a function of the type
of reinforcement and the number of bars which have to be anchored in the
-section. This is not in accordance with (4.94) but this must be due to the
fact that o, can not be made equal to 0. Comparing Nielsen’s conclusion
with the calculations in the previous section where expressions for o, were
found, it seems very likely that the result here is in harmony with the result
obtained in [74.1}, se chapter 3.

The expressions for the local failure set up in sections 4.1 and 4.2 correspond
to at least a two dimensionless stress condition in the concrete surrounding
the reinforcing bar. As can be seen from the calculations, the main stress,
0., acts at an angle, o, between 0 and § — £(=~ 26.6°), depending on the
kind of local failure which is decisive. ¢, is the angle from the axis of the
bar to the compression stress 0. In failure shape 1 the angle o is placed
between 0 and § — %, which is also the case for failure shape 2b. In the
case of failure shape 2a, the angle o, will be equal to § — £. As can be
seen, o, will always be equal or less than § — £ in the expressions set up
here. This does not agree in all cases with the values given for . in the
literature!. Tepfers [73.1] made finite element calculations to determine
o, see chapter 3. The problem is treated as a two-dimensional case and
the concrete is assumed to be linear elastic. In the case of small stresses
(the adhesion case) it is found that the angle a, is close to 45 degrees for
the structure considered. For larger stresses «, is found to be close to 31
degrees in the boundary line between the two materials and 45 degrees
for the line touching the top surface of the ribs. Rehm [61.1] and Lutz &

1

o is normally denoted by « in the literature.
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Gergeley [67.1] claim that the angle a, is equal to 50 degrees and Losberg &
Olsson [79.1] say that ¢, o~ 45°. These calculations are all based on elastic
asumptions. Eligehausen [79.2] carried out finite element calculations where
he used elastic assumptions, but the relationship between the strains and
the stresses in the concrete is given by three different linear expressions
in such a way that the stiffness decreases for increasing strains. For a lap
splice it is found that a. is about 25 degrees. Kern [87.1] has made finite
element calculations using a plastic rhaterial model for the concrete. For
the anchorage problem it is found that the angle ¢, in the middle of the
‘anchorage is about 28 degrees for the case being dealt with. Using the slip
line theory, Exner [83.1] has found that o is determined by § — £ for strong
surroundings and that «, lies between 0 and § — £ for weak surroundings.

The results obtained for «. in the literature and here are in satisfactory
agreement when the assumptions about the material properties are similar.
In the calculations where the concrete is assumed to be an elastic material,
the value for o, is larger than the value obtained when the concrete is
-assumed to be a plastic material.

The rib parameters D (4.6) and F' (4.12) must be known before the strength
of an anchorage can be found. Often it is not possible to obtain the actual
values for the parameters to determine D and F, i.e. the diameter d, the
rib height hy, the distance between the ribs a and the dimension of the rib
in the direction of the bar axis u, see figure 4.1. Another problem is that
the parameters d, hq, a and u can change for the same kind of reinforcement
produced on different days. This is because the rolls to make the reinforce-
ment are worn down in time. If it is impossible to obtain the actual values
for the parameters, they must be determined in such a way that the values
of D and F are at a minimum. This can be done by using the national
standard specifications for deformed bars where the minimum requirements
are given. The different reinforcing bar manufacturers normally set up their
own minimum requirements and they can of course be used, if it is certa.m
that the reinforcement was produced by them.

If it is not possible to find any mformatlon at all about the parameters, min-
imum values for D and F must be used. By examining different standard



4.4. DISCUSSION 85

specifications and reinforcing bar manufacturers specifications, minimum
values for D and F on 0.030 and 0.50, respectively, are found for normal
deformed bars. Because the dimension of the rib in the direction of the bar
axis u is not normally given, this parameter is not included in the values
given above. The distance between the ribs, a, is therefore taken as the
distance from middle of the rib to the middle of the next rib. Using this,
the value for D is correct according to (4.6), while the value for F is larger
than it should be. The error which is made, does probably not have a large
significance. In appendix D values for D and F are given for different types
of reinforcement.

As shown in figure 4.1, the ribs on the reinforcement are assumed to be
perpendicular to the longitudinal direction of the bar, and the angle between
the bar axis and the surface of the ribs, the rib face angle x, is assumed to
be 90°. The influence on the anchorage from the rib face angle has been
examined. Menzed [39.1] made tests with bars where the rib face angle
was 45 and 57 degrees. Menzed concluded that there was only a small
difference in the way they responded. Clark [46.1] observed that there is a
large difference in the effect when the rib face angle is 30 or 90 degrees.

Rehm [61.1] also studied this problem by changing the rib face angle. Lutz
[66.1] concluded that a bar with rib having a face angle less than 30 to
40 degrees will slip relative to the adjacent concrete, while bars with ribs
having a face angle of 40 to 45 degrees or more crush the concrete in front
of the ribs. The resistance is not increased when the rib face angle is more
than 45 degrees. The same conclusion is found in Soretz & Holzenbein

[79.3]; the strength does not increase when the rib face angle is increased
from 45 to 90 degrees.

Soretz & Holzenbein [79.3] also studiet the influence from the inclination of

the ribs relative to the longitudinal direction of the bar. They conclude that
" the angle between 45 and 90 degrees only influence the strength slightly.
The influence from the rib area is far more important. However, in Clark
[46.1] and Tepfers [73.1] it is observed that an inclination of the ribs relative
. to the bar which is not 90 degrees decreases the strength. From these
references it is difficult to say if there is an influence from the inclination
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of the ribs with respect to the bar axis. However, the observations indicate
that the expressions set up previously can be used when the rib face angle
and the inclination of the ribs relative to the bar axis are larger than 45
degrees.

In sections 4.1 and 4.2, the local failure around a reinforcing bar is treated.
The failure in the surroundings is discussed in section 4.3, where it is as-
sumed that the surroundings are axisymmetrical to the bar axis. In practice
the surroundings are not axisymmetrical, wherefore the expressions for the
local failure and the principles in the determination of the work from the
surroundings can not be used. However, this will be done. Using the up-
per bound theorem, the failure in the surroundings must then look like the
axisymmetrical failure as far as possible. The surrounding concrete is dis-
placed axisymmetrically away from the bar by a constant velocity and the
internal work from the surroundings is determined. The method is used in
the next chapter, where it can be seen how the calculations are carried out.



Chapter 5

Anchorage at Supports

Failure mechanisms for anchorage of one layer of reinforcement at beam
supports will be dealt with in this chapter. A failure mechanism in the
surroundings is defined as the failure consisting of yield lines in a section
perpendicular to the bar axis where only a single bar is involved. The
total failure involving all bars in the actual beam section perpendicular to
the beam axis, is named the complete failure mechanism. To achieve the
optimal complete failure mechanism the failure mechanisms are combined
in such a way, that the total load carrying capacity is minimized. These
terms are used generally, not only in the cases treated here.

The failure mechanisms which are dealt with in this chapter, can all be
characterized as simple mechanisms. The number of unknown parameters
and the complexity of the expressions are attempt kept to a minimum. In
some cases the expressions are not clear and simple, because there seems
to be a limit for how simple they can be and yet still reflect what happens
in reality. More complex failure mechanisms in the case of anchorage at
supports are treated in a later chapter.

In figure 5.1 a beam end support is shown.

As can be seen in figure 5.1, it is assumed that the support is placed at
the end of the beam. The anchorage length £ is assumed to be equal to
the length of the support in the direction of the beam and bar axis. The
- total force in the n bars, nT, just in front of the support must therefore be
transferred to the concrete over the anchorage (and support) length. The
total reaction force R is assumed to be evenly distributed over the area £b,

87
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Figure 5.1: Beam end support and cross section at the support.

where b is the width of the beam. Stirrups at the support will be taken into
account.

The expressions for the load carrying capacity, which will be set up are based
on upper bound calculations. This produces unsafe expressions. But the
-final expressions are as safe as if they had been developed from lower bound
calculations because of the effectiveness factors, which must be included and
found from tests. The values for the effectiveness factors based on upper
bound expressions will be lower than or equal to the values from lower
bound expressions. Hence it is always safe to use values for the effectiveness
factors when they are found from upper bound expressions. However, under
all circumstances it is best to use effectiveness factors and expressions which

are linked.

5.1 Failure Mechanisms

As previously mentioned, a failure mechanism is the failure in the surround-
ings, where only a single bar is involved. Expressions for the most important
mechanisms in the case of anchorage at supports will be set up in this sec-
tion. Because the local failure around a reinforcing bar has been treated
.and solutions are found, see chapter 4, the failure mechanisms can be sepa-
rated from the local failure. Hence the only problem is finding expressions
for C, which, in the equations for the local failure found from the upper
bound calculations, is denoted as the internal work from the surroundings.
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The work from concrete, stirrups, and support reaction is included in the
expressions.

The work done by the reaction is an external work, but generally it is
negative. Therefore it can be taken as a positive internal work. Since the
total external work in upper bound calculations must be positive, it ought
to be checked that this is the case. However, in the case of anchorage at
supports, the internal work without the contribution from the reaction will
always be positive and thus the work from the reaction has to be less than
the work from the anchorage shear stress.

In the expressions for the internal work the contribution from stirrups is
included. In accordance with the assumptions in section 2.3 it is assumed
that the stirrups carry longitudinal stresses only. Moreover, it is assumed
that the stirrups follow the main reinforcement in the movements in the
failure mechanism. When the problem concerns anchorage of one layer of
reinforcement at a beam support, this assumption will be close to reality,
but as shown in a later chapter, it is probably not always correct to use
this assumption. The expressions are developed assuming normal stirrups,
but it is easy to extend the expressions so that other kinds of surrounding
reinforcement can be taken into account. This is, for instance, done in
chapter 7.

The failure in the surrounding concrete must look like the failure in an
axisymmetrical specimen as far as possible. As shown in section 4.3 the
surrounding concrete can be assumed to move away from the bar at a
constant velocity of v = 1. In the case of anchorage in a beam with the bar
placed close to the concrete surface, it is assumed that the beam does not
move at anchorage failure. Hence the bar will move away from the beam
at a velocity of v = 1 and the concrete cover will move away from the bar
by v = 1. This means that the velocity in a radial yield line adjacent to
the bar will generally be v = 2. Therefore, an upper bound solution can be
found, assuming that the bar moves away from the beam at the velocity of
v=2.

~The yield lines in the failure mechanism must end in some way:. ‘The failure
mechanism has to be geometrically possible; therefore the failure surface
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Figure 5.2: Failure mechanisms for anchorage at supports of one layer of reinforcement.

cannot just finish at the ends of the anchorage length. The failure surface
has to pass the concrete surface. This will in general result in an additional
contribution to the internal work, which will be named as the end failure
contribution. Cracks in the concrete just behind the support will in some
cases disturb the end failure surface. Thus it is very difficult to formulate
a theoretically correct expressions for this contribution. Assuming that
no cracks influence the end failure, it is possible to develop expressions
for this contribution. These are of course theoretical solutions, but they
indicate the influence from the different parameters. When dealing with
anchorage along a beam support, the end failure contribution will be of less |
importance due to the work done by the reaction, the yield lines, and the
stirrups. Therefore expressions for this contribution will not be set up in
this chapter. Splices are treated theoretically in chapter 7 and expressions
for the end failure, are included here. It is not difficult to combine the
expressions for the end failure set up in chapter 7 with the expressions set
up in this chapter, so the end contribution can be taken into account in the
case of anchorage at supports.

The various mechanisms will be treated separately. A figure showing the
geometri, the yield lines, and the displacements in a section; perpendicular
to the bar axis is shown first. The different contributions to the internal
work are listed and the total internal work is determined. If necessary and
if it is possible, the expression for the total internal work is minimized with
respect to the free parameters. The mechanisms and their names are shown
in figure 5.2.
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Figure 5.3: Rotation mechanism no. 1, geometri and yield line pattern.

The first five mechanisms in figure 5.2, the rotation and the translation
mechanisms, can be characterized as corner mechanisms. The last two
types of mechanisms, the wedge and the plate mechanisms, take place both
in the corners and inside the section. If there is more than one bar, the
plate mechanism will involve all bars placed in the same (horizontal) section
as the yield line.

5.1.1 Rotation mechanisms

The rotation mechanism is treated using the symbols in figure 5.3. The
failure pattern consists of a straight yield line, going from one concrete
edge through the center of the bar to the other edge, so that the corner of
the beam breaks off. The displacement consists of a rotation, w = 3——{"24_—',2,
about a point, 0, on the face of the structure. At the reinforcing bar the
velocity is v = 2 in the concrete, in.accordance with the discussion held
previously. As mentioned above, the transverse reinforcement, the stirrups,
are assumed to follow the reinforcement in the movements; therefore the
angle of rotation is §.

The different contributions to the total internal work are given by

We = wpid (35 (“21) @ +o7) - ao/EFF) )

1
Wit = EWAssfysnss(€+77) ) R (‘5'2)
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Wi = %wrls (€> (1+49)? (5.3)

where W, is the internal work from the concrete, W} is the internal work
from the transverse reinforcement, W;, is the internal work from the reaction
stress, A, is the cross sectional area of the stirrups, fys is the yield strength
of the stirrups, and n, is the numbser of stirrups over the length of anchorage.
7 is a free parameter, by which the internal work can be optimized. The
other geometrical quantities are shown in figure 5.3.

The total internal work from the surroundings is found by adding the three
contributions in (5.1)-(5.3).

vVis = I/Vic + I/Vit + I/Vz'r (54)

Doing this and using (4.5), the dimensionless total internal work from the
surroundings can be written

(1 4 )2
C=%[,7‘2(1%37((£2+n2)+52fc)—29 + ¢\/§—;1—"2 (5.5)

where the stirrup reinforcement degree is defined as

- Ass fysns
v==d (5.6)

The optimal value for n can be found by differentiating (5.5) with respect
to 7. It turns out that n can be determined from

—52(1+n)(n +372 +262) = p(€ + 7)1+ 1) (n — 7 — 26%) + 4 ~in°(€—n)
(5.7)
Unfortunately it is not generally possible to find an explicit expression for
1, but 7 can be found using an iterative routine on (5.7). If the relationship
between, for instance, C' and fL needs to be found, this can be done in a
simple way. A value for 7 is assumed and inserted into (5.7), by whlch
can be found. Inserting the corresponding values of 5 and * £ into (5. 5),
a value for C is found and one point in the relation between C a.nd
is determined. This procedure continues until the complete relatxonshlp
is established. Examples appear in figures 5.4 and 5.5, where curves for

different values of the geometrical parameters 5 and ¢ are shown for the
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Figure 5.4: The relationship between % and ;T for rotation mechanism no. 1, for different values of §.

stirrup reinforcement degree, 1) equal to zero. The expressions (5.5) and
(5.7) are divided by the effectiveness factor for tension p, so that the curves
will be independent of the material properties. In figure 5.6 curves for
different values of % are shown.

As can be seen in figure 5.6, the contribution from the stirrups is almost
constant for different values of J=.

T

In practice = is normally less than 10; therefore only a small part of the
curves shown in the figures will be used.

To find the load carrying capacity 7 of the anchorage for specific values of
the geometry, the stirrups and the support reaction stress the dimension-
less internal work C is determined first. The value for C is inserted into
the expressions for the local failure, expressions (4.9) and (4.17) or (4.18),
producing the lowest value for 7.

* The mechanism shown in figure 5.3, named rotation mechanism no. 1,
reflects reasonably well the anchorage failure at a beam support in a corner
bar. The solution found from this mechanism is an upper bound solution,
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and it is probably not equal to the corresponding lower bound solution. The
rotation point is fixed to the vertical concrete edge, but an improved solution
can be found by placing the rotation point inside the section. A compression
zone will then appear in the horizontal section, from the rotation point to
the vertical concrete edge. Moreover, the yield line from the bar to the
bottom horizontal edge does not necessarily have to be a straight line, a
curved yield line can also be used. Extending the solution to cover this
kind of failure mechanism, will make the expressions more complicated. In
chapter 6 this mechanism is treated in the case of anchorage at supports of
more than one layer of reinforcement.

Rotation mechanism no. 2 is identical with rotation mechanism no. 1,
except that the rotation point is placed at the bottom horizontal edge of
the concrete section, instead of at the vertical edge, see figure 5.7. In the
case of anchorage at a support, this mechanism is only decisive when the
suppport stress is small or the geometry of the section is unusual.

Using the symbols in figure 5.7, the following expressions for the internal
work are obtained

_ 1 ,(1+n\? o &+
We = aptd (35 (2£1) @+ -aET) ey

Wy = %WAssfyshssg—:;—E o (59)
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Wi = 5mzs (5(1:’7)) (5.10)

where w = 21—,

e

Using (5.4) and (4.5), the dimensionless total internal work can be written

(1+mn) ( 2., .2 2T ) d §+n
i) +E2) ~2-p+ 5.11
=i et (e e v vz D
where the only difference from (5.5), valid for rotation mechanism no. 1, is
that 7 in the first item in the denominator, is not squared.

By differentiating (5.11) with respect to 7, it is found that the optimal value
can be determined from

—52(1+n)(277 —&n+€%) = p(€+17)(1+0)(20° + - ") + - 872(5 )

(5.12)
It is not possible in this case to isolate 5 ; therefore an explicit expression -
for C can not be found. However, the same procedure as explained in
connection with rotation mechanism no. 1, can be used.

cp' is shown as a function of - in figures 5. 8 and 5.9

Comparing ﬁgure 5.5 with ﬁgure 5.9, it can be seen that rotation mechanism
no. 2 is decisive for small values of %~ 57 in the case of £ = 0.5. In the other
cases shown in figures 5.8 and 5.9 rotation mechanism no. 2 is not decisive
compared to rotation mechanism no. 1.

5.1.2 ’I‘ranslatlon mechamsms

The first translation mechanism dealt with, is shown in figure 5.10 and will
be called translation mechanism no. 1..It is assumed that the concrete cor-
ner moves outward at the constant velocity of v = 2. The failure mechanism
consists of two yield lines following straight lines, going from the concrete
surfaces to the center of the bar.

The contributions to the internal work can be written

1y _1 )
Wie = s0lfe [(A — psin(d + k1)) (c m 2d
1

+(\ — pcos(0 — x3)) ( - —d)] (5.13)

cosKg 2
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Figure 5.10: Translation mechanism no. 1; geometry and yield line pattern.

Wy = %UA” fysns(sin @ + cos 8) (5.14)
Wi = vrlssin 6(€ + tan ky) (5.15)

The total dimensionless internal work is then found to be

c =2 (/\—usin(9+ml))< d _15)

cosk; 28
1 1d
. +(A — pcos(0 — k3)) (cos P 5;)
+2— sin 6(¢ + tan x,)
c
+(s~17,b(sin 6 + cos 6)] (5.16)

where 6 + 1 € [p; 5] and K3+ 5 — 6 € [; 5.

It is not possible in general to minimize the expression analytically. How-
ever, the number of variables can be reduced by assuming that the failure
must look like the axisymmetrical failure as much as possible. This can
be done by demanding that the direction of the velocity divides the angle
between the two yield lines into two equal angles. This can be written as

Ko =20+ Ky — g (5.17)

Using (5.16) and (5.17) only two unknown parameters azre to be decided,
which can be done numerically. It can be shown that the optimal value for
C appears when ky = 0, for all values of 7:;’7’ except for small values of ;}:
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0

(5% <1). Inserting x2 = 0 and (5.17) into (5.16) yields

I 3 9
C= 3% [(A pcosb) (sin(20) +1 s)
127 ¢sing+ ng;(sina + cos o)] (5.18)
where 6 € [0; 5 — ¢].

It is not possible to minimize this expression analytically with respect to
0. The same procedure as with the rotation mechanisms can be used. The
expression is differentiated and equalized to zero. The expression obtained
in doing this is used to determine values of, for instance, p—;: for different
values of §. The corresponding values are inserted into (5.18), and the
relationship between % and ;}: is then determined. In figures 5.11 and 5.12
examples are shown

As can be seen in the figures, the difference between the values obtained,
when &3 is not necessarily equal to zero, indicated by a dotted line, and the
values for k3 = 0 are not large and only limited to a small interval close to
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; f = 0. Consequently, for normal geometries, like the examples shown in
the figures, it is possible with reasonable accuracy, to use expression (5.18)
instead of (5.16) and (5.17).

If the failure pattern is changed in such a way, that the yield lines touch
the bar at the top and bottom points of the periphery, see figure 5.13, it is
possible to minimize with respect to two of the three parameters.

The total dimensionless internal work for translation mechanism no. 2 can
be found to »be ‘

C= (A — psin(8 + 1) po— Kl

+(A ~ ucos(ﬂ — K3))

cos n2

+2— sin (¢ + x tan k9) + ;¢(sin0 +cosd)|  (5.19)
¢ . :

where x=1-14 s is introduced. The angles must satisfy 6 + &; € [p; 5] and
Kmi+5-0¢€ .[ga, Z]. Differentiation of (5.19) with respect to ;, 9, and 6,
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yields the following expressions, respectively

sink; = £ cos | (5.20)

A
p—2F
sinky = sinO—)‘& (5.21)
1— 25)(¢ + xtanky) + 92
tang = L oap)Etxtenm) +ig (5.22)

- v
Etanki +x — 92

Unfortunately it is not possible to solve these three equations. Inserting
(5.20) and (5.21) into (5.19), results in an expression for C' with only one
parameter

C =% [f(\/)ﬂ — p?cos?0 — (p — 2%) sin6)
X (\]V —(u— 2fi)zsin20 - ucosﬂ)

+ giﬁ(sinﬂ + cos 9)] (5.23)

It is relatively easy, using this expression to produce relations between C
and one of the quantities on the right hand side of the equal sign. The
method described in connection with the rotation mechanisms can be used,
where

2tan @ T
2 £ 2 2—(#_2_]
VX1 + tan?8) — p fe

0 =¢



102 CHAPTER 5. ANCHORAGE AT SUPPORTS

(p-2F)

+xtand |u—
# \/,\2(1 +tan?6) — (u— 2£)2tan 4

+§¢(1 — tan §) (5.24)

must be fulfilled to obtain optunal values. (5.24) is the coefficient of the
differential of (5.23).

The yield line going from the bar to the bottom surface must be controlled,
so that it does not exceed the intersection between the horizontal and the
vertical edge of the section. If this is the case, wedge mechanism no. 3,
treated in the next section, will be decisive. In normal cases this situation
will appear only for large values of the dimensionless reaction stress . Of
course it must also be checked that the upper yield line does not exceed the
height of the section, but this will normally only be the case if the height
is minimal.

Using kg = 0, (5.17), and (5.19), it can be shown that the values obtained,
are a little larger in comparison than the values from translation mechanism
no. 1. This is because the yield lines are longer in mechanism no. 2, other
things being equal. In practice the difference between the two mechanisms
is'without significance. ‘

Translation mechanism no. 1 can be simplified in another way than that
expressed in (5.17). Assuming the angle between the direction of the dis-
placement and the yield lines to be 7, a mechanism as shown in figure 5.14
‘appears. This mechanism will be called translation mechanism no. 8.

Using the expression for translation mechanism no. ll, the expression for C
in this case can be found to be

o=l (554 Lo 92l

por pri o R sinf(¢ + tan 6) + i/:(smﬂ +cos€)]

. (5.25)
Not even in this case is it possible to minimize the expression analytically.
Of course the same procedure as with the other mechanisms can be used to
develop relations between C' and one of the contained quantities.
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In figures 5.15 and 5.16, —(’pl is shown as a function of & for different values
of £ and &, respectively.

Comparing figures 5.15 and 5.16 with figures 5.11 and 5.12, respectively, it
can be seen that translation mechanism no. 1 produces values for % less
than the values obtained from translation mechanism no. 3, which is also
to be expected.

The translation mechanism in the case of anchorage at supports of more
than one layer of reinforcement is treated in chapter 6.

5.1.3 Wedge mechanisms

The previously discused mechanisms, the rotation and the translation mech-
anisms, are typical corner mechanisms. If the bar is placed at a distance
from a corner or placed in a special position near the corner (compared
with the total dimensions of the section), it is very likely that another kind
of mechanism will be decisive. The wedge mechanisms must be considered
here.

Wedge mechanism no. 1, shown in figure 5.17 will be treated first. The
yield line pattern consists of two yield lines following a straight line, going
from the center of the bar to the bottom surface of the section. When
failure occurs, the wedge is displaced vertically at a velocity of v = 2.
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If the rules, which have been used above, taking the transverse reinforce-
ment into account, are to be used here, the active area will change with the
angle o. If o is equal to zero, the contribution is zero, because it is assumed
that the reinforcement can carry longitudinal stresses only. If o = 7 the
total reinforcement area will be active. The actual value will lie between
these two limits, and the active area of the transverse reinforcement will be
Agssina. This reduction will be taken into account, but as can be seen, the
maximum reduction will be 60%, corresponding to a = ¢.

The contributions to the internal work are

. s 1
Wie = vlf.(A— psina) (cosa - 2d) (5.26)
Wy = %vAss fysnssina (5.27)
Wi, = 2vlrstana (5.28)

The total dimensionless internal work is then found to be

s . 1 d d .
C= 2;3 {()\ — psina) (cosa ) + 2Z tan o + —sz/) sin a] (5.29)
Inserting o = ¢ into (5.29), the expression for C' becomes
2 1 d rk—-1 d k-1
C= 2 — .
[ (f k+1s)+fc Vk +2s¢k+1] (5-30)

This expression is valid when (‘30) — is larger than or equal to zero, which

can be wntten

> TP + > [(k+1)(zf 2kp) +25 v ( “¢)] '(5.’51)

’I‘

kE+1
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Figure 5.18: The relationship between % and i for wedge mechanism no. 1, for different values of §.

It is not analytically possible to minimize (5.29) for « larger than ¢, but
this can of course be done numerically.

In figure 5.18, % is shown as a function of o7,» for different values of §. As can
be seen from (5.29), the mechanism is independent of the value of £&. The
yield line nearest the corner of the section must not exceed the intersection
point between the vertical and the horizontal edge of the section; therefore
the curves are not valid for small values of &.

There is a problem with wedgé mechanism no. 1. It is assumed that the bar
in the failure situation moves at a velocity of v = 1 away from the concrete
section and that a part of the concrete cover moves a distance v = 1 away
from the bar (and at a velocity of v = 2 away from the concrete section).
This means that the space near the bar, produced by the concrete moving
away from the section, must have a dimension which is at least equal to
the diameter of the bar. As can be seen in figure 5.17, this condition is not
fulfilled. The mechanism is therefore changed to the one shown in figure
5.19 called Wedge mechanism no. 2.
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Wedge mechanism no. 2 looks like no. 1, but the yield lines touch the bar
at the intersection point between the periphery of the bar and a horizontal
line though the center of the bar. The load found from mechanism no. 2
will always be larger than the load from mechanism no. 1, because the
yield lines, other things being equal, are longer. However, mechanism no.
1 is not geometrically possible and can, strictly speaking, not be used.
The mechanism appearing in practice is probably a combination of the two
mechanisms.

The problem with the contribution from the stirrups is not as pronounced
in wedge mechanism no. 2 as it is in no. 1. The active area is almost
identical with the total area for the possible values of @ 1. The reduction of
the contribution from the stirrups is negligible and will not be considered
in this mechanism.

The following expression for the total dimensionless internal work can be
obtained

C_2i[)\——psma
wd cosq

Minimizing this expression with respect to « returns

c=25[2/(+ 5 —ko—%)
f}+ ¢] for }':<-,;—J1;T(V——2kp)

C=25[n+1(53+9)+4y] for L2 hv-2kp) (539

o will be between  and §

+2r (tan ot %) + %1/1] (5.32)

(5.33)
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where o is determined by

b—2+
X (5.35)

(5.33) corresponds to a > ¢ and (5.34) corresponds to o = ¢.

sina =

The relatlonsh.lp between and = T for wedge mechanism no. 2 is in princi-
ple the same as for wedge mechamsm no. 1, but the values for €  are larger.
In figure 5.20 examples are shown.

For a certain value of the horizontal distance from the bar to the vertical
surface of the section &, the right yield line in figures 5.17 and 5.19 will
change to a horizontal line, going from the bar to the vertical surface of
the section. This mechanism appears in the translation mechanisms with
three free parameters in section 5.1.2. For smaller values of £s the "normal”
translation mechanism appeares. This situation is outlined in figure 5.21.

Mechanism I in figure 5.21 is the wedge mechanism and mechanisms II-
IV are the translation mechanism with the limitations 6 € [0; Z]. The last
mechanism, named V, has not been treated yet. If £ is small, this mecha-
nism can be decisive. The mechanism is similar to the wedges mechanisms
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-

treated above, but the direction of the displacement is horizontal instead of
vertical. The mechanism is shown in a larger scale in figure 5.22.

- The mechanism will be named wedge mechanism no. 3. The yield line
pattern is assumed to be similar to the yield line pattern in mechanism no. .
2. The solution can then be obtained from the expressions for mechanism
no. 2, (5.33) — (5.35), making £ = 0 and changing s to {s.

= % [46—8\/p(1/ —kp)+ 1;’)] for p< _v_ (5.36)
§s v

In the case where § = 2.5, £ = 0.5, 7 £ =10, and 3 = 0, the value for %,
obtained from (5.37), is 3.90, corresponding to @ =~ 45 degrees. For { = 1.0,
(5.37) can not be used because the geometry limits the lower yield line.

(5.37)
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Figure 5.23: Plate mechanism, geometry and yield line pattern.

Using (5.32) with 7.» § changed to {s, and « =~ 38.7 degrees, corresponding
to tan a = 0.8, yields % =~ 7.90.

It must be observed that wedge mechanism no. 1 corresponds to translation
mechanism no. 1 and wedge mechanism no. 2 corresponds to translation
mechanism no. 2.

5.1.4 Plate mechanism

The plate mechanism is unusual, because it cannot take place for a single bar
only; all the bars in the section have to participate in the failure mechanism.
However, if the section has one bar only, the plate mechanism can of course
take place for this bar. To obtain an expression, which can be compared
with the other mechanisms, a hypothetical case is treated first, see figure
5.23.

The yield line pattern in the j)late mechanism consists of a horizontal yield
line through the center of the bar. The bottom concrete cover is at failure
displaced by v = 2 in a vertical direction, opposite to the reaction stress 7.

The following expressions are obtained for the different internal works

Wie = vldpf(b' — d) (5.38)
Wy = %vA“ Fyshs o (5.39)

Wi = olb'r (5.40)
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By means of (5.38) — (5.40), the total dimensionless internal work can be

found X " yo1
r
o = '7; [p (d ) fc =+ '(/1] (541)
Expression (5.41) can be generalized to be valid for a beam having the

width b, n bars and normal stirrups, see figure 5.24.

In this case the expression for the total dimensionless internal work can be

given by . b
2 T
C—E{p(a~n)+—ca~+¢} (5.42)
(5.42) is shown in figures 5.25 and 5.26 for different values of the parameters.

5.2 Comparison of the Mechanisms

The different mechanisms in section 5.1 are compared here. The corner
mechanisms, (the rotation and the translation mechanisms), will be com-
pared. The transition between the wedge mechanism and the translation
mechanism will be discussed and the load obtained from the two mecha-
nisms will be compared. Finally, the plate mechanism will be compared to
the rotation mechanism.

The limits for the different mechanisms are not discussed in the previous.
To be correct, the variable parameters cannot be chosen freely in all the
mechanisms, independent of the geometrical properties. But as will be seen
in the following discussion on the translation/wedge mechanism, the prob-
lem is not generally an actual one, when all the mechanisms are considered.
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Figure 5.27: % as a function of ;’}—c for rotation mechanism no. 1 and translation mechanism no. 1, for

different values of §.

When one mechanism is not geometrically possible anymore, another will
automatically take over, because the load obtained from the new one will
be lower. In the case of the rotation and translation mechanisms, the in-
tersection point between the vertical surface of the section and the upper
yield line, going from the bar to the vertical surface of the section, must
be inside the section. If the height of the section is minimal and the limit
point is exceeded, the mechanisms will change in such a way, that the upper
yield line will go from the reinforcing bar, vertically up to the top of the
section. In the case of beams it will not normally be necessary to check
this limit, but in the case of a corner bar in a slab, it is very likely that the
failure mechanism will be one with a vertical yield line going through the
center of the bar. Expressions for these limit mechanisms are expounded in
chapter 6.

In figure 5.27, < is shown as a function of - p for rotation mechanism no.
1, and translatlon mechanism no. 1 for different values of 3.

In the cases illustrated the rotation mechanism yields values for € less than
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the values obtained from the translation mechanism. For = 0 the values
are almost identical. In general the rotation mechanism is the better of the
two, but in some cases the translation mechanism yields the lower values,
for instance, for § = 2.5, £ = 0.5, ¢ =0, % = 10, and small values of p—}—
However, the difference between them is in this case limited.

As indicated in figure 5.21, the wedge and the translation mechanisms are
basically the same kind of mechanism. When one mechanism is not valid
anymore, the other will take over. It must be noticed that the mechanisms
in figure 5.21, II and IV, cannot appear when (5.17) is used, because the
angles between the yield lines and the displacement direction cannot be
equal in this case. Assuming that mechanism I'V can appear, the expression
for C can be written

[ \/(_ufk‘p'+2dp(1——~)+¢} for p<2k (5.43)

o= [avr (=50 +
== Z == >— (5.
C= [d\/_+2 25 + 1| for p__2k (5.44)
The expressions can be compared with the expressions for wedge mechanism
no. 3.

Assuming £ < 3 expressions (5.37) and (5.43) are valid and it is seen that
wedge mechamsm no. 3 will be less than the special translation mechamsm
represented by (5.43) and (5. 44) when
g
—_——k <l =-— 4
ffr-k<i-5 (5.45)

For £s = kid, where k; is a constant, (5.45) can be rewritten into

s 1 A v ,

=> = [142k.|——k 5.46)

d=2 ( * IJP ) . 69
For the case where k) = 2.5,k = 4, and 2 = 10 (5.46) yields § ~ 6.6. This
indicates that wedge mechanism no. 3 wxll be decisive only in cases where
the geometry is special. Furthermore, if the ratio between the tensile and

compression strengths of the concrete is less than the used value, the value
for § will be larger and the wedge mechanism will be decisive in fewer cases.

_In the same manner the mechanisms in figure 5.21, I and II, can be com-
pared. The difference from the analysis above, is that the reaction has an
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Figure 5.28: %' as a function of 5. for rotation mechanism no. 1 and the plate mechanism, for different

values of .

influence in this case, i.e. it is not only the tensile strength which governs
the problem (when the geometry is not considered). Assuming o = ¢ it can
be shown that the equation corresponding to (5.45) in this case becomes

Yy (f—1)L

2V (1+ ) 2s

where wedge mechanism no. 2 is used.

(5.47)

Inserting k = 4, ¥ = 10, - = 10, and § = 2.5 into (5.47) gives £ > 1.1.
Hence the wedge mechanism in this case can be decisive in some situations.
However, translation mechanism III in figure 5.21 should probably be used
instead of II. But the main conclusion, that the wedge mechanism can be

decisive in some cases, will not change.

Figure 5.28 shows % as a function of of, for different values of §, for rotation
mechanism no. 1 and the plate mechanism.

As can be seen from the figure, the plate mechanism yields values of % less
than the values obtained from the rotation mechanism, when ;)’I is small as
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in the cases shown. However, in practice, the plate mechanism will not in
general be decisive in the case of anchorage at supports.

Comparing figures 5.8 and 5.9 with figures 5.25 and 5.26, valid for rotation
mechanism no. 2 and the plate mechanism it can be seen that for small
values of these two mechanisms are almost identical in the cases shown

All thmgs consxdered it seems as if rotation mechanism no. 1 describes
the conditions at a beam support better than the other mechanisms. In
some cases the rotation mechanism does not result in the lowest load, but
in general it is the best one when only a single mechanism is used.

5.3 Complete failure Mechanisms

The failure mechanisms in section 5.1 are valid for a single bar only, apart
from the generalized plate mechanism. An anchorage failure in a section
has to-include all active bars in the actual section. Hence the mechanism
must be combined in such a way, that the total load carrying capacity is
minimized.

Considering a beam having n = 3 bars, the complete failure mechanism
could, for instance, consist of rotation mechanisms for the two corner bars
and a wedge mechanism for the bar in the middle. The total force is found
by determining i for the 3 bars, taking into account possible different local
failures for the bars, adding them, and then determining the total force
which can be carried. Another way of carrying out the calculations, is
to determine the value of the total dimensionless internal work C for the
different bars. These values are added and divided by the number of bars
n, which produces a mean value for C. This value for C is now used in the
expressions for the local failure and + 7 is found. The force in one bar can
now be determined and the total force can be calculated by multiplying
this value with the number of bars n. Carrying out the calculations in
this way is not theoretically correct, because the different bars might have
different local failures, and because the expressions for the local failures do
-not have a linear relationship between Z- 7 and C, except for the expression
for failure shape 2a. In practice the difference between the load carrying
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capacity calculated correctly and that calculated by the simplified method,
is normally without any significance. Furthermore the simplified method is
easier to use, because the best combination of mechanisms in the section
can be found only by considering the value of C. Henceforth the simplified
method is used, unless otherwise stated.

As mentioned in section 5.1.4 the plate mechanism is special because it
constitutes a complete mechanism in itself. Expression (5.42) for C in a
beam having n bars can of course be compared with the expressions for C
found from the best combination of the other mechanisms.

5.4 Discussion

In the preceding the cross section considered is mainly a beam section.
In the case of slabs, the expressions developed can be used without any
changes. The corner mechanism is not as important for slabs because the
corner bars form only a small part of the total number of bars. Hence it
is mainly the wedge and plate mechanisms which are used. The complete
failure mechanisms are produced in the same way as for beams. This indi-
cates that slabs in principle do not create any problems, as compared with
beams.

The solutions for the failure in the surroundings, set up in section 5.1, are
based on the upper bound theorem. In the majority of the mechanisms
it is doubtful whether the solutions are accurate. Lower bound solutions
could of course be carried out, but the expressions would probably be very
complicated. Figure 5.29 illustrates what the rotation mechanism would be
like, if it were to correspond to a likely stress field.

As can be imagined, the solutions for both the modified rotation mecha-
nism and the corresponding lower bound solution are too complicated to
use in practical calculations. Lower bound solutions for the failure in the
surroundings are not treated in more detail here. The modified rotation
mechanism and a modified translation mechanism are treated in chapter 6
in the case of anchorage at a support of more than one layer of reinforce-
ment.
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Figure 5.29: Modified rotation mechanism and the corresponding stresses.

The expressions set up previously all correspond to a failure in the concrete
with yield lines going from the bar to the surface of the concrete section. If
the reinforcing bar is placed at a distance from the concrete edges, parallel
to the longitudinal direction of the bar, these kinds of failure will probably
not occur. As mentioned in section 4.4, an anchorage failure in this case
will certainly be a failure which can be considered to be a local failure?,
i.e. the failure pattern only involves the concrete and possible surrounding
reinforcement immidiately around the bar. This case will not be treated
here, but it must be observed that this type of failure constitutes an upper
limit for the anchorage strength.

The kind of structural element assumed previously is an idealization of the
ones appearing in practice. Often the beam or slab will continue for a certain
length beyond the support. Using the expressions set up and not taking into
account this length results in a safe value for the strength. However, the
construction without any length beyond the support considered, appears
in reality; therefore the best thing to begin with, is to develop the theory
without taking into account the length beyond the support.

It is assumed that the support stress is evenly distributed at failure. This
- assumption requires that the support plate is not rigid. However, the dis-

?This must not be confused with the Local Failure treated in chapter 4.
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Figure 5.30: Combined shear-bending failure at.a beam end.

placements in an anchorage at failure are small compared to the deforma-
tions for the whole structure up to failure. Hence the support stress can be
assumed to be evenly distributed even if the support plate is rigid.

Hitherto it has just been accepted that an anchorage failure can take place
in the way described. But in fact, in a real structure, is it possible for the
bar to move forward? in the failure situation, as assumed in the calculations
of the local failure around a bar ?. If the beam in figure 5.1 is considered
and the only failure which appears in the structure is the anchorage fail-
ure, it is not possible for the bar to move forward. Hence the anchorage
failure cannot take place in the way described here without involving other
parts of the structure. Because of this, other kinds of failure must develop
parallel to the anchoragé failure. The other failure types can, for instance,
be a combined shear-bending failure, as shown in figure 5.30, where the
displacement consists of a rotation about a point A, under the load plate.

The beam in figure 5.30 with the illustrated failure pattern, can fail in at
least two ways. The reinforcement yields or the connection between the
reinforcement and the concrete over the support disappears. In the first
possibility the beam fails in principle, in a normal shear or bending failure.
The second possibility is identical with, what has previously been called an
anchorage failure.

The reinforcement can only move forward and the anchorage failure de-
velops if displacements like the one in figure 5.30 take place. Therefore,

3Increment in the displacement in the direction of the force in the bar.
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the anchorage failure must take place as a failure ”inside” other kinds of
failure. This results in difficulty in distinguising the anchorage failure from
other kinds of failure. However, theoretically it is possible to separate the
anchorage failure from the other kinds of failure.

With the kind of superior failure as indicated in figure 5.30, dowel action
will probably appear in the bars. The dowel action is possibly of little
importance, but it cannot be denied that it will have an influence in some
situations. The dowel action will undoubtedly influence the failure pattern
when the structure is unloaded - a horizontal crack through the bars which
was not visible when the load was active can appeare.

It must be concluded that it is acceptable to assume the displacements in the
anchorage failure to be independent of the other displacements appeafing
in the structure. Therefore the expressions developed in the preceding are
applicable for structures in practice.



Chapter 6

Anchorage at Supports of More
Layers of Reinforcement

In this chapter anchorage of more than one layer of reinforcement at a beam
support is treated. Failure mechanisms for bars placed over one another in
a corner are considered.

Expressions for C, the total dimensionless internal work, will be set up.
Contributions from concrete, stirrups, and support reaction will be taken
into account. In the case of anchorage at supports of one layer of reinforce-
ment, it was assumed that the surrounding reinforcement, the stirrups,
followed the main reinforcement in the movements at failure, i.e. the dis-
placement was taken to be %v, where v is the displacement of the concrete
cover moving away from the concrete section at failure. In this case this
assumption seems to be reasonable, at all events in the case of the rotation,
the translation, and the wedge mechanisms, where the stirrups are placed
close to the bar and the yield lines go fi‘om the bar to the nearest concrete
edge. In the case of anchorage in more than one layer,‘ the situation can be
as shown on the left in figure 6.1, where a yield line pattern is indicated.

At failure the concrete cover is displaced away from the concrete section by
the velocity v. Assuming the stirrups to follow the main reinforcement the
velocity is %v for these contributions. But as seen in figure 6.1 this can not
be possible immediately, because that part of the stirrups, located in the
concrete cover moving away from the section, will accompany the concrete.
This problem can be solved in at least two ways. The dowel action in the
stirrups is taken into account in the calculations.However, this seems to be

121
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Figure 6.1: Anchorage in more than one layer at a support.

too detailed a model in comparison to the way in which the expressions
for the axisymmetrical local failure are used. Another possibility is to as-
sume that the yield lines go around the stirrups as indicated in figure 6.1
on the right. This type of failure will yield almost the same load as the
original failure pattern, when the distance between the stirrups is not too
small. In the light of this, it is assumed, that the stirrups follow the main
reinforcement at failure, even if this is not entirely theoretically correct.

6.1 Failure mechanisms

The mechanisms considered here contain in general more variable parame-
ters than the corresponding mechanisms in chapter 5. This results in more
freedom but also in more complicated expressions. Mechanisms correspond-
ing to the rotation and the translation mechanisms are treated.

6.1.1 ( Rotation mechanism

The expressions for the local failure can be used immediately in a failure
mechanism involving one or more than one bar, if all bars moves equally.
The total dimensionless internal work, C, is found as C for the entire mecha-
nism divided by the number of bars, see for instance section 5.1.4. However,
if all the bars are not displaced in the same way, it can in some cases be
shown, that the expressions for the local failure can be used. C then ha.s to
be calculated taking into consideration the special conditions.
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Figure 6.2: Rotation mechanism for one or more than one layer of reinforcement; geometri and yield line
pattern. :

In the case of the rotation mechanism for more than one layer of reinforce-
ment, the direction and size of the displacements for the different bars are
not equal. In figure 6.2 an example with three bars is shown.

The displacements results from a rotation w, about a point O, placed the
vertical distance s from the top bar and the horizontal distance és from
the vertical surface of the concrete section. The distance between the bars
and the point of rotation is denoted by r;, and the displacement for the
different bars is denoted v,;, where 7 is equal to 1, 2, or 3 for the first, the
second, and the third layer, respectively.. v,; is equal to the displacement
of the concrete in-the calculations for the local failure in chapter 4. The
remaining quantities shown in figure 6.2 will be introduced later.
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The total external work can be written as

W, _n, +
xdif.  f. " f.

assuming that the diameter d is equal for all the bars.

1)52 + fc (6.1)

Furthermore, assuming the force in all bars to be equal and the angles o
and 7 in the local failure to be equal for the different bars, (6.1) can be
found to be

W, T Vei Ty r3)
7= Ty e 6.2)

where the relationship on the right in figure 6.2 have been used.

The total internal work can be written as
W;
ndlf,

where Dj is the total dissipation in the concrete from the local failure around
bar No. i and C; is the corresponding internal work from the surroundings.

= (Dyv1 + Crva) + (Dava + Covez) + (D3vs + Caves) (6.3)

Using the assumptions mentioned above and the relationship in figure 6.2,
the expressions for the internal work can be written into

Wi _p_va
xdlf, "~ 'sin(a+ 1)
Using the upper bound theorem on (6.2) and (6.4) yields

T D Cl + C2;f + Cg "
?; COS(a + ')/) + 14 _2 + _a ta‘n(a + 7) (65)

(1+ + ) (C1+02—+Cs) (6.4)

which is equal to the expression in chapter 4 if

C= Ci+C2 + G 6.6)
T+2+o

D is the total dissipation in the concrete from the local failure around one
bar. The total dimensionless internal work Cr can be introduced as
Cir1 + Corg + Csr

ri

Cr=

(6.7)

where r; corresponds to the bar having a velocity v.; of 2. The denominator

in (6.6) is changed to Mﬁl in this case.
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In the case of n; layers of reinforcement, the dimensionless internal work
can be calculated as

C=rma (6.8)

L
where v,; is equal to 2 for bar number i. Cr is calculated as if there were only
one bar. The expression for C can be inserted directly into the expressions
for the local failure from chapter 4.

This solution is probably an upper bound soluﬁon, because the geometrical
quantities o and 7 and the shear stress are assumed to be equal for the
different bars. However, the method is simple and the expressions for the
local failure can be used without any changes.

In the following calculations it is assumed that there are n; layers of re-
inforcement, where n; is a positive integer, that the distance between the
different layers is equal to sy, and that all the bars have the same geometri-
cal properties. The yield line pa’étern is assumed to consist of a compression
zone, the Rankine zone in figure 6.2, a tensile zone similar to the tensile zone
for the rotation mechanism in section 5.1.1; and curved yield lines below
the bars. Assuming the curved yield lines to be hyperbolas, the dissipation
in them can be determined in a s1mple way, as described in Jensen [81 3]
‘and Exner [83.1]. The quantities 7, x, and § are vanable parameters

Assunnng the velocity at the bottom bar to be equal to 2, the angle of
rotation can be given as

2
W=
2
(€ =87+ (n+ (m-1)2)
The dimensionless internal work can be found by using the principles above
2 —  1d\?
C= Eh,,d v +p (V€= 6P+~ o
1d
+(\ - usinau)f—z-l— (\/m2 +1- 5;)

S

+ <— - ~> Z(A usxnah)—’

(6.9)

s

+59 (6= 840+ Lm - 1)
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o (E—6— n)2]  (6.10)

where
o= s\'(g-a)2+(n+§(n,-i))2 , i€{1,2,...n} (6.11)
i = Jak+ug , i€{1,2,..n} (6.12)
sinoy = l%\}% (6.13)
sinay = % , i€{2,3,..n} (6.14)

zi; and yy; can be determined from

d

oy = (5 S+ n(1+ ﬂ2+1>) (6.15)
. v

w o= s (n + %(n, -1+ 3 (1 + K§s+ 1)) (6.16)

o = s(6-6) , i€{2,3,..n} (6.17)

Y o= s (17+ % (m —i4 %)) , 1€{2,3..n} (6.18)

As can be seen, the expressions are complicated and it is difficult to carry
out the calculations analytically. However, it is possible to minimize with
respect to the three variable parameters 7, x, and 6 using a numerical
method. The variable parameters are limited to 7 € [0;% —1—(n— 1)‘-}],
K € [~00;¢], and 6 € [0;¢].

If the height of the section, h, is minimal compared with the other dimen-
_ sions, another failure pattern than that shown in figure 6.2 will appear; for
instance the one shown in figure 6.3

The expression for the dimensionless internal work can in this case be writ-
ten

C= 2?; - % [p ((2)2 - 2d:2'1r,) +y (— —1+ ) _ %52] (6.19)

where

= (ﬁ—1--(z—1))  (e)

s
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Figure 6.3: Limit for rotation mechanism, geometri and yield line pattern.

and s; is the vertical distance from the top of the beam to the center of the
top bar.

In a diagram showing C' as a function of £, (6.19) will decrease for increasing

f following a straight line. The normal rotation mechanism (6 10) will, all
other things being equal, increase for increasing £. (6. 19) will therefore
in some cases be decisive for large £ values. In figure 6.4 the expressions
(6.10) and (6.19) are shown in a (7, ) diagram for different values of ny,
the number of reinforcement layers. g '

As can be seen from figure 6.4, expression (6.19), the limit for v(6 10), is
decisive only for large values of 7 for ny equal to 3 for the cases shown

In addition to this, the diiference between (6.10) and (6.19) is neghgxble in
the interval where (6.19) is less than (6.10). The situation will of course
change for other values of the parameters, but the case shown in figure 6.4
will in general still be valid. The mechanism illustrated in figure 6.3 will be
less than the one in figure 6.2 only in unusual cases. It must be: observed
that the load carrying capacity decreases for increasing ny, i.e. ‘it might be
unsafe to use the expressions for one layer of reinforcement in the case of
more than one layer of reinforcement.

The mechanism in figure 6.2, hereafter called the complex rotation mecha-
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values of the number of reinforcement layers n;.

nism, can be compared with the mechanism in figure 5.3, named rotation
mechanism No. 1, in the case of one layer of reinforcement, i.e. n; =1. In
figure 6.5 two examples are shown.

The well known fact that upper bound calculations reproduce the load
carrying capacity with reasonable accuracy, even if the assumed failure
mechanism is far from the correct one, seems also to be the fact in the case
dealt with here. Of course the complex rotation mechanism is probably
" not the exact one, but as mentioned in section 5.4, the correct solution
(corresponding to displacements by rotation) must be similar to the complex
rotation mechanism. Even though the complex rotation mechanism is not
the correct mechanism, it must be noticed that the difference in the value
of —% for the two mechanisms in figure 6.5 is small, while there is some
difference in the yield line patterns obtained. Because it is possible to use a
simple mechanism and still obtain acceptable results, it has been attempted
to simplify the expressions for the complex rotation mechanism in two ways.
The two new mechanisms are outlined in figure 6.6.

The mechanism to the left in figure 6.6 will be known as the vertical line
rotation mechanism, because k is assumed to be equal to zero. The other
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mechanism will be known as the straight line rotation mechanism, because
the yield line from the lowest bar to the bottom edge of the concrete section
is assumed to be a straight line. « is in this case determined in such a way
that a pure tensile yield line will occur. In both mechanisms 6 is equal to
zero, i.e. the compression zone is removed. In figure 6.7, € as a function
of for the two simplified mechanisms is shown, together w1th expression
(6. 10) for the original mechanism.

In figure 6.7 curves for n; equal to 1 and 3 are shown. As can be seen, the
values for % obtained from the vertical line mechanism are less than the
values from the straight line mechanism in the cases shown in the figure.
For other values of the parameters, the straight line mechanism can be
less than the vertical line mechanism. It must be noticed that the curves
for the same n; are fundamentally equal for the three mechanisms. This
indicates the possibility of using one of the simplified mechanisms instead
of the complex one, even if the load is a little larger. It must be mentioned
that the expression for C for the straight line mechanism is more simple
than for the vertical line mechanism, especially when n; is equal to 1.

The type of rotation mechanism used here is not the only possible one but
it is a very likely one. In figure 6.8 probable mechanisms and combinations
of mechanisms are illustrated.
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Figure 6.8: Rotation mechanisms and combinations of mechanisms.

The mechanism shown to the left in figure 6.8 is identical to the rotation
mechanism, except that the yield lines under the bars are assumed to follow
straight lines. The expressions for C are in this case more complicated than
the expressions for the mechanism treated in this section, and the values
obtained are almost equal, when the same number of variable parameters
are used.

This yield line pattern and the other yield line patterns in figure 6.8 will
not be discussed in detail here. The wedge mechanisms are dealt with in
section 5.1.3; therefore there is no difficulty in carrying out the calculations
for the combined mechanisms. However, the combined mechanisms will
only be decisive in unusual cases, so it is not necessary to check sections
with normal geometri for this mechanism.

Sections with normal geometri will probably fail either due to the rotation
mechanism treated in this section, or due to the translation mechanism
treated in the next section. '

6.1.2 Translation mechanisms

The translation mechanism for a.néhora,ge in more than one layer is in prin-
ciple not more difficult to treat than the translation mechanism for one
layer of reinforcement. All the bars are assumed to move in the same di-
rection and with the same displacement. The yield hne pa,ttern used in the
calculatlons is outhned in ﬁgure 6.9. ‘
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Figure 6.9: Translation mechanism for one or more than one layer of reinforcement; geometri and yield line
pattern.

The expression for C per bar can, in the case shown in figure 6.9, be found
to be

C=niid [(,\-,psin(0+f€1))( £ ‘i)

coskr | 2s
+(A = peos(6 — ks)) (cos P 2d_s)
+()\ — pcosb) (m - “) (= 1)
+;¢(sint9 + cos 6)
. L’ in0(E 4+ tan nz)] (6.21)

where 0 + k1 € [9072]’ ’92'*'5—06 [‘Pag]a K1 € [Ovz{ K2 E} 22!32&[ and
0e[-%,5 forny=1and 8 €[-(5—¢);5— ] for n; > 1.

Comparing (6.21) with the corresponding expression (5.16) it can be seen
that they are equal, apart from the factor ,—‘1; in front of the expression
and the term which includes s; and n;. Therefore, the calculations -are
almost identical with the calculations carried out in section 5.1.2. As with
those calculations, it is also not possible here to minimize analytically the
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Figure 6.10: Limit for translation mechanism, geometri and yield line patlern.

expression with respect to the variable parameters 0, x;, and x;.

In section 5.1.2 the angle § is limited to be between 0 and § — ¢. Doing
this the contribution from the reaction stress r will always be greater than
or equal to zero. In this section these bounds will not be imposed, i.e. C
can decrease for increasing 7+ A negative contribution from the reaction
indicates that the concrete corner can break off without involving the an-
chorage. The load ca,rrymg capacity can in this case be found to be ;7 = 1.
The value of the effectiveness factor v is probably not the same in the case
of this corner failure and of the normal anchorage failure, but it shows that
the reaction stress.in some situations does not increase the load, but limit
it _ . o v ,

Allowing 8 to be negative, compression stresses can appear in the stirrups.
If compression stresses are accepted in the stirrups sind must be changed
to |sin 6| in the term, including 9 in (6.21), but if they are not, sin § must
be changed to 0 for § < 0 in the same term.

As with the rotation mechanism in the previous section, an uppef limit
for the load carrying capacity will appear when the yield lines go from the
~ bottom to the top-of the section. In ﬁgure 6.10 an exa,mple is shown.
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C can in this case be written

_1s
= ird [Q(A psina) + 2— 1[)s1na 27 cosa] (6.22)

where Q =%—;n1 and a € [p; T — o).

Minimizing (6.22) with respect to o yields

1s r\? d \? 1 d
= rd QA — \l (2-};) + (Qp - 2-;1/;) } for T 5tan<p (Qp - 2;1/))
- (6.23)
_1s 2 [Q +(k 1) - 2f—] for =1t (n 2%)
mrdk+1 v o foe 2 L
(6.24)
(6.23) and (6.24) corresponds to
—9d
sino = ?“ 29 - (6.25)
\/ (22) + (o - 2%9)
sino = sin (6.26)

respectively.

In figure 6.11 the translation mechanism, expression (6.21), and the limit
for the translation mechanism, expressions (6.23) and (6 24), are shown in
a (r, ) diagram.

Consider figure 6.11 it can be seen that the limit mechanism in the cases
shown is not decisive compared to the original translation mechanism. For
n; = 1 the values of % are greater than 8.0; therefore no curve is shown in

the figure. Generally, the limit mechanism will be decisive in unusual cases
only.

Comparing the curves from expression (6.21) it is seen that for % o5 > 7.3 the
values of C for n; = 1 are less than for n; equal to 2 and 3. This shows that
the fa.zlure involving only the bottom bar will be decisive for large values of
o

The maximum of the curves from (6.21) in figure 6.11 is characterized by
6 = 0 and, for suitably small values of 2, Ky =0, i.e. the maximum point is
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Figure 6.11: € as a function of 77 Jor the translati hanisms, ezpressions (6.21), and the limit for the

translation mechamsm, ezpression (6.23) and (6.24), for different values of ny.

a function of k; only. The descending part is characterized by 6 + k1 = ¢
and on the lowest part k3 + § — 6 = ¢. Inserting these two relations into
(6.21), produces an expression for C' with only one parameter.

C=215 [ (- nsing) (oo + mi=ny — )
+(A — poosb) (2 - ¢) (n; - 1)
+44(sin 0 + cos )
+2+£ sin (¢ + cot(p — 0)) ]
However, it is not possible, even in this case, to minimize the expression
with respect to 8. '

(6.27)

Expression (6.27) is shown together with (6.21) in figure 6.12. As can be
seen in the figure, the correspondence between the two sets of curves is sat-
isfactory for large values of . In the next section it will be demonstrated
that this is approximately the interval in which the translation mechanism
is decisive compared to the rotation mechanism.

6.2 Comparison of Mechanisms

% as a function of for the rotation and translation mechanisms is shown

in figure 6.13.
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Figure 6.12: % as a function ofj; for expression (6.21) (trans) and (6.27) (simple) for different values of
n.

In the figure the rotation mechanism is decisive for % less than approx-
imately 0.45, changing with the value of n;. For larger values of o the
translation mechanism is decisive. In chapter 5, where the rotation and
translation mechanisms have been treated in the case of one layer of rein-
forcement, the rotation mechanism was in general decisive. This difference
in conclusion appears because the translation mechanism in this chapter
has more variable parameters and the interval allowed is greater than in
chapter 5.

As can be observed by comparing figure 6.12 with 6.13 the simplified trans-
lation mechanism is a reasonable approximation of the translation mech-
anism for the interval in which the translation mechanism is decisive in
compg.rison to the rotation mechanism.

6.3 Discussion

The expressions for the failure mechanisms for anchorage of more than one
layer of reinforcement at a beam support are a little complicated. Hence the
expressions have been attempted to be simplified, but the simplified expres-
sions are nor quite simple. The simplified expressions seem to correspond
to the original expressions with satisfactory accuracy.
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Previously expressions for C have been developed. The strength of the
anchorage can be found by inserting the optimal value for C into the ex-
pressions for the local failure set up in chapter 4.

As discussed in section 5.4, an anchorage failure at a beam support is possi-
ble only if another type of failure is in progress. This is also the case when
anchorage at a beam support of more than one layer of reinforcement is
under discussion. An anchorage failure cannot appear separately.

The curves for C as a function of p—}: in the preceding sections show that the
strength decreases for increasing number of reinforcement layers n; for the
used parameters, which was also expected. The strength of an anchorage
with more than one layer of reinforcement can not be greater than the
strength of one where the bars are placed in a single layer. This shows that
the failure mechanisms treated in chapter 5 can be decisive, even if there
is more than one layer of reinforcement at the support. The combined
mechanisms illustrated in figure 6.8, can also in some cases be decisive.



Chapter 7

Lap Splices

Failure mechanisms for lap splices in the case of one layer of reinforcement
will be treated below. The distance between the two bars in a splice is
assumed to be zero. However, tests indicate that the strength of a lap
splice is not sensitive as to whether the distance is zero or larger than zero.
Hence the expressions are also applicable when the distance is not zero
(within certain limits).

In the expressions for the total dimensionless internal work, C, contributions
from the concrete and surrounding reinforcement are taken into account.
The surrounding reinforcement is assumed to consist of normal stirrups.
It is assumed that the stirrups follow the main reinforcements in the dis-
placements at failure. This is probably not always correct, as mentioned in
chapter 6, but a minor change in the failure mechanisms makes the assump-
tion more acceptable. The contribution from the surrounding concrete is
separated into two parts: A contribution from the failure in the concrete
along the lap length, similar to that used in chapters 5 and 6, and a contri-
bution from the end failure. The failure surface will in some way or another
pass the concrete surface. This will in general lead to an additional contri-
" bution to the internal work; hereafter named the end failure contribution.
The effectiveness factor for tension, p, in the end failure is symbolised by
pe in the expressions. Doing this makes it possible to distinguish between
the different contributions.

The two bars in a lap splice are assumed to move with the same displacement
(in opposite directions). It is also assumed that the local failure occuring
around the two bars is similar. Therefore the external work and the internal

138
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Figure 7.1: The plate mechanism; geometry and yield line patiern.

work from the local failure are equal for the two bars. Hence C is determined
as the total internal work in the failure surface divided by 2. However, in
some cases of a corner splice, it is assumed that only the bar nearest the
corner moves at failure, see section 7.1.3.

7_.1 Failure Mechanisms

The failure mechanisms are divided into three basic types; the plate mecha-
nisms, the wedge-plate mechanisms, and the corner mechanisms. Generally
every type contains more than one mechanism. Expressions for the total
dimensionless internal work C, are expounded. The prmc1p1e in the calcu-
lations is similar to that used in chapters 5 and 6.

It is assumed that the splices are located at the bottom of the beam section
considered and that the bars in the lap splices are placed alongside one
another in a horizontal plane. :

7.1.1 Plate mechanism

A beam section with n,, main bars is considered. It is assumed that all the
bars in the section are spliced, i.e. nn, = 2n,,, where ng, is the number of
lap splices. The mechanism dealt with, is illustrated in figure 7. 1.

The end failure surface is assumed to be a plane going from the bars to the
bottom edge of the concrete, as illustrated in figure 7.1, to the right. The
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total dimensionless internal work in this case becomes
bs d
= 2 — 2n, 2 7.1
C= 27ms,,[”( ”’")* VEegar® ] (7.1)

where e is the number of end failure contributions, e € {0,1,2}! , and ,
E, = Ae — PeSina (7.2)

cosa
The material parameters A, and i, are defined as A and p, expression (2.8)

and (2.9), except that p in this expression is changed to p,. Minimizing
(7.2) with respect to «, the following appears

{ 2,, pe(y —kpe) for &< g ~ sina=4 (7.3)
3

for £ > ,}—k ~ sino = sing
As mentioned in chapter 5, the plate mechanism is special compared to the
other mechanisms because it in general does not have to be combined with
other mechanisms; it constitutes a complete mechanism in itself.

The well known relationship between the load and the lap length appears
in expression (7.1), see figure 7.2.

From (7.1) it can also be seen that C increases for increasing values of the

stirrup reinforcement degree 1. This also corresponds to what is observed
in tests.

1¥or lap splices e is normally equal to 2.
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Figure 7.3: End failure patierns for the wedge-plate mechanism in the case of one lap splice.

It must be noticed that the expressions for the plate mechanisms and the
mechanisms dealt with below are also valid for lap splices in slabs. The
expressions can be used directly. ' ‘

7.1.2 Wedge-plate mechanisms

The wedge-plate mechanism is a combination of the plate mechanism from
the preceeding section and wedge mechanism no. 2 from chapter 5. The
mechanism includes the wedge mechanism for one lap splice correspond-
ing to the wedge mechanism in chapter 5, but is otherwise valid for an
unspecified number of splices.

At all events two types of end failure patterns can be considered in this
case; a failure mechanism with plane surfaces and one consisting partly of a
cone and a plane can be used. The mechanisms are illustrated in figure 7.3
in the case of one lap splice. In reality one of the bars will continue beyond
the end failure surface, but for clarity both bars are considered to end at
the end failure surface.

The plane mechanism, denoted A in the figure, has two variable parameters,
o and B, and the cone mechanism, denoted B, has one variable parameter,
o. o is used in both mechanisms because it is in fact the same geometrical
angle, but of course the optimal value for « can in the two cases be different.
It must be noticed that the angle o is influenced by the mechanism along
the lap length, whereas 3 in the plane mechanism is independent of this in
principle.

The end failure mechanisms have been compared in the case of @ = 8 = ¢.
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Figure 7.4: Wedge-plate mechanism; geomelry and yield line pattern.

In this case it was found that for § less than approximately 2.5, the plane
mechanism gives less values than the cone mechanism (difference approx-
imately 80% for § = 0.5 and 30% for § = 1) and for larger values the
situation is just the opposite (maximum difference approximately 20% for
5 =00).

The cone mechanism has been used by Petersen & Panek [87.7] in the case

of anchorage at supports in slabs.

In the calculations below the plane end failure mechanism is used. The fail-
ure pattern is shown in figure 7.4, where the end failure surface is illustrated
to the right.

Using the symbols in the figure, the following expression for the total di-
mensionless internal work can be obtained

1 s [_A—psina t d
C = gurd [P + 20l — 1) + 25y

sd (Ae — pesina Ae = Hesin )]
22 (ZeZ RSB LeZ P28 4
+ed£ ( cos tan 5 + cos 3 (T'+ tana) (7.4)

where
d t

I'= 27’),5?'; + (nsp - 1); (75)

Differentiating (7.4) with respect to o and 8 and equalizing the obtained

expressions to zero yields

2(pcos B + eSp.sin B) — e2 ),
2\ cos B + ejA. sin 8

(7.6)

sina =
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Figure 7.5: Ezamples of mechanisms where the expressions for the wedge-plate mechanism can be used.

pe(Tcosa + 2sina) —

Ae(T cosa + sina)
where o > ¢ and 3 > ¢ must be satisfied. Unfortunately it is not possible
to solve these two equations with respect to the angles o and 5. However,
a simple procedure can be used. The optimal value for o is determined
from (7.6) for e equal to zero (see section 5.1.3). This value is then inserted
into (7.7). Using this method, the determined values of o and 3 are not
the optimal ones, but, as in the majority of upper bound calculations, the
minimum is rather flat so the mistake using this method is limited. It is
observed that (7.7) is satisfied using this simple method. '

sin 3 = (7.1

Considering (7.4), it is noticed that C decreases for increasing 4 and in-
creases for increasing ¢ in the same way as the plate mechanism.

The wedge-plate mechanism can be used to treat various mechanisms sim-
ilar to the mechanism shown in figure 7.4. Examples of th.lS are 1]1ustrated
in figure 7.5.

. The expressions for the wedge-plate mechanism are used with the number of
splices n,, equal to what is shown in the figure. Other combinations than
shown, can of course be used. The mechanism to the right in figure 7.5
can be decisive when the splices in the corners are not placed close to the
vertical edges. If they are located close to the edges, the wedge mechanism
will probably not be decisive; the corner splices will fail in another way.
The next section deals with failure mechanisms in corner sphces

7.1.3 Corner mechanisms

As previously mentioned, the corner mechanisms differ from the other mech-
anisms for splices in the way the bars are assumed to move at failure. In the
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other mechanisms both bars are assumed to move at failure and contribute
to the external work, while in a corner splice only the bar nearest the edge
is assumed to move. Two examples of mechanisms are shown in figure 7.6.

A mechanism similar to wedge mechanism no. 3 in section 5.1.3 is used.
Mechanism A in the figure illustrates that both bars move at failure. The
concrete corner, the wedge, moves away from the concrete section at the
velocity of v = 4. In mechanism B only the bar nearest the edge moves
and the velocity of the concrete wedge is therefore v = 2. -In mechanism
A the internal work must be divided by 2 to find the internal work for one
bar. The velocity in mechanism A is double that in B, but the work in
A is divided by 2, which means that there is no difference here in reality.
However, there is a difference which appears in the length of the yield lines,
when the yield line patterns are assumed to be as illustrated in figure 7.6.
All things considered, the difference between the mechanism, will not be
significant for practical purposes. In the calculations above, it is assumed
that only the bar nearest the edge moves at failure, if the direction of the
displacement is not vertical.

The corner mechanisms and the corresponding expressions for the total
dimensionless internal work are shown in figure 7.7.

The end failure patterns for the side-wedge and the bottom-wedge mecha-
-nisms are in principle equal to the end failure for the wedge-plate mechanism
dealt with in the previous section. The rotation no. 1and the no. 2 mech-
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anisms are identical to the mechanisms in section 5.1.1, and the translation
mechanism is identical to translation mechanism no. 3 in section 5.1.2.
The end failure is included here, which not is the case in the mechanisms
in section 5.1.

The end failure pattern for the translation mechanism is a plane with the
constant angle o between the displacement direction and the plane. The end
failure for the rotation mechanisms are not as simple. Variational principles
using the Euler-Lagrange differential equation have been implemented to
find a solution. Because the theoretically correct solution is complicated,
it has been simplified and can be presented as shown in figure 7.7. The
calculations can be seen in Andreasen [84.3].

A mechanism similar to the side-wedge mechanism, but with a vertical yield
line, going from the bar nearest the edge to the bottom edge of the concrete
section, instead of the lowest inclined yield line, has also to be considered,
if it is to be correct. However, the difference between this mechanism and
the rotation and translation mechanisms will be negligible. Hence this
mechanism is not included here.

As can be seen in figure 7.7, the solution for one mechanism is generally
complicated. The best of the 5 mechanisms, the one giving the lowest
value for C in an actual case, has to be found. This mechanism can then
be combined with the wedge- plate mechanism. This demonstrates the
difficulty in carrying out this calculation.

7.2 Comparison of the Mechanisms

Because the expressions for the internal work for the various mechanisms for
lap splices are complicated, some guidelines for selecting the best mechanism
are given here. The guidelines need be considered only as an instruction
and an aid to excluding some of the mechanisms in an actual case.

In figure 7.8 a horizontal and an inclined yield line without end failures are
compared.
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Figure 7.8: The internal work as a function of £ for a horizonial and an inclined yield line.

For the cases shown, the mechanism with the horizontal yield line is decisive
for £ approximately less than 2.7. For § = oo the limit for £ is v/6 and for
% equal to 1/2, the value is 1+ v/6. For values of & occuring in practice the
limit for £ will therefore not change much.

This shows that the horizontal cover must be more than approximately three
times the vertical cover before the wedge mechanism is decisive compared
to the plate mechanism. Therefore the horizontal distance between two lap
splices must be more than 6 times larger than the vertical cover to result
in a decisive wedge mechanism. Incidentally the analysis carried out here
is similar to the one in section 5.2, in the case of anchorage at supports of
one layer of reinforcement. o

The corner mechanisms can be decisive if the width of the section is large
and the corner bars are located near the vertical edge. The side-wedge
mechanism? can be decisive if the vertical cover is large and the bottom-
wedge mechanism can be decisive if it is small. Rotation mechanism no. 1
will be less than rotation mechanism no. 2 for £ > 1. For £ approximately
equal to 1, the translation mechanism® can be decisive, compared to the
rotation mechanisms.

- Expressions for when the various mechanisms are decisive, can be developed,

?In section 5.1.3 this mechanism is named wedge mechanism no. 3
31n section 5.1.2 this mechanism is named translation mechanism no. 3
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Figure 7.9: Complete failure mechanisms from the mechanisms in section 7.1.

but they are very complicated. Such expressions will obscure the situation
rather than clarify it. Using one’s common sense will be more helpful.

7.3 Complete Failure Mechanisms

A section with n,, lap splices (n,, main bars, n,, = 2n,,) is considered. The
failure mechanisms from section 7.1 must be combined to obtain a complete
failure mechanism involving all splices in the section. As mentioned in
section 7.1.1, the plate mechanism is a complete failure mechanism in itself.

Many different combinations of the mechanisms have to be considered. In
figure 7.9 some examples are shown. The corner mechanisms in row number
- II can be one of the 5 types of mechanisms dealt with in section 7.1.3. The
mechanisms in row numbers III and IV are a few of the possible combina-
tions resulting from the wedge-plate mechanism. Of course other combina-
tions than those illustrated, have to be considered too. '
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Figure 7.10: Special mechanism.

7.4 Discussion

Many failure mechanisms have to be considered in the case of lap splices.
Furthermore, the expressions for determining the load carrying capacity
for the various mechanisms are complicated. To practical calculations.the
expressions must be simplified. This is done in chapter 10, where the the-
oretical load carrying capacity is compared to the load: obtained in tests. .

The expressions are developed in preparation for tensxon lapped sphces but
in principle they can also be used to splices in compressxon However the
effectiveness factors will probably not be the same in the case of compressmn
as in tension.

Other mechanisms than those dealt with in the previous can be decisive in
some cases, for instance the mechanism illustrated in figure 7.10. -

The yield lines below the bars near the corners are ﬁ_xed in such a way
that they will be tensile yield lines. This mechanism can in some cases
produce values for C lower than the values from the plate mechanism. The
only problem with this type of mechanism is that the expression for C is
even more complicated than for the mechanisms treated in the preceeding.
This special mechanism and similar mechanisms will not be discussed in
more detail here, but the possibility of finding mechanisms producing lower
values for C' than the mechanisms in section 7.1, must be noted.

The expressions for lap splices are expounded éssuming normal stirrups. If
other kinds of surrounding reinforcements are used in an actual case, this
can be taken into account by changing the contribution from the stirrups
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Figure 7.11: Contribution from surrounding reinforcement in the case of the plate mechanism.

in the expressions. Figure 7.11 shows how this can be done in a few cases.
The plate mechanism is assumed to be decisive.

To the left the usual case is illustrated. Assuming the contribution from
the stirrups to be 2 in this case, it is shown how this contribution must
be changed in the other cases illustrated. The way it is shown in the figure
it is just a matter of how many times surrounding reinforcement crosses
the horizontal yield line for how many contributions should be taken into
account. If the angle between the longitudinal direction of the surrounding
reinforcing bar and the yield line, 8, is different from %, a reduction factor
of the value sin 8 must be introduced®. Especially in the case of spirals,
shown in the two cross sections to the right in figure 7.11, the reduction
can be considerable.

In principle the expressions for the internal work cover only the case where
the lap splices are located in the bottom of the section and the two bars
in a splice are placed adjacent to each other in a horizontal plane (see
figure 7.12.A). This is the most common case which appears in structures
in practice. However, they may be located elsewhere. For instance the
splices can be located in the top of the section instead, see figure 7.12.B. In
this case the expressions developed, can be used without changes.

Another possibility is that the bars in a splice are placed over one another,
as shown in figure 7.12.C. The expressions can not be used directly but the
principles used to expound them can be used advantageously in this case.
Figure 7.12.D illustrates a special case which can occur in high beams. The

“This is similar to the discussion in section 5.1.3
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Figure 7.12: Various locations of the lap splices.

expressions can be used directly to treat this problem. The splices in the
middle part of the section will probably fail in a wedge mechanism.

Although not all possible locations of lap splices are covered by the de-
veloped expressions, it is not difficult to deal with other problems. In the
cases where the expressions can not be used directly, the principles from the
calculations can be utilized. Therefore it is relatively easy to treat almost
all types of lap splices.

The expressions set up in the previous are valid for lap splices in both beams
and slabs. In the case of slabs, the plate and the wedge-plate mechanisms
will probably normally be decisive. The corner mechanisms will only be
applicaple if the width of the slab is.small. .



Chapter 8

Test Results for Anchorage at
Supports

Several tests for anchorage at supports are reported in the literature but
only a few of them can be used directly. In some of the tests the force
in the reinforcement immediately in front of the support is not measured
or the support length is not specified. Amongst others, this is the case in
Hillerborg [57.1], Matthey & Watstein [61.2], Morita & Fujii [82.5], Nilsson
[70.2], and Larsson [70.3]. In other tests in the literature, the anchorage
above the support, or on a part of it, is prevented by special arrangements
(see e.g. Bodén [85.7], Champerlin [56.1), Dastidar [69.5], Kemp & Wilhelm
[79.7], Kemp [86.6], Larsson [57.2], and Roberts [69.6]).

The force in the reinforcement immediately in front of the support and the
anchorage length are important parameters, which have to be known. It
can be difficult to measure the force when testing on normal beams and
it is not certain which anchorage length must be used. Using special test
specimens, which particularly consider these problems, it is not difficult to
find the value of these quantities. The problem when using specimens which
are different from structures in practice, is to appraise if the behaviour is
equal for both the idealized specimen and the structure in practice. The
anchorage failure at supports in a normal structure can not take place
without involving other parts of the structure, as discussed in section 5.4.
As mentioned there, the anchorage failure can be considered to be a local
failure, appearing as a result of the global failure under development and
‘that the anchorage failure can be separated from this global "failure”. This
indicates that a test specimen can be idealized, but it must reflect the
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fact that the anchorage failure can not appear in a norma.l beam w1thout
involving other parts than the anchorage.

Two test series, described in Jensen [82.1], [82.2] and Rathkjen [72.1], are

useful. The tests are carried out on idealized specimens fulfilling the require-
ments mentioned above. Rotation mechanism no. 1 described in section 5.1

is used as the failure mechanism. Generally, using rotation mechanism no.

1 is best, and the expressions for the load carrying capacity are more simple

than those for the translation mechanisms. However, the rotation mecha-

nism no. 1 is not as good as the rotation mechanism in section 6.1, as

shown in figure 6.7 (n, = 1), but it is more simple. The difference between

the more complex rotation mechanism and rotation mechanism no.“ lis

methodical. Therefore it is possible to use the simple rotation mechanism
without loss of accuracy. The load carrying capacity is a function of the

effectiveness factors which have to be determined from tests. It means that

in using the simple mechanism, the value for the effectiveness factors is less

than if the complex mechanism had been used.

The effectiveness factors found from an upper bound solution can be used in
a lower bound solution, and can be used in another upper bound solution, if
this solution is theoretically better. The opposite is not allowed. However,
it is best and most correct to use correspondmg solutlons and effectlveness
factors.

As mentioned in section 2.2, the effectiveness factors are, in almost all
known cases, determined from tests. Therefore they are empirical factors,
but they are factors which can be given a physical meaning; they can be
related to the behaviour of the concrete. Making use of a lower or an upper
bound solution for a problem, the influence from the various parameters
appears automatically, including the influence from the effectiveness factors,
i.e. this kind of solution is stronger than a fully empirical one. Using such a
solution with effectiveness factors found from tests, will result in the correct
variation with the parameters and can with reflection be used in intervals
not covered by tests.

The effectiveness factors can be found from tests by requiring correspon-
dence between tests and theory for every test. Doing this, there will be
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the same number of values for the effectiveness factors as the number of
tests. The best relationships between the effectiveness factors and the con-
crete strength, and maybe other parameters, can then be found. Using
these relationships for the effectiveness factors in determining the theoreti-
cal strength, the theory can now be compared to the test results.

The theory is compared to the tests by determining the ratio between
the load obtained in the tests and the corresponding theoretical strength,
test/theory, for every test. The mean value, the standard deviation, and the
coefficient of variation for all the values for the ratio can then be determined.

The test values can be assumed to be normal distributed and the theoretical
strengths can be considered to be certain values. Hence the ratio test/theory
is also normal distributed and the simple mean and standard deviation
calculations can be used. However, using the ratio test/theory, the unsafe
values (theory>test) are weighted less than the safe values , which is not
reasonable. Nevertheless, the ratio is calculated in this way but one should
take note if there are too many, very small, unsafe values. In the majority
of cases, the ratio is close to 1 and the difference in weight for a safe and
an unsafe value is almost equal. It can be seen on the determined scatter,
if this is not the case.

The final expressions for the load carrying capacity must be applicable
for calculations in practice. Consequently the expressions for the rotation
mechanism are attempted simplified.

8.1 Test Results

Test results from two test programs, Jensen [82.1],[82.2] and Rathkjen [72.1],
are used in the comparison between the developed theory and tests. Both
test programs include test specimens with and without surrounding rein-
forcement. The majority of the tests had 2 main bars, but tests with 1 and
3 bars are also included. Figures 8.1 and 8.2 show the specimen and the
main principle in the testing of the specimen for Jensen’s and Rathkjen’s
tests, respectively. For a mere thorough description of the test procedure,
the reader is referred to the original reports.
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Flgure 8.1: Test specimen used by Jensen [82.1] and [82.2]. The tests are from_series 130-133, 190 1.92
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Figure 8.2: Test specimen used by Rathkjen [72.1]. Test numbers 13-39, 52-54, 57, 80-83, 90-97,. 107-109,

and 110-125. are used.
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The values for the rib parameters D (4.6) and F (4.12) for the main rein-
forcement used in the tests, are noted in the figures. It was not possible to
find values for the parameters u and a, see figure 4.1, but the values of u+a
have been given. Therefore F' is not completely accurate but the deviation
from the correct value is estimated to be without great significance.

The test results in the references, which are said to fail in an anchorage
failure, are included in the analysis. Some specimens fail in another way,
for instance by yielding of the main reinforcement or sliding failure in the
plane over the reinforcement, and some are said to contain not satisfactorily
compressed concrete; these tests are not included. Furthermore, some of
Rathkjens tests are omitted because the force in the reinforcement was not
measured during the test.

In Rathkjen [72.1] the yield strength of the surrounding reinforcement is
not reported on. Information was obtained from Rathkjen concerning this.

The data for the tests are given in tables in appendix A. The values of the
ratio test/theory are also included; this is described below.

Rotation mechanism no. 1 from section 5.1 is, as mentioned, used as the
failure mechanism in all the specimens.

Experimentally the effectiveness factor for tension, p, was supposed to be
equal to zero. For tests both with and without surrounding reinforcement,
the calculations show that the agreement between test and theory was not
satisfactory. The scatter on the ratio test/theory was too large, and there
was a systematic deviation. The effectiveness factor for compression, v, was
assumed to be a constant, divided by the square root of the uniaxial cylin-
drical compression strength for the concrete. The value for the constant
was found to be approximately 7-9, when the compressive strength is mea-
sured in MPa. Comparing the value for the constant to what is previously
found in the literature, see the survey in chapter 2, it can be seen that it is
too large. This indicates that the tensile strength for the concrete must be
taken into account, as it is done in the expressions.

Functions for the ratio between the effectiveness factors £ in accordance
with the two models, (2.18) and (2.19), set up in section 2.2, were therefore
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Figure 8.3: The effectiveness factor, v, as a function of the uniazial compression strength for the concrete,
fe, for the tests without stirrups.

used. To complete the mvestlgatlon other functlons, such as. \/f: / a, fc / cz,
and c3/ fc , where c1,cy, and c3 are constants, for £, were also tried. It turned
out that the constant model, expression (2. 19) is the best. However, the
difference between the various models is not large, so if another model than
the constant model is preferred, it will probably be possible to use it. In
accordance with the a.nalysxs here and that in section 2.2 the constant model
is used in the following discussion. It was found that _ '

=0.10 o ' (s.i)

agreed reasonably well with the test results. (8.1) is used in the test treat-
ment below. The value of v can be found by demanding that the test value
and the theoretical strength correspond for every test. In figure 8.3 the
determined values of v are shown as a function of the umaxxal compression
strength for the concrete f,.

Assuming the relationship between v and f. to be of the type v = k1/\/f,
where k; is a constant, the best value for &; can be determined (the scatter
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is minimal). Doing this the following is obtained
2.65 :
V= 8.2
7T, (8.2)
(8.2) is shown in the figure. The relationship (8.2) between v and f. cor-
responds to what is found in many other cases, where concrete structures

are treated by using the theory of plasticity, see the review in section 2.2.

It must be noticed that the obtained vvalues for the effectiveness factor v are
within the normal and expected interval. This indicates that the obtained
value of £ is not totally inaccurate.

The dimensionless shear stress 7. as a function of the dimensionless reaction
stress % is shown in figure 8.4 for some of Jensen’s tests. The theoretical
_curves indicated in the figure are determined using the expressions for the
rotation mechanism, (5.5) and (5.7), the expressions for the effectiveness
factors, (8.1) and (8.2), and the actual expression for the local failure.

As can be seen, the theoretical strength describes reasonably well the in-
fluence on i from i— compared with the tests. Also the influence from the
-concrete strength appears to be satisfactorily described.

The theoretical load carrying capacity is compared to the test results. The
same expressions as were used to determine the theoretical curves in figure
8.4 are used here. The main value and the standard deviation on the ratio
test/theory for the 140 tests without stirrups, are found to be 1.001 and
0.118, respectively. Figure 8.5 shows the dimensionless theoretical strength
(theory) as a function of the dimensionless test strength (test).

The correspondence between test and theory is satisfactory, as can be seen
in thle‘ﬁgure. Only a few test results ((%)tm > 0.8) deviate significantly
from the theoretical strengths. These are tests with relatively low concrete
compression strength and large values for the dimensionless reaction stress.
However, the theoretical strengths are lower than the test strengths; there-
fore the theory is on the safe side in these cases. The obtained values of the

ratio test/theory are given in appendix A.

- In Jensen’s tests the anchorage length ¢, are 130, 190, or 260 mm. These
tests can be used to check if 7 is independent of £, which theoretically is the
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Figure 8.5: Theory versus test resulls (‘,Lc ) for the 140 tests without stirrups.

case when the end failure contribution is not included in the expressions.
'The analysis shows an influence, where the strength decreases slightly for
increasing anchorage length, but this is not significant in this case. Partic-
ularly for calculations in practice, it will be without importance.

In the case of real beams (not idealized test specimens like Jensen’s or
Rathkjen’s), there will be an end failure contribution to the load carrying
capacity. As mentioned in chapter 5, this contribution is normally insignifi-
cant, but for very small anchorage lengths the influence can be considerable. ‘
This problem is further discussed in the next section.

For the tests with surrounding reinforcement it turns out that v has to be
changed. The following function has been found to result in satisfactory
correspondence between test and theory

3.05
V¥
. Using this expression to determine the theoretical strength, the mean value
- and the standard deviation on the ratio test/theory for the 44 tests with
stirrups was found to be 1.007 and 0.092, respectively. In appendix A

v =

(8.3)
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Figure 8.6: Theory versus test results (7-) for the 44 tests with surrounding reinforcement.

the ratio test/theory for all the tests is given: Figure 8.6 is similar to
figure 8.5 and shows the dimensionless theoretical strength as a function of
the dimensionless test strength.

In cases other than anchorage, it is also found that the amount of reinforce-
ment increases the effectiveness factor v, so the increase found here was
expected. However, it would have been more natural if the two functions,
(8.2) and (8.3), were continuous. It is possible to develop such a function
but the results in usingy this will probably not be better than when using
(8.2) and (8.3). '

Because the theoretical expressions for rotation mechanism no. 1 are too
complicated for practical use, they are simplified. This can be done by
using a Taylor series for the total dimensionless internal work, C, as a
function of the relative horizontal distance from the concrete edge to the
center of the bar ¢ about £ = £. Doing this and using & = 1.2 and the
variable dimensionless parameter 1 equal to 2.5 or 4.4, the expressmn for
the internal work can be written as

C= ; [p(5(4.42 + 0.85¢) - 2)
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mechanism, (8.4) and (8.5).

+3p(1.15 + 0.15¢)

rs r r
+ £5(1.54¢ - 0.83)] for 7 < (z)z (84)
C=1 [p(5(6.39+0.40) ~2)
+4(1.05 4 0.15¢)
rs r r
+ £5(0.77¢ - 0.44)] for 7 > (ﬁ)e (8.5)
where £(1.98 — 0.45¢) — 0.10%
L _ pa . - U. —U.
( fc)e = 5(0.776 - 0.38) (5

The simplified expressions are in figures 8.7 and 8.8 compared to the theo-
retically correct expression. As can be seen, the correspondence is generally
satisfactory. The simplified expressions vary with regard to the parameters
in the same way as the theoretical ones do.

For the stirrup reinforcement ratio other than zero, the situation is identical
with what is illustrated in figures 8.7 and 8.8; the agreement between the
simplified and the correct rotation mechanism is reasonable.

Using (8.4) and (8.5) in the comparison with the test results, the mean value
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Figure 8.8: -‘;: as a function of § and ¢, respectively, for rotation mechanism no. 1, (5.5) and (5.7), and the
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was 1.011 and the standard deviation was 0.114 on the ratio test/’cheory
for the 140 tests without surrounding reinforcement. For the 44 tests with
surrounding reinforcement, the mean value was 1.017 and the standard de-
viation was 0.089. These values are almost identical to the values obtained
when using the theoretically correct expressions for C. The results from
the analyses are given in appendix A. The simplified expressions seem to
give results with satisfactory accuracy in the interval for the parameters
appearing in practice. Moreover, the expressions are not more complicated,
so that they can be used for calculations in practice.

8.2 Discussion

The effectiveness factors v and p are supposed to be equal in the local failure
and in the failure mechanism appearing perpendicular to the longitudinal
direction of the bar. This is not entirely correct, but the analysis and the
final (simplified) expressions would be even more complicated than is the
case now. It is also questionable if the results would, after all, be better; the
scatter on the ratio test/theory from the analysis carried out is satisfactory
and is probably difficult to reduce.

As mentioned in the previous section, the rib parameter F' (4.12) is not
determined entirely accurately, while D (4.6) is satisfactory. This is because
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data about the width of ribs in the direction of the bar axis, u, was not
reported in the references, only the distance from the middle of one rib to
-the middle of the next could be found. This problem is considered to be of
less importance because the values of the effectiveness factors are calibrated
from this. If F' nevertheless is determined using expression (4.12), it will
not cause an unsafe situation because the value of F will be less than that
used here, other things being equal.

The tests used in the preceeding section were carried out on specimens sim-
ulating end supports in beams. Other tests which illustrates the influence
from a compression stress, perpendicular to the concrete surfaces on the
anchorage strength, are also carried out (e.g. Untrauer & Henry [65.3]).
These tests show the same as those for end supports in beam; the strength
of the anchorage increases for increasing compression stress on the con-
crete surfaces, and the effectiveness factors decrease for increasing concrete
strength.

Anchorage tests on beams are carried out by Andreasen [84.3] and Petersen
& Panek [87.7]. In both test series two or three bars were anchored at a
support, starting at the end of the beam. In Petersen & Panek’s tests the
concrete section was wide, because the tests were to simulate the conditions
in a slab, and the anchorage length divided by the diameter of the bars
varied between 2.3 and 9.2. In Andreasen’s tests the width was within the
normal range for beams and the ratio 5 was 5 or 10. Comparing these
test results with the results from the tests included here it can be seen
that the strength, 7, is larger, especially for the specimen with a very short
anchorage length. The reason for this can be the end failure contribution,
which can be decisive in beams. However, an inclined crack from the load
to the support plate normally appear in beams, see figure 8.9, which will
change the end failure (see also section 5.4 where the problem is discussed).

In reality the anchorage length will not be £ but ¢ = £ + £ in this case.
For very short anchorage lengths, the relative increase will be larger than
for long anchorage lengths. The test by Petersen & Panek shows this very
clearly. :

As mentioned in chapter 5, it will be very difficult to take the end failure,
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Figure 8.9: Inclined crack in a beam.

with regard to the inclined crack, into consideration. The expressions for
the load carrying capacity will probably be very complicated.

All things considered, Andreasen’s [84.3] and Petersen & Panek’s [87.7] tests
show that the expressions expounded here without consideration of the end
failure, are safe in the case of monolithic beams.

The local failure is often determined by failure shape 2a, expression (4.17)
when kam steel is used in the case of anchorage at supports. In this case
the dimensionless shear stress ¢ fisa linear function of the dimensionless
internal work C. Inserting the simplified expressions for the rotation mech-
anism, (8.4) or (8.5), into the expressions for failure shape 2a will result
in a linear relationship between + and £. Comparing this with the ex-
pressions (3.12) and (3.13) set up by Nielsen [74.1], it can be seen that the
relations are fundamentally equal. The only difference is the factors which
are multiplied by the quantities T and '. In the case of the simplified
expressions for the rotation mechanism, the factors depend on the geomet-
rical properties, which is not the case in (3.12) and (3.13). However, the
order of magnitude of the factors in the two sets of formulas is the same.
In preliminary calculations Nielsen’s expression can therefore be used.



Chapter 9

Test Results for Anchorage of Two
and Three Layers at Supports

In the literature no tests of anchorage at supports with more than one layer
of reinforcement were found. A few tests, reported in Andreasen [88.1],
were therefore carried out to illustrate the problem. This pilot test series
can only be considered as preliminary.

The theoretical curves in chapter 6 show that the strength for one bar
decreases for increasing numbers of layers of reinforcement, 7, other things
being equal. The conditions depend of course, on the geometrical properties
as discussed in chapter 6. Andreasen’s [88.1] tests indicate the same; the
strength decreases for increasing n,. Hence it is essential to know what to
do in practice.

Because of the limited amount of tests the analysis carried out here can
only give a hint about the conditions with several layer of reinforcement.
More tests with varying material and geometrical data must be used in a

final analysis.

The theoretical expressions for the strength of an anchorage with more
than one layer of reinforcement are a little complicated. In chapter 6 it
is shown how the expressions can be simplified. However, the simplified
expressions are certainly still too complicated for practical use. Further
simplification, for instance, analogous to what was done in the case of one
layer of reinforcement in the previous chapter, must be carried out.

166
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Figure 9.1: Main principle in the test set up and geometry of the two types of specimens in Andreasen [88.1].

9.1 Test Results

In Andreasen [88.1] the total number of tests carried out is 8; 4 tésts with a
4 bar specimen and 4 tests with a 6 bar specimen, see figure 9.1. The other
test data and the results are given in appendix B.

Unfortunately it is not certain that the tests with 6 bars in 3 layers failed
in the anchorage. An analysis carried out in [88.1] indicates a kind of a
bending failure. However, in one of the tests a local weakness in one of the
corners resulted in failure for a low load. Nevertheless, the tests with the
type 2 specimens are included here to complete the study.

The rib parameters D and F are shown in figure 9.1. As in chapter 8,
the value for F' is determined by assuming the width of the ribs, u, to
be zero. This makes it possible to compare the theoretical strengths and
the obtained values for the effectiveness factors with what is found in the
previous chapter.

The tests with anchorage in two and thrée layers of reinforcement can be
compared to the tests with anchorage in one layer. In figure 9.2 some
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Figure 9.2: 7- as a function of 1= for some of Jensen’s [82.1] and [82.2] test results and the results from the
specimen in figure 9.1.

of Jensen’s [82.1] and [82.2] test results used in the previous chapter, see
figure 8.1, are shown together with the results from Andreasen [88.1].

The results can not be compared directly because the geometrical properties
are not equal in the two test programs. However, it can be used as a rough
guide. It can be seen that the test results correspond reasonably with the
theoretical results from chapter 6; the strength decreases with increasing
reinforcement layers, all other things being equal.

Figures 9.3 and 9.4 show the test results for 2 and 3 layers of reinforce-
ment, together with curves for the rotation and translation mechanisms
from chapter 6. Curves for various values of the effectiveness factor v are
shown.

In the tests the concrete compression strength f. was approximately 34
MPa. Using (8.2) valid for one layer of reinforcement, the order of magni-
‘tude for the effectiveness factor v is found to be 0.45. The figures show that
- the values for v in the case of two layers of reinforcement are larger and in
the case of three layers, the values are generally less than this value. It was
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Figure 9.5: Test results and simplified theoretical curves for 2 layers of reinforcement.

expected that the v value for the three layer specimens would be less than
this value, because they probably failed before the full anchorage load was
applied. :

Expression (8.2) was developed, using a mechanism similar to the simplified
rotation mechanism in chapter 6. This mechanism must therefore be used
when comparing the obtained values for v in the case of more than one
layer of reinforcement with the values for one layer. In figures 9.5 and 9.6
the test results and the simplified mechanisms are shown.

As can be seen, the values for v are lowered. In two of the tests with 2
layers of reinforcement, the value for v is very close to 0.45. In the other
two, the values are approximately 0.6 and 0.7, respectively. For the 3 layer
specimens only one test has v =~ 0.45, the others have lower values.

As seen, the obtained values for the effectiveness factor v are in the same
interval as with one layer of reinforcement. However, the scatter is large
‘and there are too few tests to carry out a complete analysis. More tests
have to be performed before a simple calculation method can be developed.
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Figure 9.6: Test results and simplified theoretical curves for 3 layers of reinforcement.

9.2 Discussion

The analysis carried out in the preceeding section is not thorough; there
are too few test results. However, the calculations illustrate the tendency
for anchorage in more than one layer and they show that the expounded
expressions in section 6.1 are probably applicable in this case. The test
results show that the strength per bar decreases with increasing numbers of
reinforcement layers. The geometrical properties of course have an influence
on the failure mechanism and the load carrying capacity.

More tests have to be carried out before a complete analysis can be per-
formed. Tests with 2, 3, and maybe 4 layers, and reinforcement placed not
only near the corners, should both be included. Also tests with one layer
should be included, because they can be used as reference and be compared
to the test results used in chapter 8. In the light of the tests, simplified
expressions as in the case of one layer of reinforcement can certainly be
developed.

- In reality the force in the bars in different layers are not necessarily equel as
assumed in the theoretical expression and in the tests carried out. The effect
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from varying forces in the different layers must of course also be examined.

In the case of more than one layer of reinforcement, the theoretical strength,
7, according to the rotation mechanism, does not increase much for increas-
ing reaction stress, r. This indicates that the strength according to this
mechanism can be determined simply by ignoring the reaction stress. The
decending part for larger r is described well by the simplified translation
mechanism. The relationship between the strength 7 and the reaction stress
r is then composed of a constant and a descending line, and the strength
would then be relatively simple to determine.



Chapter 10

Test Results for Lap Splices

In contradistinction to anchorage at supports, many test series have been
carried out on lap splices. Splices in reinforcement have interested designers
for as long as reinforced concrete has been used, because the reinforcement
is often not long enough. Many different splice methods have been proposed
but the most frequently used, is probably the method where the bars are
placed alongside one another over a specified length, the lap length. This
type of splice is called a lap splice.

The load carrying capacity of an anchorage is not reached when the first
crack appears. Normally the load can be increased beyond this point, see
e.g. Tepfers [73.1].

Tests show that close to failure, the shear stress along the anchorage length
can be taken to be a constant, see for instance Tepfers [73.1], Ferguson &
Briceno [69.1], Thompson et al. [79.4], and Olsen [88.2],[88.3]. This is also
mentioned in chapter 3, where different theories to determine the anchorage
strength, mainly for lap splices, are expounded.

The geometry of the beams treated in the following is illustrated in fig-
ure 10.1. : '

The distance between the two bars in a lap splice is assumed to be zero.
However tests with bars not placed alongside one another are also included
in the analysis. :

The rib ISaIa,meters D (4.6) and F' (4.12) are determined assuming a + u
to be the distance from mid rib to the middle of the next rib, and u to be

173
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Figure 10.1: Main geomeiry for tests on lap splices.

equal to zero. D is correct while F is a little too large. The error in doing
this is probably without practical significance, because the value of the
effectiveness factors take into account the way in which the rib parameters
are determined.

In some cases it is not possible, from the informaton in the references,
to obtain all the parafneters to -determine D and F. The actual national
standard specifications are then used. This is of course not correct, but
it yields values which are probably less than the values which appeared in
reality.

The test results from the literature are compared to the theory using the
load ratio test/theory as a measure of the correspondence between them.
Doing this the safe values are weighted more than the unsafe values, but as
mentioned in the introduction in chapter 8, the danger of this is not large.
Nevertheless the results from the analysis must be examined critically and
carefully.

In the literature many surveys of the results of lap splice tests are given.
Here some general observations from Tepfers [73.1] will be presented. It is
observed that the concrete acts more plastic for small concrete strengths
than for large ones. The load carrying capacity increases for increasing con-
crete covers. The increase is largest for the vertical cover. The dimensions
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of the ribs on the reinforcing bars are observed to influence the strength;
the rougher the stronger. The horizontal distance between the two barsin a
lap splice does not influence the load carrying capacity much; the strength
is more sensitive to which type of failure pattern appears. Surrounding re-
inforcement, like stirrups and spirals, increases the strength and makes the
failure more plastic. With surrounding reinforcement the specimen failed
gradually in contrast to the specimen without surrounding reinforcement
which failed almost without warning.

Surrounding reinforcement can be taken into account in at least two ways;
assuming the reinforcement to obtain the same strain as the concrete or
assuming the surrounding reinforcement to yield. In the literature both ef-
fects are observed in tests. However, the problem with test observations is
that they are influenced strongly by the measurement technique; the ques-
tion is if the measurement instruments are located in the correct points and
the measurement scans are taken at the moment of failure. Here it is as-
sumed that the surrounding reinforcement yields in the sections intersected
by yield lines in the concrete.

10.1 Test Results

As mentioned above, a large number of tests on lap splices is reported
in the literature and many of the tests can be used in an analysis. The
most extensive test series is probably the one by Tepfers [73.1] and many
~ of his tests are included in the calculations. In addition to this, tests from
Bergholdt [74.2], Chinn et al. [55.1], Orr [76.1], Reynolds & Beeby [82.3],
Zekany et al. [81.1], Ferguson & Breen [65.1], Chamberlin [58.1], Ferguson
& Krishnaswamy [71.1], Ferguson & Briceno [69.1], and Thompson et al.
[79.4] are used. All test data are given in appendix C.

In the expressions for the load carrying capacity of lap splices in chapter 7,
the effectiveness factor for tension in the end failure surface is denoted by p,.
Then it is possible to distinquish between the tensile stress in the yield lines
along the lap length and the end failure, when comparing the theoretical
expressions with test results. The failure along the lap length develops with
increasing load, while the end contribution probably only acts at the last
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moment. Hence the strains along the lap length are larger than in the end
failure. This means the effectiveness factor will be less along the lap than
in the end. Comparing with test results, shows that using

S = 0.002 (10.1)

pe _
= =0.10 (10.2)

yields a satisfactory agreement. The effectiveness factor for tension in the
local failure is taken to be equal to p in the failure along the lap length.

It has also been attempted to use p = p, and v as a function of § and f,
where £ is the lap length, d is the diameter of the bars, and f, is the uniaxial
concrete compression strength. The results from this analysis and the one
mentioned above are almost identical. Nevertheless (10.1) and (10.2) are
used because the final expressions are more simple, than when using p = p,

and v = f(gafc)

Lap splices in normal and wide sections are included in the analysis. In
addition to this tests on sections with spacing between the spliced bars,
splices with varying moment, staggered splices, and sections with two layers
of splices are also included. It turns out that the expressions can also be
used in these cases. These special tests are discussed in more detail after
the results of the analysis on the “normal” tests are presented.

Various analyses are carried out. The first analysis presented, is the most
complicated, because all the mechanisms from chapter 7 are used. In every
test the best complete failure mechanism is determined by combining the
various failure mechanisms for lap splices, see for instance figure 7.9. The
theoreétical load carrying capacity is then compared to the load obtained
in the tests. Because of the complexity of the expressions, the calculations
must be carried out numerically. The result of the analysis for every test
is given in appendix C and the main results are presented in table 10.1 in
column A. The other analysis shown in the table will be presented below.

The effectiveness factors are determined using (10.1), (10.2), and
2.9
Ve

V=

(103)
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Analysis A B C D E F
Mean value 1.041 | 1.036 | 1.004 | 1.017 | 0.993 | 1.020
Standard deviation 0.215 | 0.209 | 0.198 | 0.184 | 0.200 | 0.198
Coefficient of variation j 0.206 | 0.202 | 0.197 | 0.181 | 0.201 | 0.194
Number of tests 334 | 334 | 334 | 310 | 357 | 333

A : All mechanisms; correct determination of the variable parameters.
B : All mechanisms; simple determination of the variable parameters.
C : Plate mechanism.

D : Plate mechanism; limits for the geometrical parameters introduced.
E : Plate mechanism; tests with spirals included.

F : Simplified plate mechanism and local failure 2; test with spirals
included, limits for the geometrical parameters introduced.

Table 10.1: Main results (lest/theory) from the various analyses carried out on the lap splice tests in ap-
pendiz C. ’

As can be seen, the coefficient of variation for the ratio test/theory is ap-
proﬁmately 0.2. This is a rather large value compared to what is normally
obtained!. However in the case of the punching shear strength of slabs,
treated in Hess et al [78.3], the same is found. There the scatter in the indi-
vidual test series was much smaller, and a considerable part of the scatter
is therefore appraised to stem from the various ways used to measure the
compressive strength of the concrete. It is also fhe case here; in the indi-
vidual series the scatter is in the normal range. The scatter in all the tests
is probably caused by the different ways used to measure the compressive
strength and by the fact that it has not been possible to find the correct
values of the rib parameters D and F in all tests.

Because the theoretically correct expressions for the failure mechanisms
in chapter 7 are complicated, they have been attempted to be simplified.
The wedge-plate mechanism in section 7.1.2 is complicated because the two
equations, (7.6) and (7.7), can not in general be solved analytically. In the
numerical calculations it is observed that the angle 8 is normally close to

INormally the coefficient of variation is between 0.1 and 0.15 for tests on concrete structures
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¢, the angle of friction for the concrete. Assuming 8 = ¢ and using e = 2,
(10.1), and (10.2), expression (7.6) can be written

— 55
sina = 5210 = 5; (10.4)

39.6+ 21¢
where o € [p; 7/2].

The two corner mechanisms, the side-wedge and the bottom wedge mech-
anisms, treated in section 7.1.3, are similar to the wedge-plate mechanism.
(10.4) can therefore also be used in this mechanism, if § is changed to &4
in the case of the side-wedge mechanism.

For the two rotation mechanisms, rotation no. 1 and rotation no. 2 in
section 7.1.3, the variable dimensionless parameter 7 is taken to be con-
stant. For rotation no. 1, n = 0.90, and for rotation no.. 2, 5 = 0.45,
are used. These values are determined on the basis of the tests where the
rotation mechanisms were decisive. Using a constant value of 7 is similar
to the simplifications in the case of anchorage at a support with one layer
of reinforcement, chapter 8.

The translation mechanism, which is the least corner mechanism, is simpli-
fied by assuming that only the end contribution is active. Doing this, the
variable angle 6 can be found from

tanf = ¢ | (10.5)

Using these simplifications, the results shown in table 10.1 column B are
obtained. As is seen, the result is almost identical to the previous result
using the theoretically correct expressions. The deviation from the theoret-
ically.correct analysis of the ratio test/theory is in general less than 0.01.
The theoretical value is larger than that obtained in the theoretically cor-
rect analysis because the values used for the parameters are not the optimal
ones.

It is noticed that the expression for the plate mechanism is not simplified;
it is simple enough without further simplifications.

Because the plate mechanism is simple and because it is decisive in most of
the tests, this mechanism has been attempted to be used alone. The result
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of this analysis is given in table 10.1, column C. As can be seen, the result
is even better than the result from the analysis using all the mechanisms,
columns A and B. However, the theoretical strength in the tests with

S
£5<08 (10.6)

deviates somewhat from the previous analysis. Therefore the following lim-
its are introduced

gg > 0.8 (10.7)
2 > 0.8 (10.8)
¢

- > 1. .
2270 (10.9)

(10.7) is a result of (10.6) and is a measure for the horizontal cover for the
bars near the corners. § is a measure for the vertical cover and (10.8) is
included for “symmetry” reasons around the bisector in the corners. (10.9)
is introduced as a limit for calculations in practice.

Excluding the tests not fulfilled (10.7) — (10.9), and still using the plate
mechanism, the result shown in column D is obtained. The standard devi-

ation and the coefficient of variation are seen to be reduced, compared to
C.

In the analysis shown above, tests without surrounding reinforcement and
tests with normal stirrups are included. In column E the result of an anal-
ysis using the plate mechanism, including the tests with spirals around the
splices, is shown. No limits on the geometrical parameters are used. The
mean value is a little less than that obtained in C, because the theoretical
strength in the tests with spirals done by Tepfers [73.1], is too large com-
pared to the test results. In the tests with spirals from the other references
the results are satisfactory. The reason why Tepfers’s tests do not agree,
is not found, but in general spirals yield special conditions, not appearing
when using normal stirrups, see figure 10.2.

~ If the spiral is located excentrically compared to the lap splice (f # 0),
the force in the reinforcement must be multiplied by cos 3;, see the figure
to the left. In the longitudinal direction of the main reinforcement there
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Figure 10.2: Spirals around lap splices.

can also be an angle between the vertical (direction of the displacement of
the concrete cover) and the longitudinal direction of the spirals; therefore
a reduction of cos 8y must be included, see figure 10.2 to the right.

As is seen, the contribution from the spirals is very sensitive to the position
of the spirals in relation to the lap splices. The total yield force in spirals
must therefore only be included if it is quite sure that the spiral are located
concentrically (f = 0) and there is no angle between vertical and the spirals
in the longitudinal direction of the main bars (3 = 0). This must of course
also be the case after the casting of the structure.

The last column F in-table 10.1 represents the result of the final analysis.
Because local failure 2 in chapter 4 is divided into two expressions, it is
not always easy to decide which of the expressions for failure shape 1 and
2 should be used in an actual case. Hence the two expressions, (4.17) and
(4.18), for local failure 2 are rewritten into one expression, given by

T Fv C
1+ \i 1+ 2400E ] (10.10)

f. 40
For % less than 1.2, the difference between the correct expressions and this
expression is less than approximately 3%. For FC; < 2.0, the difference is
less than 14%, expression (10.10) being less than the correct expression. In
figure 10.3, Fl%fj is shown as a function of % for failure shape 1 and the

simplified failure shape 2 for various values of %.

- As can be seen in the figure, failure shape 2 will always be decisive for —g—
less than approximately 8. For %, larger than 8, both failure shape 1 and
2 can be decisive. The point of distinction is not exactly % = 8, but the
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Figure 10.3: 777~ as a function of & for failure shape 1, (4.9) and the simplified failure shape 2, (10:19),

for various values of %.

difference between failure shape 1 and 2 is small for % approximately equal
to 8 for certain values of -}% 2,

The expression for the plate mechanism is simple compared to the other
mechanisms. However, it can be simplified to some extent. Because the
effectiveness factor for tension p is assumed to be small, (10.1), the con-
tribution from p in the expression for the plate mechanism (7.1) can, with
sufficient accuracy be assumed to be zero. The factor eF, in the end con-
tribution is approximately equal to 1 when using (10.2) and (7.3). Conse-
quently the expression for the plate mechanism can be written as

= 27r1nsp [v%:; + nssi,b] (10:11)
where n,, is the number of stirrups or spiral sections crossed by the hori-

zontal yield line, see for instance figure 7.11.

In column F, table 10.1, the result of the analysis using (10.10) and (10.11)
is shown. The tests with spirals are included and the limits (10.7) - (10.9)

2The value of 5 where failure shape 1 and the correct failure shape 2 only have one common point is
approximately 7.1. : : : : . L .
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Figure 10.4: Theoretical load carrying capacily as a function of test results for the 338 tests included in the
analysis in table 10. 1, column F.

are used. The result is satisfactory compared to the other analyses. In
figure 10.4 the theoretical load carrying capacity is shown as a function of
the test results for the 333 tests included in the analysis in column F.

In general the scatter is large in the analysis presented above, compared to
what is normally obtained. However, in many other problems the tensile
strength does not influence as much as is the case in lap splices. In addition
to this, many test series are included which often influence the scatter,
because the concrete strength is not measured by the same procedure each
time. Furthermore, the used values for the rib parameters D and F are
certainly not the correct ones in all tests. In some cases it was not possible
to obtain the actuel values appearing in the tests, wherefore the actual
national standard specifications for deformed reinforcement were used in
these cases.

In figures 10.5 — 10.9 some of the test results are shown as functions of
various parameters. A theoretical curve, based on the simplified expres-
- sions for the plate mechanism (10.11), is also illustrated. Local failure 2
is determined using (10.10). The theoretical curve is determined using the
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Figure 10.5: 7 as a function of § for Tepfers’s test series 657 no. 1-4 (vight) and 37-40 (left).

values for the parameters shown in the figures. Figures 10.5 and 10.6 show

- the dlmensmnless strength as a function of the dimensionless anchorage

length 5. £ I is shown as a functlon of the covers § and ¢ in figure 10.7, and
asa functlon of the uniaxial compressive strength for the concrete f, in fig-
ure 10.8. Figure 10.9 shows 7. as a function of 1), the degree of surrounding
reinforcement.

As can be seen from the figures, the correspondence between the tests and
the theoretical load carrying capacity is in general satisfactory.

It is observed that the curve in figure 10.8 is described very accurately by

the simple equation
T 0.6

fo -V
The difference between the values of £ from (10.12) and the correct expres-
sion is less than 0.002 for f, € [5; 100]M Pa. In fact if the correct expression
for failure shape 2a were used for the local failure and the plate mecha;nism

(10.12)

for the failure in the surroundings it can be shown that the strength £
equal to 7l- where k; is a constant.

(10.12) is similar to expression (3.18) obtained from the Danish Code of
Practice, DS 411. The constant value in the numerator is approximately
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0.75 instead of 0.6 in (10.12). This means that the load obtained from DS
411 is unsafe in this case. However, the tests in figure 10.8 are without
surrounding reinforcement, which is required according to the code. Never-
theless, the figure indicates that the method, in DS 411 can produce unsafe
values for the load in some cases.

Tests with special lap splice arrangements are also reported in the littera-
ture, for instance tests with spacing between the bars in a lap splice, splices
in varying moment regions, staggered splices, splices in two layers, and
splices subjected to impact loadings. Some of these tests are included in
the previous analyses.

In Champerlin [58.1], the spacing between the bars in a lap splice varies.
In the tests characterized by a number and an a, the distance is 0 mm,
and those by b and c the distance is approximately 12.7 mm and 25.4 mm,
respectively. These tests are included in the analysis and in appendix C the
results can be seen. It is observed that the difference in the load carrying
capacity is almost independent of the spacing. The same is concluded by
Tepfers {73.1]. .

The tests by Ferguson & Krishnaswamy [71.1], Ferguson & Briceno [69.1],
and Zekany et al. [81.1] in Appendix C are on lap splices placed in varying
moment regions. The stress in the bars at the maximum moment over the
lap length is used in the calculations. As can be seen in appendix C, the
load obtained in the tests is generally a little larger than the theoretical
loads.

Some-of the tests by Ferguson & Briceno [69.1] and Thompson et al. [79.4]
had staggering splices, or not all bars in the section were spliced, see fig-
ure 10.10.

It turns out that the developed expressions can also be used in this case.
The width is determined with respect to how many bars are spliced in the
section, see bess in the figure. The number of spliced bars s, is equal
. to the actual number of spliced bars. Surrounding reinforcement is only
included if it “goes around” the spliced bars, e.g. in the example to the left
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Figur:a 10.10: Section with not all bars spliced.

in figure 10.10 ng; is equal to 1. This rule generally results in conservative
values for the theoretical load carrying capacity in the tests used.

The width and the number of bars in the test specimens used by Thompson
et al. [79.4] were great compared to the other tests. The ratio between the
width and the diameter % was between 22 and 36, and the number of splices
was 4, 5, or 6. The strain in all the bars was measured along the lap length.
These measurements show that the strain distribution across the section is
approximately constant and along the lap the distribution is approximately
linear. The force in the corner splices is almost equal to the force in the
internal bars; the difference being less than 15%. In the calculations in
appendix C, the mean value for all the splices in the section is used. The
strain in the stirrups was also measured and the results show that at failure
the yield stress was reached at the corner splices. In some of the tests
the corner bars were not spliced; those tests are discussed above. In the
- reference it is concluded that in wide beams or in slabs the corner bars
do not have much influence. The expressions developed here are a little
conservative in the case of wide sections.
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Tepfers [73.1] carried out tests with splices in more than one layer. One
of them, with 8 splices in two layers (732:167), failed in the anchorage.
Assuming the 8 splices to carry the same load and using the simple expres-
sions set up in this section, the result is reasonable, see appendix C. The
geometrical parameters are determined, assuming there were only 4 splices
in one layer.

Tests with leca concrete are also included by Tepfers [73.1], tests 732:167-
172. The result using the simple expressions is satisfactory, see appendix C.

Lap splice tests with high strength concrete have been carried out by Olsen
[88.2] and [88.3]. The uniaxial concrete compression strength, f,, was in the
range 20 to 100 MPa. The preliminary results indicate that the method ex-
pounded here corresponds satisfatory with the test results for concrete com-
pression strengths up to approximately 60 MPa. For the concrete strength
Jc in the range 75-100 MPa it seems like the expressions developed here
is unsafe (10-15%). There is refered to Olsen [88.2] and [88.3] for a more
detailed description.

The method set up here to determine the strength of lap splices is not used
in tests subjected to impact loading. However, Tepfers [73.1] and Orangun
et al. [75.1], [77.3] mention that the expressions for the statically loaded
splices can also be used in the case of impact load, perhaps with small
_changes. ’

10.2 Discussion

The deviation in the ratio test/theory is large in the case treated in the
preceding section. As mentioned, this can be due to the way the rib param-
eters D and F' are determined in the cases where information could not be
found in the references. In addition to this many test series are included
in the analysis. This normally increases the scatter because the concrete
strength is probably measured, using different methods. Other than this,
special tests are included, for instance many tests with varying moment
- over the anchorage length. However, seen in the light of the complexity of
the problem, the results are satisfactory.
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The limits for the geometrical parameters introduced in (10.7) — (10.9) are
without practical significance. Factors other than the load carrying capac-
ity, e.g. durability, will result in larger cover on the main reinforcement
than predicted by (10.7) and (10.8). (10.9) should not necessarily be fol-
lowed but special note must be taken of very small values of %, because the
contribution including % goes to infinity for 5 — 0. The strength for 5 less
than 7, can, for instance, be assumed to be equal to the value for % =

In concrete structures, when using the theory of plasticity, the value of the
effectiveness factor for compression v often increases when the amount of
transverse reinforcement increases®. However, this is not the case here; the
effectiveness factor is the same with and without surrounding reinforcement.
This can be caused by dowel action in the surrounding reinforcement which
therefore reduces the strength. In the case of spirals, the influence is very
sensitive to the location in relation to the bars in the lap splice, as illustrated
in figure 10.2, which may be the case in some of the tests included in the
analysis. Another possibility is that the influence from the surrounding
reinforcement in the expressions for the various failure mechanisms is too
great. This could be the reason here because the expressions are developed
from upper bound calculations. R ‘

In lap splices vertical cracks often appear at the end of the anchorage length
for a lower load than the failure load. Despite these cracks it can be ob-
served on photos of failed specimen that the end failure can develop, see for
instance Tepfers [73.1]. Assuming the plate mechanism to be decisive the
concrete cover will move vertical at failure, which means that the displace-
ment is parallel to the cracks. The cover along the anchorage length will
then by shear in the tensile cracks bring the end failure in action.

Tests with impact loading are not included in the analysis. As mentioned
in the previous section, Tepfers [73.1] and Orangun et al. [75.1] conclude
that the expressions for the static case can also be used in this case. How-
ever, this subject needs further investigation before applying the theory to
practice.

3Distributed reinforcement going through the yield line.
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Figure 10.11: Horizonial and vertical lap splices.
As mentioned in connection with figure 10.8, the strength 7, can be de-
scribed as 7}- in special cases, where k; is a constant, see (10.12). This
is similar to the way the strength can be presented in the Danish Code of
Practice for Concrete Structures, DS 411. However, in DS 411, k; is in-
dependent of the geometrical properties appearing in the actual case. The
expressions in DS 411 can therefore in some situations be unsafe.

In the tests included in the analyses, the spliced bars are mainly located
adjacent to one another in a horizontal plane, as illustrated in figure 10.11.A.

This is the normal way of placing lap splices. However, the location illus-
trated in figure 10.11.B is also possible. The expressions developed do not
cover this case djrect'ly,v but with some changes they can be used. Using the
simplified expression for the plate mechanism set up in the previous section,
will certainly yield safe values for the load carrying capacity in this case.
This is related to the discussion in section 7.1.3, especially figure 7.6. The
simple expression can therefore also be used in this and related cases as a
safe estimation of the load carrying capacity.



Chapter 11

Design Recommendations

The expressions and methods developed previously and applicable to calcu-
lations in practice, are summarized here. In some cases more simplifications
are introduced, compared to what is given in the preceding chapters.

The expressions have been compared to test results. The range for the
included parameters in the tests is reported in connection with the expres-
sions. If the case in question deviate from the area covered by tests, the
expressions must be used with caution. However, if this is the case, the best
is to use the theoretically correct expressions and include more mechanisms.

In some cases it is not possible to use the expressions for the mechanisms
treated previously directly, or it is not certain which of the mechanisms
should be used. This is demonstrated in a few special examples at the end
of this chapter.

11.1 Local failure

The local failure is the failure immediately around the deformed reinforcing
bar. The local failure is treated only assuming that the surroundings can
deliever a certain resistance. This failure is dealt with in detail in chapter 4.

It appears that two, in principle, different types of failure may occur, named
failure shape 1 and failure shape 2. Failure shape 1 is given by one expression
while failure shape 2 is composed of two expressions. The expressions for
failure shape 2 have been simplified to only one expression here.

The decisive failure shape is determined by the surroundings and the ge-
ometry of the deformations on the reinforcement. The two dimensionless
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Figure 11.1: Geometry of a deformed reinforcing bar.

rib parameters D and F' are of importance here. They can be given by

(d+ ha)ha
2da’
1  hy

F=2+— (11.2)

where the symbols are explained in figure 11.1.

D= (11.1)

The expressions for the local failure can be written

T &[3(1+£)+5,/1+2%]
}-—mmof {%[H\/ﬁ@] b (11.3)

where the upper expression in (11.3) is valid for failure shape 1 and the
lower is valid for failure shape 2. 7 is the average shear stress along the
reinforcing bar, 7 = %3, where T is the tensile force in a single bar and
£ the anchorage length, f; is the uniaxial cylindrical compression strength
for the concrete, v is the effectiveness factor, and C is the dimensionless

internal work from the surroundings, C' = %‘Zif? where W; is the internal
work from the surroundings.

As written in (11.3) the expression giving the smaller value of 7 is used in
the case in question. The expressions are illustrated in figure 11.2.

For £ less than 8, the expression for failure shape 2, the lower in (11.3),
can be used with sufficient accuracy for all values of C. For % larger than
8, the smaller of the expression in (11.3) must be used.

Expressions for the dimensionless internal work from the surroundings, C,
for anchorage at supports with one layer of reinforcement and for lap splices,
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Figure 11.2: The load carrying capacity as a function of the work from the surroundings.

are given in the following two sections. The value of C is determined by
the given expressions and this value is inserted into the expressions for the

local failure, (11.3).

11.2 Anchorage at Supports

In the preceding section, the simple expressions expounded in chapter 8
for anchorage with one layer of reinforcement at supports are given. The
expressions are developed on the basis of theoretical considerations, see
chapter 5, and test results, see chapter 8.

The expressions are based on the mechanism named rotation mechanism
no. 1in chapter 5. The expressions for the dimensionless internal work are
given by
' C=1 [0.1v(5(4.42+0.85¢) — 2)
+4(1.15 + 0.15¢) : ; ~ (11.4)
+E5(1.54€ - 0.83)] for < (i>e ’
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Figure 11.3: Geomelrical parameters for anchorage at supporté.
C=1 [0.1v (5(6.39 +0.40¢) - 2)
+15(1.05 + 0.15¢) (11.5)
+£5(0.77¢ - 0.44)] for L3> (i)g
where 0.1v% (1.98 — 0.45, 0.10 :
fel o 5(0.77€ — 0.38)
and

¢ 11.7
%‘}-f with stirrups (11.7)

: 265 o ;
= { /A without stirrups
fe is inserted into (11.7) in MPa. The geometrical parameters are illustrated

in figure 11.3.

The expressions have been compared to 140 tests without stirrups and 44
tests with stirrups. The mean and standard deviations from these analyses
were 1.011 4 0.114 and 1.017 = 0.085, respectively.

The tests used to confirm the expressions, covered the following range of
the parameters:

£ € [1.92;2.70] , €& € [2.64;5.00] , &€ € [1.37;2.59]

¢ € [10.0;15.6) , £ € [8.1;16.3] , ¥ € [0;0.809]

fo € [9.9;45.0)MPa , r € [0.9;15.0]MPa , 7 € [4.7;18.6]MPa
% € [0.040;0.720] , £ € [0.255;0.895] , D € [0.062;0.069]
F € [0.57;0.59] ’
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One of the two expressions, (11.4) or (11.5), resulting in the lower value for
C, in an actual case should be used. The best value for C then is inserted
into the expressions for the local failure, expressions (11.3), and the lower

value for % can be determined.

Expressions (11.4) and (11.5) are Taylor Series of a more complicated ex-
pression. In some cases the simple expressions can not be used. This situ-
ation appears when one of the expressions after v and }': inside the normal
brackets in (11.4) and (11.5), becomes negative. The theoretically correct
expression for rotation mechanism no. 1 from chapter 5 must then be used.

In the case of anchorage at supports with one layer of reinforcement, the
rotation mechanism is decisive in many cases. However, if the geometry is
special or deviates much from the range covered by tests, another mecha-
nism may be decisive. In this case the mechanisms treated in chapter 5 can
be used.

11.3 Lap Splices

The expression for lap splices shown here is founded in the theoretical ex-
pressions in chapter 7. The theoretical expressions are compared to test
results in chapter 10 and on the basis of this a simple method to determine
the strength of lap splices is found.

The expression is based on the mechanism named plate mechanism in chap-
ter 7. The expression for the dimensionless internal work can be given by

1 bs
= 2ﬂ_nsp [V:i‘z + nss'w] (11'8)
where
2.9
vVeE— , in MPa 11.9

v must not be determined to be larger than 1.

The geometrical parameters b,s,d, and £ are shown in figure 11.4. ng, is the
number of lap splices in the section, n, is the number of stirrups and spirals
intersected by the straight line through the lapped bars, see figure 11.5, and



196 CHAPTER 11. DESIGN RECOMMENDATIONS

| —
| |
| |
| I nsp lap
'[_ SI spplicés
| Es td

L ! | Yt f—t——

’ 7 ¥ b )

Figure 11.4: Geometrical parameters for lap splices.
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Figure 11.5: Number of contributions from the surrounding reinforcement.

¥ is the reinforcement degree of the surrounding reinforcement. v is defined
as Y = i%%,:&, where d, is the diameter of the surrounding reinforcement,
fys is the yield strength of the surrounding reinforcement, and n, is the
number of stirrups or spirals over the anchorage length.

(11.8) has been compared to test results. In the final analysis 333 tests were
included, both with and without surrounding reinforcement. The mean and
standard deviation from this analysis were 1.020 and 0.198, respectively.

The tests used, cover the following range of the parameters:
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£ € [0.81;6.50] , &5 € [1.09;8.42] , £ € [0.34;7.76]

L € [037;17.67) , ¢ € [4.8;44.0] , & € [8.3;82.5]

¥ € [0.0;1.978] , f. € [6.00;94.0)MPa , 7 € [1.0;8.5|MPa
F € [0.0380533] , D € [0.030;0.089] , F € [0.54;0.61]
Nsp € [1;6] y Tss € [0v12]

If the given range for the parameters is exceeded, the mechanisms from
chapter 7 must be used. The simple determination of the variable param-
eters in the various mechanisms given in chapter 10 can be used. The
calculations are easily carried out and the best complete failure mechanism
for the section is determined.

In the comparison of (11.8) with tests, some special tests have been included,
for instance tests with spacing between the bars in a lap splice, splices in
varying moment regions, staggered splices, and splices in two layers. These
tests and the results from the calculations are described in more detail in
chapter 10, to which there is referred.

In the case of sections where not all bars are spliced (in the same plane),
(11.8) can also be used. The width is determined with respect to the num-
ber of spliced bars, as half the distance to bars not spliced is included in
the width. n,, is equal to the actual number of spliced bars and ng, is
equal to the number of surrounding reinforcing bars placed adjacent and
perpendicular to the line through the centres of the lapped bars. A more
detailed description is given in connection with figure 10.10.

If the surrounding reinforcement consists of spirals, the total yield force
can not be expected to contribute to the internal work. If the spiral is
not located concentrically compared to the lap splice, a reduction must
be introduced, because the spiral is not perpendicular to the line through
the centres of the lapped bars. In addition to this, a reduction must be
made in the longitudinal direction. This is why the factor &, less than or
equal to one, is included in the expression to the right in figure 11.5. These ‘
reductions are explained in more detail in connection with figure 10.2.
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Figure 11.6: One lap splice in a wide section.

The load carrying capacity is obtained by inserting the determined value of
the dimensionless internal work C into the expressions for the local failure,
(11.3). The smaller value obtained from these expressions is used.

11.4 Special Examples

A few special examples where the previous expressions can not be used
directly, are illustrated here. The principles for the way in which the cal-
culations can be carried out, are shown.

The first example is shown in figure 11.6.

This is a lap splice placed in a wide section compared to the diameter of
the lapped bars. Because ¢ £ is large, the simple expression based on the
plate mechanism in section 11.3 can not be used. In this case the wedge-
plate mechanism will probably be decisive, expression (7.4). The number
of lap splices 7, is here equal to 1 and the number of end contributions e is
equal to 2. Furthermore, it can be assumed that 3 is equal to ¢, the angle
of friction for the concrete, wherefore o can be determined from (7.6) or
(10.4). The load carrying capacity is found by inserting the obtained value
for C into (11.3).

Consider figure 11.7, showing two reinforcing bars anchored by means of a
U-stirrup.
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Figure 11.7: Anchorage by means of a U-stirrup.

Figure 11.8: Anchorage of bars located close to the connection between two sections.

The problem is finding the anchorage length £ shown in the figure. Because
there is only an active force in the main bars, it is not a lap splice problem.
The expressions for anchorage at supports must be used. The bars are only
close to one concrete edge, wherefore the expressions for the wedge mech-
anism in section 5.1.3 are used. Denoting the distance from the concrete
edge to the centre of the reinforcement by s, see section B-B in figure 11.7,
expression (5.33) or (5.34) for £ = 0 can, for instance, be used to determine
C. The load carrying capacity can be found from (11.3).

In figure 11.8 two bars are located close to the intersection of two sections.

The expressions given in section 11.2 for anchorage at supports, based on
the rotation mechanism, will probably not be decisive in this case. Other
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Figure 11.9: Skew yield line from bar to concrete edge.

mechanisms, as indicated in the figure, have to be considered. The mecha-
nism shown in figure 11.8.1 can not be treated directly by the expressions
set up in chapter 5, while the expression for the wedge mechanism can be
used for II. The mechanism IIT in the figure is not covered by the expres-
sions but because it is a tensile yield line, it is not difficult to carry out the
calculations for this mechanism. Mechanism I is more complicated and is
dealt with in more detail here, for showing how cases not covered by the
expressions developed in this report, can be treated.

The yield line between the two bars is a tensile yield line and causes no
problems, while the two skew yield lines from the bars to the concrete edges
must be treated separately. In figure 11.9 a “failure mechanism” illustrating
the skew yield line is shown.

The yield line pattern does not contribute a correct failure mechanism, but
it is useful for the calculations. The concrete cover below the yield line
is assumed to move with the velocity v, inclined the fixed angle 6 to the
line perpendicular to the edge, see the figure. For 6 equal to zero, the
mechanism is in principle identical to the wedge mechanism. The internal
work in the yield line W} can be written as
W)  X—usina
tvslf,  cos(a+ )

(11.10)

Differentiating this expression with respect to o and equalizing the coeffi-
cient of differential to zero, yields

b 1 2
sina = Xcos20 —siné,y|1 - (X cosB) (11.11)
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where sin o > sin ¢ must be fulfilled.

The optimal value for the internal work can then be obtained to

i VAT pZcos?o —_Acosp
Wl psinf + /A2 — pfcos?d for cosf > g
9l 2
2vstfe v WEeah(k-T) s

for cosf < —2S=L

A/ A% +p?—2ursin g
(11.12)

For the case in figure 11.8.1 the angle € is equal to §. For £ equal to 0.1,
means that the second expression in {11.12) must be used, correspondmg to
a = ¢. The dimensionless internal work C for the mechanism is then found
by adding the contribution from (11.12) to the contribution from half the
tensile yield line. It is observed that the velocity v is equal to 2 and that
C is equal to Te}_’ where W; is the total internal work in the mechanism
corresponding to one bar. The smallest value for C in the three mechanisms
in figure 11.8 is inserted into the expressions for the local failure.

As can be seen from the previous, it is in principle not difficult to carry
out calculations not directly covered by the simple cases dealt with in sec-
tions 11.2 and 11.3. Of course, if the case in question is not covered by one
of the cases treated in the preceding chapters, theoretical calculations must
be carried out. However, these calculations are normally not complicated.
The majority of cases appearing in practice will be covered by the expres-
sions expounded here; therefore it is not often that theoretical calculations
must be carried out.
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Summarized Comments

Anchorage of deformed reinforcing bars are treated previously. The the-
ory of plasticity is used as a basis for the theoretical calculations carried
out. -Since concrete is not a rigid plastic material, modification factors are
introduced. These factors are known as effectiveness factors and they are
applied to the uniaxial concrete compression and tensile strengths. Only
in a few cases is it possible to determine the value of the effectiveness fac-
tors analytically. Usually they must be found by comparing the developed
theory with test results. Hence they are empirical factors.

The results obtained for concrete structures, not including the tensile
strength of the concrete in the theoretical expressions, are often satisfac-
tory. However, in the case of anchorage, tensile stresses in the concrete
must be taken into account and this produces a problem. In plastic cal-
culations only the load carrying capacity is determined accurately, but the
value of the two effectiveness factors must be determined for every test
when comparing the theory with test results. This means that there are
two unknown parameters but only one equation. Is a lot of test results
available, a two-dimensional regression analysis can be carried out, but this
is not done here. Instead the value of the effectiveness factor for tension
is attempted to be determined by some simple tests. It is found that the
ratio between the effectiveness factor for tension and compression can be
assumed to be constant with satisfactory accuracy.

When using the effectiveness factor for concrete in compression, it is often
explained by the falling branch in the stress-strain relationship in uniax-
ial compression. The area under the modified stress-strain curve and the
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real curve is said to be equal. This calculation has meaning only if the
relationship between the stress and the strain is unambiguous, i.e. the
relationship is independent of, for instance, the dimensions of the test spec-
imen. However, tests have shown that this is not the case; the falling branch
changes when the dimensions are changed, while the rising parts are almost
identical. The tests show that if the relationship instead is described as a
stress-displacement curve, the falling branch is independent of the dimen-
sions. These observations are identical to what is observed in the case of
uniaxial tension in concrete. In this case it is explained by the localisation
of the cracks in the concrete. When the cracks are not distributed over the
length of the specimen, it is not correct to determine the strain as the total
displacement divided by the length of the specimen. It seems therefore as
concrete acts equally in both tension and compression; the deformations
are concentrated mé.inly in bands. Even though it is not correct, the effec-
tiveness factors are used. In the theory of plasticity the localisation of the
cracks is included indirectly when using yield lines. The advantage in us-
ing the plasticity theory is that relatively simple solutions can be obtained.
However, the limitations of the solutions must be kept in mind.

Many anchorage tests show that close to failure, the strain distribution
in the reinforcement along the anchorage length is approximé,tely" linear,
increasing from the unloaded end to the maximum in the loaded end. This
means, other things being equal, that the shear stress along the surface
of the bar can be determined to be evenly distributed over the anchorage
length. However, the stresses in the concrete decrease for increasing strains
after the maximum stress has been reached. In the case of anchorage, this
will also be the case and it is included in the expressions for the local failure
around the bar. The shear stress is carried by compression and tension in
the concrete, and these stresses are limited so as not to exceed the plastic
strength for the concrete.

The anchorage failure is divided into three separate parts: The local failure
occurring immediately around and along the reinforcing bar, the failure in
the surroundings involving one bar, and the complete failure in the section
including all bars. ‘ ‘ o
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The local failure is treated by upper and lower bound calculations. Cor-
responding values for the load carrying capacity are obtained. Hence the
solutions are theoretically correct.

The failure in the surroundings in an axisymmetrical specimen is also treated
by upper and lower bound calculations. Agreement between the solutions is
obtained in a part of the relevant interval. The result indicates that upper
bound calculations can be carried out by assuming that the surrounding
concrete is displaced axisymmetrically away from the reinforcement by a
constant velocity. Doing this, upper bound calculation, are in principle
simple to carry out.

In practice the surroundings are seldom axisymmetrical with respect to
the reinforcement, but the expressions for the local failure are used, even
if this is not the case. The expressions for the local failure are, amongst
others, functions of the dimensionless internal work from the surroundings,
when using upper bound calculations. The other included parameters are in
principle known quantities. The only problem left after the local failure has
been solved, is therefore to determine the value of the dimensionless internal
work from the surroundings. This can be done, as mentioned, by using a
constant displacement field. Every type of problem has to be considered
separately because different failure mechanisms are probably decisive.

Failure mechanisms for anchorage at supports with both one layer and more
than one layer of reinforcement and for lap splices are considered. The load
obtained from these mechanisms is compared to test results and on the
basis of this, simple expressions are developed. However, the simplified
expressions are definitely safe to use only in the range of the parameters
covered by tests. In other cases the more complicated expressions must be
used.

In the case of lap splices, many test results from various test series are
included in the development of the simple expressions. In the case of an-
chorage at supports with one layer of reinforcement, there are test results
from only two test series. As a means of controlling the developed expres-
sions, it would therefore be desirable if there were tests from other series
and if there were test results from specimens similar to constructions in
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practice. In this case, the force in the reinforcement immediately in front
of the support should be measured. In addition to this, it would be inter-
esting to have more tests done on anchorage with more than one layer at a
support. There could, for instance, be tests with 6 bars in 2 layers, 12 bars
in 3 layers etc.

In the expressions for the local failure immediately around the bar, two
dimensionless rib parameters D and F are included. The value of these
parameters decides which of the two types of local failure will occur. The
optimal situation with respect to the dimensions of the deformations on the
reinforcement will appear, when the two local failure types yield approxi-
mately the same load carrying capacity. This occurs for % ~ 8. The ratio
% is approximately equal to the ratio between the distance between the
ribs, a, and the height of the ribs, hg, which gives that a ~ 8hq results in
optimal dimensions of the deformations on the reinforcement, other things
being equal.

Using the theory of plasticity for a problem, the load carrying capacity is
obtained. Comparing the developed expressions with test results, the de-
termined mean and standard deviations on, for instance, the ratio between
the test load and the theoretical load will tell something about the uncer-
tainty in using the expressions. However, if the correct estimation of the
uncertainty should be found, a statistical analysis must be carried out. The
load and the material properties must be described as stochastic quantities.
Such calculations are not carried out here, but they could be interesting.
One problem with calculations taking into account the variation of load
and strength, is that they can normally not be carried out analytically, and
consequently the calculations must be carried out by means of EDP. When
EDP is necessary, this can be utilized to give a more correct description
of the behaviour of the concrete than that given by the effectiveness fac-
tors, e.g. a fracture mechanics approach could be used. It would then be
possible to use the correct stress-strain and stress-displacement relations.
The calculations would be extensive because both fracture mechanics and
stochastic calculations are each copious.

In the types of anchorage problems dealt with in this report, the réinforéing
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Figure 12.1: Anchorage of bar far from concrete edges, parallel to the longitudinal direction of the bar.
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bars are located close to at least one concrete edge, parallel to the longi-
tudinal direction of the bar. In upper bound calculations the yield lines
therefore go from the bar to the concrete edges. However, if the bar is
located far from concrete edges, upper bound calculations will lead to very
high values of the load carrying capacity. This may be true but there must
be an upper limit for the load which can be carried. For a specified distance
to the edge, the bar is pulled out at failure, involving only the concrete close
to the bar. The failure will probably be one similar to the punching shear
failure. If the anchorage length, £, is great, the punching cone will probably
not extend to the end of the bar, but only a distance £, see figure 12.1.

It is not immediately possible to determine the value of ¢; calculations
have to be carried out. However, this pull- out problem is very interesting
and it ought to be solved. In addition to this, other types of anchorage
arrangements similar to this, should be investigated.

The pull-out problem shown in figure 12.1 demonstrates that anchorage of
deformed reinforcing bars is mainly governed by the compression strength
of the concrete. In the case shown, the punching shear failure is a com-
pression failure and at the farther end of the bar, the resistance from the
surroundings is large, wherefore the local failure will be a compression type
failure.

In the majority of the tests included in the comparison with the theory, the
concrete cover is within the normal range. However, in a few tests in the case
of lap splices the cover was small, and the tests show that the anchorage
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strength is considerable for anchorages with small or no concrete covers.
This information can be used, for example, in the case of fire damaged
structures. More tests have to be carried out before design rules can be
developed.

The expounded expressions for anchorage at supports and lap splices have
been compared to test results appearing from specimens loaded by static
load. Test results from dynamically loaded specimens are not included.
Other investigations show that the principle in the expressions based on
static tests, does not change in the case of a pulsating load. However, it is
necessary to compare the theory with test results before applying it to such
cases.

In the case of lap splices, only tests with tension in the spliced bars are
included. For compression in the bars, the theoretical expressions can be
used, but the value of the effectiveness factors must probably be changed.
This has to be investigated. :

In summarising, it must be said that it seems likely that the theory of
plasticity can be used in the case of anchorage. The developed theoretical
expressions are compared to test results and the empirical modification
factors, the effectiveness factors, are determined. The value of the factors
obtained, is within the normal range compared to other analyses.

It is not correct to use the theory of plasticity on concrete structures, but
nevertheless it is very useful. By the use of the theory of plasticity it is pos-
sible to avoid gross blunders, because the theoretical considerations auto-
matically show prospective upper limits and the like. Theoretical solutions
must always be compared to test results and must be examined critically.

In the future, in the case of concrete structures, the calculations based
on the theory of plasticity will probably be replaced by other methods,
where the concrete is described more accurately. These calculations must
undoubtedly be carried out numerically by means of a computer. Neverthe-
less, the solutions from the plastic calculations and other simple methods
will still be indispensable as a control for the results from the nurerical
calculations.



Bibliography

[1833]

[28.1]

[38.1]

[39.1]

[46.1]

[49.1]

[52.1]

Lamé, Clapeyron: Memoire sur leguilibre interieur des
corpssolides homogenes. Mém. divers savans, Vol. 4, 1833.

Richart, F.E., A. Brandtzaeg, R.L. Brown: A Study of the Failure
of Concrete under Combined Compressive Stresses. University of
Illinois, Eng. Expt. Stat., Bulletin No. 185, pp. 1-102.

Gvozdev, A.A.:Opredelenie valichiny razrushayushchei nagruzki
dlya staticheski neopredelimykh sistem, preterpevayushchikh plas-
ticheskie deformatsii. Svornik trudov konferentsii po plasticheskim
deformatsiyan, Moscow-Leningrad, Akademia Nauk SSSR, 1938,
Pp. 19-30. (English translation: The determination of the value of
the collapse load for statically indeterminate systems undergoing
plastic deformation. International Journal of Mechanical Sciences,
Vol. 1, 1960, pp. 322-333).

Menzel, C.A.: Some Factors Influencing Results of Pull-out Bond
Tests. ACI Journal, Proceedings Vol. 35, June 1939, p. 517.

Clark, A.P.: Comparative Bond Efficiency of Deformed Concrete
Reinforcing Bars. ACI Joumal, Proceedings Vol. 4, No. 4, Dec.
1946, pp. 381-400.

Balmer, G.G.: Shearing Stréngth of Concréte Under Ez'gb. Triazial
Stress. U.S. Bareau of Reclamation, Structural Research Labora-
tory, Report SF-23, pp. 26.

Prager, W.: The gener’dl Theory of Limit Design. Procéedihgs of
the 8th International Congress of Theory of Applied Mechamch
Istanbul, 1952, Vol. 11, pp. 65-72.

208



BIBLIOGRAPHY . 209

[52.2]

[52.3]

[55.1]

[56.1]

[57.1]

[57.2]

[58.1]
[59.1]

[61.1]

161.2]

63.1]

Drucker, D.C., W. Prager, H.J. Greenberg: Fztended imit design
theorems for continuous media. Quarterly of Applied Mathematics,
Vol. 9, 1952, pp. 381-389.

Drucker, D.C.; W. Prager: Soil mechanics and plastic analysis of
limit design. Quarterly of Applied Mathematics, Vol. 10, 1952, pp.
157-165. ‘

Chinn, J., Ferguson, P.M., Thompson, J.N.: Lapped Splices in
Reinforced Concrete Beams. ACI Journal, Proceedings Vol. 52, no.

15, Oct. 1955, pp. 201-213.

Champerlin, S.J.: Spacing of Reinforcement in Beams. ACI Jour-
nal, Proceedings, Vol. 53, No. 6, July 1956, pp. 113-134.

Hillerborg, H.: Anchorage Failure in Reinforced Concrete Beams
without Shear Reinforcement. RILEM Symposium on Bond and
Crack Formation in Reinforced Concrete, Stockholm, 1957, pp.
215- 222.

Larsson, H.: On the Anchorage of High Quality Corrugated Re-
inforcing Bars Kam 60 and Kam 90 in C'oncw'te'Beams. RILEM
Symposium on Bond and Crack Formation in Reinforced Concrete,
Stockholm, 1957, pp. 233-252. ‘

Chamberlin, S.J.: Spacing of Spliced Bars in Beams. ACI Journal,
Proceedings Vol. 54, no. 38, Feb. 1958, pp. 689-697.

Prager, W.: An Introduction to Plasticity. Addison-Wesley Pub-
lishing Company. Reading 1959. 148 pp.

Rehm, G.: Ueber die Grundlagen des Verbundes zwischen Stahl
und Beton. Deutscher Ausschuss fiir Stahlbeton, Berlin, Heft 138,
1961.

Mathey, R.G., D. Watstein: Investigation of Bond in Beam and
Pull-Out Specimens with High-Yield-Strength Deformed Bars. ACI
Journal, Proceedings, Vol. 57, No. 9, March 1961, pp. 1071-1090.

- Rusch, H.; H. Hilsdorf: Verformungseigenschaften von Beton unter

zeutrischen Zugspannungen. (Deformation Characteristics of Con-



210

[63.2]

[63.3]

[65.1]

165.2]

[65.3]

[66.1]

[66.2]

[67.1]

68.1]

BIBLIOGRAPHY

" crete under Biaxial Tension). Voruntersuchungen, MPA Bauwesen,

Bericht No. 44, Munich, May 1963.

Alami, Z.Y., P.M. Ferguson: Accuracy of Models Used in Research
‘on Reinforced Concrete. ACI Journal, Proceedings Vol. 60, Novem-
ber 1963, pp. 1643-1663.

Hanson, J.A.: Strength of Structural Lightweight Concrete Under
Combined Siress. Journal of PCA Research Development Labora-
tory, 5, No. 1, pp. 39-46.

Ferguson, P.M., J.E. Breen: Lapped Splices for High Strength Re-
inforcing Bars. ACI Journal, Proceedings Vol. 62, No. 63, Sept.
1965, pp. 1063-1078.

Sandbye, P.: A Plastic Theory for Plain Concrete. Bygn-
ingsstatiske Meddelelser, Dansk Selskab for Bygningsstatik,
Copenhagen, 1965, pp. 41-62.

Untrauer; R.E., R.L. Henry: Influence of Normal Pressure on
Bond Strength. ACI Journal, Proceedings, Vol. 62, No. 36, May
1965, pp. 577-589.

Lutz, L.A.: The Mechanics of Bond and Slip of Deformed Rein-
forcing Bars in Concrete. Department of Structural Engineering,
School of Civil Engineering, Cornell University, Report no. 324,
August 1966.

Hughes, B.P., G.P. Chapman: The complete Stress-Strain Curve
for Concrete in Direct Tension. Bulletin RILEM, No. 3, March
1966, pp. 95-97.

Lutz, L.A., Gergely, P.: Mechanics of Bond and Slip of Deformed
Bars in Concrete. ACI Journal, Proceedings Vol. 64, no. 11, Nov.
1967, pp. 711-721.

- Prager, W., P.G. Hodge: Theory of Perfectly Plastic Solids. Dover -

Pubhcatlons New York, 1968, 264 pp.



BIBLIOGRAPHY 211

[68.2)

[69.1]

[69.2]

(69.3]

[69.4]

69.5]
69.6]
[70.1]

[70.2]

Evans, R.H., M.S. Maratha: Microcracking and Stress-Strain
Curves for Concrete in Tension. Materiaux et Construction, No.
1, January-February 1968, pp. 61-64

Ferguson, P.M., E.A. Briceno: Tensile Lap Splices, Part I: Re-
taining Wall type, Varying Moment Zone. Center for Highway Re-
search, The University of Texas at Austin, Research Report 113-
2, July 1969.

Nielsen, M.P.: Om forskydningsarmering i jernbetonbjelker,
Diskussion (About Shear-reinforcement in Reinforced Concrete
Beams, Discussion). Bygningsstatiske Meddelelser, Vol. 40, No.
1, 1969, pp. 60-63.

Chen, W.F., D.C. Drucker: Bearing Capacity of Concrete Blocks
or Rock. Journal of the Engineering Mechanics, Proceedings
ASCE, Vol. 95, No. EM4, August 1969, pp. 955-978.

Nielsen, M.P.: Om Jernbetonskivers Styrke. Copenhagen 1969, pp.
254. (Englisk Edition: On the Strength of Reinforced Concrete
Discs. Acta Polytechnica Scandinavia, Ci 70, Copenhagen 1971,

pp. 261).

Dastidav, N.R.G.: The Bursting Effect and Bond Development
length of Deformed Bars. University of London, Ph.D. Thesis,
1969, pp. 226.

Roberts, N.P.: Limit State Theory of Anchorage Bond in Rein-
forced Concrete. University of London, Ph.D. The51s, 1969, pp.
202.

Lutz, L.A.: Analysis of Stresses in Concrete Near a Reinforcing
Bar Due to Bond and Transverse Cracking. ACI Journal, Proceed-
ings, Vol. 67, no. 45, Oct. 1970, pp. 778-787.

Nilsson, I.H.E.: Upplaysproblem vid Betonbjalklag (Support prob-
lems in Concrete Beams). Chalmers Tekniska Hogskola, Institutio-
nen f6r Konstruktionsteknik, Betongbyggna.d Rapport 70:3, Gote-
borg, maj 1970.



212

[70.3]

[71.1)

[71.2]

[71.3]

[72.1]

[72.2]

[72.3]

[73.1]

BIBLIGGRAPHY

Larsson, H.: Forankringsproblem vid Balkupplag (Anchorage prob-
lems at Beam Supports). Chalmers Tekniska Hogskola, Institutio-
nen for Konstruktionsteknik, Betongbyggnad, Rapport 70:2, Gote-
borg, Juni 1970.

Ferguson, P.M., C.N. Krishnaswarny: Tensile Lap Splices, Part
2: Design Recommendations for Retaining Wall Splices and Large
Bar Splices. Center for Highway Research, The University of Texas
at Austin, Research Report No. 113-3, April 1971.

Newman, K., J.B. Newman: Failure Theories and Design Cri-
teria for Plain Concrete. The Proceedings of the Southampton
1969 Civil Engineering Materials Conference, Structure, Solid Me-
chanics and Engineering Design, Part 2, Editor: M. Teeni, Wiky-
Interscience, London, 1971, pp. 963-995.

Goto, Y.: Cracks Formed in Concrete Around Deformed Tension
Bars. ACI Journal, Proceedings, Vol. 68, no. 26, April 1971, pp.
244-251.

Rathkjen, A. Forankringsstyrker af Armeringsjern ved Bjelkeun-
derstgtninger. (The Bond Strength of Reinforcing Bars at Beam
Supports). Civil Engineering Academy of Denmark, Ren og An-
vendt Mekanik, Aalborg, Report 7203, 1972.

Gravesen, S. H. Krenchel: Betons tryk-, trek-, spalte- og
bojningstrakstyrke. Forelpbige resultater i ABK-sag 1/62 (The
Compression-, the Tensile-, the Splitting- and the Bending- ten-
sile strength of Concrete. Interum Solution Report from ABK- case
1/62). Department of Structural Engineering, Technical University
of Denmark, Januar 1972.

Izbicki, R.J.: General Yield Condition, 1. Plane Deformation. Bul-
letin de I’Academie Polonaise des Sciences, Serie des Sciences Tech-
niques, Vol. XX, No. 7-8, 1972.

- Tepfers, R.: A Theory of Bond Applied to Overlapped Ten-

sile Reinforcement Splices for Deformed Bars. Chalmers Tekniska



BIBLIOGRAPHY ’ 213

[74.1]

[74.2]

[74.3]

[74.4]

[75.1]

[75.2]

[75.3]

[76.1]

[76.2]

Hogskola, Division of Concrete Structures, Goteborg, Publ. 73.2,
1973.

Nielsen, M.P.: Beton 1. del 1, Materialer (Concrete 1, part 1, Ma-
terials). Civil Engineering Academy of Denmark, Aalborg, 1974.

Bergholdt, M.: Forankringsforsgg med 10 mm kamstal (Anchor-
age test with 10 mm Kam Steel). Civil Engineering Academy of
Denmark, Ren og Anvendt Mekanik, Lyngby, Report 74:46, Maj
1974.

Brzestrup, M.W.: Plastic Analysis of Shear in Reinforced Con-
crete. Magazine of Concrete Research, Vol. 26, no. 89,-December
1974, pp. 221-228.

Hobbs, D.W., C.D. Pomeroy: Nomograms for the Failure of Plain
Concrete Subjected to Short-term Multiazial Stresses. Contribution
to D.J. Hannant. The Structural Engineer, London, Vol. 52, No.
5, May 1974, pp. 151-165.

Orangun, C.0., J.O. Jirsa, J.E. Breen: The Strength of Anchor
Bars: A Reevaluation of Test Data on Development Length and
Splices. Center for Highway Research, The University of Texas at
Austin, Research Report 154-3F, January 1975.

Jensen, B.C.: Lines of Discontinuity for Displacements in the The-
ory of Plasticity and Reinforced Concrete. Magazine of Conerete
Research, Vol. 27, No. 92, September 1975, pp. 143-150.

Nielsen, M.P., M.W. Brastrup: Plastic Shear Strength of Rein-
forced Concrete Beams. Bygningsstatiske Meddelelser, Vol. 46, Ne.
3, 1975, pp. 61-99.

Orr, D.M.F. Lap Splicing of Deformed Reinforcing Bars. ACI Jour-
nal, Proceedings, Vol. 73, no. 53, Nov. 1976, pp. 622-627.

Jensen, B.C.: Nogle Plasticitetsteoretiske beregninger af beton og
jernbeton. Technical University of Denmark, Institute of Building

" Design, Lyngby, Report No. 111, 1976, 115 pp. (English edition:

Some Applications of Plastic Analysis to Plain and Reinforced
Concrete. Report No. 123, 1977, 119 pp.)



214

[76.3]

[76.4]

[77.1]
[77.2]
[77.3]
[78.1]
[78.2]

[78.3]

- [78.4]

BIBLIOGRAPHY

Hillerborg, A., M. Modeer, P.E. Petersson: Analysis of Crack For-
mation and Crack Growth in Concrete by Means of Fracture Me-
chanics and Finite Elements. Cement and Concrete Research, Vol.
6, 1976, pp. 773-782.

Braestrup, M.W., M.P. Nielsen, B.C. Jensen, F. Bach: Azisym-
metric Punching of Plain and Reinforced Concrete. Department

of Structural Engineering, Technical University of Denmark, Serie
R, No. 75, 1976, pp. 33.

Ottosen, N.S.: A Failure Criterion for Concrete. Journal of Engi-
neering Mechanic Division, No. EM4, August 1977.

Bach, F., M.P. Nielsen, M.W. Brastrup: Forskydningsforspg med
Jjernbetonbjelker (Shear tests on Reinforced Concrete Beams). De-
partment of Structural Engineering, Technical University of Den-
mark, Serie I, No. 49, 1977, pp. 19.

Orangun, C.O., J.0. Jirsa, J.E. Breen: A Reevaluation of Test
Data on Development Length and Splices. ACI Journal Proceed-
ings, Vol. 74, No. 11, March 77, pp. 114-122.

Chen, W.F.: Constitutive Equations for Concrete. IABSE Collo-
quium, Copenhagen, 1979, Session I. Plasticity in Reinforced Con-
crete, Introductory Report, Vol. 28, October 1978, pp. 11-34.

Hillerborg, A.: A Model for Fracture Analysis. Division on Build-
ing Materials, Lund Institute of Technology, Report IVBM- 3005,
1978.

Hess, U., B.C. Jensen, M.W. Braestrup, M.P. Nielsen, F. Bach:
Gennemlokning af Jernbetonplader (Punching Shear of Reinforced
Concrete Slabs). Department of Structural Engineering, Technical
University of Denmark, Serie R, No. 90, 1978, pp. 63.

Nielsen, M.P., M.W. .Brasstrup, B.C. Jensen, F. Bach:Concrete

- Plasticity. Danish Society for Structural Science and Engineering,

Special Publication, October 1978, pp. 129.



BIBLIOGRAPHY 215

[78.5]
[79.1]
[79.2]
[79.3]
[79.4]
[79.5]

[79.6]

[79.7)
[80.1]

[81.1]

Wang, P.T., S.P. Shah, A.E. Naaman: Stress-Strain Curves of
Normal and Lightweight Concrete in Compression. ACE Journal,
Proceedings, Vol. 75, No. 11, November 1978, pp. 603-611.

Losberg, A., Olson, P.-A.: Bond failure of Deformed Reinforcing
Bars based on the longitudinal Splitting Effect of the Bars. ACI
Journal, Proceedings, Vol. 76, no. 1, Jan. 1979, pp. 5-18.

Eligehausen, Von R.: Ubergreifungsstofe zugbeanspruchier Rippen-
stabe mit geraden Stabenden. Deutscher Ausschuss fiir Stahlbeton,
Berlin, Heft 301, 1979.

Soretz, S., Holzenbein, H.: Influence of Rib Dimensions of Rein-
forcing Bars on Bond and Bendability. ACI Journal, Proceedings
Vol. 76, no. 6, Jan 1979, pp. 111-125.

Thompson, M.A., J.O. Jirsa, J.E. Breen, D.F. Meinheit: Behavior
of Multiple Lap Splices in Wide Sections. ACI Journal, Proceedings
Vol. 76, no. 12, Feb. 1976, pp. 227-248.

Exner, H.: On the effectiveness factor in Plastic Analysis of
Concrete. IABSE Colloquium, Plasticity in Reinforced Concrete,
Copenhagen, Vol. 29, 1979, pp. 35-42. ‘

Roikjeer, M., C. Pedersen, M.W. Brasstrup, M.P. Nielsen, F. Bach:
Bestemmelse af ikke-forskydningsarmerede bjelkers forskydnings-
baereevne (Shear Capacity of Beams Without Shear Reinforce-
ment). Department of Structural Engineering, Technical Univer-
sity of Denmark, Serie I, No. 62, 1979, pp. 44.

Kemp, E.L., W.J. Wilhelm: Investigations of the Parameters In-
fluencing Bond Cracking. ACI Journal, Proceedings, Vol. 76, No.
3, Jan. 1979, pp. 47-71.

Bach, F., M.P. Nielsen, M.W. Brastrup: Shear Tests on Rein-
forced Concrete T-Beams. Department of Structural Engineering
Technical University of Denmark, Serie R, No. 120, 1980, pp. 86.

Zekany, A.J., Neumann, S., Jirsa, J.O., Breen, J.E.: The Influ-
ence of Shear on Lapped Splices in Reinforced Concrete. Center



216
[81.2]

[81.3]

[82.1]

[82.2]

[82.3]

82.4]

[82.5]

[83.1]

BIBLIGGRAPHY

of Transportation Research, Bureau of Engineering Research, The
University of Texas at Austin, Research Report 242- 2, July 1981.

Petersson, P-E.. Crack Growth and Development of Fracture

Zones in Plain Concrete and Similar Materials. Division of Build-
ing Materials, Lund Institute of Technology, Report TVBM- 1006,
Lund, Sweden, 1981, pp. 174.

Jensen, J.F.: Plasticitetsteoretiske Lasninger for Skiver og Bjelker
af Jernbeton (Plastic Solutions for Disks and Beams of Reinforced
Concrete). Department of Structural Engineering, Technical Uni-
versity of Denmark, Lyngby, Serie R, no. 141, Ph.D. Thesis, 1981,
pp. 153.

Jensen, J.H.: Forkammede Armeringsstengers Forankring specielt
ved Vederlag (Anchorage of Deformed Reinforcing Bars at Sup-
ports). Part 1, Department of Structural Engineering, Technical
University of Denmark, Lyngby, Serie R, no. 156, 1982.

Jensen, J.H.: Forkammede Armeringsstengers Forankring specielt
ved Vederlag (Anchorage of Deformed Reinforcing Bars at Sup-
ports). Part 2, Appendix A-F. Department of Structural Engineer-
ing, Technical University of Denmark, Lyngby, Serie R, no. 157,
1982. B

Reynolds, G.C., Beeby, A.W.: Bond Strength of Deformed Bars.
Applied Science Publishers Ltd., Ripple Road, Barking, Essex,
England, 1982, pp. 434-445.

Tepfers, R.: Lapped Tensile Reinforced Splices. Journal of the
Structural Division, Proceedings of the American Society of Civil
Engineers, ASCE, Vol. 108, No. ST1, January 1982, pp. 283- 301.

Morita, S., S. Fujii: Bond Capacity of Deformed Bars due to Split-
ting of surrounding Concrete. Bond in Concrete. Applied Science
Publichers Ltd., Ripple Road, Barking, Essex, Editor P. Partos,
England, 1982, pp. 331-341.

‘Exner, H.: Plasticitetsteori for Coulomb materialer (Theory of

Plasticity for Coulombs materials). Department of Structural En-



BIBLIOGRAPHY 217

[83.2]

83.3]

[83.4]

[84.1]

[84.2]

[84.3]

[84.4]

[84.5]

gineering, Technical University of Denmark, Lyngby, Serie R., No.
175, Ph.D. Thesis, 1983, pp. 258.

Exner, H.: Betonbjelkers Bgjningsbereevne (The Bending Capac-
ity of Concrete Beams). Department of Structural Engineering,
Technical University of Denmark, Lyngby, Serie R, no. 176, 1983.

Nielsen, M.P., B. Feddersen: Effektivitetsfaktoren ved Bgjning af
Jernbetonbjelker (The Effectiveness Factor of Reinforced Concrete
Beams in Bending). Department of Structural Engineering, Tech-
nical University of Denmark, Serie R, No. 173, 1983, pp. 35.

Feddersen, B., M.P. Nielsen: Effektivitetsfaktoren ved Vridning of
Jernbetonbjelker (The Effectiveness Factor of Reinforced Concrete
Beams in Pure Torsion). Departmentlof Structural Engineering,
Technical University of Denmark, Serie R, No. 174, 1983, pp. 40.

Nielsen, M.P.: Limit Analysis and Concrete Plastiéity. Prentice-
Hall, Inc., Englewood, Cliffs, New Jersey, 1984.

Hess. U.: Plasticitetsteoretisk Analyse af forankring og Stgd af
Forkammet Armering i Beton (An analysis of Anchorage and
Splices of Deformed Reinforcing Bars in Concrete according to
the Theory of Plasticity). Department of Structural Engineering,
Technical University of Denmark, Lyngby, Serie R, No. 184, Ph.D.
thesis, 1984.

Andreasen, B.S.: ‘Ribbestals Forankringsstyrke i Beton efter Plas-
ticitetsteorien (The Bond Strength of Deformed Reinforcing Bars
according to the Theory of Plasticity). Civil Engineering Academy
of Denmark, SKM, Lyngby, Batchelor Thesis, Jan. 1984.

‘Feddersen, B., M.P. Nielsen: Plastic Analysis of Reinforced Con-

crete Beams in Pure Bending or Pure Torsion. Bygningsstatiske
Meddelelser, Danish Society of Structural Science and Engineer-
ing, Vol. 55, No. 2, 1984, pp. 37-61.

DS411: Dansk Ingenigrforenings Norm for Betonkonstruktioner
(Dansk Ingenigrforenings Code of Practice for the Structural Use



218
[85.1]

[85.2]

[85.3]

[85.4]

[85.5]

[85.6]
[85.7]
[85.8]

[86.1]

BIBLIOGRAPHY

of Concrete, DS{11). An English edition is available. 3. udgave,
Marts 1984, pp. 98.

Nagatomo, K., Kaku, T.: Ezperimental and Analytical Study on

- Bond Characteristics of Reinforcing Bars with only a Single Trans-

verse Rib. Transactions of the Japan Concrete Institute, Vol. 7,
1985, pp. 333-340.

Gopalaratnam, V.S., S.P. Shah: Softening Response of Plain Con-
crete in Direct Tension. ACI Journal, no. 82-27, Maj-June 1985,
pp. 310-323.

Torrent, R.J., J.J. Brooks: Application of the Highly Stressed Vol-
ume Approach to Correlated Results from different Tensile Tests of

Concrete. Magazine of Concrete Research, Vol. 37, no. 132, Sept.
1985, pp. 175-184.

Andreasen, B.S.: Trykmembranvirkning i betonplader (Compres-
sion Membrane Action in Concrete Slabs). Department of Struc-
tural Engineering, Technical University of Denmark, Master The-
sis, Lyngby, July 1985, pp. 211.

Gustafsson, P.J.: Fracture Mechanics Studies of Non-Yielding Ma-
terials Like Concrete, Modelling of Tensile Fracture and Applied

Strength Analyses. Division of Building Materials, Lund Institute
of Technology, Report TVBM-1007, Sweden 1985.

Olsson, P.-A.: A Fracture Mechanics and Ezperimental Approach
on Anchorage Splitting. Nordic Concrete Research, 1985, pp. 136-
158.

Bodén, A.: Armeringsvidenhefining i Fiberbeton (Bond i Fi-
bre Reinforced Concrete). Institution for Brobyggnad, Kungliga
Tekniska Hogskolan, Stockholm, Meddelanda 2/85, pp. 158.

Tsubaku, T., T. Hashimoto, S. Ikeda, S. Yamanobe: Bond Anal-
ysis of a Concrete Member using the Boundary Element Method.
Trans. of the Japan Concrete Inst., Vol. 7, 1985, pp. 361-368.

Mier, J.G.M. van: Fracture of Concrete under Complex Stress.
HERON, vol. 31, no. 3, 1986, pp. 90.



BIBLIOGRAPHY 219

[86.2)

[86.3]

[86.4]

[86.5]

[86.6]

[86.7]

[86.8]

[87.1]

87.2]

Mier, J.G.M. van: Multiazial Strain-Softening of Concrete, Part I:
Fracture. Materiaux et Constructions, Vol. 19, no. 111, 1986, pp.
179-190.

Andreasen, B.S., M.P. Nielsen: Dome Effect in Reinforced Con-
crete Slabs. Department of Structural Engineering, Technical Uni-
versity of Denmark, Serie R, No. 212, 1986, pp. 49.

Olson, P.-A.: A Fracture Mechanics and Ezperimental Approach
on Anchorage Splitting. Bond and Anchorage of Reinforcement in
Concrete, Nordic Seminar, 23. October 1985, Chalmers University
of Technology, Division of Concrete Structures, Publication 86:1,
1986, pp. 99-106.

Furuuchi, H., Y. Kakuta: Nonlinear Behavior in Dowel Action of
Reinforcing Bars. Trans. of the Japan Concrete Inst., Vol. 8, 1986,
pp- 289-294.

Kemp, E.L.;: Bond in Reinforced Concrete: Behavior and Design
Criteria. ACI Journal, Vol. 83, No. 7, Jan.-Feb. 1986, pp. 50-57.

Andreasen, B.S.: The Bond Strength of Deformed Reinforcing
Bars. Chalmers University of Technology, Division of Concrete
Structures, Publication 86:1, 1986, pp. 44-58.

Andreasen, B.S., M.P. Nielsen: The Bond Strength of Reinforcing
Bars at Supports. Proceedings from Symposium in Fundamental
Theory of Reinforced and Prestressed Concrete, Nanjing Institute
of Technology, Nanjing, China, 1986, pp. 387- 397.

Keern, J., C.: Numerisk Brudstadieberegning for Stift, Plastiske
Materialer (Numerical Collapse load calculation for Rigid Plastic
Materials). Department of Structural Engineering, Technical Uni-
versity of Denmark, Lyngby, Serie R, no. 181, Ph.D. thesis, 1987.

-Boswell, L.F., Z. Chen: A General Failure Criterion for Plain

Concrete. Int. J. Solids Structures, Vol. 23, No. 5, 1987, pp. 621-
630.



220

[87.3]

[87.4]

[87.5]

[87.6]

[87.7]

[88.1]

[88.2]

[88.3]

[88.4]

[88.5]

BIBLIOGRAPHY

Cedolin, L., S.D. Yoli, I. Tori: Tensile Behaviour of Concrete. Jour-
nal of Engineering Mechanics, Vol. 113, No. 3, March 1987, pp-
431-449.

Wang, C.-Z., Z.-h. Guo, X.-q. Zhang: Experimental Investigation
of Biazial and Triazial Compressive Concrete Strength. ACI Ma-
terials Journal, Vol. 84, No. M11, March-April 1987, pp. 92-100.

Ditlevsen, O.: The Structural System Reliability Problem. Quali-

tative Considerations. ICASP5, Vancouver, May, 1987.

Soroushian, P., K. Obaseki, M. Rojas, HS. Najm: Behavior of
Bars in Dowel Action against Concrete Cover. ACI Structural
Journal, No. 84-S18, March-April 1987. pp. 170-176.

Petersen, M.G., N.E. Panek: Forankring ved Pladeverderlag (An-
chorage at Supports in Slabs). Civil Engineering Academy of Den-
mark, SKM, Lyngby, Batchelor Thesis, June 1987.

Andreasen, B.S.: Anchorage Tests with Ribbed Reinforcing
Bars in more than one Layer at a Beam Support. Department of
Structural Engineering, Technical University of Denmark, Lyngby,
Serie R, no. 239, Part of a Ph.D. Thesis, 1988.

Olsen N.H.: Implementation of High Strength Concrete in Build-
ing Structures . Department of Structural Engineering, Technical
University of Denmark, Lyngby, Serie R, In preparation , Part of
a Ph.D. Thesis, 1988.

Olsen N.H.: Anchorage Tests with Deformed Reinforcing Bars in
High Strength Concrete . Department of Structural Engineering,
Technical University of Denmark, Lyngby, Serie R, In prepa.ratxon,
Part of a Ph.D. Thesis, 1988.

Andreasen, B.S., M.P. Nielsen: Membrane Action in Slabs. Bygn-
ingsstatiske Meddelelser, Danish Society of Structural Science and
Engineering, In preparation, 1988.

Andreasen, B.S., M.P. Nielsen: Membrane Action in One-way
Slabs. Bygningsstatiske Meddelelser, Danish Society of Structural
Science and Engineering, In preparation, 1988.



BIBLIOGRAPHY 221

[88.6]  Nielsen, M.P., B.S. Andreasen,G. Chen: Dome Effect in Reinforced
Concrete Slabs. New Zealand, 1988.
[88.7] Chen, G.: Plastic Analysis of Shear in Beams, Deep Beams and

Corbels. Department of Structural Engineering, Technical Univer-
sity of Denmark, Lyngby, Serie R, n0.237, Ph.D. Thesis, 1988.



Appendix A

Anchorage at Supports

The test results of anchorage of one layer of reinforcement at supports are
given here. The tests are treated in chapter 8 and the test specimen and
the main principle in the test set-ups are illustrated in figure 8.1 and 8.2.

The tests are presented in table A.1 and A.2, where the first table shows
tests without stirrups and the second table shows tests with stirrups. In
the tables the following data are given: The reference, the test number,
the values of the geometrical parameters ¢ and %, the uniaxial concrete
compression strength f. in MPa, the stirrup reinforcement degree 1, the
dimensionless reaction stress 7> the dimensionless shear strength 7 and
two columns with the ratios between the load obtained in the tests and the

corresponding theoretical load carrying capacity.

The theoretical load in the two last columns is determined from different
expressions. In the column denoted by correct theoretical correct expres-
sions ((5.5) and (5.7)) have been used and in the column denoted by simple
simplified expressions ((8.4) and (8.5)) have been used. The effectiveness
factors are determined from (8.1), (8.2), and (8.3).

In the analysis 184 tests are included, of which 140 are without stirrups and
44 are with stirrups. The values for the mean and standard deviation on
the ratio test/theory are given in the two tables. For all the 184 tests the
analysis using the correct expression result in a mean value of 1.062 and a
standard deviation of 0.112. The respective values in the simple analysis
are 1.012 and 0.108. ' '
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Reference

no.

Qe

fe

fesi

test

% | % | theory | theory
: correct | simple
Jensen [82.1] & [82.2] || 25301 | 1.81 | 2.00 | 23.1 | 0.000 | 0.074 | 0.366 | 1.043 | 1.042
2502 | 1.81 | 2.00 | 23.1 | 0.000 | 0.073 | 0.364 | 1.039 | 1.037
3501 | 1.81 [ 2.00 | 29.3 | 0.000 | 0.069 | 0.345 | 1.099 | 1.100
3502 | 1.81 {2.00 | 29.3 | 0.000 | 0.069 | 0.345 | 1.099 ;| 1.100
4501 | 1.81 1 2.00 { 38.4 | 0.000 | 0.062 | 0.308 | 1.119 ] 1.122
4502 | 1.81 1 2.00 | 40.4 | 0.000 | 0.063 | 0.313 | 1.159 | 1.164
4503 | 1.81 | 2.00 | 40.4 | 0.000 | 0.059 | 0.294 | 1.099 | 1.101
15311} 1.81 | 2.00 | 12.4 | 0.000 | 0.221 | 0.550 | 1.008 | 1.030
1512 | 1.81 | 2.00 | 12.4 | 0.000 | 0.221 | 0.550 | 1.008 | 1.030
2011 | 1.81 [ 2.00 | 26.9 | 0.000 | 0.153 | 0.380 | 1.022 | 1.045
2012 | 1.81 | 2.00.{ 26.9 | 0.000 | 0.153 { 0.380 | 1.022 | 1.045
2211 | 1.81 12.00 | 23.2 | 0.000 | 0.166 | 0.412 | 1.027 | 1.050
2212 | 1.81 | 2.00 | 23.2 | 0.000 | 0.177 | 0.441 | 1.086 | 1.110°
2511 | 1.81 [ 2.00 | 17.5 | 0.000 | 0.231 | 0.575 | 1.198 | 1.225
2512 | 1.81 | 2.00 | 17.5 | 0.000 | 0.210 | 0.521 | 1.107 | 1.132
3011 | 1.81 | 2.00 | 30.8 | 0.000 | 0.145 [ 0.360 | 1.033 | 1.056
3012 | 1.81 | 2.00 | 30.8 | 0.000 | 0.145 | 0.360 | 1.033 | 1.056
3511 | 1.81 [ 2.00 | 31.4 | 0.000 | 0.131 | 0.326 | 0.961 | 0.982
3512 | 1.81 | 2.00 | 31.4 | 0.000 | 0.131 [ 0.326 | 0.961 | 0.982
4011 | 1.81 | 2.00 | 43.2 | 0.000 | 0.119 | 0.296 | 1.011 | 1.034
4012 | 1.81 { 2.00 | 43.2 |{ 0.000 | 0.120 | 0.299 | 1.020 | 1.043
4013 | 1.81 | 2.00 | 31.6 | 0.000 | 0.119 | 0.297 | 0.894 | 0.912
4014 | 1.81 { 2.00 | 31.6 | 0.000 | 0.130 | 0.324 | 0.959 | 0.980
4511 | 1.81 | 2.00 | 44.1 | 0.000 | 0.121 | 0.300 | 1.030 | 1.054
4512 | 1.81 | 2.00 | 44.1 | 0.000 | 0.114 | 0.282 | 0.980 | 1.001
4513 | 1.81 | 2.00 | 38.4 | 0.000 | 0.158 | 0.392 | 1.206 | 1.233
15321 | 1.81 | 2.00 | 13.7 | 0.000 | 0.437 | 0.725 | 1.188 | 1.189
1522 | 1.81 | 2.00 | 13.7 | 0.000 | 0.407 | 0.675 | 1.125 | 1.132
2521 | 1.81 | 2.00 | 19.0 | 0.000 | 0.348 | 0.577 | 1.181 | 1.137
2522 | 1.81 [ 2.00 | 19.0 { 0.000 | 0.321 | 0.532 | 1.063 | 1.074
3521 | 1.81 | 2.00 | 23.9 | 0.000 | 0.:255 | 0.423 | 0.974 | 0.989
3522 | 1.81 | 2.00 | 23.9 | 0.000 | 0.257 | 0.426 | 0.979 | 0.994
4521 | 1.81 | 2.00.| 33.2 | 0.000 | 0.215 |{ 0.357 | 0.970 | 0.986
4522 | 1.81 |.2.00 | 33.2 | 0.000 | 0.215 { 0.356 | 0.967 | 0.983

Table A.1
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Reference no. ¢ fe P x T test T test

theory | theory
correct | simple

Kl

Jensen [82.1] & [82.2] [ 25331 | 1.81 |{ 2.00 | 17.0 | 0.000 | 0.720 | 0.895 | 1.388 | 1.287
2532 | 1.81 | 2.00 | 17.0 | 0.000 | 0.639 | 0.795 | 1.276 | 1.207
2533 | 1.81 | 2.00 | 23.1 | 0.000 | 0.612 | 0.585 | 1.061 | 0.985
2534 | 1.81 | 2.00 | 23.1 | 0.000 | 0.612 | 0.585 | 1.061 | 0.985
3531 [ 1.81.1 2.00 | 29.3 | 0.000 | 0.418 | 0.520 | 1.142 | 1.104
3532 1.81 | 2.00 | 29.3 | 0.000 | 0.394 | 0.490 | 1.094 | 1.065
4531 | 1.81 | 2.00 | 33.2 | 0.000 | 0.369 | 0.459 | 1.091 | 1.063
4532 | 1.81 { 2.00 | 33.2 | 0.000 | 0.331 | 0.411 [ 1.005 | 0.992
4533 | 1.81 | 2.00°| 40.4 | 0.000 | 0.371 | 0.461 | 1.176 | 1.131
4534 | 1.81 | 2.00 | 40.4 | 0.000 | 0.334 | 0.415 | 1.089 | 1.061

15901 | 1.81 | 2.00 | 16.9 | 0.000 { 0.094 | 0.466 | 1.122 | 1.125
1502 | 1.81 | 2.00 | 16.9 | 0.000 | 0.094 | 0.466 | 1.122 | 1.125
2501 | 1.81| 2.00 | 20.8 | 0.000 | 0.087 | 0.433 | 1.152 | 1.157
2502 | 1.81 | 2.00 | 20.8 | 0.000 | 0.093 | 0.461 | 1.215| 1.223
3501 | 1.81 | 2.00 | 33.5 | 0.000 | 0.061 | 0.303 | 1.040 | 1.039
3502 [ 1.81 | 2.00 | 33.5 | 0.000 | 0.057 | 0.286 | 0.991 | 0.987
4501 | 1.81 | 2.00 | 33.2 | 0.000 | 0.057 [ 0.284 | 0.981 | 0.976
4502 | 1.81 { 2.00 | 33.2 | 0.000 | 0.058 | 0.289 | 0.996 | 0.992

15911 | 1.81 | 2.00.| 12.4 | 0.000 | 0.218 | 0.543 | 0.998 | 1.020
1512 | 1.81| 2.00 | 12.4 | 0.000 |{ 0.203 | 0.504 | 0.939 | 0.959
2011 | 1.81 | 2.00 { 26.9 | 0.000 |-0.169 | 0.421 [ 1.110 | 1.135
2012 1.81 | 2.00 | 26.9 | 0.000 | 0.153 | 0.380 | 1.022 | 1.045
2211 | 1.81 | 2.00 | 23.2 | 0.000 | 0.168 | 0.417 | 1.037 | 1.061
2212 | 1.81 | 2.00-| 23.2 | 0.000 | 0.168 | 0.417 | 1.037 | 1.061
2511 | 1.81 |2.00 | 17.5 | 0.000 | 0.209 | 0.520 | 1.106 | 1.131
2512 | 1.81 | 2.00 | 17.5 | 0.000 | 0.209 | 0.520 | 1.106 | 1.131
3011 | 1.81 | 2.00 | 30.8 | 0.000 | 0.141 | 0.351 | 1.012 | 1.035
3012 | 1.81 | 2.00 | 30.8 | 0.000 | 0.141 | 0.351 | 1.012 | 1.035
3511 | 1.81 | 2.00 | 31.4 | 0.000 | 0.131 | 0.326 | 0.961 | 0.982
3512 | 1.81 [ 2.00 | 31.4 | 0.000 | 0.124 | 0.308 | 0.918 | 0.937
4011 | 1.81 [ 2.00 | 43.2 | 0.000 | 0.111 | 0.276 | 0.956 | 0.977
4012 | 1.81 | 2.00 | 43.2 | 0.000 | 0.111 | 0.276 | 0.956 | 0.977
4013 | 1.81 | 2.00 | 31.6 | 0.000 | 0.137 | 0.342 | 1.002 | 1.025
4014 | 1.81 | 2.00 | 31.6 { 0.000 | 0.123 [ 0.306 | 0.915 | 0.935
4512 | 1.81 [ 2.00 | 44.1 { 0.000 | 0.124 | 0.309 | 1.056 | 1.080

15921 | 1.81 | 2.00 | 15.1 | 0.000 | 0.363 | 0.602 | 1.070 | 1.081
1521 | 1.81 | 2.00 | 15.1 | 0.000 | 0.386 | 0.640 | 1.121 | 1.128
3521 | 1.81 | 2.00 | 35.9 | 0.000 | 0.209 | 0.346.{ 0.975 | 0.990
3522 | 1.81 |1 2.00 | 35.9 | 0.000 | 0.228 | 0.378 | 1.044 | 1.056
4521 | 1.81 | 2.00 | 45.0 [ 0.000 | 0.212 | 0.352 | 1.078 | 1.088
4522 | 1.81 | 2.00 | 45.0 | 0.000 | 0.197°| 0.327 | 1.019 | 1.033

Table A.1
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Reference

no.

2
d

fe

fest

fest

e e theory | theory

correct | simple

Jensen [82.1] & [82.2] || 15611 | 1.81 | 2.00 | 13.7 | 0.000 | 0.186 | 0.464 | 0.915 | 0.934
1512 | 1.81 { 2.00 | 13.7 | 0.000 { 0.200 | 0.498 | 0.968 | 0.990
2511 | 1.81 | 2.00 | 19.0 | 0.000 | 0.163 | 0.404 | 0.932 | 0.952
3511 | 1.81 | 2.00 | 23.9 | 0.000 | 0.122 | 0.303 | 0.810 | 0.824
3512 { 1.81 | 2.00 | 23.9 | 0.000 | 0.129 | 0.321 | 0.849 | 0.866
4511 | 1.81 | 2.00 | 33.2 | 0.000 | 0.108 | 0.268 | 0.838 | 0.854
15621 | 1.81 | 2.00 | 15.1 | 0.000 | 0.355 | 0.589 | 1.053 | 1.064
1522 | 1.81 | 2.00 | 15.1 | 0.000 | 0.338'| 0.561 | - 1.014 | 1.028
2521 | 1.81 | 2.00 | 17.0 | 0.000 | 0.351 | 0.582 | 1.091 | 1.100
20131 | 1.81 | 2.00 | 15.2 | 0.000 | 0.259 | 0.592 | 1.139 | 1.163
20132 | 1.81 | 2.00 | 15.2 | 0.000 | 0.242 | 0.553 | 1.079 | 1.103
20231 | 1.81 | 2.00 | 16.4 | 0.000 | 0.185 | 0.460 | 0.976 | 0.998
20232 | 1.81 | 2.00 | 16.4 | 0.000 | 0.185 | 0.460 | 0.976 | 0.998
20191 | 1.81 | 2.00 | 152 | 0.000 | 0.210 | 0.481 | 0.966 | 0.988
20192 | 1.81 | 2.00 | 15.2 | 0.000 | 0.194 | 0.443 | 0.904 | 0.924
20291 | 1.81 | 2.00 | 16.4 | 0.000 | 0.179 | 0.445 | 0.951 | 0.971
20292 | 1.81 | 2.00 | 16.4 | 0.000 | 0.179 | 0.445 | 0.951 | 0.971
Rathkjen [72.1] 13| 2.59 | 1.93 | 26.4 | 0.000 | 0.128 | 0.419 | 0.997 | 1.062
14 | 2.59 | 1.93 | 25.1 | 0.000 | 0.063 | 0.404 | 1.076 | 1.134

15 | 2.59 | 1.93 | 25.3 | 0.000 | 0.074 | 0.416 | 1.082 | 1.147

16 | 2.59 | 1.93 | 24.1 | 0.000 | 0.099 | 0.428 ; 1.035 | 1.103

17 | 2.59 | 1.93 | 28.1 | 0.000 | 0.081 | 0.321 | 0.858 | 0.912

18 | 2.59 | 1.93 | 29.5 | 0.000 | 0.060 | 0.313 [ 0.899 | 0.949

19 | 2.59 | 1.93 | 20.1 | 0.000 | 0.108 | 0.274 | 0.606 [ 0.645

20 | 2.59 | 1.93 | 22.2 | 0.000 | 0.203 | 0.425 | 0.850 | 0.894

21 1259 [ 1.93 | 18.6 | 0.000 | 0.107 { 0.389 | 0.835 | 0.889

22| 1.37 11.93 | 32.3 | 0.000 | 0.163 | 0.328 | 1.061 | 1.059

23 | 1.37 [ 1.93 | 33.1 | 0.000 | 0.085 | 0.276 | 0.995 | 0.969

24 | 1.37 | 1.93 | 14.1 | 0.000 | 0.166 | 0.463 | 1.054 | 1.038

251 1.37 | 1.93 | 19.0 | 0.000 | 0.151 | 0.343 | 0.899 | 0.887

26 {1.37 [ 1.93 | 19.4 | 0.000 | 0.121 | 0.317 | 0.865 | 0.846
2711.37 {1 1.93 | 19.1 | 0.000 | 0.236 | 0.361 | 0.881 | 0.882

28 1 1.37 | 1.93 | 18.5 | 0.000 | 0.098 | 0.311 | 0.854 | 0.826

29 | 1.37 [ 1.93 | 18.0 | 0.000 | 0.368 | 0.435 | 0.951 | ~ 0.953

30 |1.37 | 1.93 | 27.4 | 0.000 | 0.113 | 0.354 | 1.132 | 1.112
3111.37{1.93|26.7|0.000|0.099 | 0.279 | 0.898 | 0.877

32 11.37[1.93 | 27.6 | 0.000 | 0.140 | 0.343 | 1.065| 1.056
33(1.37]1.93 |26.3 {0000 | 0.173 | 0.346 | 1.017 | 1.014
34]1.37 | 1.93 | 28.5 | 0.000 | 0.260 | 0.418 | 1.178 | 1.181

35| 1.37 | 1.93 | 29.5 | 0.000 | 0.256 | 0.411 | 1.178 | 1.181

Table A.1
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f ,d) I T test test
¢ fe fe theory | theory

correct | simple
Rathkjen [72.1] || 36 | 2.59 | 1.93 | 18.1 | 0.000 | 0.200 [ 0.461 | 0.857 | 0.906

371259 (1.93]19.2|0.000 |{ 0.155 | 0.446 | 0.899 | 0.957

38 12.59|1.93|19.2]0.000|0.183 | 0.524 | 1.017 | 1.078

39 {2.59 {1.93|18.9{0.000 | 0.111 { 0.394 0.845 0.900

521259 |1.93|21.6 |0.000 | 0.195 | 0.518 | 1.036 | 1.092

531 2.59 | 1.93 | 22.2 [ 0.000 | 0.040 | 0.275 | 0.739 | 0.765

54 2.59 | 1.93 | 24.3 [ 0.000 | 0.048 | 0.298 { 0.814 | 0.850

57 | 2.59 | 1.93 | 25.1 | 0.000 { 0.051 | 0.353 0.970 1.015
107 | 2.59 | 1.93 | 18.5 | 0.000 | 0.062 | 0.255 | 0.598 | 0.627
110 | 1.37 | 2.70 | 14.4| 0.000 | 0.457 | 0.556 0.839 0.838
111 [ 1.37 | 2.70 | 14.4 { 0.000 | 0.400 | 0.572 | 0.890 | 0.892
112 [ 1.37 | 2.70 | 14.9 | 0.000 | 0.288 | 0.531 | 0.899 | 0.901
113 | 1.37 | 2.70 | 14.9 | 0.000 | 0.215 | 0.436 | 0.782 | 0.778
114 | 1.37 | 2.70 | 21.2 | 0.000 | 0.137 | 0.363 | 0.814 | 0.801
115 | 1.37 | 2.70 | 21.2 | 0.000 | 0.121 | 0.373 | 0.854 | 0.835
116 | 1.37 | 2.70. 18.2 | 0.000 | 0.341 | 0.578 | 1.021 1.024
117 |1 1.37 | 2.70 | 18.2 | 0.000 | 0.186 | 0.548 | 1.095 [ 1.087
118 [ 1.37 | 2.70 | 20.6 | 0.000 | 0.116 | 0.388 | 0.883 | 0.861
1191 1.37 | 2.70 | 20.6 | 0.000 { 0.077 [ 0.371 | 0.894 [ 0.852
120 | 1.37 | 2.70 { 20.9 | 0.000 | 0.324 | 0.570 | 1.075 | 1.077
121 1.37 [ 2.70 | 17.6 | 0.000 | 0.158 | 0.501 1.015 | 1.001
122 | 1.37 { 2.70 | 17.6 | 0.000 | 0.094 | 0.393 | 0.862 | 0.827
123 [ 1.37 | 2.70 | 18.3 | 0.000 | 0.260 | 0.564 | 1.058 | 1.061
124.| 1.37 | 2.70 | 19.5 | 0.000 | 0.117 | 0.380 | 0.844 | 0.822
. 125 1 1.37 [ 2.70 | 19.5 | 0.000 | 0.079 [ 0.353 [ 0.828 | 0.789
Mean Value 1.001 1.011
Standard Deviation 0.118 0.114

Reference no. | ¢

uta

Table A.1: Anchorage tests without stirrups.
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test

Reference no. 13 : fe P £ O s cory ﬁz—g—i
correct | simple

Jensen [82.1] & [82.2] || 11031 | 1.81 | 2.00 | 9.9 | 0.398 | 0.341 | 0.849 | 0.997 | 1.013
11032 | 1.81 | 2.00 | 9.9 | 0.398 | 0.341 | 0.849 | 0.997 | 1.013
11531 | 1.81 | 2.00 | 17.9 | 0.220 | 0.265 | 0.660 | 1.074 | 1.092
11532 | 1.81 { 2.00 | 17.9 | 0.220 [ 0.284 | 0.707 | 1.136 | 1.153
12533 | 1.81 | 2.00 | 15.8 | 0.249 | 0.257 | 0.640 | 0.988 | 1.005
12534 | 1.81 | 2.00 | 15.8 | 0.249 | 0.279 | 0.694 | 1.056 | 1.073
13531 | 1.81 | 2.00 | 31.4 | 0.125 | 0.173 | 0.430 | 0.978 | 0.997
13532 | 1.81 | 2.00 | 31.4 | 0.125 | 0.173 | 0.430 | 0.978 | 0.997
14531 | 1.81 | 2.00 | 39.4 | 0.100 | 0.121 | 0.301 | 0.807 | 0.822
14532 | 1.81 | 2.00 | 39.4 | 0.100 | 0.121 | 0.301 | 0.807 | 0.822
21531 | 1.81 | 2.00 | 16.9 | 0.809 | 0.299 | 0.755 | 0.920 | 0.924
21531 | 1.81 { 2.00 | 16.9 | 0.809 | 0.301 | 0.749 | 0.912 | 0.915
22531 { 1.81 | 2.00 | 20.8 | 0.657 | 0.327 | 0.814 | 1.102 | 1.100
22532 1.81 | 2.00 | 20.8 | 0.657 | 0.340 | 0.845 [ 1.137 | 1.133
23531 | 1.81 | 2.00 | 33.5 | 0.408 | 0.193 |{ 0.480 | 0.915 | 0.924
23532 | 1.81 | 2.00 | 33.5 | 0.408 | 0.203 | 0.505 | 0.956 | 0.964
24531 | 1.81 | 2.00 [ 38.4 [ 0.356 | 0.195 | 0.485 | 0.994 | 1.002
24532 | 1.81 | 2.00 | 38.4 | 0.356 | 0.186 [ 0.463 | 0.956 | 0.965
11091 | 1.81 | 2.00 | 9.9 | 0.354 | 0.320 | 0.795 | 0.959 | 0.976
11092 | 1.81 | 2.00 | 9.9 | 0.354 | 0.297 { 0.738 | 0.902 | 0.917
11591 | 1.81 { 2.00 | 17.9 | 0.196 | 0.132 | 0.630 | 1.160 | 1.173
11592 |'1.81 | 2.00 | 17.9 | 0.196 | 0.266 | 0.662 | 1.089 | 1.108
12591 | 1.81 | 2.00 | 32.0 | 0.109 | 0.178 | 0.442 | 1.019 | 1.039
12592 | 1.81 | 2.00 | 32.0 | 0.109 | 0.186 | 0.462 | 1.056 | 1.076
12593 | 1.81 | 2.00 | 15.8 | 0.222 | 0.244 | 0.606 | 0.956 | 0.973
12594 | 1.81 | 2.00 | 15.8 | 0.222 | 0.244 | 0.606 | 0.956 | 0.973
13591 | 1.81 | 2.00 | 31.4 | 0.111 | 0.170 | 0.423 | 0.975 | 0.994
13592 | 1.81 | 2.00 | 31.4 | 0.111 | 0.159 | 0.396 | 0.924 | 0.942
14591 | 1.81 | 2.00 | 39.3 | 0.089 | 0.133 | 0.331 | 0.881 | 0.898
14592 | 1.81 | 2.00 | 39.3 | 0.089 | 0.127 | 0.316 | 0.848 | 0.864

Table A.2
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Reference no. 13 s JA ) _;: ﬁ : tg(s)t;y : tgs)iy

correct | simple

Rathkjen [72.1] | 90 | 1.37 | 1.93 | 20.5 | 0.137 | 0.267 | 0.502 | 1.008 | 1.010
9111371193205 0.137 | 0.284 | 0.562 | 1.117 | 1.120
92 | 1.37 | 1.93 | 21.0 | 0.267 | 0.296 | 0.601 | 1.111 [ 1.114
93 | 1.37 | 1.93 | 21.0 | 0.267 | 0.263 | 0.519 | 0.977 | 0.979
94 | 1.37 | 1.93 | 20.0 | 0.421 | 0.300 | 0.634 | 1.062 | 1.064
95 [ 1.37 | 1.93 | 20.0 | 0.421| 0.306 | 0.613 | 1.024 | 1.025
96 | 1.37 | 1.93 | 20.0 | 0.561 | 0.313 | 0.649 | 1.010 | 1.012
97 1.37 | 1.93 | 20.0 | 0.561 | 0.290 | 0.606 | 0.952 | 0.954
80 {1.37 | 1.93 [ 20.9 | 0.285 | 0.300 | 0.619 | 1.129 | 1.132
81| 1.37 | 1.93 | 20.9 | 0.285 | 0.290 | 0.595 | 1.091 | 1.093
8211.37 1 1.93 | 20.0 | 0.116 | 0.306 | 0.594 | 1.170 | 1.173
83 1.37 | 1.93 | 20.0 | 0.116 | 0.291 | 0.568 | 1.128 | 1.131
108 | 1.37 | 1.93 | 17.1 | 0.045 | 0.252 | 0.516 | 1.030 | 1.028
109 | 1.37 [ 1.93 | 17.1 | 0.090 | 0.262 | 0.561 | 1.083 | 1.083

Mean Value . ‘ 1.007 | 1.017

Standard Deviation ) 0.092 | 0.089

Table A.2: Anchorage tests with stirrups.
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Anchorage in Two and Three Layers
at Supports

The results from tests with anchorage at supports of two and three layer
of reinforcement used in chapter 9 are given in table B.1. The tests are
described in details in Andreasen [88.1]

value of the concrete strength f. is used.

. To determinate +

fc

Test | No. of | Width 4| f. % +

No. | bars [mm] | [MPa]

1-1.1 4 300 34.4 |0.089 [ 0.236
1-1.2 4 300 35.2 | 0.086 | 0.229
1-2.1 6 400 33.7 | 0.075 | 0.199
1-2.2 6 400 34.4 |0.047 | 0.125
2-1.1 4 300 32.2 10.183 | 0.299
2-1.2 4 300 33.7 |0.221 | 0.361
2-2.1 6 400 35.6 |0.087 | 0.142
2-2.2 6 400 33.0 |0.100 | 0.163

Mean concrete strength f. = 34.1M Pa.

Table B.1: Test resulls from anchorage at supports of two and three layer of reinforcement.
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and }Tz the mean
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Lap Splices

Test results for lap splices are shown here. The tests are used in chapter
10 to investigate the usefulness of the theoretical expressions developed in
chapter 7.

In table C.1 the test data and results are shown for the 357 tests. In
the table the following informations are given: The test number, the rib
parameters for the reinforcement D and F', the number of lap splices Nsp,
the geometrical properties, the uniaxial concrete compression strength f,
in MPa, the stirrup reinforcement degree 1, and the dimensionless shear
strength obtained in the tests 3’,’: The rib parameters D and F are defined
in expression (4.6) and (4.12). The geometrical parameters L& 3, % and f
are illustrated in figure 10.1.

In table C.2 results from various analysis are presented. The results are
given as the ratio between the load obtained in the tests and the corre-
sponding theoretical load carrying capacity. The analysis are separated
into

A : All mechanisms; correct determination of the variable parameters.

: All mechanisms; simpel determination of the variable parameters.

: Plate mechanism.

: Plate mechanism; limits for the geometrical parameters introduced.

: Plate mechanism; tests with spirals included.

I <> R v B B o

: Simplified plate mechanism and local failure 2; test with spirals
included, limits for the geometrical parameters introduced.
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The theoretical load is determined using the effectiveness factors given in
expression (10.1), (10.2), and (10.3). For a more detailed description of the
various analysis there are referred to chapter 10. The theoretical expressions
used in the analysis are given in chapter 7.



232 APPENDIX C. LAP SPLICES

Seie[mo.| D [ Fn,] 7 [ €[5 [ 515 ]5]% %

Tepfers [73.1] :

732 110.089 05| 2| 213 1.481.6910.1(32.5]17.2]06.000]0.163
210.089 | 0.56 2} 213| 1.25(2.00|10.1]32.5]23.4|0.000]0.129
310089056 2| 213! 1.54|1.63|10.1{32.5|35.7|0.000|0.106
4100891056 2| 2.06| 1.38|1.81|10.1|32.5|46.4|0.000 | 0.098
5| 0.089 | 0.56 2] 250 | 1.55(1.50|10.1{32.5]57.4|0.000 | 0.090
6| 0.089 | 0.56 2| 2.00| 1.64|1.56 |10.1 ) 32.5]|64.3|0.000 | 0.072
710089056 2| 256 1.16]1.94|10.1|32.5| 9.20.000 | 0.173
8 10.089 | 0.56 2| 244 1421163 |10.1|32.5| 9.9]0.000|0.157
91 0.089 | 0.56 2| 231 1.22]1.94|10.1)32.5{21.6 | 0.000 | 0.174
10 | 0.089 | 0.56 2{ 281 | 1.13|1.88|10.132.5(27.7]0.000 | 0.142
11| 0.089 | 0.56 2] 1.94| 1.41]1.81|10.1]32.5]16.0]|0.000 |0.187
12 (0.089 {0.56 | 2| 2.00| 1.38(1.81|10.1|32.5| 7.810.000|0.208
13 1 0.055 | 0.56 2| 1.63| 1.27]2.13(10.032.5(10.0 | 0.000 | 0.165
14 | 0.055 | 0.56 2| 1.69| 1.27]2.13)10.1]32.5]|13.2]0.000|0.151
15 | 0.055 | 0.56 2{ 1.63| 1.42(1.94|10.1]32.5]28.6]0.000|0.110
16 | 0.055 | 0.56 2| 156 | 1.33}2.13]|10.2 | 325 33.0 | 0.000 | 0.102
17 | 0.055 | 0.56 2| 244 | 1.31]1.8110.232.5|46.7|0.000 | 0.079

732 | 35 0.089 | 0.56 2| 219 148 1.69|10.2|32.5|37.40.000]0.113
36 | 0.089 | 0.56 2| 238 140 1.69 | 10.1 | 32.5 | 94.0 | 0.000 | 0.047
37 | 0.089 | 0.56 2| 1.69| 1.73]1.63|10.3 | 32.588.6 | 0.000 | 0.038
38 | 0.032 | 0.55 2111.75 | 1.30]2.13 |20.3 | 40.0 | 26.5 | 0.000 | 0.138
39 | 0.073 | 0.59 2(12.00| 1.10|2.50 | 20.5 | 40.0 | 24.2 | 0.000 | 0.205
40 {0.041 | 0.56| 2| 7.70 | 1.17|2.30 | 16.1 | 32.0 | 22.5 | 0.000 | 0.174
41 [ 0.073 | 0.58 2| 7.60| 1.55|2.00|16.8 | 32.0 | 23.5 | 0.000 | 0.202
4210.046 | 0.57 | 2| 3.79| 0.78 | 2.40 | 10.5 | 27.4 | 34.5 | 0.000 | 0.126
43 10.078 | 0.57 | 2| 226 | 1.02|2.55]10.5|27.4|22.7 | 0.000 | 0.140
44 10.089|0.56 | 2| 2.13| 0.62|4.06 | 10.1 | 32.5 | 22.2 | 0.000 | 0.159
45| 0.089 | 0.56 21 225 0.69]3.56 | 10.1 | 32.5 | 19.6 | 0.000 | 0.187
46 | 0.089 | 0.56 2| 1.8810.00 | 0.56 | 16.1 | 32.5 | 27.4 | 0.000 | 0.109
47 1 0.089 | 0.56 2| 1.75| 3.50)1.63|16.1 | 32.5 18.1 | 0.000 | 0.150
48 | 0.089 | 0.56 2| 2.00| 4.36|1.56 | 18.6 | 32.5 | 20.4 | 0.000 | 0.166
49 | 0.089 | 0.56 2] 1.50 | 4.89]0.56 | 10.0 | 32.5 | 16.9 | 0.000 | 0.173

732 | 50 | 0.089 | 0.56 2| 200 0.13|5.13| 6.4|32.5(19.1|0.000 | 0.128
51 | 0.067 | 0.56 2| 219 1.48|1.69(10.2|32.5(26.30.000|0.114
52 | 0.067 | 0.56 2| 219] 1.44|1.6910.1|32.5|25.1}0.000]0.116
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Serieno. [ D [Fnp| § [ €[5 3] 3[Ff] ¥ ]%

Tepfers [73.1]

732 | 53| 0.067 | 0.56 2| 2441135(1.75]10.2|32.5|11.4 | 0.000 | 0.159
54 | 0.067 | 0.56 2| 2311160} 1.56 | 10.3 | 32.5 | 40.3 | 0.000 { 0.088
55 | 0.067 | 0.56 21 213|158 1.63]10.3 |32.5|52.9|0.000 | 0.068
56 | 0.067 | 0.56 2| 830|1.17(2.30(16.7|32.0 | 14.9 | 0.000 | 0.218
57 | 0.067 | 0.56 2| 8.60|1.20|200|16.4|32.0(16.8]0.000 | 0.210
58 | 0.089 | 0.56 2| 1.81)1.00}0.50 5.8|32.5]15.8[0.000 |0.048
5910078057 2| 053139176 | 84 |37.9{16.0|0.000 |0.112
60 | 0.078 | 0.57 2| 0.63]1.28|1.87| 84 16.816.0|0.000 |0.156
61]0.046 | 0.57| 2| 0.37{1.67]1.50| 8.4 |37.9]16.3|0.000|0.100
62 | 0.046 | 0.57 2| 037156 |1.61| 8.4 |16.8|17.9|0.000|0.109
63]0.087| 057 2| 5.17(1.20|2.08|13.2|18.3|17.0|0.000 | 0.219
64 | 0.087 | 0.57 21 5.4211.26(1.9213.3]26.7|12.6 | 0.000 | 0.256
65 | 0.087 | 0.57 2| 500|146 |1.83]13.3|35.0]16.9|0.000 | 0.159
66 | 0.087 | 0.57 2| 5.08}1.19}217|13.3(43.3|16.9|0.000|0.158
67 | 0.060 | 0.58 2| 5.5011.33|1.75|13.2 | 18.3 | 19.5 | 0.000 | 0.161
68 | 0.060 | 0.58 2| 6.00|1.251.67]13.2]26.7|19.5|0.000 | 0.132
69 | 0.060 | 0.58 2| 5.67|1.35]|1.67|13.235.0 | 18.5| 0.000 | 0.153
70 | 0.060 | 0.58 21 4.58 {1.89|1.50 | 13.3 | 43.3 | 18.5 | 0.000 | 0.133
711 0.089 | 0.56 2| 2.56|258|1.94|156 |32.5|21.1 | 0.000 | 0.149
72 | 0.089 | 0.56 2| 2.19(3.38|2.0018.7 | 32.5 | 23.1 | 0.000 | 0.166
73 | 0.089 | 0.56 2] 2.00|4.09}2.06|21.9]32.5]23.8]0.000|0.139
74 10.08910.56| 2| 256|047 {4.63| 9.9 325228 0.000|0.144
7510.089 056 | 2| 2.31({041|569( 99325 |22.8|0.0000.151
76 | 0.089 | 0.56 2| 2.38(034|6.50| 9.9|325] 6.3]0.000]0.157
7710.089 | 0.56 | 2| 2.44]0.35|6.44| 9.9|325 144 0.000 | 0.215

732 | 100 | 0.073 | 0.59 2112.3810.94}2.00|19.1| 6.3|16.7|0.000 | 0.361
101 | 0.073 | 0.59 2111.13|1.46 | 1.63 | 18.9 | 13.1 | 16.7 | 0.000 | 0.224
102 1 0.073 | 0.59 | 2|11.63|1.50]1.50|19.1 { 18.8 | 16.7 | 0.000 | 0.201
103 | 0.073 | 0.59 2110.00 [ 1.64 | 1.75 | 18.8 | 25.0 | 16.7 | 0.000 | 0.205
104 | 0.032 | 0.55 2111251112 {2.13|19.0| 6.3 | 16.7 | 0.000 | 0.309
105 | 0.032 | 0.55 211163 |1.28|1.75]19.1 | 12.5 | 16.7 | 0.000 | 0.231
106 | 0.032 | 0.55 2111.5011.18 | 1.75 | 19.0 | 18.8 | 16.7 | 0.000 | 0.178
107 | 0.032 | 0.55 2111.2511.19 | 2.00 | 19.0 | 25.0 | 16.7 | 0.000 | 0.175 |.
108 | 0.045 | 0.55 2116.67 | 1.15]2.17|24.7| 8.3 13.8]0.000 | 0.533
109 | 0.045 | 0.55 2| 17.17(1.17 | 2.00 | 24.8 | 16.7 | 13.8 | 0.000 | 0.337

Table C.1



234 APPENDIX C. LAP SPLICES

Serielno.[DlFIn_,p[§'£|§I%|§lfc|¢]i
4| Tepfers [73.1]

7321110 | 0.045 | 0.55
111 | 0.045 | 0.55
112 [ 0.041 | 0.56
113 | 0.041 | 0.56
114 | 0.041 | 0.56
115 | 0.041 | 0.56
116 | 0.073 | 0.58
117 | 0.073 | 0.58
118 | 0.073 | 0.58
119 | 0.073 | 0.58
120 | 0.073 | 0.58
121 | 0.073 | 0.58
122 | 0.073 | 0.58
123 | 0.073 | 0.58
124 | 0.073 | 0.58
125 [ 0.073 | 0.58
732 1126 | 0.073 | 0.58.
127 { 0.073 | 0.58
128 | 0.073 | 0.58
129 | 0.041 | 0.56
130 | 0.041 | 0.56
131 | 0.041 | 0.56
132 | 0.041 | 0.56
133 | 0.041 | 0.56
134 | 0.041 | 0.56
135 | 0.041 | 0.56
136 | 0.041 | 0.56
137 1 0.041 | 0.56
138 | 0.073 | 0.58
139 | 0.073 | 0.58
140 | 0.041, | 0.56
141 | 0.041 | 0.56
142 | 0.073 | 0.58
143 | 0.073 | 0.58
144 | 0.041 | 0.56

16.33 [ 1.31 | 2.17 [ 25.0 | 25.0 | 13.8 | 0.000 | 0.274
17.67 | 1.10 | 1.67 | 24.3 | 33.3 | 13.8 | 0.000 | 0.196
8.50 1 0.90 | 2.00 | 15.1 | 5.0 | 13.8 | 0.000 | 0.311
8.50 | 1.00 {'1.80 | 15.1 | 10.0 | 13.8 | 0.000 | 0.203
8.50 | 1.20 | 1.50 | 15.1 | 15.0 | 13.8 | 0.000 | 0.162
8.30 | 1.05 | 1.80 | 15.1 | 20.0 | 13.8 | 0.000 | 0.170
8.10|1.18}1.70 | 15.1 | 5.0 { 15.0 | 0.000 | 0.327
7.70 | 1.47 | 1.50 | 15.1 | 10.0 | 15.0 | 0.000 | 0.222
8.00 | 1.34 | 1.50 | 15.0 | 15.0 | 15.0 | 0.000 | 0.178
9.10 1 0.83 | 1.80 | 15.1 { 19.0 | 15.0 | 0.000 | 0.191
10.80 | 1.00 | 0.50 | 14.8 | 16.0 | 23.1 | 0.000 | 0.119
7.10 | 4.80 | 0.50 | 14.9 | 16.0 | 23.1 | 0.000 | 0.111
3.00 | 9.00 | 0.50 | 15.0 | 16.0 | 23.1 | 0.000 | 0.120
10.90 | 0.21 | 2.40 | 14.9 | 16.0 | 23.1 | 0.000 | 0.141
7.10 | 1.13 | 2.20 | 15.1 | 16.0 | 23.1 | 0.000 | 0.167
3.40 1 2.20 | 2.00 | 15.2 | 16.0 | 23.1 | 0.000 | 0.211
11.00 { 0.16 | 3.10 | 15.0 | 16.0 | 23.1 | 0.000 | 0.176
7.10 1 0.83 | 3.00 | 15.1 | 16.0 | 23.1 | 0.000 | 0.217
2.70 1 1.21 | 3.70 | 14.7 | 16.0 | 21.1 | 0.000 | 0.163
10.90 | 1.00 | 0.50 | 14.9 | 16.0 | 21.1 | 0.000 | 0.096
6.60 | 5.60 | 0.50 | 15.2 | 16.0 | 21.1 | 0.000 | 0.115
2.80 1 6.29 | 0.70 | 14.6 | 16.0.| 21.1 | 0.000 | 0.133
10.90 | 0.33 | 1.80 | 15.1 | 15.5 | 21.1 | 0.000 | 0.103
7.70 [ 1.38 | 1.60 | 15.1 | 15.5 | 21.1 | 0.000 | 0.151
3.00 | 2.55 | 1.80 | 15.2 | 15.3 | 21.1 | 0.000 | 0.168
10.50 | 0.23 | 3.40 | 15.1 | 16.0 | 21.1.| 0.000 | 0.156
7.00 { 0.81 | 3.20 | 15.2 | 16.0 | 26.2 | 0.000 | 0.215
3.10 | 1.37 | 3.30 { 15.1 | 15.0 | 26.2 | 0.000 | 0.187
6.60 | 1.32 | 1.90 | 14.6 | 16.0 | 17.2 | 0.000 | 0.257
6.60 | 1.32 | 1.90 | 15.2 | 16.0 | 17.2 | 0.000. | 0.267
6.80 | 1.35 | 2.00 | 15.2 | 14.7 | 17.2 | 0.000 | 0.250
6.90 | 1.44 | 1.80|15.1 | 15.0 | 17.2 | 0.000 | 0.225
6.80 | 1.35 | 2.00 | 15.2 | 15.8 | 30.7 | 0.000 | 0.199
6.90 | 1.30 | 2.00 | 15.1 | 15.5 | 30.7 | 0.000 | 0.202
7.10 { 1.15 | 2.00 | 14.7 | 14.8 | 30.7 | 0.000 | 0.195
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Seie [no. | D [ Fn,[ 5 [ €] 5T alalf] 9 [%

Tepfers [73.1]

732|145 | 0.041 | 0.56 | 2| 6.80 | 1.25 | 2.00 | 14.8 | 14.8 | 30.7 | 0.000 | 0.193
146 | 0.073 | 0.58 | 2{6.90 | 1.20 { 2.00 | 14.7 | 15.6 | 44.6 | 0.000 | 0.158
147 | 0.073 | 0.58 217.101.30]2.00 153 | 14.5 | 44.6 | 0.000 | 0.182
148 [ 0.041 | 0.56 217.00|1.30|2.00 | 15.2 | 15.7 | 44.6 | 0.000 | 0.153
149 | 0.041 | 0.56 216.90|1.35{2.0015.3 | 14.5 | 44.6 | 0.000 | 0.150
151 | 0.073 | 0.58 2(6.80]1.30|2.00|15.0 | 15.0 [ 50.5 | 0.000 | 0.150
152 | 0.041 | 0.56 21700119210 15.0 | 14.4 | 50.5 | 0.000 | 0.149
153 | 0.041 | 0.56 21{6.70 | 1.30 | 2.00 | 14.9 | 14.0 | 50.5 | 0.000 | 0.150
154 | 0.073 | 0.58 | 2[6.90|1.20 | 2.00 | 14.7 | 15.2 | 57.6 | 0.000 | 0.121
155 [ 0.073 | 0.58 217.201.25{2.00]15.2 | 15.6 | 57.6 | 0.000 | 0.138
158 | 0.073 | 0.58 | 2| 7.00 | 1.30 | 2.00 | 15.2 | 15.2 | 71.9 | 0.000 | 0.113
159 | 0.073 | 0.58 216.70 | 1.39 | 1.80 | 14.7 | 16.2 | 71.9 | 0.000 | 0.107
160 | 0.041 | 0.56 216.70 | 1.25 | 2.00 | 14.9 | 14.3 | 71.9 | 0.000 | 0.110

732-L | 167 | 0.089 | 0.56 2(219(1.42|1.75(10.2 | 32.5 | 25.6 | 0.000 | 0.125
168 | 0.055 | 0.56 212.001.52|1.69|10.1 | 32.5 | 25.6 | 0.000 | 0.136
169 [ 0.089 [ 0.56 | 2| 1.88 |1.59|1.69 | 10.3 | 32.5 | 18.0 | 0.000 | 0.146
170 | 0.055 | 0.56 212.68]1.39|1.75|10.3|32.5|18.0 [ 0.000 | 0.159
171 | 0.089 | 0.56 21250135 1.75}10.3 | 32.5] 16.2 | 0.000 | 0.162
172 [ 0.055 | 0.56 2213 [1.41}1.81|10.3|32.5|16.2|0.000 | 0.167

732-8 | 176 | 0.073 | 0.58 416.17]0.91 |230}30.1|60.0]|18.1{0.000 | 0.135

747 1/0.050 | 0.57 | 2[4.00]1.77 |1.98|14.0 | 20.8 | 25.4 | 0.000 | 0.127
2(0.050 | 0.57 | 2|4.00|1.67|2.10 | 14.0 | 28.8 | 25.8 | 0.000 | 0.136
310050057 | 2]|4.00]|1.67|2.10]14.0 | 36.8 | 22.5 | 0.000 | 0.121
4{0.073|0.56| 2|3.72|1.83|1.98| 14.0 [ 20.8 | 20.6 | 0.000 | 0.173
5(0.073(0.56 | 2|3.68|1.48|2.46|13.9|36.8|26.8|0.0000.142
6]0.073]056{ 2|4.00(1.78|1.9413.9|52.8|30.8|0.000 0.101
710.081 | 0.61 21297 |1.16 [ 2.09 | 10.8 | 16.3 | 24.6 | 0.000 | 0.136
8/0.081(0.61| 2|2.81]|1.50|1.69|10.9|28.8|20.1]0.000]0.132
12| 0.073 | 0.56 | 2 |4.40|1.51 | 2.18 | 14.0 | 20.8 | 28.0 | 0.751 | 0.305
13 | 0:.081 | 0.61 2269|150 (1.75]10.9 | 16.3 | 28.3 [ 0.209 | 0.197
14 ( 0.081 | 0.61 213.0011.41{175|10.9|16.3 |27.10.388 | 0.236
1510.081 (061 2|3.00[1.41|1.75{10.9|16.3|27.7|0.592 | 0.249
16 | 0.060 | 0.56 | 2|3.72[1.76 | 2.10 | 14.1 | 20.8 | 37.8 | 0.000 | 0.105
17 10.060 | 0.56 | 2|4.08 | 1.62 | 2.14 | 14.0 | 28.8 | 39.1 | 0.000 | 0.091
18 [ 0.060 | 0.56 | 2 |3.68 |1.51 |2.46 | 14.1 | 36.8 | 42.2 | 0.000 | 0.089
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Setie[mo. | D [ F ny] § [ €[5 [ 5[ 1 15 ] % [z
Tepfers [73.1]

1235 17/0.089 (056 | 2|1.00]1.46|2.06|10.0/15.0[23.0]0.000]0.201

20.089 | 0.56 211.00 | 1.46 | 2.06 | 10.0 | 25.0 | 30.5 | 0.000 | 0.140

31 0.089 | 0.56 2| 1.00|1.46|2.06 | 10.0 | 35.0 { 30.7 | 0.000 | 0.111

410.089 {0.56 211.00|1.46 { 2.06 | 10.0 | 45.0 | 29.4 | 0.000 | 0.100

710.089 | 0.56 211.00]1.46 [2.06 | 10.0 | 60.0 | 31.1 | 0.000 | 0.082

81 0.089 | 0.56 2(1.00{146|2.06|10.0 15.027.1| 0.418 | 0.210

910.089 | 0.56 211.00(1.46|2.06|10.0|250|30.0]0.226 | 0.159

10 | 0.089 | 0.56 21.00 [1.46 [ 2.06 | 10.0 | 35.0 | 29.7 | 0.163 | 0.146

13 | 0.089 | 0.56 211.00|1.46 | 2.06 | 10.0 | 35.0 | 30.2 | 0.481 0.176

14 | 0.089 | 0.56 21'1.00 | 1.46 | 2.06 | 10.0 | 45.0 | 28.0 | 0.403 | 0.145

19 | 0.089 | 0.56 2(1.00|1.46 |2.06 | 10.0 | 45.0 | 27.5 | 0.479 | 0.130

657 1]0.089 | 0.56 21225135 1.75|10.0 | 32.5 | 22.8 | 0.000 | 0.128

210.089 | 0.56 21225|1.85|1.75|10.0 | 45.0 | 22.8 | 0.000 | 0.113

3 (0.089 | 0.56 2(225)1.35(1.75]10.0 | 63.8 | 22.5 | 0.000 | 0.098

4 10.089 | 0.56 21225)1.35|1.75|10.0 | 82.5 | 22.5 | 0.000 | 0.082

51 0.089 | 0.56 212.25|1.35|1.75| 10.0 | 20.0 | 21.83 | 0.519 | 0.213

6 [ 0.089 | 0.56 2(219|135|1.75| 9.9|325|21.3|0.320 | 0.181

710.089 | 0.56 21225135175 10.0 | 45.0 | 22.4 | 0.219 | 0.164

8 10.089 | 0.56 21219]1.35|1.75| 9.9|63.8|2240.155 | 0.141

910.089 | 0.56 2(225)1.35(1.75}10.0 | 32.5 | 24.3 | 0.105 | 0.143

10 | 0.089 | 0.56 21225)1.351.75| 10.0 | 32.5 | 24.3 | 0.497 | 0.213

111 0.089 | 0.56 | 2{2.25|1.35|1.75|10.0 | 32.5 | 23.0 | 0.296 | 0.165

12 1 0.089 |0.56 | 2]2.19|1.35|1.75| 9.9|325 23.0 | 0.493 | 0.221

13/0.089 [0.56 | 2(1.940.85|294| 9.9|450 226 0.000 | 0.133

14| 0.089 | 0.56 212.88|1.841.13|10.0 | 45.0 | 22.6 | 0.000 | 0.106

15 | 0.089 | 0.56 213.06|1.31|263|12.9 | 45.0 | 23.3 | 0.000 | 0.145

16 1 0.089 | 0.56 | 2|4.63|1.33 | 3.06 | 15.8 | 45.0 | 23.3 | 0.000 | 0.151

2210.087 {057 | 2[5.17]0.62|2.17{10.8| 5.0 21.8|0.000 | 0.322

2310.087 {057 | 25.17(0.62|2.17 | 10.8 | 10.0 | 24.9 | 0.000 | 0.249

24 { 0.087 | 0.57 215.17]0.62 | 2.17 | 10.8 | 20.0 | 28.6 | 0.000 | 0.191

2510.087 | 0.57 | -2(5.17|0.62|2.17|10.8 | 30.0 | 22.6 | 0.000 | 0.177

25A | 0.087 | 0.57 215.17]0.62 | 2.17 | 10.8 | 55.0 | 29.3 | 0.000 | 0.098

37 10.089 | 0.56 21288064175 81| 5.0/(24.00.000 | 0.262

38 1 0.089 | 0.56 21288|0.641.75| 81|10.0}25.0/0.000]0.178

39| 0.089 | 0.56 212.88)0.64|1.75-] 8.120.0|23.8]|0.000]|0.167

40 | 0.089 | 0.56 21288|0.64 175 8.130.0|27.5]|0.000]0.114

40A | 0.089 | 0.56 21288|0.64)|1.75| 8.1|55.0|26.4]0.000 | 0.084
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Setie [no [ D [ F [ny| § [ €[ 5[5 ] %
Tepfers [73.1]
715,56 410089056 | 2(231[1.35]1.75|10.1{20.0|28.4 |0.416 | 0.236
61 0.089 | 0.56 212311{135]1.75|10.1 | 20.0 | 10.7 | 1.102 | 0.348
710.089 | 0.56 212381135175 10.1 | 20.0 | 45.6 | 0.256 | 0.168
91 0.089 | 0.56 21231135} 175}10.1 325|269 0.274 | 0.181
10 | 0.089 | 0.56 2123111.35|1.75 | 10.1 | 32.5]29.1}0.406 | 0.171
715,56 52 | 0.089 | 0.56 213.133.690.81 | 12.1 | 325 |27.7 | 0.000 | 0.133
53 | 0.089 | 0.56 218381209 1.44|12.4|32.5|28.7|0.000 | 0.147
54 | 0.089 | 0.56 21844 [1.11 (269|124 {32.5|28.0|0.000 | 0.151
5510.080 | 0.56 | 23.50|0.83 | 3.63 | 12.5 | 32.5|36.1 | 0.000 | 0.129
61 | 0.055 | 0.56 212441135 (1.75|10.2 | 20.0 | 35.9 | 0.329 | 0.189
64 | 0.087 | 0.57 214.33|1.76|1.75|{13.518.3|17.9 | 0.879 | 0.313
65 | 0.087 { 0.57 21452131242 |13.3(26.716.3|0.967 | 0.317
71| 0.067 | 0.56 211.8111.53|1.75|10.2|13.8| 6.0 | 1.978|0.275
72 | 0.067 | 0.56 211.88|1.53|1.75| 10.3 | 20.0 | 17.5 | 0.675 | 0.205
7310.067 056 | 2|2.06]152]1.69|10.2]26.3|18.9|0.625 | 0.215
Berholdt [74.2]
91 0.064 | 0.56 214.00|1.00}2.50 | 12.0 | 28.3 | 28.1 | 0.000 | 0.163
12 | 0.064 | 0.56 | 2 |4.00 | 1.00 | 2.50 | 12.0 | 28.3 | 22.3 | 0.108 | 0.188
13 | 0.064 | 0.56 214.00 | 1.00 | 2.50 | 12.0 | 23.3 | 21.0 | 0.277 | 0.176
14 | 0.064 | 0.56 214.0011.002.50}12.023.3|18.1|0.161|0.243
15 | 0.064 | 0.56 214.00|1.00|2.50 | 12.0 | 23.3 | 25.6 | 0.000 | 0.181
Chinn et al [55.1]
D1[0.038{055| 2]1.00]1.67|150] 9.0|14.7|26.8 | 0.000 | 0.145
D2 | 0.038 | 0.55 213.00]1.00|150| 9.0]|13.7|33.210.0000.113
D3| 0.038|0.55| 2|4.00|1.002.50 | 12.0 | 14.7 | 30.0 | 0.000 | 0.144
D4 | 0.038 | 0.55 214.00|1.00|250|12.0|21.3 | 30.8 | 0.000 | 0.122
D5 | 0.038 | 0.55 1]0.00|1.27 {250 7.3|14.7|28.8 | 0.000|0.181
D6 |0.038|0.55 | 2|1.67|1.23}2.05| 9.7|14.7 | 29.9 | 0.000 | 0.128
D7 | 0.038 | 0.55 110.00]|087(219| 4.8|14.7|30.7 | 0.000 | 0.127
D8 | 0.038 | 0.55 2.]1.67|1.01 {247 | 9.7|14.7|31.5|0.000 | 0.132
D9 | 0.038 | 0.55 110.00079 242 4.8]14.730.2 | 0.000 | 0.134
D10 | 0.038 | 0.55 1]0.00]0.78 | 247 48| 9.3|29.40.000 | 0.162
D12 | 0.038 | 0.55 1]0.00(075]|266| 5.0]|21.3|31.2/0.000]0.116
D13 | 0.038 | 0.55 1(0.00|1.80]242| 9.8|14.7|33.2|0.000 | 0.176
D14 | 0.038 | 0.55 1{000]1.22]1.61] 4.9|14.7|33.2|0.000 | 0.113
D15 { 0.038 | 0.55 110.00{3.26|1.33| 9.7|14.7[29.60.000]0.171
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Serie[no. | D [ F [ny] 3 | € | 5 | 2 [T A] % | 2
Chinn et al [55.1}

D17]0.038 { 0.55
D19 | 0.038 | 0.55
D20 | 0.038 | 0.55
D21 | 0.038 | 0.55
D22 | 0.038 | 0.55
D23 | 0.038 | 0.55
D24 | 0.038 | 0.55
D25 | 0.038 | 0.55
D26.{ 0.038 | 0.55
D29 | 0.038 | 0.55
D30 | 0.038 | 0.55
D31 | 0.030 | 0.54
D32 | 0.038 | 0.55
D33 | 0.038 | 0.55
D34 | 0.038 | 0.55
D35 | 0.038 | 0.55
D36 | 0.030 | 0.54
D38 | 0.038 | 0.55
D39 | 0.038 | 0.55
D40 | 0.038 | 0.55
Orr [76.1]

0.00 1 1.25 | 1.57 | 4.9 ]21.3|24.7 | 0.000 | 0.127
0.00 | 1.58 | 2.77 | 9.8 | 21.3 | 29.2 | 0.000 | 0.169
0.00 1 0.84 1239 | 5.0 9.3{29.2/0.000]0.168
0.00 | 1.78 | 2.46 | 9.8 | 14.7.| 30.9 | 0.000 | 0.168 |
0.00 { 1.25 | 1.58 | 4.9 | 9.3 |30.9 |0.000 | 0.141
0.00 | 1.25 | 1.54 | 4.8 {21.3{30.9 | 0.000 | 0.102
0.00 | 2.74 | 1.58 | -9.7 | 21.3 | 30.7 | 0.000 | 0.116
0.00 | 0.75 | 2.54 | 4.8 (32.0 | 35.2 | 0.000 | 0.088
0.00 [ 1.31 | 1.50 | 4.9 | 32.0 | 35.2 | 0.000 | 0.084
0.00 { 0.84 [ 2.35 | 4.9 | 14.7 | 51.6 | 0.000 | 0.101
0.00 (0.76 | 2.58 | 4.9 | 21.3 | 51.6 | 0.000 | 0.082
0.00 | 1.27 | 2.71 | 9.8 | 14.7 | 32.4 | 0.000 | 0.230
0.00 | 1.77 | 2.46 | 9.7 | 14.7/| 32.4 | 0.000 | 0.170
0.00 | 1.21 | 1.63 | 5.0 | 14.4 | 33.3 | 0.000 | 0.097
0.00 {0.77 | 2.49 | 4.8 |16.7 | 26.2 | 0.000 | 0.142
0.00 (0.78 { 2.43 | 4.8 |32.0 | 26.2 | 0.000 | 0.110
0.00 | 2.22 | 1.99| 9.8 |14.7 | 30.4 | 0.000 | 0.199
0.00 | 1.02 | 2.53 | 6.2 | 14.7 | 21.8 | 0.000 { 0.149
0.00 { 0.76 | 2.58 | 4.9 | 14.7 | 21.8 | 0.000 | 0.145
0.00 {2.95|1.50| 9.8]|21.3|36.4|0.000 | 0.120

P et e R b b b e b et b b b e e e fed e

210.087 055 2|4.00|1.00|2.50 [ 12.0 | 30.0 [ 18.3]0.000 [ 0.182
310.0370.55 4.00) 1.00 | 2.50 | 12.0 | 22.5 | 18.3 | 0.000 | 0.192
410.037)0.55| 2[4.001.00]2.50]12.0 | 15.0 | 18.3 | 0.000 | 0.201
Reynols & Beeby [82.3]

E 110040 (055| 26.63]0.74 194|125 | 8.8]40.0]0.000]0.120
210.040 | 0.55 6.38 | 0.86 | 1.81 [ 12.5 | 15.0 | 40.0 { 0.000 | 0.102
510.040 | 0.55 1,000 |3.28|1.75|12.5 | 18.1|40.0 | 0.000 | 0.121
Zekany et al [81.1]

)

[ Y]

1T [0.038 | 0.55 | 41297 (.1.00|1.95(19.816.0 | 25.5 [ 0.290 | 0.120
2B | 0.038 [0.55| 4|2.971.001.95|19.816.0125.9|0.286 | 0.147
3T | 0.038 | 0.55 [ 4 |2.97|1.00 | 1.95]|19.8 | 16.0 | 26.0 | 0.284 | 0.127
4B | 0.038 [ 0.55 | 4297 |1.00|1.95|19.8 | 16.0 | 26.0 | 0.284 | 0.147
5B.10.038 (0.55| 4{2.97|1.001.95|19.816.0|28.4|0.153 | 0.162
6T [ 0.03810.55| 4|2.97|1.00(1.95|19.8]16.0|28.6|0.152 | 0.131
7T | 0.038 | 0.55 | 4]2.97!1.00(1.95]19.8|16.0 | 26.4 | 0.000 | 0.122
8B | 0.038 | 0.55 | 4]2.97(1.00|1.95|19.8|16.0|26.40.000 | 0.156
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Sesie [0 | D | F [np] $ [ €12 [T 5[ L1 %1%

Zekany et al [81.1]

9B | 0.038 | 0.55| 4297 |1.00|1.95|19.8(16.0|29.00.150 | 0.163

10T | 0.038 | 0.55 41297)1.00|1.95|19.8]16.0 | 29.0 | 0.150 | 0.125

11T 1 0.038 | 0.55 | 41297{1.00|1.95|19.8|16.0|26.5|0.137 | 0.134

12B | 0.038 | 0.55 412971100195 19.8]16.0|26.5|0.137 | 0.153

13T | 0.038 [ 0.556 | 4]297{1.00]1.95|19.8|16.0|27.8|0.148 | 0.177

14B | 0.038 | 0.55 | 4297 |1.00|1.95]19.8 |16.0 | 27.8 | 0.148 | 0.167

15B | 0.038 | 0.55 41297(1.00(1.95]19.8|16.0 | 28.4 | 0.144 | 0.129

16T [ 0.038 | 0.55 | 412.97({1.00|1.9519.8|16.0| 284 |0.144 | 0.132

17T | 0.038 | 0.55 4129711.00{1.95]|19.8 |16.0}37.4|0.109 | 0.085

18B | 0.038 | 0.55 | 412.97}1.001.95|19.8|16.0(37.40.109 | 0.121

19B | 0.038 | 0.55 4297 (1.00|1.95]19.8]16.0 | 34.8 | 0.118 | 0.132

20T | 0.038 | 0.55 41297 (1.001.95]|19.8|16.0 | 34.8|0.118 | 0.112

21T | 0.037 | 0.55 51267 [1.00 [228|24.2]14.2 | 39.0 { 0.000 | 0.124

22B | 0.037 | 0.55 512.67(1.00|2.28|24.2 | 14.2 | 39.0 | 0.000 | 0.146

23B | 0.037 | 0.55 5267 ]1.00]228(242)|14.239.3]0.179 | 0.161

24T | 0.037 | 0.55 52.671(1.00 228|242 14.2]39.3]0.179|0.114
Ferguson & Breen [65.1) :

8R | 182 {0.037|0.55| 2|6.50!1.67)2.25|17.0|18.0|23.9|0.000 | 0.173

242 | 0.037 | 0.55 216.50 [1.73 {2.17 | 17.0 | 24.0 | 24.3 | 0.000 | 0.174

30a | 0.037 [ 055 | 2|6.50|1.84 | 2.03|17.0 | 30.0 | 20.9 | 0.000 | 0.145

8F | 36a | 0.037 [ 0.55 | 2|6.50]1.97|1.91]17.036.0{32.1|0.000|0.104

36b [ 0.037 | 0.55| 2]6.50|1.98|1.90|17.0|36.0 |26.0 | 0.000 | 0.113

39a | 0.037 | 0.55| 2 /6.501.84 2.03|17.0|39.0|25.2|0.000 |0.131

42a 1 0.03710.55| 2|6.50|1.88|2.00{17.0|42.0 | 18.3 | 0.000 | 0.147

42b [ 0.03710.55| 216.50]1.92(1.95|17.0|42.0|26.4|0.000|0.117

8R | 42a|0.037 | 0.55| 2 |6.50]|1.82|2.06]|17.0|42.0|22.8|0.000 | 0.127

482 1 0.037 | 0.55| 2(6.50 | 1.90 | 1.98 | 17.0 | 48.0 | 21.0°| 0.000 | 0.124

64a | 0.037 | 0.55| 2 |6.50)1.85|2.02|17.0 | 64.0 | 24.5 | 0.000 | 0.099

80a | 0.037 | 0.55| 2|6.50|1.88|2.00|17.080.025.8|0.000 | 0.081

8F | 36k [ 0.037]0.55| 2284|296 |1.88|17.0|36.0|23.9|0.000|0.106

11R | 24a {0.038 | 0.55| 2|6.51|2.23|1.68|17.0|23.4 25.6 | 0.000 | 0.145

30a (0.038 {1 0.55| 2 (6.51(2.63]143]|17.0]29.3|27.8|0.000]0.121

36a | 0.038 | 0.55| 2|6.51]240)1.56(17.0 ] 35.1 31.51 0.000 | 0.097

36b | 0.038 | 0.55 | 2|6.51|2.43|1.5417.0]35.1|23.10.000|0.122

422 | 0.038 [ 0.55 | 26.51]2.43|1.55|17.0 | 41.0 | 24.3 | 0.000 | 0.106

48a | 0.038| 0.55 216.5112.38(1.59|17.0 | 46.8 | 21.7 | 0.000 | 0.122

-48b [ 0.038 | 0.55| 2|6.51|232|1.62|17.046.8|23.0|0.000|0.113
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Serie [ no. | D l F | Nsp ] H ] 13 [ b1 [ % | % I A | P ] =
Ferguson & Breen [65.1] _
11R | 482 [ 0.038 | 0.55 | 2 |6.51|2.40 | 1.56|17.0]46.8]38.8]0.000]0.077
48b | 0.038 | 0.55 216.511.911.96]17.046.8|21.4|0.000]0.118
11F | 60a | 0.038 | 0.55 216.512.30|1.63|17.0 | 585 | 18.0 | 0.000 | 0.127
60b | 0.038 | 0.55 216.51 (240 | 1.56 | 17.0 | 58.5 | 28.2 | 0.000 | 0.080
11R | 60a | 0.038 | 0.55 2{6.511251|1.50(17.058.518.5|0.000 | 0.122
60b | 0.038 | 0.55 216.51 1215 (174 |17.0 | 58.5|23.9 | 0.000 { 0.105
8F | 30b | 0.037 | 0.55 216.50|1.88 |2.00}17.0 | 30.0 | 18.0 | 0.193 | 0.181
36¢ | 0.037 | 0.55 216.50 {1.91 1 1.97 | 17.0 | 36.0 | 18.9 | 0.153 | 0.154
36d | 0.037 | 0.55 21650 |1.84 (203 |17.0 {36.0|24.7 | 0.200 | 0.146
36e | 0.037 | 0.55 216.5011.91(1.97|17.036.0|28.8|0.101 { 0.132
36f | 0.037 | 0.55 216.501.882.00]|17.036.0(26.1]0.189{0.143
36g | 0.037 | 0.55 216.50)1.84{2.03|17.0|36.0|21.2|0.137 | 0.170
36h | 0.037 | 0.55 2/6.50 1.79 1 2.09 | 17.0 | 36.0 | 13.2 | 0.510 | 0.201
36j 1 0.037 | 0.55 216.50|1.88(2.0017.036.0|12.5| 0.536 | 0.242
11R | 36a | 0.037 | 0.55 216.73 197 |1.97|17.5| 36.0 | 20.8 | 0.243 | 0.189
Chamberlin [58.1]
1 a | 0.030 | 0.54 214.00)1.00 250|120 6.0|30.2|0.000]|0.179
b| 0.030 | 0.54 214.00|1.00|250|12.0| 6.0 30.20.000|0.179
3 a | 0.030 | 0.54 2(4.00 | 1.00 | 2.50 |-12.0 | 12.0 | 30.7 | 0.000 | 0.154
b | 0.030 | 0.54 214.00]1.00|2.50]12.0 | 12.0 | 30.7 | 0.000 | 0.155
c[0.030 | 0.54| 2]4.00]1.00|2.50]12.0|12.0 | 30.7|0.000 | 0.157
2 a | 0.030 | 0.54 110.00|2202.50]12.0| 6.0|30.5]|0.000|0.324
b [0.030 [ 0.54 | 1]0.00|2.20|2.50|12.0| 6.0 |30.5]0.000 | 0.339
4 a | 0.030 | 0.54 110.00 |2.20 | 2.50 | 12.0 | 12.0 | 30.1 | 0.000 | 0.210
b |-0.080 [ 0.54 | 1]0.00 |2.20|2.50 | 12.0 | 12.0 | 30.1 | 0.000 | 0.216
c]0.030 ] 0.54 | 10.00|2.20|250|12.0|12.0 | 30.1|0.000 | 0.214
Ferguson & Krishnaswamy [71.1}
SP| 32|0.038 | 0.55 1(0.005.78  1.38 | 17.0 | 35.5 | 22.6 |-0.000 | 0.156
331 0.038 | 0.55 110.007.76 | 1.03 | 17.0 | 39.0 | 23.2'| 0.000 | 0.144
34 | 0.038 | 0.55 1]0.00|7.76 { 1.03 | 17.0 | 25.5 | 22.6 | 0.000 | 0.163
35 | 0.038 | 0.55 110.00|4.18 { 1.92 | 17.0 | 14.2 | 22.8 | 0.000 | 0.204
36 | 0.038 | 0.55 110.00[2.981.92]124 (17.0{23.7 | 0.000 | 0.203
.37 1 0.038 | 0.55 313.00236]1.9219.9|31.9]22.5]|0.000]0.166
38 0.038 1055 2{2.00(0.78|1.92{ 8.0|28.4|20.5|0.000 {0.129
39 | 0.038 | 0.55 313.00|1.04|1.92|14.9]31.9|21.5]0.000 | 0.128
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Serie[no.[ D [Fn, | §T 6T T3]l L[ ] 3%

Ferguson & Krishnaswamy [71.1]

148 1]0.038 | 0.55 214.00}132]1.92)11.8|26.6|18.7|0.000 | 0.158
2 10.038 | 0.55 214.00132}1.92}11.8|31.9]23.1|0.156 | 0.139
3] 0.038 | 0.55 214.00|1.32]1.92|11.8|17.7 20.8« 0.310 | 0.182
4 1 0.038 | 0.55 21400132192 |11.8{17.7|22.1 ] 0.243 | 0.220
6 | 0.038 | 0.55 214.001.32]1.92|11.8|21.3|24.60.224 | 0.198

185 | 12| 0.034{0.55| 214.001.37|1.83|12.026.6|21.8|0.000]0.135
15| 0.034 { 0.55 | 2(4.00|1.37|1.83 | 12.0 | 41.2 | 17.7 | 0.000 | 0.109
1} 0.034 | 0.55 2(400}1.37]183}12.0|31.9]18.7|0.184 | 0.190
4(0.034|055| 2]4.00|1.37|1.83|12.0|26.6|27.2|0.379 | 0.158
210034055 2|4.00]1.37|1.83|12.0|26.618.1|0.228 | 0.189
310.034 | 0.55 24.00|1.37]1.83 | 12.0 | 31.9 | 32.1 | 0.037 | 0.100
910.034 | 0.55 214.00(1.37|1.83|12.0 | 26.6 | 20.8 | 0.324 | 0.220
13[0.034 055 | 2|4.00(1.37|1.83(12.021.3|23.4(0.287|0.205

SP | 40| 0.033 | 0.556 214.00|1.37]1.83|12.0 | 24.0 | 22.2 | 0.000 | 0.139

Ferguson & Briceno [69.1 ,
1]0.038]055| 2]1.21[058|1.92| 6.4]60.3|19.3|0.000|0.068
510.038 | 0.55 2111910571192 | 6.4 |60.3|26.9|0.0000.081
710.038 | 0.55 211301060192 | 6.6|40.8]20.1(0.000 |0.094
12 | 0.038 | 0.55 21214082 |1.92| 83 |46.1]29.3|0.000 | 0.091
1310.038 [ 0.55 | 2{3.07{1.06|1.92|10.131.2|23.3]0.000]|0.133
14 | 0.038 | 0.55 | 2[4.03|1.31}1.92}12.1|23.4]21.0{0.000]|0.144 |
1510.03810.55( 2|3.01]1.05|1.92](10.0 46.1 | 23.0 | 0.000 | 0.117
16 [ 0.038 | 0.55 | 2]3.01|0.76 [ 2.63 | 10.0 [ 31.2 | 21.1 | 0.000 | 0.144
17 10.038 | 0.55 | 2|4.04{1.32|1.92|12.1 355|245 |0.000|0.118
210038055 2119|057 |1.92| 6.4|60.3|28.9|0.019 | 0.063
2210.038{055| 2404132192121 355269 |0.000]|0.139
23(0.038|0.55| 2{273|0.90]|2.08| 9.551.2]24.8 |0.0000.076
24 10.038 | 0.55| 2|1.2810.60|1.92| 6.6|46.1|24.9|0.058 | 0.098
2510.038|0.55] 38|1.37}0.62|1.92]|10.1|30.0|23.0|0.251]|0.159
26 {0.0380.55| 3|1.55]0.66|1.92]10.6 | 30.0|22.1|0.262 ] 0.151
2710.038|0.55| 3|1.58|0.67|1.92|10.7|30.0|22.5 | 0.000|0.102
la | 0.037 | 0.55 | 2]2.00|0.60|2.50| 80 |47.0|19.1 | 0.000 | 0.098
2a | 0.037|0.55 | 2|3.00]0.80|2.50|10.0 | 32.0 | 27.0 | 0.000 | 0.118
4a {0.037 | 0.55 | 2|1.13(1.42[250]| 6.3 |42.0]|30.0|0.000 | 0.081
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Serie[mo.| D | F ny| g [ €[5 [a[a]h[9¥ | ¢

Thompson et al {79.4]
- 110.038 | 0.55 615.33)1.00(3.17|44.0 | 16.0 [ 25.7 | 0.000 | 0.234
21 0.037 | 0.55 6 {4.00]0.72 | 3.50 | 36.0 | 18.0 [ 32.5 | 0.000 { 0.171
710.037 | 0.55 6]4.00|1.00|250|36.0|24.0|21.4 |0.000 | 0.179
12 [ 0.038 | 0.55 6]2.84|1.59|1.2129.031.9(24.3|0.000 | 0.099
131 0.038 | 0.55 61284)1.001.92}29.0|21.3(19.8}0.000 | 0.162
141 0.038 | 0.55 612841741192 |31.8]|21.3(23.1]0.000 |0.155
16 1 0.038 [ 0.55.| 514.26 |1.37]1.92|313|17.7|27.0|0.000 | 0.144
2010.038[0.55| 6(2.8411.00]1.92]29.0]|14.2|22.5]0.231 | 0.223
22 10.034 | 0.55 5(2.38]1.00|1.68[222|354|19.8|0.000 | 0.110
23{0.034(055] 5238|170 |1.68|24.5]35.422.0]0.000|0.119

Table C.1: Test data for lap splices.
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0.962
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0.939
0.776
0.788
1.196
1.121
1.140
0.886
0.906
0.949
1.053

1.009 .

0.987
1.080
0.716
0.565
1.264
1.110
1.279
1.179
1.228
0.803
0.802
0.939
1.134
0.820
0.918
1.767
0.664
0.962
0.959

1.062
0.911
1.010
1.018
1.128
0.939
0.776
0.788
1.196
1.121
1.140
0.919
0.906
0.949
1.053
1.009
0.987
1.080
0.716
0.565
1.264
1.110
1.279
1.179
1.228
0.803
0.802
0.939

0.820
0.918

0.962
0.959

1.062
0.911
1.010
1.018
1.128
0.939
0.776
0.788
1.196
1121
1.140
0.886
0.906
0.949
1.053
1.009
0.987
1.080
0.716
0.565
1.264
1.110
1.279
1.179
1.228
0.803
0.802
0.939
1.134
0.820
0.918
1.767
0.664
0.962
0.959

1.155
0.986
1.100
1.104
1.231
1.023
0.841
0.858
1.296
1.215
1.238
0.998
0.912
0.955
1.061
1.016
0.996
1.175
0.778
0.616
1.293
1.126
1.294
1.194
1.233
0.844
0.848
0.997

0.892
0.999

0.994
0.993
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Test Analysis

Reference Series | No. A B C D E F
Tepfer [73.1] 732 | 53 [ 0.874 | 0.874 |0.874 | 0.874 | 0.874 | 0.898
54 |1 0.939 | 0.939 | 0.939 | 0.939 | 0.939 | 0.981
55.1(-0.820 | 0.820 | 0.820 | 0.820 | 0.820 | 0.851
56 || 1.003 | 1.003 | 1.003 | 1.003 | 1.003 | 1.014
57 | 1.100 | 1.100 { 1.100 | 1.100 { 1.100 | 1.113
58 |1 0.722 1 0.719 | 0.634 0.634
59 || 0.798 | 0.798 | 0.798 | 0.798 | 0.798 | 0.869
60 || 0.767 | 0.767 | 0.767°| 0.767 | 0.767 | 0.806
61 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 1.004
62 |l 0.817 | 0.817 | 0.817 | 0.817 | 0.817 | 0.818
63 || 0.886 | 0.886 | 0.886 | 0.886 | 0.886 | 0.932
64 || 1.081 | 1.081 | 1.081 | 1.081 | 1.081 | 1.162
65 (| 0.892 | 0.892 | 0.892 | 0.892 | 0.892 | 0.971
66 (| 0.903 | 0.903 | 0.903 | 0.903 | 0.903 | 0.984
67 || 0.882 |0.882 | 0.882 | 0.882 | 0.882 | 0.886
68 || 0.872 | 0.872 | 0.872 | 0.872 | 0.872 | 0.881
69 || 1.091 | 1.091 | 1.091 | 1.091 | 1.091 { 1.106
70 |} 1.050 | 1.050 | 1.050 | 1.050 | 1.050 | 1.070
71 | 0.828 | 0.828 | 0.828 | 0.828 | 0.828 | 0.894
72 || 0.878 | 0.878 | 0.878 | 0.878 | 0.878 | 0.943
73 || 0.687 | 0.687 | 0.687 | 0.687 | 0.687 | 0.733
74 | 0.702 | 0.702 | 0.702 | 0.702 | 0.702 | 0.738
75 || 0.675 [ 0.675 | 0.675 | 0.675 | 0.675 | 0.701
76 | 0.365 | 0.349 | 0.349 | 0.404 | 0.349 | 0.415
‘ 77 1| 0.748 | 0.726 | 0.726 | 0.726 | 0.726 | 0.747

732 | 100 |} 0.887 | 0.879 | 0.779 0.779
101 [ 0.839 | 0.834 | 0.748 | 0.748 | 0.748 | 0.750
102 | 0.956 | 0.953 | 0.837 | 0.837 | 0.837 | 0.844
103 | 0.949 | 0.945 | 0.913 | 0.913 | 0.913 | 0.924
104 || 0.762 | 0.763 | 0.689 0.689
105 || 1.102 | 1.099 | 0.971 | 0.971 | 0.971 | 0.972
106 || 1.107 | 1.107 | 0.976 | 0.976 | 0.976 | 0.985
107 | 1.092 | 1.092 | 1.052 | 1.052 | 1.052 | 1.064
108 || 1.236 | 1.237 | 1.038 | 1.038 | 1.038 | 1.027
109 § 1.331 | 1.331 | 1.069 | 1.069 | 1.069 | 1.074
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Test
Reference Series

No.

A

B

Analysis

C

D

Tepfer [73.1] | 732

732

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

1.208
1.342
0.666
0.727
0.868
0.900
0.762
0.749
0.739
0.892
1.646
1.194
1.159
1.502
0.703
0.931
1.834
0.785
0.525
1.502
1.553
1.458
1.333
0.924
0.941
1.641
0.963
0.789
1.025
1.043
1.159
1.129
1.005
1.014
1.239

1.207
1.339
0.649
0.727
0.868
0.900
0.762
0.744
0.738
0.872
1.646
1.191
1.138
1.310
0.703
0.931
1.460
0.785
0.525
1.502
1.548
1.457
1.293
0.921
0.941
1.435
0.963
0.789
1.025
1.043
1.159
1.129
1.605
1.014
1.239

1.055
1.038
0.627
0.710
0.809
0.900
0.737
0.719
0.711
0.780
0.918
0.851
0.917
0.571
0.703
0.931
0.631
0.785
0.525
1.024
1.217
1.256
0.584
0.916
0.941
0.605
0.963
0.789
1.025
1.043
1.159
1.129
1.005
1.014
1.239

1.0585
1.038

0.710
0.809
0.900

0.719
0.711
0.780

0.703
0.931

0.785
0.525

0.916
0.941

0.963
0.789
1.025
1.043
1.159
1.129
1.005
1.014
1.239

1.055
1.038
0.627
0.710
0.809
0.900
0.737
0.719
0.711
0.780
0.915
0.851
0.917
0.571
0.703
0.931
0.631
0.785
0.525
1.024
1.217
1.256
0.584
0.916
0.941
0.605
0.963
0.789
1.025
1.043
1.159
1.129
1.005
1.014
1.239

1.067
1.063

0.708
0.813
0.906

0.722

0.714
0.784

0.704
0.932

0.786

0.517 ||

0.920

0.944 ||

0.959
0.786
1.027
1.046
1.160
1.132
1.007
1.015
1.240
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Test
Reference Series

No.

Analysis

C

D

Tepfer [73.1] 732

732-L

732-8
747

145

146
147
148
149
151
152
153
154
155
158
159
160
167
168
169
170
171

1.221
0.973
1.056
1.189
1.106
0.953
1.144
1.171
0.836
0.949
0.856
0.899
1.038
0.974
1.294
0.964
1.244
0.999
1.225
0.860
0.844
1.039
0.963
0.857
0.934
0.880
0.687
0.812

0.754
0.771
0.817

1.221
0.973
1.056
1.189
1.106
0.953
1.144
1171
0.836
0.949
0.856
0.899
1.038
0.974
1.294
0.964
1.244
0.999
1.225
0.860
0.844
1.039
0.963
0.857
0.934
0.880
0.687
0.812

0.754
0.771
0.817

1.221
0.973
1.056
1.189
1.106
0.953
1.144
1171
0.836
0.949
0.856
0.899
1.038
0.974
1.294
0.964
1.244
0.999
1.225
0.860
0.844
1.039
0.963
0.857
0.934
0.880
0.687
0.812

0.754
0.771
0.817

1.221
0.973
1.056
1.189
1.106
0.953
1.144
1.171
0.836
0.949
0.856
0.899
1.038
0.974
1.294
0.964
1.244
0.999
1.225
0.860
0.844
1.039
0.963
0.857
0.934
' 0.880
0.687
0.812

0.754
0.771
0.817

1.221
0.973
1.056
1.189
1.106
0.953
1.144
1171
0.836
0.949
0.856
0.899
1.038
0.974
1.294
0.964
1.244
0.999
1.225
0.860
0.844
1.039
0.963
0.857
0.934
0.880
0.687
0.812
0.900
0.821
0.844
0.791
0.754
0.771
0.817

1.222
0.974
1.057
1.191
1.107
0.954
1.144
1.171
0.836
0.950
0.857
0.901
1.039
1.058
1.306
1.048
1.255
1.086
1.235
0.922
0.848
1.048
0.976
0.866
0.962
0.970
0.698
0.881
0.800
0.787 ||
0.767
0.699
0.757
0.777
0.825
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Reference Series

Analysis

C

D

Tepfer [73.1] 123

657

0 ~3 O O i LN

B DD DD DD B2 e e
CtH WU W - OO

25A
37
38
39
40
40A

0.996
0.997
0.919
0.904
0.862
0.835
0.823
0.867
0.788
0.683

0.950
0.965
0.962
0.892
0.787
0.815
0.876
0.878
0.874
0.882

0.907
1.081
0.932

0.829°

1.068
1.149
1.252
1.215
0.967
1.057
0.968
1.181
1.021
0.927

0.996
0.997
0.919
0.904
0.862
0.835
0.823
0.867
0.788
0.683

0.950
0.965
0.962
0.892
0.787
0.815
0.876
0.878
0.874
0.882

0.907
1.081
0.932
0.829
1.066
1.149
1.252
1.212
0.956
1.057
0.968
1.178
1.013
0.927

0.996
0.997
0.919
0.904
0.862
0.835
0.823
0.867
0.788
0.683

0.950
0.965
0.962
0.892
0.787
0.815
0.876
0.878
0.874
0.882

0.907
1.081
0.932
0.829
0.925
1.018
1.117
1.098
0.900
0.991
0.909
1.128
0.990
0.927

0.996
0.997
0.919
0.904
0.862
0.835
0.823
0.867
0.788
0.683

0.950
0.965
0.962
0.892
0.787
0.815
0.876
0.878
0.874
0.882

0.907
1.081
0.932
0.829

1.018
1.117
1.098
0.900

0.909
1.128
0.900
0.927

0.996
0.997
0.919
0.904
0.862
0.878
0.869
0.917
0.852
0.742
0.735
0.950
0.965
0.962
0.892
0.841
0.875
0.942
0.945
0.913
0.955
0.836
0.792
0.907
1.081
0.932
0.829
0.925
1.018
1.117
1.098
0.900
0.991
0.909
1.128
0.990
0.927

1.048
1.070
0.996
0.987
0.949
0.833
0.860
0.922
0.802
0.709
0.656
1.032
1.058
1.068
1.002
0.797
0.856
0.936
0.949
0.938
0.905
0.820
0.706
0.980
1.204
1.010
0.890

1.035
1.186
1.183
0.988

0.953
1.210
1.072
1.019
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Test Analysis
Reference Series | No. A B C D E F
Tepfer [73.1] 715,56 4 0.917 | 0.822
6 0.701 | 0.614
7 0.885 | 0.812
9 0.817 | 0.765
10 0.705 | 0.633

715,56 | 52 | 1.428 | 1.425 | 1.377 | 1.377 | 1.377 | 1.541
53 || 1.204 | 1.204 | 1.204 | 1.204 | 1.204 | 1.317
54 || 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.997
55 | 0.792 | 0.792 | 0.792 | 0.792 | 0.792 | 0.836

61 0.903 | 0.798
64 0.765 | 0.676
65 0.731 | 0.645
71 0.351 | 0.344
72 0.578 | 0.510
73 0.657 | 0.579
Bergholdt [74.2] 91 1.124 | 1.124 | 1.124 | 1.124 | 1.124 | 1.129

12 | 1.009 | 1.009 | 1.009 | 1.009 | 1.009 | 1.013
13 || 0.732 | 0.732 | 0.732 | 0.732 | 0.732 | 0.734
14 | 1.051 | 1.051 | 1.051 | 1.051 | 1.051 | 1.053
15 | 1.091 | 1.091 | 1.091 | 1.091 | 1.091 | 1.093
Chinn et al. [55.1] D1 [ 1.377 [ 1.377 | 1.377 | 1.377 | 1.377 | 1.378
D2 | 1.152 | 1.152 | 1.152 | 1.152 | 1.152 | 1.152
D3 | 0.918 | 0.918 | 0.918 | 0.918 | 0.918 | 0.916
D4 | 0.982 | 0.982 | 0.982 | 0.982 | 0.982 | 0.984
D5 || 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.991
D6 || 1.045 | 1.045 | 1.045 | 1.045 | 1.045 | 1.043
D7 || 1.012 | 1.012 | 1.012 | 1.012 | 1.012 | 1.010
D8 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.989
D9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996
D10 | 0.886 | 0.886 | 0.886 | 0.886 | 0.886 | 0.879
D12 || 1.009 | 1.609 | 1.009 | 1.009 | 1.009 | 1.008
D13 || 0.873 | 0.873 | 0.873 | 0.873 | 0.873 | 0.873
D14 | 1.098 | 1.098 | 1.098 | 1.098 | 1.098 | 1.099
D15 || 1.383 | 1.364 | 1.177 | 1.177 | 1.177 | 1.188
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Test
Reference

Series

No.

A

Analysis

C

D

Chinn et al.[55.1]

D17
D19
D20
D21
D22
D23
D24
D25
D26
D29
D30
D31
D32
D33
D34
D35
D36
D38
D39
D40

1.294
0.919
0.914
0.795
1.033
1.183
0.972
1.044
1.236
0.991
0.941
1.109
0.829
0.924
1.045
1.149
1.183
0.790
0.875
1.146

1.204
0.919
0.914
0.795
1.033
1.183
0.961
1.044
1.236

10.991

0.941
1.109
0.829
0.924
1.045
1.149
1.153
0.790
0.875
1.136

1.294
0.919
0.914
0.795
1.033
1.183
0.912
1.044
1.236
0.991
0.941
1.109
0.829
0.924
1.045
1.149
1.153
0.790
0.875
1.147

1.294
0.919
0.914
0.795
1.033
1.183
0.912
1.044
1.236
0.991
0.941
1.109
0.829
0.924
1.045
1.149
1.153
0.790
0.875
1.147

1.294
0.919
0.914
0.795
1.033
1.183
0.912
1.044
1.236
0.991
0.941
1.109
0.829
0.924
1.045
1.149
1.153
0.790
0.875
1.147

1.301
0.921
0.908
0.795
1.029
1.190
0.924
1.048
1.251
0.988
0.941
1.107
0.828
0.925
1.042 |
1.185
1.156
0.788
0.872
1.062

Orr [76.1]

2
3
4

1.376
1.243
1.024

1.376
1.243
1.024

1.376
1.243
1.024

1.376
1.243
1.024

1.376
1.243
1.024

1.384
1.246
1.021

Reynolds & Beeby [82.3]

El
E2
E5

0.837
0.904
0.913

0.832
0.880
0.898

0.716
0.880
0.775

0.716
0.880
0.775

0.716
0.880
0.775

0.712
0.882
0.783

Zekany et al. [81.1]

1T
2B
3T
4B
5B
6T
7T
8B

0.785
0.970
0.840
0.972

1.215

0.987
0.995
1.272

0.785
0.970
0.840
0.972
1.215
0.987
0.995
1.272

0.785
0.970
0.840
0.972
1.215
0.987
0.995
1.272

0.785
0.970
0.840
0.972
1.215
0.987
0.995
1.272

0.785
0.970
0.840
0.972
1.215
0.987
0.995
1.272

0.784
0.969
0.840
0.972
1.215
0.986
0.994
1.271
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Test Analysis
Reference Series | No. A B C D E F
Zekany et al. [81.1] 9B | 1.237 | 1.237 | 1.237 | 1.237 | 1.237 | 1.237

10T || 0.949 | 0.949 | 0.949 | 0.949 | 0.949 | 0.948
11T || 0.986 | 0.986 | 0.986 | 0.986 | 0.986 | 0.986
12B [ 1.126 | 1.126 { 1.126 | 1.126 | 1.126 | 1.125
13T | 1.320 | 1.320 | 1.320 | 1.320 | 1.320 | 1.320
14B || 1.246 | 1.246 | 1.246 | 1.246 | 1.246 | 1.245
15B || 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974
16T || 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.996
17T || 0.747 | 0.747 | 0.747 | 0.747 | 0.747 | 0.747
18B || 1.063 | 1.063 | 1.063 | 1.063 | 1.063 | 1.063
19B || 1.114 { 1.114 { 1.114 | 1.114 | 1.114 | 1.114
20T |l 0.946 | 0.946 | 0.946 | 0.946 | 0.946 | 0.945
121T || 1.077 | 1.077 | 1.077 | 1.077 | 1.077 | 1.074
22B || 1.268 | 1.268 | 1.268 | 1.268 | 1.268 | 1.264
23B || 1.256 | 1.256 | 1.256 | 1.256 | 1.256 | 1.253
24T || 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.887
Ferguson & Breen [65.1] 8R | 18a |/ 0.964 | 0.964 | 0.964 | 0.964 | 0.964 | 0.966
24a || 1.187 | 1.187 | 1.187 | 1.187 | 1.187 | 1.197
30a |l 1.078 | 1.078 { 1.078 | 1.078 | 1.078 | 1.093
8F | 36a | 1.085 | 1.085 | 1.085 | 1.085 | 1.085 | 1.106
36b || 1.064 | 1.064 | 1.064 | 1.064 | 1.064 | 1.084
3%a | 1.222 | 1.222 | 1.222 | 1.222 | 1.222 | 1.246
42a || 1.220 | 1.220 | 1.220 | 1.220 | 1.220 | 1.246
. 42b || 1.180 | 1.180 | 1.180 | 1.180 | 1.180 | 1.206
8R | 42a | 1.160 | 1.160 | 1.160 | 1.160 | 1.160 | 1.184
48a || 1.177 | 1.177 | 1.177 | 1.177 | 1.177 | 1.207
64a || 1.137 | 1.137 | 1.137 | 1.137 | 1.137 | 1.174
80a || 1.043 | 1.043 | 1.043 | 1.043 | 1.043 | 1.084
8F | 36k || 0.962 | 0.962 | 0.962 | 0.962 | 0.962 | 0.980
11IR | 24a || 1.142 | 1.142 | 1.142 | 1.142 | 1.142 | 1.156
30a || 1.234 | 1.230 | 1.207 | 1.207 | 1.207 | 1.232
36a | 1.076 | 1.076 | 1.076 | 1.076 | 1.076 | 1.101
36b || 1.166 | 1.166 | 1.166 | 1.166 | 1.166 | 1.193
42a (1 1.109 | 1.109 | 1.109 | 1.109 | 1.109 | 1.140
48a f| 1.261 | 1.261 | 1.261 | 1.261 | 1.261 | 1.300
48b || 1.194 | 1.194 | 1.194 | 1.194 | 1.194 | 1.229
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Reference

Series

No.

A

Analysis

C

D

Ferguson & Breen [65.1]

11R

11F

11R

BF

11R

48a
48b
602
60b
60a
60b
30b
36¢
36d
36e
36f
36g
36h
36j
36a

1.073
1.108
1.292
1.036
1.298
1.201
0.999
0.978
0.961
1.073
0.979
1.142
0.793
0.933
1.110

1.073
1.108
1.292
1.036
1.298
1.201
0.999
0.978
0.961
1.073
0.979
1.142
0.793
0.933
1.110

1.073
1.108
1.292
1.036
1.298
1.201
0.999
0.978
0.961
1.073
0.979
1.142
0.793
0.933
1.110

1.073
1.108
1.292
1.036
1.298
1.201
0.999
0.978
0.961
1.073
0.979
1.142
0.793
0.933
1.110

1.073
1.108
1.292
1.036
1.298
1.201
0.999
0.978
0.961
1.073
0.979
1.142
0.793
0.933
1.110

1.106
1.135
1.338
1.074
1.347
1.242
1.009
0.992
0.973
1.088
0.992
1.157
0.801
0.942
1.123

Champerlin [58.1]

la
1b
3a
3b
3c
2a
2b
4a
4b
4c

0.662
0.662
0.944
0.950
0.962
0.744
0.779
0.770
0.792
0.785

0.662
0.662
0.944
0.950
0.962
0.745
0.779
0.770
0.792
0.785

0.662
0.662
0.944
0.950
0.962
0.718
0.751
0.770
0.792
0.785

0.944
0.950
0.962

0.770
0.792
0.785

0.662
0.662
0.944
0.950
0.962
0.718
0.751
0.770
0.792
0.785

0.939
0.945
0.957

0.767
0.789
0.782

Ferguson & Krishnaswarny [71.1]

Sp

32
33
34
35
36
37
38
39

1.427
1.637
1.619
0.900
1.050
1.531
1.368
1.325

1.424
1.607
1.610
0.879
1.028
1.531
1.368
1.325

1.075
1.218
1.100
0.647
0.927
1.531
1.368
1.325

1.075
1.218
1.100
0.647
0.927
1.631
1.368
1.325

1.075
1.218
1.100
0.647
0.927
1.531
1.368
1.325

1.118
1.288
1.142
0.650
0.933
1.550
1.374
1.337

Table C.2
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APPENDIX C. LAP SPLICES

Test
Reference

Series

Analysis

C

D

Ferguson & Krishnaswarny [71.1]

14S

188

SP

1.292
1.042
0.903

1.278
15 | 1.136
1 1.337
4 [ 0.947
2| 1.173
3 1.141
9

40 || 1.278

1.292
1.042
0.903

1.278
1.136
1.337
0.947
1.173
1.141

1.278

1.292
1.042
0.903

1.278
1.136
1.337
0.947
1.173
1.141

1.278

1.292
1.042
0.903

1.278
1.136
1.337
0.947
1.173
1.141

1.278

1.292
1.042
0.903
0.963
0.973
1.278
1.136
1.337
0.947
1.173
1.141
0.964
0.935
1.278

1.303
1.050
0.904
0.964
0.976
1.290
1.156
1.349
0.951
1.180
1.154
0.967;
0.937
1.288

Ferguson & Briceno [69.1]

1140971

51 1.366

7 1.215
12 | 1.362
13 || 1.409
14 | 1.156
15 || 1.445
16 || 1.263
17 || 1.247
21 || 1.014
22 || 1.539
23 || 1.003
24 | 1.209
25 || 1.348
26 || 1.232
27 || 1.216
la {| 1.120
2a || 1.230
4a | 1.223

0.971
1.366
1.215
1.362
1.409
1.156
1.445
1.263
1.247
1.014
1.539
1.003
1.209
1.348
1.232
1.216
1.120
1.230
1.223

0.971
1.366
1.215
1.362
1.409
1.156
1.445
1.263
1.247
1.014
1.539
1.003
1.209
1.348
1.232
1.216
1.120
1.230
1.223

0.971
1.366
1.215
1.362
1.409
1.156
1.445
1.263
1.247
1.014
1.539
1.003
1.209
1.348
1.232
1.216
1.120
1.230
1.223

0.971
1.366
1.215
1.362
1.409
1.156
1.445
1.263
1.247
1.014
1.539
1.003
1.209
1.348
1.232
1.216
1.120
1.230
1.223

0.978
1.375
1.220
1.376
1.421
1.163
1.465
1.268
1.263
1.020 .
1.559
1.017
1.214 -
1.350
1.234 .
1.220 -
1.128
1.237
1.225 |

Table C.2
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Test
Reference

Series

No.

Analysis

C

D

Thompson et al. [79.4]

12
13
14
16
20
22
23

1.097
1.053
11.299

1.334
1.107

1.348
1.474

1.316
1.355 |

1.097
1.053
1.299
1.316
1.355
1.334
1.107

1.348
1.474

1.097
1.053

1.299

1.316
1.355
1.334
1.107

1.348
1.474

1.097
1.053
1.299
1.316
1.355
1.334
1.107

1.348
1.474

1.097
1.053

1.299

1.316
1.355
1.334
1.107
0.996
1.348
1.474

1.093
1.048
1.303
1.335
1.359
1.340

1.110 |

0.995
1.362
1.492

Mean value

1.041

1.036

1.004

1.017

0.993

1.020

Standard deviation

0.215

0.209

0.198

0.184

0.200

0.198

334

334

334

310

357

333

Number of tests

Table C.2: Results from various analyses on lap splices.



Appendix D

Rib Parameters for Reinforcement

In the following table D.1 values for the rib parameters D and F, expres-
sion (4.6) and (4.12), respectively, are given for various types of reinforce-
ment. Because information about the width of the ribs, u in figure 4.1, has
not been available in all cases this parameter is not included in D and F.
Instead a is taken as the distance from midd rib to the midd of the next
rib. D is then correct, while F is less than with u.

The values for a and hg for the Halmstad steel are max and min values,
respectively. Hence the values for D and F are as small as possible. In
contradistinction to the other steel types the two rib parameters for the
Halmstad steel are determined using the real diameter and not the nominal.

Photos have been used to find the values for the rib parameters for Tepfers[73.1]
reinforcement. The ASTM A615 is minimum requirements as with the
Halmstad steel. The measurements for d, a and hg are in inches. However
the values for the nominal diameter are also shown in mm.

As can be observed in the table the value will in practice be larger than 0.03
for D and 0.5 for F', when u is taken as zero. These values can probably be
used in practice as conservative estimations for the parameters if it is not
possible to determinate the actual values.
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Reference Type diameter d a hq D F %
nominal | real
o] | ] | (o] | frosn)
Halmstad steel | Ks410S 6 5.6 49 | 0.40 | 0.044 | 0.57 | 13.0
8 7.5 | 5.9 | 0.50 | 0.045 | 0.57 | 12.5
10 95 | 6.5 | 0.60 | 0.049 | 0.56 | 11.5
12 114 { 7.8 | 0.75 | 0.051 | 0.57 | 11.0
14 134 | 8.8 | 0.90 | 0.055 ] 0.57 | 10.4
16 154 | 10.0 | 1.00 | 0.053 | 0.57 | 10.6
20 19.2 | 12.0 | 1.30 | 0.058 [ 0.57 | 9.8
25 24.0 | 15.0 | 1.60 | 0.057 | 0.57 | 10.0
v 32 30.8 | 21.0 | 2.00 | 0.051 | 0.57 | 11.1
Ksb550 8 7.6 | 5.0 | 0.56 | 0.060 | 0.57 | 9.5
10 9.6 5.0 | 0.60 | 0.064 | 0.56 | 8.8
12 11.5 | 6.0 | 0.72 | 0.064 | 0.56 | 8.8
14 13.5 | 7.0 | 0.84 | 0.064 | 0.56 | 8.8
16 154 | 8.0 | 0.96 | 0.064 | 0.56 | 8.8
18 174 | 9.0 1.08-] 0.064 | 0.56 | 8.8
20 19.4 | 10.0- | 1.20 | 0.064 | 0.56 | 8.8
25 24.3 | 12.5 | 1.50 | 0.064 | 0.56 | 8.8
Tepfers [73.1] Ks42 ‘10 5.5 0.5 [0.048 ] 0.55 | 11.5
16 7.9 1.0 | 0.0670.56 | 8.4
Ks40 8 6.5 0.4 |0.0320.55]17.0
10 7.7 0.6 |0.041 | 0.56 | 13.6
12 8.0 0.9 |0.060 | 0.58 | 9.5
16 9.6 1.0 | 0.055 | 0.56 | 10.2
19 14.5 | 1.25 | 0.046 | 0.57 | 12.3
25 183 | 1.7 |0.050 | 0.57 | 11.5
32 232 | 34 (0081|061 75
Ks60 8 5.2 0.7 | 0.073|0.59 | 8.0
10 5.9 0.8 |0.073 (058 7.9
12 4.9 0.8 |0.087 [0.57| 6.5
16 6.0 1.0 [0.089 | 0.56 | 6.4
19 85 | 1.25 | 0.078 | 0.57 | 7.2
25 11.7 | 1.6 |0.073|0.56 | 7.8
Ks90 16 6.0 1.0 [ 0.089]0.56 | 6.4
Jensen[82.1] Ks900 16 8.5 1.1 |{0.069|0.57| 8.2
Rathkjen[72.1] | Kam steel 10 8.0 0.9 | 0.0610.59 | 9.6
14 105 | 1.2 }0.062 059 | 9.4
Tentor 10 8.5 0.6 |0.038 | 0.56 | 14.7
14 11.1 | 0.9 |0.044 | 0.56 | 13.0
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256 APPENDIX D. RIB PARAMETERS FOR REINFORCEMENT

Reference Type diameter d a ha D F -g
nominal | nominal
[in] [mm] [in] [in]

ASTM A615 | #3 | 0.375 9.5 0.262 | 0.015 | 0.030 | 0.54 | 18.1
#4 | 0.500 12.7 | 0.350 | 0.020 | 0.030 | 0.54 | 18.2
#5 | 0625 15.9 | 0.437)0.028 | 0.033 | 0.55 | 16.3
#6 | 0.750 19.1 0.525 | 0.038 | 0.038 | 0.55 | 14.5
#7 | 0.875 22.2 | 0.612 | 0.044 | 0.038 | 0.55 | 14.6
#38 1.000 25.4 ] 0.700 [ 0.050 | 0.037 | 0.55 | 14.7
#9 1.128 28.7 10.790 | 0.056 | 0.037 | 0.55 | 14.8
#10 1270 | 323 |0.8890.064 | 0.038 | 0.55 | 14.6
# 11 1410 35.8 [0.937|0.071 | 0.038 | 0.55 | 14.6
# 14| 1.693 43.0 1.185 | 0.085 | 0.038 | 0.55 | 14.6

# 18| 2.257 57.3 1.580 | 0.102 | 0.034 | 0.55 | 14.2

Table D.1: Values for the rib parameters for various types of reinforcement.
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