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Abstract

This report covers an initial study on the modelling of cow behaviour using stochastic
automata with the aim of detecting lameness. Lameness in cows is a serious problem
that needs to be dealt with because it results in less profitable production units and
in reduced quality of life for the affected livestock. By featuring training data consist-
ing of measurements of cow activity, three different models are obtained, namely an
autonomous stochastic automaton, a stochastic automaton with coinciding state and
output and an autonomous stochastic automaton with coinciding state and output, all
of which describe the cows’ activity in the two regarded behavioural scenarios, non-lame
and lame. Using the experimental measurement data the different behavioural relations
for the two regarded behavioural scenarios are assessed. The three models comprise ac-
tivity within last hour, activity within last hour suplying with information on which hour
of the day it is and lastly modelling the general activity level. Diagnosis algorithms for
the three approaches are implemented and tested using the real data measurements and
show that the diagnosis algorithm can distinguish between data belonging to nominal
behaviour and data belonging to lame behaviour.
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1 Introduction

To every responsible farmer the health and well-being of his livestock is importand both
in respect to ethics and economics. Ethically it has become more important to treat
livestock in a humane way and economically there is a connection between well-being of
the livestock and the production. A dairy cow that is feeling unwell will probably eat
less and therefore produce less milk[10]. This has the effect that automatic detection
of deviant behaviour amongst dairy cows has become a task of growing interest in the
farming field. The perspective is to detect deviant behaviour caused by oestrus or some
kind of disease. An early detection of a cow in oestrus or a cow suffering from a disease
can save the farmer from a loss in production and the animal from a prolonged period
of pain/uneasiness.

Lameness is a serious health and wellfare problem in dairy cows and is yet not sufficiently
dealt with. It is a term including different illnesses that all have in common that the
patients ability to move around is affected. It causes discomfort and is normally some
pain as well.

In this report the possibility of using discrete-event models that describe the cows’ be-
haviour for detecting deviant behaviour amongst dairy cows is investigated. The model
should describe the cows’ behaviour in terms of parameters which change in the presence
of lameness. The parameters describing the cow’s behaviour are observations of the cow’s
actions and activity. The observations available for this study include measurements of
activity, feeding behaviour and milking behaviour. The available data are described in
more detail in chapter 2. The act of assessing the change in behaviour due to lameness
involves selecting parameters to analyse and if advantageous to perform data prepro-
cessing and quantisation and to model the behaviour in terms of the pre-processed and
quantised observations. An overview of the data processing and modelling is shown in
Figure 1.1.

In this study the modelling of cow behaviour is using discrete-event models, in particular
the automata, [5, 3]. The automata are means of describing a system where the system
inputs, states and reactions can be described by discrete values. By modelling such a
system in faulty and faultless mode respectively a fault or a change in the system be-
haviour can be detected by checking the consistency between the model and the observed
behaviour. Lack of consistency is a sign of a fault or a change in the behaviour [3] (see
Figure 1.2).
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Figure 1.1: Overview of data processing and modelling.

Figure 1.2: Overview of data processing and diagnosis.

1.1 Problem

The task at hand is to detect lameness in dairy cows. A primary goal is to be able to
detect whether a cow is lame or not. An excellent result would be a lameness detector
that could score the lameness into the lameness levels 1-5 (see section 2.1). This initial
study will focus on distinguishing between the two behavioural scenarios healthy and
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lame. In the literature there exist vast amount of material describing which changes in
behaviour are to be expected when a cow becomes lame ([32, 12, 9, 33, 4]). Table 1.1
provides a list of some relevant changes in behaviour as symptoms of lameness.

Table 1.1: Hypotheses about changes in behaviour as symptoms of lameness.

Behaviour Trait Change

Activity walking −
lying time +

Feeding Duration −
time between +

Milking milk yield −
Other ovarian cycle delayed cyclicity

1.2 Results on automatic lameness detection in dairy cattle

Automatic lameness detection has been addressed in several studies. There are mainly
two approaches that have been used for the detection of lameness namely behaviour
assessment and gait assessment. In the first one the focus is on general behaviour in
terms of e.g. activity, feeding, milking and so forth. In the latter one attempts are made
to assess the cows’ gait, i.e. the pattern of movement of the limbs.

1.2.1 Behaviour assessment

In [16] a simple activity detector was set to detect lameness. The authors used pedometer
data from a leg attached sensor that reports average number of steps pr. hour since last
milking. The authors set the system to daily identify cows that had average number of
steps pr. hour during the last day that was 5% less than the average number of steps
pr. hour during the preceding 10 days. The authors found that of cows with recorded
clinical lameness 55.3% had at least 5% reduction in average number of steps pr. hour.
Another alarming result is that 54.3% of the cows that had at least a 5% reduction in
average number of steps pr. hour did not develop clinical lameness and are therefore
false positives. The system can therefore not be assumed to work sufficiently.

Changes in short-term feeding behaviour of dairy cows in connection with lameness were
investigated in [8]. The changes in short-term feeding behaviour were investigated with
respect to the applicability as early indicators of the disease. The authors found that
daily feeding time was the parameter that changed most consistently with respect to the
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different types of lameness studied. A detection algorithm that was set to identify cows
with a daily feeding time that was shorter than the average of the daily feeding time
during the past seven days minus 2.5 standard deviations was able to detect more than
80% of cows at least one day before manual detection by farm employees.

In [13] a fuzzy logic model for classification of lameness and mastitis in dairy cows was
developed. The authors included the traits milk yield dry matter intake, dry matter
intake behaviour, water intake, activity and information about preliminary diseases, in
their investigations. The best results for lameness detection were obtained using the
traits, dry matter intake, feeding time, number of feeding visits activity and preliminary
cases of lameness in the actual lactation. The authors reported that the algorithm was
able to detect 75% of the lameness cases with an error ratio of 98.3%. Although the
sensitivity or error ratio is acceptable the number of false alarms or error ratio is much
to high for the algorithm to be considered applicable in real applications.

1.2.2 Gait assessment

When assessing lameness using gate assessment the focus is on detecting deviations in
movement pattern, e.g. deviation in step length, attempts to reduce weight on legs and
swinging legs while walking.

In [24] and [23] two parallel force plates were used to measure limbs ground reaction
forces when cows walked over the plates. The authors utilised different models and
came to a conclusion that the system was sufficiently accurate to use in a commercial
application. In [24] the authors stated that the system was able to recognise lame cows
and identify limbs affected by lameness. The test was performed using only three lame
cows and three healthy cows. In [23] the logistic regression models were developed
for the detection of lameness using measurement limbs ground reaction forces. The
system showed promissing results and the authors claim that the methods could result
in automated methods for lameness detection by further development.

In [20] four strain gauge balances installed into a milking robot were used to measure
the load of each leg, number of kicks and total time in the milking robot. The authors
observed the changes in data and concluded that limb and hoof disorders can be detected
using the system. In [19] the authors presented data acquisition and algorithms for
detecting leg problems, but stated that there were to many false alarms ([21]). M. E.
Pastell and M. Kujala in [21] improved the algorithm by introducing a neural network
model for classification of cows into groups of lame and sound cows respectively.

In [6] and [7] cows wearing reflective markers on each leg walked along a 40 m test
alley after morning milking for 7 consecutive days and recorded with a video camera.
The video recordings were analysed with image processing software and the authors

4



stated that the method showed distinct differences between cows with no visible hoof
pathologies and those with painful injuries but more detailed analysis was needed to
decide whether the method was usable for early detection of lameness.

In [26] the authors also used vision techniques to detect and predict lameness in dairy
cows. The equipment extracted hoof location from images of cows freely passing a video
recording device in a narrow pathway of 9 m length. The method’s validity was shown by
calculating correlation between the automatically calculated hoof trackway and visual
locomation scores. The authors claim that the method has great potential for use in
detection and prediction of lameness in dairy cattle.

1.3 Report structure

The report is organised as follows. The second chapter provides an overview of data
available for the study. The third chapter contains a description of the methodologies
that form the basis of the diagnosis. The fourth chapter addresses the application of
the methods on the task of the detection of lameness in dairy cows. The fifth chapter
demonstraits some initial tests of the applied algorithms. Lastly the report is finalised
with a discussion of future development and a conclusion on the work that has been
carried out.
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2 Data

This chapter describes the data available in this study for the analysis of the cows’
behaviour in connection with the lameness.

The data consist of measurements of activity, feeding behaviour, data from milking robot
and manually performed lameness scoring. In addition there is access to all relevant logs
on each cow. The logs contain information on diseases, medication, calving, insemination
and so on. All data are recorded the research facility at the Danish Cattle Research
Centre in Foulum Denmark. Figure 2.1 shows a picture of the stable.

Figure 2.1: The research stable at the Danish Cattle Research Centre.

The two subsections below describe the data used in this particular study, the lameness
scoring and the activity data.

2.1 Lameness scoring

The lameness scoring was performed by veterinarians and specially trained personnel at
the Danish Cattle Research Centre, with around 2 weeks interval, i.e. sample time T ≈
2 weeks. The scoring is done by visually inspecting each cow for signs of lameness. The
cow gets a “score” that describes the cow’s physical condition with respect to lameness.
The lameness scoring system is described in [28] and a rough description of the system
is showed in Table 2.1.

It can be seen in Table 2.1 that having a lameness score ≤ 2 means that the cow is
considered not to be affected by lameness while having lameness score > 2 means that
the cow is considered to be suffering from lameness.
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Table 2.1: Lameness scoring system. An abridged version of that of [28].

Score Term Rough description

1 Normal The cow walks normally. No signs of lameness
2 Uneven gait The cow walks (almost) normally.

No evident signs of lameness
3 Mild lameness Some signs of lameness. In most cases, an

observer is not able to tell which leg is affected
4 Lameness Obviously lame on 1 or more legs. In most cases,

an observer is able to tell which leg is affected
5 Severe lameness Obviously lame on 1 or more legs. Cow is

unwilling to bear weight on the affected leg.

In this study the methods suggested for detecting lameness are methods that are typically
used for fault detection, the terms nominal and faulty will often be used in order to
distinguish between data belonging to non lame behaviour and data belonging to lame
behaviour respectively.

2.2 Activity

The activity data consist of measurements of activity on cows in the research stable
which is a loose housing with cubicles. The activity is measured by means of commercial
activity tags placed on the cows collar. The activity sensors ALPRO R© by DeLaval
return an activity measurement which consists of an activity index for each hour. Figure
2.2 shows a picture of one activity tag.

Figure 2.2: The ALPRO R© activity tag.

7



2.3 Feeding

Observations of the cows feeding behaviour are recorded by a number special feeding
boxes that identify each cow that puts its head into a feeding box and register time
for arrival and departure as well as consumed weight for each visit. Figure 2.3 shows a
picture of a feeding box.

Figure 2.3: A feeding box.

2.4 Data from milking robot

The milking robot identifies each cow entering and registers time for arrival and departure
as well as amount of milk and a vast number of other parameters related to the milking
that are not relevant for a behaviour study.Figure 2.4 shows a picture of a milking robot.
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Figure 2.4: A milking robot.

2.5 Selection/generation of test data

The training dataset should be as representative for the cows’ behaviour at each of the
behavioural scenarios, as possible. The aim for the selection of test data for this study
is to find the cow, that has the longest consecutive sequence of lameness scoring ≤ 2
(nominal) and of lameness scoring > 2 (faulty) respectively. That way a reasonable
amount of data for training models that reflect the behaviour of each scenario can be
obtained. The cow selected for this purpose is cow no. 842. The lameness scoring for
cow no. 842 and the interpolated values of that are shown in Figure 2.5.

It can be seen in the data for cow no. 842, in Figure 2.5, that in the beginning there is a
period of ∼ 8 months with observations of lameness scoring ≤ 2 (nominal) followed by
a period of ∼ 2 months of changing lameness scoring that again is followed by a period
of ∼ 2 months with lameness scoring > 2 (faulty).

Periods of lameness scoring fluctuating between nominal and faulty state were removed
from the dataset. A plot of the extracted activity data along with interpolated lameness
values shown in Figure 2.6.

When looking at the observations of activity index in Figure 2.6 the activity index
seems generally higher in the period on nominal behaviour than in the period of faulty
behaviour, which is in accordance with the hypotheses presented in Table 1.1. The model
to be set up should reflect this property.

Box plots of the activity for lameness score ≤ 2 and lameness score > 2 respectively are
shown in Figure 2.7.
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Figure 2.5: Assigned lameness scoring, cow no. 842. The lameness observations are
shown with blue dots, the interpolation is shown with blue lines and the
assigned lameness scoring is shown in red.

When observing Figure 2.7 one can see that the median values of the faulty behaviour
are generally lower than the median values of the nominal case. This is a confirmation
that the activity is actually reduced when suffering from lameness seen with respect to
the activity under normal circumstances. Another conclusion that can be drawn from
the box plots is that there is some sort of a diurnal rhythm in the activity as the medians
are generally lower in the time interval 1− 7 hours than in the rest of the day. Thus the
cow is more active during day than night. These diurnal variations in the activity have
been observed earlier in [11].
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Figure 2.6: The test data; observations of activity index for cow 842 plotted together
with interpolated lameness scoring of cow 842.
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Figure 2.7: Box plots of the observed activity for each hour in the day. The central line
in each box is the median value of the observed activity index for each hour,
the edges of the box are the 25th and 75th percentiles and the stapled lines
show the interval where data are not considered as outliers. The individual
plus-signs are the outliers.
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3 Modelling and diagnosis methods

This chapter describes the methods used for modelling and diagnosis of the cows’ activity
behaviour with the aim of detecting lameness.

3.1 Model-based diagnosis

Model based diagnosis deals with defining a model of a system containing system compo-
nents and connections between the components [17]. The task is to compare observations
of the system modelled with that of the model. If the two deviate from each other a
deviant behaviour is detected. The model can describe a nominal behaviour as well as
the faulty behaviour that is supposed to be detected. The approach described in the
following comprises model based diagnosis.

3.2 Modelling methods

Ideas for modelling the cows’ behaviour include e.g. discrete-event models such as au-
tomata, stochastic automata, timed automata, Markov chains, hidden Markov models
and etc. Each modelling method has it’s degree of relevance with respect to applying to
the problem of modelling cow behaviour with the goal of detecting lameness. A range of
methods can be utilised for modelling a system behaviour [31, 29, 30]. If dealing with a
system obeying known laws of physics an analytical quantitative model might possibly
be set up. In total lack of information about behavioural structure one might fall back
to solely relying on history. An in-between approach it to set up a qualitative model for
describing the behaviour where the focus is on relevant changes instead of simply any
change. Therefore among the decisions that have to be addressed is whether to model
the cows’ behaviour in a qualitative or quantitative way.

In general quantitative models describe a system in a more specific and precise manner
than qualitative models. At the same time modelling a system with a quantitative
approach can require a large effort. When attempting to model the cows’ behaviour
with the aim of detecting deviant behaviour and judging whether to use quantitative or
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qualitative modelling one should bare in mind what is expected of the model and which
are the desired results. In the case of modelling the cows’ behaviour in order to detect
lameness the model is really supposed to be able to indicate whether the behaviour is
following an expected pattern or not. If the behaviour is following the expected pattern
the cow is considered healthy. In this case it is not consider important to assess the
exact state but merely if everything is within reasonable limits or not. As the lameness
is expected to result in considerable changes in the behaviour a qualitative modelling
approach is justifyable.

The qualitative models used in this study for modelling the cow behaviour are the au-
tomata. In the following subsections the automata and the diagnosis of automata are
described.

3.3 Automata

The automata are a class of models suitable for describing discrete-event systems. Vari-
ous versions of the automata are described in the literature, which includes e.g. standard
automata [5], input/output automata (I/O automata) [15], learning automata [22] and
so on. The version of automata applied in this study is the I/O automata.

In general the automaton describes the system’s state and takes into consideration events
that affect or are affected by the system.

Modelling a system using I/O automata can be done using deterministic automata, non-
deterministic automata, stochastic automata or even timed automata (timed automata
are addressed in e.g. [27] and [1]). The methods for the usage of of the deterministic
automata, the non-deterministic automata and the stochastic automata are well estab-
lished and are described in e.g. [3], [14] and [25]. Sections 3.3.1−3.3.3 describe briefly the
deterministic automata, the non-deterministic automata and the stochastic automata.
The timed automata are not addressed in this study.

3.3.1 Deterministic automata

Introducing a system described by inputs v outputs w and states z described by the sets

v ∈ Nv = {1, 2, . . . ,M}

z ∈ Nz = {1, 2, . . . , N}

w ∈ Nw = {1, 2, . . . , R}

(3.1)
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where M , N and R are finite values a deterministic automata for such a system has the
form

A = (Nz,Nv,Nw, G,H, z0) (3.2)

where G and H are the state transition function and the output function ([3]). The state
transition function G and the output function H are given as

G : Nz ×Nv → Nz, z′ = G (z, v)

H : Nz ×Nv → Nw, w = H (z, v)
(3.3)

where z is the present state and z′ is the successor state ([3]). The deterministic automa-
ton has the properties that given an input v and state z the successor state z′ is always
known. Thus the state transition function describes the next state z′ given the present
state z and the input v. Similarly the output function describes the output generated
during a transition.

3.3.2 Non-deterministic automata

A non-deterministic automaton for the system in (3.1) has the form

N = (Nz,Nv,Nw, Ln, z0) (3.4)

where Ln describes the behavioural relation. The behavioural relation Ln is given as

Ln : Nz ×Nw ×Nz ×Nv, Ln(z′, w, z, v) → {0, 1} (3.5)

and describes whether the state can change from state z to z′ while producing the output
w for the input v ([3]). The non-deterministic automaton has the properties that given
an input v and state z the successor state z′ belongs to a set of possible states that the
automaton can move towards while producing the output w.

3.3.3 Stochastic automata

The stochastic automaton is for the system in (3.1) described by the 5-tuple

S = 〈Nz,Nv,Nw, L,Prob(z(0))〉 (3.6)

where Prob(z(0)) is the initial state probability distribution.
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The stochastic automaton behaviour is described by its behavioural relation L.

L : Nz ×Nw ×Nz ×Nv → [0, 1] (3.7)

L
(

z′, w, z, v
)

= Prob(zp(k + 1) = z′, wp(k) = w|zp(k) = z, vp(k) = v) (3.8)

where zp, wp and vp denote the stochastic variables of the state, output and input
respectively and k is the sample instance. The stochastic automaton has the properties
that given an input v and state z the successor state z′ belongs to a set of possible
states that the automaton can move towards with a certain probability, described by L,
while producing the output w. For every state z and input v the sum of probabilities
for moving towards any successor state z′ ∈ Nz while producing the an output w ∈ Nw

is equal to one. Thus

∑

z′∈Nz

∑

w∈Nw

L
(

z′, w|z, v
)

= 1. (3.9)

The state transition relation is given as,

G : Nz ×Nz ×Nv → [0, 1],

G(z′|z, v) = Prob
(

zp(1) = z′|zp(0) = z, vp(0) = v
)

,
(3.10)

and the output relation

H : Nw ×Nz ×Nv → [0, 1],

H(w|z, v) = Prob (wp(0) = w|zp(0) = z, vp(0) = v) .
(3.11)

The relationship between the behavioural relation and the state transition relation and
the output relation can be seen from the boundary distributions,

G(z′|z, v) =
∑

w∈Nw

L
(

z′, w|z, v
)

,

H(w|z, v) =
∑

z′∈Nz

L
(

z′, w|z, v
)

.
(3.12)

It should be mentioned that only in special cases does the relation

L
(

z′, w|z, v
)

= G(z′|z, v) · H(w|z, v) (3.13)

hold.

Since the ”system” at hand, the cow, is biological, a deterministic or a non-deterministic
automaton alone will not provide the necessary level of detail to distinguish between quite
similar stochastic behavioural patterns of live creatures with a wide variation between
cows. A stochastic automaton extends the concept of the non-deterministic discrete-
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event systems in such a way that the frequency of the occurrence of the different events
can be addressed by assigning probabilities to transitions. Probabilities are a means
to describe the cows in more details. Therefore the stochastic automaton yields more
knowledge about the system and makes diagnosis more likely to be successful. It is
therefore the stochastic automaton that is used in the following modelling efforts. In
the study there are three types of the stochastic I/O automata used; an autonomous
stochastic automaton, a stochastic automaton where output coincides with states and
an autonomous stochastic automaton where output coincides with states. All three are
described in the following subsections.

Autonomous stochastic automaton

The autonomous stochastic automaton does not use any input v but is otherwise no
different from the automaton in eq. (3.6), hence the autonomous stochastic automaton
is described by the 4-tuple

S = 〈Nz,Nw, L,Prob(z(0))〉 (3.14)

where like before L is the behavioural relation. The behavioural relation of the au-
tonomous stochastic automaton is given as

L
(

z′, w|z
)

= Prob
(

zp(k + 1) = z′, wp(k) = w|zp(k) = z
)

. (3.15)

Stochastic automaton with coinciding states and outputs

The stochastic automaton with coinciding states and outputs and is described by the
4-tuple

S = 〈Nz,Nv, G,Prob(z(0))〉 . (3.16)

Omitting the output from the case described in section 3.3.3 leaves only the state tran-
sition relation in eq (3.10) as the behavioural relation for this automaton. For the state
transition relation the relation

∑

z′∈Nz

G
(

z′|z, v
)

= 1 for all z ∈ Nz, v ∈ Nv (3.17)

holds ([3]).

17



Autonomous stochastic automaton with coinciding output and state

The autonomous stochastic automaton with coinciding states and outputs is described
by the triple

S = 〈Nz, G,Prob(z(0))〉 . (3.18)

Omitting the input the state transition relation becomes

G(z′|z) = Prob
(

zp(1) = z′|zp(0) = z
)

(3.19)

and describes the probability of moving from one state to another. The transition relation
has the property

∑

z′∈Nz

G
(

z′|z
)

= 1 for all z ∈ Nz. (3.20)

3.3.4 Prediction

A stochastic automaton can be used to imitate the behaviour. According to page 344 in
[3] the behaviour of the stochastic automaton is given as

Prob (Z(0 . . . kh)|V (0 . . . kh − 1)) =

kh−1
∏

k=0

G (z(k + 1)|z(k), v(k)) · Prob (z(0)) (3.21)

where Prob (Z(0 . . . kh)|V (0 . . . kh − 1)) is the probability distribution over all state se-
quences Z(0 . . . k) = (z(0), z(1), . . . , z(k)) for a given input sequence V (0 . . . k) = (v(0), v(1), . . . , v(k)).

The stochastic automaton can be simulated using the recursive algorithm that is on on
page 385 in [3] given as

kh > 1 : Prob (z(kh)|V (0 . . . kh − 1))

=
∑

z(kh−1)

G (z(kh)|z(kh − 1), v(kh − 1)) · Prob (z(kh − 1)|V (0 . . . kh − 2))

kh = 0 : Prob (z(1)|v(0)) =
∑

z(0)

G (z(1)|z(0), v(0)) · Prob (z(0))

(3.22)

and can be used to calculate the probability of the automaton moving towards state z

at sample kh given the input sequence V (0 . . . kh − 1)).
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For simulating the stochastic automaton with coinciding states and outputs the recursive
algorithm in eq. (3.22) can be used directly.

For simulating the autonomous stochastic automaton and the autonomous stochastic
automaton with coinciding states and outputs the recursive algorithm in eq. (3.22) can
be used by omitting the input. It therefore changes to

kh > 1 : Prob (z(kh)) =
∑

z(kh−1)

G (z(kh)|z(kh − 1)) · Prob (z(kh − 1)) ,

kh = 0 : Prob (z(1)) =
∑

z(0)

G (z(1)|z(0)) · Prob (z(0)) .

(3.23)

3.3.5 State observation

For obtaining a probability distribution for the present state the automaton can be
observed. The observation problems deals with estimating which state the model is in
at a given time instance, given measurement sequences of inputs and outputs and the
automaton. This becomes particularly relevant in the diagnosis which is described in
section 3.3.6. Assuming a consistent I/O pair (see page 391 in [3]) the state observation
is given as

Prob (Z(0 . . . kh)|V (0 . . . kh − 1),W (0 . . . kh − 1))

=

∑

z(kh+1)

L(z(kh + 1), w(kh)|z(kh)) · . . . · (z(2), w(1)|z(1)) · (z(1), w(0)|z(0)) · Prob (z(0))

∑

Z(0...kh+1)

L(z(kh + 1), w(kh)|z(kh)) · . . . · (z(2), w(1)|z(1)) · (z(1), w(0)|z(0)) · Prob (z(0))
,

(3.24)

which only deviates from the solution on page 392 in [3] due to the omission of the input
v. For practical computational purposes the recursive solution to the state observation
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is important. The recursive solution to the state observation problem is given as

kh ≥ 0 : Prob (z(kh)|kh))

=

∑

z(kh+1)

L(z(kh + 1), w(kh)|z(kh)) · Prob (z(kh)|kh − 1))

∑

z(kh),z(kh+1)

L(z(kh + 1), w(kh)|z(kh)) · Prob (z(kh)|kh − 1)
,

kh > 0 : Prob (z(kh)|kh − 1)

=

∑

z(kh−1)

L(z(kh), w(kh − 1)|z(kh − 1)) · Prob (z(kh − 1)|kh − 2)

∑

z(kh),z(kh−1)

L(z(kh), w(kh − 1)|z(kh − 1)) · Prob (z(kh − 1)|kh − 2)
,

kh = 0 : Prob (z(0)| − 1) ::= Prob (z(0)) .

(3.25)

As before this is almost identical to the recursive solution on page 396 in [3]. The only
difference lies in the omission of the input v.

3.3.6 Diagnosis

For identifying faults or abnormal behaviour in a system modelled by an automaton
the consistency between the automaton and the actual behaviour is checked[3]. Lack
of consistency implies that the observed behaviour is not described by the automaton.
By modelling a specific behaviour to be detected and checking the consistency between
the model describing the deviant behaviour and the actual behaviour a specific deviant
behaviour can be detected. If the observed behaviour is not consistent with the normal
case and at the same time there exists consistency with the model of the specific deviant
behaviour the specific behaviour is isolated.

Stochastic automata for diagnosis

As mentioned above deviant behaviour can be detected by checking the consistency
between the measured behaviour and models of the faulty behaviour. To be able to
include different behavioural scenarios of faults in the stochastic automaton it is extended
with a new input f(k) which symbols the behavioural scenario at each sample k. The
stochastic automaton for diagnosis is described by the 6-tuple

S = 〈Nz,Nv,Nf ,Nw, L,Prob(z(0))〉 (3.26)
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with Nf denoting the set of possible behavioural scenarios. Correspondingly the be-
havioural relation now becomes

L : Nz ×Nw ×Nz ×Nf ×Nv → [0, 1] ,

L
(

z′, w|z, f, v
)

= Prob(zp(k + 1) = z′, wp(k) = w|zp(k) = z, fp(k) = f, vp(k) = v).

(3.27)

The dynamical behaviour for the fault is introduced by the fault model which is a stochas-
tic automaton described by the triple

Sf = 〈Nf ,Gf ,Prob(f(0))〉 (3.28)

where Gf is the state transition relation of the fault ([3]). The fault state transition
relation Gf describes the conditional probability of the fault changing from f to f ′ in
the time between two consecutive samples. The fault state transition relation is given
as

Gf : Nf ×Nf → [0, 1]

Gf (f ′|f) = Prob
(

fp(k + 1) = f ′|fp(k) = f
)

.
(3.29)

Combining the fault model with the extended automaton in eq. (3.27) gives the stochas-
tic automaton

S̃ =
〈

Nz̃,Nv,Nf ,Nw, L̃,Prob(z̃(0))
〉

(3.30)

where the state set is ( page 388 in[3])

Nz̃ = Nz ×Nf . (3.31)

The behavioural relation of the combined automaton becomes

L̃(z′, f ′, w|z, f, v) = L(z′, w|z, f, v) · Gf (f ′|f). (3.32)

Diagnosis of the stochastic automata

The task of diagnosing this combined automaton becomes an observation problem where
the task is to observe the present state z together with the present fault state f , given
the combined automaton and measurements of input v and output w. A solution to the
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diagnostic problem is on page 418 in [3] given as

kh ≥ 0 : Prob (f(kh)|kh))

=

∑

f(kh + 1)
z(kh + 1), z(kh)

L(kh) · Gf (kh) · Prob(f(kh), z(kh)|kh − 1))

∑

f(kh), f(kh + 1)
z(kh), z(kh + 1)

L(kh) · Gf (kh) · Prob(f(kh), z(kh)|kh − 1))
,

kh > 0 : Prob (f(kh), z(kh)|kh − 1))

=

∑

f(kh−1),z(kh−1)

L(kh − 1) · Gf (kh − 1) · Prob(f(kh − 1), z(kh − 1)|kh − 2))

∑

f(kh), f(kh − 1)
z(kh), z(kh − 1)

L(kh − 1) · Gf (kh − 1) · Prob(f(kh − 1), z(kh − 1)|kh − 2))
,

kh = 0 : Prob (f(0), z(0)| − 1) := Prob (f(0)) · Prob (z(0)) .

(3.33)

given that the relation

∑

f(kh−1),z(kh−1)

L(kh − 1) · Gf (kh − 1) · Prob(f(kh − 1), z(kh − 1)|kh − 2)) > 0 (3.34)

holds and using the abbreviations Prob(f |kh) = Prob(f |V (0 . . . kh),W (0 . . . kh)), L(kh) =
L(z(kh + 1), w(kh)|z(kh), v(kh)) and Gf (kh) = Gf (f(kh + 1)|f(kh)).

Diagnosis of the autonomous stochastic automaton

For diagnosing the autonomous stochastic automata relations described in eq. (3.26) to
(3.34) are valid by omitting the input v(k). The same way, the diagnosis algorithm on
page 420 in [3] can be used directly by simply omitting the input v.

Diagnosis of the stochastic automaton with coinciding states and outputs

The procedure for diagnosing the stochastic automaton with coinciding states and out-
puts is similar to what is described above. As done in the case of the stochastic automa-
ton the stochastic automaton with coinciding states and outputs is extended with a new
input f(k). The automaton is therefore now described by the 4-tuple

S = 〈Nz,Nf ,Nv, G,Prob(z(0))〉 . (3.35)
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This automaton has the transition relation

G(z′|z, f, v) = Prob
(

zp(1) = z′|zp(0) = z, fp(0) = f, vp(0) = f
)

. (3.36)

The fault model is the same as presented before in eq. (3.28) Combining the automaton
in eq. (3.35) with the fault model in eq. (3.28) results in the 4-tuple

S̃ =
〈

Nz̃,Nv, G̃,Prob(z̃(0))
〉

, (3.37)

with the state set given in (3.31). The state transition relation of this combined automa-
ton becomes

G̃(z′, f ′|z, f, v) = G(z′|z, f, v) · Gf (f ′|f). (3.38)

Diagnosis for a model like the one in eq. (3.37) involves an observation of the state
and the fault. In the case of the automaton with coinciding states and outputs and
measurable state the diagnosis task becomes a task of observing the fault, but not the
state. Applying theorem 8.3 on page 396 in [3] and keeping in mind that z(kh) is
measured, the diagnosis algorithm becomes.

kh ≥ 0 : Prob (f(kh)|kh))

=

∑

f(kh + 1)
z(kh + 1)

G(z(kh + 1)|z(kh), f(kh), v(kh)) · Gf (f(kh + 1)|f(kh)) · Prob(f(kh), z(kh)|kh − 1))

∑

f(kh)
f(kh + 1)
z(kh + 1)

G(z(kh + 1)|z(kh), f(kh), v(kh)) · Gf (f(kh + 1)|f(kh)) · Prob(f(kh), z(kh)|kh − 1))
,

kh > 0 : Prob (f(kh), z(kh)|kh − 1))

=

∑

f(kh−1)

G(z(kh)|z(kh − 1), f(kh − 1), v(kh − 1)) · Gf (f(kh)|f(kh − 1)) · Prob(f(kh − 1), z(kh − 1)|kh − 2))

∑

f(kh)
f(kh − 1)

z(kh)

G(z(kh)|z(kh − 1), f(kh − 1), v(kh − 1)) · Gf (f(kh)|f(kh − 1)) · Prob(f(kh − 1), z(kh − 1)|kh − 2))
,

kh = 0 : Prob (f(0), z(0)| − 1) ::= Prob (f(0)) · Prob (z(0)) .

(3.39)

For implementation purposes, Algorithm 3.1 was derived. Algorithm 3.1 uses the same
notation and setup as Algorithm 8.3 on page 420 in [3].
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Algorithm 3.1 Diagnosis of stochastic automaton with coinciding states and inputs
(Based on Algorithm 8.3 on page 420 in [3])

Given: autonomous stochastic automaton with coinciding states and inputs
S and fault model Sf

Initial state probability distribution Prob (ẑ(0))

Initial fault probability distribution Prob
(

f̂(0)
)

Initialisation: pr(f, z) = Prob
(

f̂p(0) = f
)

· Prob (ẑp(0) = z) for all

f ∈ Nf and z ∈ Nz

kh = 0

Loop:

1. Measure the current state zm and input v.
2. For all f ∈ Nf determine h(f, zm) =

∑

f̄ ,z̄

G(z̄|zm, f, v) · Gf (f̄ |f) · pr(f, zm)

3. If
∑

f

h(f, zm) = 0 holds, stop the algorithm as the measured

state sequence is inconsistent with the automaton behaviour.
4. For all f ∈ Nf determine

pk(f, zm) = h(f,zm)
P

f

h(f,zm) .

5. For all f ∈ Nf and z ∈ Nz determine

pr(f, z) =

P

f̄

G(z|zm,f,v)·Gf (f |f̄)·pr(f,zm)

P

f

h(f,zm) .

6. Determine Prob (f(kh) = f |kh) = pk(f, zm)
7. kh = kh + 1

Continue with step 1.

Result: Prob (f(kh) = f |kh)
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Diagnosis of the autonomous stochastic automaton with coinciding states and
outputs

The autonomous stochastic automaton with coinciding states and outputs is identical
with the automaton shown in eq. (3.35) apart from omission of the input v. The
automaton is therefore now described by the triple

S = 〈Nz,Nf , G,Prob(z(0))〉 . (3.40)

This automaton has the transition relation

G(z′|z, f) = Prob
(

zp(1) = z′|zp(0) = z, fp(0) = f
)

. (3.41)

The diagnosis of the autonomous stochastic automaton with coinciding states and out-
puts therefore becomes almost identical to what is described in eq. (3.37) to (3.39) and
in Algorithm 3.1. The only difference lies in the omission of the input. Algorithm 3.2
is used for diagnosing the autonomous stochastic automaton with coinciding states and
outputs.

3.3.7 The relation between measured signals and finite value sets

The relation between the measured signals/quantities and the discrete value sets Nz, Nv

and Nw is done by partitioning the measured signals into the finite number sets. The
partitioning of the signals is done by quantisers. If denoting a measured quantity by y

the partition sets are denoted as Qy(w) hence y ∈ Qy(w) where w ∈ Nw. The measured
signals can thus be quantised into the finite number of sets using the quantisers.

An example of this can be seen in Figure 3.1.b where the measurements of activity index
belonging to nominal behaviour are quantised into the discrete value set Nz ∈ {1, 2, 3, 4}
using the partition intervals shown in Figure 3.1.a.

3.4 Identification of automata

An obvious challenge for modelling the cows’ behaviour by means of e.g. automata is
identifying the automata.

The precise behaviour is not known to follow a well established pattern other than as-
sumptions based on basic needs and desires of the animal. A model of the behaviour
could therefore only in a vague manner be based on a fundamental understanding of how
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Algorithm 3.2 Diagnosis of autonomous stochastic automaton with coinciding states
and inputs (Based on Algorithm 8.3 on page 420 in [3])

Given: autonomous stochastic automaton with coinciding states and inputs
S and fault model Sf

Initial state probability distribution Prob (ẑ(0))

Initial fault probability distribution Prob
(

f̂(0)
)

Initialisation: pr(f, z) = Prob
(

f̂p(0) = f
)

· Prob (ẑp(0) = z) for all

f ∈ Nf and z ∈ Nz

kh = 0

Loop:

1. Measure the current state zm.
2. For all f ∈ Nf determine h(f, zm) =

∑

f̄ ,z̄

G(z̄|zm, f) · Gf (f̄ |f) · pr(f, zm)

3. If
∑

f

h(f, zm) = 0 holds, stop the algorithm as the measured

state sequence is inconsistent with the automaton.
4. For all f ∈ Nf determine

pk(f, zm) = h(f,zm)
P

f

h(f,zm) .

5. For all f ∈ Nf and z ∈ Nz determine

pr(f, z) =

P

f̄

G(z|zm,f)·Gf (f |f̄)·pr(f,zm)

P

f

h(f,zm) .

6. Determine Prob (f(kh) = f |kh) = pk(f, zm)
7. kh = kh + 1

Continue with step 1.

Result: Prob (f(kh) = f |kh)
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Figure 3.1: Quantisation example

the system works. Building a model mainly from observing past observations is subse-
quently the approach and the a priori knowledge is based on qualitalive assumptions.

To the knowledge of the author there do not exist methods for identification of I/O
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automata from data measurements. The existing literature on I/O automata mainly
addresses the abstraction of systems already described by continuous models.

3.4.1 Beginning the modelling process

It is evident that the modelling process can involve many steps as it can involve all
possible observed data regarding the cow behaviour, e.g. activity, feeding behaviour and
milking behaviour.

The best approach is to try to identify the simplest task and complete that before moving
on to the next model/trait.

3.4.2 Modelling steps

In the process of finding the most suitable model and diagnosis method the following
steps are elaborated:

1. Model selection.

2. Definition of states, inputs and outputs.

3. Quantisation.

4. Calculating transition probabilities from data.

Each of the above listed steps is described briefly in sections 2.5−3.4.6, below. Figure
3.2 provides an overview of the modelling process.

3.4.3 Model selection

A suitable model construction is suggested. In this study there are three different versions
of the stochastic automaton tested for modelling and diagnosing the activity.

3.4.4 Definition of states, inputs and outputs

When defining states one should bare in mind that the states should symbolise the state
of the system in question, especially with respect to which changes in the system the
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Figure 3.2: Overview of the modelling steps.

model is supposed to emphasise. The inputs should be chosen as those external circum-
stances that influence the state of the system. The output is preferably a parameter that
is dependant on the system state.

3.4.5 Quantisation

The main aim of selecting the quantisation is to retain the difference in the data between
behavioural scenarios the detection algorithm is supposed to distinguish between. The
quantisation can be tuned to bring out the differences in the behaviour for each fault.

3.4.6 Calculating transition probabilities from data

The counting has to do with training the automata. At this stage the frequency of each
transition for each value of input v and output w for each of the behavioural scenarios
is assessed by observing a training dataset.

The training algorithm utilises the Markov property and has eq. (3.13) as the underlying
basis. The sum in eq. (3.13) describes the relation that the sum of probabilities for all
transitions from a state z towards a state z′ given the input v while producing the
output w under the behavioural scenario f should therefore indicate e.g. whether a
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certain transition is more probable for input v = 1 or v = 2.

An evaluation of the approximated probability for each transition and output generation
will compare the number of observed transitions from state z in the training dataset and
assign the highest probability to the most frequent transition and output generation.

Thereby denoting by Nz′,w,z,f,v how many times in the training dataset the transition
from state z towards state z′ given the input v while producing the output w under
the behavioural scenario f has been observed the approximated probability of the given
transition and output generation is found as.

L
(

z′, w|z, f, v
)

=
Nz′,w,z,f,v

∑

z′∈Nz

∑

w∈Nw

Nz′,w,z,f,v

(3.42)

where L (z′, w|z, f, v) is the transition probability that complies with the relation given
in eq. (3.13).

The quality of the approximation of the transition and output generation probabilities
depends largely on how representative and extensive the training dataset is with respect
to the modelled behaviour. If using a small dataset one could experience that some of
the transitions do not occur at all resulting in the approximated transition probability
equal to zero thus indicating that the transition is not possible although in reality it
might very well be possible under some circumstances.
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4 Application

This chapter describes the application of the methods described in the previous chapter
on the task of modelling behaviour of cows with the goal to detect lameness.

The procedure will follow the design steps earlier described in section 3.4.2.

4.1 Considerations for model selection

The modelling aim is to be able to detect lameness by observing changes in behaviour
due to lameness.

As described in section 3.4.2 the first steps in the modelling process involve model selec-
tion and definition of states, inputs and outputs. With respect to selection of the model
it has already been stated in section 3.3.3 that the model is based on the stochastic
automata.

It is mentioned in section section 2 and shown in Figure 1.1 that available traits in data
include observations of the traits activity, feeding behaviour and milking behaviour.
When selecting the model one can choose between modelling the behaviour with respect
to one trait or one could choose to combine two or more traits in the modelling efforts.
In this study the choice was to model one trait and to investigate its relevance with
respect to lameness detection using discrete event models. If the modelling is shown to
be relevant the model can be expanded with more traits at a later stage.

All three traits have been pointed out as relevant indicators of lameness ([2, 8, 16]).
As shown in section 1.2.1 all three have been used in some way in earlier attempts
to automatically detect lameness ([8, 13, 16]). If only considering earlier results of
automatic lameness detection traits regarding feeding behaviour seem most likely to
indicate lameness behaviour as they have given the best results with respect to number
of successful detections and the number of false alarms. There therefore already exist
methods that comprise feeding behaviour for the detection of lameness with promissing
results. To the author of this report, the most intuitive beginning task is to model the
activity. As the main symptoms of lameness involve feet illnesses it’s intuitive to associate
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these with changes in activity. Changes in activity in connection with lameness have
been pointed out in e.g. [18] and [16] and the detection of lameness using observations
of activity has been carried out in [16]. Although the authors of [16] did not succeed in
developing a convincing lameness detector solely based on activity it is still a relevant
parameter for further studies of lameness detection. The detection method used in [16]
was quite plain and results should be possible to improve. The trait that is used in the
following is therefore the activity.

As mentioned in section 3.3 the cows’ behaviour follows a stochastic pattern, therefore
the stochastic automata is selected for describing the cows’ activity.

For the selection of model and the definition of states, inputs and outputs it should
be kept in mind that the model is supposed to describe the cows’ activity and that
the diagnosis task is to detect changes in the activity behaviour due to feet illnesses
(lameness). The modelling aim is therefore to construct a model that retains differences
in activity between nominal and lame behaviour.

No date preprocessing other than a quantisation is performed in the following. If a
detection is possible using observations of raw data observations this is likely to be
faster than a detection performed on observations that have been pre-processed/filtered
using e.g. an aggregation or a running mean and so on.

In subsections 4.2−4.4 three stochastic automata models are described, that all model the
activity behaviour in the two behavioural scenarios namely nominal and lame. Diagnosis
results using the three approaches are shown in sections 5.1−5.3 and a comparison of
the results is done in section 5.4. Below is a brief description of the modelling aim of
the three different approaches.

As the cow is a living being, an individual if you will, that can move freely within some
boundaries in a loose housing system it is a natural assumption to consider the cow as an
autonomous system with respect to its activity behaviour. This is what is comprised in
the first approach described in section 4.2 where the cow is modelled as an autonomous
system with raw measurements of activity index (see section 2.2) as its measurement
output. In the first approach the states describe the activity during the last hour, i.e.
a qualitative measure of the activity index described in section 2.2. This is realised by
the autonomous stochastic automaton with coinciding states and outputs.

It is well known that the cows’ activity follows a some sort of a diurnal rhythm (see e.g.
[11]).One could therefore assume that it’s justifyable to consider the time of day as some
kind of an input or disturbance controlling the systems activity.This is what is done
in the second approach by adding quantised time of day as an input to the stochastic
automaton. In this case the system is as before considered to have raw activity index as
measurement output. The modelling aim of the second approach is therefore to model
the cow’s activity as a function of the time of day.
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In the third approach the modelling aim is to model a general activity level of the au-
tonomous cow. The model should describe whether the cow is experiencing an active
period rather than describing a more instantaneous activity as in the two earlier ap-
proaches. In this approach the state z is therefore defined as a measure of the general
activity state of the cow in terms of a some sort of a mean value. Hence if the activity
observations are generally high the activity state should also be high, but although a
single low activity observation appears it doesn’t necessarily mean that the state should
change over to a low activity state, thus the activity state is a some kind of a moving
average of the activity observations. The output w on the other hand expresses the
direct measurement of the current activity index which means that the activity state is
not directly observable.

Steps 2, 3 and 4 of the design steps (see. section 3.4.2) for the application each of
the above mentioned models for the behavioural modelling are described in sections
4.2-4.4.

The two behavioural scenarios, i.e. healthy and lame, which are expressed by f(k) (see
section 3.3.6), are mapped into the discrete value set {healthy, lame} → {1, 2}.

4.2 First approach: Autonomous cow

As mentioned in the previous section the cow is in the first approach considered as an
autonomous system with respect to its activity behaviour. The modelling aim of this
approach is to model the activity during the last hour in the autonomous cow for the
two behavioural scenarios nominal (f = 1) and lame (f = 2) respectively.

4.2.1 Selection of inputs, states and outputs

As the cow is in this approach considered autonomous the input is neglected, which leads
to the autonomous stochastic automaton. As the modelled behaviour is the activity
during the last hour, which is the observed measure of the activity behaviour, it comes
as a natural choice to also select the state z as a quantised measure of the activity during
the last hour. As this is also considered to be the output of the system the model used
is the autonomous stochastic automaton with coinciding state and output.
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4.2.2 Quantisation and calculation of probabilities from data

The state is interpreted as the activity by quantising the activity into the finite number
of states using a quantiser such as described in section 3.3.7.

In this first test the partition intervals were selected manually by observing the test data
described in section 2.5 in Figure 2.6 and selecting quantisation intervals that would
underline the difference in data between the two behavioural scenarios. The quantisation
is thus chosen to retain the difference in activity, especially in the upper levels of the
activity where the difference is more evident than otherwise. Hence in the first test the
output was partitioned using

Qy(w) = {0, 40, 85, 100, 250} . (4.1)

A graphical demonstration of the quantisation intervals is shown in Figure 4.1 and Figure
4.2.

     0 40 85 100 250

Partition intervals

Figure 4.1: A plot of the quantisation intervals.

It can be seen in the box plots shown in Figure 4.1 that observations of activity index
in the last two quantisation intervals is much more frequent for nominal behaviour than
for faulty behaviour.

In order to assess the state transition probabilities of the model (automaton) the model
was trained on the test dataset described in section 2.5 using the counting algorithm in
eq. (3.42).

As the model is constructed to describe two different behavioural scenarios namely nom-
inal and faulty, the automaton was trained on the nominal behaviour and the faulty
behaviour.
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(b) f = 2 (faulty)

Figure 4.2: Quantisation of the activity level shown on box plots of the activity for each
hour in the day

The model describing the nominal behaviour was trained using 162 days of data in the pe-
riod between 02.09.2007 and 12.02.2008 while the model describing the faulty behaviour
was trained using 62 days of data in the period between 27.06.2008 and 28.08.2008, set-
ting f = 1 when training on the data belonging to the nominal behaviour and f = 2
when training on the data belonging to the faulty behaviour.

The test data was quantised using the quantisation given in eq. (4.1). Figure 4.3 shows
how the observed values in the test data are quantised, using different colour for each
quantisation level and the assigned state value is shown on the right side of the plot.

Bar plots showing the number of observations quantised into each of the partitions are
plotted in Figure 4.4.

It becomes evident by looking at Figure 4.3 and especially the bar plot in Figure 4.4
that the number of observations in the highest quantisation interval is clearly higher for
the nominal behaviour compared to the faulty (lame) behaviour.

The automaton shown in eq. (3.40) was trained using the training algorithm in eq.
(3.42). The state transition relation of the automaton was estimated as

G(z′|z, 1) =









0.56 0.43 0.44 0.39
0.17 0.24 0.23 0.35
0.06 0.06 0.08 0.08
0.21 0.27 0.25 0.18









, G(z′|z, 2) =









0.58 0.47 0.43 0.49
0.25 0.34 0.34 0.35
0.05 0.06 0.08 0.06
0.13 0.12 0.14 0.10









,

(4.2)

where the row number represents the successor state z′ and the column number represents
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(a) f = 1 (nominal)

(b) f = 2 (faulty)

Figure 4.3: Quantisation of the activity level

the present state z. A graphical interpretation of the automaton in eq. (4.2) are shown
in Figure 4.5.

By looking at the state transition relation in eq. 4.2 and Figure 4.5 it is clear that
transitions with especially successor state z′ = 4 are much more probable for the nominal
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Figure 4.4: Bar plot showing the number of observations of the activity index quantised
into each level.
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Figure 4.5: A graph plot of the autonomous automaton

case than for the faulty case, which is what was to be expected.
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4.2.3 Model evolution

The autonomous stochastic automaton that is described by the transition probabilities
given in eq. (4.2) was used to simulate the cows behaviour by using the recursive
algorithm in eq. (3.23).

A simulation of the automaton which behavioural relations are expressed in eq. (4.2)
and Figure 4.5 was performed and the result is shown in Figure 4.6 and Figure 4.7.
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(a) f = 1 (nominal)
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(b) f = 2 (faulty)

Figure 4.6: A grey scale plot of the simulation of the autonomous automaton with coin-
ciding state and output over 10 hours. A black rectangle symbolises proba-
bility of one, white rectangle symbolises a probability of zero.

From the simulation in Figure 4.6 and Figure 4.7 it can bee seen that it is more probable
that the automaton occupies state z = 4 under nominal behaviour while it is more likely
to occupy state z = 1 and z = 2 under faulty behaviour.

A diagnosis test of the automaton with transition relations shown in eq. 4.2 is addressed
in section 5.1.
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Figure 4.7: Simulation of the autonomous automaton with coinciding state and output
over 10 hours. A simulation of the nominal behaviour is shown in blue and
the faulty behaviour with a red dashed line.

4.3 Second approach: Diurnal activity

In this second approach the cow is considered to be affected by which time of day it is
when it comes to its activity behaviour. The modelling aim of this approach is to model
the cow’s activity during the last hour as a function of the quantised time of dayfor the
two behavioural scenarios nominal (f = 1) and lame (f = 2) respectively. The model
should therefore not only express the difference in activity between the two behavioural
scenarios but also include a diurnal rhythm.

4.3.1 Selection of inputs, states and outputs

As the cow is in this approach considered to be affected by which time of day it is, a
quantised time of day is selected as input to the stochastic automaton. As the modelled
behaviour is still the activity during the last hour the state is a quantised measure of the
activity during the last hour. The second test therefore comprises a stochastic automaton
with quantised time of day as input and coinciding state and output.
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4.3.2 Quantisation

The quantisation of the inputs and outputs in this example is done manually like in the
previous example. The input quantisation is chosen by observing the mean value for
each hour of the day (see Figure 4.9) and trying to select the quantisation levels where
the activity level changes. The input was quantised using

Qu(v) = {0, 6.5, 12.5, 19.5, 24} , (4.3)

while the output was quantised using the intervals shown in eq. (4.1). The quantisation
intervals are shown in Figure 4.9.
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(b) f = 2 (faulty)

Figure 4.8: Quantisation of the activity level and time of day shown on box plots of the
activity for each hour in the day

From Figure 4.8 it can be seen that on the right figure there is a change in median value
from before 05 : 30 to the interval 5 : 30 − 11 : 30. It is also evident that activity in the
nominal case is especially high compared to the faulty case in the interval 18 : 30−24 : 00.
The differences in the activity that are visible only when looking at a certain time interval
but disappear when looking at the whole time spectrum will aid the diagnosis when also
including time of day as input. The quantisation is shown in Figure 4.9.

4.3.3 Behavioural relations

Estimating transition probabilities counting transitions in the dataset of nominal and
faulty behaviour respectively gave the state transition relations shown in eq. (4.4) and
eq. (4.5). The difference between the two transition relations is shown in eq. (4.6).
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Figure 4.9: Quantisation of the activity level and the time of day

State transition relation for the healthy cow becomes

G(z
′
|z, 1, v) =

0

B

B

@

0.64 0.52 0.58 0.54 0.55 0.44 0.47 0.37 0.55 0.42 0.43 0.41 0.35 0.27 0.27 0.28
0.17 0.29 0.19 0.36 0.18 0.19 0.16 0.40 0.16 0.21 0.26 0.32 0.18 0.26 0.32 0.34
0.05 0.05 0.08 0.04 0.07 0.07 0.09 0.10 0.06 0.06 0.05 0.09 0.11 0.09 0.11 0.09
0.15 0.14 0.15 0.06 0.21 0.30 0.28 0.14 0.23 0.31 0.26 0.18 0.36 0.38 0.29 0.30

1

C

C

A

,

(4.4)

where the 4 columns between each two vertical lines represent the present state z, the
row number the successor state z′ and the vertical lines mark a change in the input.
Hence the values from the leftmost parentheses to the leftmost vertical line represent
transitions for input v = 1 and so forth.

State transition relation for the lame cow is found as,

G(z
′
|z, 2, v) =

0

B

B

@

0.68 0.59 0.65 0.53 0.47 0.43 0.34 0.42 0.58 0.42 0.35 0.50 0.49 0.50 0.55 0.53
0.18 0.27 0.24 0.44 0.31 0.41 0.34 0.38 0.25 0.35 0.38 0.29 0.32 0.30 0.36 0.33
0.04 0.05 0.06 0.00 0.08 0.06 0.10 0.10 0.04 0.08 0.12 0.06 0.04 0.04 0.00 0.05
0.10 0.08 0.06 0.03 0.14 0.10 0.21 0.10 0.14 0.15 0.15 0.15 0.16 0.17 0.09 0.10

1

C

C

A

.

(4.5)

A relative difference in the transition relations between the two considered behavioural
scenarios is found as

G(z′|z, 1, v) − G(z′|z, 2, v)

G(z′|z, 1, v)
× 100 =

0

B

B

@

−6.3 −13.2 −11.4 2.5 13.9 4.3 26.7 −13.5 −4.9 1.0 19.2 −21.4 −40.2 −87.5 −98.9 −90.3
−9.7 5.0 −21.6 −23.2 −73.3 −121.1 −113.2 5.3 −51.7 −66.5 −48.1 8.6 −75.7 −14.2 −12.7 3.3
15.3 −5.4 27.1 100.0 −23.0 9.3 −17.2 −2.7 30.3 −40.0 −122.1 25.2 68.9 60.7 100.0 44.8
33.5 40.8 59.5 52.4 34.0 66.0 26.0 23.0 40.5 51.6 40.8 21.2 55.4 56.3 68.7 66.4

1

C

C

A

.

(4.6)

by observing the matrix in eq. (4.6) one can see that the largest relative difference in
transition probability is when moving from z = 3 to z′ = 3, i.e. it is more likely that the
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activity remains at state z = 3, for input v = 3, between 11 : 30 and 18 : 30, where it is
more likely to happen when the cow is lame than when it’s not lame.

A graphical interpretation of the automaton in eq. (4.4) and eq. (4.5) are shown in
Figure 4.10 and 4.11.
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Figure 4.10: A graph plot of the autonomous automaton with time of day as input (input
v = 1 and v = 2)
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Figure 4.11: A graph plot of the autonomous automaton with time of day as input (input
v = 3 and v = 4)

4.3.4 Simulation

For simulating the stochastic automaton with coinciding states and outputs and a time
of day input the recursive algorithm in eq. (3.22) can be used directly. The normal
behaviour was simulated using the behavioural relation given in eq. (4.4) and the be-
haviour belonging to lameness was simulated using the behavioural relation given in eq.
(4.5). The simulation result is shown in Figure 4.12.
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Figure 4.12: Simulation of stochastic automaton with time of day input plotted in
greyscale and the median value of the activity for each hour of the day
plotted with blue dots.

It can be seen by observing the simulations in Figure 4.12 and Figure 4.13 that the
simulations now follow a diurnal rhythm and that the probability of moving towards a
state of “high” activity is more probable for the cow when healthy than when lame.
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Figure 4.13: A plot of the simulation of the autonomous automaton with coinciding state
and output over 10 hours. A simulation of the nominal behaviour is shown
in blue and the faulty behaviour in red.

4.4 Third approach: General activity level of the autonomous

cow

In the third approach the modelling aim is to model a general activity level of the
autonomous cow.

4.4.1 Selection of inputs, states and outputs

As in the first approach (see section 4.2) the cow is considered autonomous and the
input is neglected. In this approach the state z is defined as a measure of the general
activity state of the cow in terms of a some sort of a mean value. The output w on the
other hand expresses the direct measurement of the current activity index. The model
therefore becomes the autonomous stochastic automaton.
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4.4.2 Quantisation

For being able to come up with a reasonable estimate of the behavioural relation for the
automaton one should built a dataset for training this automaton.

As a “truth” set for the states, and state transitions, median values of each hour in
the day were used. As the cows’ activity follows a diurnal rhythm it was considered
reasonable to assume that all activity observations taken at e.g. 01 : 00 occurred during
a transition towards the activity state at 02 : 00, i.e. under training the state was the
same at 01 : 00 every day and the same for at 02 : 00 every day and so forth.

The median values seen in Figure 4.15 were therefore quantised into state sets and used
as a truth set for the automaton training. The activity level was partitioned into a set
of 3 states and the output into a set of 3 values, thus

Nz = {1, 2, 3} and Nw = {1, 2, 3} (4.7)

As described above, both state set Nz and output set Nw have 3 values. The quantisation
for states Qx(z) and the quantisation of outputs Qy(w) was selected as

Qy(w) = {0, 30, 95, 300} Qx(z) = {15, 40, 70, 100} . (4.8)

A graphical demonstration of the quantisation intervals is shown in Figure 4.14 and
Figure 4.15.

    0 30 95 300

pary

(a) quantisation of activity index

    15 40 70 100

parx

(b) quantisation activity medians

Figure 4.14: A plot of the quantisation intervals

From Figure 4.15 (a) and (b) it can be seen that for both behavioural scenarios the cow
always stays in state z = 1 in the period 01 : 00 − 07 : 00 and it can also be seen that
the cow never enters state z = 3 when lame, which it does in the period 21 : 00− 23 : 00
in the nominal case.
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(a) State quantisation, f = 1 (nominal)
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(b) State quantisation, f = 2 (faulty)
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(c) Output quantisation, f = 1 (nominal)
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(d) Output quantisation, f = 2 (faulty)

Figure 4.15: Quantisation of the activity level and time of day shown on box plots of the
activity for each hour in the day

4.4.3 Behavioural relations

Estimating transition probabilities counting observations in the dataset of “normal” and
“lame” behaviour respectively gave the state transition relations shown in eq. (4.9). The
difference between the two transition relations is shown in eq. (??).
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The behavioural relation of the normal activity

L(z′, w|z, 1) =


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


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0.38 0.13 0.00
0.12 0.14 0.14
0.00 0.08 0.08

0.25 0.15 0.00
0.08 0.13 0.19
0.00 0.09 0.19

0.12 0.09 0.00
0.05 0.10 0.17
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
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0.13 0.33 0.00
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0.00 0.00 0.00





























(4.9)

A graphical interpretation of the automaton in eq. (4.9) are shown in Figure 4.16.
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(b) f = 2 (faulty)

Figure 4.16: A graph plot of the autonomous automaton

As shown in Figure 4.16 there are no transitions towards state z′ = 3 in the model
describing the activity during lameness. This should/could make the diagnosis more
robust although the transition isn’t very probable (Prob(zp(k+1) = 3, wp(k) = w|zp(k) =
2) ≤ 0.09) in the model describing the healthy behaviour either.

4.4.4 Simulation

For the autonomous stochastic automaton the simulation algorithm is the same as the
one described in eq. (3.23).A simulation of the autonomous stochastic automaton which
behavioural relations are expressed in eq. (4.9) and Figure 4.16 was performed and the
result is shown in Figure 4.17.

4.4.5 Observation

As a test the observation properties for the system in eq. (3.14) are investigated and an
observation of the model using a measured output sequence is performed.

An observation of the autonomous stochastic automaton which behavioural relations are
expressed in eq. (4.9) and Figure 4.16 was performed and the result is shown in Figure
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Figure 4.17: A greyscale plot of the simulation of the autonomous stochastic automaton
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Figure 4.18: A plot of the simulation of the autonomous stochastic automaton. A simu-
lation of the nominal behaviour is shown in blue and the faulty behaviour
in red.

4.19.

From looking at Figure 4.19 it can be seen that the observed behaviour the first 24 hours

in each dataset (nominal and faulty) follows reasonably well with the trajectory of the
median values for each hour of the day which is what was to be expected.
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Figure 4.19: A plot of the observation of the autonomous stochastic automaton plotted
in greyscale and the median value of the activity for each hour of the day
plotted with blue dots.
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5 Application of the models for detecting
deviant behaviour

5.1 Diagnosis results for the autonomous cow

For a relatively slowly changing phenomena like leg illness in cows the probability of
changing behavioural model within one step should be very low (it is slowly changing
seen in respect with the sampling time of T = 1 hour). This is reflected in the selection
of the fault transition probabilities in the fault model:

Gf (f ′|f) =

(

0.99999 0.00001
0.00001 0.99999

)

(5.1)

The transition probabilities of the fault model reveal that the probability of the mea-
sured data sequence belonging to either of the fault models has to be very low before
a transition becomes probable. The algorithm in 3.2 was applied on on the test data
using the autonomous stochastic automaton with coinciding states and outputs and the
transition relation given in eq. (4.2) and the fault model in eq. (5.1).

The diagnosis result is shown in Figure 5.1.

It can be seen from Figure 5.1 that the diagnosis algorithm is able to distinguish between
nominal and faulty behaviour apart from a short period in the beginning and in the end
and just after the cow becomes lame, at sample 3907.
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Figure 5.1: A plot of the diagnosis of the autonomous stochastic automaton with coin-
ciding state and output. A behaviour reference is shown with a blue line and
the diagnosis result is shown with a red line. Thus the closer the red line is
to the blue line, the better the diagnosis result.

5.2 Diagnosis results for the diurnal activity

The algorithm in 3.1 was used for diagnosing on the test data using the behavioural
relation given in eq. (4.4) and eq. (4.5) and the fault model in eq. (5.1). The diagnosis
result is shown in Figure 5.2.

From Figure 5.3 it can be seen that like in section 5.1 the diagnosis algorithm is able to
distinguish between the nominal and faulty behaviour. The result in Figure 5.2 is better
than that of Figure 5.1 as the period of indecision in the beginning is shorter and the
period with errornous diagnosis towards the end has disappeared. This improvement is
a direct consequence of the adding of information in the time of day input v.
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Figure 5.2: A plot of the diagnosis of the stochastic automaton with coinciding state and
output

5.3 Diagnosis results for the general activity level of the

autonomous cow

The model was diagnosed using the quantised output extracted from the data shown
in Figure 2.6 and the fault model in eq. (5.1). The diagnosis result is shown in Figure
5.3.

From Figure 5.3 it can be seen that for the case of modelling the autonomous cows’
general activity level the diagnosis algorithm is able to distinguish between the two
behavioural scenarios nominal and lame. The results seem clearly better than when
modelling the activity of the preceding hour for the autonomous cow. Further comparison
is done in section 5.4.
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Figure 5.3: A plot of the diagnosis of the autonomous stochastic automaton

5.4 Comparison of the diagnosis results

In order to facilitate comparison of the diagnosis results of the three approaches a plot
of the absolute difference between the probability of the data measurements belonging
to the nominal behaviour for each of the tree approaches and a “truth” reference was
drawn. The“truth”reference is meant to indicate whether a measurement sample belongs
to nominal behaviour of faulty behaviour. Denoting the “truth” reference by q the truth
reference is selected as

q(k) =

{

1 if k = 0 . . . 3906
0 if k = 3907 . . . 5395

(5.2)

and thus q(k) is equal to one in the period belonging to the nominal behaviour and
zero in the period belonging to the faulty behaviour. The absolute difference between
the probability of the data measurements belonging to the nominal behaviour and the
“truth” reference is therefore found as

ǫf (k) = |q(k) − Prob(f(k) = 1|k)| (5.3)

for each of the three approaches. ǫf (kh) was calculated for the whole period for each of
the three approaches and is shown in Figure 5.4.
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Figure 5.4: A plot of the diagnosis error ǫf (kh) for the three modelling approaches. The
blue line represents ǫf (kh) for the diagnosis in the first approach, the green
dashed line represents ǫf (kh) for the diagnosis in the second approach and the
red dash-dotted line represents ǫf (kh) for the diagnosis in the third approach.

From Figure 5.4 it can bee seen that there is some difference between the three approaches
and that approach two and three are clearly performing better that approach one.
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6 Conclusion

This report describes a study on modelling cows activity using discrete event models
with the aim of detecting lameness.

Three modelling approaches were comprised in order to investigate the possibility to
detect reduced activity due to lameness. Tests of the diagnosis algorithm showed that
detection was possible when modelling the activity during the last hour considering the
cow as autonomous with respect to its activity behaviour using an autonomous stochastic
automaton with coinciding state and output. Improved results were gained by adding
an input with information on time of day and considering the cow as being affected by
which time of day it is. Modelling general activity level instead of the activity during
last hour also gave improved results.
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