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Fiber movements and sound attenuation in glass wool
Viggo Tarnow
Department of Applied Engineering Design and Production, Technical University of Denmark,
Bygning 358, DK 2800 Lyngby, Denmark

~Received 24 December 1997; revised 24 August 1998; accepted 25 September 1998!

Propagation of a plane harmonic sound wave in fiber materials such as glass wool is studied
theoretically and experimentally. Wave equations are set up that take into account the movement of
the fiber skeleton. The attenuation of the sound wave in slabs of glass wool was calculated and
measured. The main new result is that the experimental attenuation of a low-frequency propagating
wave is lower when the fibers move. For a wave with frequency 100 Hz in glass wool of density 30
kg/m3, the attenuation of a layer of thickness 0.20 m is 4 dB if the fibers move, and 12 dB if they
do not move. The attenuation was computed from the fiber diameters and their density, which was
found from the mass density. Measured attenuation is lower than the values calculated.
Nevertheless, if the density is adjusted, a complete fit is obtained between experimental and
theoretical values for frequencies 50–5000 Hz. ©1999 Acoustical Society of America.
@S0001-4966~99!02601-6#

PACS numbers: 43.58.Vb, 43.20.Jr, 43.55.Ev, 43.35.Mr@SLE#

INTRODUCTION

In theories that aim at computing the sound attenuation
of fiber materials, one often assumes that the fibers do not
move. However, several people have measured the effect of
the movements of fibers.

Dahl et al.1 measured the absorption coefficient of Kev-
lar samples with a thickness of 10 cm placed on a hard wall.
They found a resonance in the absorption attributed to a
mechanical resonance due to movement of fibers. The ab-
sorption was measured for densities 5–67 kg/m3, and it was
found that resonances were sharpest for the highest-density
material, where the resonance frequency was about 600 Hz.

Allard et al.2 measured the surface impedance of
samples of glass wool with density 130 kg/m3 attached to an
impervious floor. They measured a resonance frequency of
470 Hz for a layer of thickness 10 cm, and 860 Hz for thick-
ness 5.4 cm. These resonances were attributed to mechanical
resonance of the samples due to the movements of fibers.

Lambert3 reported measurements on Kevlar samples of
thickness 10 cm placed on a hard wall. A resonance about
1000 Hz was found in the attenuation, the phase speed, the
characteristic admittance of the material, the effective resis-
tivity, and the effective dynamic density. These resonances
were caused by moving fibers. In a second paper4 Lambert
gave further data for resonances in the effective resistivity
and the effective dynamic density.

In the present work, measurements of the sound attenu-
ation of glass wool are reported, which show that at frequen-
cies below 200 Hz the fiber movement strongly influences
the attenuation. The measurements were done on glass wool
slabs with density 14 and 30 kg/m3. The glass wool slabs had
dimensions 10036003900 mm and were placed in a stack
of six units, and placed in a box made of chipboards open
only at one side.

Several theories have been published that take into ac-
count the movements of the skeleton of porous materials.
Biot published two papers5,6 in which a porous solid filled
with a fluid is studied.

The papers by Dahlet al.1 and Lambert3,4 explain the
measured acoustic properties by resonances in single fibers.
However, it is difficult to see how single fiber could reso-
nate, because all fibers are strongly coupled, and the wave-
length of a sound wave are much longer than the distance
between the fibers. The theoretical model in the present pa-
per does not use resonating single fibers.

In the paper by Allard,2 the observed resonances were
explained by the methods of the two Biot papers.5,6 A similar
approach was used in the paper by Johansen, Allard, and
Brouard,7 who used finite element methods to analyze acous-
tical measurements on fiber material samples placed in a tube
with diameter 10 cm. Two thicknesses, 2 and 5 cm, were
used. They found resonances due to fiber movements could
be explained by assuming the skeleton moved as a continu-
ous medium.

In the present paper the sound attenuation is computed,
allowing for the fiber movements by regarding the skeleton
as a continuous medium in the same way as Biot did. The
dynamic resistivity and compressibility used here are com-
puted more nearly accurately than the ones used by Biot.

The earlier reports by Allardet al.2 and Johansenet al.7

of observations of fiber movement used mechanical reso-
nance in the samples to detect the movements of fibers. This
is not so in this paper where the attenuation of propagating
waves in glass wool is measured. The paper by Johansen,
Allard, and Brouard7 referred to measurements on samples
with cylindrical shape and a diameter of 10 cm. They had to
take into consideration the lateral movement of the fiber
skeleton. This is not necessary for the measurements re-
ported in this paper, because the samples used here are much
wider. The dimensions are 10 cm360 cm390 cm.

I. THEORY OF SOUND PROPAGATION WITH FIBER
MOVEMENTS

In fiber materials, such as glass wool, a coupling be-
tween movements of air and fibers exist; this coupling is
mainly due to friction between air and fibers. Wavelengths of
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audible sounds in air and fibers are much longer than the
distance between fibers in ordinary glass wools. Therefore,
the propagation of sound waves can be calculated by assum-
ing the medium is continuous, and the waves cannot ‘‘see’’
the single fibers.

A. Elastic forces

We study plane waves in glass wool that propagate in
the x direction of a rectangular coordinate system. The dis-
placement of the fiber skeleton in thex direction is calledu,
and the mean displacement of air in thex direction is called
n. It is defined as the volume flow of air through a large cross
section divided by the area of that cross section.@Biot5 used
another definition of mean air displacement: Volume flow of
fluid ~air! divided by area of fluid in that cross section. He
assumed ‘‘that the solid–fluid system is statistically isotro-
pic.’’ Glass wool is anisotropic, and for some boundary con-
ditions, one needs the air volume flow through a cross sec-
tion. This is, with our definition, simply equal to mean air
displacement times the area of the cross section. However,
this is not so with Biot’s definition.#

The elastic forces on fibers and air can be found from
the potential energy per unit volume. The potential energy
densityE is, in a linear theory, a quadratic form in the partial
derivatives of the displacement of the fibersux and airnx .
Thus

E5 1
2c11ux

21Auxnx1 1
2Knx

2, ~1!

wherec11 is an elastic modulus of the fiber skeleton, when
the air is not displaced (nx50); K is the bulk modulus of air,
when the fibers do not move (ux50); A is a constant that
couples movements of air and fibers.

The static value ofc11 was measured by applying a
known force to a sample of the glass wool and measuring the
depression.c11 equals the force per area divided by the rela-
tive depression. The result wasc1152000 and 16 000 Pa for
the two glass wool types. We regard the glass fiber skeleton
as a space lattice of glass fibers. They may vibrate, but the
fibers are coupled. This system is similar to atoms in a crys-
tal, the atoms are placed in a space lattice, they vibrate, but
their vibrations are coupled. The dynamics of the space lat-
tice show that the elastic moduli does not depend on fre-
quency when the wavelength is longer than the distance be-
tween the fibers. Therefore, we assume the elastic modulus
c11 does not depend on frequency. Measurements of the elas-
tic moduli for glass wool as a function of frequency have not
been published.

The bulk modulus of air equals

K5
1

fC
, ~2!

wheref is the porosity, andC is the dynamic compressibil-
ity of air itself, which will be computed by the self-consistent
method of Tarnow.8 Self-consistent methods were first used
in atomic physics, Schiff.9 A model with parallel, randomly
placed cylinders~fibers! with equal diameters will be used.
The procedure is described in Appendix A.

The value ofA can be found by computing the pressure
p from Eq. ~1!. This gives

2p5
]E

]nx
5Aux1Knx . ~3!

If p50 and the fibers move out of a volume, some air must
flow into that volume to keep the air pressure zero. The
volume of fibers going out of a unit volume of space isdux ,
whered is the volume density of fibers,d512f. They are
practically incompressible compared to air; therefore, the
volume of air that streams out of a unit volume must be

nx52dux . ~4!

From Eq.~3! (p50) and Eq.~4!, one gets

A5dK. ~5!

From Eqs.~1! and ~5!, the elastic energy density becomes

E5 1
2c11ux

21dK uxnx1 1
2Knx

2. ~6!

The stresss in the fiber lattice can also be found from
the elastic energy density, Eq.~6!:

s5
]E

]ux
5c11ux1dKnx . ~7!

From this equation one sees that the elastic modulusc11

should be measured by constant air volume (nx50). How-
ever, it was measured by constant pressure. The relation be-
tween the two moduli can be found by setting Eq.~4! into
Eq. ~7!. Thus

s5c11ux2d2Kux . ~8!

From the last equation, one finds the relation between the
elastic modulus for constant air pressure and volumecp11

andcn11. The result is

cp115cn112d2K. ~9!

However, the difference between the two elastic moduli is
small, 2% and 1% ford50.0056 and 0.016, which corre-
sponds to mass density 14 and 30 kg/m3.

B. Viscous and inertial forces

We assume a harmonic time variation, described by a
complex time factore2 ivt, wherev is the cyclic frequency
and t is the time. In an earlier paper10 by the author, the
forces on the fibers from the air stream are computed when
the fibers do not move. The movement of the fibers can be
taken care of by changing the boundary condition on the
fibers, and repeating the calculation in the paper.10 When this
is done, one finds the forcesf f on the fibers in a unit volume
of glass wool,

f f52drv2u1R'8 iv~u2n!, ~10!

wherer is the mass density of air.R'8 is the dynamic resis-
tivity of the fibers, which will be computed by the self-
consistent method of the paper in Ref. 10, summarized in
Appendix B.

Equation~10! can be controlled in the high-frequency
limit. It follows from the article in Ref. 10 that the high-
frequency limit of the resistivity is

R'8→22dr iv. ~11!
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When this is set into Eq.~10!, one obtains

f f5drv2u22drv2n. ~12!

This is reasonable because the inertia of a cylinder oscillat-
ing perpendicular to its axis in a fluid is increased by the
mass of fluid displaced by the cylinder, Lamb.11 Equation
~12! is also according to Eq.~11.9! in Sec. 12 of Landau and
Lifschitz.12 They assumed potential flow, which is valid for
high frequencies, where the viscous boundary layer is very
thin.

The viscous forces on the air follow from Newton’s law
of action and reaction. Therefore, the force on the air in a
unit volume is

f a52R'8 iv~u2n!. ~13!

This can be checked in the high-frequency limit. From Eqs.
~11! and ~13! one gets, in this limit,

f a52drv2n22drv2u. ~14!

By considering only inertial forces, and using Newton’s sec-
ond law f a52rv2n. This is set into Eq.~14!, and one gets

2~112d!rv2n522drv2u. ~15!

Rayleigh13 computed the effective massreff for potential
flow perpendicular to fixed cylinders. He found

reff5
11d

12d
r. ~16!

To first order ind, this is reff5(112d)r, which agrees with
the left side of Eq.~15!.

C. Wave equations

The equations for a plane wave propagating in thex
direction of a rectangular coordinate system can be found by
applying Newton’s second law to fibers and air in a unit
volume. By computing the forces on a unit volume from the
density of elastic energy, Eq.~6!, and the viscous forces,
Eqs.~10! and ~13!, one gets

2v2Fm2dr 0

0 r
G Fun G5F c11 dK

dK K G Fuxx

nxx
G

1 ivR'8 F 1 21

21 1 G Fun G , ~17!

wherem is the ordinary mass density of glass wool, anduxx

andnxx are the second partial derivatives of the displacement
of the fiber and air.

D. Solution of wave equations

We assume plane wave solutions to Eq.~17! of the form

Fun G5Fu0

n0
Geikx, ~18!

whereu0 andn0 are constants, andk is a wave number. This
equation is substituted in Eq.~17!. A nontrivial solution ex-
ists if the following determinant is zero:

U2v2~m2dr!1k2c11 k2dK2 ivR'8

k2dK2 ivR'8 2v2r1k2K
U50. ~19!

This equation has two solutionsk1 andk2 , which are shown
in Fig. 1 as a function of frequency. The curves were com-
puted with a fiber diameter 6.8mm, the distance between
fibers 80mm, volume densityd50.0056, and elastic modu-
lus 2000 Pa; which parameters are valid for light glass wool
of density 14 kg/m3. Figure 2 shows the result for glass wool
with the same fiber diameter, distance between fibers 58mm,
fiber densityd50.016, elastic modulus 16 000 Pa, and mass
density 30 kg/m3.

The constantsu0 andn0 of Eq. ~18! are related by

F2v2~m2dr!1k2c11 k2 dK2 ivR'8

k2 dK2 ivR'8 2v2r1k2K
G Fu0

n0
G5F00G .

~20!

FIG. 1. Wave numbers computed for glass wool of density 14 kg/m3, vol-
ume density 0.0056, diameter of fibers 6.8mm, and elastic modulus 2000
Pa. The waves associated withk1 carry most of the sound pressure, the ones
associated withk2 carry most of the mechanical stress of the fiber skeleton.
The real part of the wave number gives the phase shift per meter, and the
imaginary part the relative attenuation per meter.

FIG. 2. Wave numbers computed for glass wool of density 30 kg/m3, vol-
ume density 0.016, diameter of fibers 6.8mm, and elastic modulus 16 000
Pa.
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In Eq. ~20! k5k1 or k2 , the two solutions of Eq.~19!. For-
mulas fork1 andk2 are in Appendix C.

II. REFLECTIONS FROM THE REAR

In the measurements, a sound wave from a loudspeaker
reaches a slab of glass wool, the rear side of which is placed
on a wall. The wave front is parallel to the slab, as shown in
Fig. 3. The sound pressure is measured inside the glass wool.
Therefore, we compute the sound pressure of a plane wave
inside an infinite slab, which is attached to a hard airtight
wall and free on the other side.

The displacement of air particles and the fiber skeleton
is zero at the wall. A coordinate system is chosen with anx
axis perpendicular to the wall and the origin at the wall. The
sound particle displacementn can be written as

n5n1 sin~k1x!1n2 sin~k2x!. ~21!

The constantsn1 andn2 will be determined by the boundary
condition on the free surface of the slab. The displacement of
the fiber skeletonu can be written in a similar way,

u5u1 sin~k1x!1u2 sin~k2x!; ~22!

here areu1 andu2 constants to be determined by the bound-
ary condition on the free surface of the slab.

The slab is placed betweenx52L andx50. At the free
surface the stress on the fibers is zero. The boundary condi-
tion for the derivative ofu andn can be found from Eq.~7!,
but because the volume density of fibers is small, one gets

Fdu

dxG
x52L

50. ~23!

On the free surface the sound pressurep0 is given, from Eqs.
~2! and ~3! one gets becaused is small,

Fdn

dxG
x52L

52fCp0 . ~24!

Equations~20!, ~23!, and ~24! determine the constantsu1 ,
u2 , n1 , n2 . The constantsu1 and n1 are connected by Eq.
~20!, where they shall be substituted foru0 and n0 . The
other two constantsu2 andn2 are treated in the same way.
The air pressure inside the glass wool can be found from

p52
1

fC

dn

dx
. ~25!

A formula for the pressure is given in Appendix C.

III. MEASUREMENT SETUP AND RESULTS

The attenuation of plane harmonic sound waves propa-
gating in glass wool was measured. Figure 4 shows the
setup, which was placed in an anechoic room. A rectangular
chest made of 22 mm thick chipboard was used. It had one
open side, which faced a loudspeaker 1.7 m away. In the
chest, six slabs of glass wool each measuring 0.6 m
30.9 m30.1 m were laid, with fibers parallel to the open
side. Two half-inch condenser microphones were used. One
was set at the free surface of the glass wool and another was
placed inside the glass wool. The axes of the microphones
were parallel to the free surface.

The loudspeaker was connected to a sinusoidal voltage
supply, the frequency of which could be swept through a
range. Attenuation of sound waves was calculated by divid-
ing the pressure at the surface by the pressure inside the glass
wool. Measurements were done with the inside microphone
0.2 m from the free surface and placed in the middle.

Pressure sensitivities of the microphones are equal. At
high frequencies, diffraction of waves about the microphone
cause changes in the sensitivity. But because frequencies
were always below 10 kHz, and the direction of propagation
perpendicular to the axis of the microphone, this effect is
smaller than 0.5 dB in free air. At 10 kHz the wavelength in
the free air is almost equal to the one inside the glass wool.
Therefore, the diffraction is small and equal for the two mi-
crophones; and has no influence on the measured attenuation.

The inside microphone is set between two glass wool
slabs with thickness 100 mm; and the microphone cable is
placed between the two slabs that touch each other. The glass
wool is soft so there is some deformation of it in a small
volume about the microphone. The diameter of this deforma-
tion is about 25 mm. Considering the thickness of the glass
wool slabs and the lateral dimensions of the slabs, it can be
assumed that the pressure measured by the microphone is
close to the undisturbed pressure in the glass wool.

The volume density of fibersd equals the mass density
of glass wool divided by the mass density of glass, which is
2550 kg/m3. For glass wools of mass density 14 and 30
kg/m3, one findsd50.0056 and 0.016.

To compute the compressibility and resistivity of air as a
function of frequency, one must know the radius of fibersa

FIG. 3. Plane waves are coming in from the left. They propagate in the glass
wool and are reflected by the hard wall. The pressure is measured at the
surface of the glass wool and inside it.

FIG. 4. The measuring setup is placed in an anechoic room. The chest is
made of 22-mm thick chipboard with inside dimensions 0.60 m30.60 m
30.90 m. Six slabs 0.10-m thick of glass wool were placed in it. The chest
is open toward the loudspeaker. The two condenser microphones are

1
2 in. in

diameter, and their axes are perpendicular to the direction to the loud-
speaker. The distance from the chest to the loudspeaker is 1.70 m.
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and the distanceb between fibers. The diameter of the fibers
was measured by a microscope to 6.8mm with a standard
variation of 2.7mm. The mean distanceb is the square root
of the area per fiber. It can be calculated from the volume
density of fibersd, b5aAp/d, because we assume parallel
fibers. One findsb580 and 58mm for low- and high-density
glass wool.

A theoretical calculation of attenuation with moving fi-
bers requires the knowledge of the elastic moduli of the glass
wool skeleton. It was measured by turning the chest so that
the open side was up. A 22-mm thick chipboard plate with a
clearance of 10 mm along the edge was put on the glass wool
and loaded with weights. Depression of the plate was mea-
sured as a function of the weight placed on the chipboard
plate. The elastic modulus equals the gravity force per area
of the plate divided by the corresponding depression. For
glass wool of density 14 and 30 kg/m3, the elastic moduli
were measured to be 2000 and 16 000 Pa.

The attenuation of sound waves by 0.20 m glass wool of
density 14 kg/m3 in a slab with a thickness of 0.60 m is
shown in Fig. 5. The dotted line shows the computed pres-
sure for a fiber volume density of 0.0056, fiber diameter 6.8
mm, and elastic modulus 2000 Pa. The measured attenuation
is shown as circles. The full line is computed in the same
way as the dotted one, but the density of fibers 0.0028 was
chosen to make the curve fit the measuring points. The
dashed line was computed from the same density, but it was
assumed that the fibers did not move.

Figure 6 shows the attenuation for the same depth, thick-
ness of slab, and fiber diameter, but the mass density is 30
kg/m3. For the dotted line the volume density is 0.016, fiber
diameter 6.8mm, and elastic modulus 16 000 Pa. The circles
are the measured attenuation. It is greater than in Fig. 5,
because the mass density is higher. The full line is the cal-
culated attenuation, where the density 0.006 was chosen to fit
the curve to the measured points. The dashed line is the
calculated attenuation for fixed fibers with the same density.

IV. DISCUSSION

The calculations of attenuation were based on a geo-
metrical model consisting of parallel cylinders placed ran-
domly. However, the measurements show that this model
cannot be used to predict the actual attenuation when the
volume density of fibers is computed from the diameters of
fibers and the mass density of glass and glass wool. The
measured attenuation at all frequencies can be computed if
one fits the density of fibers. For the glass wool of density 14
kg/m3, the volume density based on mass densities was
0.0056 and the density used to fit the data was 0.0028. For
density 30 kg/m3 the volume density was 0.016 and 0.006,
respectively. Apparently real glass wool is more open than
the model. A more complicated model is needed to compute
all acoustic properties from the geometry of glass wool. One
important property of the glass wool is the direct flow resis-
tivity that cannot be correctly computed from the model with
randomly placed, parallel cylinders.

The full line of Fig. 5 can be computed for frequencies
above 100 Hz if one neglects the reflection of waves from
the rear because the sound wave reflected from the rear side
of the glass wool stack is much attenuated. A curve for at-
tenuation without reflections is not shown in Fig. 5. The
low-frequency resonance would be absent if the fibers did
not move because the attenuation would be greater. The at-
tenuation is smaller when the fibers move, because the rela-
tive velocity between air and fibers is smaller, and the energy
dissipation is smaller. In Fig. 6 for the heavy glass wool, the
reflections from the rear can be neglected for frequencies
above 100 Hz.

Measurements and calculations show that the attenua-
tion is smaller when the glass wool fibers can move. In Fig.
6 one can see that a propagating sound wave in glass wool of
density 30 kg/m3 and frequency 100 Hz is attenuated 4 dB by
a layer of thickness 0.20 m if the fibers move and 12 dB if
they do not move. That means that one could increase the

FIG. 5. Measured and computed attenuation of plane sound waves in glass
wool of density 14 kg/m3 and elastic modulus 2000 Pa. The fibers are
parallel to the wave front. The attenuation was found 0.20 m inside the glass
wool sample of thickness 0.60 m. The dotted line is computed for a volume
density of fibers of 0.0056 and fiber diameter 6.8mm. The circles are mea-
surements. The full line is computed for a density of 0.0028. The dashed
line is calculated with the same density but assuming the fibers do not move.

FIG. 6. Measured and computed attenuation of plane sound waves in glass
wool of density 30 kg/m3 and elastic modulus 16 000 Pa. The fibers are
parallel to the wave front. The attenuation was found 0.20 m inside the glass
wool sample of thickness 0.60 m. The dotted line is computed for a volume
density of fibers of 0.016 and fiber diameter 6.8mm. The circles are mea-
surements. The full line is computed for a density of 0.006. The dashed line
is calculated with the same density but assuming the fibers do not move.
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attenuation of glass wool by mechanical restriction of the
movement of the glass wool.

The author’s previous paper14 reported measurements of
the attenuation of glass wool samples, placed in a tube of
diameter 102 mm, where they fitted tightly. These measure-
ments could be explained by assuming the fibers did not
move. For glass wool of density 40 kg/m3 an attenuation of
14 dB for a layer of 0.20 m was measured at the frequency
100 Hz. Apparently the tube prevented the movements of the
fibers.

APPENDIX A: CALCULATION OF THE DYNAMICAL
COMPRESSIBILITY

The dynamic compressibility was computed from the
temperature increase caused by the sound pressure by the
methods of the paper by Tarnow.8 The effective heat capac-
ity of fibers per volume is calledKh . First setKh50, then
compute the wave number of the heat wave in the airkh from

kh5Aiv~rcp1Kh!

k
, ~A1!

where r51.20 kg/m at standard atmospheric pressure 101
kPa and temperature 20 °C,cp51.00 kJ K21 kg21 is the spe-
cific heat capacity of air at constant pressure, andk52.57
31022 W m21 K21 is the coefficient of thermal conduction
of air, both at 20 °C.Kh is then computed from

Kh52
2pakkhH1

1~kha!

ivb2H0
1~kha!

; ~A2!

herea is the radius of the fibers,b2 the mean area per fiber,
and H0

1(z) and H1
1(z) are Hankel functions. It is assumed

that the heat capacity of the fibers is infinitely great. If it is
finite, Eq.~A2! must be changed in the manner shown in an
earlier paper by the author.8 To obtain self-consistency, the
value ofKh computed by Eq.~A2! is set into Eq.~A1! and a
new value ofkh is computed. This is set into Eq.~A2!, etc.
until the process converges to a value ofKh . This requires
normally four iterations.

The dynamic compressibility of the air is computed by
settingKh into the following equation:

C5
1

P F12
~g21!rcp

g~rcp1Kh!G ; ~A3!

here g51.40 andP is the atmospheric pressure, 101 kPa
normally.

APPENDIX B: CALCULATION OF DYNAMIC
RESISTIVITY

The dynamic resistivity was also computed by a self-
consistent procedure, which is in the paper by Tarnow.10 One
first chooses a value of the wave numberkn of the viscous
wave in the boundary layer, for example,kn5 i /b, then one
computes the resistivity from

R'8 5
2phkna

b2 S 2kna1
2H1

1~kna!

H0
1~kna!

D ; ~B1!

hereh51.8631025 Pa s, the viscosity of air at 20 °C.

Then one computes a new value of the wave numberkn

from

kn5Aivr2R'8

h
. ~B2!

A new value ofR'8 is computed from Eq.~B1!. After that, a
new value ofkn is found from Eq.~B2!. This procedure is
repeated until a stable value of the resistivity is obtained.
This takes about four iterations.

APPENDIX C: FORMULAS FOR WAVE NUMBER AND
ATTENUATION

The solution of Eq.~19! gives the wave numbers. The
concentrationd of fibers is small, therefore the terms propor-
tional to d can be neglected, when this is done, one gets the
wave numberk1 for the airborne wave,

k15A2
A

2
2AA2

4
2B, ~C1!

where

A5rfCv21
mv2

c11
1

ivR'8

c11
1 ivR'8 1 ivR'8 fC, ~C2!

and

B5~rmv41r iv3R'8 1m iv3R'8 !
fC

c11
. ~C3!

The wave numberk2 for the mechanical mode is

k25A2
A

2
1AA2

4
2B. ~C4!

The attenuation is computed from the coefficients
u1 , u2 , n1 , n2 of Eqs. ~21! and ~22!. Setv151, and use
Eqs.~20! and~23! to find the rest. The pressure can be found
by setting Eq.~21! into ~24!. In this way

p~x!52
k1

fC
@cosk1x1D cosk2x#, ~C5!

where

D5
~vR'8 !2 cosk1L

„2rv21k2
2/~fC!2 ivR'8 …~2mv21c11k1

22 ivR'8 !cosk2L
,

~C6!
when the thickness of the sample isL.

The attenuation is the absolute value of the sound pres-
sure at the free surface divided by the pressure inside the
sample,

Up~2L !

p~x!
U, ~C7!

where2L,x,0.
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