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Abstract 

In many practical Kalman filter applications, the quan- 
tity of most significance for the estimation e m r  w the 
process noise matrix. When filters are stabilized or per- 
formance is sought improved, tuning of this matrix is 
the most common method. This tuning process can- 
not be done before the filter is implemented, OS it is 
primarily made necessary by modelling errors. In this 
paper two different methods for modelling the process 
noise are described and evaluated; a traditional one 
based on Gaussian noise models and a new one based 
on propagating modelling uncertainties. It will be dis- 
cvssed which method to use and how to tune the filter 
to achieve the lowest estimation errors. 

1 Introduction 

The most common way in practice to prevent an err- 
neous filter model to bias or diverge the estimates, is to 
force the filter to put less confidence in the model and 
more in the measurements. This is done by increasing 
the filter’s process noise covariance matrix, Q, which 
is equivalent to  adding fictitious process noise in the 
model to simulate the uncertainties. As it is impossi- 
ble to model a real robot perfectly, it is almost always 
necessary to tune Q when Kalman filters are imple- 
mented. As this diminishes not only the influence of 
the modelling errors, but also of the model itself, some 
considerations should be made regarding the complex- 
ity of the model. A thorough and tedious attempt to 
model the robot followed by a tuning of Q that in prac- 
tice deteriorates or even discards the outputs from this 
model, is wasting time both in the design phase and 
during runtime. 

Besides, trying to  make an accurate dynamical model of 
the robot contemplating all the nonlinearities caused by 
for instance friction forces, is not a trivial task, and is 
hardly ever seen in the literature (one example though 
can be found in [l]). The problem (besides the nonlm- 
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earities) is that a lot of parameters that change with 
for instance time and temperature, are required to be 
known quite precisely. A model requiring only three 
physical parameters to be known precisely, can be ob- 
tained by using the odometric system of the robot as 
the system model as in [2] or [3]. Here readings from 
the robot encoders are used, not as measurements, but 
as inputs driving the filter model. 

2 Odometric Kalman Filter 

If the mobile robot is equipped with two driving wheels 
each mounted with an odometric sensor (encoder) a 
very feasible and common way of designing the posture 
estimator, is by using these encoder readings as the sys- 
tem model. In this approach, the encoder readings are 
translated to increases in the robot’s translational and 
rotational position and used as inputs to a simple geo- 
metrical filter model. An example of such a robot with 
an additional passive wheel (a castor wheel) mounted 
in the back of the robot, is shown on figure 1. During 

Figure 1: A mobile robot with a dual drive and encoder 
system. 

one sample period, the encoders will measure angular 
increments corresponding to the distances d, and dr, 
traveled by the right and the left wheel respectively. If 
the movement of the mobile robot is assumed circular 



d, and dr can be transformed to a translational and 
rotational displacement of the robot: 

where b is the distance between the wheels. 

The robot coordinates in a global coordinate frame can 
then be updated by (see [4]): 

1 Xk+l 6dk cOs(8k + &) 

[ 2;; 1 = [ + [ a d i s i n k + + )  ( 3 )  

Equation ( 3 )  assumes linear motion within each sam- 
ple period. Typically the sampling rate is so high com- 
pared to the angular velocity of the mobile robot that 
this approximation is very accurate. 

The three coordinates (X, Y, 0) constitute the state 
vector, E, for the mobile robot, and are observed by 
some additional absolute measurements, z. These mea- 
surements are described by a nonlinear function, c, 
of the robot coordinates and an independent Gaus- 
sian noise process, U. Denoting the nonlinear function 
(3) U, and collecting 6dk and 686 in an input vector 
Uk = [6dk 6&IT the mobile robot can be described by: 

Ek = U(Zk-l,Uk-l,Wk-l)r WE “‘N(O,qk) 
Zk = c(zk,vk), vk -+ N(O, .a) 

A discrete extended Kalman filter can then be designed 
as in [3]:  

%k = U ( % & I , U k - 1 )  

p k  = Ak--lPk-i(+)AF-1 f Qk-i 

Kk = PkCT [CkPkC: + Ra1-l 
?k(+) = % k  + Kk [Zk - c k ? k ]  

p k ( + )  = [ I - K k c k I p k ,  

where: 

The only quantity remaining is the process noise ma, 
trix, Q. Two different methods for finding this are 
outlined in the next section. 

2.1 The Process Noise 
Though the odometry can be used to describe the mo- 
tion of the mobile robot quite simple and accurately, 
the validity of the model is limited by a number of error 
sources contaminating the encoder outputs. These can 
be divided into two categories as in 151: 

Systematic (continously present) errors: 

- uncertain wheel diameters (diameters can bc 
unequal and their average can differ frnm 
nominal) 

- misalignment of wheels 

- uncertainty about the effective wheelbas: 
(due to nonpoint wheel contact with floor) 

Nonsystematic (event driven) errors: 

- travel over uneven floors 
- travel over unexpected objects on the floor 

- wheel slippage (due to slippery floors, f a t  
maneuvers, external and internal forces ant 
nonpoint wheel contact) 

Nonsystematic errors are unpleasant, as it is difficult t s  
predict an upper hound on these. Systematic errors 80, 
the other hand are of a more deterministic nature, bu 
do have the unfortunate quality of accumulating in t,t 
filter, leading the error on the estimate to grow witbon 
bounds. In smooth indoor environments, systematic er 
rors usually constitute the main error source, provides 
the robot is maneuvered gently. In more rough ana 
unstructured outdoor environments, nonsystematic er 
rors may dominate. As the focus here is on sane: 
controlled vehicles, driving on smooth and clear suL 
faces, nonsystematic errors will be ignored. The errc 
sources of concern are thus the inaccurately model!c 
wheelbase and wheel diameters. 

2.1.1 Gaussian white  noise processes: A 
the error sources all affect the outputs of the encode. 
or the interpretation of these, a common way of d: 
scribing the noise, is as two stochastic processes eor 
taminating the encoder outputs. As the Kalman filt; 
was derived with (and guarantees optimality for) P 
additive, zero mean Gaussian process noise, this seerl 
to be the obvious choice. Several authors (such as [4 
therefore models the process noise by two independ?, 
Gaussian noise processes added to the encoder ontpu: 

df = d, +E,, E, - N(O,u??) 

di = dr+&i ,  ~ i - N ( O , u i ~ )  

What is read from the encoders is therefore, as ind 
cated by the asterisks, not the true distances trav& 
by the wheels. If the noise now is propagated to t.: 
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input vector U = [6d 68IT of the Kalman filter one ob- 
tains: 

The covariance of 6d" and 68' is: 

(4) 

It seems fair to assume that the variances of the noise 
on the two wheels are of the same magnitude, i.e. that 
U: = U:, = ujt. The covariance (4) then becomes zero 
and the following noise model is obtained 

U* = u+wU, ,  W ,  -N(O,Q,), 

where: 

To obtain a noise vector w - N(O,Q), contaminating 
the state vector 2, the noise input matrix, E, is i n t w  
duced: 

Q = GQm,cGT 

Denoting +E = Be + q9 G becomes: 

1 Oulz=, = [ 0 1 

cos4 -4Sdsind Oa G = -  sin4 ibdcosd 

The only quantity that needs to be determined in this 
noise model is, U& Often this is found by some trial 
and error method (terms such as observation, tuning 
and simulation are frequently encountered here). 

2.1.2 Propagating modelling uncertainty: 
The Gaussian process noise was chosen more because 
of its mathematical convenience, than its ability to ac- 
curately describe the estimation errors. If it is assumed 
that the uncertainties on the physical parameters used 
in the robot model are of a size where they dominate 
over the stochastic effects, a different approach can be 
considered'. Assume that the wheel radii, rr and T I ,  

and the wheelbase, b ,  are known only with some uncer- 
tainty (denoted by asterisks): 

T; = ~1 + A n ,  ~f = T? +AT?,  b* = b+Ab 

As a result, the filter input U* = [6d* 68*IT will deviate 
from the "true" inputs: 

'A related approach can he seen in [6], where the process 
noise is modelled hy three stochastic processes sealed by the sum 
of the absolute distances traveled by the wheels. 

Ar,a, + ATrolr 
2 

= 6d+ 

The worst case values are: 

as;,,, = 
b - sign(68)/Abl 

The uncertainties of the input vector can then be de- 
fined by: 

' 
se;,, - se;<, 

2 
A68 = 

As b >> Ab then b2 s b' - Ab' which makes the follow- 
ing approximation reasonable: 

1 
b 

A68 = -(lAb68l + lAr,a,l + lAriail) 

A matrix describing the squared uncertainties of 6d* 
and 68' can then be defined by: 

This matrix can be used as the covariance matrix of 
the input vector to the Kalman filter. Once the input 
covariance matrix is attained, the Kalman filter process 
noise matrix, Q, can be calculated using: 

Q = GQm,,GT (7) 

Using equation (7) as the covariance matrix in the 
Kalman filter, has the very fortunate quality that the 
process noise will depend on the movement of the robot. 
If the robot does not move, the covariance of the state 
will not increase. In contrast, the covariance of the esti- 
mate using the process noise defined by the covariance 
in equation (5 ) ,  will increase regardless of the robot 
motion'. 

2 0 r  rather the input noise matrix is unaffected by the robot 
motion; the process noise still depends on the motion through 
the noise input matrix, G. 
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3 Simulations 

Simulations are now performed, with the mobile robot 
moving down a corridor with guide marks placed on 
one of the walls, as shown in figure 2. Both Qm,o 

Figure 2: Mobile robot moving down corridor with guide 
marks an one wall. 

and Qm," are tried as input noise covariance matrices. 
When the matrix Qm," is chosen, the uncertainties on 
the three physical parameters of the robot model need 
to be determined (the two wheel radii, T? and T I ,  and 
the wheel base, b). These can be observed in a number 
of different ways, for instance by considering measure- 
ment accuracy, wheel deformation or drift. Here it will 
be assumed that they all lie within one per mille: 

lAr,l = O.OOlr,, IArrl = O.OOlT1, lab( = 0.001b 

If Qm,c is chosen, a value for U: will have to be found 
which is high enough to ensure that the effect of mod- 
elling errors are properly accounted for in the state co- 
variance estimation. Else, the filter will be overcon- 
fident of its estimate and could diverge. Here, ud is 
approximated to: 

ud = 0.10. 10-3m (8) 

However, both Qm,c and are scaled somewhat 
arbitrary; Qm,c because the variance of the assumed 
Gaussian noise process in (8) is unknown; Qm," partly 
because it was created by "transforming" uncertainties 
into covariances, but also because the Kalman filter 
adds up squared uncertainties, when ideally i t  should 
add up the uncertainties themselves. These modelling 
difficulties make it likely that the estimation accuracy 
can be improved by scaling the covariance matrices by 
a scaling factor: 

Qm = KseaieQm,~, V Qm = K8caieQm,u (9) 
The existence of an optimal scaling factor will now be 
proven in simulations and the optimal value found. The 
simulations are performed using an advanced nonlinear 
Simulink model (see [7]) of the mobile robot, contem- 
plating both linear and nonlinear friction forces, as well 
as the dynamics of the mobile robot. The advantage of 
using simulations as opposed to physical experiments, 
is that the mound truth is known and the estimation 

3.1 The Scaling Factor 
The filter is run with the process noise matrix in (9) 
where first Q m , ~  and then Qm," are tried. The mod- 
elling inaccuracies are chosen by a random generator 
as uniformly distributed numbers between plus/minus 
one per mille of the true values. For each'value of 
K,,.I,, 100 simulations with different combinations of 
modelling inaccuracies are run. The results are shown 
in figure 3. From the figure it is seen that when the 

Figure 3: The sum of the squared estimation error, 
E, $i,, with different scaling factors, K.,.I.. 

mobile robot parameters are known with an accuracy 
of one per mille, the optimal value of the scaling factor 
in equation (9) is: 

The two covariance matrices need different scaling, but 
show a similar dependence upon the scaling factor and 
yield the same estimation error when the respective 
optimal scaling factors are used. 

The optimal value of Kseole must be expected to change 
with the size of the uncertainties3. To examine this, the 
same experiment is now run with the maximum uncer- 
tainty varied between one and ten per milles. As before, 
each run is performed 100 times with the three model 
parameters, T ; ,  T; and b*, chosen at  random from a uni- 
form distribution. The results can be seen in figure 4. 
For the filters using the process noise matrix generated 
using modelling uncertainties (Q,,,,,J, it is seen that the 
optimal scaling factor is almost constant for uncertain- 
ties above 0.3%. This suggests that if the uncertainties 
are in this range, the method describes the noise quite 
well. For very small modelling inaccuracies, other noise 
sources (friction, quantization, assumptions about lin- 

SThe optimal sealing factor must also be expected to change 
However, this effect is not with the trajatory of the robot. - 

errors therefore can be evaluated. examined here. 
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Figure 4: The optimal scaling factor, Kaca~e,  with differ- 
ent maximum Uncertainties and using the input 
noise matrices Qm,c and Qm+ (dashed). 

ear movement, etc.) becomes dominant and the un- 
certainty description becomes inappropriate. Figure 4 
shows that when the traditional Gaussian noise model 
is used, the optimal scaling factor increases exponen- 
tially with the size of the modelling errors. Hence, 
this method is much more sensitive to modelling er- 
rors. Given that the size of the modelling inaccuracies 
are estimated correctly, figure 4 can be used to deter- 
mine whether to use the uncertainty description or the 
Gaussian model and in addition which scaling factor 
will yield the lowest estimation errors. 

3.2 T h e  Estimation Error 
When the optimal scaling factors found above are used, 
the estimation errors for the two filters will propagate 
almost identically. If different scaling factors are used, 
the estimation error will increase more rapidly with 
the amplitude of the modelling inaccuracies. If a cer- 
tain size of the inaccuracies are (wrongly) assumed and 
figure 3 is used to calculate the scaling factor, the es- 
timation error will develope as shown in figure 5. It 
is observed that the uncertainty based noise covariance 
matrix, Qm,,,, is more robust to modelling inaccuracies 
of unknown size and leads to lower estimation errors 
especially when the modelling errors are significantly 
higher than assumed. 

3.3 With big Uncertainties 
In figure 6 the optimal scaling factors for filters with 
quite big modelling uncertainties are shown. Observe 
that in the interval where the modelling errors are 
moderate (between 0.1% and l%), the scaling factor is 
constant and the uncertainty propagation method (the 
process noise matrix Qm,J is the most useful. When 
the uncertainties are lower, other errors are more sig- 
nificant. As the uncertainties grow the model becomes 
increasingly bad and useless. This means that when 

Figure 5: The sum of the squared estimation error with 
different maximum uncertainties for the input 
noise matrices Q,,c and Qm," (dashed). The 
scaling factors, Kacars, are "wrongly" chosen 
assuming the uncertainties are 0.1% (upper 
plot) and 0.5% (lower plot). 

180- 

i w -  

I n 0, 0 02 0 03 o r n  0 05 
lbl 

00 

Figure 6: The optimal scaling factor, K s c a ~ e ,  for a large 
range of maximum uncertainties, using the in- 
put noise matrice Qm+. 

the uncertainties are high, the exact value of the scaling 
factor is uncritical as long as it is high enough to ensure 
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that the measurements are fused at a sufficiently high 
gain. This is illustrated in figure 7. It is seen that the 

inanimate. 

4 Conclusion 

Simulations were made with two different types of pro- 
cess noise matrices - a traditional one using Gaussian 
white noise processes and a new one based on p r o p  
gating modelling uncertainties. It was found that both 
of the process noise matrices needed scaling to mini- 
mize the estimation error. The new method was shown 
to be more robust in the presence of modelling uncer- 
tainties. The scaling factor for the traditional Gaus- 
sian noise model was shown to vary heavily with the 
size of the modelling uncertainties, but shown to be 
rather constant for the new method when the mod- 
elling uncertainties are large enough to be significant 
and yet so small that the model still is useful. This 
means that when the size of the uncertainties not are 
known precisely, the new covariance matrix will still 
be scaled close-to-optimal and therefore lead to signi- 
ficantly lower estimation errors. 

Figure 7: The sum of the squared estimation error using 
Qm," with different scaling factors and maxi- 
mum uncertainties of respectively 0.2% (upper 
plot) and 2% (lower plot). 

higher the uncertainties are, the less it matters what 
the scaling factor is (as long as it  is big). An optimal 
scaling factor still exists but if an arbitrary scaling fac- 
tor higher than this is used, it will only affect the sum 
of the estimation error slightly. 

3.4 A More Intuitive Noise Propagat ion 
When the process noise is modelled by Gaussian 
sources with constant covariance, the covariance of the 
states are growing steadily, regardless of the speed of 
the robot. Clearly, it  is not very intuitive that the es- 
timation errors should grow when the robot posture 
(as well as the estimate of this) is constant. This 
means that the measurements, when the robot is mov- 
ing slowly or the first measurement after the robot has 
been inanimate, will be fused at too high a gain. If in- 
stead uncertainty propagation is used the process noise 
will depend more closely on the trajectory of the robot 
and the covariance of the states will therefore grow 
slower at slower speeds and freeze when the robot is 
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