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A 2.5-D Diffraction Tomography Inversion Scheme 
for Ground Penetrating Radar 

Peter M. Johansen' 
Department of Electromagnetic Systems 

Technical University of Denmark, DK-2800 Lyngby, Denmark 

Abstmcf - A new 2.5-D inversion scheme is derived for ground penetrating 
radar (GPR) that applies to a monostatic fixed-offset measurement configura- 
tion. The inversion scheme, which is based upon the first Born approximation 
and the pseudo-inverse operator, takes rigorously into account the planar air-soil 
interface, the loss in the soil, and the characteristics of the antennas. 

1. Introduction 
Several inversion schemes, based upon the first Born approximation and the 
concept of diffraction tomography (DT) [I], have been derived for monostatic 
ground penetrating radar (GPR) configurations [2-51. In practical situations the 
GPR is usually situated upon a planar interface that separates air from soil and 
the soil is usually lossy. Therefore, it is important - as illustrated in [SI - to in- 
corporate in the inversion the presence of the planar interface and the fact that the 
soil has loss. However, the inversion schemes in [2,5] do not take into account 
the loss in the soil and only the one presented in [SI includes the planar air-soil 
interface. The present paper derives, to the knowledge of the author, the first 
DT inversion scheme that accounu for both the planar interface and the lossy 
soil. The starting point is the forward model of [S] which is based upon the first 
Born approximation, the dyadic Green function for the planar air-soil interface, 
and an asymptotic approximation valid when the object is located deep (a few 
wavelengths) in the soil. However, instead of inverting this forward model using 
the inverse Fourier transform, as done in [SI -and thus neglecting loss in the soil 
-the pseudo-inverse operator of [3,4] is used. 

2. The Forward Model 
The GPR configuration is shown in Figure 1 in which a planar interface separates 
air from soil. A Cartesian zyz coordinate system is introduced such that the sy 
plane coincides with the interface and such that z > 0 is air. An object, which is 
assumed infinitely long in the f direction, is buried in the soil. The propagation 
constantofairisk&) = w@andthatofsoiliskl(w) = wdp&l + i u l / w )  
(time factor exp(-iwt)). The position of the receiving antenna is described by 
r, = R, + iz, and that of the transmitting antenna is rt = r, + rA with the 
fixed offset rA = RA + EZA. It is possible to derive a forward model that holds 
for arbitrary antennas [5]. However, for the sake of simplicity, it is here assumed 
that the antennas can be accurately modeled by Hertzian dipoles. It is also as- 
sumed that the contrast in conductivity Aa(y, z )  = a(y, z) - u1 is much less 
than the contrast in permittivity, i.e., Au(y, z )  *: wAe(y, z) over the frequency 
band of interest w~ < w < U-. Then Ac(y, z) can be related to the output of 
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Figure 1: The fixed-offset monostatic GPR configuration. 

the receiving antenna so as 15, ( I  I)] 

--CO --m 

. exp(-iby') exp(-id4k+) - \h lz2)~c1(y ' ,  z') (1) 

where Acl = Ac/d and the Fourier aansfon 5, of the output of the receiving 
antennaisobtainedfrom Io(ky,z,,w) = ~_"ddar,s,(~,,z,,w)exp(-zk~y,). The 
linear operator L : U 3 V maps the space U onto the space V. U is the 
space of square integrable functions of position (U', 2) confined within z' < 0. 
V is the space of square integrable functions defined on { ( k v ,  w)lwfi. < w < 
U,, Alkyl < 2Rekl(w)}. Since I, = 0 for lkyl > 2Rekl(w) no evanescent 
plane waves in the soil are considered. Moreover, when the Hertzian dipoles are 
%-directed and have the same z and t coordinates (zA = z~ = 0), the function 
D in (1) is 

(2) 

where I ( w )  is the impressed current of the transmitting Hertzian dipole. 

3. Inversion 
The forward model (1) is now inverted using the (Tikhonov-regularized) pseudo- 
inverse operator 16, p. 881 

(3) 

where the adjoint operator Lt, defined by < I,, LAel >"=< Lt&, A q  >U with 
the usual definition of the inner products, is 

Ac = z'Lt(LLt + A*I)-'I0 

k 

( ~ t ~ , ) ( y , z )  = J d ~ i ~  J d k , p ( k , , a , w )  
Ikyl<ZRCk,(W) 



Herein, * denotes the complex conjugate. The quantity X in (3) is a regulariza- 
tion parameter. However; in the numerical example in Section 4 a situation is 
considered which does not require regularization, i.e., X = 0. Now, thejilfered 
data i?! is introduced as the solution to 

(5 )  
Using this definition along with (3), the contrast in permittivity is obtained from 

Ae = dLtS!. (6) 
Hence, by solving (3) using the solution steps (5 )  and (6). the data are first filtered 
and then backpropagated to obtain the sought-for function Ae. Observe that the 
term LLt in the filtering step (5) can be explicitly expressed as 

(LL' + X*1)8! = so. 

(LL's;)(k,,w) = P7r iWD(ku ,&,W)  7 h ' w '  

max(w&Nm(b)) 

(7) 
D' (h, zr , w')S6 (k,, w') 

J 4 k 3 w )  - Ik,l* - J4k3w')  - pup' 
where wm(ky) satisfies the relation 2Rekl(wm(ky)) = 141. Hence, when in- 
serting (7) into (5). an integral equation is obtained for determination of the 
filtered data $6 for each value of ky. This integral equation is solved numeri- 
cally using pulse expansion and point matching. To this end, assume that the 
radar data is available at the equidistant frequencies w, = (p - 1)Aw + wd, 
Aw = (w- - w&)/(NU - 1). p = 1,. . . ,NU. With q(k,) being the low- 
est positive integer satisfying wm(k,) < q(ku), the filtered data is expanded 85 
SOf(k,,w) = xEq(ks) s&(ku)up(w) where the first q(h) - 1 values of s&(&) 
equal zero. The pulse expansion functions %(U) are 

i 0 otherwise. 

1 for < w < w- + A w / ~  and p 1 

(8) 
orforw,, - Awl2 < w 5 w,, andp = NU 
or for Iw - wpl < Awl2 and 1 < p < NU. up(w) = 

The resulting matrix equation for obtaining S&,(k,) is easily derived by inserting 
the expansion for SL(k,,w) into (7) and using (5 )  with point matching. 

4. Numerical Example 
The inversion scheme of Section 3 is now tested on synthetic GPR data. Figure 
2 shows a dielectric pipe with a diameter of 15cm and electromagnetic proper- 
ties (epia, upip) = (8.1e0, O.OlS/m) located Im below the interface. The soil has 
(61~01) = (8~0,0.0lS/m). The synthetic GPR data is calculated from an eigen- 
function expansion. It is assumed that the radar uses 60 frequencies equally 
spaced in the range 20 MHz < f < 1.3 GHz. Figure 3 shows the image of 
A&, Z ) / Q  obtained from (5) with X = 0 and from (6). The image is of high 
quality and it approximates well the c o m t  value of Ae = 0 . 1 ~ ~ .  
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Figure 2 The configuration involving a pipe with A6 = 0.160. 

Figure 3: The image of Ae(y, Z)/Q. 

References 
[l] A. Devaney, “A filtered backpropagation algorithm for diffraction tomogra- 

phy:’ Ultrasonic Imaging, no. 4, pp. 336-350.1982. 
[2] J. Molyneux and A. Witten, “Diffraction tomographic imaging in a monos- 

tatic measurement geometry,” IEEE Trans. Geosci. Remote Sensing, vol. 31, 

[3] R. Deming and A. Devaney, “A filtered backpropagation algorithm for GPR,” 
J. Environmental andEng. Geophysics, pp. 113-123, Jan. 1996. 

[4] R. Deming and A. Devaney, “Diffraction tomography for multi-monostatic 
ground penetrating radar imaging:’ Inverse Problems, pp. 29-45. Feb. 1997. 

[5] T. Hansen and P. Johansen, “Inversion scheme for ground penetrating radar 
that takes into account the planar air-soil interface.” Submitted to IEEE 
Trans. Geosci. Remote Sensing. 

[6] F. Natterer, The Mathematics of Computerized Tomography, John Wiley & 
Sons, 1986. 

pp. 507-51 1, Ma. 1993. 

2135 


