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ON OPTIMAL DATA SPLIT FOR 
GENERALIZATION ESTIMATION AND MODEL 

SELECTION 

Jan Larsen and Cyril Goutte 
Department of Mathematical Modeling, Building 321 

Technical University of Denmark, DK-2800 Lyngby, Denmark 
E-mail: jl,cg@imm.dtu.dk, Web: eivind.imm.dtu.dk 

OVERVIEW 

Modeling with flexible models, such as neural networks, requires careful con- 
trol of the model complexity and generalization ability of the resulting model. 
Whereas general asymptotic estimators of generalization ability have been de- 
veloped over recent years (e.g., [9]), it is widely acknowledged that in most 
modeling scenarios there isn't sufficient data available to reliably use these 
estimators for assessing generalization, or select/optimize models. As a con- 
sequence, one resorts to resampling techniques like cross-validation [3, 8, 141, 
jackknife or bootstrap [2]. In this paper, we address a crucial problem of 
cross-validation estimators: how to split the data into various sets. 

The set V of all available data is usually split into two parts: the design 
set & and the test set F. The test set is exclusively reserved to a final assess- 
ment of the model which has been designed on & (using e.g., optimization 
and model selection). This usually requires that the design set in turn is 
split in two parts: training set 7 and validation set V .  The objective of the 
design/test split is to  both obtain a model with high generalization ability 
and to assess the generalization error reliably. The second split is the train- 
ing/validation split of the design set. Model parameters are trained on the 
training data, while the validation set provides an estimator of generalization 
error used to e.g., choose between alternative models or optimize additional 
(hyper) parameters such as regularization or robustness parameters [lo, 121. 
The aim is to  select the split so that the generalization ability of the resulting 
model is as high as possible. 

This paper is concerned with studying the very different behavior of the 
two data splits using hold-out cross-validation, K-fold cross-validation [3, 141 
and randomized permutation cross-validation' [l], [13, p. 3091. First we de- 
scribe the theoretical basics of various cross-validation techniques with the 
purpose of reliably estimating the generalization error and optimizing the 

'Also called monte-carlo cross-validation or repeated learning-testing methods. 
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model structure. The next section deals with the simple problem of estimat- 
ing a single location parameter. This problem is tractable as non-asymptotic 
theoretical analysis is possible, whereas mainly asymptotic analysis and simu- 
lation studies are viable for the more complex AR-models and neural networks 
discussed in the subsequent sections. 

TRAINING AND GENERALIZATION 

Suppose that our model M (e.g., neural network) is described by the function 
f(x;w) where x is the input vector and 20 is the vector of parameters (or 
weights) with dimensionality m. The objective is to  use the model for ap- 
proximating the true conditional input-output distribution p(ylx), or some 
moments thereof. For regression and signal processing problems we nor- 
mally model the conditional expectation E{ylx}. Define the training set 
7 = {z(k);y(k)}f~l of NT input-output examples sampled from the un- 
known but fixed joint input-output probability density p(x, y). The model 
is trained by minimizing a cost function C~(W), usually the sum of a loss 
function (or training error), ST(W), and a regularization term R ( ~ , I E )  pa- 
rameterized by a set of regularization parameters K :  

1 
C d W )  = W w )  + R(w, #) = - (Y(k), y^(k)) + R(w, K )  (1) 

“l- k € T  

where l ( . )  measures the cost of estimating the output y(k) with the model 
prediction @(k) = f(x(k); w), e.g., log-likelihood loss or the simple squared 
error loss function l(y, y^) = lly-y^1I2. Training provides the estimated weight 
vector G = argmin, CT(W). Generalization error is defined as the expected 
loss on a future independent sample (5, y), 

G(G) = J%,,{l(Y, y )̂l = 1 [(Y, y^) P(Z, Y )  dXdY 

r = &-{G(G)} = / G(G)p(7 )  d7. 

(2) 

The average generalization error r is defined by averaging G(G) over all 
possible training sets (see also [ll]): 

(3) 

Optimization of the model structure, including e.g., regularization parame- 
ters [12], is done by minimizing an empirical estimate of the generalization 
error based on the validation data. Finally, the test data provides an unbiased 
empirical estimate of the generalization error of the resulting model. 

Generalization Assessment 

Given a data set V = { z ( k ) ;  y(l~)}F=~ of N independent input-output exam- 
ples, let us first consider the split of the data into the design and test sets, 
denoted by E and 3 respectively. The purpose is to design a model achieving 
maximum generalization performance and assess this performance as reliably 
as possible. We consider three methods: 
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Hold-Out Cross-Validation (HO). An empirical estimate of (2) is ob- 
tained by splitting the data once into design and test sets. Define y as the 
split ratio leaving NF = y N  for testing and NE = (1 - y ) N  for design2. The 
HO estimate of generalization error for model y^ (with weights G )  designed 
on & is given by 

The quality of the estimate is evaluated by considering the mean squared 
error: 

where G(w*) is the minimum achievable error within the model, i.e., 
argminw G(w). The bias term is the excess generalization of our model, and 
decreases with y. The variance term measures the reliability of the estimator 
and it increases when y decreases. We therefore expect an optimal y to  solve 
the bias/variance trade-off yopt = argmin, MSEHO(~) .  This optimal choice 
has been studied asymptotically for non-linear models [ll], using Vapnik- 
like bounds [7], and in the context of pattern recognition [6]. Surprisingly, 
yopt + 1 as N + CO, indicating that most data should be used for testing. 
For finite sample sizes, theoretical investigations are limited to  simple models 
(see below). 

K-Fold Cross-Validation (KCV). The average over all training sets in (3) 
is simulated by resampling the design and test set. In KCV, the data set is 
split into K disjoint subsets Fj of approximately equal sizes, U:, Fj = D. 
For y < 1/2, the split ratio is the ratio of the size of the subsets to  the total 
amount of data, i.e., K = Ll /y j .  We evaluate on each subset the model 
designed on the remaining data &j = 2) \ 3jj3 The cross-validation estimator 
is obtained by averaging the K estimates of generalization error: 

where y^-j is the model designed without subset 3j. It is easy to  show that 
rKC" is an unbiased estimate of = E E { G ( ~ ) } ,  the average generalization 

'For practical reasons y N  is restricted to be an integer, i.e., y = i / N  where i = 

3For y > 1/2 the roles of the design and test set are inverted such that we design on 

h 

1 , 2 ; . . , N  - 1. 

each subset and test on the remaining data. 
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error based on NE data. The quality of (6) is assessed by: 

= ED { (PKCV - r) ’} + ED {(I? - G(W*))2}  . (7) 
c- bias 

variance 

Randomized permutation cross-validation (PCV) . This involves re- 
sampling test sets by randomly selecting NF = N y  samples for the test set, 
and the rest for the design set. This can be repeated at most K 5 ({F) 
times. For each permutation, a model Gj  with weights ihj is designed, then 
averaging khe K empirical estiEates of generalization obtained on each test 
set yields r p C V  = K-l E:, G(Gj). The mean squared error MSEpcv(y) 
is defined as in (7). 

Model Selection/Optimization 

The design of a model is usually done by estimating model parameters on 
the training data 7, and selecting among alternative models, doing early 
stopping or tuning various additional hyper parameters on the basis of the 
validation set V .  Either of the 3 methods described above (HO, KCV and 
PCV) can be used for that purpose. However, the relevant criterion for 
choosing the optimal split ratio y should now be the performance of the 
resulting model. In non-parametric modeling, the ultimate goal is usually to  
obtain good generalization. The optimal split ratio will then be the value of 
y for which the resulting model minimizes the “true” (average) generalization 
error. In the context of model selection: 

yopt = argmin 7 EE { G f i  (7)) (8) 

h 

where GG (y) is the generalization of the model M which minimizes the cross- 
validation estimator with split ratio y. On the other hand, in the context 
of feature or model selection, the optimal split ratio is one which maximizes 
the probability of selecting the “correct model”. However, as mentioned in 
e.g., [13, sec. 7.41, selecting a model according to  estimated generalization 
error typically does not result in a consistent selection, i.e., the probability 
of selecting the correct model does not tend to one. Typically, oversized 
models will be selected. We shall indeed illustrate in the following examples 
that those two goals, good generalization and consistent model selection, 
potentially lead to  conflicting decision rules regarding y. 
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LOCATION PARAMETER MODEL 

In this simple setting, we consider a simple Gaussian variable y - N ( w o ,  c2) 
with known c. This problem has been extensively studied, e.g., [4, 5, 121. 
The true generalization of a candidate parameter 8 is simply G(8)  = o2 + 
( W O  - 8)2, such that the minimum achievable generalization is 02.  For the 
model selection we consider two models: M1 is a Gaussian with unknown 
mean estimated from the data, while M O  is a Gaussian variable with fixed, 
zero mean N(0, a2)  (the pruned model). 

Design/Test split. For HO cross-validation, tedious but straightforward 
calculations lead to: 

304 
MSEHO(T) = - 2a4 (l + (1 -;)N) (1 - y)2N2 

N y  
8 All3 2 1 

yopt = 1--+-+- A113 6 N  3NA1/3 + 5 (9) 

with A = -324N2 - 144N + 8 + 12NJ3(243N2 + 472N - 28) 

Accordingly, the optimal split ratio converges rather slowly towards 1, as 
1 - yopt = O(N-lI3), N -+ 03. This means, in order to  obtain an accurate 
HO estimate of the generalization error, one should asymptotically reserve 
the bulk of the data for validation. This is confirmed by the experiments 
reported in figure 1 (left). All curves are averaged over 40000 replication of 
the data for each size. When N increases, the optimal y increases towards 1. 
Note that the MSE curves flatten, indicating that a wide interval of possible 
split ratios are near optimal (see also [7]). For K-fold CV: 

y 5 0.5 

y 2 0.5 

04(2y3N - 2y2 - 6Ny2 + 7y + 6Ny - 7 - 2N) 
N 2  (7 - 

a4(-4Ny2 - 9y + 8 + 2Ny + 2y2 + 2y3N) 
N 2  (Y - 7 

(10) 
It  is easy to  see that aMSE~cv(y ) /dy  > 0 for all 0 5 y 5 1 and N .  That is, 
MSEKCV is minimum for yopt = 1/N, i.e., leave-one-out (LOO) - irrespective 
of the size of N. This is supported by the simulation results of figure 1 (right). 
An interesting feature of these curves is the discontinuity in slope for y = 1/2, 
due to change from overlapping design sets to  overlapping test sets. The use 
of PCV gives estimators with uniformly lower (or equal) MSE compared to  
KCV (for K sufficiently large). This, however, does not change the qualitative 
result, as the minimum MSE is always reached for leave-one-out. 

Model selection. In the case of model selection, the results are only a 
function of the normalized variable 8 E w o f l / a .  We therefore use a single 
sample size N = 25, which gives a good compromise between resolution in 
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K-fold cross-validation MSE vs. splil ratio (40000 rep.) 
Hold-out validation MSE vs. split ratio (40000 rep.) 

Split ratio Split ratio 

Figure 1: Location parameter example. Left: MSE curves for hold-out cross- 
validation - the optimal split ratio tends (slowly) to 1 as N increases. Right: 
K-fold cross-validation - the optimal split ratio is always LOO. In each plot, from 
top to bottom, N = 4,8 ,16 ,32 ,64  samples. Circle indicates the minimum of each 
curve, error bars indicate 2 standard deviations. 

the possible split ratios and computing requirements, and vary 0 through 
W O .  All results are again averaged over 40000 replications of N observations 
sampled from N ( w o ,  1). Figure 2 shows the generalization of the resulting 
model, for HO, for increasing values of WO. The largest split ratio is optimal 
for small values of W O .  This is illustrated on the right plot by the fact that in 
that case, the pruned model is almost always selected, and produces a better 
estimate than the full model, in agreement with [13, sec. 7.41. For 6 = 1, i.e., 
W O  = a / f l  = 0.2 there is a complete shift and y = 1/N (LOO) becomes 
optimal. On the left plot, the corresponding curve is almost flat, and at the 
precise value where the phase transition occurs, both small and large values 
of y are within error bars of the optimum. This phase transition occurs 
because for moderate W O  there are two ways of getting good performance: 
either by selecting the pruned model (for which the excess generalization 
error is (w ' )~) ,  or having enough data for the true model (with average 
excess generalization error a 2 / N )  to  perform well. As W O  increases, the latter 
will outperform the former with probability 1. Note that when W O  increases 

.some more, the optimal split ratio grows again towards 1 with a very slow 
asymptotic rate. Figure 2 (right) shows that this is because the split ratio 
yielding most correct model (consistency) tends to 1. The curves becomes 
flatter and flatter as W O  increases, indicating (as expected) that almost all 
choices of y will tend to choose the correct model, and get near-optimal 
generalization. 
The effect of K-fold cross-validation (figure 3) is slightly more subtle. As 

before, the largest split ratio is optimal for small values of W O .  But there are 
now two transitions, the first one to  yOpt = 112, around W O  = a / n  = 0.2 
and the second one to leave-one-out for a slightly larger value. The first 
transition occurs as before between the default (pruned) model and the most 
consistent model. However, due to the overlap in training or validation sets, 
y = 1/2, not LOO, provides the most consistent estimator for small values 
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Generalisation of selected model vs. split ratio (N=25) 
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Figure 2: Location parameter example: model selection with hold-out cross- 
validation, for W O  = 0 (bottom) to 1 (top) in 0.2 increments. Left: MSE on 
the hold-out generalization estimator (circle indicates minimum). Right: % correct 
model selected. 

Generalisation of selected model vs. split ratio (N=25) . Selected model vs. split ratio (N=25) 

Figure 3: Location parameter example: Model selection with K-fold cross- 
validation, for W O  = 0 to 1 in 0.2 increments. Left: excess generalization error 
of the K-fold generalization estimator (circle indicates minimum). Right: % cor- 
rect model selected. The curves are labeled with th value of W O .  

of W O .  The second transition occurs when LOO starts yielding more correct 
models than 2-fold (fig. 3, right). Additional differences between the K-fold 
and HO estimators are: 1) in the former, leave-one-out stays optimal as 
W O  grows, 2) the minimum excess generalization error is lower, and 3) the 
proportion of correctly selected models grows faster towards 1. Note that 
as the phase transition thresholds are inversely proportional to N ,  for any 
W O  # 0, the asymptotically optimal split ratio is 1/N. 

The effect of permutation cross-validation is again similar, and the quali- 
tative conclusion (^/opt = LOO) identical. There is no discontinuity in y = 1/2 
thanks to the better averaging strategy for intermediate split ratios. There 
is therefore only one y-transition, from one extreme value to the other. 
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Generalization MSE for hold-out 
Generalization MSE for K-fold cross-validation 

0 0.2 0.4 0.6 0.8 1 
Split ratio 

Figure 4: Generalization MSE for the AR filter using hold-out (left) and K-fold 
(right) cross-validation. From top to bottom, N = 50,100,200,400. Circle indicates 
the minimum of the average MSE, error bars are 2 standard deviations. 

Generalization of selected model Model selection v?.. split ratio 
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Figure 5: Model order selection. Left: generalization of the selected model. Right: 
% of non-overestimated models. The legend in the left plot also applies to the right 
plot. 
AUTOREGRESSIVE MODEL 

Let us now consider the estimation of a linear autoregressive (AR) filter. 
The target is a low-pass filter of order 10, with coefficients [-3.99, 8.09, 
-10.48, 9.42, -6.08, 2.84, -0.94, 0.21, -0.028, O.OOlS]. Data are generated 
by filtering white noise E - N(0, a2) ,  with u2 = 1. The minimum achievable 
generalization error G(w*) is therefore 1. 

Design/Test split. In order to assess the optimal split ratio with respect 
to  generalization estimation, we study our cross-validation schemes using a 
10th order linear filter. The coefficients are estimated using regularized least 
squares, G = (XTX + K,I)-' X T Y ,  with X and Y the input and output 
matrices, respectively, I the unit matrix, and IE set to lop6 times the largest 
eigenvalue of the covariance matrix. As shown on figure 4, all MSE curves 
behave in a manner qualitatively similar to  the simple Gaussian variable 



above. Minimum MSE is obtained for increasing y for HO, and for LOO 
in the case of K-fold. This suggests the same asymptotics as before: for 
hold-out yopt + 1 with (1 - yopt)N + +00 and yopt = 1/N for KCV (and 
PCV). As before, the curves get flatter with increasing N, meaning that a 
wide range of split ratios become near-optimal. 

Model selection. Hold-out cross-validation is used to select the order of the 
AR model, between 8 and 14. Experiments are reported by averaging over 
10000 independent data sets of increasing sizes N = 50, 100, 200 and 400. 
Figure 5 shows that generalization and model selection lead to conflicting 
optimal decisions. Clearly, small split ratios give better generalization, but 
they tend to  overestimate the model order. On the other hand, large split- 
ratios select more parsimonious models but yield poor generalization. Note 
that due to  the small contribution from the last two filter parameters, models 
of order 8 and 9 are often selected. These results are consistent with [13, sec. 
7.41. This suggests that moderate values of y might asymptotically provide a 
good trade-off between model consistency and generalization abilities, though 
the optimum would depend on a particular weighting of both effects. 

NEURAL NETWORKS 

We also considered non-linear modeling using neural networks. The target 
systemis the Hhonmap:  y(k) = 1 - 1 . 4 y ( k - 1 ) + 0 . 3 y ( k - 2 ) + ~ , ~  -N(O,c?) 
and a2 is tuned such that the signal-to-noise ratio is approximately 10%. 
Data sampled from this system are modeled using a standard feed-forward 
multi-layer perceptron with one hidden layer of 5 hidden units, and an input 
layer with time-delayed inputs and task-dependent size. 

Experiments indicate that the behaviour of the hold-out estimator is sim- 
ilar to  what has been described above. Due to space limitation, the detailed 
results will be presented at the workshop. 

SUMMARY 

We addressed the problem of choosing the optimal split ratio for cross-va- 
lidation estimators. We showed that different cross-validation strategy (the 
design/test and the training/validation splits), and different objectives (reli- 
able assessment of generalization, best generalization or model consistency) 
lead to different quality measures (MSE, resulting generalization, probability 
of correct selection), and potentially result in conflicting decision strategies. 
For hold-out cross-validation, yOpt -+ 1 as N + 00 seems to be well supported 
theoretically and experimentally. On the other hand, for K-fold and random- 
ized permutation CV, the asymptotically optimal split-ratio is highly depen- 
dent on the task and on the model. In particular, we have illustrated that 
best generalization and model consistency lead to opposite optimal choices 
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(Topt + 0 and Topt + 1 respectively). 
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