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ABSTRACT 
This paper addresses a new framework for designing robust 
neural network classifiers, The network is optimized using 
the maximum a posteriori technique, i.e., the cost function 
is the sum of the log-likelihood and a regularization term 
(prior). In order to perform robust classification, we present 
a modified likelihood function which incorporate the poten- 
tial risk of outliers in the data. This leads to introductLon 
of a new parameter, the outlier probability. Designing -.he 
neural classifier involves optimization of network weights as 
well as outlier probability and regularization parameters. 
We suggest to adapt the outlier probability and regulariza- 
tion parameters by minimizing the error on a validation set, 
and a simple gradient descent scheme is derived. In addi- 
tion, the framework allows for constructing a simple outlier 
detector. Experiments with artificial data demonstrates i,he 
potential of the suggested framework. 

1. INTRODUCTION 
Neural networks are flexible tools for pattern recognition 
due to the universal approximation theorems [6]. We con- 
sider a neural classifier architecture based on a feed-forward 
net with a modified SoftMax [3] normalization as presen1,ed 
in [l] (see also, [2], [7]). The outputs of the network e:iti- 
mate the class conditional posterior probabilities and the 
network is trained using a maximum a posteriori (MAP) 
framework. Robustness is incorporated via a probabilistic 
definition of outliers. Thus a given example is considered as 
an outlier if its class label is changed with a certain proba- 
bility E ;  the outl ier  probability. 

The associated risk of overfitting on noisy data is of nia- 
jor concern in neural network design [5]. The objective of 
network design is to obtain a reliable and minimal general- 
ization error which can be done by constraining the model 
flexibility and adapting the outlier probability. Model con- 
straints are imposed directly via pruning techniques (see 
e.g., [l], [9], [lo]) or indirectly using regularization. We will 
merely consider regularization in this presentation. 

Based on earlier work [l], [9], [lo], we will present an 
iterative scheme for simultaneously adapting the amount 
of regularization and outlier probability by minimizing t,he 
validation error calculated from a single validation set. Here 
we take the validation error as an estimate of the true gen- 
eralization error. 

This research was supported by the Danish Natural Science 
and Technical Research Councils through the Computatiosnal 
Neural Network Center (CONNECT). JL furthermore acknowledge 
the Radio Parts Foundation for financial support. 

2. NETWORK ARCHITECTURE 
Suppose that the input (feature) vector is denoted by z 
with dim(z) = nr and Ci denotes the i'th of the mutually 
exclusive classes, i = 1 , 2 , .  . . , c.  The aim is to model the 
posterior probabilities of the class given the input. Aiming 
at robustness against an outlier', defined as a class label 
which erroneously is changed to one of the other classes, 
we introduce the proba.bility of an outlier, 0 5 E 5 1. It 
is assumed that the occurrence of an outlier is independent 
of class label and input location. Thus the outlier process 
acts as an extra noise source independent of input location, 
as opposed to the error due to overlap iLn class posterior 
probabilities. This leads to the definition of posterior prob- 
abilities, p(C; l z ) ,  1 5 i 5 c ,  

C 

E 
P(CilZ) = PO(Ci)Z) ' (1 - E )  + - PO(Cj1Z). (1) c - 1  

j=l,j#i 

where po(Ci1z) is the posterior probability in the case of zero 
outlier probability. The first term is the posterior proba- 
bility for Ci times the probability that an outlier does not 
occur while the second term is the sum of posterior prob- 
abilities for Cj  # C; times the scaled outlier probability 
P G E/(C - 1) E [O; l / (c - l)] that Ci has changed specifi- 
cally to C j .  Under a simple loss function the Bayes optimal' 
classifier assigns class label Ci to z if i = argmaxj p ( C j l z ) .  
Note that Eq. (1) can be rewritten as 

P(Ci lZ)  = po(C;Iz)(l - Pc) + P. (2) 
Since 0 5 p o ( C i ( z )  5 1 and Cf=lpo(C;lz) = 1 due to 
mutual exclusive classes, then ,f3 5 p(C;Jz) 5 1 - E and 
further E;==, p(Cilz)  = 1. 

Define $i as es t imates  of the posterior probabilities given 
by ci = %(l - Pc)  + P where 2; are estimates of the E = 0 
posteGor probabilities, p o ( C i 1 ~ ) .  Following [l], [7] (see also 
[2]), zi,  are taken as outputs of a neural network. Since 
the posterior probabilities sums to 1, also E:=, zi = 1, 
i.e., we merely estimate c -  1 posterior probabilities, say Fi, 
1 5 i 5 c - 1, and calculate the last as 

Define a 2-layer feed-forward network with n1 inputs, 
n H  hidden neurons and c - 1 outputs by: 

- 
= 1 - zi. 

'See [SI for various approaches on robust statistics. 
'That is, each misclassification is equally weighted corre- 

sponding to minimal probability of misclassification. 
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n H  

+z(z) = ~ w : h J ( 4 + w 2  (4) 
J = 1  

where w i t ,  w: are the input-to-hidden and hidden-to-output 
weights, respectively. All weights are assembled in the weight 
vector w = { w ~ , , ~ ~ } .  In order to interpret the network 
outputs as probabilities we use a modzfied normalized ex- 
ponential transformation [l] similar to SoftMax [3], 

3. TRAINING AND REGULARIZATION 
Assume that we have a training set 7 of Nt related input- 
output pairs 7 = { ( ~ ( k ) , y ( k ) ) } r : ~  where 

1 if ~ ( k )  E Ci 
yi(k) = { 0 otherwise 

The likelihood of the network parameters is given by (see 
e.g., PI, PI), 

where g ( k )  = G(z(k),w) is a function of the input and 
weight vectors. The training error is the normalized nega- 
tive log-likelihood 

with e ( . )  denoting the loss given by 
C 

e (Y(k), G@); w) = -Yt(k) log(G(k)) (9) 
a = 1  

Making an comparison with M-estimates considered in ro- 
bust statistics [8], we note that the loss for a specifiz ex- 
ample is ! = -log(ct) = $(&) where CO = -log(z,) is 
the non-robust loss ( E  = 0) and $(.) is a function which 
downweights extreme losses3. 

The objective of training is minimization of the regu- 
larized cost function4 

C(W) = S 7 ( W )  + R(w, K )  (10) 

where the regularization term R(w, K )  is parameterized by 
a set of regularization parameters K .  Training provides the 
estimated weight vector 6 = arg minw C(w) and is done 
using a Gauss-Newton scheme (see e.g., [ll]), 

w"ew - - wold - r l .  J - l ( w ~ l d ) v ( w ~ l d )  (11) 

where 77 is the step-size (line search parameter). For that 
purpose we require the gradient, V(w)  = dC/aw, and 

3 $ ( e )  = - log(e-e(l - pc) i b). 
4This might be viewed as a maximum a posteriori (MAP) 

technique. 

the Gauss-Newton approximation5, J ( w ) ,  of the Hessian 
d2C/wurT which can be written as 

(1 - Pc)2 N t  
- 

J (w)  = ' (13) 
k=l i=l 

Nt 

where 

j=1 

By convenience, the dependency of gi, pi and +i on z ( k )  
and w is omitted, and 6;j denotes the Kronecker delta. 

4. ADAPTING REGULARIZATION 
PARAMETERS AND OUTLIER PROBABILITY 
The available data set, VI of N examples is split into two 
disjoint sets: a validation set, V ,  with Nu = [yNl examples 
for estimation of regularization and outlier probability, and 
a training set, 7, with Nt = N-N,  examples for estimation 
of network parameters. y is referred to as the split-ratio. 
The validation error of the trained network is given by 

where the sum runs over the Nu validation examples. SV (6) 
is thus an estimate of the generalizatgTerror defined as the 
expected loss: G(@) = E,,y{d(y, y; w)}, where &,y{.} 
denotes the expectation w.r.t. the joint input-output distri- 
bution. 

Let 6 = [ K ,  ,/3] be the vector of all regularization param- 
eters and the scaled outlier probability. Aiming at adapting 
8 so as to minimize the validation error we apply the iter- 
ative scheme suggested in [l], [9], [lo]: 

where p is a step-size and &(Bold) is the estimated weight 
vector using Bold. Suppose that 

4 

R(w, K )  = KTT-(W) = KiTi(W) (18) 
i=l 

where ~i are the regularization parameters and T;(w) the 
associated regularization functions. The gradient of the val- 
idation error then equals [9], [lo]: 

'This is obtained using Fisher's property: E[i32L/8wi3wT] = 
E [ a L / a w a L / a w T ]  where L = - l o g p ( T / w ) .  

4 206 
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6. E X P E R I M E N T S  
We first test the performance of the algorithm on an arti- 
ficial example with c = 3 classes in a 2D input space. The 
class conditional probabilities are p(x lC i )  = [ H ( p i , q  + 
H(-pL, 1)]/2 where Af(p, I) is a 2D Gaussian distribution 
with mean vector p and identity covariance matrix. The 
mean vectors are given by pt = 3~[cos(~(2z-1)/6), s in(~(2 i -  
1)/6)], i = 1,2,3. The prior class probabilities are p(Ci) = 
1/3. We generated N = 300 data and used Nt = 150 
for training and N, = 150 for validation. In addition 
we generated a test set of N t e s t  = 600. Further, we in- 
troduced outliers by changing class labels with probabil- 
ity e = 0.08. Suppose that the network wei hts are iven 

hidden and hidden-to-output weights, res ectively, and the 
bias weights are assembled in wLias and wgas. In this exam- 
ple, we use the following weight decay regularization term: 

by w = [w', wiias, t uH,  wZas] where w', w 2 are input-to- . g  

R(w, 6) = K' lw' l 2  + K;ias(w;ias12 + I C H  [WHIZ +I&, 1w&J 
(24) 

where K = [ K ' ,  &Lias, 8, The simulation set-up was: 

0 Network: 2 inputs, 5 hidden neurons, 2 outputs. 
Weights were initialized uniformly over [-0.5,0.5], regu- 
larization parameters were initialized at zero. 30 steps in 
a gradient descent training algorithm (see e.g., [ l l])  was 
performed and the weight decays, 6, were re-initialized 
at X m a X / l O 4 ,  where Amax is the max. eigenvalue of the 
Hessian matrix of the cost function. This prevents initial 
numerical stability problems. E is initialized at 0.01. 

0 Training is now done using a Gauss-Newton algorithm 
(see e.g., [ll]). The Hessian is inverted using the Moore- 
Penrose pseudo inverse (see e.g., [ll]) ensuring that the 
eigenvalue spread' is less than 10'. 

0 The step-size ,u in Eq. (17) is initialized at 1 and 6 is 
adapted until the Validation error has reached a minimum. 

0 Finally, weights are retrained on the combined set of 
training and validation data using the optimized weight 
decay parameters and outlier probability. 

Table 1 reports the average and standard deviations of 
the probability of misclassification (pmc) over 10 runs using 
the optimal K. and P. Note that retraining on the full data 
set decreases the test pmc slightly on average; improvement 
was found in 5 out of 10 runs. 

In Fig. 1 a typical run of the 6 adaptation algorithm 
is shown. We tested the possibility to detect whether spe- 
cific examples in the data set, e.g., the combined train- 
ing/validation set, are outliers and the result is summarized 
in Table 2. This technique can e.g., be applied to manual 
inspection of examples which are likely to be outliers. This 
might lead to relabeling or discovery of new interesting fea- 
tures of the problem. 

In order to ensure that ~i 2 0 and 0 5 P 5 l /(c - 1) we 
perform a reparameterization, 

and carry out the minimization w.r.t. t,he new parameters 
X and y assembled in the vector [ = [A, y]. Note that 

(22) 

In summary the algorithm for adapting regularization pa- 
rameters and outlier probability is: 

1. Select the split ratio y and initialize E ,  ,B and the weights 

2. Train the network with fixed 6 to achieve &$E). Calcu- 

3. Calculate the gradient aSv/ac cf. Eq. (19), (20). Initial- 

4. Update 6 using Eq. (17), (21), train the network from 

5. If SV decreases repeat: double p ,  update 6, retrain weights 

of the network. 

late the validation error SV.  

ize the step-size p .  

the previous weights and calculate SV. 

and recalculate SV until no decrease is noticed then goto 
step 7. 

6. Repeat: perform bisection of p ,  update 6, retrain weights 
and recalculate SV until a decrease is noticed, then con- 
tinue. 

7. Repeat steps 3-6 until the relative change in validat ion 
error is below a small percentage or, e.g., lldSv/alcll is 
below a small number. 

5. O U T L I E R  D E T E C T I O N  
Once the network is designed, i.e., we have estimates of r;he 
weights, regularization parameters and outlier probability6, 
it is possible to devise a method for outlier detection. Snp- 
pose we want to decide whether an example x with la- 
bel C, is an outlier or not. Define the binary variable 
0 which is 1 if the example is an outlier, and zero oth- 
erwise. The probability that the example is an outlier 
is given as poutlier = p ( 0  = l I z , C % ) .  Using Bayes rule, 
poutlier p ( 0  = llo,C,) = p ( 0  = 1 A CL/~)/p(Cll~). The 
denominator is given by Eq. (2) and the numerator is :he 
posterior probability for C, in the case of outliers which is 
equal to the last addend of Eq. (1). Thus7, 

The estimated probability that the example is an outlier is 
consequently, poutlie= = a(1 - 2i)/ci. h 

61n this contribution we do not include network pruning as 
an element in the design phase; however, this is easily done, see 
further [l], [9], [lo]. 

7Note poutlie= = 0 for E = 0 and poutlier = 1 for E = 1. 

7. CONCLUSIONS 
This paper presented a new framework for design of ro- 
bust neural classifiers by invoking a probabilitistc model 
for outliers. We devised an iterative scheme for simultane- 
nous adaptation of regularization parameters and the out- 
lier probabilty. Moreover, we discussed the possibility of 
detecting outliers. Numerical examples demonstrated the 
potential of the framework. 

8Eigenvalue spread should not be larger than the square root 
of the machine precision [4]. 
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Table 1: Probability of misclassification, when outlier prob- 
ability is E = 0.08. For the neural network the averages 
and standard deviations over 10 runs are reported. Inital 
and optimal neural net refers to using initial and optimized 
setting of n and E .  Optimal Bayes decisions boundaries 
are calculated from the detailed knowledge of the true pos- 
terior probabilities. The minimal Bayes error on an infi- 
nite set is 0.213. The outlier probability was estimated as 
E =  0.097 f 0.018. 

Estimated 
not outlier 

outlier 

True 
not outlier OUtli€T 

a = 0.911 f 0.017 
c = 0.089f 0.017 

b = 0.142 f 0.022 
d = 0.858 f 0.022 

Table 2: Confusion matrix €or outlier detection (over 10 
runs) on the combined training/validatioft set. An example 
is considered not to be an outlier if 1 -poutlier > 0.9. The 
aim is, e.g., to set the threshold so that the false positive 
rate b / ( b  + d )  is acceptable small. 
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