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EARLY STOP CRITERION FROM THE BOOTSTRAP ENSEMBLE 

Lars Kai  Hansen, Jan Larsen & Torben Fog 
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Technical University of Denmark, 

DK-2800 Lyngby, Denmark 
emails: lkhansen,jl,tf@imm.dtu.dk 

ABSTRACT 
This paper addresses the problem of generalization error 
estimation in neural networks. A new early stop criterion 
based on a Bootstrap estimate of the generlization error is 
suggested. The estimate does not require the network to 
be trained to the minimum of the cost function, as required 
by other methods based on asymptotic theory. Moreover, 
in constrast to methods based on cross-validation which re- 
quire data left out for testing, and thus biasing the estimate, 
the Bootstrap technique does not have this disadvantage. 
The potential of the suggested technique is demonstrated 
on various time-series problems. 

1. INTRODUCTION 

The goal of neural network learning in signal processing is to 
identify robust functional dependencies between input and 
output data (for an introduction see e.g., [3]). Such learn- 
ing usually proceeds from a finite random sample of training 
data; hence, the functions implemented by neural networks 
are stochastic depending on the particular available train- 
ing set. This opens the question of how robust the learned 
functions are to fluctuation and noise in the training set, 
and how well will they perform on new test data. General- 
ization is a key topic in the theory of supervised learning, 
and significant progress has been reported. The most uni- 
versally valid results are due to Murata et al. [5 ] ,  describing 
the asymptotic generalization ability of algorithms that are 
continuously parameterized. However, these generalization 
error estimators assume that the networks are trained to 
the minimum of the training error and that the training set 
is large compared to the number of degrees of freedom in 
the model. 

The overtraining phenomenon is well documented in the 
neural network literature. When training a network with 
too many resources the network will initially learn the typ- 
ical, generic aspects of the problem and then as training 
continues it will adapt to increasingly finer details of the 
training data. If the average error on an independent exam- 
ple (the generalization error) is monitored one typically ex- 
periences an initial decrease of error followed by an increase 
when the networks weights are getting too specialized. The 
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before mentioned asymptotic theories cannot cope with this 
phenomenon, since they are lbased on assumption that the 
network weights are trained to the minimal training error 
and that this minimum is close to the ‘‘true” weights. Cur- 
rent practice prescribes the use of a validation set. However, 
this means that data has to be set aside for testing, similarly 
the standard cross-validation technique is based on resam- 
pling without replacement, hence, the statistics obtained 
are biased. 

In this contribution we use a Bootstrap resampling plan 
to estimate test errors. Bootstrap involves training an en- 
semble of networks on training sets resampled from the orig- 
inal training set. In contrast to cross-validation, Bootstrap 
uses sampling with replacement. Consequently, Bootstrap 
can approach the statistics of the learning problem at the 
full sample size available. Another complicated test error 
estimator based on mixing the concepts of cross-validation 
and bootstrap has been suggested in [4]. This estimator 
aims at estimating the test error of a bootstrap ensemle of 
networks rather than the test error of the individual net- 
work. 

2. BOOTSTRAP BASED TEST ERROR 
ESTIMATE 

Let the data set consist of W realted input-output exam- 
ples: v = { ( z k ,  yk)}f=1 where x, y are the input and ouput 
vectors, respectively. Define the cost for neural network 
training by e(= ,  y ,  w), with au denoting the vector of net- 
work weights. In the specific case of squared error for a 
network implementing the scialar function f(z, w) we have, 
e(z,y,w) = (y - f ( z ,w) ) ’ .  The network is trained by an 
iterative scheme such as gradient descent or a Newton based 
scheme as to minimize the cost function (or training error) 

k = l  

Next we apply the Bootstrap technique, see e.g., [2], [6]. 
Consider Q resamples of the data set with replacement, V q ,  
q = 1, . . . , Q. Each set consists of N input-output examples 
drawn independently from ZJ with probability 1/N. Define 
&jq as the weight estimates obtained when training on the 
sets Vq and further define the indicator variable 
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where IC = 1 , 2 , .  . . , N refers to the examples in the data 
set V. The training error on V evaluated at Gq can be 
expressed as: 

k=l  k= l  
N 

k= l  

Consider a fixed q corresponding to a particular sample of 
training data V q .  It is now possible to interpret the two 
terms on the right hand side of Eq. (3) as training and 
test error, respectively. That is, by performing an ensemble 
average over all possible data sets 2) of size N in Eq. (3) we 
get: 

N 

.. 
k=l  

k= l  
N 

k = l  

where the data set ensemble average is denoted by 
Assume that the examples are drawn independently. 
is further reduced by introducing three quantities: 

1. The training error 

k = l  

2. The individual training error 

LEDq 

3. The average generalization error 

= &{G(Gq))} 

where the generalization error is defined as 

G‘(Gq) = E=,V{E(Z, Y, Gq)} 

with p(s, y) denoting the joint (unknown) probability 
density of (2, y). 

That is, using Eq. (4): 

N N 

.. . 

(9) 

Eq{EP{SP(~q)}} = (1 -P)E,{E’D{sD,(GjP)}}+Pr (10) 

Finally averaging over all possible configurations of resam- 
ples gives: 

where P = (1 - l / N ) N  is the average number of examples 
in the test set i.e., equal to the probability that a specific 
example is not used in a resample of size N ’ .  Aproximating 
the average w.r.t. q by the emprical average obtained from 
Q replicas, i.e., 

where X is a arbritary variable. Furthermore, we drop the 
average w.r.t. difient data sets2. 

Finally, the relation becomes: 

That is, 

3. EXPERIMENTAL RESULTS AND 
CONCLUDING REMARKS 

While the generalization error estimate can be used for op- 
timization of all aspects of neural net adaptation, including 
tuning of regularization parameters or selection of network 
architecture, we will here focus on it’s use in the early stop 
context. This is a problem that can not be solved by the 
conventional statistical estimates like the that of Murata 
et al. [5], since these estimates assume the network to be 
close to optimal (i.e. within a second order Taylor expan- 
sion). Early stop is oldest form of regularization, used in 
many practical implementations, and also subject to some 
analysis, see e.g., [7]. The idea is simply to inspect the 
test error on an independent set of validation data, when 
the validation error start to increase training is stopped to 
avoid overfitting. 

For illustration, we use two time series problems. The 
fist case involves the prediction of a noisy time series ap- 
pearing in a functional neuroimaging context. We show the 
early stop scenario for two different levels of regularization. 
The series consist of a stimulus series (an on-off signal) and 
a response series from a specific region in the visual cortex. 
The network is trained to model the response by one-step 
prediction of the response series using a simple lag-space in- 
put from both stimulus a response series. The training set 
consists of 250 input-output pairs, while another set of 200 
datapoints are used for evaluation the unbiased test error. 
All errors are normalized by the total variance of test and 
training series. Significant overtraining is seen and indeed 
expected with a low level of the weight decay, whereas by 
using the generalization error estimate we may hinder over- 
training efficiently as shown in Fig. 1. In Fig. 2 we similarly 
show the result of training with a somewhat higher weight 
decay. In this case the minima in the test error and the 
test error estimate are rather shallow, but they do indeed 
coincide. 

’Note that fl  --t e-’ for N + 00 where e is the base of the 
natural logarithm. 

2This is identical to the technique in order to derive the FPE 
[l] or NIC criteria [?I. 
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Our second case is the wellknown sunspot prediction 
problem. The task is to predict the yearly average sunspot 
activity. We follow the conventional approach and use 12 
input units encoding a simple lag-space, while the output 
unit predicts next years activity (see e.g. [8] for details on 
the sunspot prediction problem). The total series runs from 
1700 to 1979. The 209 member training set covers 1700- 
1920, while we use the socalled test set I (1921-1955) to 
compute the test error. Like in the first case the aim is to 
eliminate overfitting. First we train an oversized network 
with eight hidden units and low regularization (just anough 
to stabilize our Newton optimizer). The training scenario is 
depicted in figure Fig. 3 and indeed significant overtraining 
is seen at training beyond 15 iterations. Also, we here train 
a well-regularized network (see figure Fig. 3). In this case 
there is virtually no overtraining, neither measured by the 
unbiased generalization error test set or by our bootstrap 
test error estimate. Hence, we conclude that the Bootstrap 
ensemble based estimate of the test error is a viable means 
for implementing an early stop rule. 

I 
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Figure 1: Overtraining scenario with small regularization 
(weight decay). The data set is a very noisy forecasting 
problem involving a stimulus series and a response series 
(the series was recorded in a functional neuroimaging ex- 
periment). The data set comprises N = 250 examples and 
an additional test set contains 200 examples. The Boot- 
strap ensemble had Q = 15 members. Each member is 
a feed-forward net with 20 input units, 8 hidden sigmoid 
units, and one output unit. The networks were trained by 
conventional backprop (1 5 i tr  5 5) ,  and by a second or- 
der pseudo Newton scheme (6 < atr < 45). The goal is 
to predict the noisy time series one-step-ahead based on a 
lag space of 10 previous values of the time series and 10 
lagged values of an auxiliary time series coding the stimu- 
lus. In this run the network was only slightly regularized by 
weight decay. Errors are reported as normalized by the to- 
tal variance of the series. Note that both the estimated and 
the measured test error suggest to stop training at around 
i tr  = 12. 

I 
‘0 5 10 15 20 25 30 35 40 

it/; Iterations 

Figure 2: Overtraining scenario with near optimal regu- 
larization (weight decay). The data set and the networks 
are the same as in Fig. 1. In this case the network was 
more heavily regularized by weight decay. Note that both 
the estimated and the measured test error suggest so stop 
training around i tr  = 15. Note also that the overall level of 
test error is lower in this case, suggesting that careful con- 
trol of the weight decay may be more efficient than early 
stop in optimizing generalization. 

4. CONCLUSIONS 

A technique for early stop has been presented. Training 
is terminated when a new E%ootstrap based estimate of the 
generalization error has reached its minimum. Numerical 
examples showed excellent coherence among the Bootstrap 
based estimate and the test error on an independent test 
set. Furthermore, the numerical examples showed that one 
can not rely on early stop only; additional regularization (in 
the present case, weight decay) is necessary for achieving 
minimum generalization error. 
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Figure 3: Overtraining scenario with large network and 
small regularization (weight decay). The data set is the 
wellknown sunspot prediction problem. The data set com- 
prises N = 209 examples and an additional test set con- 
tains 35 examples. The Bootstrap ensemble had Q = 15 
members. Each member is a feed-forward net with 12 in- 
put units, 8 hidden sigmoid units, and one output unit. 
The networks were trained by conventional backprop (1 5 
itr 5 5), and by a second order pseudo Newton scheme 
(6 5 itr 5 45). The goal is to predict the noisy time series 
one-step-ahead based on a lag space of 12 previous values 
of the time series. In this run the network was only slightly 
regularized by weight decay. Errors are reported as nor- 
malized by the total variance of the series. Note that both 
the estimated and the measured test error suggest to stop 
training at around itr = 12. 

[7] J. Sjoberg: Non-Linear System Identification wath 
Neural Networks, Ph.D. Thesis no. 381, Department 
of Electrical Engineering, Linkoping University, Swe- 
den, 1995. 

[8] C. Svarer, L.K. Hansen, and J. Larsen: “On Design 
and Evaluation of Tapped-Delay Neural Network Ar- 
chitectures,” in H.R. Berenji et al. (eds.) Proceedings 
of the 1993 IEEE Int. Conference on Neural Networks, 
IEEE Service Center, NJ, vol. 1, pp. 46-51, 1993. 

+ AV Training Set Error 
- AV Own Training Error 

0 Estlmated Test Error 

U W 
1.5 - 

- AV Own Training Error 

Estimated Test Error 

U W 
1.5 

I G I 

0 
0 5 10 15 20 25 30 35 40 45 

TIME (EPOCHS) 

Figure 4: Overtraining scenario with a large network and 
near optimal regularization (weight decay). The data set 
and the networks are the same as in figure Fig. 3. Note 
that both the estimated and the measured test error suggest 
so stop training around atr = 15. Note also that like in 
the previous neuroimaging case, figures Fig. 1 - Fig. 2, the 
overall level of test error is lower in this case, suggesting that 
careful control of the weight decay may be more efficient 
than early stop in optimizing generalization. 
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