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Airflow resistivity of models of fibrous acoustic materials
Viggo Tarnow
Department of Applied Engineering Design and Production, Technical University of Denmark,
Bygning 358, DK 2800 Lyngby, Denmark

~Received 2 November 1995; revised 28 May 1996; accepted 11 July 1996!

A new way of calculating the airflow resistivity of randomly placed parallel cylinders is presented.
The calculation is based on Voronoi polygons, and the resistivity is given by the mean spacing
between the fibers, their diameters, and the physical properties of air. New explicit formulas for the
resistivity are given, which are valid for the cylinder~fiber! concentrations found in acoustic
materials. A one-dimensional model consisting of parallel plates with random spacing between the
plates is first discussed. Then a two-dimensional model consisting of parallel cylinders randomly
spaced is treated for flow parallel and perpendicular to the cylinders. The resistivity formulas are
exact for plates and approximate for cylinders. ©1996 Acoustical Society of America.

PACS numbers: 43.58.Bh, 43.20.Hq, 43.20.Jr, 43.55.Ev@SLE#

LIST OF SYMBOLS

A, A0 , A4 integration constants
a radius of fiber or cylinder
b mean spacing between plates or square root of

area per fiber
d volume concentration of cylinders
K permeability
l length of a sample of fiber material or length of

a cylinder
n normal to a closed surface that points away

from the enclosed volume
P power to a cell
p pressure
q probability
R resistivity of fiber material
Rls resistivity of fiber material for longitudinal flow

through a square lattice
Rlr resistivity of fiber material for longitudinal flow

through a random lattice
Rcs resistivity of fiber material for cross flow

through a square lattice
Rcr resistivity of fiber material for cross flow

through a random lattice

r vector from origin of coordinate system to
point in air

S area of Voronoi cell
u air velocity
v angle
x coordinate
y coordinate
z coordinate
Dp pressure decrease
h viscosity of air
j spacing between plates
r radius of cylinder equivalent to cell
s cross-section area of cell divided by average

area of cell
f porosity
C volume flux of air~volume current!
C1 volume flux of air per unit length
c Stokes’ stream function
v vorticity
^u& mean velocity
^“p& mean pressure gradient

INTRODUCTION

Sound velocity and attenuation in fiber materials such as
glass wool are mainly determined by the constant velocity air
flow resistivity, as is well known from the work of Delany
and Bazley.1 If one knows the flow resistivity one can predict
the acoustical properties of glass wool. It is of academical
and practical interest to be able to calculate the flow resistiv-
ity of fiber materials from the fiber diameters and their den-
sity and distribution in space. As an introduction to the more
difficult case of parallel cylinders with random spacing, the
flow resistivity for parallel plates with random spacings is
calculated. Then parallel cylinders are treated both for air-
flow parallel and perpendicular to the cylinders. Similar re-
sults have been used to explain measurements on glass wool
~see Tarnow2!.

The flow resistivity is defined by an experiment where a

sample of the fiber material is placed in a tube. A steady
airflow is sent through the sample. The mean air velocity
^u&, the pressure decrease over the sampleDp, and the
length of the samplel are measured. The resistivity of the
material is defined as the pressure drop per length divided by
the mean air velocity:

R5Dp/^u& l . ~1!

In all the models the procedure of calculation is the
same: The linearized Navier–Stokes equation for the veloc-
ity is solved either exactly or approximately with the bound-
ary conditions given by the geometry of the problem. From
the velocity and the pressure gradient the resistivity is found.
In a later paper the dynamic flow resistivity will be calcu-
lated.
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Flow resistivity of cylinders in regular arrays has been
treated in the literature by many authors, as can be seen in
the review by Åström et al.3 However, there are only few
papers on the more difficult problem of randomly placed
cylinders, such as Howells4 and Sangani and Yao,5 and these
authors do not provide explicit formulae for the resistivity;
unlike the present paper.

In order to compute the acoustical properties of fiber
materials one also needs the compressibility of air between
fibers. This has been presented in Tarnow.6

I. GENERAL THEORY

The Navier–Stokes equation for incompressible station-
ary flow can be found in Landau and Lifshitz.7 We assume
the air velocity is small, i.e., low Reynolds number. In this
case the equation for the velocityu is

h¹2u5“p, ~2!

where p the pressure andh the viscosity of air, which is
h51.84631025 kg/~m s! at the temperature 27 °C. In Pierce8

the temperature dependence of the viscosity is given. The
incompressibility of the flow is expressed by

“–u50. ~3!

These equations are to be solved with the boundary condition
that the velocity at the cylinders equals zero.

II. ONE-DIMENSIONAL MODELS

A one-dimensional model having a resemblance to real
fiber materials consists of sets of parallel plates of solid ma-
terial. Between the plates air flows parallel with the plates
driven by a constant pressure gradient.

We use a rectangular coordinate system. Thex axis is
perpendicular to the plates. Thez axis is in the direction of
the flow ~]p/]x5]p/]y50, andux5uy50!. A differential
equation for the velocity follows from Eq.~2!. In this case
Eq. ~3! is fulfilled automatically, and one gets

]2uz
]x2

5
1

h

]p

]z
, ~4!

where]p/]z52Dp/ l .
The resistivity depends on the spacings between the

plates. Two models are considered, the first one with equal
spacings between plates, and the second one with random
spacings.

A. Regular lattice with constant plate thickness

We consider a set of parallel plates with equal spacings,
b, between neighbor plates~Fig. 1, upper part!. This case has
been treated by many authors, e.g., Landau and Lifshitz,7 but
it is considered here as an introduction to the new case of
random placement of plates. The plates are assumed to be
infinitely thin. The velocity that satisfies Eq.~4! and is zero
on the plates is

uz5
1

2h

]p

]z
~x22bx!, ~5!

wherex is measured from one plate. The flux of air~volume
current! between the two plates is found by integration of the
velocity over the spacings between the plates. The velocity
does not depend on they coordinate, so the integration in
this direction will be omitted. The flux per unit distance in
the y-directionC1, can be found byC15*0

buz dx. The re-
sult is

C152
1

12h

]p

]z
b3. ~6!

The mean velocitŷuz& equals this flux divided by the spac-
ing between the plates, thus

^uz&5C1 /b. ~7!

The resistivity as defined in Eq.~1! is found from~6! and~7!,

R512h/b2. ~8!

B. Random spacings between plates

A set of parallel plates with random spacings is consid-
ered in Fig. 1, lower part. This is of interest as an introduc-
tion to the theory of the resistivity of real fiber materials. We
consider the simplest case where the plates are infinitely thin.

The plates are placed randomly with a mean spacing of
b. We assume for the sake of simplicity that the spacings
between two neighbor plates have Poisson distribution. The
probabilitydq of finding the spacing in the interval fromj to
j1dj is according to Ziman,9

dq5
1

b
e2j/b dj. ~9!

First we calculate the ensemble average flux^C1& between
two plates from Eq.~6!:

^C1&52
1

12h

]p

]z E
0

`

j3e2j/b dj52
2b3

h

]p

]z
. ~10!

This is divided byb to give the mean velocity, and from the
definition Eq.~1!, the resistivity is found:

R52h/b2. ~11!

FIG. 1. Parallel plates with flow in the direction of thez axis. The upper part
of the figure is for regular spacing, the lower one for random spacing.
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It is very interesting to compare this with the resistivity
of regular spaced plates with zero thickness@Eq. ~8!#. The
resistivity of the regular spaced plates is much higher than
the resistivity of the random spaced plates with the same
density. This is easy to understand. The flux between two
plates depends on their spacings in the third power. There-
fore, the flow is much higher between distant plates than
between close ones with the same pressure gradient. If one
regards a set of many randomly distributed plates, one sees
that there is a certain number of plates with a large spacing
between them. Between these plates the air flows easily. The
flow in a set of many plates is much higher if the plates are
randomly distributed. The set of regularly spaced plates do
not have these open parts. Therefore, the resistivity of
equally spaced plates is much higher than the resistivity of
randomly spaced plates.

This can be illustrated if we think of a set of plates
where all of the plates are placed together with zero spacing
between them. In this case the air flows easily and the resis-
tivity is very small.

III. FLOW PARALLEL WITH FIBERS

A model of fibrous materials consisting of parallel cyl-
inders with equal radius and flow perpendicular to the cylin-
ders will be addressed. First, the case of cylinders arranged
in a square lattice will be discussed. Then the case of random
distribution of fibers will be discussed. The volume concen-
tration of fibers is quite small for glass fiber materials, in
most cases less than 0.02. Therefore, we only need theoreti-
cal results for low density of cylinders.

In Landau and Lifshitz7 it is shown that the pressure
gradient is a constant for flow parallel to cylinders~]p/]x
5]p/]y50, ux5uy50!, and that the velocity may be com-
puted from the equation

h¹2uz5
]p

]z
, ~12!

where we use a coordinate system with thez axis in the
direction of the cylinders.

A. Square lattice

Sparrow and Loeffler10 have treated the case of flow
parallel with parallel cylinders placed in a regular square
lattice. They use polar coordinates and write the velocity to
be computed from Eq.~12! as series,

uz5
1

4h

]p

]z
~r 22a2!1A0 lnS raD1A4S r 42 a8

r 4 D cos~4n!

1••• , ~13!

where r is the radius vector,n is the polar angle,a is the
radius of the cylinders, andA0 andA4 are constants to be
determined by the boundary conditions. Due to the symmetry
of the lattice we get

]uz
]n

50 ~14!

on the border of the square unit cell in Fig. 2, wheren is a
normal to the border of the square. Sparrow and Loeffler10

chose the constants so that this boundary condition was ful-
filled. For volume concentration less than 0.1 their results
show that the resistivity can be computed with good accu-
racy by the following procedure.

The velocity can be found by replacing the square on
Fig. 1 by a circle with the same area as the square, and
require that on the circle

]uz
]r

50. ~15!

The velocity that fulfils Eq.~12! and the boundary conditions
is

uz5
1

h

]p

]z F14 ~r 22a2!2
r2

2
ln
r

aG , ~16!

wherer is the radius of the circle. The volume fluxC be-
tween the two concentric circles isC5*a

ruz2pr dr . By sub-
stituting Eq. ~16! into this and performing the integration,
one gets

C5
1

h

]p

]z F38 pr42
1

2
a2pr22

1

2
pkr4 lnS r

aD
1
1

8
pa4G . ~17!

We introduce the areaS5pr2 of the circle, and write the
flux in terms ofS,

C5
1

h

]p

]z F 38p
S22

1

2
a2S2

S2

4p
lnS S

pa2D
1

1

8p
~pa2!2G . ~18!

The area of the circle is set equal to the area of the unit cell
of the square lattice. If we call the length of the side of the
unit cell b, we get

S5b2. ~19!

The mean velocity is

^uz&5C/b2. ~20!

From the last two equations one gets the mean velocity

FIG. 2. Cylinders placed in a regular lattice. The square is the unit cell. The
flow is perpendicular either to the paper or in the direction of thex axis. The
broken line is a circle with the same area as the unit cell. The circle with
proper boundary conditions is a replacement for the square on which it is
more difficult to fulfill the boundary conditions.
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^uz&52
1

4phb2
]p

]z F lnS b2

pa2D2
3

2
1
2pa2

b2

2
1

2 S pa2

b2 D G . ~21!

This can be written in terms ofd, the volume concentration
of fibers

d5pa2/b2. ~22!

In acoustics the porosityf is used.f512d:

^uz&52
1

4phb2
]p

]z F lnS 1dD2
3

2
12d2

1

2
d2G . ~23!

From Eq.~1! one gets the resistivity,

Rls5
4ph

b2@ ln~1/d!2 3
212d#

, ~24!

where a term withd2 has been neglected.
Sparrow and Loeffler’s paper10 shows this procedure

gives the right result for the resistivity in the low-
concentration limit. It is similar to the approximation of
Wigner and Seitz used in solid-state theory for computing
metallic cohesion~see Dekker11!.

Berdichevsky and Cai12 have also treated parallel flow
through parallel cylinders both analytically and numerically;
their results, together with the results of Sparrow and
Loeffler,10 indicate that for volume concentration less than
0.1 the resistivity of Eq.~24! has an accuracy better than 2%.
This can be seen from the following:

Berdichevsky and Cai12 use a permeability instead of the
resistivity. They define a dimensionless permeability as

K5
h^u&
a2^“p&

, ~25!

where^u& is the mean velocity and̂“p& is the mean gradi-
ent. The resistivity may be written in terms of the permeabil-
ity

R5h/a2K. ~26!

If one takes their Eq.~4!, neglects a termd2, and set the
result into Eq.~26!, one gets exactly Eq.~24!. Their Table I
gives for a concentration of 0.1 the permeability 2.494 com-
puted by their Eq.~4!. By finite element calculations they
find the permeability 2.552.

B. Random lattice

We want to compute the resistivity of a lattice of parallel
cylinders placed randomly for flow parallel with the fibers.
We find the velocity by a method analogous to the one above
by using the so-called Voronoi polygons.

Points placed randomly in a plane are considered, and
we divide the plane into polygons in the following way:
Draw lines from each point to the nearest-neighbor points,
and draw normals that bisects these lines. The normals en-
close an area around each point, as shown in Fig. 3.
Aurenhammer13 has written a survey of Voronoi diagrams.

We use the Voronoi polygons to compute the air veloc-
ity when the pressure gradient is given. The velocity gradient
normal to the perimeter of a polygon around a lattice point
must be close to zero. This quantity is exactly zero for a
square lattice due to symmetry, and symmetry considerations
show that the gradient of the velocity perpendicular to the
polygons must be zero close to the polygons.

We replace the polygons with circles with the same area
and assume that the lattice point is in the center of the poly-
gon. The boundary conditions are that the velocity is zero at
the inner circle and the gradient of the velocity is zero at the
outer circle. This procedure gives an upper limit to the resis-
tivity because the lattice point is assumed to be placed in the
center of the circle. In some Voronoi cells this is not the
case. The flow through a cell with a cylinder not in the center
of a polygon must be higher than the flow through the same
cell if the cylinder is in the center of the cell. Therefore, the
computed resistivity is higher than the exact value. But the
difference is small at low concentration because the resis-
tance is determined by the shear stress at the inner cylinder,
and this stress does not depend strongly on the eccentricity
when the concentration is low@Because of Eq.~14!, the shear
stress is zero at the outer cylinder.# This is confirmed by
comparison with numeric calculations quoted in the end this
section.

The method of computation is the same as was used in
the one-dimensional case. The average volume flux is com-
puted for the Voronoi cells. This gives from Eq.~18!

^C&5
1

h

]p

]z F 38p
^S2&2

1

2
a2^S&2

1

4p KS2 lnS S

pa2D L
1

1

8p
~pa2!2G , ~27!

where the angular brackets mean average, andS is the area
of the Voronoi cells.

The average of area of the Voronoi cells is

^S&5b2. ~28!

The average of the square of the area has been computed
exactly. It is given in Weaireet al.,14

^S2&51.280̂S&2. ~29!

FIG. 3. The circles represent the parallel cylinders. The circles are placed
randomly in the plane and are surrounded by Voronoi polygons. The flow is
either perpendicular to the paper or in the plane of the paper. The circle C is
a replacement for the polygon PQRSTU. The flow problem is solved for
flow between the concentric circles C and G, where G is the circle F moved
to the center of C. The vorticity is assumed to be zero on the circle C, and
the velocity is zero on G.
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We introduce the area of the Voronoi cells divided by the
average areas,

s5S/b2. ~30!

From ~29! and ~30! one gets

^s2&51.280. ~31!

In order to compute the mean flux Eq.~27!, we need

KS2 lnS S

pa2D L 5^S&2^s2 ln~s!&2^S&2 ln~d!, ~32!

which was found by insertingS from Eq. ~30! into the left-
hand side of~32! and using~22! and ~28!. The distribution
function for S is given in Andrade and Fortes.15 The prob-
ability dq that the area of a Voronoi polygon is in the inter-
val S, S1dS is found from

dq

dS
5

1

^S&

aa

G~a! S S

^S& D
a21

expS 2
aS

^S& D , ~33!

where a'3.61 andG~a! is the gamma function. It is a
gamma distribution, which is used instead of the Poisson
distribution for the parallel plates. This distribution of An-
drade and Fortes15 does not take into account the fact that the
cylinder cannot have axes closer than 2a. However, this is
not important because the error is small when the volume
concentration of fibers is small, which is the case for most
fiber materials used in acoustics.

From this one computes by numerical integration for
d,0.1.

^s2 ln~s!&50.446. ~34!

From Eqs.~27!–~34! one finds the mean flux

^C&5
1

4ph

]p

]z
b4F21.280 lnS 1dD22d11.474G , ~35!

where a term withd squared has been neglected. The mean
velocity is

^u&5
C

b2
52

b2

4ph

]p

]z F1.280 lnS 1dD12d21.474G .
~36!

From this and Eq.~1! one gets the resistivity for flow along
randomly placed fibersRlr ,

Rlr5
4ph

b2@1.280 ln~1/d!12d21.474#
. ~37!

Sangani and Yao5 have computed numerically the permeabil-
ity for 16 cylinders placed randomly. Ford50.1, they give
the permeability 4.960.7, where 0.7 is the standard devia-
tion. From Eq.~26! and ~37! one finds the permeability 4.2.
From this one can conclude that the above procedure is suf-
ficiently accurate for the present purpose.

IV. FLOW PERPENDICULAR TO FIBERS

Flow perpendicular to parallel cylinders is now consid-
ered. We treat parallel cylinders in two cases: placed in a
square lattice and randomly placed. The last case is more
important than the first one, but the case of the square lattice

is much easier than the random one, and the methods used
for the first case can be extended to the random case.

For acoustic material, we are only interested in volume
concentrations of fibers smaller than 0.02 in most cases,
which makes some of the computations easier.

The resistivity of the two models is found by solving the
Navier–Stokes equation for incompressible flow. We use
Stokes’ stream-functionc, and find the velocity from

ux5
]c

]y
, uy52

]c

]x
. ~38!

This procedure secures that the condition of incompressibil-
ity Eq. ~3! is fulfilled. The stream functions can be computed
from

¹2c5v, ~39!

where the vorticityv is defined by

v5
]ux
]y

2
]uy
]x

, ~40!

and

¹2v50. ~41!

A. Square lattice

This case has been treated by Sangani and Acrivos.16

We assume the flow is in the direction of thex axis in Fig. 2.
The boundary conditions that follow from the symmetry of
the flow are

v50, c51 on AB, ~42!

]c

]x
5

]v

]x
50 on BC. ~43!

c is constant onAB becauseuy50, which follows from the
symmetry of the flow. We setc51 in order to simplify the
equations. This is not dimensionally correct, but the resistiv-
ity in not influenced by this. We could have setc5constant
and secured the dimensions. Nonslip is assumed on the cyl-
inders, therefore

c5
]c

]r
50 on the cylinder surface. ~44!

The boundary conditions equations~42!–~44! are explained
in the Appendix. Sangani and Acrivos found the resistivity

Rcs5
4ph

b2@ ln~d21/2!20.7381d20.887d212.03d31O~d4!#
.

(45)

The following calculation by Kuwabara17 shows a simpler
way to reach the same result valid for small concentration of
cylinders. Kuwabara17 replaced the square perimeter of the
unit cell with a circle. The area of the circle equals the area
of the unit cell, and one requires zero vorticity on the perim-
eter of the circle. One now has a flow problem for two con-
centric cylinders withv50 on the outer cylinder and Eq.
~44! on the inner cylinder. Only one boundary condition is
given on the outer cylinder, therefore the solution contains
an integration constant of no importance for the calculation
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of resistivity. The boundary conditionv50 cannot be de-
rived directly from Eqs.~42! and ~43!, but is based on the
physical reasonable assumption that the vorticity is zero
close to the perimeter of the unit cell. Kuwabara17 used the
same procedure; it is repeated here in order to make the
following procedure for random fibers more easy to under-
stand. From this he found the resistivity

Rcs5
4ph

b2@ ln~d21/2!2 3
41d2 1

4d
2#
. ~46!

In acoustic fiber materials where the concentration is mostly
less than 0.02, there is little difference between the two equa-
tions ~45! and ~46!.

In the following we use Kuwabara’s approach modified
in a way that can be extended to random distributions of
fibers. We compute the resistivity by calculating the energy
dissipation.

Lamb18 has treated a problem of flow around a cylinder.
From this one sees that the vorticity is

v5AF1r2
r

r2Gsin n, ~47!

wherer is the radius in a polar coordinate system andn is the
angle. The direction of flow is determined byn50. r is the
radius of the cylinder where the vorticity is zero.A is an
integration constant. Equations~39! and ~47! can be inte-
grated to give

c5AF r2 ln
r

a
2

r 3

8r2
1S a2

4r2
2
1

4D r
1S a24 2

a4

8r2D 1

r Gsin n, ~48!

when one requires that the velocity is zero on the cylinder.
The pressure can be found from Lamb.18 One gets

p5AhS 1r 1
r

r2D cosn. ~49!

The macroscopic gradient equals the pressure drop over the
cell divided by the cell diameter, thus the macroscopic gra-
dient is

^“p&5A~2h/r2!. ~50!

This equation is used to find the integration constant

A5r2^“p&/2h. ~51!

In order to find the resistivity, we compute the power that
flows into the cell through the cylinder surface surrounding a
fiber. The power is

P52 R pu–n dS, ~52!

wheren is the normal to the surface. From this equation and
Eqs.~38!, ~48!, ~49!, and~51!, one gets the power per length

P

l
5

pr4^“p&2

4h F ln r

a
2
3

4
1
a2

r2
2

a4

4r4G , ~53!

where l is the length of the cylinder integrated over. The
energy dissipated per volume equals

P

lb2
5

^“p&2

R
. ~54!

From Eqs.~53! and~54! one finds the resistivity of Eq.~46!.
This shows that the energy method gives the same result as
Kuwabara’s17 method.

B. Random lattice

The resistivity against flow perpendicular to parallel fi-
bers placed randomly will be computed from the power dis-
sipated in the air. We use the Voronoi polygons to compute
the resistivity in this case. From Eq.~54!

R5
^“p&2lb2

^P&
, ~55!

where^P& is the mean power per cell.
The power in Eq.~53! can be written in terms of the area

Sof the circle. The power becomes

P5
^“p&2l

4ph F12 S2 lnS S

pa2D2
3

4
S21pa2S2

1

4
~pa2!2G .

~56!

We replace the Voronoi polygons with circles with the same
area as the polygons. It is convenient to use the variables,
i.e., the area of the circles divided by the mean area per fiber.
The power can be written

P5
^“p&2lb4

4ph F12 s2 ln s1
1

2
s2 lnS 1dD2

3

4
s21ds

2
1

4
d2G . ~57!

The mean value of the power over the ensemble of Voronoi
polygons can be found from the average values ofs and
function ofs as given in Eqs.~31!–~34!. From this one finds
the average value of the power:

^P&5
^“p&2lb4

4ph F0.640 lnS 1dD20.7371dG , ~58!

where a term with the concentration squared has been ne-
glected. From this we find the resistivity

Rcr5
4ph

b2@0.640 ln~1/d!20.7371d#
. ~59!

From this one can compute the permeability defined in Eq.
~25!. For d50.1 one finds from~59! the permeability 2.09.
Sangani and Yao5 have numerically computed the permeabil-
ity for 16 cylinders placed randomly; ford50.1 they give
the permeability 1.6760.12. The last number is the standard
deviation. The difference between these two permeabilities is
more than could be expected from the standard deviation
0.12. They also give 1.79, which was based on Howells’4

analytic calculations. Neither Howell4 nor Sangani and Yao5

give a closed formula with which Eq.~59! could be com-
pared.
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V. DISCUSSION

The resistivity of a set of parallel plates with equal dis-
tances is six times the resistivity of randomly placed plates
for the same mean density, as can be seen from~8! and~11!.
In the case of parallel cylinders, the resistivity is also greater
when the cylinders are placed regularly in a lattice, but the
difference is not as great as in the one-dimensional case. This
can be seen from Fig. 4, which shows the resistivity as a
function of volume concentration of cylinders. The resistiv-
ity is shown for a cylinder radius of 3mm. The resistivity in
the case of other cylinder~fiber! diameters can be found from
the figure, because the resistivity is inversely proportional to
the square of the cylinder radius when the concentration is
constant. The line marked Cs is the resistivity for cross flow
through a square lattice. Cr means cross flow through ran-
dom placed cylinders. Ls is longitudinal flow in the case of
square lattice, and Lr is longitudinal flow for random place-
ment. The points are calculated from Howells4 who used
another method to calculate the resistivity.

The volume density of the fibers equals the mass density
of glass wool divided by the mass density of the glass itself.
A typical value of concentration for light glass wool with a
density of 16 kg/m3 is

d5
16 kg/m3

2550 kg/m3
50.0063. ~60!

VI. CONCLUSION

Explicit formulae for resistivity to airflow through par-
allel cylinders placed randomly have been developed in a
new way, both for flow parallel with Eq.~37! and perpen-
dicular to Eq.~59! the cylinders. The formulae are valid for

the densities of cylinders~fibers! one finds in real fiber ma-
terial such as glass wool. The results deviate less than 20%
from earlier calculations by other authors.

APPENDIX: EXPLANATIONS OF BOUNDARY
CONDITIONS FOR SQUARE LATTICE

Figure A1 shows streamlines in a unit cell. The flow is
in the direction of thex axis. The velocity is periodic with
translations in the directions of thex andy axis, the period
being equal tob, the distance between the axes of two neigh-
bor cylinders. The velocity vector is symmetric to reflection
in the x axis and the lineAB. Therefore, the velocity vector
on AB must be directed alongAB. That means
uy(x,b/2)50, and]uy(x,b/2)/]x50. The velocity must be
maximum onAB, which means]ux/]y50. From the defi-
nition of vorticity Eq. ~40! then follows the first part of Eq.
~42!. The velocity component perpendicular toAB is zero.
According to Eq.~38! this is fulfilled if c is a constant on
AB; this is the second part of Eq.~42!.

The velocity vector is symmetric to reflection in they
axis and time reflection. The lineBC is also a symmetry line
for reflection and time inversion. The boundary conditions
on line BC can be deduced from this symmetry. Due to
symmetry, the velocity is perpendicular toBC, which means
that the velocity component in they direction is zero; from
Eq. ~38! follows then the first of Eq.~43!.

In order to prove the second boundary condition onBC,
we first calculate some derivatives. The incompressibility
condition is

]ux
]x

1
]uy
]y

50. ~A1!

OnBC, uy50. Therefore, onBC, ]uy/]y50, and from Eq.
~A1!, ]ux/]x50. From this follows that on BC,
]2ux/]y ]x50. However,uy(j1b/2,y) is an uneven func-
tion of j due to the symmetry. Therefore,]2uy/]x

250. From
the definition of the vorticity and the value of the partial
derivatives, one gets onBC

]v

]x
5

]2ux
]x ]y

2
]2uy
]2x

50. ~A2!

This is the second part of Eq.~43!.

FIG. 4. The resistivity for parallel cylinders as a function of volume con-
centration of cylinders. The radius of the cylinders~fibers! is assumed to be
3 mm, which is a value typical for glass wool. For fixed value of concen-
tration the resistivity is inversely proportional with the square of the radius.
Cs means cross flow in a square lattice. Cr means cross flow in a random
lattice. Lc means longitudinal flow in a square lattice. Lr means longitudinal
flow in a random lattice. The points were calculated from Howells4 who
used a different method to calculate the resistivity.

FIG. A1. The streamlines for flow in a square lattice. The flow is assumed
to be in the direction of thex axis. The velocity vector is symmetric to
reflexion in thex axis, and symmetric to reflexion in they axis and time
inversion. The flow is periodic with translationsb in the direction of thex
axis andy axis.

3712 3712J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 Viggo Tarnow: Airflow resistivity/fibrous acoustic materials

Downloaded¬28¬Jun¬2010¬to¬192.38.67.112.¬Redistribution¬subject¬to¬ASA¬license¬or¬copyright;¬see¬http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



1M. E. Delany and E. N. Bazley, ‘‘Acoustical properties of fibrous absor-
bent materials,’’ Appl. Acoust.3, 105–116~1970!.

2V. Tarnow, ‘‘Measurement of sound propagation in glass wool,’’ J.
Acoust. Soc. Am.97~4!, 2272–2281~1995!.
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