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Summary

This report deals with the strength of cracked reinforced concrete disks de-
termined by means of the theory of plasticity.

The basic assumption is that the sliding resistance in cracks is lower than the

sliding resistance for uncracked concrete.

To treat disks suffering from cracking in many directions, the state of zsozropi-
cal cracking is introduced. This idealized state implies that in any section per-
pendicular to the plane of the disk, a crack may be found. An isotropic tailure
criterion is formulated for the idealized material. Based on this failure crite-
rion, a yield condition is developed for isotropicly cracked disks reinforced in
two ditections at right angles to each other. The case of pure shear is treated
in detail, both by the lower bound and the upper bound method. Comparison
of the obtained tesults with the plastic solutions for uncracked concrete is

carried out.

The strength of disks cracked in only one direction or in two directions at
right angles to each other has also been studied. Such disks are termed ani-
sotropicly cracked disks. '

A lower bound solution for the shear strength of disks cracked only along the
so-called initial crack direction is derived. The results show that the maximum
allowable uniaxial concrete stress may decrease, depending on the direction of
the principal concrete stresses, to half of the otiginal web crushing strength.
Comparison of the predicted maximum concrete stress with test measure-

ments shows good agreement.

Finally, for anisotropicly cracked disks subjected to arbitraty in-plane loading,
a yield condition is formulated. The yield condition is a modification of the

yield condition developed by Nielsen [69.1].



Resumé

Denne rapport behandler styrken af revnede, armerede betonskiver bestemt

ved hjalp af plasticitetsteorien.

Den grundleggende antagelse er, at modstanden mod glidningsbrud i tevner

er mindre end den er for urevnet beton.

For at behandle skiver revnet i mange retninger introduceres den sikaldte
1sotropt revnede tilstand. Denne idealiserede tilstand af revnedannelse indebaret,
at man vil stede pa en revne i ethvert tvaersnit vinkelret pd skivens plan. For
det revnede betonmateriale er det formuleret en isotrop brudbetingelse. Med
udgangspunkt i denne brudbetingelse udledes en flydebetingelse for isotropt
revnede skiver armeret i to pd hinanden vinkelrette retninger. Ved hjzlp af
nedre- og ovrevaerdimetoden gives en detailleret behandling af isotropt rev-
nede skiver udsat for ren forskydning. Resultaterne sammenlignes med los-

ninger for urevnet beton.

Styrken af skiver, der enten er revnet i én retning eller i to pd hinanden vinkel-
rette retninger, er ogsa studeret. Sddanne skiver betegnes som anisotropt revnede

skiver.

En nedrevardilesning for forskydningsstytken af skiver revnet i den sdkaldte
initiale revneretning er udledt. Resultatet viser, at den maksimalt tilladelige
enaksede betonspending kan, afhangigt af retningen for hovedspzndingerne
i betonen, aftage til halvdelen af betonens effektive trykstytke. Sammenligning
af den beregnede maksimale betonspending med forsegsresultater viser god

overensstemmelse.

Endelig formuleres en flydebetingelse for anisotropt revnede skiver udsat for
vilkirlig belastning. Flydebetingelsen er en modifikation af flydebetingelsen
udviklet af Nielsen [69.1].
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Notation

a : Shear span
b : Web width of beam
C : Cohesion of concrete
c : Cohesion in a crack
D  : Dissipation
f  : Uniaxial compressive strength of concrete
: Tensile strength of concrete
fy : Yield strength of reinforcement
: Depth of beam
: Concentrated load

h
P
Q : General stress vector
q : General strain vector

u : Relative displacement in yield line
V., : Volume of the reinforcement bars parallel to the x-axis
V. :Volume of the reinforcement bars parallel to the y-axis

W, : External work at failure

W, :Internal work at failure

W,. : Internal work done in the concrete

W, : Internal work done in the reinforcement

W, :Internal wotk per unit length of the yield line

x  : Horizontal projection of yield line in beam subjected to shear

x, :Length of loading plate/support plate
0. : Angle between yield line and displacement direction

B :Angle defining the orientation of the initial crack system



€45 € €5 1 Principal concrete strains

cl> &l

@  : Degree of reinforcement
(Dx P p\f\/fc
O =pf/f

: Shear strain

-2

: Angle of friction
v : Effectiveness factor
0 : Angle defining the direction of the principal concrete stresses
P, : Reinforcement ratio (for bars parallel to the x-axis)
P, :Reinforcement ratio (for bars parallel to the y-axis)
O}, O3, O3 : Principal stresses

0. : Concrete stress

C

C.,, O, : Principal concrete stresses

cl»

G,, O, :Normal stresses in concrete in the (n,t)- system

cn? ct

O, : Confining stress in concrete

O,,, 0. : Normal stresses in concrete in the (x,y)- system
O,, O, :Normal stresses in the (n,t)- system
O, O, : Stresses in reinforcement bars

O,, O, : Normal stresses in the (x,y)- system

T  : Shear stress

Teas Tor: Shear stress in the (n,t)- system

Tex> Ty Sheart stress in the (x,y)- system

T, : Shear strength of non shear reinforced beams (original solution)



Chapter 1

Introduction

Comprehensive rehabilitation or total replacement are awaiting an increasing

number of existing reinforced concrete structures.

The reasons for this ate that the mechanisms of chemical subversion of rein-
forced conctete have taken place much faster than expected and that many
structures are designed to sustain smaller loads than those appeating today.
Further, the structures may have been designed according to antiquated stan-
dards, which in some cases may be encumbered with erroneous design ptin-

ciples.

Rehabilitation of structures is an expensive affair, especially in view of the
fact that it is 2 solution often chosen when thete are uncertainties concerning
the actual load-carrying capacity of the structure suffering from different

kinds of damages.

Rehabilitation is often in question when a structure is observed to suffer from
cracking which was unpredictable in the design phase. It could be concrete
cracked in all directions, for example due to chemical reactions, or severe
cracking in certain directions due to overloading, creep and shrinkage, tem-

perature differences, etc. .
When examining such structutes, one always faces the problem :

“What is the strength of the cracked concrete and how does it influence the load-carrying
capacity of the structure 2.



If these questions could be replied with reasonable accuracy, then it may turn
out that rehabilitation, with respect to the load-carrying capacity, in many

cases would be unnecessaryl.

As a step toward a more rational decision basis for rehabilitation of concrete
structures, this thesis deals with the determination of the (remaining) load-
carrying capacity of cracked reinforced concrete disks subjected to in-plane
loading. The results presented here have been obtained by means of the the-
ory of plasticity.

To obtain manageable solutions/models, some drastic simplifications about
the crack patterns will be made. Thus, in this thesis we shall deal with two
states of cracking : the reinforced disks may suffer from cracking in one or
two directions, or it may suffer from cracking in all directions. The latter case
is called isotropical cracking and represents an idealized state which, as re-
vealed later, allows us to treat the cracked concrete as a completely new mate-
rial with isotropic material properties. This idealized state of cracking may be
taken as a model for concrete structures with unsystematic crack patterns or

structures suffering from cyclic loads giving rise to many crack directions.

All though cracking of concrete often increases the danger of exposing the
reinforcement material to corrosion, the present study only focus on the
strength reduction of concrete. The influence of cracking on the properties of

the reinforcement will not be touched upon.
The thesis is built up as follows:

Chapter 2 summarizes the basic concepts and assumptions of the theory of
perfectly rigid-plastic bodies. As a new contribution to the field of concrete
plasticity, a yield condition for plain and isotropicly cracked concrete in plane

stress is proposed. The corresponding dissipation formulas will be derived.

In chapter 3, the yield condition presented forms the point of departure for
the derivation of a yield condition for isotropicly cracked reinforced concrete

disks. The case of disks subjected to pure shear will be treated in details.

! Naturally, rehabilitation concerns other aspect than just a strengthening.

10



Chapter 4 deals with reinforced disks which suffer from cracking in one or
two directions. Solutions for the case of disks subjected to pure shear arc
derived and a yield condition for isotropicly reinforced disks with low rein-

forcement degrees is formulated.

Chapter 5 summarizes the results presented.

11






Chapter 2

Basic Assumptions

In this chapter we shall describe the theory and the assumptions which form

the basis of the results presented in the thesis.

2.1 Theory of plasticity

We begin with a short desctiption of some basic concepts from the theory of
perfectly rigid-plastic bodies. To study the theory and it’s applications in de-

tail, the readet is referred to [98.4], in which further references can be found.

2.1.1 Yield condition and flow rule. A perfectly rigid-plastic material is
defined as a material which is able to sustain stresses up till a certain level, the
so-called yield point, without undergoing deformations. Once the yield point
has been reached arbitrarily large deformations/yielding may take place undet

constant stresses.

The yield point is detetmined by a yield condition or a failure eriterion” which in

general takes the form

f(Q1,Q2,...,Qu)=0 2.1

where (Q,, Q,,...,Q,) = Q are the generalized stresses. Any stress combination

satisfying £(Q,, Qay-,Q,) = 0 is said to be lying on the yield surface and may

2The terms yield condition and failure critetion will be used synonymously herea  fter.

13



result in yielding. The yield surface is assumed to be a comvex and closed surface’
containing the point Q = (0,0,...,0). When /<O we have stresses which can be
sustained by the body whereas />0 represents stress combinations that can
not occur. The generalized stresses are chosen in such a way, that they to-
gether with the generalized strains q=(q;, qs,...,q,) define the virtual work W

per unit length, area or volume as follows

W = Q] ‘g +Q2 'q2+---+Qn “a (22)

The work D, necessary to produce a given strain field (q;, g,,...,q,) in the
body, thus becomes

D= (Qq +Q:q:+.4Quq.)dV = [WdV (2.3)

where the notation dV may represent a length-, area- or volume element. D is
called the dissipation and (2.3) is interpreted as the total energy absorbed by the

body during deformation.

The stress field corresponding to a given strain field is determined by the

associated flow rule, which states
qi =A=x~ i=12,.,n 2.4

where A is an indeterminate non negative factor. The associated flow rule
(2.4) may be taken as a basic assumption or as a result of assuming the von
Mises’ hypothesis on maximum work, which states that for a given strain field the
stresses will assume such values that the work W becomes as large as possible,
see e.g. [98.4]. Depicting in the same coordinate system as the yield surface,
the generalized strain vector will become an outward normal to the yield sur-

face. Hence, the associated flow rule is also called the nomzality condition.

Along planes or at apexes on the yield surface, thete is no unique telation

between (Q,, Q,,...,Q,) and (q;, qy,...,q,). Any stress combination on a plane is

3 Not all yield conditions used in concrete mechanics are closed. For instance the Coulomb
yield condition is open in the negative principal stress space. Then modificatons to the

general theory must be considered.

14



capable of producing the strain vector normal to the plane. The strain vector
at an apex can, as stated in [84.1], be assumed “to lie arbitrarily in the angle
determined by the limit positions of q when the point (apex) is approached in

all possible ways”.

Figure 2.1 illustrates for a two dimensional case the consequences of the as-

sumed normality condition.

A Q, 2Q.
q \.;&
e
Qi q !
- - >

Figure 2.1 Yield surfaces and normality condition.

2.1.2 Principles of extremum. By means of the convexity condition of the
yield surface and the normality condition, a set of extremum principles, useful
for the determination of the load-carrying capacity of structures, may be for-

mulated:

e L.ower bound theorem

A load for which a safe and statically admissible stress field can be found

will be less or equal to the collapse load of the structure.

The stress field is safe when it corresponds to stresses within ot on the
yield surface, i.e. f(Q)< 0. The stress field is statically admissible if it satis-

fies the equilibrium conditions and the statical boundaty conditions.

¢ Upper bound theotem

A load found by the work equation for a geometrically admissible failure

mechanism will be higher ot equal to the collapse load of the structure.

15



¢ Uniqueness theorem

An exact solution has been found if the highest lower bound solution

equals the lowest upper bound solution.

2.1.3 Combined yield condition. For a composite matetial consisting of
two rigid-plastic materials which obey the normality condition and have con-
vex yleld surfaces, the resulting yield surface for the composite material may

be shown to possess these properties as well, see e.g. Brastrup [70.1].

The resulting yield surface can in principle be found as the envelope surface
when the origin of one yield surface is translated without rotation on the
other yield surface, see e.g. Miller [78.2]. This is visualized in figure 2.2 for a
two dimensional case, where £(Q_4,Q.) is the yield condition of the com-
posite material and £(Q.,Q.) and £f(Q,,Q,,) ate the yield conditions of the
two basic materials. This principle is useful in that sense, that it, from the
appearances of the separate yield surfaces, gives an idea of how the resulting
yield surface will appear. The principle is, however, mathematically speaking
not easy to handle. More simple is an ad hoc method of constructing the
resulting yield surface by considering different states of safe stress fields and
afterward using the normality condition to show that geometrically possible

strain fields exist for each particular stress field.

16



“Qc2 AQSE

/ f(ch;QcZ) — O f(Qsl,Qsz) - O

/ f(Qet,Qea) = 0

"""""""""""""""

_______________________________

Figure 2.2 The yield surface of the composite material f(Q,,0.,)=0 appears as the
surface of envelgpe when the origin of f10,,0,)=0 is translated without rotation on

f CQWDQUZ) =0.

2.2 Yield conditions for conctete and reinforc e-
ment
To develop theories for structural elements of reinforced concrete within the

framework of the theory of tigid-plastic bodies, we must consider/assume

concrete and the reinforcement material as being rigid-plastic matetials.



2.2.1 Uncracked concrete?. As yield condition for uncracked concrete,
we will adopt the wmodified Conlomb failure criterion which consists of a sliding

criterion and a separation criterion.

Sliding failure may take place when the shear stress T reaches the sliding re-

sistance given as
‘T'=c—0Ctan@ (2.5)

where ¢ is the internal cohesion, @ is the angle of friction and © is the normal
stress, positive as tensile stress, in the section considered. Expressing the

sliding criterion by means of the principle stresses, (2.5) turns into
10,(1+sin@)—Lo:(1-sing)—ccos@ =0 (2.6)

Here o0, and ©; are the major and the minor principal stress, respectively.
Notice that the intermediate principle stress does not influence the failure
criterion. From (2.6) it may be shown that the cohesion ¢is determined by the

following equation

_ 2c-cosQ 5
" I-sin@ >7)

where f_is the uniaxial compressive strength of concrete.

Experiments have shown, see [84.1], that the angle of friction may be taken as

¢ = 37°, which means
tan@ = 0.75 (2.8)

By inserting this value in (2.7), the cohesion thus becomes

c=7f. 2.9)

+In the context of this thesis wwcracked concrete means concrete without visible macrocracks.
Microcracks are almost unavoidable and are in many cases formed even before loading,
[97.1]. These cracks will not be the subject of study here and we shall therefore consider

concrete with microcracks as being “uncracked”.

18



Separation failure takes place when the normal stress in a section reaches the

uniaxial tensile strength f,, i.e.
c=f (2.10)

Usually the tensile strength is assumed to be f, = 0. This would designate the

failure ctiterion as being modified with a zero tension cut-off.

The described modified Coulomb failure criterion has been applied success-

fully to a number of problems in concrete mechanics, see [78.1] and [98.4].

2.2.2 Cracked concrete. In almost any structural element the conctete is
cracked. If sliding failure takes place along a crack (macrocrack) we would
expect that a certain amount of sliding resistance must be overcome due to
the roughness of the crack (the so-called aggregate-interlock effect). Hence, it
seems reasonable to adopt a modified Coulomb failure critetion with zero

tension cut-off as a yield condition along cracks :
T =c'-ctan@' 2.11)

Here ¢’ and @’ are the cohesion and the angle of friction of the crack, respec-
tively. By means of a micromechanical model, J.P. Zhang [97.1] has proposed
the following relation :

t

c'=xc¢C (2.12)

1
2
It was further, on the basis of experiments, assumed that

¢ =0 (2.13)

which proved to yield quite good agreement with results of Push-Off tests on
pre-cracked specimens, see [97.1]. The maximum crack width and the maxi-
mum concrete strength in the tests were about 0.7 mm and 45 MPa, respec-
tively. The criteria (2.12) - (2.13) have also been successfully applied to plastic
analysis of non-shear reinforced beams and slabs, see [94.2] and [97.4]. Appli-

cation of the criteria to lightly shear reinforced beams is explored in [98.5].

2.2.3 Reinforcement. Regarding the reinforcement bars, we will assume

that only longitudinal tensile and compressive stresses can be carried.

19



The corresponding rigid-plastic stress-strain relationship is shown in

figure 2.3 where f; as usual denotes the yield stress.

9

—t,

Figure 2.3 Assumed stress-strain relationship for the reinforcement.

2.3 Yield condition for isotropicly cracked co n-

crete in plane stress

Consider now a plain concrete element, the thickness of which is assumed to
be much smaller than it’s height and width. The element is placed in a state of
plane stress as visualized in figure 2.4 where the applied principal stresses are
assumed to be ranged as 0 2 6,2 O,,. In term of geometry and loading type,

we are dealing with a concrete disk.

The element is assumed to be suffering from cracking in a countless number
of planes, which all are perpendicular to the plane of the disk. This idealized
state of cracking may be called isotropical cracking and implies that in any sec-
tions perpendicular to the plane of the disk, we may find a crack surface.
Thus, crack slkiding failure may take place if the shear stress T in any atbitrary
sections perpendicular to plane of the disk satisfies, see (2. 9) and (2.12)-
(2.13),

.rjz—é-fc —-0.750 (2.14)

20



where o as before is the normal stress, positive as tension, in the section con-
sidered.

lge!

OBROBOOBEOOREROO OO,

o © © @ @ g

IGcll

Figure 2.4 [sotropicly cracked concrete element placed in plane stress field.

Besides the criterion (2.14), sliding failute may also take place when (2.5) is

satisfied in any arbitrary sections, i.e.

T =%fc -0.750 (2.15)

Here the failure takes place as an out of plane failure through uncracked con-
crete, see figure 2.5.

21



out of plane

failure
crack
| GCZ 1
Figure 2.5 S/iding failure throngh uncracked concrete.
Lastly, a separation failure requires
c=0 (2.16)

The graphical representations of the conditions (2.14) - (2.16) are shown in
figure 2.6 where the Moht’s circles for the stress fields (0, 6., 6.,) which may
cause failure also have been drawn. Notice that when examining the crack
sliding critetion (2.14), the Moht’s circle to be drawn is the one correspond-
ing to the diameter |G~ O, | as the criterion only applies to sections per-
pendicular to the plane of the disk.

By some geometrical considerations of the Moht’s circles shown in figure 2.6,
the criteria (2.14) - (2.16) may be transformed into principal stresses as fol-

lows

f, 2.17)

b —

46— 0 =

22



—Go =1, (2.18)

Gu=0 (2.19)

3 tangp =0.75
1 tang =0.75 T

<t

—
>

1&25ﬂ> T0.125¢,

.
L

a) Failure criterion b) Failure criterion
for uncracked concrete for cracks

Figure 2.6 Modified Conlomb failure criteria for isotropicly cracked concrete with Mohr’s

circles representing stress fields that cause skding faslure.

The ctiteria (2.17) - (2.19) are depicted in figure 2.7. By reflection in the line
6., =0,,, the case 0, 2 04 will be covered as well. The closed area in figure
2.7 thus represents the yield condition for isotropicly cracked concrete in
plane stress. The corresponding strain vectors obeying the normality condi-

tion are also shown.

23



GCZ’ Ec2
A

> Gcl, Ect

AN
2,0
03 ) ey
B
5" (-gfefe) — @

FT 00—} ¢

Figure 2.7 Yield condition and flow rule in the principal stress system for isotropicly

cracked concrete in plane stress.

It should be noticed that there are also strains (€.) perpendicular to the stress
plane. These strains are, however, with respect to the internal work not inter-
esting. In fact, we may even consider them being non-existing as we are
dealing with a two-dimensional theory which, according to [84.1], may be
considered as being “self-contained with it’s individual two-dimensional yield

condition and so on”.

By establishing this yield condition, we are now able to treat the cracked con-
crete material as an isotropic material. This will be done in the next chapter. It
appears from the above that we do not need to distinguish between cracked
and uncracked sections when we investigate the strength of reinforced and

isotropicly cracked concrete in plane stress.

24



It can be seen from the yield condition that the uniaxial compressive strength
of an isotropicly cracked concrete is drastically reduced to 0.5f. To reach a
comptession stress equal to f, the concrete must be in biaxial compression

with a confining stress of the at least 0.125f.

Lastly, we mention that when the yield condition is transformed back into 2

(0,7)-system, it will appear as shown in figure 2.8.

Figure 2.8 Yield condition and flow rule in (0,7)-system for isotropicly cracked concrete in
plane stress.

2.4 Dissipation formulas for isotropicly cracked
concrete in plane stress
As well-known to users of plastic theories, the concept of yield lines is of

great practical importance when examining upper bounds to the load-carrying
capacity of a structute, see e.g. [98.4]. What is needed in this context, besides

5 A uniaxial compressive strength of this order has in fact been proposed in different refe -
ences for concrete members designed by strut-and-tie models, where the strut is crossing
skew cracks. The different propo sals have been summarized in [91.3].

25



of finding geometrically admissible failure mechanisms, are the formulas for

the dissipation in yield lines.

By following the concepts introduced in [75.1]&[76.1], we will now derive the
dissipation formulas for yield lines in isotropicly cracked concrete in plane

stress.

Figure 2.9 shows a narrow zone with the width 6 (the yield line) separating
two rigid parts I and 1I. The narrow zone is placed in a homogeneous strain
field, which results in a displacement # of part I relative to part II. When the
angle between the yield line and the direction of displacement is o the princi-

pal strains may be found to be

‘Z“}: 55 (sina 1) (2.20)

It appears that we always have €, 2 0 and €, < 0.

C(l >

Figure 2.9 Plastic deformations in a yield line.

From (2.20) we may write the dissipation W, per unit length of the yield line

as, see also (2.2),

VV, = S(Gclgcl + GCZSCZ)
@.21)

= %(001 (sinot+1)+Gesinot—1))u

26



where the thickness normal to the stress plane is assumed to be unity.

Now, due to the normality condition, we find from the yield condition in

figure 2.7 and from (2.20) that the angle o must satisfy the following require-

ments:

o =90° for stresses along A-B
¢ <o <90° at B

o=0Q for stresses along B-C
-90°< o <o at C

At point B, whete o is allowed to vary, we have (0.,,00) = (0,-1/2f) which
inserted into (2.21) gives

W, =%(~%f0(sina—l)ju =

1
Wi = f.(1-sina)-u , for @ <o <90° (2.22)

At point C we have (6,,,0.,) =(-0,125f, -f)). Thus:

I 1
W, =5(——gfc(sin(x+1)—fc(sinoc—1))u =

_ 1

Wi 16

f.(7-9sino)-u , for —90° <0< (2.23)
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Chapter 3
Isotropicly Cracked Disks

3.1 Introductory remarks

The natural step that follows the introduction of a yield condition for plain
and isotropicly cracked concrete in plane stress is to derive the cotresponding
yield condition for reinforced disks, which are ctacked as assumed. Such a
yield condition allows us to make compatison with the original yield condi-
tion based on uncracked concrete and thus enable us to determine the

strength reduction due to cracking.

The original yield condition for reinforced concrete disks was given in 1963
by Nielsen, see [63.1], [69.1] and [98.4]. It was derived by use of the concept
of admissible stress fields under the assumption that the uniaxial as well as the

biaxial compressive strength of concrete is £, and the tensile strength is zero.

A special case of the original yield condition has been obtained by Muller
[78.2] who neglected the compressive strength of the reinforcement material
and derived the yield condition by determining the surface of envelope as

described in chapter 2.

Yield conditions taking into account the tensile strength of concrete have
been developed by Thiitlimann and Mart [77.1], see also Marti [80.1].

In principle, yield conditions for disks with arbitrary reinforcement layout

may be developed. In the present study however, we will restrict ourselves
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only to examine disks reinforced in two directions at right angle to each other,
i.e. disks with orthogonal reinforcement. As shown in figure 3.1, the direc-
tions of the reinforcement are taken to be coinciding with the coordinate
system (x,y). The state of stress in the concrete material may either be de-

scribed by principal stresses (6,4, O,) ot according to the (x,y) system by

cl»

(chﬁccy’ﬂccxy ‘

The stresses in the reinforcement bars are termed ¢, and G. Assuming the
reinforcement to be closely spaced, the actions in the reinforcement bars may

be transformed into equivalent stresses p.o,, and p.G

p, and p, being the

S

reinforcement ratios.

The total stresses, which are carried by the reinforced disk are thus, see figure
3.1,

Gx - ch + pxosx
0, =0, +pP,0y (3.1)
Txy = Tcxy

Ox

y S S

Txy

A
b

Figure 3.1 Disk reinforced in orthogonal directions.

3.2 Concrete and reinforcement
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Before proceeding on to the task of determining which stress combinations
(6,,0,,T,,) an isotropicly cracked reinforced disk is able to carry, the yield con-
ditions for the concrete and the reinforcement matetial will first be trans-

formed into stresses referred to the rectangular (x,y)-system.

3.2.1 Yield condition for concrete. The yicld condition for plain and
isotropicly cracked concrete, as it appears in the principal stress plane in fig-
ure 2.7, may be transformed into the (0,0 Tey)-SPace accotding to the

transformation formulas :

el } = li(cscx +0, )% \/(cscx - cscy)2 +412, :l (3.2)

The angle 0 between the directions of 6, and G, is given by, see figure 3.2,

2Tery

3.3
Cu — ch ( >

tan 20 =

X

Figure 3.2 Transformation of principal stresses into #he (Cey, Oy Toyy) -Space.

In the positive half space of 1., the angle 8 will lie within the interval [0; TT/2]

and may be found by
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1 Arc tan(——%:cf’l—j for 0 — 0y >0
2 ch - ch
T
0 = < N ,dfor 0 =0y =0 (3.4)
J%Mcm%(~gﬁﬁ~)+n},brdw—aw<0
2 ch - ch

When the principal concrete stresses, expressed by means of (3.2), are sub-
jected to the constraint of lying within the area circumscribed by the lines AB,
BC, CD and DA in figure 2.7, we will arrive at the following conditions in the
(CsOpsTeyy)-SPACE

@D: Ty — 004 <0 (3.5)

@: 5 —(fe + 0 )(fe + 04 ) <0 (3.6)
1

®: iy = ol +200) =80 ]| (. + 20, ) 80, ]<0 (3.7)

Figure 3.3a shows the regions @, @ and ® in which each of the conditions
(3.5) - (3.7) applies. The different regions are bounded as follows:

<0, 0,50
@;{ 3.8
0m+0w2—lﬂ G5
. 2
On2-f. , 0421,
@ : < (3.9)
0m+cws—2ﬁ
8
1
szam—iﬁ
1
€) <Gw246u—§ﬂ (3.10)
9 1
-~ f. < L <=1
8ﬁ_cm+cq_ 2ﬁ
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v
\ 4

Ocx Q¢

- (:0.1£,0.44

(-0.3£.,-0.825f)

(:0.125f,,-£)

| Tcxy

Ocy

Ocx

5

1
1

lFigure 3.3 a) and b): yield condition for isotropicly cracked concrete in the (0,,0,) Pplane.
¢): yield surface for isotropicly cracked concrete in the (0,0, T )-space.

If the inequality signs are replaced by equality signs, (3.5) - (3.7) will represent
the yield surface, see figure 3.3c. The yield surface is composed of three cones,
all with axis lying on the line 6., = o, in the (O, O)-planc. The cutves of

intersection between the cones and planes with 6, + 0., = const. are ellipses

with the principal axes ratio J2 /1.
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In order to anticipate the coming events we will as shown in figure 3.3b sub-
divide the region @ into three parts, namely @a, ®b and @c. The boundaties

of these regions ate :

®b :

®c:

O = —1~1-6-(340Cy —3f.)
Oy 2 %(34% -3f.)
—%ﬁ30w+cws—%ﬁ
G 2 +§11(16<5cy +3f. )
30, 240, —%fc
—%fe < O + Oy S——%fc
r0 240 —lf
o 2400 =5 1o
(G z+§(160w +3f.)
—gﬁ30m+cqs—%ﬂ

(3.11)

(3.12)

(3.13)

3.2.2 Yield condition for the reinforcement. The yield condition for the

reinforcement material is, according to our assumptions in section 2.2.3, ob-

vious. In terms of equivalent reinforcement stresses (.0, p.O,) We have:

- (Dxfc S prsx S (Dxfc
- (I)yfc SPyOy < (Dyfc

where @_and @_ are the degrees of reinforcement defined as
D, =

D, =

f,
p X f;

f
py—f—f
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The rectangular plane described by the condition (3.14) is illustrated in figure
3.4. Notice that in the case of skew reinforcement ot in the case of orthogo-
nal reinforcement orientated at an angle with the x- and y-direction, there will

also be an equivalent teinforcement sheat stress Ty,

o
> PsOisx
Ny

bl —»l
< B

@Xft‘ q).\‘fc

p.V Osy

A

A
A

Figure 3.4 Yield condition for orthogonal reinforcement.

3.3 Yield condition for isotropicly reinforced disks

We shall begin with the detivation of the yield condition for an isotropicly
reinforced disks, i.e. p, = p, = p and @, = @, = . The corresponding yield

condition for the reinforcement material is shown in figure 3.5.

According to the statements in section 2.1.3, any of the following linear com-

binations
O, =0, + PO (3.16)
G, =G, + PO, (3.17)
Ty = Teny (3.18)
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Df.

> PO'sx
Ofe

e
of. | Of

Figure 3.5 Yield condition for orthogonal, isotropic reinforcement.

will represent a safe stress field if the yield conditions (3.5) - (3.7) and (3.14)
are not violated. Our task is now to determine the maximum shear stress T,

that can be carried when an admissible set of (0, 0,) is given.

Thus, before proceeding further, all the admissible sets of (0, 0,) must be
determined, which naturally cotresponds to determining the appearance of
the yield condition in the (6, 6,) - plane. The admissible sets of (0,, 0,) ate,
according to the discussion in section 2.1.3, circumsctibed by the envelope
obtained when the origin of the yield condition shown in figure 3.3a is trans-
lated along the boundaty of the yield condition for the reinforcement. The

result is shown in figure 3.6.

b 5.1k

_— Iq)

> os/fc

Yy
4
K

4

7/8 o ¢ 18

Figute 3.6 Appearance of the yield condition in the (O,,0,)-plane, isotropic reinforcement.
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Now, knowing the admissible sets of (o, 0,), we rewrite (3.10) and (3.17) as

follows:
O =0, — POy (3.19)
Oy =0, — POy (3.20)

By inserting the right-hand side of (3.19) and (3.20) into (3.5) - (3.7) we arrive

at the following conditions

1%, — (0, = POy )(Gy POy )< 0 (3.21)

©, = (f. + (0, = po..))(f. + (0, —poy, )) <0 (3.22)

1
"E,z(y — m[(ﬁ + Z(GX — PO« )) - S(Gy — POy )] '

(3.23)
[(fc +2(c, —po,,))-8(c. —po. )] <0

which, geometrically speaking, simply correspond to a pure translation of the

cones @, @ and @), see figure 3.3a, with the translation vector (0, PO,).

Now, we begin to construct the yield condition by considering the reinforce-
ment stresses (PO, PO,,) = (@f, ®f) and (po,,, PO,) = (-®f,, —-Pf), i.e. ten-
sile yielding and comptession yielding in both reinforcement directions. Ac-
cording to Nielsen [63.1], tensile yielding in both reinforcement directions
should, in order to obtain as large Ty 28 possible, be combined with concrete
stresses corresponding to uniaxial compression, whereas compression yield-
ing in both reinforcement directions should go along with a biaxial compres-
sion stress field with 6, equals to —f_ . Thus, (po,, po,) = (@f., Pf) is in-
serted into (3.21) and (po, po,) = (-@f, —®f) into (3.22), which results in a
shift of the cones @ and @ as shown in figure 3.7.
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\ \ Conical surface

D
1/2
’ny/fc
'S
2
+
1/2

/

Conical surface Cylindrical surface/

le ble N
V‘l

Lah

7/8 2¢ 1/8

A 4

Figure 3.7 Construction of the yield condition, isotropic reinforcement.

Proceeding further, the yield condition in the areas FKL.G, FDHI and FIJK, as
defined in figure 3.7, may also be generated by use of the ideas in [63.1].

Standing at any point on FG, we may keep the shear stress unchanged when
moving parallel to the o -axis into the area FKLG, if we reduce |0, | while
simultaneously keeping 6, and the concrete stresses unchanged. Thus, by
changing o, from -f_to f, a cylindrical yield surface is generated for the area
FKLG, the direction of géneratrix being FK parallel to GL. In the same way a
cylindrical yield surface for the area FDHI can be obtained when only o
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changes from -f, to f,. Here the direction of generatrix is Il parallel to DH.
Lastly, standing at the point F, we may move into the area FIJK by keeping
the concrete stresses unchanged while numerically reducing both 6, and G,
The yield surface in this area is thus a plane parallel to the (0,, 0,)-plane.
Within this area none of the reinforcements ate yielding. The concrete
stresses will correspond to those at point I ; namely 6, = -f, Oy = -0.125f,
and 0 = 45°, Thus, we arc in this area able to carry the shear stress 1. |=
0.5|0,-0,| = 7/16f..

The remaining parts of the yield condition are slightly more complicated to

construct.

Let us consider an arbitrary point N on the line BC. Along this line, we know
that the concrete is in uniaxial compression with 6, = ~0.5f_ under varying
angles 0 and the reinforcement is stressed to tensile yielding in both direc-
tions. From point N we have the following two options of moving downward

parallel to the o, - axis.

1) We may keep the concrete stresses unchanged and simultaneously reduce

6]

sy*

2) We may keep the reinforcement stresses unchanged and instead change the

state of stresses in the concrete from uniaxial to biaxial compression.

In both cases the stress component O, stays unchanged as we are moving

parallel to the O, - axis.

Which option to choose must depend upon the magnitude of 7, that can be
carried. Looking at the yield condition for concrete in the (0,7)-system, see
figure 3.8a, it is clear that if N corresponds to a point where 6, 2-0.1{, then
concrete undet uniaxial compression with 6, =-0.5f_ will yield the maximum
possible ... On the other hand, if N corresponds to a point with 6, < -0.1f,

then T,, may be increased when we move downward according to option 2).
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t B O'/fc

Figure 3.8 Yield condition for isotropicly cracked concrete in the (0,7)-system, see also
Jfigure 2.8.
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The considerations above lead us to the result that from point C, see figure
3.7, to the point N corresponding to (0, , 6,) = (-0.1+®,-0.4+D)f, S, we
should move downward according to option 1). Thus, in the area NCRQ we

have a cylindrical yield surface, the ditection of generatrix being CR parallel to

NO.

Similarly, we may obtain a cylindtical yield surface in the area MAOP with MP
as the direction of generatrix. Here point M corresponds to (0,, 0,) = (-
0.4+®, -0.1+®)f, and 6, is changed from f  to -f.

Now, in order to generate the remaining part of the yield condition, we know
that concrete stresses corresponding to the cone @), see figure 3.3, must
somehow be mobilized. The yield condition will therefore be described by

(3.23) whete (po,,, po,,) will vary depending on the point in question.

We pose the question : In the remaining area, where shall we put (PO, PO,)
= (®f,, ®f) ? Let us again look at point N with (o, 6) = (-0.1,-0.4)f and 6
= 45° - /2, see figure 3.8b. Maintaining the reinforcement stresses O, = Oy,
= £, we may increase T, in the most optimal way by moving along the yield
env'elope. This is illustrated in figure 3.8b by the path N-I-J. From N to 1/
the angle 8 is kept constant equal to 45° - ¢/2. From 1 to J 6 is increased to
the value 45°. Along the path N-T7-], we have the stresses 6, = 40 - 0.5f,
and -0.125f < 6,< 0.

cl—

The projection of the path N-I-] on the (6,,6,)-plane is shown in figure 3.7.
By symmetry considerations, the path M-U-J as shown in figure 3.7 may also
be found.

Thus, what we have obtained is the area NIVUM within which the yield con-
dition is described by (3.23) with (po,, po,) = (®f, ®f). Geometrically
speaking, the yield condition in this area corfesponds to the conical surface
®a, which we have defined in figure 3.3b. Naturally ®a is shifted by ®f_ in
the 6,~ and o, direction, see figute 3.9.

6 The point N may alternatively be found as follows: (G, Oy) = (P, PL) is inserted into (3.23) and 0T/ 00,
is determined. Hereafter 6, = -0, - 0,5fc + 2®f is inserted and the equation 0Ty/do, = 0 is solved with

respect to Ox.
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It is now easy to see where in the yield condition the remainder parts of the
cone @, namely ®b and ®@c should be utilized. As shown in figure 3.9, part
@b is shifted to fit with the border QRI. and part @c is shifted to fit with the
border POH. Thus, the yield condition in the areas ORI.T and POHS is de-
sctibed by (3.23) with (po,,, po,) = (®f,-®f) and (po, po,) = (-@f, Of)

respectively.

8X2

At any points along N-1"-] we can now move downward by changing . from
f. to -f, and thus obtaining the cylindrical surfaces NOT1” and JI”TK. Simi-
latly, we can from M-U-] move toward P-§-I by changing o, from £ to -f..

The complete yield condition has now been established. We make the fol-

lowing rematks:

In the regions where the yield condition is described by a conical surface, the
teinforcement is yielding in both directions. In the regions whete the yield
condition is described by a cylindrical surface the reinforcement is not yield-
ing in one or both direction (the last mentioned case applies to the region
FIJK). For any given set of stresses (0,,0,,T,) it is possible to determine the
reinforcement stresses. The formulas (3.19) and (3.20) together with (3.2) and

(3.4) can therefore be used to determine the stresses in the concrete.

The analytical expressions for the yield condition and the boundaties of the
different regions are given in the following. The legends refer to those used in

figure 3.9.
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Figure 3.9 Construction of the yield condition, isotropic reinforcement.

Yield condition:

@: 13, —(Pf. — 6, )(Pf. —0,)=0 (3.24)

@: 1, -[(1+ ®)f. +0.][(1+ D)t +0,]=0 (3.25)
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®a: 15, - i[(1 +6@)f. +20, - 80, |[(1+ 6@)f. +20, -80,]=0 (3.26)

100
®@b: 12, _”1‘(1)‘6[(1 ~10®@)f. +20, -8, |[(1+10®)f. +20, -85, |=0 (3.27)
@c: T, —-1616[(1 +10®)f. + 20, -85, |[(1-10®)f. +20, —80, |=0(3.28)
@a: Ty +[(1+ D). + 0, |[(1/8+ D). +0,]=0 (3.29)
@b : T, +[(1+ P +0.][(1/8+ D). +0.]=0 (3.30)
®a: Ty +[(@—-1/8)f. — 0, |[(P-1)f. —6,]=0 (3.31)
®b: T, +[(®-1/8)f. — o, |[(P-1)f. —0,]=0 (3.32)
®a: T, _Zf(lT(“)[(S/ 2+15®)f. ~150.,] =0 (3.33)
®b: 1, —1%6[(5/2+15<1>)fc ~150,] =0 (3.34)
@a: 15, —[®f. —0,][(1/2- ®)f. +0,]=0 (3.35)
@b : T, —[®f. —0,][(1/2—- D). +0,]=0 (3.36)
®: 15 —(-1-7—6—-]2 =0 (3.37)

Boundaries of the different regions:

| (3.38)

o, <Pf. |, o, <Pf,
OF
O+0, qu)fc —Efc

| {cx >—(1+P)f. , o,2—(1+®)f. 539

o, +0, <—(9/8+2D)f.
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@b :

@c:

@b :

®b :

N

_16[340 —(18<I>+3)f]

2 [34csx (18 + 3)f. ]

(2(13—9/8)1% <o, +0,<(20-1/2)f

o, _34[160y+(50d)+3)f]

o, > 40, — (5O +1/2)f.
_9/8f. <o, +0,<—1/2f,

A\

6, 246, — (5P +1/2)f,

1
23 —[166, +(50® +3)f. ]

—9/8f <0o,+0,s-1/2f

(9/8+2®). <0, +0,<-9/8f.

{ (1+ D). <0, <—(9/16+ D).

{ 1+ ®). <0, <—(9/16+ D).

9/8+2®)f. <0, +0, <-9/8f.

((I) 9/16)f. <0, <(®-3/10)f.
9/8f. <0, +0,<(20-9/8)f.

{cp 9/16)f. <o, <(®-3/10)f.

y

9/8f. <0, +0, <20 -9/8)f.

1—16[34ox ~(3+18D)f. |

o, 21—16[340 ~(3+500)f. |

(®-3/10)f. <o, <(P-1/10)f.
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(3.41)
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(3.43)

(3.44)

(3.45)

(3.46)
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1
0. < 7]
®b: {0, %[340)
3/1

(@~

340, — (3+ 18D, |
(

3+50D)f. | (3.48)
0)f. <o, <(®—1/10)f,

{(@—1/1o)fc <o, <Of.
@a :

(3.49)
~-1/2f. €6, +0,< (20 -1/ 2)f.
(®-1/10)f. < o, < Of,
@b : (3.50)
—1/2f. <0, +0, < (2P -1/2)f.
—(®+9/16)f. <0, < (DP—9/16)f,
®: (3.51)
—(@+9/16)f. <o, <(P-9/16)f.

The plastic strains (or actually strain rates) may, according to the normality
condition, be derived from (3.24) - (3.37). When doing so, it can be shown
that the yield condition is exact in all regions as the strains correspond to the
stresses at all points.

Let us as an example examine the plastic strains cotresponding to the yield
condition ®a. From (2.4) and (3.33) we find :

I a3

£, "kacx —X4O[(5/2+15®)fc ~150, |
2 Y
; 3.52
ey = acy =0 (3.52)
J 4

= ZEx =\ X

YY Y aTxy

It can be seen immediately that the strain €. = 0 is in agreement with the fact
that we within this region have —f < o< f. Further, for any value of o, in
this region we have €, > 0 corresponding to tensile yielding in the “x- rein-
forcement”. Inserting (3.52) into the transformation formulas
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z‘}zé(ex +£y)iv/%(sx —e,) +el, (3.53)

we find the principal strains to be
—&
o X
1} =13 (3.54)

which gives the ratio €,/e, = —4. We notice that this value cotresponds to the
only possible ratio within tegion ®a, since it may be shown that the principal

conctete stresses here vary along the line BC in figure 2.7.

The direction between the first principal strain and the g -direction is found
by

an20= 2% (3.55)

8)( y

which leads to
|
0 =45 —E(P (3.506)

We notice, that this direction may be shown to coincide with that of the prin-

cipal concrete stresses.

The yield surface and it’s contour lines are shown in figure 3.10 and 3.11 for
the case @ = 0.2.

In figure 3.12, the curves of intersection between the yield surface with @ =
0.2 and the planes 6, + o, = -0.5f_and o, + o, = -0.725{, are shown. To as-
sess the strength reduction due to isotropicai cracking, the corresponding
curves for the yield condition of Nielsen [63.1] are also shown in the same

figure.
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Figure 3.10 Appearance of the yield surface for an isotropicly cracked disk with @
=0,20.
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Figure 3.11 Shear stress contour lines for an isotropicly cracked disk with @ = 0.20.
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Figure 3.12 Curves of intersection between the yield surface with @ = 0.2 and the planes
0.+ 0, =-0.5f and 6+ 0, = - 0.725].
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3.4 Yield condition for orthotropicly reinforced

disks
0'5’/ e
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Figure 3.1 Yield condition for orthotropicly reinforced disks (here @ =2 @,).
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A disk is called orthotropicly reinforced when the reinforcement degree @
differs from ®. The yield condition for such disks may be derived in the
same way as shown in the previous section. For example, concrete stresses
belonging to the cones @ and @ shown in figure 3.3 are combined with the

reinforcement stresses (@.f, @ .f) and (—@f

XTC

—O f), respectively. Further,
the cone @ is also subdivided into three parts as shown in figure 3.3. Con-
crete stresses described by the part ®@a are combined with the reinforcement
stresses (@, f ~P.f) and

O f

XTC

® f) whereas parts @b and ®@c go along with (®@.f,

XTC

@ f), respectively.

The yield condition, as it appears for the case @ = 2@, is shown in figute
3.13. To identify the different regions we use the same legends as those used

in previous section.

The analytical expressions for the yield condition and the boundaries of the

different regions are given below.

Yield condition:

@: 15, —(Df. — 0, )(P,f. —05,)=0 (3.57)
@: 1, —[(1+ @) + 0. |[(1+ @, )f. +0,]=0 (3.58)
1
2_____* — — .
- i00l(1= 2@, +6®, )f. +20. - 80, | 559
[(1-20, +6®,)f. + 20, -80,]=0
I
2
o B ~1oo1(1- 2@, 8@, )f. + 20, - 80, | 5.60)
[(1+2®, +8®, )f. +26, -85, ]=0
1
2—--ﬁ—--—~ — i
5. ™ 100[(1+2q>x+8c1>y)fc+2<5x 86, | 561
[(1-20, -8®, )f. + 20, —80,]=0
@a: T, +[(1+ D). +0,][(1/8+ D)) +0,]=0 (3.62)
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@b : 1, +[(1+ @) +0.[(1/8+ @, )f +0.]=0 (3.63)

®a: T}, +[(®, —1/8)f. — 0, |[(®. ~ ). ~0.]=0 (3.64)
®b: 15, +[(@, ~1/8)f. -5, ][(®, ~1)f. ~ 0, ]=0 (3.65)
1 2
®a: 14, — 355 [(5/2+15@.)f ~150, ] =0 (3.66)
1 2
@b : ’ciy—400[(5/2+15(1) )f.—150,] =0 (3.67)
@a: T ~[@.f. -0, |[(1/2- D) +0.]=0 (3.68)
@b : 1%, —[@,f. —0,][(1/2-D,)f. +0,]=0 (3.69)
7 2
®: rxy—(-lg) =0 (3.70)
Boundaries of different regions:
o, <P M. , 6,<Df,
: (3.71)
O, +0, 2 (D + D, —1/2)f.
o, 2~(1+®,)f. , 0,2—(1+D,)f.
@ (3.72)
G, +0, <—(9/8+ @, + D, )f.
o, %[340 ~ (34®, —16®, +3)f. |
|
®a: 10,2 6[340 ~(34®, - 16, +3)f. | (3.73)

(q>x+c1)y—9/8)fcScsxmys(cpxm)y—l/z)fc
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@b :

®c:

@b :

®a:

®b :

®b :

A

N

A

<

{ (1+ @ )f. <0, <—(9/16+ D )f.

5> 1
~ 34
46, - (40, + @, +1/2)f.

o, 240
(®, —®,-9/8)f. <0, +0, <(P, - D, —1/2)f.

G 2 +-[160, +(16®, +34®, +3)f. ]

O, 240, — (D, +4D, +1/2)f.

I
0, 2 3 [160, + (160, + 34D, +3)f. |

(@, - P, -9/8)f. <0, +0, < (D, - D, —1/2)f.

—(1+ @, f<(5 <—(9/16+®,)f.

~(9/8+®, + @ )f\ <G, +0, < (0, - @, -9/8)f.

9/8+ D, + D )f <6, +0, <(D,—D, —9/8)f.

—9/16)f <o, <(®, -3/10)f,
~®,-9/8)f. <o, +0, <(D, +D, —9/8)f.

@, -9/16)f. <o, < (@, —3/10)f.
cb ~-®, -9/8)f. <0, +0, (D, +D, - 9/8)f.

1
0, <1 [340. - (3+340, 160, )f. ]
!
16

(@, —3/10)f. <0, < (@, —1/10)f.

G, 2 -[340, —(3+34D, +16®, )f. |

<L
16
1
0. 2 [340, ~ (3+340, +160, )]

(@, -3/10)f. <5, < (D, —1/10)f.

o, <--[340, —(3+34D, - 160, )1 ]
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(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)



(D, —1/10)f. S0, S D,f.
a: (3.82)
(@, -, —1/2)f. <0, +06, < (P, + D, —1/2)f.
@, ~1/10)f. <6, SD,f,
@b : (®, feso, <, (3.83)
(@, - @, —1/2)f. <6, +0, < (D + D, —1/2)f
—(®, +9/16)f. <5, < (D, —9/16)f. (584
= (®, +9/16). <0, S (@, -9/ 16)f. '

3.5 Disks subjected to pure shear

The case of disks stressed in pute shear is of great practical importance. This
case is met in webs in beams and when disks are designed by the stringet
method. Hence, in this section, we shall derive the solutions for the shear
strength of isotropicly cracked disks. In order to evaluate the strength reduc-
tion due to cracking, the results will be compared with the original plastic

solutions.

Having found the general yield condition, it is rather straight forward to treat
the special case of pute shear. What we have to do is simply to insett (0,,0,) =
(0,0) into the expressions for the yield condition, since a disk subjected to

pure shear in the (x,y)-system, see figure 3.14, requites

GX :GCX +GSX :O
} (3.85)

0,=04+04=0

Obviously (3.85) can only be fulfilled when the reinforcement is stressed in
tension. Thus, looking at the yield condition in figure 3.13, it is clear that the

point (0,,6,) = (0,0) can only be localized within the regions @ and ®a or
within the parts of the regions ®a, ®b, ®a, ®b, @a, @b and ®, whete the

non yielding reinforcement is still in tension.
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}7 T

Figute 3.2 Disk subjected to pure shear.

3.5.1 Normally reinforced disks. Let us begin with the case of normally
reinforced disks; that is disks where the shear strength is governed by yielding
of the reinforcement in both directions. In this case, the point (6,0,) = (0,0)
can either be found in region @ or in region @a. Consider first fegion @.
Here the shear strength is found by inserting (0,,6,) = (0,0) into (3.57) which

leads to

fl: D0, (3.86)

From (3.71) we see that the point (6,,0,) = (0,0) is localized in region @ when

the condition
O, +P,<1/2 (3.87)

is fulfilled. Thus, (3.806) is a valid solution when the amount of reinforcement
satisties (3.87).

We now proceed on to consider the case where (0,,6,) = (0,0) lies in region
®@a. From (3.59) we find the solution

%:%J(I—XDX + 8D, )(1- 20, +8D,) (3.88)

which, according to (3.73), is valid undet the following conditions
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1/2<®, +d,<9/8
16®, —34®, <3 (3.89)
16D, — 34®, <3

We notice that the first condition in (3.89) refets to the total amount of rein-
forcement whereas the last two conditions are requirements on how ot-

thotropicly reinforced the disk may be.

3.5.2 Partially overreinforced disks. We now pass on to the case of pat-
tially overreinforced disks, i.e. disks where the shear strength is governed by
concrete failure and reinforcement yielding in only one direction. This case is

met when all the conditions in (3.89) are not fulfilled at the same time.

Only the regions ®b, ®b, and @b need to be considered if we assume that

the disk is overreinforced with respect to the x-direction, i.e. @ > ©..

First, if (0,,0,) = (0,0) is localized within region @b, we find from (3.69) the

following solution

F=[o,0/2-0,) (3.90)

which, according to (3.83), is valid under the following conditions

O, +P,21/2
(3.91)

@, <1/10

Next, we find from (3.67) the following solution when (0,,0,) = (0,0) is lying

in region ®b
T 1 3

Accotding to (3.81) this solution is valid when

16D, —34®, >3
(3.93)

1/10<®, <3/10
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Finally, when the point (0,,6,) = (0,0) is localized in region ®b, we find from
(3.67) and (3.79) the solution

s = Ji-o,)@,-1/8) (3.94)
which is valid under the conditions

O, +®,>9/8
(3.95)

3/10€ 0, <9/16

Notice that the case @, > @, can be covered by (3.90) - (3.95) if subscript x in

these formulas is replaced by y and vice versa.

3.5.3 Overreinforced disks. When the shear strength is governed by con-
crete failure without yielding of the reinforcement, we have an overreinforced
disk. In this case, the point (c,,0,) = (0,0) will be found in region ®. Accord-

ing to (3.70) the maximum shear stress which can be carried is

T 7
=16 (3.96)
This is valid when
D, >29/16
(3.97)
®,=>29/16

The complete solution for the shear strength of an isotropicly cracked disks
has now been established. We can immediately conclude that the solutions
are exact plastic solutions since they are derived from an exact yield condi-

tion.

The solutions are summarized in figure 3.15. The figure shows the different
domains of reinforcement amounts (®,,®,), within which each of the derived

solutions applies.
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Dy

N.R. = Normally reinforced
P.O.R.= Partially over reinforced
O.R. = Over reinforced

O = Dy

t/f. =04375

0.625 1

P.O.R.

T/t = [(1-20, +8D,)-
120, +80,)

t/f.=.(1-D,)(®, -0125)

/1, =0125+0.75D,
P.O.R.

o1l r,/fc':ﬁia
" P.O.R. /£, =./®,(05-,)

= ! . i > D«
0.1 0.625 0.825 1.0

Figure 3.3 Solutions for the shear strength of isotropicly cracked disks.

Figure 3.15 is rather illustrative. For example in the case of an isotropicly
reinforced disk, we see that the shear strength is either given by solution
(3.85), (3.88) or (3.96). These solutions are depicted as a function of ® in
fioure 3.16 where the original solution, see [69.1], also has been drawn. The
strength reduction for @ > 0.25 is due to the fact, that a confining stress G,
must be applied in order to increase the largest compression stress 0, beyond
0.5f.. The concrete stresses belonging to the different solutions are illustrated

in the same figure.
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Figure 3.4 Shear strength of isotropicly cracked disks which are isotropicly reinforced.

Returning to figure 3.15, wee see that when the reinforcement in the x-
direction is sufficiently strong (for example @, > 0.825), only reinforcement
yielding in the y-direction can take place and the shear strength is, depending
on the magnitude of @, given by either (3.90), (3.92), (3.94) or (3.96). Figure
3.17 shows these solutions. It can be seen that (3.90) and (3.94) represent two
circles (actually Moht’s circles for uniaxial and biaxial compression, respec-
tively ) and (3.92) constitutes the tangent to (3.90) and (3.94) at @, = 0.1 and
0.3.

Fot comparison, the original solution’ has also been depicted. The maximum

relative strength reduction due to cracking is 34% and occurs at @, = 0.125.

7 Applied to beam shear, this solution is well-known as the web crushing criterion, see for
example [78.1][84.1].
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7/164

01 ¢

web crushing criterion

0.1 0.125 0.3 0.5 0.5625

Figure 3.5 Shear strength of isotropicly cracked disks which are partially overreinforced,

The solutions given above may naturally also be derived explicitly without any
reference to the general yield condition. In order to demonstrate this, we will
close this section by showing how the solutions for isotropicly reinforced
disks and for partially ovetreinforced disks alternatively may be found by

applying the upper bound technique.

3.5.4 Upper bound solutions for isotropicly reinforced disks. An
isotropicly reinforced disk, @, = ®_= ®, as shown in figure 3.18a, is consid-
ered. All geometrical quantities of the disk are assumed to be unity. The rein-
forcement directions (x,y) are rotated by the angle 45 with the directions (1)
and (2), which are parallel to the sides of the disk. The disk is loaded with a
tensile normal stress equal to T in the ditection (1) and with a compression
normal stress T in the direction (2). Thus, described in the (x,y)-system, the

disk is loaded in pure shear with the sheat stress T, see figure 3.18b.
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Figure 3.6 Lsotropicly reinforced disk subjected to pure shear in the (x,y)-system.

The disk is now subjected to three different states of homogeneous strain, sce
figure 3.19. The directions (1) and (2) are taken as the directions of principal

strains.

e Strain field a)

First, we consider the strain field shown in figure 3.19a characterized by the

principal strains
(€,€2) = (A,0) (3.98)

A being an atbitrary positive constant.

The notmal strains in the x- and y-directions are easily found, e.g. by drawing

the corresponding Moht’s circle, see figure 3.19a,

(e.&)= (; X,%K) (3.99)
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Figure 3.7 Honogeneous strain felds in isotropicly reinforced disk element.

For this imposed strain field, we see that the concrete stress vector must,
according to the yield condition for concrete shown in figure 2.7, be perpen-
dicular to the strain vector in order to satisfy the normality condition. Thus,

only the reinforcement will contribute to the internal work®, which is found

by integration of f.€, + f.€, over the teinforcement volume V_ and V

8 It is here assumed, that the strains in the reinforcement material can be taken from (3.99).
This implies that no premature bond failure is occurring. The fact that we have assumed
isotropicly cracked conctete throughout and still insist on an intact bond strength may
seem rather contradictory. It must, however, be borne in mind that the assumption of
isotropical cracking throughout is an ideal state introduced as a simple and general material

model.

Local loss of bond strength due to cracking is, although conflicting with the theoretical
assumptions, probably not crucial to the overall strength in practice as long as good a n-
chorage arrangements ate provided. The latter condition ensures that the reinforcement

must be stressed to yielding before unlimited crack sliding can take place.
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W =W, =] fedV+| fedv

I (3.100)
= 257»(ch = ADf,
The external work is
W: = At (3.101)

By inserting into the work equation, W, = W, we find the following solution
T = Of, (3.102)

which is seen to be identical with (3.86) when ®_= ..

e Strain field b)

Next, we impose a strain field (figure 3.19b) characterized by the principal
strains

(e1€2) = M(4,~1) (3.103)

which transformed into the (x,y)-system gives rise to

(o0
()

(e8,)=A(5,75) (3.104)

232
Accotding to the normality condition, any stress combination along the line
BC in figute 2.7 is capable of producing the given strain field. Hence, we may

choose the stress vector corresponding to the apex B:

(640)= (0 1) (3.105)

The internal works W, and W, done in the reinforcement and in the con-

crete respectively, are

W, = 2%7@& = 30Of. (3.106)
W, =(0-1¢ -(4%—17»):—1—7& (3.107)
Ic ’ 2 c 5 2 c .
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The external work is
We = 4AT+AT =5A1T (3.108)

Inserting into the work equation, we obtain the solution

6 1
1—(T6CD+T(—))£C (3.109)

which is seen to be identical with (3.88) when @ = ©@_.
e Strain field c)
Lastly we consider the following strain field (figure 3.19¢)
(e1.€2)=M1,-1) (3.110)
In this case we find
(e.&,)=(0,0) (3.111)

Thus, the reinforcement will not contribute to the internal work. Regarding
the concrete material, we find from figure 2.7 that only the stress vectot cot-
responding to point C is capable of producing the given strain field. There-
fore,

(GCLGCZ):('—%fC,_fc) (3.112)

In this case the work equation leading to the solution reads

WE :WIC =

—%fcmm o = (3.113)
7

’C—Efc

The solution is seen to be identical to (3.96) when @, = ®..

Solutions for orthotropicly teinforced disks with reinforcement yielding in
both directions may also be reproduced by considering strain fields similar to

those shown in figure 3.19. The direction of the principal strains will in this
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case form an angle with the sides of the disk. The angle and the solutions are

found by minimization according to the upper bound theorem.

3.5.5 Upper bound solutions for partially overreinforced disks. To
make use of the dissipation formulas provided in chapter 2, we will hereafter
reproduce the solutions for partially overreinforced disks by considering a

failute mechanism with plastic strains concentrated in a yield line.

The failure mechanism considered is shown in figure 3.20 where the yield line
forms an angle o with the displacement vector. We will assume that the rein-
forcement in the x-direction is not yielding at failure which means that the
relative displacement # must be perpendicular to the x-axis. This mechanism
is identical to that developed by Nielsen & Brastrup for beam shear, see
[78.1] and [98.4]. For simplicity the disk consideted is assumed to have depth
and thickness equal to unity whereas the length is unspecified.

y e ———————

y, o

/ — Yield line

Q_— —+HH
v
|e
1<

Yigure 3.8 Failure mechanism in a isotropicly cracked disk with yielding in the vertical

reinforcement.

Three upper bound solutions may be derived when the angle a runs through

all possible values.

e p<Os<T/2:
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If the part of the disk to the right of the yield line moves # downward, the

resultant of the shear stresses does the following wotk

The internal work done by the conctete may be found using the dissipation
formula (2.22) :

1
e =-f(I=sina : 3.115
W 4 ( S )cosoc " ( )
where 1/cosa is the total length of the yield line.
The internal work done by the reinforcement is
W, =® f tanc-u (3.110)
By inserting into the wotk equation, the following is obtained
D, — 1 sino + 1
T -4 4
= (3.117)

f. cosX

Minimizing (3.117) with respect to o renders the solution

oo flg (3.118)

which is identical to (3.90). The angle o is given by

sinot=1-4P, (3.119)

It can be seen that o approaches /2 for ®, — 0. When o approaches ¢ we
have ®, — 0.1, which thus is the upper limit for the validity of solution
(3.118). This limit cotresponds to the last condition in (3.91).

[ ] a—_—(p:

In this case, the external work is the same as (3.114) and the total internal
work is found by adding (3.115) and (3.116), where a. is replaced by the angle
of friction ¢. By utilizing that sing = 0.6, the following solution is found

67



+

O, (3.120)

oo —
B~

*
f.
which is identical (3.92).
e 0<0o<0:
The contributions to the wotk equation are

We=1-u (3.121)

W, =® f tano-u (3.122)

Wi = L £(7-9sina)

=g (3.123)

COSO

where the dissipation formula (2.23) has been used to calculate W,..

By inserting (3.121) - (3.123) into the work equation and minimizing T with

respect to o, we find the solution

%: \/(cpv —%)(141)3.) (3.124)

which is seen to be identical to (3.94). The angle o is given by
sinocz—;—(9—16q)‘.) (3.125)

By inserting the upper and lower limit of o into (3.125), we find that the solu-
tion (3.124) is valid for

3 9

—<O® < — 3.12
10 e, 16 (5.126)
When @, = 9/16, we have o = 0 meaning that only the concrete is contrib-
uting to the internal work,. Hence, reinforcement degrees beyond this value
will not increase the shear strength. Inserting ®, = 9/16 into (3.124), the

maximum possible shear strength is found to bet = 7/16f..
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3.6 Out of plane crack sliding failure

Until now, we have only been dealing with disks, where it has been assumed
that the crack planes are perpendicular to the plane of the disk. This assump-
tion ensutes, that any sliding failure out of plane will go through uncracked

concrete.

However, if the disk is suffering from cracking in all directions, for example
due to alkali-silica reactions where the crack planes may be atbitrarily otien-
tated, crack sliding out of plane takes place once the numerically largest prin-
cipal conctete stress reaches the value 0.5f. This is due to the fact that we do
not have any confining stress perpendicular to the disk plane. Thus, for such
disks, the yield condition must be detived by use of a square yield condition

for concrete, see figure 3.21.

When such reinforced disks are examined, the original yield condition given

by Nielsen [63.1] may be used if f_ is replaced by 0.5f everywhere.

Oc2, €2

- L QGct, Ect

Figure 3.9 Yield condition for cracked concrete with arbitrarily orientated crack planes.

3.7 The effectiveness factor

In our derivation of the vield conditions as well as in our treatment of disks in
y
pure sheat, the effective strength of concrete has, for convenience, been set

equal to f..
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It is however an established fact that f must be multiplied with a so-called
¢ffectiveness factor v, less than or equal to unity, in order to obtain good agree-
ment with experiments, see for example [98.4]. A summary of the proposed

v-formulas may be found in [98.3].

The experimentally determined effectiveness factors are necessary for one
main reason, that is: concrete is not a rigid not a perfectly plastic material. Due to

this discrepancy, many effects can not be dealt with theoretically.

It is important to realize that if the effectiveness factor should be correctly
introduced into the yield condition, it’s magnitude must be a function of the
stress field in question. For instance, in the case of uniaxial compression in
the x- or y-direction, we have v = 1. On the other hand, if we have T, = 0, 0,
< 0 and o, > 0, the effectiveness factor will be less than unity due to the
bursting stresses transferred from the stressed reinforcement bars to the con-
ctete. This causes local damage of the concrete, see [97.2]. A motre thorough

discussion on the effects which influence the effectiveness factors may be
found in [98.2]

Regarding the effectiveness factor related to shear loading, it is believed that
the value to be used for isotropicly cracked concrete will not deviate much

from those used in other shear problems.

We must however be aware of the fact, that some of the proposed v-formulas
may already partly include the effect of crack sliding, if they are based on
tests, in which changes in the direction of the principal concrete stresses have
taken place during loading’. Further discussion on this point will be given in

the next chapter.

So, since the effect of crack sliding has been theoretically included in the
present study, it must not once again be reflected in the effectiveness factor.

A v-formula satisfying this requirement is quoted below, see [97.2],

? As an example, we mention the case of non shear reinforced beams, for which the effe c-
tiveness factor was found to be depending on the shear span ratio /4, see [79.1]. It has
turned out that this dependency was due to the effect of crack sliding. The matters were
clarificd by J. P. Zhang [94.2][97.3], who introduced the effect of crack sliding in the plastic
solutions for beams. The work of Jin Ping Zhang will be touched upon in chapter 4.
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19

0.34
fc

V= $1, (f.in MPa)  (3.127)

This formula has been extracted from the empirical formula for the ultimate

shear strength of isotropicly reinforced disks proposed by Takeda et al.

[91.2]". The vatiation of V as a function of f_is shown in figure 3.22.

When using the pure shear strength solutions, f. must be replaced by Vi
whereas @, and @ _must be replaced by @, /v and @ /v.

N

A

09T

1.9/&0.34

| 1} | H ! } L — B

0 T T T 1 T T T > {.
0 10 20 30 40 50 60 70 80 [MPa]

Figure 3.10 Variation of the effectiveness factor with f.

3.8 Concluding remarks

The results obtained in this chapter deal with the strength of isotropicly
cracked disks failing by sliding in cracks and/or by yielding of the reinforce-

10 The formula proposed by Takeda ct al. is based on test results of isotropicly, overrei n-
forced disks. For such disks, the direction of the compression concrete stress does not
change during loading. Thus, the possibility of crack sliding is excluded. The tests me n-
tioned are due to Yamaguchi & Naganuma [91.1].
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ment. Other type of failure may of course be crucial, for example stability

failure or anchorage failure.

Stability failure can naturally not be dealt with by the theory of petfectly plas-
tic bodies.

As for the anchorage failure mode, it is to be expected that the bond strength
between the concrete and the reinforcement bars to some extent is reduced,
and in some locations even may be totally lost, due to cracking thus making
the disk more vulnerable to anchorage failure. So, in order to apply the results
presented, it is of great importance that the reinforcement is well anchored at
the boundaries, for instance as shown see figure 3.23a. The assumption of
well anchored reinforcement bars is probably more important here than in
the original plastic solutions because we ate utilizing a biaxial state of stress in
the concrete and therefore need the confining effect from the reinforcement.
An optimal utilization of this effect may be obtained if the reinforcement is
designed as closed stirrups, which are “self anchored”, see figure 3.23b. In
this case, we may even to a large extent accept loss of bond strength meaning

that the reinforcement is acting more or less as unbonded reinforcement'’.

11 Unbonded reinforcement, in the form of external reinforcement, is often used to

strengthen cracked concrete members.
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Figure 3.11 Reinforcement anchorage arrangements.
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Chapter 4
Anisotropicly Cracked Disks

4.1 Introductory remarks

In this chapter, we shall deal with disks, which suffer from cracking in only
one direction or in two directions at right angles to each other. Our aim is to

investigate how sliding failure through these cracks will affect the strength of
the disks.

Figure 4.1 shows two examples on such crack systems. As visualized in the
figure we define the orientations of cracks by the (n,t)- cootdinate system,
which is rotated the angle B relative to the (x,y)-system. Disks cracked as
described may be called anisotropicly cracked. The crack system in question may
arise from different circumstances, for instance from loading or from tem-

perature differences.

For disks subjected to proportional loading, the crack system in question
could be the znitial crack system. These cracks are formed at a lower load level
when the maximum principal stress reaches the tensile strength of concrete.
The orientation of the initial cracks is in some cases relatively easy to deter-
mine, for instance in cases of homogenous stress fields. For complicated load
combinations the orientation may be detetmined approximately by a linear

elastic calculation of the stress trajectories.
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If the direction of the principal concrete stresses remain unchanged up till
failure, then sliding failure in the initial cracks can not take place as these will

not be transferring shear stresses .
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Figure 4.1 Exanmples of anisotropicly cracked disks.

However, if the principal directions are changing due to stress redistribution,

the possibility of sliding in initial cracks must be taken setiously.

Besides of the initial cracks, the disk may on the way up to the ultimate load
naturally suffer from cracking in many other directions, which also may be
vulnerable to sliding failure. The latter developed crack systems ate not easy
to determine. In such cases, the disk may be consideted as isotropicly

cracked.

A general derivation of the yield condition for anisotropicly cracked disks is 2
complicated and tedious task. The reason for this is that the cracked concrete
material here, contrary to isotropicly cracked concrete, will display different
strength properties depending on the angle between the principal directions
and the directions of the cracks. Only in the case of isotropicly reinforced
disks with low reinforcement degrees, a telatively simple yield condition can

be formulated. More about this in section 4.3.

12 Naturally, the initial crack system may cause other kinds of strength reduction, see [97.2].
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First let us study in details the influence of initial cracks on the strength of

disks subjected to pure shear.

4.2 Disks in pure shear with sliding in initial

cracks

yd

>

/

"4

VN

N
Shyass s

T — Initial cracks

Figure 4.2 Disk, with initial cracks, subjected to pure shear.

The effect of sliding in initial cracks in the case of disks subjected to pure
shear has been studied by J. P. Zhang [97.2], who calculated upper and lower
bounds to the shear strength by means of numerical optimizations. Here, we
will contribute to the results in [97.2] by deriving the solutions in an explicit
form.

Consider a reinforced disk, which is uncracked before loading. When pute

shear is applied as shown in figure 4.2, we will have initial cracks inclined at
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(approximately) B = 45°. These cracks are developed when the disk is enteting

the elastic cracked state.

4.2.1 Original solution. In the well-known original plastic solution, see for
example [69.1], the concrete is assumed to be in a state of plane stress and
subjected to uniaxial compression with the compressive stress G, at an angle 8
with the x-axis, see figure 4.2. Assuming yielding of the reinforcement in both

directions, the solution for the shear strength becomes

= /0.0, (@.1)

=], + O, <1 (4.2)

The angle 0 is determined by

tan @ = ! gy (4.3)

If the condition (4.2) is not satisfied, the shear strength will be given by the

web crushing eriterion (O, = f), which in the case of @, > @ appears as follows

®,(1-®,) ,for ®, <05

fl - (4.4)
- |os for @, >05
and
o,
\/(l &) ] Jfor @, <05
tan @ = ’ (4.5)
1 ,for @, >05

Naturally (4.4) and (4.5) may also cover the case @ < @_if subscript y is re-
placed by x.
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When using (4.1) - (4.5) in practice, we must as discussed in section 3.7 multi-
ply f. by v and divide @ and ® by v.

4.2.2 Modified solution, normally reinforced disks. To take into ac-
count the possibility of sliding in initial cracks, the original solution quoted
must be modified in such a way, that the crack sliding criterion is included.
Thus, besides the tequitement (4.2), the magnitude of 6, must not violate the

following condition, see also (2.11),
T SC—tan @ - o (4.6)

where T_, and G, are the concrete stresses on the inital crack sutfaces, see

figure 4.3.

Figure 4.3 State of stress in concrete.

Expressing 1., and 6, by means of ¢, the condition (4.6) turns into :

cnt

% < ! $1.0 @4.7)

fo 8[|COS(B —8)/sin(B —8) —0.75sin’ (B - 9)]

where tan@ = 0.75 and ¢ = 0.5¢ = {./8 have been inserted. This expression is
actually nothing else but a rewriting of the B.C. Jensen’s solution for the

strength of plain concrete joints, see [76.1]. Figure 4.4 depicts the maximum
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allowable ¢, according to (4.7) as a function of 8. We see that vulnerability to

crack sliding is present within a large range of 6.
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Figure 4.4 Maximum allowable uniaxial compression stress in concrete with initial
cracks, B = 45".

The condition for the validity of solution (4.1) is now modified to :

1
O, .
— =0, +®, <min 1 (4.8)

£ 8[§COS(B - G)HSin(B - 9)’ —0.75sin*(B - 9)]

The numerical signs in (4.8) may be removed if wee assume @, > @, meaning
that 6 £ 45°. Now, by utilizing that 6 is given by (4.3), we may establish the

following expression®
, . ® (O
sin® =sin{ Arctan | —- |= | ——— 4.9)
O} D+,

X

13 sin(ArC tan x) = \/——7
I+ x°
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which inserted into (4.8) together with f = 45° leads to :

Q
+

®, + ®, < min o, (4.10)
@, D,
(-5

If the conditions in (4.10) are not satisfied, then solution (4.1) will no longer

be valid. (4.10) thus constitutes the modified criterion for disks, which may be

called normally reinforced.

4.2.3 Modified solution, partially overreinforced disks. Consider the
case where the magnitude of @ + @, is violating the second condition in
(4.10) and at the same time being less than unity. In this case, the shear
strength will be governed by crack sliding. By assuming @, > @, yielding will
only occur in the vertical reinforcement. From equilibrium considerations of

the stress field shown in figure 4.5 we find

Oy =—0.sin’ 0 (a)
’cb =Tey| = O c0s0sin O (b) (4.11)
O, f +0,=0 (¢)

y

A

Texy
Oc

Figure 4.5 Stress field in concrete and reinforcement in a partially overreinforced disk

- X

subjected to pure shear.
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The expressions in (4.11) lead to

D, = %l sin’ 4.12)
and

T

£ =, cotd @.13)

Putting 6, equal to the maximum allowable according to (4.7), the exptession
(4.12) turns into
sin’ 0
P, = (4.14)
" 8[cos(45" —6)sin(45° —0) ~ 0.75sin’(45° - 0)]

Hete the numerical signs are not necessary since 0<45° when ®. > ® . B
g y x g DY

rearranging (4.14) we arrive at the following quadratic equation in cof:
D, cot’ 8+ 6@, cot® — (7P, +1)=0 4.15)

which has the following valid solution :

cotf = (169, +1-3/®, (4.16)
o,

Now, by inserting (4.16) into (4.13) we finally obtain, what we will term, the

crack shding solution :

£ =Jo,(160, +1)-30, (4.17)

This solution is valid as long as the right-hand side of (4.7), with 6 defined by
(4.16), is less than unity". Thus, we must require

®, <9/25=036 (4.18)

14 This is the same as requiring, that the crack sliding solution can not yield larger shear

strength than the web crushing criterion.
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When @, is larger than 0.36, the shear strength will be given by the web
crushing criterion (4.4).

The result is depicted in figure 4.6. Apart from the region with very small
degrees of reinforcement @, we see that the crack sliding solution (4.17) 1s
varying rather linearly. It seems that we by establishing this solution have
artived closely to the many empirically proposed formulas for the shear
strength of reinforced beams and disks; namely a constant concrete conttibu-
tion plus a reinforcement conttibution, which varies linearly up to a certain

maximum amount of reinforcement.

For comparison the web crushing criterion as well as the solution in the case

of isotropical cracking have also been drawn.

The crack sliding solution has been established by use of a uniaxial concrete
stress field. It is naturally possible to develop a lower bound solution based
on a biaxial stress field by adding a confining stress G, < O, similat to what

was done in the isotropicly cracked case, see figure 4.7.
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Figure 4.6 Modified solution for the shear strength of partially overreinforced disks com-

pared with the web crushing criterion and the solution in the case of isotrpical cracking.
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Figure 4.7 Biaxial stress field in concrete.

What we obtain is that the magnitude of 6, increases depending on the cho-
sen value 0. The crack sliding critetion (4.6), expressed by means of

con

and 6, now reads
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1 Gen i ‘ :
o. 8 % [COS(B - 9)1'SIH(B ~6) +075cos" (B~ 6)] » 1.0 (4.19)

I [cos(B ) sin(B —6) - 0.75sin* (B —6)]

When using this condition instead of (4.7), it may be shown that the optimum

lowet bound solution is found for 6., = 0 .

Finally, it should be mentioned that the effect of sliding in initial cracks also
may be investigated by the upper bound technique, see J. P. Zhang [97.2].
The failure mechanism is simple here because the yield line runs along an

initial crack, see figure 4.8a.

Since the crack sliding critetion is only imposed to the state of stresses in one
direction, namely the direction of the cracks, we must accordingly detive the
dissipation formula directly in the (O,T.,)-system, see figure 4.8b. The dissi-
pation per unit length of the yield line becomes

W, =05ccosa-u , 020 (4.20)
o being the angle of the relative displacement # to the yield line.

By applying the work equation to the failure mechanism shown in figure 4.8a
where the relative displacement is perpendicular to the x-axis, we find the
following upper bound solution

+@, (4.21)

T_1
f.” 8

The upper bound solution is depicted in figure 4.8c. We realize that it is very

close to the lower bound solution.

15 1f we apply the stress field in figure 4.7 instead of that in figure 4.5, formula (4.11b)
changes to: T = (G — Ocon )SiNOc0sO . We see that although Geon may increase the mag-

nitude of O, it will also cause a decrease in T. Thus, it is apparently more optimal to in-

crease Oc by rotating to another angle 0 than to confine the concrete.
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Figure 4.8 a) failure mechanism with yield line along an initial crack. b) crack shding

criterion. c) comparison of the upper and the lower bound solution.

Comparison with test results. The results of five test series of reinforced
disks have been collected. The tests are reported by Vecchio & Collins {82.1],
Yamaguchi & Naganuma [91.1], Vecchio, Collins & Aspiotos [94.1] Pang &
Hsu [95.1] and Zhang & Hsu [98.1].
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We are in this context only interested in tests, where the shear strength ac-
cotding to the theoty is given by (4.4) or (4.17). Therefore, only tests with
( 1
)
L Dy +
o +—L > min{ : D, (4.22)

vV v o s
- = s
] D, 1+7 D,

are considered.

The effectiveness factor is taken to be, see (3.127),

1.9 .

V= P (f. in MPa) (4.23)
0.7 4 T/Vfc

| o o
0.6 o o .

o v 0
0.5 S S - o
o

0.4 o o <
0.3 7 Pure shear tests. Vecchio& Collins [94.1], (f. = 56-72 MPa)

Shear-tension tests. Vecchio& Collins [94.1], (f = 51-69 MPa)
Pute shear tests. Zhang& Hsu [98.1], (f. = 100 MPa)

Pure shear tests. Pang& Hsu [95.1], (f. = 42-45 MPa)

Pure sheat tests. Vecchio& Collins [82.1], (f. = 11-20 MPa)
Pure shear tests. Naganuma et al. [91.1], (f. = 19 - 80 MPa)
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Figure 4.9 Test results compared with theory.

The test results are depicted in figure 4.9. The agreement with the present
theory is fairly good. It is interesting to notice that within the range of @,
where the theoty predicts crack sliding, the test results are lying below the

original solution.
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Further, we notice that good agreement with theory is also found for disks of
high strength concrete (for the tests reported in [94.1] and [98.1] we have f >
50MPa and f. = 100 MPa respectively).

As indicated by the legends in figure 4.9, three of the tests reported in [94.1]
were combined shear-tension tests. The ratio of loading was o/t = 0.25,
where T is the applied shear stress and o is the applied normal stress in the x
— and y — direction. For these particular test specimens, the reinforcement
degrees have been taken as @, = (p,f - 6,)/f and ©, = (p f - 6,)/f, where 0,

is the normal stress observed at failure.

0.4 | O Naganuma [91.1]
0 Pang/Hsu [95.1]
¢ Vecchio/Collins [82.1]
8 a Vecchio/Collins [94.1]
a Vecchio/Collins [94.1]

0,
O T T T T T T T v

0 5 10 15 20 25 30 35 40 45

Figute 4.10 Measured maximum compression stress compared with theory.

In figure 4.10, we have plotted the measurements of the principal compres-
sive stress at failure. Compared to the o, given by formula (4.7), we see
that reasonable agreement is obtained. It should be noticed that the angle 6 of
the test results have been determined by formula (4.16), @, being replaced by
D /v.
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To further explore the influence of initial cracks, we close this section by considering
one of the classical problem in concrete mechanics; namely the shear strength of non
shear reinforced disks/beams which are over reinforced in the longitudinal direction. It
is probably here that the mechanism of crack sliding and its influence on the shear
strength appears in its most transparent form. Jin-Ping Zhang [ 94.2] has dealt with this
subject and given a simple and rather accurate upper bound method to calculate the

shear strength of such beams.

Here we will approach the problem along the same lines as those previously introduced
in this section. Our aim is to investigate whether it is possible to achieve similar results
as those in [94.2]. To make the investigation simple, some idealized assumptions will be
introduced which render the approach to be of less general character than the method

given by Jin-Ping Zhang.

The beam to be considered is simply supported with rectangular cross section and

symmetrically loaded with two concentrated forces, see figure A. The loads and the 1 e-
actions are transferred to the beam through tigid plates of the length x,. The sheat span,
which is the distance between the outermost edge of the loading plate and the inne r-
most edge of the support plate, is @ The longitudinal reinforcement is assumed to be

sufficiently strong.

As an idealized assumption we will consider the shear span of the beam to be initially
cracked with straight cracks inclined at the angle B = 45° . The cracks, which we may
imagine to appear when the beam is entering the cracked elastic range, are indicated in

figure A. In real beams, the cracks tend to be curved.
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Figure A Nou shear reinforced beam with initial cracks inclined at 43.

As shown in [84.1] we may construct an optimal lower bound solution by assuming the

beam to act as an arch where the rectangular region ABDE is subjected to uniaxial
compression with the compression stress Oc at an angle 8 with the beam axis. The load
and the tensile force in the reinforcement are transferred to the arch through the shaded
triangular areas which are in plane hydrostatic pressure with the compression stress o.

It appears that the beam, for a given value of o, is able of carrying the load
P=0.bx, (@)

which, as shown in [84.1], will be maximized when CD = 25 meaning that x, is given

by

xozé[x/az+h2~a] (b)

The inclination of the uniaxial compression stress field becomes

Xo ! a 2 a
tanf =5 = \/1+ ol ©

If we for the time being disregard the presence of initial cracks, 6c may be put equal to

the uniaxial concrete strength fc and the following lower bound solution is obtained

from (a) and (b):
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n_ Po_1fa) e ;
f. ~bhf. ~ 2|y \n) Th @
This solution, which may be shown to be exact [84.1], will in the following be termed

the original plastic solution.

Now, due to the presence of the initial cracks, the compression stress Oc is according to

(4.7) testricted to be

C. 1

f. 8 cos(B — 6)[sin(B ~8) - 0.755in*(B - 6)]

* 1.0 )

By inserting this expression into (a) and utilizing that % is given by (b) the following

solution, which takes into account the crack sliding critetion, is obtained

To

P P 1
bhfe S[icos(B - 9)“sin(B - G){ ~0.75sin’ ([3 — e)] * T ®

x
fe

Hete To is the original plastic solution (d) and 8 is given by (c). By inserting B = 45 into

(f) the solution, after some rearrangements, turns into :

" 1—7[\)@?1—5‘1}2 +6[\ (—E) 1 —E}

It should be noticed that for /4 less than unity, only a patt of the uniaxial compression
field will be crossed by an initial crack if we imagine that the crack with § = 45° origi-
nates from the bottom side of the beam, see figure B. The solution is however still a

valid lower bound solution for /b < 1.
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Figure B Bean with a< b and initial crack at B = 45°.

We see that the solution (g) consists of the original plastic solution multiplied by a re-
duction factor which is a function of the a/h ratio. It is in this connecton intetesting to
notice that the effectiveness factor related to the original solution, besides of depending
on f,, b and the amount of longitudinal reinforcement, also implies a function of a/h,
see Roikjer et al. {79.1]. The latter dependency has been shown by Jin Ping Zhang to be
due to sliding in cracks, [94.2].

From the parameter studies in [94.2], Jin Ping Zhang has proposed an approximate pro-
cedure to calculate the shear strength of non shear reinforced beams. The results in

[94.2] may be summarized as follows!¢:

f=l )] g

0.88 1
16 Here, the effectiveness factor to be multiplied on ftis : vo = —=| 1+ —= [(1+26p),
P Tl o

where fc is in MPa, 4 is in meter and p is the longitudinal reinforcement ratio. This formula
is identical to the one proposed by Roikjar et al. [79.1] except that the function depending

on a/h has been excluded.
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- for <2
T s or .- =

X h h

h™ X . ®)
0.26H+1.48 , for H>2

Here 7 is the shear strength and x denotes the horizontal projection of the diagonal
crack along which sliding takes place. Notice that the model ptoposed by Jin-Ping
Zhang takes into account the fact that the inclination of the cracks, tat} = h/x, assumes
different values depending on the a/h ratio whereas we in our lower bound solution

only deal with one fixed crack inclination.

The original solution, the solution in (g) and the solution by Jin-Ping Zhang have been
depicted in figure C as a function of a/h.

It can be seen that within the interval a/h = 1 - 4, the solution for beams with 45 de-
grees initial cracks is quite similar to the solution by Jin-Ping Zhang, The fact that the
first mentioned solution, being a lower bound solution, is lying above the Jin-Ping

Zhang solution for a/h < 1 is due to the assumption of fixed crack inclination.

Comparison with test results in [94.2] shows, that the Jin-Ping Zhang solution gives
quite good agreement for a/h >2 whereas the test results for a/h < 2 are very scattered
and they tend to be lying within the whole area confined by the original solution and the

Jin-Ping Zhang solution. Discussion on this point may be found in [94.2].

Naturally, crack inclinations different from 45° can also be considered. When doing so,
formulas (f) and (c) may be used directly because an explicit derivation of the solution
will be too troublesome. The variation of the shear strength versus a/h for § = 40° and

B = 509, as it has been obtained by use of (f) and (c), can be seen in figure D.
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Figure C Shear strength of non shear reinforced beams versus a/ h.
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Figure D Shear strength of non shear reinforced beams with different initial crack systems versus a/ .
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4.3 Yield condition for isotropicly reinforced disks

We will return to our investigation of the strength of anisotropicly cracked
disks by consideting the case of atbitrary in-plane loading. We restrict ot
selves only to treat isotropicly reinforced disks with low degrees of rei-

forcement.

The aim is to formulate a yield condition which takes into account the crack
sliding criterion. Our point of departure will be thedsotropic yield condition given

by Nielsen [69.1], see figure 4.11. This yield condition is an approximation to
the original yield condition and applies for low degrees of reinforcement only
. The approximations being made imply, that the reinforcement is either
unstressed or stressed to tensile yielding. The compressive yield strength of

the reinforcement is neglected.

1 Gl/fc

»l
»

P Gl/fc

[
e

Figure 4.11 Appearance of the isotropic yield condition, [69.1].

The isotropic yield condition states that the stresses which can be carried are

independent of the directions of the principal sections. Thus, in any arbitrary

17 With low degrees of teinforcement we mean ® less than about 0.1.
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rectangular (0,, 0, 7,)-system of coordinates, the yield condition appears

identically as two conical surfaces defined as fdlows :

6, <O
To — (Pf. — 0, )(Pf. —6,)<0 for <0, <P (4.24)
C,+0, 2 —(1-D)f.

T —(fc + 00 )(fe +0) <0 for {0, = 1, (4.25)

A
\ P - cracks
s NI n
JdEav
UG
\///
o ////
-

U

Figure 4.12 Lsotropicly reinforced disk with cracks parallel to the n-axis.

If the disk considered is suffering from cracking parallel to the n-axis, see
figure 4.12, we must additionally impose the crack sliding critetion upon the
concrete stresses 0, and T, in sections normal to the t-axis. Thus besides of

(4.24) — (4.25), we require
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, (1. 3 Y
n'n Ty A e TV S .
Tu (Sf 40 j 0 (4.20)

Here we have T, = T, due to the above mentioned assumption about the

nt
states of stresses in the reinforcement. Assuming further that crack sliding is
critical only when the reinforcement is yielding, we may replacew,, by 6— ®f,,

thus turning the condition (4.26) into

2

. _(1e 36 _or))
Ta (81% 4(0( CI)fc)) <0 (4.27)

Now, to ensure that a given stress field in an isotropicly reinforced disk with

cracks parallel to the z-axis is admissible, we have the following yield cond

tion :
G, < Of, (4.284)
o, < @f, (4.28b)
G, > —f, (4.28¢)
o, = —f. (4.28d)
15 —(Pf. — 0, )(Pf. —6,)<0 (4.28¢)
T2 = (f. + 6. )(f. +0,)<0 (4.281)
To — (% f.— —3— (0. — Of. ))2 <0 (4.28g)

What we have obtained here for cracked disks with low reinforcement d-
grees is, that the orientation P of the initial cracks does not enter explicitly as
a parameter in the yield condition. This of course is a gteat help in practice as
we need only to transform the applied load into the §,, G, T,)-system in
order to apply the yield conditon. Naturally, the yield condition can no

longer be called isotropic.
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The yield condition described by (4.28) is depicted in figure 4.13 for the case

® = 0.1. Contour lines fort, is shown in figure 4.14 for the special case of®
= 0.

Finally, if we are dealing with a disk which also suffers from cracking in the-
direction, the following condition is added to those in (4.28)

2
Toi = (% fe —%(on — Of, )) <0 (4.28h)
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Figure 4.13 Yield surface for an isotropicly reinforced disk with initial cracks parallel to
the n-axis, @ = 0.1.
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Figure 4.14 Shear stress (7,,) contour lines for a disk with initial cracks para llel to the n-

7

axis, @ = 0.
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Chapter 5
Conclusion

In this report, the strength of cracked teinforced concrete disks has been

dealt with by means of the theory of plasticity.

The influence of different types of cracking on the strength has been treated.
The basic idea is that the resistance against sliding failure in cracks is smaller
than the resistance against sliding failute through uncracked concrete. Thus,
two modified Coulomb failure criteria, one for uncracked concrete and one
for cracks, are used for the material. The failure critetion for cracks has been
taken from [97.1].

Disks suffering from cracking in many ditections are assumed to be isotrop

cly ctacked. The assumption implies that in any section perpendicular to the
plane of the disk a crack may be found. This means that the cracked concrete
material can be treated as an isotropic material. By means of the two above
mentioned modified Coulomb failure criteria, a resulting isotropic failure
criterion for the cracked concrete matetial has been formulated. Based on this
failure criterion a yield condition fot isotropicly cracked reinforced disks has
been developed. Comparison of this yield condition with the original yield
condition for uncracked concrete, [63.1], shows that isotropical cracking may
cause significant strength reductions. Obviously, the state of isotropical
cracking is a theoretical abstraction. Nevertheless, this idealized assumption

may be useful in practice in two ways . Firstly, it leads to simple solutions as
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we are dealing with an isotropic material. Secondly, the results obtained &
fine, together with the original yield condition, the domain within which we
may expect to find the real strength of a given cracked disk. So, when a
cracked disk in an existing structure is evaluated, one would know that, with
respect to sliding failure, the solution obtained from the original yield cond
tion constitutes an upper limit for the strength of the disk whereas the sal-
tion obtained under the assumption of isotropical cracking represents a lower
limit. The more cracks and the more crack directions, the closer will the
strength be to the solution for isotropicly cracked concrete. If the latter sal-
tion cotresponds to higher stresses than those occutring in the disk, then the

disk has sufficient strength to resist sliding failure through cracks.

Although the results obtained for uncracked and isotropicly cracked conctete
ate based on failure ctiteria, which individually have proved to agree reasoa

bly well with tests, it should be emphasized that the result of the combined
failure criterion do not necessarily agree with tests. The failure criterion for
isotropicly cracked concrete as well as the yield condition ( or parts of the

yield condition) for cracked disks should therefore be perimentally verified.

For disks suffering from cracking in one direction only, a lower bound sal-

tion for the special case of pure shear loading has been derived. The cracks
considered in this case are the initial cracks, which are formed when the disks
enter the cracked elastic state. By taking the reduced sliding resistance of
these cracks into consideration, it is found that the maximum allowable cn-

crete stress depends on the direction of the principal concrete stresses. The
result shows that concrete crushing ¢, = Vf,) can only be developed when
the smaller one of the two degtees of reinforcement is larger than 0.36. For
smaller amounts of reinforcement, failure will be due to crack sliding and the
maximum allowable uniaxial concrete stress will be less thanvf,. The pre-

dicted maximum allowable concrete stress has been compared with test

measurements and good agreement was found.

The consequence of the limited utilization of the web ctrushing strength is,
that the disk might be partially overreinforced (i.c. reinforcement yielding in
only one direction) for reinforcement amounts much less than that cosr

sponding to @ + @ =V, which, according to the usual plastic solution, is the

upper limit for normally reinforced disks.
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For disks suffering from cracking in one direction or in two directions at right
angle to each other and subjected to arbitrary in-plane loading, a yield cond
tion, which takes into account the crack sliding criterion, has been given. The
yicld condition, valid for isotropicly reinforced disks (e D= @) with low
degrees of reinforcement, is 2 modification of the isotropic yield condition
developed by Nielsen [69.1]. The yield condition is formulated for stresses

referred to a coordinate system defined by the diretions of the cracks.
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