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730 COLLINS,

When more than one phonon is emitted in a cascade
process, however, the phonon energy becomes less
precise, and the transition takes place further from
k=0. We have shown by a qualitative argument, taking
into consideration the curvature of the valence band
and the dispersion curves for the LO phonon, that the
energy spacing of the higher-energy minima will
gradually decrease, and that fine structure will no
longer be discernible when several phonons are emitted
in cascade. This is borne out exactly by our experi-
mental measurements.

Finally, certain features which are observed in the
one-phonon region of the photoconductivity spectrum
are considered to be due to hole capture, with the
emission of one phonon, to excited states of the acceptor
center to which transitions from the ground state are
forbidden. This interpretation is reinforced by the fact
that the energy of one of these forbidden transitions is

LIGHTOWLERS,

AND DEAN 183
in good agreement with other theoretical and experi-
mental evidence.
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Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

P. LAWAETZ
Plysics Laboratory I11, The Technical University of Denmark, Lyngby, Denmark
(Received 14 October 1968)

The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is
considered from a general point of view. The deformation-potential approximation is defined and it is shown
that long-range electrostatic forces give a nontrivial correction to the scattering. For completeness, correc-
tions due to nonlocal effects like spin-orbit coupling are treated, but the general conclusion is that the
deformation-potential approach is a very good approximation except in some cases of optical-phonon scatter-
ing. The smallness of the nontrivial corrections is interpreted in terms of the very-short-range nature of

interactions in a covalent semiconductor.

I. INTRODUCTION

T has recently been suggested that the usual deforma-
tion-potential theory may be inadequate for the
description of long-wavelength phonon scattering in
p-type Ge.! Before that, theoretical investigations of
the phonon spectrum in Ge had shown? that long-range
forces of quadrupole nature are needed for the interpre-
tation of the experimental data. Tolpygo® found that
these electrostatic forces also give a nontrivial contribu-
tion to the electron-phonon interaction, and a quantita-
tive estimate? for Ge indicated that the effect may be

1P, Lawaetz, Phys. Rev. 174, 867 (1968).

2 M. Lax, in Proceedings of the International Conference on Lallice
Dynamics, Copenhagen, 1963, edited by R. F. Wallis (Pergamon
Press, Inc., New York, 1965), p. 179. This paper contains refer-
ences to earlier work on the theory of the phonon spectra in non-
polar semiconductors.

3K, B. Tolpygo, Fiz. Tverd. Tela 4, 1765 (1962) [English
transl.: Soviet Phys.—Solid State 4, 1297 (1963)].

47. A. Demidenko and K. B. Tolpygo, Fiz. Tverd. Tela 6,
:23215 )(ﬁ964) [English transl.: Soviet Phys.—Solid State 6, 2656

1965) ].

of the same order of magnitude as that derived from
deformation-potential theory.

In order to study this and other possible shortcomings
of deformation-potential theory, we shall begin in
Sec. I1 by establishing the theoretical background of this
model of the interaction between carriers and long-
wavelength acoustic phonons. The long-range inter-
action is then introduced in Sec. III and Tolpygo’s
results® are rederived, but on a new and more general
basis, and new features arise as a consequence of the
combined treatment.

After these general considerations, we shall be con-
cerned quantitatively in Sec. IV with the electrostatic
contribution to the long-wavelength acoustic scattering
in Ge. In the case of electrons, the new terms are
readily incorporated in the theory of Herring and
Vogt,5 and it is shown that the new theory may be
consistent with experimental data if the effect is of the
estimated magnitude or even somewhat larger. For

8 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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holes, the expressions for the scattering rates given in
Ref. 1 are extended to include the extra terms. Results
of calculations indicate that the fit to experimental
data is not improved over that obtained previously!
without the extra contribution.

A deformation-potential theory of long-wavelength
optical-phonon scattering can also be formulated.s”
The validity of this model is investigated in Sec. V,
and the effect of the long-range electrostatic interaction
is shown to be nontrivial. This contribution is nonzero
even for those band extrema where the usual optical de-
formation-potential constant® vanishes by symmetry.°
This means that the relevant scattering mechanisms!®
in #-Si should be reconsidered. Also, interesting cor-
rections to the usual model of optical-phonon scattering!
in p-Ge are discussed. This mechanism may explain the
discrepancy between experimental data on galvano-
magnetic effects at room temperature and existing
theory.!

For the sake of completeness, we briefly discuss the
effects of spin-orbit coupling in Sec. VI. In the case of
static strain, it has been shown!! that such effects are
included in the usual deformation-potential constants.
For acoustic-phonon scattering, however, a nontrivial
correction to the scattering potential is found. Neverthe-
less, spin-orbit effects are usually small and the above
effect is probably of no practical importance.

A discussion of physical reasons for the smallness of
the electrostatic effects is contained in Sec. VII. A
short-range interaction model is proposed and is shown
to be in qualitative agreement with our general knowl-
edge of nonpolar semiconductors.

II. DEFORMATION POTENTIAL

Seitz!? initiated the study of the acoustic-phonon
scattering in nonpolar semiconductors by considering
carriersin a simple spherical band. Using the deformable-
ion model,!? he found that the matrix element of the in-
teraction could be expressed by a single parameter.
Bardeen and Shockley!* later interpreted this parameter
in terms of the displacement of the band due to a dilata-
tion of the crystal, but their so-called deformation
potential was more general. The fundamental ideas
behind the deformation-potential method as applied to
nonpolar semiconductors are (a) that the perturbing
Hamiltonian is of the same form for lattice scattering

8 E. G. S. Paige, Progress in Semiconductors (Heywood and Co.,
Ltd., London, 1964), Vol. 8, p. 1.

7G L. Bir and G. E. Pikus, Fiz. Tverd. Tela 2, 2287 (1960)
[English transl.: Soviet Phys.—Solid State 2, 2039 (1961)].

8In order to avoid confusion, the well-known parameters
Euy Ea, @, b, d, etc., will be termed ‘“deformation-potential
constants.”

9 W. A. Harrison, Phys. Rev. 104, 1281 (1950).

10D, Long, Phys. Rev. 120, 2024 (1960).

11 G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela 1, 1624 (1959)
[English transl.: Soviet Phys.—Solid State 1, 1502 (1960)7].

2. Seitz, Phys. Rev. 73, 549 (1948).

13 F, Bloch, Z. Physik 52, 555 (1928).

14 J, Bardeen and W, Shockley, Phys. Rev, 80, 72 (1950),
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as for homogeneous strain of the crystal, (b) that a
long-wavelength acoustic lattice vibration may be re-
garded as a slowly varying, locally homogeneous strain,
and (c) that therefore the matrix elements of acoustic-
phonon scattering can be expressed in terms of the few
parameters determining the change in band structure
due to an external uniaxial stress. As shown in the
present work, one should add the condition that the
interaction must be of limited range. The breakdown of
this approximation will be discussed in Sec. III.

The feature (a) was originally based on intuition, but
has later been justified by Haug!® and corresponds to the
so-called “‘static” approximation (as opposed to the
adiabatic approximation). Here the electron-phonon
interaction potential is simply the change in the self-
consistent one-electron potential caused by the phonon-
induced disturbance in the crystal structure. In the
following, we are concerned only with crystals with a
diamond-type lattice. Assuming that the self-consistent
potential is a differentiable function of the atomic co-
ordinates, we have as the most general form of the po-
tential change for one-phonon processes as well as for
effects linear in static strain

V(@)=Y V,2(r,R,%)-u,=. 2.1)

Here r is the electron coordinate, R, the center of mass
of the nth unit cell (=0 corresponds to the cell in
which r is lying), and the equilibrium atomic sites R,*
are given by

R.=R,+at, (2.2)

where =1 and 2t is the vector connecting the two
atoms in the unit cell of the diamond lattice. Further,
u,” is the displacement of the atom R,? and V,* are
first-order expansion coefficients.

In order to investigate the validity of deformation-
potential theory, we shall first establish the connection
between the coefficients V,* and those coefficients
normally appearing in the theory of the deformation
potential.” In a crystal subjected to an infinitesimal,
homogeneous deformation, the displacement of the ath
atom in the nth cell may be expressed as follows:

w2 =u+au+M- (R,2—Ry), 2.3)
w,=3(ust+ug) (2.4)

being the displacement of the reference point Ry, u; the
internal strain in the cell,

with

w=3gt—us)—M-t, (2.5)
and
Mi=¢ei+% 2 e curliu, (2.6)
k

where ¢ is the symmetric strain tensor and the final
antisymmetric term denotes an infinitesimal rotation
of the crystal. e;x is the Levi-Civita symbol. It is well

15 A, Haug, Z. Physik 175, 166 (1963).
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known that the internal strain wu, is related to the
macroscopic strain e by!6

2.7

un=y 2 |eiju|esn,
ik

where v is a constant with the dimension of length.

Denoting the potential change due to a homogeneous
deformation by 6V 4, we obtain by insertion of the dis-
placement (2.3) into Eq. (2.1)

8Va(r)=us- Vitu,: Vz+§; eV +curlu- V7, (2.8)

where
Vi(n)=3 V.2, (2.9)
V() =% a Va2, (2.10)
(2.11)

Vii =% Vai®(Raj—Roj)+Vait;,
Vi''=13 el 2 VaitRnj—Roj)+Vaiti]. (2.12)
L% ne

From infinitesimal-displacement invariance it is easily
shown that
Vi(m)=—V.Vy(r),

in which V(x) is the self-consistent potential of the un-
disturbed crystal. The internal strain u, is equivalent to
a uniform “optical” displacement, and thus V; is in
fact the optical deformation potential®? which will be
discussed in Sec. V. Owing to the relation (2.7) the term
uz+ Vs in Eq. (2.8) may be incorporated in the & term.
The last term in (2.8) vanishes? because the potential
at a certain point is invariant under a rigid rotation of
the crystal about that point. Thus

V'(r)=0, (2.14)

and it follows from (2.11) and (2.12) that V;; is sym-
metric in ¢ and j. It will be shown in Sec. VI that the
argument leading to (2.14) is valid only for a local one-
electron potential. Corrections may, therefore, be ex-
pected from nonlocal effects like spin-orbit coupling,
exchange, etc.

The potential change (2.8) now has the form

BVd(r) =—Uz" VV(H‘Z SijV.'j ,
i

(2.13)

(2.15)

with

Vi=Vi'+v 2 |ein] Var. (2.16)
k

The next step in the usual deformation-potential
theory is to consider §V 4 in an effective-mass representa-
tion following the displacement u,.”''” Then the term
with u; disappears, and the new coefficients of €;; are
essentially matrix elements over the unit cell of the

16 A, Segmiiller and H. R. Neyer, Physik Kondensienten Materie
4, 63 (1965).
17 G, D. Whitfield, Phys. Rev. 121, 720 (1961).
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operator?:17
Dij= —(pittko)) (pit+tkos) /m+V i,  (2.17)

where p is the momentum operator, 7 the free-electron
mass, and k, the wave vector of the band extremum in
question. These matrix elements of D;; are the deforma-
tion-potential constants.

We now consider the potential change (2.1) from the
point of view of acoustic-phonon scattering. For
phonons of wave vector q and branch s, the atomic dis-
placements u,* have the form

u,2= 4,60 ¢ .(q)+H.c., (2.18)

where 4, is essentially the phonon-annihilation operator
and &, is the polarization vector. H.c. denotes Hermitian
conjugation and stands for the phonon-emission term.
The treatment of this term parallels that of the absorp-
tion term and is, therefore,not considered in thefollowing.

For long wavelengths the polarization vectors may be
expanded in a power series in ¢, and we recall that for
the acoustic branches to first order in ¢

¢(q)=2,(9)+age:(q),
en(q) =1y Zk | €sjx] 40 (@)
J

(2.19)
(2.20)

where!8

v being the same constant as in Eq. (2.7) since it does
not depend on the vibrational state of the crystal.!

As a basis of deformation-potential theory, we assume
that the potential change at r depends only upon the
disturbance of the crystal in the vicinity of r, i.e., at
distances small compared to the phonon wavelength.
This condition will be discussed further when we
consider the electrostatic potenital. For the evalua-
tion of (2.1) it is then valid to expand the acoustic-
phonon displacement (2.18) in powers of q- (R,*—Ro).
Retaining zeroth-and first-order terms only, the acoustic
displacements u,* may be expressed in the same form as
(2.3), with

= A 4 Rog(g) (2.21)
uy’ = A 6% Rogey(§) , (2.22)
Sij, =4 e R"%’iq[qiéoj-i-@jéo,'] . (2.23)

It follows directly that the interaction potential for
acoustic-phonon scattering in the deformation-potential
approximation is 8V determined by Eq. (2.15), with u,’
and ¢ givenby (2.21) and (2.23), respectively. At this
point, it is convenient for the further treatment in scat-
tering theory? to replace e?'®o by e?a'r, and it is readily
seen that this makes no difference to first order in g¢.

III. ELECTROSTATIC INTERACTION

In order to discuss the validity of the deformation-
potential approach to the description of long-wave-
18 H. M. J. Smith, Phil. Trans. Roy. Soc. (London) A241, 105
(1948). In this paper, the relation between e: and & is derived

from a specific model of force constants, but the result is of
general validity.
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length phonon scattering, we consider the interaction
potential (2.1) in a general way. By insertion of the
atomic displacement (2.18), we obtain

V=AY &%) Uqr), 3.1)

where U is essentially the Fourier transform of V,,

Ue(q,r) =3 V, % (Rna—n) (3.2)

It is now obvious that the deformation-potential method
corresponds to a Taylor-series expansion in q of U%(q,r),
keeping terms to first order in q. The existence and
convergence properties of such a series depend on the
form of V,* as a function of R,2—r.

When V,* has a well-defined range A, e.g., by ex-
ponential decrease, the Taylor series is expected to
converge for ¢S AL In that case, the deformation poten-
tial is valid for small enough ¢ and any breakdown would
show up as large terms of higher order in ¢. This type of
correction will not be considered further because it does
not seem relevant for the long-wavelength phonon
scattering encountered in nonpolar semiconductors.

If part of V,2is electrostatic, it is readily shown that
some of the expansion coefficients of U#(q,r) are in-
finite, so that a Taylor series does not exist for any q.
This is due to the indefinite range of electrostatic forces.
In that case, the oscillatory form in (3.2) is essential,
and we may then expect new effects. It will be shown
that an expansion in powers of |q| is then appropriate
with coefficients depending on ¢. On the other hand, only
electrostatic forces have this peculiar property, and so
when we have included these effects, our theory of the
deviations from the deformation potential is complete.?
It follows that the electrostatic contribution to the
interaction potential is of particular interest.

In a nonpolar crystal with a diamond-type lattice, the
displacement of an atom induces a disturbance in the
surrounding charge distribution, resulting in an elec-
tric moment basically of quadrupole nature,? but with
higher pole contributions as well. Without loss of
generality, these poles may be located to the equilibrium
site of the displaced atom because infinitesimal-
displacement invariance and inversion symmetry will
fix the contributions to U* from the cell #=0. This may
not be rigorously true for small %, but such short-range
phenomena are taken into account in the deformation
potential. For a uniform displacement, there can be no
electrostatic fields present, and so for these potentials

> Vae=0. 3.3)

na

In other words, the infinitesimal-displacement invari-
ance ensures that the total linear electric moment of the
crystal is zero. From the inversion symmetry of the

19 The nonlocal corrections discussed in Sec. VI are considered
as a previously neglected part of the deformation potential.
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nth unit cell we conclude that V,+— V,~ must vanish
at r=R, (the inversion center). It follows that for
27-poles the moments Q,* satisfy

0pt=(=1)""Q,. (3.4)

As a direct consequence of (3.3) and (3.4), dipoles
(p=1) are excluded, because otherwise the sum in (3.3)
is divergent for all r>%R,. Furthermore, the macroscopic
inversion symmetry of the crystal demands that

> aV,2=0.

na

(3.5)

In Appendix A it is shown that the above requirements
do not exclude any moments with p>1, in contrast to
earlier theory.?® From the discussion in Appendix A we
derive the additional result that the contribution V¢
from the cell =0 1is described in terms of the same poles
as for n=0.

We now consider the difference V. between the
exact interaction potential (3.1) and the deformation
potential (2.15). To first order in g, this additional elec-
trostatic potential takes the form

3Vo=A e 20+ (S1—Ss)+ges-Ss], (3.6)
S1=3" Vit Raen) (3.7)
Se=2_ V.o[iq-(R.—Ro)], (3.8)
Sz=3 aV,%it Rne—n)_ (3.9)

no

S; and S; give the electrostatic contribution to the
scattering potential (exact for all g), whereas S, stands
for that part of the long-range electrostatic potential
which has already been taken into account in the de-
formation potential (to first order in ¢).

Using a general 27-pole potential of the form

a7 1

nt=a?l 3 0y (—————) (3.10)
jk...QJk aX]an R Rer—Rna’

we evaluate in Appendix B the exact contributions to
Sy, s, and S; from all poles, considering only terms for
which the resulting 6V, is of first order in ¢. From (B2),
(B3), and (B12) we obtain

8

Su=——i 3, Qsixigidrd, (3.11)
Q  grl
81" A A

Ssi=——2_ Qg , (3.12)
Q ik

&
Sei=—i[2 3 Qirgits =3 2 Qijragidrr], (3.13)
5Q Kl

20 In Ref. 2 it was stated that only even poles are admissible.
It seems that there is no physical reason for this restriction.
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where @ is the volume of the unit cell. We observe that
only quadrupoles and octupoles are of interest to the
present study. The total result for 6V, is consequently

8V.=A, (—=8x/Q{ 2 Qurl gersdidi+3itoigiti]
17k

+ 3 QijrittoiqildrGi— 2011} -

igkl

(3.14)

In cubic crystals, the symmetry yields that the
quadrupole coefficients Qyjr are given in terms of a
single parameter? Qy:

Qiir=01] €sjn] - (3.15)
Likewise, we find for the octupole
Qiirr=Q20:70101. (3.16)

Insertion of (3.15) and (3.16) in Eq. (3.14) leads to the
final result

V.=Aseir
XZ 180 C1gi+Cadi%qi+Cs Zk leiiqujlk]: (3.17)
with
Cr=—8r/Q[2Qry—(3/5)Q:1, (3.18)
Co= (8r/Q[201y—Q:1, (3.19)
Cs= (167/59)Q1, (3.20)

and v has been introduced through the relation (2.20)
between e; and &.

We have now obtained a nontrivial correction 8V,
to the deformation potential for acoustic-phonon
scattering. The C; and C, terms in 6V, are of the same
form as the results found by Tolpygo® from a different
and less general model of the electrostatic fields. The
C; term is new and results from the combined treatment
of deformation and electrostatic potentials. The C;
term is proportional to } s €:8;;=Tre’ and may be
added to the dilatational part of the deformation
potential. However, it gives the same contribution to
the conduction- and valence-band dilatational deforma-
tion-potential constants, and so the relation between
these parameters via the static band-gap pressure
coefficient is maintained in the dynamic case. The C;
term contains the vector t which must be considered as
a function of r having I'ss’ symmetry. This is in ac-
cordance with the transformational properties required
in Eq. (2.11) as well as with the fact that 6V, should
have cubic symmetry. It follows that the C3 term is
proportional to the off-diagonal elements of the strain
tensor and will appear as a dynamic correction to the
deformation-potential constants ¢ for degenerate
valence bands!! and &, for (111) valleys.® The remaining
term with Cs is of the form Y_.; €;/8:;¢;®> and has no re-
semblance to the deformation potential. Its inclusion in
existing scattering theory is thus nontrivial and is dis-
cussed in Sec. IV.
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Whenever electrostatic fields exist in the presence of
free carriers, screening may be important. In the
present case, the Debye screening length is always much
larger than the phonon wavelength if phonons are the
dominant scattering mechanism. We conclude that
screening is not interesting in connection with phonon
scattering.

An order-of-magnitude estimate of the long-range
electrostatic effect may be obtained from lattice
dynamics.2: In his theory of the phonon spectrum of Ge,
Lax? found the quadrupole-quadrupole interaction
parameter p=0.718 X 10* dyn/cm. All higher-order poles
were neglected, although their influence is largest near
the zone boundary where the fit is most critical.?
Transforming into our notation, and taking into ac-
count the relative dielectric constant k.= 16, we obtain

Q2= %(%a0)%0e/Ami ok (3.21)

where a, is the lattice constant, e the electronic charge,
and (4mko) 1~ 93X 10° Nm?/C?. From this we find

The parameter v has been measured by Segmiiller and
Neyer.!6 Defining the bond-bending parameter { by

v=—3%aof0, (3.23)

a value of {,=0.64240.04 was found for Ge.'* Com-
bining (3.22) and (3.23), we find from (3.19) that

| Co| = (87/2)2| Q14| =0.7 €V,

where octupoles have been neglected. The same order of
magnitude is found using Tolpygo’s parameters,® and
similar results are obtained for Si.> We notice that
| Cs| is rather small compared to ordinary deformation-
potential constants. The matrix elements of the Cj;
term are difficult to estimate, since they depend on the
wave functions of the band extrema. From (3.20) and
(3.22), |Cstx| =0.2 €V, but the actual correction to d
and &, ((111) valley) may be larger. Evidence about
differences between static and dynamic values of these
constants is not conclusive, but there exists indication
of such an effect in p-Ge.! Because of the largeness of
=, in n-Ge,’ experimental uncertainties in this parame-
ter probably prohibit detection of the effect.

(3.24)

IV. ACOUSTIC SCATTERING IN Ge

Tt is the purpose of this section to show that the non-
trivial electrostatic correction to deformation-potential
theory connected with the Cy term in Eq. (3.17) can be
included easily in existing scattering theory for the
many-valley conduction-band structure® as well as for
the warped energy surfaces at the valence-band edge.!
Furthermore, we show that the correction to the trans-
port parameters in Ge is negligible if C» is of the
estimated magnitude.

For the (111) valleys in n-Ge, the squared matrix
element of the electron-phonon interaction in the
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deformation-potential approximation is given by®

|M|?e 3 (3B @) ]/ pwe(@?,  (41)

where p is the mass density, w,(q) the frequency of an
acoustic phonon with wave vector q in branch s, and

6E(111)(8’) = (Ed+ %Eu)ezzl %Eueyz,‘l' c.p. (4 2)

Here, c.p. stands for cyclic permutation of «, y, and z,
and

&' =3 (qiboj+q:80:) , (4.3)

similar to Eq. (2.23). According to Eq. (3.17), the ex-
pression (4.2) should be extended to include the C,
term in the following way:

8Ean(e,q)
= (Ed'l‘%zu_l_ C2éx2)81x1+§‘gu8yz,+ c.p.,
b

whereas C; and C; are taken to
Ea+3E. and E., respectively.

In order to avoid unnecessary details we assume an
isotropic acoustic-phonon spectrum with average
longitudinal and transverse elastic constants C; and
C. given by

(4.4)

e incorporated in

Ci=%(3C1u+2C12+4Cyuy) , (4.5)
Ci=%(Cu—Ci2+3C4). (4.6)

The calculation of momentum-relaxation times then
proceeds according to the method developed by
Herring and Vogt.5 Using the notation of Ref. 5 where
possible, we obtain for the squared effective deforma-
tion-potential constants® &, 2=[||] and E;2=[1]

Ev2 = Eu2[5v712+ "lvrl+ g‘v+ gv,722+ 17/1’2+ X,.Iflrz:l ) (4 7)

where 71=7%,/E, and 7,=C,/E,. The coefficients &, 9, ¢,
¢, 7', and X’ for parallel (||) and perpendicular (L)
directions are given in Table I as function of the
integrals® I,(y») and J.(y~) and the ratios 8=C,/C,
and v, = my/m;.

From the original form (3.17), the C, term is expected
to give rather anisotropic scattering. The anisotropy
factor

K.= TII/TJ.=EL?/EH2; (4-8)
which is unity for isotropic scattering and about 1.20
for actual #-Ge,?! attains the value 3.3 22 for Eq=5,=0,
thus confirming the expected anisotropy. On the other
hand, for [C;| =1 eV and E,=18 eV,§ |7,|<K1, and so
we conclude from (4.7) and TableI that the deformation-
potential approximation is indeed very good for the
transport theory of #-Ge. However, the “dynamic”

21 C, Herring, T. H. Geballe, and J. E. Kunzler, Bell System
Tech. J. 38, 657 (1959); L. J. Neuringer, in Proceedings of the
Seventh International Conference on the Physics of Semiconductors
Paris, 1964 (Academic Press Inc., New York, 1964), Vol. 1, p. 379.

22 This value is subject to some uncertainty because the evalua-
tion of ¢ in Table I requires very high accuracy of I, and J,. Since
these integrals were read from Figs. 2 and 3 of Ref. § with an un-
certainty of 29, the absolute error in ¢’ is =:0.10.
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TaBLE I. Relaxation-time coefficients for (111) valleys in the
theory of Herring and Vogt (Ref. 5) extended to include the C;
term, The numerical values are calculated for 7-Ge using ym =0.05
and 8=2.66.

I dn), L G l 1

I 133 133
21, 246 1.66

§  LAB(IL—I2) 1.29 1.09

73 45 76 1
E’ ——Ia+20[3~*—12+_'11+ IO
12 2 9

4

73 1003 185 1201 1
+8| —I4+— L3+——1I2— I +—Io 0.14 046
12 48 8 144 1
7 7 10
v ==L 211+ —[s——I+11 0.83 0.57
3 3 3
7
X —=L+2L+1, 1.08 143
3

deformation-potential constants determined by com-
parison of theory and experiment are expected to be un-
certain to the amount of 1 eV because of the presence of
the electrostatic effects. This is most important for the
interpretation of the value of ¢+ 3E,, which is rather
small compared to &,.6

For p-Ge, the existing theory! can readily be extended
to include the C; term of Eq. (3.17). In expressions
(2.16) and (2.17) of Ref. 1 we just make the
transformation

aez’ — (a—CofN)ers (4.9)

and similarly for ae,,’ and ae... We notice the sign of
C,, which is a consequence of the fact that C; is mea-
sured as an electron energy, whereas the opposite sign
convention was chosen in Ref. 1 for the valence-band
deformation-potential constants. The inclusion of (4.9)
in the calculations of Ref. 1 presents no computational
difficulty. As in the case of #-Ge, the C; term introduces
further anisotropy in the scattering. To illustrate this
point, we have calculated the galvanomagnetic prop-
erties for the case where only C. is nonzero, i.e.,
a=b=d=0. The reduced, longitudinal magnetoresist-
ance! in the [100] direction then attained the anomal-
ously large value of ¥'+c¢'4d'=0.55 as compared to
the value 0.058 for nearly isotropic scattering, Co=1b
=d=0.! However, for the more realistic case of |Cz| =1
eV, the change in galvanomagnetic properties (from
the case with Cy=0) was found to be less than 59%,.
This is in accordance with the simple isotropic momen-
tum-relaxation-time model proposed in Ref. 1, where
the variation of galvanomagnetic parameters is pri-
marily due to a variable ratio of light- to heavy-hole
relaxation times. We conclude that electrostatic effects
may be neglected also in p-Ge, and that the deforma-
tion-potential approach gives a satisfactory picture of
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acoustic-phonon scattering. As we shall see presently,
the electrostatic effects may be more important for the
description of optical-phonon scattering.

V. OPTICAL-PHONON SCATTERING

Perhaps the most outstanding feature of the usual
theory of nonpolar optical-phonon scattering is that
this type of scattering is forbidden for certain band
extrema as a consequence of symmety.® Although
generally claimed to be independent of the particular
model used, this property will be disproved in the
following.

The theory of optical-phonon scattering is based on
the general interaction potential (2.1), and the dis-
placements u,* are given by Eq. (2.18). For long-
wavelength optical phonons, the polarization vectors
may be expanded in a power series in ¢, and to zeroth
order we have

é*(q)=a2'(q). .1

Insertion in Eq. (2.1) then yields

SV =408/ () T aV,oein ®asn  (5.2)

In the deformation-potential approximation, we
assume the interaction-potential coefficients V. to be
of sufficiently short range so that a powers expansion
in q of the sum in (5.2) exists. To zeroth order in q we
then obtain

8V =A4,ev /() Vo), (5.3)
where V; is given by Eq. (2.10). The optical deforma-
tion potential®? V,(r) has the symmetry of &/(9), i.e.,
T'2s” in cubic crystals. This gives the selection rule that
the matrix element of V, vanishes for a nondegenerate
band at k=0 as well as for siliconlike minima on the
cubic axes.®

As in the case of acoustic-phonon scattering, we now
look at the long-range electrostatic contribution to the
scattering potential. From the inversion-symmetry
requirement (3.5) it is obvious that the electrostatic
potential yields no direct contribution to Vs, and so the
additional scattering potential 8V, is given by Eq.
(5.2) with V,* standing for the multipole potentials
(3.10). The sum in (5.2) is recognized as S; defined in
Eq. (3.9), and the result then follows from (3.12);

8
8V, =A,'e"q"(-?l—) > Qijiboi’ i - (5.4)

15k

Finally, we insert the cubic form (3.15) of Q:x and
obtain

3V =A,ev"Cof 3 | eiji| 0’ i, (5.5)
ijk
with
Co= —(167/2)Q. (5.6)
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The total scattering potential is then

SV =8Vi+oV.. (5.7)

T'rom the expression (5.5) for 8V, we observe that the
corresponding matrix element is always nonzero; in
fact, it is independent of the band structure because Co
is just a constant depending on the material. This is no
violation of the cubic symmetry since the factor
Zijk |€ijk|éoi’éjgk transforms as T'; in q space.

The magnitude of Cp in Ge can be estimated from
Lax’s theory of the phonon spectrum,? and from (3.22)
and (5.6) we find |Coao| =8.6 eV. Similar values are
obtained from Tolpygo’s theory® for Ge and Si. For
p-Ge this is to be compared with the value of the
optical deformation-potential constant do~40 eV in-
ferred from the temperature dependence of the mo-
bility.! The corresponding constant for #-Ge is Dy=35
eV.2% It is evident that the electrostatic contribution is
a secondary effect if the “normal’ part is nonvanishing.
Nevertheless, it may have some influence in certain
contexts because its form differs from that of the nor-
mal part. In #-Si, where the normal part of the intra-
valley optical-phonon scattering vanishes by symmetry,®
the long-range electrostatic contribution is probably too
weak compared to the strong f-type intervalley scatter-
ing between perpendicular valleys.10:24 Its importance
may, however, be considerably enhanced under special
experimental conditions, e.g., uniaxial stress,2® hot
electrons,?® or both.?” The previously accepted model of
scattering does not seem satisfactory in these cases.26-28

The transition rates for optical-phonon scattering
modified by 8V, are readily derived. For nondegenerate
band extrema we find the following rate P of transitions
fromktok’:

Pk k)=

+ pran

™

(ro-H31 U°k—K)
X8(E'—E+tu),

2

(5.8)

where V is the volume of the crystal, p is the mass
density, wo the optical-phonon frequency at q=0, %,
the phonon occupation number at wo, and E and E’
the energies corresponding to k and k', respectively.
U%is given by

U°(q)=5(Do+t D1d=4,)*+c.p. (5.9)

and
D1=Codo\/g. (510)

23 M. H. Jgrgensen, Phys. Rev. 156, 834 (1967). This value of
D, is deduced from a theory of warm electrons, while the tem-
perature dependence of the low-field mobility requires a 209,
higher value (cf. Ref. 6).

2¢ M. Lax and J. J. Hopfield, Phys. Rev. 124, 115 (1961).

% J, E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig,
Phys. Rev. 130, 1667 (1963).

% M. Asche, B. L. Boitschenko, V. M. Bondar, and O. G.
Sarbej, in Proceedings of the Eighth International Conference on
the Physics of Semiconductors, Moscow, 1968 (Publishing House
“Nauka”, Leningrad, 1968), Vol. 2, p. 793.

27 M. H. Jgrgensen and N. I. Meyer, Solid State Commun. 3, 311
(1965).

28 J. C. McGroddy (private communication).
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For (100) and {000) valleys, Dy=0. Equation (5.9) ex-
hibits the general feature that for D0, P is not
momentum-randomizing.® It follows that this type of
scattering cannot be treated analytically without rather
drastic approximations in the solution of the Boltzmann
transport equation.

For a degenerate extremum at k=0, e.g., the valence-
band edge, the transition rate from k in band A to k' in
band N may be expressed as in (5.8) with U° of the
following form:

U'(VE, \E, q=k—K')
= (Ddoksky/ Eint-digdy) (Ddoks' by / Evntddodu)
+ (Gd?—d 2020, ) Y WE NB)+ep., (5.11)
with
d1= —Coao. (512)
For di=0, Eq. (5.11) reduces to Eq. (2.30) of Ref. 1,
and the notation is the same as employed there. Al-
though (5.11) is not directly tractable when d;#0, some
qualitative features will be brought out here in order to
show that the electrostatic contribution may resolve
one of the discrepancies between theory and experi-
ment in p-Ge.! In Ref. 1 it was shown that for galvano-
magnetic effects, the acoustic-phonon scattering could
be represented by isotropic relaxation times in the two
bands. The Hall factor and transverse magnetoresist-
ance depend quite critically on the ratio of light- to
heavy-hole relaxation times. When d;=0, the optical-
phonon scattering can be represented by equal light-
and heavy-hole relaxation times! and this resulted in
too high values of Hall factor and transverse magneto-
resistance at room temperature. Qualitatively, the
principal effect of the d; term is to render the optical-
phonon relaxation times different in the two bands. If
dy and Dd, have opposite sign, the effect of the electro-
static correction will be to lower the above galvano-
magnetic parameters at room temperature. Even modest
values of di/dy may result in a considerable reduction
without affecting the good agreement obtained for the
temperature dependence of the mobility with d;=0.!

VI. NONLOCAL EFFECTS

In Sec. II, we showed that infinitesimal-rotation
invariance of the one-electron potential leads to the
vanishing of the curlu term in the deformation potential
(2.8). If the one-electron potential depends on prop-
erties of the electron other than position r, the invari-
ance is no longer present. An example of such a nonlocal
effect is the spin-orbit coupling

Hso“(VVOXP)'G', (61)

where o5, 0y, and o, are the Pauli-spin matrices. Ex-
change effects?® are also of this nonlocal type. The spin-
orbit corrections to the deformation potential may be

2 E, O. Kane, J. Phys. Chem. Solids 6, 238 (1958).
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evaluated by perturbation analysis,®® but once the
effect has been established, there exists a more general
method which is outlined below.

In an effective-mass representation following the dis-
placement wu; (cf. Sec. II), the deformation potential
assumes the form (for k=ko)

5Vf’“=z Dij8ij+z Dy curlzu , (62)
(%) k

which is a generalized version of Eq. (2.17). 8Vt
D;;, and D’ are matrices of dimension corresponding to
the degeneracy of the extremum at ko including spin.
In the related problem of k- p perturbation including a
magnetic field, Luttinger®! showed that the form of the
constant matrices D;; and D, is determined by the
symmetry of ko and by the transformational properties
of & and curlu relative to this symmetry. It is readily
found that curlu transforms as an angular momentum.
This leads to some interesting features which are
brought out in the following simple example.

In the case of a simple spin-degenerate extremum at
k=01in a cubic crystal, the effective deformation poten-
tial (6.2) has the form of a 2X2 matrix

8V #t=1Dg? Tre++D'e-curlu,, (6.3)

where D and D’ are deformation-potential constants. If
an arbitrary static deformation & and curlu is applied
to the crystal, Eq. (6.3) shows that Tre gives a common
shift of two spin bands, while curlu induces 4 splitting
similar to the Zeeman effect. However, asymmetric
deformations like curlu are not realized statically, but
occur in combination with transverse phonons. For the
squared matrix element of acoustic-phonon scattering,
averaged over initial states and summed over final
states with the same k, we obtain from (6.3)

| M |2= D*(Tre)?*+ D'%(curlu)?.

We observe that there is no interference between the
usual strain term and the new rotation term. This
feature can be shown to be quite general for all types of
band extrema exhibiting a Zeeman splitting.

For a transverse acoustic phonon, (Tre)? and (curlu)?
are of the same order of magnitude. If nonlocal effects
should have any influence on the scattering, we must
demand that |D’| is close to or larger than | D|, since
the ratio of the two terms in (6.4) is quadratic in D’/D.
We expect, however, that spin-orbit corrections and
exchange effects are relatively small in Si and Ge,*
and so nonlocal effects have no practical importance for
phonon scattering and are merely of academic interest.

(6.4)

VII. DISCUSSION

In this work, we have shown that the deformation-
potential approach to long-wavelength one-phonon

3 P, Lawaetz, thesis, The Technical University of Denmark,
Lyngby, Denmark (unpublished).

31 J, M., Luttinger, Phys. Rev. 102, 1030 (1956).

3 M. Cardona and F. H. Pollak, Phys. Rev. 142, 530 (1966).
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scattering in nonpolar semiconductors is subject to
nontrivial corrections arising from long-range electro-
static forces.2:3 However, these corrections are found to
be very small, and have no influence on the transport
properties except for cases where a nontrivial correction
to the usual description of optical-phonon scattering
may be important, i.e., in p-Ge and p-Si as well as in
7-Si under special experimental conditions. It would be
natural to inquire whether there is any general physical
reason for the smallness of these effects. Since we shall
make no attempt to look into details of the potentials
involved, our answer to this question is hardly more
than a suggestion.

In the theory of phonon spectra in nonpolar semi-
conductors, Lax? found a qualitatively satisfactory
model consisting of nearest-neighbor force constants
augmented by long-range quadrupole-quadrupole inter-
actions. The long-range electrostatic forces are needed
to fit the experimental phonon frequencies near the
zone edges and have but little effect near q=0. This
suggests that the forces involved are mostly of short
range and do not extend appreciably outside the unit
cell. The electrostatic forces are comparable in magni-
tude to next-neighbor forces and are important only
because of their nontrivial behavior at large q.

It is tempting to suppose that the same applies to the
change in the one-electron potential caused by the
deformation of the lattice, i.e., the scattering potential.
This means that the electron at r perceives almost only
the displacement of the two nearest atoms, that is,
those inside the cell containing r. Thus, the effect of
farther-away atomic displacements is small and so the
electrostatic interaction, which actually belongs to this
category,? has the same property. It follows that if the
long-range electrostatic effects introduce no singular
behavior of the scattering potential for long wave-
lengths, they will have a very small effect on scattering
in this region. As discussed in this paper, singular
features only occur in practice in connection with
optical-phonon scattering. We conclude that this model
is in qualitative agreement with the general results of
the present work.

If the model is essentially correct, it may offer an
important simplification in the treatment of inter-
actions involving short-wavelength phonons. By rela-
tively simple means one may thus estimate the strength
of allowed?! intervalley transitions from a knowledge of
deformation-potential constants pertaining to long-
wavelength phonon scattering. This and other features
of the short-range model will be the subject of further
investigations.
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APPENDIX A: INFINITESIMAL—DISPLACEMENT
INVARIANCE AND INVERSION SYMMETRY

For a 27-pole at R, the potential at r is of the form
shown in Eq. (3.10). To evaluate the sums (3.3) and
(3.5) we shall use the Fourier transform

1 1
T | K K—2%e—iKR (A1)
R 2xn?
and the relation
| (2r)?
3 e Ra—R) =—___5(K), (A2)

where Q is the volume of the unit cell. In terms of its
Fourier transform, V,* has the following form:

1
Vi =—(—1)? 3 Qi]-k.../dsK K2K;Ky...a?"!
272 F 2

Xe—-iK- (I—Ro—at)e“{' (Ra—Ryo) .

(A3)
By means of (A2) we then find

47
> Vm"’=~é(——i)" > Qi,-k.../dﬂ( KK ;K}...6(K)
n Gl e s

Xap-—le“il(- (r—Ro—at) . (A4)
We see immediately that for p>2, 3~, =0 independent
of a. For p=2, we sum (A4) over « to obtain

8
2 Var= __S_Z- > Qijk/d3K K—2K,;K; sin(K-t)
na ik

X(K)e~i- R0 (A5)

=0.

We have thus shown that all poles with p> 2 satisfy the
requirement (3.3) of the infinitesimal-displacement in-
variance, provided that the potential arising from the
displacement of the two atoms with #=0 is described
by the same poles as for #=0.

For $>2 we have already shown in (A4) that
> na aV,2=0, whereas for p=2,

> aVa® e« Qijrbie.
Ik

na

(A06)

According to the macroscopic inversion symmetry

(3.5), the sum in (A6) must vanish, and so
2 Qijkdir=0 (A7)
jk

must be satisfied by the quadrupole. In the cubic case

(diamond lattice), Qqx is of the form (3.15), so that the
requirement (A7) is automatically fulfilled.
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APPENDIX B: SUMMATION OF THE
ELECTROSTATIC TERMS

In this Appendix we evaluate the sums S;, S, and
S; given by Eqs. (3.7)-(3.9), respectively, using the
multipole potential V,2 from (3.10). Its Fourier trans-
form is shown in Eq. (A3). On applying the summation
relation (A2) we have

Z Vni“e’i‘I' (Rp®—r) =——a17—11:]7

n

X kE Qise-q*qsq- -+ (B1)
Fond

It is then obvious that S; contains only odd poles,
whereas S; has contributions only from even poles.
To first order in ¢ we obtain

8 N
Sti=——1 2 Qijnngidrd
Ikl

& A A
Ssi=——2 QuidiQx-
Q gk

(B2)
and
(B3)

In order to evaluate S;, we introduce an artificial
oscillatory variation with wave vector x:

V"a =lim Vnue—ix- (Rn—Ro) |

k>0

(B4)

On taking the limit ¥ — 0, we should only consider the
isotropic (principal) part of the argument in % space.
Actually, the form (B4) is also used to derive Eq. (A6)
Then from (3.8)

I¢]
Spi=—2, AV ni® lim —e (Rn—Ro) |
nal x>0 ax)\

(B3)
Insertion of the Fourier transform of V,;* gives

4
S2i=—z Z qbeijk...a”“l(—i)"ling /daK K2
Q k>

an koo

I¢]
XK;Ky...e~ X —Ro—at)__§(K —),
Ok

(B6)
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and so by means of a well-known §-function theorem

dr .9
Soi= ———(-—1,)1’ Z q)\oﬂ’_l Z Qijk--- lim —
Q oy o

k>0 aK)\

X[K—2K]‘K[c e e——ix- (r—Ra—at)] .

(B7)

It is immediately seen that this vanishes for p>4.
For p=2 we find

, 81 .
Sy =— Z Q)\tuQijk ‘1‘1_5101 {—ZK)\KichKM
Fov

+:2j:€k6,‘)\-|—r2]~;2,,5m+kk:2,,6x,-} (BS)
81
=— 3 Qulgitetauti+(q-£)8;].
5Q &

But according to Eq. (A7) the last term vanishes, and
because Q;;x is symmetric in § and &, we find

, 16w
S =§2‘% Qijxqitr - (BY9)
For p=3 we obtain from (B7)

, 81 .
S’ = ——Q- 2 Qijkgr ll_g)l { — 2R Roie
Nkl

FRikiOntRikiOrtRik00)  (B10)
81
=———23 Qijul¢;dr+qrdij+qdin],
5Q jxl

and using the interchangeability of 7, &, and I, we
arrive at
2411

Sei! = ———3" Quijriq;0ni.

(B11)
5Q jx

Finally, the total S,; is found by addition of (B9) and
(B11):

8r
Spi=—i[2 3 Qiingits—3 2 Qumg;dr].  (B12)
5Q ik ikl



