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Abstract

Simulation and analysis of roller chain drive systems

The subject of this thesis is simulation and analysis of large roller chain drive systems,

such as e.g. used in marine diesel engines. The aim of developing a chain drive simulation

program is to analyse dynamic phenomena of chain drive systems and investigate different

design changes to the systems, in order to remove unwanted phenomena. Such a computer

program can, when properly validated, be used as an alternative to or in combination with

physical experiments. Prior investigations in this area have been done with a focus on

smaller chains in high speed chain drives. For large low speed systems other phenomena

occur and therefore, a specific model of the marine engine chain drive is of interest.

The research objective of the work presented in this thesis is to contribute with a novel

theoretical basis for the analysis of chain drive systems, by posing and validating different

mathematical models, and compare to the prior done research. Even though the model is

developed at first for the use of analysing chain drive systems in marine engines, the

methods can with small changes be used in general, as for e.g. chain drives in industrial

machines, car engines and motorbikes.

A novel formulation for the simulation of the dynamics of roller chain drives using a

continuous contact force method is developed in this work. The model of the contact

surface between the rollers and sprocket has shown to be an important issue regarding the

numerical stability of the simulation program and a model with a real tooth profile proves

superior to other applied models. With this model it is possible to perform a dynamic

simulation of large marine engine chain drives. Through the application of this method,

it is shown that the interrelated dynamics of the elements in the chain drive system is

captured and the contact problem is characterized. The chain drive model is compared

with simplified analytical results, while the necessary experimental validation is left for

future studies.
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Abstrakt (In Danish)

Simulering og analyse af kædetræksystemer

Denne afhandling omhandler simulering og analyse af kædetræk, som f.eks. anvendes

i dieselmotorer, primært til fremdrift af skibe. Målet med at udvikle et kædetræksimu-

leringsprogram, er at analysere kædetræks dynamiske fænomener og undersøge forskel-

lige designændringer af systemet, med det formål at fjerne uønskede fænomener. Et sådan

computerprogram kan, når det er passende vurderet, blive brugt som et alternativ til eller

i kombination med fysiske forsøg. Tidligere forskning indenfor dette område er udført

med fokus på mindre kæder og højhastigheds kædetræk. For store lavhastigheds kæde-

træk opstår der anderledes fænomener, og derfor er der interesse for en specifik model for

kædetræk i skibsmotorer.

Det videnskabelige mål med arbejdet præsenteret i denne afhandling, er at bidrage med

en ny teoretisk basis for analyse af kædesystemer, ved at foreslå og validere forskellige

matematiske modeller, og sammenligne med tidligere udført forskning. Selvom modellen

udvikles med kædetræk til skibsmotorer for øje, vil den udviklede metode kunne anven-

des til kædetræksimuleringer generelt, som for eksempel kædetræk i industrimaskiner,

bilmotorer og motorcykler.

I dette arbejde er til simulering af kædetrækdynamik udviklet en ny formulering, som

anvender en kontinuert kontaktkraftmetode. Modellen for kontaktfladen mellem ruller

og kædehjul har vist sig at være en vigtig faktor med henblik på numerisk stabilitet af

simuleringsprogrammet, og en model med et virkeligt tandprofil er at foretrække frem for

andre anvendte modeller. Med denne model er det muligt at udføre dynamisk simulering

af store skibsmotorkædetræk. Ved anvendelse af denne metode er det vist, at den ind-

byrdes dynamik for kædesystemets dele er beskrevet og kontaktproblemet er karakteri-

seret. Modellen af kædetræk er sammenlignet med simplificerede analytiske resultater,

medens den nødvendige eksperimentelle validering er overladt til fremtidige studier.
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nl Number of chain links in the system

nt Number of teeth on a sprocket

P Chain pitch distance

Pb Chain break load

Pcd Dissipated power due to damping in

contact with sprockets or guide-bars
PdriverApplied power

Pi Point on bodyi

Pj Point on bodyj

Pld Dissipated power due to longitudinal

damping
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Prd Dissipated power due to rotational

damping
Pf Dissipated power due to friction

PT Total dissipated power

Qi Point on bodyi

qa Tension in a chain segment

qb Tension in a chain segment

qc Centrifugal force

rk Radius of bodyk, k = i, j

RE Radius used for the real tooth profile

RF Radius used for the real tooth profile

Rge Radius of rounded end of guide-bar

Ri Pitch radius of sprocketi = 1, 2, · · ·
Rs Pitch radius of sprockets

Rr Roller radius

Rt Tooth radius

Rtg Distance form grounded point to

sprocket center
∆R Difference between tooth radius and

roller radius
sbf∗x x coordinate of vectorsbf∗

sbf∗y y coordinate of vectorsbf∗

S Length measure used for the real tooth

profile
Sj Sine of the angle related to toothj,

times the sprocket pitch radius
T Tangential force

t Time

tc Time limit

te Time instant where contact ends

tr Revolution time of the driving sprocket

ts Time instant where contact begins

V Chain string velocity

vrpm Driver velocity given in rpm

v Relative speed

vr Relative speed in radial direction

vt Relative speed in tangential direction

vn Relative speed in normal direction

vt Relative speed in tangential direction

v∗
t Speed limit

v Relative speed

vin Projection of relative velocity of bodyi

in then direction
vjn Projection of relative velocity of body

j in then direction

vβ Relative speed in the direction of the

tooth profile
v(+) Relative speed after impact

v(−) Relative speed at impact

W1 Length measure used for the real tooth

profile
W2 Length measure used for the real tooth

profile
W3 Length measure used for the real tooth

profile
W4 Length measure used for the real tooth

profile
x Abscissa axis of global reference frame

xG1 x coordinate of grounded point

xG2 x coordinate of grounded point

xi x coordinate of the position vector for

roller i
xs x coordinate of the position vector for

sprockets
xw1 x coordinate of the center of mass po-

sition of the weight-arm
xw2 x coordinate of point on the weight-

arm
y Ordinate axis of global reference frame

yG1 y coordinate of grounded point

yG2 y coordinate of grounded point

yi y coordinate of the position vector for

roller i
ys y coordinate of the position vector for

sprockets
yw1 y coordinate of the center of mass posi-

tion of the weight-arm
yw2 y coordinate of point on the weight-arm

z Ordinate axis of global reference frame

α Pitch angle

β Angle of the semi real tooth profile

δ Magnitude of indentation

δ1 Indentation in tooth contact area 1

δ2 Indentation in tooth contact area 2

δ3 Indentation in tooth contact area 3

δ4 Indentation in tooth contact area 4

δg Initial indentation of a guide-bar

pressed into the chain
δg1 Indentation in guide-bar contact area 1

δg2 Indentation in guide-bar contact area 2
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δg3 Indentation in guide-bar contact area 3

δr Indentation in radial direction at the po-

sition of a roller on a sprocket
δt Indentation in tangential direction at

the position of a roller on a sprocket
δβ Indentation in the tooth

δmax Maximum indentation

ε Approximation constant

ζ The pressure angle

ζi Ordinate axis of local body fixed refer-

ence frame
ζs Ordinate axis of local sprocket fixed

reference frame
η Relaxation factor

ηc Hysteresis damping factor

ηg Ordinate axis of local guide-bar fixed

reference frame
ηi Ordinate axis of local body fixed refer-

ence frame
ηs Ordinate axis of local sprocket fixed

reference frame
ηt Ordinate axis of local tooth fixed refer-

ence frame
θ Angle of rotation

θi Angle of rotation of bodyi

θj Angle of rotation of bodyj

θs Rotation angle of sprockets

θt Rotation angle of a tooth

λi Lagrange multiplier component

τ External moment

τs External moment on sprockets

τl Rotational damping moment

µ Frequency

µc Dynamic correction factor

µd Dynamic friction coefficient

µs Static friction coefficient

ν Poisson’s ration

νk Poisson’s ration for bodyk, k = i, j

ξg Abscissa axis of local guide-bar fixed

reference frame
ξi Abscissa axis of local body fixed refer-

ence frame
ξs Abscissa axis of local sprocket fixed

reference frame
ξt Abscissa axis of local tooth fixed ref-

erence frame

φ Phase angle

φ1 Phase angle

φ2 Phase angle

φp Phase angle

φ
(t)
1 Constraint equation for translational

joint
φ

(t)
2 Constraint equation for translational

joint
φtg Rotation angle of weight-arm

ϕg Rotation angle of guide-bar

ϕi Relative angle between two adjacent

links
ϕt Initial rotation angle of guide-bar

ϕτ Angle

ψ1a Angle used to define real shaped tooth

profile
ψ2a Angle used to define real shaped tooth

profile
ψ1b Angle used to define real shaped tooth

profile
ψ1b∗ Angle used to define real shaped tooth

profile
ψ2b Angle used to define real shaped tooth

profile
ψ2b∗ Angle used to define real shaped tooth

profile
ψ1c Angle used to define real shaped tooth

profile
ψ2c Angle used to define real shaped tooth

profile
ψ1c∗ Angle used to define real shaped tooth

profile
ψ2c∗ Angle used to define real shaped tooth

profile
ψ1 Angle used to define real shaped tooth

profile
ψ10 Angle used to define real shaped tooth

profile
ψ2 Angle used to define real shaped tooth

profile
ψ20 Angle used to define real shaped tooth

profile
ψ3 Angle used to define real shaped tooth

profile
ψ30 Angle used to define real shaped tooth

profile
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Chapter 1
Introduction

1.1 Background

The background for this thesis is some observations that the company MAN B&W Diesel

A/S has made from roller chain drives in some of their marine diesel engines. The com-

pany MAN B&W Diesel A/S manufactures large marine diesel engines and these engines

has for many years used roller chain drives to drive the camshaft by a chain connection

from the crankshaft to the camshaft see Figures 1.1 and 1.2. Other methods as e.g. hy-

draulic lifting of the valves are presently, and the development is towards electronically

controlled engines, but chain driven camshaft engines will still be produced and main-

tained for many years.

The roller chains on these engines are very large, some has more than 100 links and each

link may have a mass of a couple of kilos. The chain drive is standard in marine engines

with between 4 and 12 cylinders for a power range of 1760 to 78000 kW. The roller chain

is somewhat similar to a bicycle chain in the way it looks, but far from the same size.

Sprocket

Roller Chain

Figure 1.1: A roller chain drive system with 4 sprockets

1
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While the engine is running the roller chain wears and because of this it extends. The

chain therefore has to be tightened, frequently as it gradually extends, in order for the

chain to be functional. To avoid the manual tightening of the chain, automatic chain tight-

eners are introduced on some of the engines. In some occasions this has caused vibration

patterns of the chain and chain tightener and these vibrations were not immediately expli-

cable. One could fear that it would cause fatigue, wear or damage in the chain and lead to

a break of the chain.

Several researchers have studied the roller chain problem using various approaches e.g.

Wang and Liu (1991a), Kim and Johnson (1993), Pfeiffer (1995), Pfeiffer et al. (1997),

Veikos and Freudenstein (1992a), Veikos and Freudenstein (1992b), Mahalingam (1958),

Bouillon and Tordion (1965), Choi and Johnson (1993a), Conwell and Johnson (1995),

Fritz and Pfeiffer (1995), Troedson and Vedmar (1999) and Troedson and Vedmar (2001).

In these studies it is pointed out that several phenomena occur in a roller chain drive. One

of these phenomena is the so called polygonal effect, which occurs due to the fact that

links engage and disengage on sprockets, and then the length of the coupling segment

between two sprockets changes. This effect together with the impact of rollers with the

sprockets is responsible for the noise and vibration of the roller chain.

The scientific basis for analysis of the large chain drive systems used in the marine engines

is however not deep enough, since the prior investigations has been done with a focus on

smaller chains in high speed chain drives, such as used in some car engines. The size

of the chain makes the system more stiff than the smaller chain drive systems and the

computation has to be made with a focus on minimizing the simulation time. The tightener

systems and guide-bars in the chain drive system used in the marine diesel engine are also

somewhat different from those used in e.g. some car engines. Therefore, a specific model

of the marine engine chain drive is of interest.

Examination of the dynamic phenomena in these very large roller chain drives is not only

of the interest for the company MAN B&W Diesel A/S. Because roller chain drives also

are used in a variety of other machines, roller chain drive dynamics in general is an im-

portant area. When these dynamic phenomena are analysed it is important to investigate

modifications to the system in order to remove the unwanted phenomena. These modi-

fications are much less expensive (money and time wise) to investigate using a properly
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Figure 1.2: Blueprint of a L35MC Engine (from MAN B&W Diesel A/S)

validated computer program, than performing physical experiments.

To analyse the dynamic behaviour the roller chain drives a simulation program is devel-

oped. The simulation program is developed from fundamental mechanics and calculates

the position, velocity and acceleration of the rollers. The reaction forces on the rollers
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due to e.g. the rollers being seated on the sprockets are also calculated.

1.2 Roller Chain Drive Systems

Roller chain drives are used for many different purposes and the size of the chains and

sprockets vary, from e.g. being used on bicycles to e.g. being used in large marine diesel

engines, see Figure 1.3.

Figure 1.3: The size of the roller chain used in marine engines.

The dynamics of the roller chain drives is characterized by a complex behaviour with

impacts between the chain links and sprockets and by discontinuities in the system com-

ponents velocities giving rise to transversal and longitudinal vibrations on the spans of the

chain. These events are the responsible factors for part of the noise presented by mechan-

ical devices that use roller chains and ultimately by the wear of the roller chain drives.

Though roller chains have been used for a long time as a reliable mechanical component

to transmit power and to handle materials mechanically, only in the last decades their

dynamical behaviour is studied, see e.g. Wang and Liu (1991a). The main reason for

this situation is that their dynamics is very complex, making it impossible to find general

analytical procedures able to describe thoroughly the problem.

With the development of fast computers some recent efforts have been put forward in or-

der to better understand different aspects of these mechanical components, see e.g. Veikos

and Freudenstein (1992a). In a review of the state-of-art Wang and Liu (1991a) summa-

rized many of the investigations that have been carried out and state that integrated models

describing the full dynamics of the system are necessary, in order to accurately describe
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the interrelation between the different elements in the chain drive system.

The major difficulties in the study of the roller chain drives are related with the way

that the roller chain wraps around the sprockets, forming a polygon. This effect, called

the polygonal action, together with the impact between rollers and sprockets participates

in the creation of the noise and vibration on the roller chain drive. The influence on

the system dynamics of the impulsive forces that act on the rollers and sprockets at the

moment of their engagement, and which results in a discontinuity of the roller velocity,

has been the subject of different investigations by Turnbull and Fawcett (1972), and Chew

(1985).

The combined action of the polygonal effect and the roller impact leads to the develop-

ment of longitudinal and transverse vibrations on the chain strands in which the flexibility

of the links plays an important role. Veikos and Freudenstein (1992a) proposed a discrete

model, which takes into account the polygonal action. The driving span of the chain is

modelled by lumped masses connected by linear springs and considers the coupling be-

tween the longitudinal and transversal vibrations and the moving boundary conditions.

However, the effect of chain guides in the drive and the angular speed fluctuation of the

driving sprocket are not considered.

Fritz and Pfeiffer (1995) present a methodology where the roller-sprocket and the guide-

chain contacts are treated as unilateral constraints. In this study an integrated model

describing the complex dynamics of the roller chain drive including chain guides and

moving sprockets is proposed. Of the most resent work can be mentioned Troedson and

Vedmar (1999) and Troedson and Vedmar (2001), that present a model using an iteratively

force equilibrium method including the standard geometry of the sprockets.

In the present study different models of contact between the rollers and sprockets are

proposed and two of them are compared with analytical results, for simplified models,

see Binder (1956). The roller chain drive model has one driving sprocket and one or

more driven sprockets. The complete chain is modelled by lumped masses connected

by spring-damper uniaxial elements. The methodology proposed for the roller-sprocket

contacts is penalty forces, which use the continuous force model proposed by Lankarani

and Nikravesh (1994). Through the application of this, it is shown that the roller-chain

drive interrelated dynamics of the elements in the chain drive system is captured and

the contact problem is fully characterized. The model includes different parts, such as

e.g. the chain tightener systems, out of balance wheels and guide-bars, from the marine
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engine and can be used for different analysis of the system e.g. resonance investigations

on the chain drive system with external excitations. However the necessary experimental

validation is left for future studies.

1.3 Research Objective

The aim of the work presented in this thesis is to contribute with a novel theoretical basis

for the analysis of chain drive systems, by posing and validating different mathematical

models, and compare to prior research. Even though the model is developed at first for

the use of analysing chain drive systems in marine engines, the methods can with small

changes be used in general, as for e.g. chain drives in industrial machines, car engines

and motorbikes. In the model several different parts that appear in the chain drive systems

in the marine engines are included.

A numerical stable method is necessary in order for the simulation program to be used as

a general purpose program, for roller chain calculations of different chain drive systems

large as well as small. It is aimed to use as simple a model as possible that satisfies this

demand. It is also important that the simulation time is minimized, because the method

will often be used in design iterations. Next the model should be compared to experimen-

tal results in order to validate the method. Experimental results are not directly in hand

and therefore the results are discussed with MAN B&W Diesel A/S and comparisons are

made between different mathematical models.

The objective is to be able to analyse several dynamic phenomena of the chain drives sys-

tem using the simulation program. These dynamic phenomena are e.g. the contact forces

between the roller chain and the sprockets, the contact forces between the roller chain and

the guide-bars, the vibration pattern of the free chain strands between the sprockets, the

vibration pattern of the tightener system and resonances with the external excitation of the

driving sprocket. If possible it should be explained why the hydraulic tightener system

and chain in some occasions vibrates in patterns which has not earlier been immediately

explicable. The force with which the chain affects the guide-bars is also of interest, due

to the fact that if the rubber of the guide-bars breaks it will cause damage on the sprockets

as well. In the future perspective the objective is to be able to suggest design changes of

the chain drive system, based on the simulation results.
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1.4 Multibody Dynamics

The modelling of the chain drive system is based on the use of Multibody Dynamics

analysis tools. Multibody Dynamics is the field of computer-aided analysis of mechan-

ical systems and is well presented in several books e.g. Nikravesh (1988), Hansen and

Nikravesh (1998), García de Jalón and Bayo (1994) and Haug (1989). In Schiehlen (1997)

a review on the roots and perspectives of Multibody Dynamics is presented and the large

amount of different applications to mechanical systems is described.

In this thesis the Lagrangian formulation of the equations of motion using 2D Cartesian

coordinates are used, see e.g. Nikravesh (1988). Several other methods exist, but this

method is chosen because it is simple to develop a general-purpose program, and it is

aimed that the chain drive program developed is general in the sense of being used on

different chain drive systems. The derivation of the equations of motion is simple with

this formulation and the order of non-linearity is low. The method has the disadvantage of

introducing a larger amount of coordinates, compared to other formulations, however an

advantage is the implementation of the forces which is straight forward and computational

efficient.

1.5 Contact and Friction

When two bodies collide, impact forces and a sudden change in the velocities occur. Col-

lision between bodies appears in many different multibody systems, e.g. bodies connected

with clearance joints and bodies that experience hard stops. The applications of contact

models to practical problems are wide, e.g. vibration conveyors, chimney dampers and

chains, Pfeiffer (1999), in machines with clearance joints, Dubowsky and Freudenstein

(1971a), Dubowsky and Freudenstein (1971b) and in train crash worthiness Milho et al.

(2002). Contact between bodies may change its state from attached to detached, from

sliding to stiction, and vice versa. These different states may be described in various

ways, see e.g. Pfeiffer and Glocker (1996).

One way to describe the connection between the bodies is by applying or deleting kine-

matic constraints when the bodies respectively attach or detach. When impact occur it is

assumed that the impact force acts over an infinitesimal period of time and the jump dis-

continuity in velocities is possible to compute. Using this method and including friction,

the friction force is, for the case of sliding, iteratively calculated and applied to the sys-

tem equations of motion. When the contact state changes to stiction an extra constraint is
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applied to the system equations of motion, which locks the given motion. This constraint

is removed when the state changes again from stiction to sliding, see García de Jalón and

Bayo (1994).

A different way of describing contact with bodies is to treat the local deformations and

contact forces as continuous and in contrast to the discontinuous method the velocities are

here continuous. When two bodies gets in contact a continuous contact force is applied

perpendicular to the contact surface and this contact force is included in the system equa-

tions of motion during the contact period, see Lankarani and Nikravesh (1994), Ambrósio

and Hansen (1995), Ravn (1998), Ambrósio (2003). The contact force is known during

the whole period of contact and is easy to mix with rigid body analysis methods. The

method requires a more flexible numerical integration scheme than the rigid body system

and very small time steps are necessary.

In this thesis the modelling of contact between the chain links and the sprockets or the

guide-bars is done using the continuous contact force formulation based on a Hertzian

contact force formulation, see Goldsmith (1960), Hunt and Crossley (1975), Dubowsky

and Freudenstein (1971a), Dubowsky and Freudenstein (1971b). The contact model is

extended to include a damping term as proposed in Lankarani and Nikravesh (1990) and

Lankarani and Nikravesh (1994), whereby energy dissipation is accounted for.

The roller chain drive system is at all times lubricated, which reduces the friction, but

friction will always be present. This friction is modelled by a Coulomb, or dry modelling

of friction, which is included in the continuous contact force model, see e.g. García de

Jalón and Bayo (1994), Haug et al. (1986), Bagci (1975). The model of Coulomb friction

is used to describe friction between non-lubricated contact surfaces. The friction force

dependency on the relative velocity is modified from the standard dependency in order to

avoid the discontinuity at zero, see Threlfall (1978), Rooney and Deravi (1982), Ambró-

sio (2003), Flores et al. (2003). This modification is done by introducing a continuous

dependency. By including friction an additional energy dissipative effect is accounted for.

1.6 Contents of this Thesis

In chapter 2 some general mathematical tools and definitions are given. The chapter is a

presentation of some tools of multibody systems dynamics in 2D. The general equations

of motion for rigid bodies and the Multibody Dynamics analysis tools in 2D including the
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Lagrange Multiplier Method are given.

In chapter 3 the chain drive system is modelled and the governing equations of motion for

the system are presented. The polygonal action is described and rotational damping in the

link joints is included and described. Various investigated contacts models are described

and discussed. A kinematic constraint method is shortly described, whereas a continuous

contact forces method based on Hertz contact force is described more thoroughly. Related

to the continuous contact force method different models of the shape of contact surfaces

of the sprocket teeth are presented. How the different parts in the marine diesel engine

are modelled and a friction model is presented at the end of the chapter.

Chapter 4 is on the numerical simulation procedure, the simulation conditions and as-

sumptions. Some simplified analytical results for the link forces and contact forces taken

from Binder (1956), analytical results for eigenfrequency analysis of the chain strands

between the sprocket taken from Mahalingam (1957) and Naguleswaran and Williams

(1968) and analytical results for the eigenfrequencies of the chain drive system are given.

Based on the different models and methods described in chapter 3 and chapter 4 a simu-

lation program is developed. Two of the different ways of modelling the contact between

the rollers and sprockets are compared with analytical results in chapter 5. The influence

of inclusion of friction and inclusion of rotational damping on the links is presented in

chapter 5. The methodologies are applied to the simulation of different chain drive sys-

tems used in marine diesel engines, and inclusion of the different parts are analysed. A

resonance analysis is presented and compared with analytical results of the eigenfrequen-

cies of the chain segments. In the last part of the chapter some experimental ways of

validating the computer program, which will be done by MAN B&W Diesel A/S in the

near future, are listed.
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Chapter 2
General Tools and Definitions used in this Thesis

2.1 Introduction

In this chapter some general tools and definitions are given. Throughout this thesis the

mathematical formulation is done in 2D and the mathematical tools and notation presented

are therefore concentrated on 2D.

The general equations of motion for rigid bodies are given with the formulation for multi-

body systems. The basic concepts needed to simulate a mechanical system of rigid bodies

connected by joints are shown and the Lagrange Multiplier Method is presented.

2.2 Mathematical Tools

2.2.1 The Notation used in this Thesis

All matrices are written in capital with boldface, e.g. matrixA. All vectors are written in

small letters with boldface, e.g. vectora. A vector with ’ as superscript on the right side

indicates that the vector is given in a local coordinate system, e.g. local vectora
′
. The

derivative of a quantitya with respect to time is denoteḋa and the second derivative of a

quantitya with respect to time is denoted̈a yielding

ȧ :=
da

dt
, ä :=

d2a

dt2
(2.1)

2.2.2 Vector Notations

From a 2D vectora we can construct a vectorâ called the hat vector ofa, and vector̂a is

perpendicular to vectora in the counter clockwise direction. If vectora is given by

a =

{
a1

a2

}
(2.2)

then vector̂a is given by

11
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â =

{
−a2

a1

}
(2.3)

The first derivative of vectora with respect to time is writteṅa and the second derivative

of vectora with respect to time is written̈a. The transposed of a vector is denotedaT.

The length of vectora (or the 2-norm) is denoted‖a‖ and is given by

‖a‖ = (aTa)1/2 =
√

a2
1 + a2

2 (2.4)

2.2.3 Transformation Matrix

In 2D the transformation matrixA is given by the angle of rotationθ

A =

[
cos θ − sin θ

sin θ cos θ

]
(2.5)

s

sx

sy

s
′
x

s
′
y

θ

x

y

x
′

y
′

Figure 2.1: Reference frames(x, y) and(x
′
, y

′
).

The vectors is in the(x
′
, y

′
)-coordinate system given by vectors = {s′

x, s
′
y}′T , where

the prime indicates local coordinate system as used in Nikravesh (1988) and in the(x, y)-

coordinate system given by vectors = {sx, sy}T . The transformation of the vectors
′
to

the vectors is given by

s = As
′

(2.6)

For the transformation matrix we haveA−1 = AT due to orthogonality. (In 3D the rota-

tion of a body can be described using Euler angles, Bryant angles or Rodriges parameters.

The most common used method is the Euler angles, see e.g. Nikravesh (1988).)
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2.3 General Equations of Motion for Rigid Bodies

In Figure 2.2 is shown a body in 2D with the massmi and the mass moment of inertia to

theζi-axisJ . The body is exposed to an external forcef and an external momentτ . The

(ξi, ηi)-coordinate system is the body-fixed/local coordinate system. The local coordinate

system is placed at the centre of mass of the body. The(x, y)-coordinate system is the

inertial/global coordinate system.

r

x

y

ξi

ηi

ζi

Massmi

Body coordinate system

f

τ
θ

Figure 2.2: A rigid body in 2D exposed to an external forcef and an external momentτ , with the body-

fixed coordinate system placed at the centre of mass.

The equation of motion is for the case of the body-fixed coordinate system placed at the

centre of mass given by [
miI 0

0 J

]{
r̈

ω̇

}
=

{
f

τ

}
(2.7)

whereI is the identity matrix of order two andr is the vector from the inertial coordinate

system to the centre of mass. The angular velocity isω = θ̇ and the angular acceleration

is ω̇ = θ̈. The equation of motion for the case of the body-fixed coordinate system not

placed at the centre of mass as shown in Figure 2.3 is given by[
mI mρ̂

mρ̂T J + m ‖ ρ ‖2

]{
r̈

ω̇

}
=

{
f + ω2mρ

τ

}
(2.8)

whereρ is the vector from the origin of the body-fixed coordinate system to the centre of

mass, vector̂ρ is the hat vector ofρ and‖ ρ ‖ is the length of the vector. The vectorr is

the vector from the inertial coordinate system to the origin of the body-fixed coordinate

system. The forcef and momentτ are described with respect to the body-fixed coordinate
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system. The mass moment of inertiaJ + m ‖ ρ ‖2 about the origin of the body-fixed

coordinate system is calculated using Steiner’s theorem.

Writing (2.8) in a compact form, we use a generalised mass matrixM that includes both

the mass and the mass moment of inertia we have

Mq̈ = g (2.9)

whereq = {rT , θ}T = {x, y, θ}T is the position vector andg = {fT , τ}T = {fx, fy, τ}T

is the generalised force vector.

Centre of mass

r

x

y

ξi

ηi

ζi

Massmi

Body coordinate system

f

τ
θ

ρ

Figure 2.3: A rigid body in 2D exposed to an external forcef and an external momentτ , with the body-

fixed coordinate system not placed at the centre of mass.

2.4 Multibody System Dynamics Analysis Tools

A multibody system is an assembly of a number of bodies connected to each other by

a number of kinematic joints. A joint permits certain degrees of freedom of relative

motion and restricts others. In planar/2D multibody system kinematics (or dynamics),

the most used joints are revolute and translational, which respectively allows one relative

rotation and one relative translation. In 3D multibody system kinematics (or dynamics)

e.g. cylindrical, spherical, universal joints and others are also used. For the case of a body

having all degrees of freedom (position and orientation) fixed the body is a grounded

body.

Kinematic constraint equations for the planar revolute joint are given by
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Figure 2.4: Two rigid bodies connected by a revolute joint.

φ(r) = ri + si − rj − sj = 0 (2.10)

where the vectorsri andrj are the vectors from the inertial coordinate system to the origin

of the body-fixed coordinate systems of bodyi and bodyj, respectively. The vectorsi is

the vector to pointP on bodyi, given relative to the body fixed reference frame on bodyi.

The vectorsj is the vector to pointP on bodyj, given relative to the body fixed reference

frame on bodyj. The two constraint equations in (2.10) forces the pointP on bodyi two

be coincident with pointP on bodyj, see Figure 2.4.

For the planar translational joint the kinematic constraint equationsφ(t) = {φ(t)
1 , φ

(t)
2 }T

are given by

φ
(t)
1 = dT

i1di2 = 0

φ
(t)
2 = θi − θj − (θ0

i − θ0
j ) = 0 (2.11)

with the vectordi1 = {xP
i − xR

i , yP
i − yR

i }T and vectordi2 = {xP
j − xP

i , yP
j − yP

i }T .

The vector from the inertial coordinate system to pointPi on bodyi is rP
i = {xP

i , yP
i }T ,

to pointPj on bodyj it is rP
j = {xP

j , yP
j }T , to pointQi on bodyi it is rQ

i = {xQ
i , yQ

i }T

and to pointRi on bodyi it is rR
i = {xR

i , yR
i }T . The anglesθi andθj are the rotational
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Figure 2.5: Two rigid bodies connected by a translational joint

angles of the two bodies andθ0
i andθ0

j are the initial rotational angles. The two constraints

respectively forces the vectordi1 to be perpendicular to vectordi2 and forces the relative

angle between the two bodies to be zero, see Figure 2.5.

For both 2D and 3D we can create our own joints depending on the mechanism we want

to simulate. All the constraint equations from the joints in the multibody system are

collected in on constraint vector, which during a simulation should be equal to zero. In

general the constraint vector is

φ(q, q̇, q̈, t) = 0 (2.12)

wheret is the time andq is a vector of the Cartesian coordinates for the multibody system

given by

qT = (x1, y1, θ1, . . . , xn, yn, θn) (2.13)

The number of bodies in the multibody system isn. The number of degrees of freedom

(DOF ) of the multibody system is equal to the number of coordinates minus the number

of constraints. WhenDOF = 0 we have a kinematic determined system and we can

simulate the system using Kinematic Analysis. WhenDOF � 0 we can simulate the

system using Dynamic Analysis.

Using the Lagrange Multiplier Method, see e.g. Nikravesh (1988), Hansen and Nikravesh
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(1998) and Haug (1989), we have the equations of motion of the system using Cartesian

coordinates given by

Mq̈ + Φλ = ge (2.14)

whereΦ is the Jacobian matrix,∂φ
∂q

, λ is the vector of Lagrange Multipliers,ge is the

generalised external forces. The vector of generalised forces isg and it is given by

g = ge − Φλ (2.15)

The equations of motion (2.14) and the constraint equations (2.12) together is a system of

differential algebraic equations (DAE), as

Mq̈ + Φλ = ge

φ = 0 (2.16)

Equation (2.16) can be solved using numerical integration methods forDAE’s, such as

Implicit Runge-Kutta and Backwards Difference Formulae, see e.g. García de Jalón and

Bayo (1994).

If the constraint equations do not depend on the velocities and accelerations, the second

derivative of constrainti with respect to time becomes

φT
i q̈ = γi (2.17)

If the constraint depends on the velocity the constraint is only differentiated once and if it

also depends on the acceleration the constraint is not differentiated. The right hand side

γi consists of all the elements not dependent on the accelerations. In Equation (2.17) we

have the second derivative of one constraint with respect to time, collecting the second

derivatives of all the constraints we get

ΦT q̈ = γ (2.18)

whereΦ is the Jacobian matrix. The set of equations in (2.18) and the equations of motion

(2.14) is a system of ordinary differential equations (ODE), put together as

[
M ΦT

Φ 0

]{
q̈

λ

}
=

{
ge

γ

}
(2.19)
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The set of equations (2.19) can be solved with numerical integration methods forODE’s

such as Runge-Kutta, Gear-Method and others, see e.g. Iserles (1996) and Shampine and

Gordon (1975).

When theODE’s in (2.19) are solved constraint violation may occur, because Equation

(2.18) only represent the acceleration constraints. Due to numerical errors the solution

can drift away from the constraint equations. The constraint violation may be avoided

using stabilization methods, such as Baumgarte stabilization, see e.g. Nikravesh (1988)

and García de Jalón and Bayo (1994). Another way of avoiding constraint violation is to

use other formulations of the equations of motion. This could e.g. be using generalized

coordinates where the constraint equations vanish, because only the differential equations

of the independent coordinates are solved. A different method to be mentioned is the joint

coordinate method, see Nikravesh (2001). This method has a low number of constraint

equations or none at all. In García de Jalón and Bayo (1994) the natural coordinates

formulation is introduced, which has a low number of coordinates.



Chapter 3

Model, Contact Formulations and Friction

3.1 Introduction

The first part of this section describes how the roller chain and sprockets are modelled in

2D and what the governing equations are. The contact between the roller chain and the

sprockets can be modelled in different ways and some of these have been investigated.

Starting out with a kinematic constraint method and ending with what has shown to be

the most useful method, i.e., the continuous contact force method.

The numerical integration is sensitive to how the shape of the contact area is modelled

in the continuous contact force method, here five different shapes of the tooth profile is

described. A short discussion of other related models are given.

The models for the different parts that exist in the roller chain drive system in the marine

diesel engine are described in section 3.8. In the contact between the rollers and sprockets

a friction model has been included as described in section 3.9.

3.2 The Model

The roller-chain drive is modelled in 2D; that is the out-of-plane motion of the chain

system is not considered. To model the roller-chain drive the various components are

modelled as follows: the rollers as lumped masses, the links as springs and dampers

and the sprockets as rigid bodies, as shown in Figure 3.1 and Figure 3.2. The roller-chain

drive has one driving sprocket and one or more driven sprockets. The springs and dampers

between the rollers are modelled with constant stiffness and damping coefficients.

In Figure 1.3 the actual links are shown, with alternating inner and outer links. The inner

and outer links are assembled in pivots by bearing pins and bushes, see Figure 3.1(a).
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(a)

Pin

Bushing
Roller

Roller link

Pin link plate

Roller link plate (b)

Link Stiffness

Lumped mass
Link Damper

Figure 3.1: The roller links in (a) the reality (figure from Tsubaki (1991)) and (b) the simplified model.

3.2.1 Assumptions and Initializations

In the model clearances between the pin and bushing are neglected, as well as torsion and

out-of-plane motion. The rotational inertia of the rollers about their center of gravity is

neglected.

The initial positioning of the rollers is found by first calculating the points where the

tangent lines between the sprockets touch the sprockets. These points however are not the

points where the chain engages with the sprockets. The rollers are placed by assuming

that roller number one is seated in one of these tangential points and then the rest of

the rollers are placed from this position one by one with the given distance between the

rollers. The sprockets are allowed to rotate both clockwise and counter clockwise, but

the numbering of the sprockets and segments follows the rotational direction of the driver

Free roller

Bedded roller

Mass-less link

θ̇s

Sprocket

Pitch circle

Pitch Polygon

Figure 3.2: Chain engagement with sprocket in the simplified model
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sprocket.

3.2.2 Equations of Motion

The rollers that are not seated on a sprocket are free particles in the plane and for each

segment of free rollers the equations of motion are given by:




mr

mr

. . .

mr

mr







ẍ1

ÿ1

...

ẍnl

ÿnl




=




fx1

fy1 − mrg
...

fxnl

fynl
− mrg




(3.1)

wherenl is the number of links in the chain andmr is the lumped mass, which is equal to

the roller mass. Equation (3.1) written in compact form is withI as the identity matrix

mrIq̈r = fr (3.2)

from which the definition offr andq̈r follows. The global vector to the center of a roller

r is denotedrr and is given byrr = {xr, yr}T . The coordinate system is chosen such that

gravity acts on the roller chain in the negativey direction. The right hand side contains

the forces between a roller and the two rollers next to it. The forcefxi
is the resultant

force on rolleri in thex direction. The forcefyi
is the resultant force on rolleri in they

direction. The vectors between rolleri and the two adjacent rollers are given by

li = ri − ri−1 li+1 = ri+1 − ri (3.3)

whereri, ri−1 andri+1 are the global vectors to the three rollers, that is e.g.rT
i = (xi, yi),

see Figure 3.3. The length of the vectors areli = ‖li‖ andli+1 = ‖li+1‖, also written as

li = (lTi li)
1/2

li+1 = (lTi+1li+1)
1/2 (3.4)

The time rate change of the two vectors between rolleri and the two adjacent rollers are

denoteḋli andl̇i+1 and are given by

l̇i = ṙi − ṙi−1 l̇i+1 = ṙi+1 − ṙi (3.5)

The length of the vectors in (3.5) are given by
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l̇i =
lTi l̇i
li

l̇i+1 =
lTi+1 l̇i+1

li+1
(3.6)

The forces due to the flexibility of the links is on rolleri, see Figure 3.3,fT
i = (fxi

, fxi
)

given by

fi = fi+1ui+1 − fiui

= (K(li+1 − P ) + Dl̇i+1)ui+1 − (K(li − P ) + Dl̇i)ui (3.7)

whereK is the stiffness coefficient,D is the damping coefficient andP is the chain pitch

i.e., the undeformed length between the centres of two adjacent rollers. The unit vectors

ui andui+1 are given byui = li/li andui+1 = li+1/li+1.

Roller i − 1

Roller i

Roller i + 1

fi

−fi

fi+1−fi+1

ri−1

ri ri+1

li

li+1

x

y

Figure 3.3: The link force between two adjacent rollers.

The equation of motion for each sprocket is given by


ms

ms

Js






ẍs

ÿs

θ̈s


 =




fxs

fys

τs


 (3.8)
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whereJs is the moment of inertia of the sprocket,ms is the mass of the sprocket,θ̈s is the

angular acceleration of the sprocket andτs is an external applied torque. In compact form

Equation (3.8) is written as

Msq̈s = gs (3.9)

from which the definition ofMs, q̈s andgs follows.

Each sprocket has an individual number of teethnt, radiusRs and pitch angleα = 360◦
nt

,

see Figure 3.4. The local coordinate system(ξs, ηs) is placed in the center of the sprocket,

with theξs axis going through the lowest part of a tooth and it follows the sprocket when

it rotates, i.e. it is a local coordinate system. The angleθs is the angle between the global

x axis and the localξs axis.

rs

θs

θ̇s

α

x

y

ξs

ηs

roller i

roller i + 1

tooth1

toothnt

toothnt − 1

jα

Rs P

Figure 3.4: The model of a sprocket and its parameters.

In Figure 3.4rs = { xs, ys } is the coordinates of the center of the sprocket. The position

and angle of the sprocket with respect to the global coordinate system is given by the

vectorqs = { xs, ys, θs }. The angle indexj is the sprocket tooth number minus one,

see Figure 3.4. The indexj = 0, 1, . . . , nt − 1 and the numbering of the teeth starts at the

ξs axis and follows the direction of the rotation, see Figure 3.4.
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3.3 Rotational Damping in the Link Joints

Rotational damping in the joints between the links is included in the model by adding

forces to the rollers adjacent to the roller where the damping moment in the joint is to be

applied. That is the rotational damping moment is replaced by two non-collinear force

vectors of equal magnitude, also known as a couple, as proposed by Nikravesh (1988).

The vectors shown in Figure 3.5 are given in (3.3). The hatted vectorsl̂i and l̂i+1, are

defined as the vectors perpendicular to respectivelyli andli+1, rotated counter clockwise.

The angleϕi between two adjacent links is given by the relation

ri−1
ri

ri+1

roller i − 1

roller i

roller i + 1

ϕi

li li+1

l̂i+1

l̂i

x

y

Figure 3.5: The vectors between three adjacent rollers and the relative angle between the links.

lTi li+1 = lili+1 cos(ϕi) (3.10)

whereli is the length of the link between rolleri and rolleri − 1 and li+1 is the length

of the link between rolleri and rolleri + 1, given by (3.4). The time rate of the vectors

between the rollers and their length are given in (3.5) and (3.6). Differentiating both sides

of (3.10) with respect to time yields

lTi+1l̇i + lTi l̇i+1 = −lili+1 sin(ϕi)ϕ̇i + (l̇ili+1 + lil̇i+1) cos(ϕi) (3.11)

The derivative of the anglėϕi can be found by (3.11). This however, may give numerical

problems asϕi and thussin(ϕi) approach zero. The derivative of the angleϕ̇i can also

be found by differentiating the relation given by

l̂Ti li+1 = lili+1 cos(
π

2
+ ϕi) = −lili+1 sin(ϕi) (3.12)
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Differentiating (3.12) with respect to time yields

lTi+1
ˆ̇li + l̂Ti l̇i+1 = −lili+1 cos(ϕi)ϕ̇i − (l̇ili+1 + lil̇i+1) sin(ϕi) (3.13)

If ϕi is close to zero Equation (3.13) should be used to computeϕ̇i and ifϕi is close toπ

Equation (3.11) should be used to computeϕ̇i. By inserting (3.10) in (3.13), the equation

for ϕ̇i becomes

ϕ̇i =
−1

lTi l i+1

(lTi+1
ˆ̇li + l̂Ti l̇i+1 − (l̇ili+1 + lil̇i+1) sin(ϕi)) (3.14)

where the angleϕi between two adjacent links is found by

tan(ϕi) =
−l̂Ti li+1

lTi li+1

(3.15)

The rotational damping momentτl is given by

τl = Cdϕ̇i (3.16)

whereCd is the coefficient of damping.

roller i − 1

roller i

roller i + 1

τl
τl

fi−1

fi(b) fi(a)
fi+1

Directionûi Directionûi+1

Direction−ûi+1
Direction−ûi

Figure 3.6: Rotational damping moment described by force couples.

The hatted unit vectorŝui andûi+1 in Figure 3.6, are defined as the vectors perpendicular

to respectivelyui andui+1, rotated in the counter clockwise direction. Whenϕ̇i > 0, the

moment of the damper acts on the link between rolleri and rolleri + 1 in the positive

rotational direction and on the link between rolleri and rolleri − 1 in the negative rota-

tional direction. Whenϕ̇i < 0 the reverse situation occurs. The force couples of these two

moments implies four forces, two with the magnitudeτl/li and two with the magnitude

τl/li+1 and the directions as shown in Figure 3.6. The force vectors are given by
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fi(a)
= −Cdϕ̇i

l2i
l̂i, fi(b) = −Cdϕ̇i

l2i+1

l̂i+1

(3.17)

fi−1 =
Cdϕ̇i

l2i
l̂i, fi+1 =

Cdϕ̇i

l2i+1

l̂i+1

3.4 Constraint Method

In the beginning of this project the first idea was to use a constraint method to model the

contact between the rollers and sprockets. Even though this turned out not to be a useful

model it is here shortly described, because it influenced the work done afterwards.

In the constraint method it is assumed that when the rollers are captured on the sprocket

then the chain pitch is equal to the pitch of the sprocket. So chain wear and elongation

during engagement is neglected i.e. it is assumed that the rollers that are seated on the

sprocket forms a part of a polygon, see Figure 3.2. The tooth flexibility of the sprocket

is neglected in the constraint method. In the continuous force method elongation during

engagement is not neglected and the tooth flexibility is included.

When a roller is seated on sprockets the kinematic constraints ensures that the roller is

fixed to the pitch circle of the sprocket. The position coordinates of rolleri are given by

the vectorri = { xi, yi }, and then the constraint equations become (see Figure 3.4)

φs,i =

{
xi − xs − Rs cos(θs ± jα)

yi − ys − Rs sin(θs ± jα)

}
=

{
0

0

}
(3.18)

where the± depends on the direction of rotation,+ when the sprocket rotates counter

clockwise and− when the sprocket rotates clockwise. By differentiating (3.18) once with

respect to time we obtain

Φs,iq̇s,i = 0 (3.19)

By differentiating (3.18) twice with respect to time we obtain

Φs,iq̈s,i = γs,i (3.20)

The matrixΦs,i is the Jacobian matrix related to the rolleri and the sprockets. The

vectorsq̇s,i and q̈s,i are the velocity and acceleration respectively andγs,i is the right
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hand side of the acceleration equation. The Jacobian matrix relating sprocket numbers

and roller numberi is given by

Φs,i =

[
1 0 −1 0 Rs sin(θs ± jα)

0 1 0 −1 −Rs cos(θs ± jα)

]
(3.21)

this is a part of the total Jacobian matrix relating all the seated rollers on a sprocket. The

part of the Jacobian matrix which is only related to rolleri is denotedΦi and is equal to

the identity matrixI (first two columns in (3.21) ). The positionqs,i vector is defined as

qs,i = { xi yi xs ys θs}T (3.22)

The velocity vector is denoteḋqs,i and the acceleration vector is is denotedq̈s,i. They are

given by differentiation of (3.22). The right hand side in (3.20) is given by

γs,i = −Rs

{
cos(θs ± jα)

sin(θs ± jα)

}
(θ̇s)

2 =

{
Cj

−Sj

}
(θ̇s)

2 (3.23)

whereCj = −Rs cos(θs ± jα) andSj = Rs sin(θs ± jα). The reaction forces can be

expressed as the negative transpose of the Jacobian matrix times a vector of Lagrangian

Multipliers λ given byλ = { λ1 λ2 . . . λ2·nb
}T , wherenb is the number of bedded

rollers on the sprocket. Introducing the Lagrange Multiplier technique the equations of

motion for a constrained sprocket and the rollers in contact with it is written in compact

form given by


Ms 0 ST

0 mrI I

S I 0






q̈s

q̈r

λ


 =




gs

fr

γs


 (3.24)

whereI is the identity matrix,Ms is the mass matrix consisting of the sprocket masses

and mass moments of inertia in the diagonal. The matrixS is the part of the total Jacobian

matrix related to the sprockets.

This formulation makes it possible to calculate the reaction forces on the rollers that are

seated on the sprocket. The reaction force on the rollers in contact with the sprocket is

given by

f r
r = −Φiλ = −Iλ = −λ (3.25)
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When a roller position is detected to be inside the pitch circle of a sprocket the roller is

captured and the kinematic constraint is applied. When the Lagrange multiplier coeffi-

cients have been calculated it is possible to calculate the reaction force of the sprocket on

a bedded roller. This reaction force is equal to the resultant of the centrifugal force and

the forces of the links acting on the roller. Whether a roller will leave the sprocket or not

depends on the direction of the reaction force. When the direction of the reaction force is

not contained inside a sector defined by two adjacent sides of the pitch polygon next to

the candidate roller, then the roller will leave the sprocket. When a roller leaves a sprocket

the corresponding kinematic constraint is removed from the equation of motion system.

When the position of a roller is detected to be inside the pitch circle the roller is captured

and the velocity of the roller is changed to be the tangential velocity of the sprocket.

In the constraint method it is for each reporting time step checked if a new roller is bedded

to a sprocket or a roller is released from a sprocket. Only the first and the last bedded

roller are allowed to be released from the sprocket and only the two rollers respectively

before and after these two rollers are allowed to be bedded to a sprocket. When a new

roller is either captured on or released from a sprocket the integration is restarted in order

to prevent the time step size to decrease to a point where the computational cost of the

simulation is too high.

Even though the velocities of the captured rollers are fitted to match the velocity of the

sprocket the numerical integrator tries to adjust the time step size to this discontinuity

and its size will in some cases decrease to a point where the computational cost of the

simulation is very high. Furthermore the release and capture conditions used are not

sufficient, because the results show a negative radial contact force, which implies that the

roller should have been released earlier. The investigation of this kinematic constraint

method can be found in Pedersen (2001).

3.5 Continuous Contact Force Method

As an alternative to the constraint method a continuous contact force method is proposed.

In the continuous force method the contact between roller and sprocket is modelled by

applying forces due to a pseudo penetration of the roller into the sprocket. All the rollers

are free particles in the plane and their equations of motion given by (3.2), with the contact

forces included on the right hand side in the force vector. In the continuous contact force

method the bedded rollers will not be seated exactly on the pitch circle as in the constraint
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method, because the model includes chain elongation during engagement.

In order to calculate the contact force due to the indentation there are different models sug-

gested in the literature. In this project those suggested in Ambrósio and Hansen (1995),

Ravn (1998), Dubowsky and Freudenstein (1971a) and Lankarani and Nikravesh (1990)

are used.

The Kelvin-Voigt visco-elastic model is a simple contact force model. The relation be-

tween the indentation and the contact force is assumed linear. When the two bodies are

separating from each other the energy loss is included in the contact force. This is done

by multiplying the rebound force with a coefficient of restitutione. The coefficient of

restitution is a constant0 ≤ e ≤ 1, where e = 0relates to a fully plastic contact and e = 1

relates to a fully elastic contact.

The contact force vectorfc has the magnitudefc calculated by

fc =

{
Kgδ v > 0

eKgδ v < 0
(3.26)

whereKg is a stiffness coefficient andv is the relative speed between the two bodies. The

relative speed is positive when the two bodies are approaching each other and negative

when they separate from each other. Figure 3.7 shows the energy loss as the hatched area.
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Figure 3.7: The energy loss in the linear model

The non-linear contact law known as the Hertz force-displacement law takes the material

properties into account and is derived for impact between two spheres of isotropic material

based on the theory of elasticity. The force is given by
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fc = Kgδ
n (3.27)

where the exponentn is set to 1.5 for metallic surfaces, but for other materials it can

be either higher or lower. The generalized stiffness coefficientKg is dependent on the

material properties. For two spheres in contact the generalized stiffness coefficient is

dependent on the radii of the two spheres, here denoted bodyi and bodyj, and the material

properties, see e.g. Goldsmith (1960) and Lankarani and Nikravesh (1990), and is given

by

Kg =
4

3π(hi + hj)

[
rirj

ri + rj

]1/2

(3.28)

whererk is the radii of the two spheres andhk is the material properties given by

hk =
1 − ν2

k

πEk

k = i, j (3.29)

whereνk is Poisson’s ratio for bodyk andEk is the modulus of elasticity for bodyk. For

contact between a sphere denoted bodyi and a plane surface denoted bodyj (rj → ∞)

the generalized stiffness coefficient depend on the radius of the sphere and the material

properties as follows

Kg =
4

3π(hi + hj)

√
ri (3.30)

In the case of internal contact (negative value ofrj) between two cylindrical bodies, bodyi

and bodyj the indentationδ as a function of the forcefc is by Dubowsky and Freudenstein

(1971a) suggested to be

δ =
fc(hi + hj)

lz

[
ln
( lmz (ri + rj)

fc(hi + hj)rirj

)
+ 1

]
(3.31)

wherehk is given by (3.29),lz is the length of the cylinder and the exponentm = 3.

Goldsmith (1960) presented a similar expression as in (3.31), but with the exponentm =

1. However, this value of the exponent gives a problem with the units of (3.31), whereas

the suggested exponentm = 3 by Dubowsky and Freudenstein (1971a) gives agreement

with the units. The generalized stiffness coefficient can be calculated from equation (3.31)

by calculating the average slope byK = fc

δ
or by a numerical iterative technique e.g.

Newton-Raphson iteration.

The generalized stiffness coefficient for the case of a cylinder denoted bodyi and a plane

surface denoted bodyj is found in the same way as for the case of two cylinders in contact,
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by taking the limiting value for the radiusrj → ∞. The relation between the indentation

and the force thereby becomes

δ =
fc(hi + hj)

lz

[
ln(

lmz
fc(hi + hj)ri

) + 1

]
(3.32)

The definition of the coefficient of restitution is in simple one dimensional impact between

two rigid bodies in pure translation, the ratio of their relative speed after impact and at

the beginning of impact in the direction of impact, see e.g. Hunt and Crossley (1975) and

Lankarani and Nikravesh (1990), so

v(+) = −ev(−) (3.33)

wherev(+) is the relative speed after impact andv(−) is the relative approach speed,(−)

indicates that it is the value just as impact begins and(+) indicates that it is the value

just as impact ends. The relative speeds are calculated normal to the plane of contact.

The difference between the kinetic energyE
(+)
kin at the beginning of impact and the kinetic

energyE(−)
kin after impact is the loss in kinetic energy∆Ekin, and is given by

∆Ekin =
1

2
me(v

(−)2 − v(+)2) (3.34)

whereme is the system equivalent mass and it is given by

me =
mimj

mi + mj

(3.35)

mi andmj are the masses of the two bodies in contact. Equation (3.34) is derived by

assuming that the linear momentum of the system in the direction of impact is conserved,

since the contact force becomes internal to the system, see Lankarani and Nikravesh

(1990). By inserting 3.33) in (3.34) the energy loss can be written as

∆Ekin =
1

2
mev

(−)2(1 − e2) (3.36)

By the assumption that the energy loss only is due to internal damping, which is only valid

for low impact speeds, the contact force is extended to include the energy dissipation, by

adding a damping term, see Lankarani and Nikravesh (1994)

fc = Kgδ
n + Dcv (3.37)

whereDc is the damping coefficient, which by Hunt and Crossley (1975) was proposed

to be in a hysteresis form as
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Dc = ηcδ
n (3.38)

whereηc is the hysteresis damping factor and the exponentn is the same as in (3.27). In

order to determine the hysteresis damping factor the energy loss may also be expressed

by the integral of contact force around the contact force hysteresis loop, see Figure 3.8,

written as

∆Ekin =

∮
Dcvdδ � 2

∫ δmax

0

ηcδ
nvdδ (3.39)

where
∮

refers to the curve integration around a hysteresis loop. The energy loss is as-

sumed to be small and the velocity changes sign when it changes from approaching to

separating, therefore the cyclic integral can be written as two times the integral from no

indentation until the maximum indentationδmax as done in (3.39).
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Figure 3.8: The energy loss in the non-linear model

In order to perform the integration it is necessary to have the speed written in terms of the

indentation. Having the kinetic energy just as impact begins equal to1
2
mev

(−)2 then the

kinetic energy in a intermediate position0 < δ < δmax is given by

1

2
mev

2 =
1

2
mev

(−)2 −
∫ δ

0

fcdδ (3.40)

the speed just as impact begins can by integration of the contact force in (3.27) be written

in terms of the indentation as Hunt and Crossley (1975)

v(−) =

√
2Kg

me(n + 1)
δ
(n+1)
max (3.41)
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by inserting (3.41) in (3.40) and doing the integration the speed in an intermediate position

can be rewritten as

v =

√
2Kg

me(n + 1)

√
δ
(n+1)
max − δ(n+1) (3.42)

The energy loss in (3.39) can now be calculated by inserting (3.42) and do the integration

by substitution, which gives

∆Ekin � 2ηc

√
2Kg

me(n + 1)

∫ δmax

0

δn

√
δ
(n+1)
max − δ(n+1)dδ

= 2ηc

√
2Kg

me(n + 1)

2

3

1

(n + 1)

(
δ(n+1)
max

) 3
2 (3.43)

Equation (3.43) can by inserting (3.41) be rewritten as

∆Ekin � 2

3

ηc

Kg

mev
(−)3 (3.44)

The hysteresis damping factorηc is determined by comparison of (3.36) and (3.44) and

becomes

ηc =
3Kg(1 − e2)

4v(−)
(3.45)

yielding the damping coefficient

Dc =
3Kg(1 − e2)

4v(−)
δn (3.46)

Substitution of the damping coefficient given by (3.46) into (3.37), gives the contact force

between to metallic surfaces in contact assuming no permanent indentation written as

fc = Kgδ
n

[
1 +

3(1 − e2)v

4v(−)

]
(3.47)

The contact force is applied to the approaching body in the normal direction of the contact

surface, yielding the contact force vector

fc = fcn (3.48)

wheren is the normal unit vector out of the contact surface on the other contacting body,

see Figure 3.9. The relative velocity at impact isv(−) = v
(−)
in −v

(−)
jn , see Figure 3.9, where
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v
(−)
in = (v

(−)
i )T (−n) andv

(−)
jn = (v

(−)
j )T (−n), with v

(−)
i being the impact velocity vector

of bodyi andv
(−)
j being the impact velocity vector of bodyj. The approach direction is

−n and the separation direction isn.

(i)
(j)

v
(−)
in v

(−)
jn

fc −fc n

Approach direction

Figure 3.9: An impact between two spherical bodies.

The contact models given by (3.27) and (3.47) are only valid for colliding spheres. For

internal contact between two cylinders a literature search has failed to yield an implicit

force-displacement relationship. The indentation as a function of the contact force given

in (3.31) suggested by Dubowsky and Freudenstein (1971a) is for a shaft inside a cylinder.

However with a known indentation it is necessary to iteratively solve the equation to

obtain the contact force. Due to the simplicity of (3.47) it is largely used for colliding

cylinders using an equivalent stiffness obtained by (3.31), see e.g. Ravn (1998) and Flores

et al. (2003).

3.5.1 The Shape of the Contact Surface between Rollers and Sprockets

The initial idea was to make the contact between the rollers and the sprockets as simple

as one point where a contact force was applied in either tangential or normal direction.

This was done in order to make the continuous contact force method similar to the way

the constraint method models the contact. However this approach has shown not to be

useful, why several other tooth profiles has been tested. Figure 3.10 shows the steps in

the evolution of the contact shape model (the tooth profiles).

X X X X X

Figure 3.10: Steps in the evolution of the tooth shape model.
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The five different shapes of the contact surface are respectively denoted single point con-

tact, rectangular tooth profile, semi real tooth profile, circular tooth profile and real tooth

profile, see Figure 3.10. Of the five different tooth profiles the last two, the circular tooth

profile and the real tooth profile, turned out to be the most useful ones. The rectangular

tooth profile and the semi real tooth profile, are able to solve some problems, but too sen-

sitive numerically to the values of the different parameters used in the continuous contact

force. The circular tooth profile and the real tooth profile are numerically more stable than

the first three tooth profiles and less dependent on the values of the different parameters

used in the continuous contact force.

In the following sections the first three tooth profile models will shortly be described and

the last two tooth profile models will be described more thoroughly.

3.5.2 Single Point Contact

The contact force between a roller and a sprocket, when the roller is captured on the pitch

circle, is split into two contact planes, a radial and a tangential, and becomes

fc = (Kgδ
n
r + Dcvr)ur + (Kgδ

n
t + Dcvt)ut (3.49)

whereδr and δt are the projections of the indentation vectorδ in the direction of the

unit vectorsur and ut, respectively, see Figure 3.11. The projections of the relative

velocity vectorv in the direction of the unit vectorsur andut is respectivelyvr and

vt. The generalized stiffness coefficientKg is for the roller-sprocket contact, which is two

cylindrical surfaces, to be found by (3.31) and the damping coefficient is given by (3.46).

The unit vectorsur andut are given by

ur =

{
cos(θs ± jα)

sin(θs ± jα)

}
, ut =

{
− sin(θs ± jα)

cos(θs ± jα)

}
(3.50)

where the± dependents on whether the sprocket rotates counter clockwise (+) or clock-

wise (−), see Figure 3.4 and Figure 3.11. A roller is checked for contact with a sprocket

when the roller is inside the pitch circle and released when outside the pitch circle.

3.5.3 Rectangular Tooth Profile

The rectangular tooth profile is an extension to the single point contact. For the rect-

angular tooth profile a rectangular area outside the pitch circle is checked for tangential

contact. In this gap a relatively small indentation is allowed. This assumption is made to
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Roller in contactTheoretical position
of the roller

Pitch circle
Spring and damperDc

Dc

Kg

Kg

ut

urδ

Figure 3.11: The contact between roller and sprocket

prevent the roller from oscillating too much tangentially. This tangential contact force is

given by

fc = (Kgδ
n
t + Dcvt)ut (3.51)

A roller is checked for contact with a sprocket when the roller is inside the enlarged pitch

circle and released when outside the enlarged pitch circle. The radius of the enlarged pitch

circle is set to be the pitch radius plus the height of the rectangular area.

3.5.4 The Semi Real Tooth Profile

The semi real tooth profile is an extension to the rectangular tooth profile and includes

the tooth flexibility. The tooth flange is represented by straight lines with an angleβ with

respect to the rectangular area, see Figure 3.12. There is the possibility that the roller is in

contact with tooth numberj, when the tangential indentationδt is negative and in contact

with tooth numberj − 1, when the tangential indentationδt is positive. The tangential

indentationδt is the projection of the indentation on the unit vectorut.

When the roller is inside the pitch circle (see Figure 3.12), the contact between the roller

and sprocket is as for the single point contact. When the center of a roller is in the

area between the pitch circle and the enlarged pitch circle (see Figure 3.12), the contact

between the roller and sprocket is as for the rectangular tooth profile. When the roller is

in the area between the enlarged pitch circle and the outside circle there is a possibility

for the roller to be in contact with one of the teeth. If the roller is in contact with a tooth

a force is applied in the direction of the normalnβ to the tooth profile plane, see Figure

3.12.

The tangential vectortβ to the tooth profile, is found by rotating the unit vectorur, with
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Figure 3.12: The semi real tooth profile

the angleβ, see Figure 3.12. The tangential vectortβ to the tooth profile surface is given

by

tβ = Atur (3.52)

whereur is the normal vector given in equation (3.50) and the transformation matrixAt

is given by equation 2.5, withθ = ±β, where the sign depends on sign ofδt. The normal

vector to the contact surface is given by

nβ =

{
−t̂β, δt < 0

t̂β, δt > 0
(3.53)

where the hat (̂) indicates that the vector is perpendicular totβ, rotated in the counter

clockwise direction. The indentation in the toothδβ is the projection of the indentation in

the direction ofnβ.

3.5.5 Circular Tooth Profile

In Figure 3.13 is shown the model where only the circular lower part of the tooth profile

is included, this model is referred to as the circular tooth profile model. The radius of

the circular tooth profile isRt and the roller radius isRr, yielding a clearance of∆R =

Rt −Rr. The centre of the circular tooth profile is placedRs +∆R from the centre of the
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sprocket. This is done in order to prevent all the rollers in contact with a sprocket from

disengaging at the same time. The unit vectorsur andut are given by Equation (3.50).

Rt

Rr

x

y
ξs

ηs

rt

rs

ri

dut

ur

s
′
t sp′

s

θs

Figure 3.13: The circular tooth profile

The vector from the sprocket centre to the roller centre is in the local coordinate system

(ξs, ηs) given bysr
′. The position of the sprocket centre is in the global coordinate system

(x, y) given by the vectorrs and the centre of the tooth profile is in the local coordinate

system given by vectorst
′. The roller position is in global coordinate system(x, y) given

by the vectorri. The centre of the tooth profile is therefore in the global coordinate system

given by

rt = rs + Ass
′
t (3.54)

where the transformation matrixAs is given by (2.5), with the angleθ = θs and the local

vectors
′
t is given by

s
′
t = (Rs + ∆R)

{
cos(±jα)

sin(±jα)

}
(3.55)

The vectorst becomes

st = Ass
′
t = (Rs + ∆R)ur (3.56)

and vectorrt becomes

rt = rs + (Rs + ∆R)ur (3.57)

The vectord from the centre of the tooth profile to the roller centre is given by

d = ri − rt (3.58)
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The pseudo penetration in the tooth is given by

δ = ‖d‖ − ∆R (3.59)

where‖d‖ is the two norm of vectord. The normal unit vectorn to the contact surface is

then given by

n = − d

‖d‖ (3.60)

The point of application of the contact force on the roller is the centre of the roller. The

vector from the sprocket centre to the point of application of the contact force on the

sprocket, is in global coordinates given by

sp
s = ri − rs (3.61)

and in the local sprocket coordinates (3.61) can be written as

sp′
s = AT

s sp
s (3.62)

The velocity of the contact point on the roller is

ṙp
i = ṙi (3.63)

and the velocity of the contact point on the sprocket is

ṙp
s =

d(rs + Ass
p′
s )

dt
= ṙs + ωsBss

p′
s (3.64)

whereωs = θ̇s and the matrixBs is given by

Bs =

[
− sin(θs) − cos(θs)

cos(θs) − sin(θs)

]
(3.65)

The relative velocity in the normal directionvn at the contact point is positive in the

approach direction which is the direction of−n, yielding

vn = (ṙp
i − ṙp

s)
T (−n) (3.66)

and the relative velocity in the tangential directionvt at the contact point is given by

vt = (ṙp
i − ṙp

s)
T t (3.67)
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wheret is the tangential unit vector given byt = n̂,where the hat (̂) indicates that the

vector is perpendicular ton, rotated in the counter clockwise direction. The contact force

of the roller can now be found using (3.47), the normal vectorn in equations given in

(3.60), the indentationδ in (3.59) and the relative velocityv in (3.66). The moment on

the centre of the sprocket caused by the contact force is given by

τs = −ŝp
s · fc (3.68)

where the hat (̂) indicates that the vector is perpendicular tosp
s, rotated in the counter

clockwise direction.

3.5.6 Real Tooth Profile

The standard tooth form (Type II per ASA B29.1-1950) is shown in the Figure C.1, taken

from Binder (1956), see appendix C. The tooth-profile is separated into 7 areas where the

roller-sprocket contact can occur, see Figure 3.14.
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Figure 3.14: The real tooth profile separated in 7 contact areas.

The contact areas can be defined by local vectors given in the local coordinate system

(ξt, ηt). The local vectors and angles that define the tooth profile are given in appendix C.

When the roller gets in contact with the sprocket the contact area has to be found. First of

all it is checked if the roller is in contact with area4 or in contact with the left or the right

side of the tooth center line.
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ut

ur
d

Figure 3.15: The position of the roller with respect to the tooth centre line.

The condition for the roller being either on the left side or the right side of the tooth center

line is

dTut =

{
< 0 : right

> 0 : left
(3.69)

where the unit vectorut is given by (3.50) and vectord is given by

d = ri − rt (3.70)

Contact with the seating curve

Area 4 is referred to as the seating curve and contact with this area is analysed indepen-

dently on whether the roller is on the right or the left side of the tooth center line, see

Figure 3.16.
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Figure 3.16: The seating curve, contact area 4.

The vectorn4, see Figure 3.16, is given by
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n4 = −ur

(3.71)

andd is given in (3.70). The pseudo penetration is calculated by

δ4 = ‖d‖ − (Rt − Rr) (3.72)

The conditions that has to be fulfilled in order for contact to occur with area 4 are

Contact conditions for area 4:

{
δ4 > 0

0 ≤ |ψ40| ≤ |ψ4|
(3.73)

whereψ4 = ψ2a−ψ1a

2
= π

2
− A, see appendix C, andψ40 is given by

cos(ψ40) =
dTn4

‖d‖ (3.74)

Contact with the topping curve

Area 1 and area 7 are referred to as the topping curves. The contact with area 1 is similar

to the contact with area 7, therefore only contact with area 1 is described here, see Figure

3.17. The vectors shown in Figure 3.17 are given by

n1 = Atn
′
1

d1 = ri − rb∗ (3.75)

where the local vectorn
′
1 = {cos(ψ1b∗ + ψ1), sin(ψ1b∗ + ψ1)}T , with ψ1 = ψ2b∗−ψ1b∗

2
, see

appendix C. The pseudo penetration is given by

δ1 = (RF + Rr) − ‖d1‖ (3.76)

where the radiusRF is given in (C.2), see appendix C. The conditions that has to be

fulfilled in order for contact to occur with area 1 are

Contact conditions for area 1:

{
δ1 > 0

0 ≤ |ψ10| ≤ |ψ1|
(3.77)
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whereψ10 is given by

cos(ψ10) =
dT

1 n1

‖d1‖ (3.78)
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Figure 3.17: The topping curves, contact areas 1 and 7.

Contact with the working curve

Area 3 and area 5 are referred to as the working curves. The contact with area 3 is similar

to the contact with area 5, therefore only contact with area 3 is described here, see Figure

3.18. The vectors shown in Figure 3.18 are given by

n3 = Atn
′
3

d3 = ri − rc∗ (3.79)

where the local vectorn
′
3 = {cos(ψ1c∗+ψ3), sin(ψ1c∗+ψ3)}T , with ψ3 = B

2
, see appendix

C. The pseudo penetration is given by

δ3 = ‖d3‖ + Rr − RE (3.80)

where the radiusRE is given in (C.2), see appendix C. The conditions that has to be

fulfilled in order for contact to occur with area 3 are

Contact conditions for area 3:

{
δ3 > 0

0 ≤ |ψ30| ≤ |ψ3|
(3.81)

whereψ30 is given by
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cos(ψ30) =
dT

3 n3

‖d3‖ (3.82)
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Figure 3.18: The working curves, contact areas 3 and 5.

Contact with the straight portion

Area 2 and area 6 are referred to as the straight portions. The contact with area 2 is similar

to the contact with area 6, therefore only contact with area 2 is described here, see Figure

3.19. The vectors shown in Figure 3.19 are given by

t2 = 1
‖re∗−rd∗‖(re∗ − rd∗)

n2 = −t̂2

d2 = ri − rd∗ (3.83)

where the vectorsre∗ andrd∗ are the global vectors to the pointse∗ andd∗, see appendix

C. The pseudo penetration is calculated by

δ2 = dT
2 n2 − Rr (3.84)

The conditions that has to be fulfilled in order for contact to occur with area 2 are

Contact conditions for area 2:




δ2 > 0

dT
2 t2 > 0

dT
2 t2 < ‖re∗ − rd∗‖
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Figure 3.19: The straight portions, contact areas 2 and 6.

The contact force on the rollers is given by (3.47), with the normal vectorn for the dif-

ferent contact areas being

Area 1 (or 7): n = d1/‖d1‖
Area 2 (or 6): n = n2

Area 3 (or 5): n = −d3/‖d3‖
Area 4: n = −d/‖d‖ (3.85)

The indentationδ in (3.47) is given byδi, where indexi = 1, . . . , 7 refers to the area.

The relative velocity is calculated by (3.66), with the normal vectorn given by equation

(3.85). The moment applied to the sprocket is calculated in a similar way as in equation

(3.68).

3.6 The Polygonal Action

The major difficulties in the study of the roller chain drives are related to the roller chain

forming a polygon while wrapped around the sprockets. When the chain is lying on a

sprocket it forms polygons instead of circles, see Figure 3.4, which causes a periodic

fluctuation of linear velocity together with periodic transverse displacements of both ends

of the chain. The instantaneous pitch diameter alternates between that of the inscribed

and circumscribed circles of the pitch polygon, see Figure 3.4 (only circumscribed circle

shown). This is known as the polygonal action or polygonal effect, see e.g. Bouillon and

Tordion (1965). Due to the polygonal effect the velocities of the driven sprockets will

fluctuate even if the velocity of the driving sprocket is constant. The polygonal effect is

thus responsible for the transverse and longitudinal vibrations that develop in the chain,

see e.g. Mahalingam (1958). The excitation resulting from the impact of the roller when

it seats on the sprocket and the polygonal effect participates in the creation of the noise

and vibration of the roller-chain drive. In order to have a useful model of the vibration
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behaviour of the chain and the tension fluctuation special attention must be paid to a

correct engagement and disengagement description.

3.7 Examples of Other Possible Methods

Some other methods of describing the system have been investigated and many alternative

ideas have come in mind during the work. Here three methods are mentioned the Hybrid

Method, the Rigid Body Links Method and the Minimum Link Method, respectively.

3.7.1 Hybrid Method

A combination of the continuous contact force method and the constraint method has been

applied. When a roller gets in contact with a sprocket the continuous force method is used

at the beginning. When the relative velocity between the sprocket and the roller is close

to zero within a numerical tolerance, the used contact model is switched to the constraint

method. This method has been tested with some of the contact profiles described in the

previous section, but the system appeared to be too stiff numerically to be solved. It is

possible that a hybrid method between the continuous contact force method, where the

real shaped tooth profile is used and a constraint method, where the contact is modelled

by a point follower constraint could work. In this way both of the methods include chain

elongation during contact and are more comparable. However the implementation of this

method is left for future investigations.

3.7.2 Rigid Body Links Method

Treating the links as rigid bodies demands a formulation including clearance joints be-

tween the links. In all the previous described contact models the links has been modelled

as massless links and the rotational inertia is neglected. Formulating the system using

Cartesian coordinates will make the system larger, because the angles of each link also

are included as coordinates. Using other coordinate methods such as the joint coordinate

method, would be preferable in this case, see e.g. Nikravesh (2001). The methodology

has not been investigated further.

3.7.3 Minimum Link Method

In this method the rollers that are not in contact with the sprockets are treated as free

rollers in the plane as in the continuous contact force method. The rollers in contact with



3.8 Including Parts, specific for the Marine Engine 47

the sprockets are treated as part of the sprocket wheel and contribute to the mass moment

of inertia of the sprocket. Capture and release conditions are similar to the once used in

the constraint method and therefore this method has similar problems as the constraint

method. Because of the discontinuities with this method the numerical integration gives

problems.

3.8 Including Parts, specific for the Marine Engine

In the chain drive system of the marine diesel engine different important parts are in-

cluded, important with respect to the vibration pattern of the engine and ship hull. These

parts are different tightener systems, guide-bars and balancing wheels.

In most cases of the numerical simulations it is assumed that the centre of all the sprockets

are fixed in the plane, except the sprockets placed in the tightener system. The possibility

of allowing the sprockets to move translationally is however present.

3.8.1 Tightener System

While the engine is running the roller chain wears and consequently extends. There-

fore, the chain has to be tightened frequently as it gradually extends, in order to keep its

functionality. To this purpose one of the driven sprockets is located in a chain tightener

system. This sprocket centre can move from its initial position and then tighten the chain.

To avoid the manual tightenings of the chain automatic chain tighteners have been intro-

duced on some engines. This has caused undesirable vibration patterns of the chain and

chain tightener which were not immediately explicable.

The tightener systems used in the chain drive for the marine diesel engine usually consists

of a weight-arm connect to the sprocket, to the hydraulic damper and to a fixed point on

the engine which is at the grounded body. The joints between the weight-arm, the sprocket

and ground are either revolute joints, translational joints or spring-damper connections.

The sprocket that is in the chain tightener system translates and its movement depends on

the movement of the other elements in the chain tightener system. The chain tightener

system has been included in the force model. The inclusion of the tightener system is

done by introducing kinematic constraints between the sprocket and the other bodies (e.g.

weight-arm) in the tightener system and for the chain tightener with a hydraulic damper

this is modelled as a spring-damper, see Figure (3.20). In the figure the model of the chain
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Ground

Ground

Revolute JointSpring-Damper

Weight-arm

Figure 3.20: The tightener system as part of the chain drive system.

drive system consist of a sprocket connected with a weight-arm with a revolute joint. The

weight-arm is connected with a grounded body with a revolute joint and a spring/damper

connection. This tightener system allows for the centre of the sprocket to move along a

circular path while the engine is running.

The constraint equations are set up for the chain tightener system including revolute joint

constraint and translational joint constraints, see e.g. section 2.4. These constraint equa-

tions are differentiated twice with respect to time, and using the Lagrange multiplier tech-

nique as described in section 2.4 the total set of equations for the chain tightener system

is written as


Ms 0 Φs

T

0 Mb ΦT
b

Φs Φb 0






q̈s

q̈b

λ


 =




gs

f b

γt


 (3.86)

whereMb is the mass and inertia of the other bodies in the chain tightener system,q̈b is

the accelerations of the bodies,f b is the forces on the bodies,γt is the right hand side

from the acceleration of the constraint equations and[ΦsΦb] is the Jacobian matrix. The

mass and inertia of the sprocket in the tightener system are given in the mass matrixMs,

the vectorq̈s is the accelerations of the sprocket and the vectorgs is the forces on the

sprocket. In the tightener system shown in Figure (3.20), the number of bodies is two,

which are the weight-arm and a grounded body.
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3.8.2 Guide-bars

Figure 3.21 shows an example of the placement of three guide-bars in a chain drive sys-

tem.
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Figure 3.21: Guide-bars in a 6S90MC-C fore end chain drive system.

The contact between the roller chain strands and the guide-bars is modelled with the

continuous contact force model. The global coordinates of the end points of the flat part

of the guide-bars arergi andrgj, the radius of the rounded ends isRge, the length of the

rounded end isLge and the length of the flat part isLg, see Figure 3.22.

The detection of contact is split into three parts, i.e., the two rounded end parts (area 1

and 3) and the flat part (area 2). In order for contact to appear between a roller and the

flat part of the guide-bar the necessary conditions are

Contact condition for area 2:




dT
g2tg > 0

dT
g2tg < Lg

δg2 > 0

(3.87)

whereδg2 is the pseudo penetration given by

δg2 = −dT
g2ng (3.88)

and the normal vector to the contact surface isng is given by (D.2), see appendix D. In

appendix D is given a detailed description of the vectors used for detection of contact with
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Figure 3.22: Contact with the guide-bar area 2 (flat part)

the rounded ends, see Figure D.3 and Figure D.4 in the appendix. The following three

conditions have to be fulfilled for the contact to appear with the rounded end, area 1

Contact condition for area 1:




dT
g2tg < 0

dT
g2tg > −Lge

δg1 > 0

(3.89)

whereδg1 is the pseudo penetration given by

δg1 = Rge − ‖dg1‖ (3.90)

and the normal vector to the contact surface for area 1 is given by

ng1 =
dg1

‖dg1‖ (3.91)

The following three conditions have to be fulfilled for the contact to appear with the

rounded end, area 3

Contact condition for area 3:




dT
g2tg < Lg + Lge

dT
g2tg > Lg

δg3 > 0

(3.92)
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whereδg3 is the pseudo penetration given by

δg3 = Rge − ‖dg3‖ (3.93)

and the normal vector to the contact surface for area 3 is given by

ng3 =
dg3

‖dg3‖ (3.94)

The contact force on the rollers is given by (3.47), with the normal vectorn for the dif-

ferent contact areas calculated by (D.2) (see appendix D), (3.91) or (3.94). The relative

velocity is equal to the velocity of the roller, because the guide-bar position is fixed. The

indentationδ in equation (3.47) is for the different contact areas calculated by (3.88),

(3.90) or (3.93). The stiffness coefficient calculated from (3.30) using material data for

the guide-bar and roller; the same value is used for all guide-bar contact areas.

Indentation of Guide-bar and Rotated Guide-bar

If the end points of the guide-bar are placed on the tangent line between the sprockets,

then the initial indentation of the guide-bar into the chain is zero. In order to investigate

the effect of other values of the indentation the end points is translated along theng vector,

see Figure D.5 in appendix D. Having the new guide-bar end points coordinates for the

rotated guide-bar the contact detection follows as described prior in this section.

At the present the guide-bars in the marine diesel engines are fixed parallel to the tangent

line between the sprockets. However it might be desirable to investigate whether a small

rotation of the guide-bar with respect to the tangent line could reduce the contact forces on

the guide-bar. In the model the rotation of the guide-bar is chosen to be around the middle

point of the guide-bar, see Figure D.6 in appendix D. The angle of rotation of the guide-

bar is used to find the new global vectors to the rotated guide-bar end points. Having

the new guide-bar end point coordinates for the rotated guide-bar the contact detection

follows as described prior in this section. For further details see appendix D.

3.8.3 Balancing Wheels

In order to avoid excessive excitation when the frequency of excitation coincides with the

natural frequency of the ship hull vibrations it is relevant to consider outbalancing, see

MAN B&W (1995). Dependent on the engine type, some of the sprockets in the chain

drive system are fitted with counterweights which can reduce the vertical moment.
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In some engine types resonance can occur with a frequency corresponding to twice the

engine speed, this is when the 2nd order moment acts, which only acts in the vertical

direction. Figure 3.23 shows how the 2nd order moment compensators are located on the

aft end and fore end of the engine.

Figure 3.23: The location of the 2nd order compensators on the aft end and the fore end (from MAN B&W

(1995))

In the 2D simulation program the influence of the 2nd order moment compensators are

included in the moment of inertia of the sprocket as in equation (2.8), by using Steiner’s

theorem.

3.9 Friction

The roller chain drive system is at all times lubricated, which reduces the friction, but

friction will always be present. Friction has, therefore, been included in the continuous

contact force method between the rollers and the sprockets. From a numerical point of

view this is advantageous, since the inclusion of friction will damp out some of the high

force peaks in the beginning of the contact. The Coulomb modelling of friction, is used

with a modification of the standard formulation, see e.g. Bagci (1975), Threlfall (1978),

Rooney and Deravi (1982), Haug et al. (1986) García de Jalón and Bayo (1994).

In Figure 3.24v is the relative velocity between the block and the ground. The standard

friction forceff is given by

Slip (dynamic) ff = µdFn

Stick (static) ff ≤ µsFn



3.9 Friction 53

whereFn is the normal force (Fn > 0) to the contact surface,µd is the dynamic friction

coefficient andµs is the static friction coefficient, withµs > µd. The state conditions are

Stick to slip: ff > µsFn

Slip to stick: Change in sign oḟx

whereẋ is the relative velocity. In a continuous analysis method the detection of stiction

is performed during the contact. When the relative tangential velocity of the impacting

bodies approaches zero stiction occurs. Sliding occurs when the normal force is not large

enough to separate the two bodies in contact.

v

Fn ff

−Fn−ff

Figure 3.24: The friction force between a block and ground.

The friction force dependency of the relative velocity is modified by introducing a dy-

namic correction factor that prevents the friction force from changing direction for almost

zero values of the tangential velocity, see Figure 3.25. This direction change of the friction

force is perceived by the integration algorithm as a dynamic response with high frequency

contents, which results in a reduction of the time step size. The different modifications

of the friction force shown in Figure 3.25 are a linear modification (solid line), a polyno-

mial modification (dashed-dotted line), a super elliptic modification (dotted line), a Bézier

curve modification (dashed-dotted line), three different Heaviside modifications (dashed

lines) and the standard friction model (solid line), see appendix G.

Including the modification the friction force vector is given by

ff = −µdµcFn
vt

‖vt‖ (3.95)
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whereµd is the dynamic friction coefficient,µc is the dynamic correction factor,vt is

the relative tangential velocity vector and‖vt‖ is the 2-norm of the relative tangential

velocity vector. The relative tangential velocity is given by (3.67). Figure 3.25 shows

friction force ff (vt) normalized with respect to the normal forceFn. Since the friction

force work in the opposite direction of velocityff (vt) is given by

ff (vt) = −sgn(vt)µdµcFn (3.96)

wheresgn(vt) is the signum function of the relative tangential velocity. The friction force

in Equation (3.96) is applied to the roller while the friction force applied on the sprocket is

−ff (vt). The friction model represented by Equation (3.96) does not account for stiction

between the contacting surfaces, but only represents the presence of sliding.

vt

f f
/F

n

−µd

0

0

µd

Figure 3.25: Different modifications of the friction forceff normalized with respect to the normal force

Fn as a function of the relative tangential velocityvt.

Ambrósio (2003) suggested a linear dynamic correction factor as shown in Figure 3.26

(dotted line), which initiated the use of a polynomial correction factor in order to avoid

the discontinuities, (dashed line in Figure 3.26). Several other methods exist as discussed

in appendix G. In Figure 3.26 a Heaviside approximation (dashed-dotted line) is shown

as an example.

Using the polynomial approximation the dynamic correction factor is given by

µc(|vt|) =

{
1

(v∗
t )3

|vt|2(3v∗
t − 2|vt|), 0 ≤ |vt| < v∗

t

1, |vt| > v∗
t

(3.97)



3.10 Summary 55

|vt|

µ
c

00
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Figure 3.26: The dynamic correction factorµc as a function of the absolute value of the relative tangential

velocityvt.

wherev∗
t is a chosen velocity that defines the area in which the dynamic correction factor

is used, see Figure 3.26. Using the Heaviside approximationH1(x) the dynamic correc-

tion factor is given by

µc(|vt|) =

{
tanh

( |vt|
v∗

t ε

)
, 0 ≤ |vt| < v∗

t

1, |vt| > v∗
t

(3.98)

where in Figure 3.26 the Heaviside approximation forε = 0.01 is shown. While small

values ofv∗
t makes the approximation closer to the idealised model it will result in slowing

down the integration method. For small values ofv∗
t , small relative to the velocityvt, the

difference between the use of the different correction factors is minimal.

3.10 Summary

In this chapter a mathematical model of a roller chain drive system is presented. Dif-

ferent contact models between the roller chain and the sprockets has been presented and

discussed. Mathematical models of how different parts in the chain drive system, such as

guide-bars, tightener systems and out balancing wheels can be included is presented and

a friction model is presented.
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Chapter 4
Numerical Simulation and Analytical Results

4.1 Introduction

The numerical integration of the equations of motion for the chain drive system modelled,

as described in chapter 3, is carried out using an ordinary differential equation solver,

which is described in the first part of this chapter. The needed simulation conditions and

assumptions are described.

The transient period of the numerical results are shortened by first finding the static equi-

librium of the system and by comparing the applied power with the dissipated power in

order to find steady state.

In part of the chapter analytical results are presented, i.e., analytical results for the eigen-

frequencies of the chain strands between the sprockets, eigenfrequencies of the system,

simplified analytical results for the link forces and contact forces between the rollers and

sprockets and calculation of the critical damping of the numerical applied longitudinal

damping in the chain links.

The analytical results are in the next chapter compared with results from numerical sim-

ulations. The analytical results for the contact forces are compared with those obtained

numerically and the eigenfrequencies of the chain drive system are used to identify the

frequency peaks obtained in the numerical simulations.

4.2 Ordinary Differential Equation Solver

In the simulation procedure a numerical integration routine called ODE is used. This

routine is a predictor-corrector variable step/order algorithm from Shampine and Gordon

(1975). The accelerations of the rollers and sprockets are integrated using ODE. The

vectory(i) consist of the positions and velocities of the rollers and sprockets and is given

by

57
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y(i) =

{
q(i)

q̇(i)

}
(4.1)

then the velocities and accelerations of the rollers and sprockets are given in the vector

ẏ(i) as

ẏ(i) =

{
q̇(i)

q̈(i)

}
(4.2)

The vectory(i) contains the positions and velocities at timet = ti and vectoṙy(i) contains

the velocities and accelerations at timet = ti. By numerical integration of the vector

ẏ(i) the positions and velocitiesy(i+1) at time ti+1 = ti + ∆t is obtained. The initial

conditions ati = 0 onq andq̇ are required to start the numerical integration process. The

accelerations̈q are, at any time step, calculated by solving the equations of motion for the

system.

The integrator ODE adjusts the step size and the interpolation order to control the error.

When higher frequency content is detected in the dynamic response of the roller-chain

drive the time step is decreased. In the case where a roller is captured on a sprocket or a

guide-bar the integrator detects this as a discontinuity and the time step size is decreased.

In the simulation procedure it is necessary that the initial positions of the rollers are close

to the equilibrium positions. The rollers are initially placed approximately on the tangent

lines between the sprockets, see appendix A, such that the distance between each roller

equal to the pitch plus pre-tension length. In the last segment this may (dependent on the

given data) lead to a small gap. Therefore, in the last chain segment the distance between

each roller is fit in order to eliminate the gap. The velocities are initially set to zero or

alternatively the positions and velocities can be given in an input file.

Since the roller positioning depends on an approximate pre-tension which is given as

input, the initial positions of the rollers are close to the equilibrium positions, but it is

desirable to start the numerical simulations from static equilibrium, so that a steady state

of the numerical simulation is reached faster.

The link force on a roller is calculated by (3.7) and the contact force on a roller by (3.48).

If friction and rotational damping on the links are included these are calculated respec-

tively by (3.95) and (3.17). All forces on a roller are added and put in the force vector

on the right hand side of (3.2). The accelerations for all the rollers are calculated at the
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same time by solving (3.2), since all the rollers are treated as free rollers in the plane. The

accelerations of the driven sprockets are calculated by (3.9), where as the acceleration of

the driver sprocket is given as a function of time. This function may or may not be con-

stant. If a tightener system is included the acceleration of the tightener sprocket and the

bodies in the tightener system are calculated by solving (3.86) When all accelerations of

the rollers for a given time stepj are calculated the auxiliary vectorẏt=t0+j∆t is formed

with the velocities and accelerations of all the sprockets and all the rollers. By integrating

the auxiliary vector the positions and velocities for the system in the next time step are

obtained.

For each step the integration routine takes it is checked which rollers are in contact with

a sprocket or a guide-bar. However, a new contact is only allowed when the integration

routine is updating and not during prediction and this is controlled by an implemented flag

in the integration routine. Only the two first and the two last bedded rollers are checked

for release from a sprocket or a guide-bar and only the two rollers respectively before and

after these two rollers are checked for contact with the sprocket.

4.3 Simulation Conditions

The large roller chain drive systems are stiff systems for the numerical integration routine

to solve, so the simulation time is large. The system is stiff due to the fact that the

system consists of fast and slow components, so the eigenvalues are widely spread, see

e.g. Nikravesh (1988). The use of the nonlinear contact force model combined with the

overall motion of the roller chain drive system leads to rapid changes in the velocities and

accelerations, which explain why the system is stiff. In order to prevent that the numerical

errors of the results increases, a small time step must be applied.

A very small time step is also required in order for the contact forces to be applied close to

the instant when contact occurs. The numerical integration routine ODE reduces the time

step size, when a dynamic response with high frequencies is detected and the number of

time steps needed may exceed to an amount which is undesirable, and the conditions for

the numerical procedure must be controlled.

A short simulation time is desirable and discontinuities are avoided as far as possible. In

order to minimize the simulation time several approaches are implemented for the upstart

of the integration to be smooth. Special attention is brought to the acceleration of the
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driver sprocket, both when it is running at constant angular velocity or at an oscillating

angular velocity and a smooth transition is applied. Before running a simulation static

equilibrium is found and the results are analysed when a steady state is reached.

The inclusion of the tightener system, implies that the equations of motion are described

by a coupled set of differential and algebraic equations and the error response of such

systems are sensitive to constraint violation. Stabilization techniques, such as Baumgarte

Stabilization see e.g. García de Jalón and Bayo (1994), can be applied in order to keep

the constraint violation under control. In the chain drive simulation program, this has not

been included.

4.3.1 Acceleration of Driven Sprocket

Constant Angular Velocity

In order not to enforce a discontinuity, the driving sprocket is slowly accelerated during

the first 2 seconds of the simulation and after these 2 seconds the sprocket rotates with

constant speed. That is if no initial velocities are given for the system. These 2 seconds

is in the following equations denotedtc. The polynomial acceleration for an engine with

the driver velocityvrpm, given in rounds per minute, is given by

θ̈s =

{
vrpm

60
2π 6

t3c
t(tc − t) 0 < t ≤ tc

0 t > tc
(4.3)

this gives the velocity

θ̇s =

{
vrpm

60
2π 6

t3c
t2( tc

2
− 1

3
t) 0 < t ≤ tc

vrpm

60
2π t > tc

(4.4)

the acceleration function and velocity function are shown respectively in Figure 4.1 and

Figure 4.2, for the case ofvrpm = 76rpm = 7.96 rad/s. Though the angular speed of the

driving sprocket is constant after 2 seconds the angular speeds of the driven sprockets will

vary with time, this is due to the polygonal action.

Oscillating Angular Velocity

Due to the fact that the engine ignition takes place in a special order and the cylinders

ignite at different times, the angular velocity of the crankshaft (driver sprocket) will not be

constant. The angular velocity and angular acceleration are as an example shown in Figure
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Figure 4.1: Acceleration curve

T ime[s]

θ̇ s
[r

ad
/s

]

0.5 1.5 2.5 3.5 4.500

1

1

2

2

3

3

4

4

5

5

6

7

8

9

Figure 4.2: Velocity curve

4.5 and Figure 4.3 respectively, where the mean driver velocity isvrpm = 76rpm = 7.96

rad/s, yielding the driving cyclic frequencyfΩ = 76/60 = 1.27 Hz.

The order of the cyclic frequency content of the angular acceleration isk = fω/fΩ, where

fΩ is the driving cyclic frequency andfω is the cyclic frequency content, see Figure 4.4.

The variation of the angular acceleration has been included in the program, by including

a file with the angular acceleration as a function of the angular rotation of the sprocket. A

cubic spline function is used in order to find the acceleration for any given angle at a given

time step. To get a good approximation, with the cubic spline function, of the angular

acceleration the input file must included angles in an interval larger than[0◦; 360◦], e.g.

[−10◦; 370◦]. This is due to the fact that the periodicity of the driving sprocket is360◦. In
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Figure 4.3: The angular acceleration of a 6S90MC engine
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Figure 4.4: The relative frequency (order) content of the angular acceleration of an 6S90MC engine,fΩ =
1.27Hz

order to make a smooth transition from a constant angular acceleration to an oscillating

angular acceleration, a linear scaling is used in a time interval of e.g. 1 second. In Figure

4.6 is shown the angular acceleration as a function of time, with the parabolic upstart

(t ∈ [0s; 2s]), the oscillating angular acceleration with a linear scaling (t ∈ [2s; 3s]), and

the oscillating angular acceleration (t ∈ [3s; 4.5s]). Figure 4.7 shows the angular velocity

resulting from the angular acceleration shown in Figure 4.6.

Other excitations has been applied, such as a single sinus excitation given by

θ̈s = A sin kϕτ , ϕτ ∈ [0; 2π] (4.5)
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whereA is the amplitude andk is the excitation order. The relation between the angleϕτ

and timet is given by

ϕτ =
2π

tr
t (4.6)

where the revolution time of the driving sprockettr = 60
vrpm

.
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Figure 4.5: The angular velocity of a 6S90MC engine
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Figure 4.6: The angular acceleration of a 6S90MC engine

4.3.2 Assumptions

The nonlinear contact force in (3.47) depends on the relative velocity at impact and the

relative velocity. Initially it is assumed that ratio between the relative velocity at impact

and the relative velocity is
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Figure 4.7: The angular velocity of a 6S90MC engine

v

v(−)
= 1.0 (4.7)

This is because the speeds in the beginning of a simulation are equal to zero. Since there

at all times will be rollers seated on the sprockets, this would cause a problem.

The rollers are not allowed to leave the sprocket until the roller has followed the sprocket

by an angle equal to a quarter of the pitch angle. This is done in order to prevent all

of the rollers in contact with a sprocket to get out of contact at the same time, which is

unrealistic. Since a quarter of the pitch angle is small compared to the angle of contact on

a sprocket and the fact that the contact force is zero when there is no indentation, this is

assumed to have no influence on the rollers in contact.

4.3.3 Impact Detection Problem

With the single point contact model and the rectangular tooth profile applied, the tangen-

tial contact forces increased to an extent where the numerical integration routine was not

able to solve the problem. With the semi real tooth profile applied, it only worked when

the generalized stiffness coefficient in the contact force was modelled to increase with the

indentation size, which means that a small indentation was allowed. Different values of

the data used for the chain drive system made the system too stiff for the integrations to

continue, so that this method was not useful in practice.

With the circular tooth profile applied it turned out to have a positive effect on the simula-

tion due to the smooth contact surface. However the model still had numerical problems
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with, on some occasions, being too stiff for the numerical integration routine to solve.

A flag was implemented in order to check if the indentation at impact was larger than a

prescribed tolerance. If this was the case the integration routine used was forced to reject

the time step and a new time step smaller than the previous was tested. If the prescribed

tolerance of the impact indentation was set to be too small, the numerical simulation still

could become unstable. As an alternative to the described method an iterative procedure,

such as Newton-Raphson, could also have been applied in order to find the moment in

time where the instant of contact occurs.

With the real shaped tooth profile applied none of the above mentioned approaches re-

garding the impact was necessary, due to the smooth contact surface.

4.3.4 Static Equilibrium

The static equilibrium is found by integrating the equations of motion untilq̇ = q̈ = 0

to within a numerical tolerance. Artificial damping is applied to the system in order to

accelerate the convergence to an equilibrium configuration. This method is easy to im-

plement, but requires substantial computing time. The initial conditions for the system

are chosen close to the equilibrium configuration that actually occurs. This is a necessary

condition, because a dissipative nonconservative system may have many equilibrium con-

figurations. This approach is also known as the dynamic settling approach, see e.g. Haug

(1989). Other methods exist such as for an example the Minimum Total Potential Energy

approach, but in this work the dynamic settling approach has been used.

4.3.5 Steady State

In order to analyse the numerical results a steady state must be reached. We want to

remove transient behaviour resulting from the modelling of the simulation start up. Steady

state in the numerical model is reached when the applied power is equal to the dissipated

power. The applied power is the power needed to drive the driver sprocket with the angular

velocityωs and is given by

Pdriver = −τsωs (4.8)

whereτs is the moment calculated by the contact forces given by Equation (3.68). The

power dissipated in the chain drive system is dissipated in the longitudinal damping in the

links, rotational damping in the links, damping in the contact force and friction between
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the rollers and sprockets. The dissipated power due to longitudinal damping in the links

is given by

Pld =

nl∑
i=1

Dl̇2i (4.9)

wherenl is the number of links in the chain,D is the longitudinal damping coefficient,l̇i

is the time rate of change in the length of the link given by Equation (3.4). The dissipated

power due to rotational link damping is given by

Prd =

nl∑
i=1

Cdϕ̇
2
i (4.10)

whereCd is the rotational damping coefficient andϕ̇i is the angle velocity given by Equa-

tion (3.15). The dissipated power due to damping in the contact between the rollers and

the sprockets or guide-bars is given by

Pcd =
nc∑
i=1

Dc(vn)2
i (4.11)

wherenc is the number of rollers in contact with either a sprocket or a guide-bar,Dc is

the contact damping coefficient given by Equation (3.46) and(vn)i is the relative velocity

in the normal direction for rolleri. The dissipated power due to the friction between the

roller and sprockets in contact is given by

Pf =
nc∑
i=1

µdµcFn|(vt)i| (4.12)

whereµd is the dynamic friction coefficient,µc is the dynamic correction factor,Fn is

the normal force on a roller and|(vt)i| is absolute value of the relative velocity in the

tangential direction for rolleri. The total dissipated power is given by

PT = Pld + Prd + Pcd + Pf (4.13)

When PT = Pdriver integrated over a period corresponding to one turn of the driver

sprocket, steady state of the numerical simulation is reached.

4.4 Analytical Results

Several researchers have worked with analytical results for chain drives, see e.g. Binder

(1956), Mahalingam (1957) and Naguleswaran and Williams (1968). The analytical
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results presented in this section are mainly taken from Mahalingam (1957) and Nag-

uleswaran and Williams (1968) and the analytical results for contact forces between

rollers and sprockets are taken from Binder (1956).

4.4.1 Natural Frequencies of a Pre-tensioned String

The natural frequencies of the chain segments between the sprockets can be analysed by

looking at transversal vibrations of a pre-tensioned string. The pre-tension force isF , the

length of the string isl andml is the mass per unit length, see Figure 4.8 and 4.9.

F

F

Figure 4.8: A pre-tensioned string.

The system configuration and the forces acting on an infinitesimal piece of the chain string

is shown in Figure 4.9 and 4.10.

RS

ωs

l

V

Figure 4.9: The chain string between two sprockets.

The chain string velocityV is ωsRs, whereωs is the angular velocity of the sprocket and

Rs is the radius of the sprocket.

Force and moment equilibrium of the infinitesimal piece of string shown in Figure 4.10,

assuming no gravity, gives

↑:(T + dT ) − T = ml
D2y

Dt2
dx ⇒ T ′ = ml

D2y

Dt2
(4.14)

→:(N + dN) − N = 0 ⇒ N ′ = 0 (4.15)

�:(M + dM) − M + Tdx − Ndy = 0 ⇒ M ′ + T − Ny′ = 0 (4.16)
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F
F

N

N + dN

T

T + dT

M

M + dM

x x + dx

y

y + dy

Figure 4.10: The pre-tensioned moving chain string and an infinitesimal cutout of the it.

whereN ′ is defined as∂N
∂x

, T ′ is defined as∂T
∂x

, and so forth. The prefix∂ is used for

partial derivative, the prefixd for differential derivative and the prefixD for the total

derivative of a function of more than one variable. Differentiating (4.16) with respect to

x yields

M ′′ + T ′ − (Ny′)′ = 0 (4.17)

Since it is assumed that the chain has no bending stiffnessEI = 0, whereE is Young’s

Modulus andI is the cross-sectional moment of inertia, HookeŠs lawM = EIy′′ implies

thatM = 0. Inserting (4.14) into (4.17) gives

(Ny′)′ = ml
D2y

Dt2
(4.18)

Equation (4.15) implies thatN(x, t), with the boundary conditionsN(0, t) = F and

N(l, t) = F , is constantN(x, t) = F . Sincey = y(x, t) andx = x(t) the derivatives of

y with respect to time becomes

Dy

Dt
=

∂y

∂t
+

∂y

∂x

dx

dt
(4.19)

D2y

Dt2
=

∂2y

∂t2
+ 2

∂2y

∂t∂x

dx

dt
+

∂2y

∂x2
(
dx

dt
)2 +

∂y

∂x

d2x

dt2
(4.20)

Assuming that the chain string velocity is constant,dx
dt

= V and d2x
dt2

= 0. Inserting (4.20)

into (4.18) gives

Fy′′ = 2mlV ẏ′︸ ︷︷ ︸
Coriolisforce

+ mlV
2y′′︸ ︷︷ ︸

Centrifugalforce

+ mlÿ︸︷︷︸
Inertiaforce

(4.21)
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whereẏ is defined asdy
dt

andÿ is defined as∂
2y

∂t2
. Equation (4.21) can be rewritten

c2
0y

′′ = 2V ẏ′ + V 2y′′ + ÿ (4.22)

where the phase velocity of the wavec0 is given by (see e.g. Graff (1991))

c0 =

√
F

ml

(4.23)

For the case of a non moving chain the radial natural frequencies for a finite string are

found by settingV = 0 in (4.22) yielding

ωn =
nπc0

l
=

nπ

l

√
F

ml

(4.24)

and the cyclic natural frequenciesfn = ωn

2π
are given by

fn =
n

2l

√
F

ml

(4.25)

For the case of a moving stringV 	= 0 the general solution to (4.22), see e.g. Mahalingam

(1957), is given by

y = A1 sin (ωt + ωx/(c0 − V ) + φ1) + A2 cos (ωt − ωx/(c0 + V ) + φ2) (4.26)

whereω is the radial frequency,φ1 andφ2 are phase angles andA1 andA2 are amplitudes.

Substituting the boundary conditionsy = 0 at x = 0 and atx = l in (4.26) gives the

natural frequencies

ωn =
nπ

l

c2
0 − V 2

c0

, n = 1, 2, 3 · · · (4.27)

and the mode of vibration is given by

y = sin (
nπx

l
) sin (ωnt +

nπx

l

V

c0

+ φ) (4.28)

whereφ is an arbitrary phase angle. Equation (4.27) implies that the natural frequency

decreases as the string velocityV approaches the phase velocityc0, see e.g. Mahalingam

(1957) and Naguleswaran and Williams (1968). Figure 4.11 shows the cyclic natural

frequencyfn as a function of the speed of the string.
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V [rpm]

f n
[H

z
]

Figure 4.11: The natural frequency of the moving string as a function of the speed of the string.

4.4.2 Tension due to Centrifugal Force

When the chain is wrapped around the sprockets as shown in Figure 4.9 the tension in the

moving chain string is greater than the static chain tension due to the centrifugal force,

Mahalingam (1957) and Naguleswaran and Williams (1968). In Figure 4.12 is shown the

effect of a chain being wrapped around the sprockets with a contact angle ofπ rad, see

also Figure 4.9.

Fcf

F ∗
cf

2Rs

F

F

F

FΘ

dΘ

Figure 4.12: The tension due to centrifugal force.

The centrifugal force per unit length isFcf = ml
V 2

Rs
, with V = ωsRs. The projec-

tion of the centrifugal force of a small element in the horizontal direction isdF ∗
cf =

FcfRsdΘsin(Θ). Assuming that the chain is in contact with the sprocket forΘ ∈ [0, π],

the total projection of the centrifugal force in the horizontal direction is given by

F ∗
cf =

∫ π

0

FcfRs sin (Θ)dΘ = 2RsFcf = 2mlV
2 (4.29)
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When the contact angle between the chain and the sprocket isπ rad, the tension force

becomes

F = Fs + mlV
2 (4.30)

whereFs is the static tension force. For chain drive systems however the contact angle

varies, depend on the placement of the sprockets relative to each other. Naguleswaran and

Williams (1968) proposed that the extra tension due to the centrifugal force is given by

F = Fs + ηmlV
2, η ∈ [0, 1] (4.31)

whereη describes the relaxation of the structure. Figure 4.13 shows the cyclic natural

frequencyfn as a function of the speed of the string, for different values ofη. In Figure

4.13 the solid line is forη = 0, the dashed line is forη = 1, the dotted line is forη = 0.2

and the dashed-dotted line is forη = 0.5.

V [rpm]

f n
[H

z
]

η = 0

η = 0.2

η = 0.5

η = 1

Figure 4.13: The natural frequency of the moving string as a function of the speed of the string, for different

values ofη. (η = 0, η = 0.2, η = 0.5 andη = 1)

4.4.3 Polygonal Action

The polygonal action, as described in section 3.6, is responsible for periodic transverse

displacements at the end of the chain strings, due to engagement and disengagement.

These forced vibrations due to transverse excitation are described in Mahalingam (1958)

and Mahalingam (1957), where also the boundary conditions for (4.26) are given as
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x = 0, y = a1 cos (ωpt)

x = l, y = a2 cos (ωpt + φp) (4.32)

whereφp is the phase difference between the two ends of the chain corresponding to the

fractional pitch in the tangent length of the chain. The radial frequencyωp is the frequency

of the tooth engagement given by

ωp =
2πV

P
(4.33)

whereP is the pitch of the chain. Forced vibrations due to the polygonal action may reach

resonance when the frequency of the tooth engagement is equal to the natural frequency

of the moving chain string. In Mahalingam (1957) it was pointed out that the fluctuating

tension, which arises mainly from the polygonal action of the sprockets is an important

vibration effect of the system.

4.4.4 Vibrations due to Longitudinal Excitation

For the case of one of the sprockets in the system being subjected to torsional vibrations,

Mahalingam (1957) indicated that the stability of the chain would be determined by the

solutions to an equation of the Mathieu type, but the work was not taken further. In

Naguleswaran and Williams (1968) this work was continued and the stability of a moving

band was described using a Galerkin manifold.

When a sprocket is subjected to torsional vibrations, the tension of the chain string will

be

F = Fs + ηmV 2 + ∆Fs cos (ωtt) (4.34)

whereωt is the radial frequency of the torsional vibration of the sprocket. Substituting the

tension force including the extra tension from torsional vibrations into (4.22) the equation

of motion becomes

(c0 + ∆c0 cos (ωtt))y
′′ = 2V ẏ′ + V 2y′′ + ÿ (4.35)

wherec0 =
√

Fs+ηmV 2

ml
and∆c0 =

√
∆Fs

ml
. Usingy(x, t) = eiµxy0(t) andωtt = 2z as

proposed in Mahalingam (1957) Equation (4.35) becomes

ÿ0 + 2iµV ẏ0 + (c2
0 + ∆c2

0 cos (2z))µ2y0 = 0 (4.36)
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Substitutingy0 = e−iV µzu(z) into (4.36) as proposed in Mahalingam (1957) the equation

becomes

ü + (µ2c2
0 + µ2∆c2

0 cos (2z))u = 0 (4.37)

Equation (4.37) is an equation of the Mathieu type. For the case where the torsional vibra-

tions of the sprocket is not a single harmonic function, but a general periodic excitation

function Equation (4.37) becomes

ü + (µ2c2
0 + µ2∆c2

0�(z))u = 0 (4.38)

where�(z) is a periodic excitation function. Equation (4.38) is an equation of the Hill

type, see e.g. Pedersen (1985).

Naguleswaran and Williams (1968) concluded that the most violent instability of a band

occurs when the excitation due to fluctuation in band tension is at twice the lateral nat-

ural frequency of the band. The authors also concluded that the value ofη has a strong

influence on the location of the critical running speeds.

4.4.5 Effect of Damping on the Natural Frequency

Mahalingam (1957) investigated the influence of taking damping into account, by assum-

ing a damping force proportional to the transverse velocity. This was done by adding the

termb(V y′+ẏ) to the equation of motion 4.22), whereb is the damping coefficient divided

by the mass per unit length. Mahalingam (1957) concluded that the resonant amplitudes

decrease for an increase in the running speed. Naguleswaran and Williams (1968) also

concluded that the resonant range is sensitive to the damping of the system.

The damping force in the vibrating chain is provided by the frictional resistance between

the pins and bushes during the relative link motion, the resistance of air, influence of

lubrication, etc. It is difficult to determinate the damping factors accurately, however Ma-

halingam (1957) verified experimentally that the suggested damping force approximation

was fairly good.

4.4.6 Contact Force between Rollers and Sprockets

Binder (1956) described analytical results for the contact force between the roller and

sprocket. These analytical results however only include two sprockets and thereby two

chain segments of which only one of them was under tension and the other was slack. In
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the case of more sprockets connected and different tension occurring in the segments, the

analytical results presented here are extended, so both of the segments in contact with a

sprocket may be under tension.

The link forcesfl in thenb links of rollers in contact with a sprocket are

(fl)i = qa

( sin(ζ)

sin(ζ + α)

)i

+ qb

( sin(ζ)

sin(ζ + α)

)nb−i+1

+ qc, i = 1, . . . , nb (4.39)

where the angleζ, referred to as the pressure angle, see Binder (1956), is defined by

ζ = 35◦ − 120o

nt

(4.40)

and the contact forcesfc on thenb bedded rollers in contact with a sprocket are

(fc)i = qa

( sin(ζ)

sin(ζ + α)

)i−1 sin(α)

sin(ζ + α)
+ qb

( sin(ζ)

sin(ζ + α)

)nb−i sin(α)

sin(ζ + α)
+

2qc sin(
α

2
), i = 1, . . . , nb (4.41)

whereqa is the tension in one segment,qb is the tension in the other segment,α is the

pitch angle,nt is number of teeth on the sprocket andqc is the centrifugal force given by

qc =
mrV

2

Pg
, V = ωsRs (4.42)

wheremr is the roller mass,P is the pitch,ωs is the angular velocity of the sprocket,Rs

is the radius of the sprocket andg is the gravitational acceleration.

4.4.7 Eigenfrequencies of the Chain Drive System

The equations of motion of an undamped free system are

Mq̈ + Kq = 0 (4.43)

assuming the solutionq = x cos(ωt) one obtain the eigenvalue problem (EVP) for deter-

mination ofω andx

(K − ω2M)x = 0 (4.44)

whereω2 is an eigenvalue andx is an eigenvector. For nontrivial solutionsx 	= 0 to exist

the determinant of the coefficient matrix must vanish
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| K − ω2M |= 0 (4.45)

Solving (4.45) one obtain then set of eigenfrequenciesω2
i , i = 1, . . . , n.

The total stiffness matrix of the chain drive system is put together of a number of sub-

matrices, where the sub-stiffness-matrix from each of the segments are

K∗ =




2K −K

−K 2K −K
.. . .. . .. .

−K 2K −K

−K 2K


 (4.46)

The number of rows and columns in the sub-stiffness-matrix is equal to the number of free

rollers in the segment. The sub-stiffness-matrix from the sprockets is, as shown below,

given by

K∗ =




2KR2
1

2KR2
2

. ..

2KR2
n−1

2KR2
n


 (4.47)

The number of elements is equal to the total number of sprockets in the chain drive system

minus one, because the driver sprocket is fixed rotationally. Hence the row and column

associated with it is removed. The 2 by 1 matrices resulting from the contact between the

two segment and a sprocketi are given by

K = [−KRi − KRi] (4.48)

An example is shown in Figure 4.14 and 4.15.

The stiffness coefficient of the springs between the rollers are denotedk, the rotational

angle of sprocket number2 is θ2, the radius isR2 and the mass moment of inertia is

J2. Sprocket number1 is fixed rotationally. The forces shown in Figure 4.15 are in the

coordinate directions shown in Figure 4.14 given by
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(1) (2)
R2

θ2

x1
x2

x3
x4 x5

x6
x7

x8x9x10

Figure 4.14: Chain drive system consisting of two sprockets.

(1) (2)

R2

θ2

f1 −f1 f2 −f2 f3 −f3 f4 −f4 f5 −f5 f6 −f6

f7−f7f8−f8f9−f9f10−f10f11−f11f12−f12

Figure 4.15: The forces in a chain drive system consisting of two sprockets.

f1 = Kx1

f2 = K(x2 − x1)
...

f5 = K(x5 − x4)

f6 = K(θ2R2 − x5)

f7 = K(x6 − θ2R2)

f8 = K(x7 − x6)
...

f11 = K(x10 − x9)

f12 = Kx10 (4.49)

From force equilibrium of each roller with massmr we obtain the equations of motion
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mrẍ1 = f2 − f1 = −2Kx1 + Kx2

mrẍ2 = f3 − f2 = Kx1 − 2Kx2 + Kx3

...

mrẍ5 = f6 − f5 = Kx4 − 2Kx5 + Kθ2R2

mrẍ6 = f8 − f7 = Kx7 − 2Kx6 + Kθ2R2

...

mrẍ10 = f12 − f11 = −2Kx10 + Kx9

(4.50)

From momentum equilibrium about the center of sprocket2 we get the equation of motion

J2θ̈2 = −f6R2 + f7R2 (4.51)

The generalised system mass matrixM is given by

M =




J1

mr

.. .

mr

J2

mr

. . .

mr




(4.52)

the system position vector isqT = (θ1, x1, . . . , x5, θ2, x6, . . . , x10) andK is the system

stiffness matrix given by

K =




KR2
1 −KR1 −KR1

−KR1 2K −K

−K 2K −K
. . .

−K 2K −K

−K 2K −KR2

−KR2 KR2
2 −KR2

−KR2 2K −K

−K 2K −K
. ..

−KR1 −K 2K




(4.53)
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Applying the boundary condition that sprocket number one is fixed rotationally implies

that the first row and column can be removed from both the mass matrix and the stiffness

matrix and two matrices become band matrices. The stiffness matrix is in general given

in appendix F. The eigenvalues of the system is found by solving (4.45), but this yields

only the longitudinal natural frequencies of the chain.

4.4.8 Natural Frequencies of the Sprockets Alone

An alternative way of calculating the natural frequencies for the rotational vibrations of

the sprockets is found by connecting the sprockets with springs. In Figure 4.16 is shown

a chain drive system consisting of 5 sprockets connected with springs. The stiffness coef-

ficient of the springs between the sprockets are calculated by

1/Ki = 1/K + 1/K + . . . + 1/K = (ni + 1)/K

⇓
Ki = K/(ni + 1) (4.54)

whereni is the number of free rollers in segmenti andK is the spring stiffness of the

spring between two rollers.

(1)

(2)

(3)

(4)

(5)

K1

K2

K3

K4

K5

Figure 4.16: A chain drive system consisting of 5 sprockets connected with springs.

The mass moment of inertia of the sprockets including the part of the chain in connect

with the sprocket is calculated using Steiner’s theorem

J∗
i = Ji + miR

2
i (4.55)
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whereJi is the mass moment of inertia of sprocketi, mi is the mass of the rollers in

contact with sprocketi andRi is the radius of sprocketi. The equations of motion for the

system shown in figure 4.16, where sprocket1 is fixed rotationally, are




J∗
2

J∗
3

J∗
4

J∗
5






θ̈2

θ̈3

θ̈4

θ̈5


+ (4.56)




R2
2(K1 + K2) −R2R3K2

−R2R3K2 R2
3(K2 + K3) −R3R4K3

−R3R4K3 R2
4(K3 + K4) −R4R5K4

−R4R5K4 R2
5(K4 + K5)






θ2

θ3

θ4

θ5


 =




0

0

0

0




or written in compact form

J∗θ̈ + Kθ = 0 (4.57)

Solving (4.45) with the mass matrix and stiffness matrix from (4.57) the eigenfrequencies

for the rotational vibrations of the sprockets are found.

4.4.9 Critical Damping

The critical damping coefficient in the longitudinal direction of the links are calculated

by assuming that the chain is one long open string of springs connected and then approx-

imating this with one mass and one spring connected with ground, see Figure 4.17.

Kn

mn

Dn

D

D

D

K

K

K

m

m

m

m

Figure 4.17: A open string of masses connected with springs approximated with a single mass connected

with ground.
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For the case of a series of springs connected we get the total spring stiffness

1/Kn = 1/K + 1/K + . . . + 1/K = n/K

⇓
Kn = K/n (4.58)

whereK is the stiffness coefficient of each single spring andKn is the total stiffness

coefficient ofn springs connected in a series. The total mass ismn = n · m, wherem is

the mass of one roller.

Kn

mn

Dn

Figure 4.18: A single mass with a spring damper connection to ground.

The critical damping coefficientDn is for a massmn connected with a spring with the

stiffnessKn to the ground, as shown in Figure 4.18 given by

Dn = 2
√

mnKn (4.59)

yielding

Dn = 2
√

n · mK/n = 2
√

mK (4.60)

So the critical dampingD for each individual link given by

1/Dn = 1/D + 1/D + . . . + 1/D = n/D

⇓
D = nDn (4.61)

yielding

D = 2n
√

mK (4.62)

The damping coefficientD is used as margin for which damping coefficient should be

used.
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4.5 Summary

In first part of this chapter the numerical integration routine used in the simulation pro-

gram is presented and the used simulation conditions and assumptions are given. The

advantage of using the real shaped tooth profile, compared with other tooth shape models

from a numerical stability point of view is given. In the last part of this chapter some

analytical results for the eigenfrequencies of models for the chain drive system are shown

and analytical results for the contact force between rollers and sprocket are presented.
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Chapter 5
Application and Validation

5.1 Introduction

The methodologies described in chapter 3 and chapter 4 are used to develop a simula-

tion program. Simulating the behaviour of a two stroke diesel marine engine roller chain

drives, the different models are compared. The drives are standard in marine engines that

have between 4 and 12 cylinders for a power range of1760 to 78000 kW. The numerical

simulations are done with application to two different chain drive systems of MAN B&W

diesel engines. The reason for the change of the engine type was the prospect of some ex-

perimental results, which however was not conducted by the company during the project

period.

Two of the different models for the contact between the rollers and sprockets are com-

pared, that is the circular tooth profile and the real tooth profile. The results from these

numerical models are also compared with simplified analytical results. As mentioned in

chapter 3 the other applied models of the contact surface have shown not to be useful,

hence the results from application of these are excluded.

The influence of inclusion of friction and inclusion of rotational damping on the links is

presented in this chapter. The methodologies are applied to the simulation of different

chain drive systems used in marine diesel engines, and inclusion of the different parts,

such as the guide-bars and the tightener system are analysed.

In section 5.9 a resonance analysis is presented and compared with analytical results of the

eigenfrequencies of the chain segments. In the last part of the chapter some experimental

approaches of validating the computer program, which will be carried out by MAN B&W

Diesel A/S in the near future, are listed.

5.2 Comparison of Circular and Real Tooth Profile

In this section the implementation of two different models suggested to describe the con-

tact surface between rollers and sprockets, in a simulation program are described and

83
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compared. The models are the circular tooth profile and the real tooth profile. For both

methods the equations of motion of the roller chain drive system are given by (3.2) and

(3.9). Both methods use the same contact force model to describe the contact between the

rollers and sprockets, given by (3.47). However, the calculation of the indentation, rela-

tive velocity and normal vector used in equation (3.47) are calculated differently. For both

models the link force between two adjacent rollers is the spring/damper force between the

two lumped masses.

The results from the numerical simulation are compared with results from a simplified

analytical model. The contact forces between the rollers and sprockets are in the analytical

simplified model given by (4.41) and the link forces are given by (4.39).

5.2.1 Application to a Chain Drive of a MAN B&W Diesel Engine

The methodologies for the two methods are applied to simulation of the fore end chain

drive of a MAN B&W 6L60MC marine diesel engine. The roller chain drive placed at the

fore end of the engine 6L60MC is composed of four sprockets and a chain made of 122

links, see Figure 5.1.

The sprocket number (3) in the top of the chain drive is part of the pre-tensioning system

and it is located 0.3366 m to the right of the center of the crankshaft and 3.0944 m above

it during normal operating conditions, see Figure 5.1. Each link of the chain, with a pitch

of 0.0889 m and a mass of 3.01 kg, is modelled as a flexible element with a stiffness of

815 MN/m, according to experimental data obtained by the manufacturer, see appendix

B. The driver sprocket which is the sprocket on the crankshaft rotates in the numerical

simulations with a constant angular velocity of 120 rpm, which gives a driving frequency

of 120/60 = 2 Hz and the driver sprocket has 60 teeth yielding a tooth frequency offt =

2Hz· 60 = 120 Hz. The time it takes for one link to move one complete revolution in the

chain drive istr = 1
2 Hz

122
60

= 1.017 s.

The purposes of the 4 different sprockets in the chain drive are

Sprocket 1 = Crankshaft sprocket (driver)

Sprocket 2 = Counterweight sprocket

Sprocket 3 = Tightener sprocket

Sprocket 4 = Counterweight sprocket

The data for the system used in the numerical simulation are given in Table 5.1, Table 5.2,
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Figure 5.1: L60MC fore chain drive, (a) Blueprint of the chain drive (from MAN B&W Diesel A/S) and

(b) the numbering of the sprockets [] and the chain segments ().

Table 5.3 and Table 5.4.

Units S
pr

oc
ke

t1

S
pr

oc
ke

t2

S
pr

oc
ke

t3

S
pr

oc
ke

t4

Pitch circle radius,Rs m 0.849325 0.425245 0.397000 0.425245

position,xs m 0.0000 0.5560 0.3366 -0.5560

position,ys m 0.0000 2.2020 3.0944 2.2020

number of teeth,nt 60 30 28 30

mass,ms kg 850 759 183 759

mass moment of inertia,Js kgm2 435 82 15 82

Table 5.1: Data for the sprockets
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Units Value

Mass per. roller,mr kg 3.01

Chain pitch,P m 0.0889

Roller length,lz m 0.02699

Roller radius m 0.027

Link stiffness,K MN/m 815

Link damping,D kg/s 250

Pre-tension kN 21

Number of links,nl 122

Table 5.2: Data for the roller-chain

The critical damping calculated by assuming the chain as being a long open string of a

series of masses connected with springs is for a chain withnl number of linksDcr =

2nl

√
mrK, yielding for the test caseDcr ≈ 1.2 · 106 kg/s. For a single mass connected to

ground with a spring the critical damping coefficient isD∗
cr = 2

√
mrK, yielding for the

test caseD∗
cr ≈ 1.0 ·105 kg/s. The damping coefficient used in the simulation corresponds

to 0.002% of Dcr and0.25% of D∗
cr.

Units Value

Poisson’s ratio,ν 0.3

Young’s modulus,E N/m2 2.06 · 1011

exponent,m 3

material property,h m2/N 1.406 · 10−12

Table 5.3: Material data

From the data given in Table 5.3 and the length of the roller given in Table 5.2 an average

generalized coefficient of stiffness is calculated using (3.31) and the value used in (3.47)

is Kg = 1 GN/m. The coefficient of restitution is a constant0 ≤ e ≤ 1, wheree = 0

relates to a fully plastic contact ande = 1 relates to a fully elastic contact. In order to

include maximal energy dissipation in the modele = 0 is used. Different values ofe has

been applied resulting in similar conclusions as presented in this section, and is discussed

further in section 5.4.
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Units S
eg

m
en

t1

S
eg

m
en

t2

S
eg

m
en

t3

S
eg

m
en

t4

Length m 1.8797 0.4104 1.2619 2.2312

Angle on sprocket i rad 0.3485 2.2748 2.3337 3.2010

Angle on sprocket j rad 3.4901 5.4164 2.3337 3.2010

Table 5.4: Segment length and contact angles

In Table 5.4 the data for the four segments in the chain drive are given, where segment 1

is the chain strand between sprocket one and sprocket two, segment 2 is the chain strand

between sprocket two and sprocket three and so forth, see Figure 5.1(b).

5.2.2 Comparison of Numerical and Analytical Results

In the following the link force between two adjacent rollers, the average link force (av-

erage over all links in a segment) between the neighbouring rollers in a segment and the

transversal oscillation of the middle of a segment between two sprockets are investigated.

This is done by comparing the two different contact surface models, which is the cir-

cular tooth profile and the real tooth profile. Further the contact force between rollers

and sprockets are investigated by comparing a simplified analytical model with the two

different models used for the numerical simulations.

Friction and rotational damping are not included in these numerical simulations. The

numerical simulations are carried out using initial positions and velocities from an earlier

simulation, so the driver sprocket is running at the constant velocity 120 rpm during a

complete simulation period of 10 seconds.

The Link Forces

The variation of the link forces and analysis of the transversal oscillations of the chain

strands exemplify the type of results useful for the design of the roller chain drives.

Figure 5.2 shows a comparison between the two methods, of the link force between two

adjacent rollers during one second of the simulation. The dashed line is the result obtained

using the real tooth profile and the solid line is the result obtained using the circular tooth

profile. The link force obtained using the real tooth profile has a noticeable variation

when the link is in contact with sprocket number one in the time period [9.3 s;9.6 s] and
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Figure 5.2: The link force between two adjacent rollers during one second. Dashed line for the real tooth

profile and solid line for the circular tooth profile.

with sprocket number three in the time period [9.8 s;9.9 s], whereas for the circular tooth

profile the large variations are in the time periods before and after. The amplitude for the

real tooth profile is also noticeable smaller than for the circular tooth profile. We observe

that in this case the use of the real tooth profile has a decreasing effect on the link force.

Figure 5.3 shows a comparison between the two methods, of the average link force (aver-

age over all links in the segment) between the neighbouring rollers in segment one during

one second of the simulation, that is the free links situated in the chain strand between

sprocket one and two. The dashed line is the result obtained using the real tooth profile

and the solid line is the result obtained using the circular tooth profile. The mean value

of the average link force is for the circular tooth profile approx. 25 kN, whereas it for the

real tooth profile approx. 19 kN. The amplitude of the average link force when using the

circular tooth profile is up to approx. 13 kN, whereas it for the real tooth profile is up to

approx. 6 kN. We observe that in this case the use of the real tooth profile has a decreasing

effect on the average link force as expected due to the decreasing effect on the link force

described in relation to Figure 5.2. This is also to be expected, since the circular tooth

profile is placed on a pitch circle with a radius∆R larger than the one used for the real

tooth profile. Hence the chain has more pre-tension, see section 3.5.5.
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Figure 5.3: An average link force between the neighbouring rollers in segment one during one second.

Dashed line for the real tooth profile and solid line for the circular tooth profile.

From Figure 5.2 and Figure 5.3 it can be seen that there is numerical noise on the results,

which partly is due to the low value of the damping coefficientD compared with the

critical damping coefficient. Higher values ofD has been tested and they have a smooth-

ing effect on the link forces, but increases the simulation time. For higher values ofD

however the same conclusion with respect to comparison of the two models are drawn.

The Oscillations of Chain Strands

For the analysis of the transversal vibrations of the chain, the perpendicular distance be-

tween the link closest to the middle of the initial chain strand line and the middle point of

the initial chain strand line is calculated.

Figure 5.4 shows a comparison between the two methods for the oscillation of segment

one, that is the perpendicular distance between the middle of the segment and the initial

chain strand line. The dashed line is the result obtained using the real tooth profile and the

solid line is the result obtained using the circular tooth profile. The figure shows that the

result from the two methods are similar, the vibrations are with approximately the same

major frequency. Again as for the link force we observe that the real tooth profile has a

smoothing effect on the result compared to the circular tooth profile.
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Figure 5.5 shows a comparison between the two methods for the oscillation of segment

four, that is the perpendicular distance between the middle of the segment and the initial

chain strand line. The dashed line is the result obtained using the real tooth profile and

the solid line is the result obtained using the circular tooth profile. The figure shows that

the results from the two methods are somewhat different in the size of the amplitudes of

the vibrations. Again as for the link force we observe that the real tooth profile has a

smoothing effect on the result compared to the circular tooth profile.

Figure 5.6 shows the frequency spectra from a FFT (Fast Fourier transformation) of the

results shown in Figure 5.4, the left figure for the results obtained using the circular tooth

profile and the right figure for the results obtained using the real tooth profile. Both the

frequency spectra show a major peak around 5.5 Hz, that for the circular tooth profile the

peak is at approx 6.1 Hz and for the real tooth profile the peak is at approx. 5.1 Hz. The

other smaller peaks are not comparable. The main excitation frequencies are the driver

frequency 2 Hz and the tooth frequency 120 Hz, but neither of these frequencies are seen

in Figure 5.6.

The eigenfrequenciesfn for a free undamped pre-tensioned string is given by
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Figure 5.4: The oscillation of the middle of segment one about the initial position. Dashed line for the real

tooth profile and solid line for the circular tooth profile.
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Figure 5.5: The oscillation of the middle of segment four about the initial position. Dashed line for the real

tooth profile and solid line for the circular tooth profile.
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Figure 5.6: The frequency of the oscillation of the middle of segment one - For the circular tooth profile

(left) and for the real profile (right).

fn = n

√
F

4ltmt

, n = 1, 2, . . . (5.1)

wheren is the eigenfrequency number,F is the pre-tension force,lt is the length of the

string andmt is the mass of the string, see section 4.4.1. For segment number one the
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Figure 5.7: The frequency of the oscillation of the middle of segment four - For the circular tooth profile

(left) and for the real profile (right).

length islt ≈ 1.8797 m, corresponding to approx 21 links which yields a string mass of

mt ≈ 63.21 kg. For the circular tooth profile we found the mean average link force to be

F ≈ 25 kN and for the real tooth profile it isF ≈ 19 kN. Using (5.1) we obtain the first

eigenfrequency for segment number one, assuming it is comparable to a pre-tensioned

string, that is for the circular tooth profilef (c)
1 ≈ 7.3 Hz and for the real tooth profile

f
(r)
1 ≈ 6.3 Hz. For the numerical simulation damping is included in the longitudinal

direction of the links, which lowers the eigenfrequency. As described in section 4.4.1 the

velocity of the chain string has an influence on the eigenfrequency and the eigenfrequency

decreases when the velocity increases, see Figure 4.11. It is therefore likely that the6.1

Hz and5.1 Hz corresponds to the first eigenfrequency of the chain strand in the transversal

direction.

Figure 5.7 shows the frequency spectra from a FFT of the results shown in Figure 5.5, the

left figure for the results obtained using the circular tooth profile and the right figure for

the results obtained using the real tooth profile. Both the frequency spectra show a major

peak about 5 Hz, that is for the circular tooth profile the peak is at approx. 5.2 Hz and for

the real tooth profile the peak is at approx. 4.5 Hz. Both methods also have a peak at the

tooth frequency 120 Hz. For the circular tooth profile the other major peaks are at approx.

15.5 Hz, 25.5 Hz, 83 Hz and 157 Hz and for the real tooth profile the peaks around the

same values are approx. 13 Hz , 33 Hz, 87 Hz and 153 Hz.

For segment number four the length islt ≈ 2.2312 m, corresponding to approx 25 links



5.2 Comparison of Circular and Real Tooth Profile 93

which yields a string mass ofmt ≈ 75.25 kg. For the circular tooth profile we found the

mean average link force to beF ≈ 26 kN and for the real tooth profile it isF ≈ 20 kN.

Using (5.1) we obtain the first eigenfrequency for segment number four, assuming it is

comparable to a pre-tensioned string, that is for the circular tooth profilef
(c)
1 ≈ 6.2 Hz

and for the real tooth profilef (r)
1 ≈ 5.5 Hz. It is therefore likely, due to the damping, that

the5.2 Hz and4.5 Hz corresponds to the first eigenfrequency of the chain strand in the

transversal direction.

The Contact Force

The variation of the contact forces between the rollers and sprockets exemplify another

type of results that can be derived from the numerical simulation program. In order to

compare the analytical result with numerical result, the analytical found forces are plotted

versus a time scale given by

(t)i = ts + (i − 1) · te − ts
nb − 1

, i = 1, . . . , nb (5.2)

wherets is the start time when the contact begins andte is the end time when the contact

ends. The start and end timets and te are estimated from the numerical results. The

tension forces in the segmentsqa andqb are also estimated from the numerical results, by

an average value of the link force in a segment.

Figure 5.8 shows the contact force on a roller during one second of the simulation in the

time period [9 s;10 s]. The dashed line is the result obtained using the real tooth profile

and the solid line is the result obtained using the circular tooth profile. The following

figures are from the same simulation time period, but taken in the shorter time periods,

where contact has occurred.

Figure 5.9 shows the contact force on a roller during contact with sprocket number one

(left) and sprocket number two (right). The dashed line is the analytical result calculated

by (4.41), where the average tension force is found by the real tooth profile method, the

dashed-dotted line is the analytical result where the average tension force is found by the

circular tooth profile method, the solid line is the numerical using the circular tooth profile

and the solid-dotted line is the numerical using the real tooth profile. The start and end

time of the contact period are for the analytical results estimated by the numerical results

and same values are used for both analytical results.

Figure 5.10 shows the contact force on a roller during contact with sprocket number three



94 Chapter 5 Application and Validation

25000

20000

15000

10000

5000

0
9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

T ime[s]

F
o
r
ce

[N
]

Figure 5.8: Contact force on a roller during one revolution. Dashed line for the real tooth profile and solid

line for the circular tooth profile.
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Figure 5.9: Contact forces on sprocket one (left) and sprocket two (right). The solid line (numerical)

and dashed-dotted line (analytical) for the circular tooth profile. The solid-dotted line (numerical) and the

dashed line (analytical) for the real tooth profile.

(left) and sprocket number four (right). The dashed line is the analytical result where the

average tension force is found by the real tooth profile method, the dashed-dotted line is

the analytical result where the average tension force is found by the circular tooth profile

method, the solid line is the numerical using the circular tooth profile and the solid-dotted

line is the numerical using the real tooth profile. The start and end time of the contact

period are for the analytical results estimated by the numerical results and same values

are used for both analytical results.

The contact forces between the rollers and the sprockets are in better agreement with

the analytical expected results, when the real tooth profile is used. However for the two

counterweight sprockets (two and four) where the contact period is short, the analytical



5.3 Inclusion of Friction in the Model 95

fig

25000

20000

15000

10000

5000

0
9.84 9.86 9.88 9.9 9.92 9.94 9.96

T ime[s]

F
o
r
ce

[N
]

12000

10000

8000

6000

4000

2000

0

T ime[s]

F
o
r
ce

[N
]

9.05 9.06 9.07 9.08 9.09 9.1

Figure 5.10: Contact force from sprocket three (left) and four (right).The solid line (numerical) and dashed-

dotted line (analytical) for the circular tooth profile. The solid-dotted line (numerical) and the dashed line

(analytical) for the real tooth profile.

result doesn’t compare well with either of the two methods. In the analytical results it is

assumed that the angular velocity is constant, which in the numerical simulation only is

true for the driver sprocket one. It is also in the analytical results assumed that the angle

where there is contact (the pressure angle) is constant during the whole contact period,

whereas in the numerical simulations this varies. These are some of the reasons, for the

difference between the results.

5.3 Inclusion of Friction in the Model

In this section the results of two numerical simulations are compared, one where friction

is included and one where friction is not included. The friction force given by Equation

(3.9), depends on the dynamic friction coefficientµd and the dynamic correction factor

µc, see section 3.9. Rotational damping is not included in these numerical simulations.

5.3.1 Application to a Chain Drive of a MAN B&W Diesel Engine

The methodology is applied to simulation of the fore end chain drive of a MAN B&W

6S90MC-C marine diesel engine. The roller chain drive placed at the fore end of the

engine 6S90MC-C is composed by four sprockets and a chain made of 144 links, see

Figure 5.11.
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Figure 5.11: 6S90MC-C fore chain drive, (a) Blueprint of the chain drive (from MAN B&W Diesel A/S)

and (b) the numbering of the sprockets [] and the chain segments ().

The sprocket number (3) in the top of the chain drive is part of the pre-tensioning system

and it is located 0.333 m to the right of the crankshaft and 4.748 m above it during normal

operating conditions, see Figure 5.11. Each link of the chain, with a pitch of 0.1143 m

and a mass of 6.8 Kg, is modelled as a flexible element with a stiffness of 1069 MN/m,

according to experimental data obtained by the manufacturer, see appendix B. The driver

sprocket which is the sprocket on the crankshaft, rotates in the numerical simulations with

a constant angular velocity of 76 rpm, which gives a driving cyclic frequency of 76/60 =

1.27 Hz, driving radial frequencyωd = (76 · 2π)/60 = 7.96 rad/s and the driver sprocket

has 64 teeth yielding a tooth frequency offt = 1.27Hz · 64 = 81.1 Hz. The time it takes

for one link to move one complete revolution in the chain drive istr = 1
1.27 Hz

144
64

= 1.78

s.

The fore chain drive of the engine 6S90MC-C has 4 sprockets and a double chain. These
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two chains are in the simulation treated as one chain, with the double link mass and the

double link stiffness. The purposes of the 4 different sprockets in the chain drive are

Sprocket 1 = Crankshaft sprocket (driver)

Sprocket 2 = Counterweight sprocket

Sprocket 3 = Tightener sprocket

Sprocket 4 = Counterweight sprocket

The data for the system used in the numerical simulation are given in Table 5.5, Table 5.6,

Table 5.7 and Table 5.8.

Units S
pr

oc
ke

t1

S
pr

oc
ke

t2

S
pr

oc
ke

t3

S
pr

oc
ke

t4

Pitch radius,Rs m 1.164715 0.583055 0.583055 0.583055

position,xs m 0.000000 0.453 0.333 -1.098

position,ys m 0.000000 3.195 4.748 3.875

teeth,nt 64 32 32 32

mass,ms kg 1 3414 849 3414

mass moment of inertia,Js kg m2 1 3712 776 3712

Table 5.5: Data for the sprockets

Units Value

Mass per. roller,mr kg 13.6

Chain pitch,P m 0.1143

Roller length,lz m 0.068

Roller radius m 0.036195

Link stiffness,K MN/m 2137

Link damping,D kNs/m 20

Pre-tension kN 40

Number of links,nl 144

Table 5.6: Data for the roller-chain

The critical damping calculated by assuming the chain as being a long open string of a

series of masses connected with springs is for a chain withnl number of linksDcr =
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2nl

√
mrK, yielding for the test caseDcr ≈ 4.9 · 107 kg/s. For a single mass connected

to ground with spring the critical damping coefficient isD∗
cr = 2

√
mrK, yielding for the

test caseD∗
cr ≈ 3.4 ·105 kg/s. The damping coefficient used in the simulation corresponds

to 0.04% of Dcr and6% of D∗
cr.

Units Value

Poisson’s ratio,ν 0.3

Young’s modulus,E N/m2 2.06 · 1011

exponent,m 3

material property,h m2/N 1.406 · 10−12

Table 5.7: Material data

From the data given in Table 5.7 and the length of the roller given in Table 5.6 an average

generalized coefficient of stiffness is calculated using (3.31) and the value used in (3.47)

is Kg = 1 GN/m. The coefficient of restitution is a constant0 ≤ e ≤ 1, wheree = 0

relates to a fully plastic contact ande = 1 relates to a fully elastic contact. In order to

include maximal energy dissipation in the modele = 0 is used. Different values ofe has

been applied resulting in similar conclusions as presented in this section, and is discussed

further in section 5.4.

Units S
eg

m
en

t1

S
eg

m
en

t2

S
eg

m
en

t3

S
eg

m
en

t4

Length m 2.71266 1.0329 1.6765 3.98533

Angle i rad 0.4315 2.3726 2.1186 3.2728

Angle j rad 3.5731 5.5143 2.1186 3.2728

Table 5.8: Segment length and contact angles

In Table 5.8 the data for the four segments in the chain drive are given, where segment

one is the chain strand between sprocket one and sprocket two, segment two is the chain

strand between sprocket two and sprocket three and so forth, see Figure 5.11(b).

5.3.2 Comparison of the Numerical Results with and without Friction

For the numerical results presented in this section, the numerical simulations are carried

out using initial positions and velocities from an earlier simulation, so the driver sprocket

is running at the constant velocity 76 rpm during a complete simulation period of 10
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seconds. Figure 5.12 shows the roller center path during contact with a sprocket, from

a numerical simulation without friction (a) and from a numerical simulation including

friction (b). The dynamic friction coefficient is set to beµd = 0.1 and the dynamic

correction factorµc is modelled by Equation (3.98), that is the Heaviside approximation

with H1(x) (see appendix G), withε = 0.01 andv∗
t = 0.1.
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Figure 5.12: The roller center path without friction (a) and with frictionµd = 0.1 (b)

Figure 5.13 shows the tangential relative speed during a simulation period of 2 seconds

and Figure 5.14 shows the friction force during a simulation period of 2 second . During

the 2 seconds the roller is in contact with all four sprockets, since the revolution time of a

roller in the chain drive system is approximately 1.8 s.
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Figure 5.13: The relative tangential speed, withµd = 0.1

In the time periodt ∈ [8.25s; 8.34s] the roller is in contact with sprocket number 4, for

t ∈ [8.75s; 9.2s] the roller is in contact with sprocket number 1, fort ∈ [9.48s; 9.57s] the
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roller is in contact with sprocket number 2 and fort ∈ [9.65s; 9.85s] the roller is in contact

with sprocket number 3, see Figure 5.11. The figures show that tangential relative speed

during contact oscillates around zero over the contact period implying that the friction

force also oscillates around zero.

3000

2000

1000

−1000

−2000

−3000

−4000

0

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
T ime[s]

F
o
r
ce

[N
]

Figure 5.14: The friction force on a roller, withµd = 0.1

Figure 5.15 shows the friction force normalised with the normal force versus the rela-

tive tangential speed. The figure shows that the use of an approximation for the signum

function is important since the friction force changes direction for small values of the

tangential relative speed, which will slow down the numerical integrations.
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Figure 5.15: The friction force normalized with the normal force, withµd = 0.1

Figure 5.16 shows the contact force on a roller during a simulation period of 2 seconds.

The figures show contact between the roller and all four sprockets. Figure 5.16 (top)

shows results from the numerical simulation without friction and Figure 5.16 (bottom)

shows results from the numerical simulation where friction is included. The figures show

that the inclusion of friction in the model has a smoothing effect on the contact force.



5.4 Influence of the Coefficient of Restitution 101

45000
40000
35000
30000
25000
20000
15000
10000

5000
0

8 8.5 9 9.5 10
T ime[s]

F
o
r
ce

[N
]

45000
40000
35000
30000
25000
20000
15000
10000

5000
0

8 8.5 9 9.5 10
T ime[s]

F
o
r
ce

[N
]

Figure 5.16: The contact force on a roller from simulation without friction (top) and with frictionµd = 0.1
(bottom).

Figure 5.17 shows the link force on a roller during a simulation period of 2 seconds. Fig-

ure 5.17(top) shows the results from the numerical simulation without friction and Figure

5.17 (bottom) shows the results from the numerical simulation with friction included. The

figures show that the inclusion of friction in the model has a smoothing effect on the link

force, which is to be expected since the contact force is smoother.

5.4 Influence of the Coefficient of Restitution

The contact force given by Equation (3.47), depends on the hysteresis damping factor

given by (3.45) yielding the damping coefficient given by (3.46), because the damping

coefficient depends on the coefficient of restitutione. The coefficient of restitution is a

constant0 ≤ e ≤ 1, wheree = 0 relates to a fully plastic contact ande = 1 relates to

a fully elastic contact. In order to include maximal energy dissipation in the numerical

modele = 0 is used. However this is not physical correct, with the interpretation ofe = 0

relating to a fully plastic contact, when at the same time it is assumed that there is no

permanent indentation.

Various values ofe has been applied to a numerical simulation of the marine diesel engine

6S90MC-C fore end chain drive, with the chain drive data given in section 5.3.1. Figure
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Figure 5.17: The link force in a link from simulation without friction (top) and with frictionµd = 0.1
(bottom).

5.18 shows the contact forcefc, between a roller and a sprocket, as a function of the

indentationδ, for four different values of the coefficient of restitutione = 1.0, e = 0.9,

e = 0.8 ande = 0.0.

In Figure 5.19 the contact forcefc, between a roller and a sprocket, as a function of time,

is shown for four different values of the coefficient of restitutione = 1.0 (dotted line),

e = 0.9 (solid-dotted line),e = 0.8 (dashed line) ande = 0.0 (solid line). The figure

shows that the contact force fore = 1.0, that is no damping is included, bounces back

and forth between zero contact force and up to approximately 100 kN. The figure shows

that the contact force fore = 0.9, e = 0.8 ande = 0.0 are similar and the contact force is

reduced to be around 15 kN. However fore = 0.0 the figure shows that the high frequency

content is damped out and the roller does not get in and out of contact in the beginning of

the contact.

Both figures 5.18 and 5.19, show that the difference between using a coefficient of resti-

tution equal toe = 0.8 ande = 0.0 is minimal. The choice of usinge = 0 is taken from

a numerical point of view, due to the fact that the integrator reduces the time step size,

when high frequency contents are detected. No lubrication is included in the numerical

model, and such a lubrication will lower the impact force and have a damping influence
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Figure 5.18: The contact force as a function of the indentation, fore = 1.0 (top left),e = 0.9 (top right),

e = 0.8 (bottom left) ande = 0.0 (bottom right).

during contact. Setting the coefficient of restitution toe = 0 may be argued from this

point of view.

5.5 Influence of Longitudinal Link Damping

The link force given by Equation (3.7), includes viscous damping in the longitudinal di-

rection of the links. No direct experimental assessment has been done by the manufacturer

to obtain the damping coefficientD, but there might be a possibility to get information

from other indirect measurements. A reasonable value ofD has to be chosen, that is a

value below the critical damping coefficient, see section 4.4.9.

Different values of the coefficient of dampingD used in the longitudinal damping, has
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Figure 5.19: The contact force as a function of time , fore = 1.0 (dotted line),e = 0.9 (solid-dotted line),

e = 0.8 (dashed line) ande = 0.0 (solid line).

been applied to a numerical simulation of the marine diesel engine 6S90MC-C fore end

chain drive, with the chain drive data given in section 5.3.1. A damping coefficient was

chosen to20 kNs/m, which is within the limits of the critical damping as described in

section 5.3.1. The results for different values of the longitudinal damping coefficient are

similar, but when some higher values of the damping coefficient are applied, the computer

time becomes prohibitive. This is not intuitively expected, but might be due to the fact

that the link forces become larger and make the system more stiff.

5.6 Inclusion of Rotational Link Damping

The chain consists of rollers and link plates, see Figure 3.1. In the numerical model

the chain is represented by rollers modelled as lumped masses connected by springs and

dampers. In this model the rotational inertia of the link plates about their centre of gravity

is neglected. The joints between the link plates consist of a pin inside a bushing, see

Figure 3.1, and it is lubricated, but there is still some friction. This friction is modelled as

a rotational damping moment, which in the model is applied as force couples. The forces

applied on the rollers from substituting the rotational damping moment into force couples

are given by Equation (3.17).

Different values of the coefficient of dampingCd in the rotational damping, has been

applied to a numerical simulation of the marine diesel engine 6S90MC-C fore end chain

drive, with the chain drive data given in section 5.3.1. The numerical simulations are
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carried out using initial positions and velocities from an earlier simulation, and the driver

sprocket is running at the constant velocity 76 rpm during a whole simulation period of

10 seconds. In the numerical simulation friction between the roller and sprocket was

included, with a dynamic friction coefficientµd = 0.1 and the dynamic correction factor

µc is modelled by Equation (3.98), that is the Heaviside approximation withH1(x) (see

appendix G), withε = 0.01 andv∗
t = 0.1.

The rotational damping in the links is a model of the friction in the joints, and the damping

must be lower than the physical amount of possible friction. Figure 5.20 shows a pin with

radiusRp inside a bushing, subjected to a link forceFn, a friction forceff and a damping

momentτl.
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Figure 5.20: The friction between the pin and bushing.

The friction force is given byff = µdFn, whereµd is the dynamic coefficient of friction,

and the damping moment on the centre of the pin is given byτl = ffRp = µdFnRp. For a

roller chain with a pre-tension force up toFn ≈ 70 kN, a pin radiusRp = 0.02224 m and

a dynamic coefficient of frictionµd < 0.1 the damping moment isτl < 155Nm.

Figure 5.21 shows the damping moment during a simulation period of 10 second, for

a coefficient of damping chosen to beCd = 5 Ns. The figure shows that the damping

moment during the simulation always is within±150 Nm.

Figure 5.22 shows a comparison of the oscillation of chain segment one, see Figure 5.11.

The figure shows results from a numerical simulation without rotational damping in the

links (top) and from a numerical simulation with rotational damping in the links with

Cd = 5 Ns (bottom). The oscillation of a chain segment is analysed by calculating the

perpendicular distance between the link closest to the middle of the initial chain strand

line and the middle point of the initial chain strand line is calculated. Both of the results

are for a simulation period of 10 second. The rotational damping has a major influence
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Figure 5.21: The damping moment on a roller, forCd = 5, as a function of time.

on the oscillations of the middle of the chain segment, the amplitude is damped out and

the oscillations are more smooth.
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Figure 5.22: Oscillations of chain segment one, without rotational damping (top) and with rotational damp-

ing Cd = 5 (bottom), as a function of time.

Figure 5.23 shows the link force in a link during a numerical simulation without rotational

damping in the links (top) and from a numerical simulation with rotational damping in

the links withCd = 5 Ns (bottom). Both of the results are for a simulation period of 10

second. The rotational damping has a smoothing effect on the link force and the average

value of the link force is approximately 70 kN, instead of the approximately 90 kN when

the rotational damping is not included.
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Figure 5.23: The link force in a link, without rotational damping (top) and with rotational dampingCd = 5
(bottom), as a function of time.

5.7 Results with Guide-bars

In this section the results from numerical simulations are compared, some where no guide-

bars are included in the numerical model and some where three guide-bars are included

in the numerical model. The three guide-bars are placed as shown in Figure 3.21.

The methodology is applied to a MAN B&W 6S90MC-C diesel engine fore end chain

drive, and the chain drive data are given in section 5.3.1. In the numerical simulation

friction between the roller and sprocket was included, with a dynamic friction coefficient

µd = 0.1 and the dynamic correction factorµc is modeled by Equation (3.98), that is the

Heaviside approximation withH1(x) (see appendix G), usingε = 0.01 andv∗
t = 0.1.

Rotational damping is included with a damping coefficient chosen to beCd = 0.5 Ns.

The damping coefficient is chosen smaller than the one used in section 5.6, since it is

assumed that the amount of friction is less than described in that section.

Results from numerical simulations with and without guide-bars are compared and results

with constant angular velocity and oscillating angular velocity is compared as well. The

guide-bars are positioned parallel with the tangent line between the sprockets and are

pressed0.005 m into the chain. Three guide-bars are applied, one on chain segment
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number one and two on chain segment number four, which are the two longest chain

segments in the chain drive system, see Figure 5.11. An average generalized coefficient

of stiffness for the guide-bar contact, is calculated using (3.32) and the value used in

(3.47) isKg = 3 MN/m. The data used to calculate the average stiffness coefficient is

given in Table 5.7 and for the guide-bars Poisson’s ratio isν = 0.5 and the value of

Young’s modulus is set to beE = 5 MN/m2.

5.7.1 Comparison of the Oscillations of the Middle of the Chain Segments

Figure 5.24 shows oscillations of the middle of chain segment number one from the nu-

merical simulation where the guide-bars are not included (bottom curve) and from the

numerical simulations where the guide-bars are included (top curve). The figure shows

that the guide-bars reduce the amplitude of the oscillations. The numerical simulations

are carried out with a constant angular velocity of 76 rpm.
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Figure 5.24: Comparison of the oscillations of the middle of chain segment 1, with guide-bars (top curve)

and without guide-bars (bottom curve). A constant angular velocity is applied for the driving sprocket.

Figure 5.25 shows oscillations of the middle of chain segment number four from the

numerical simulation where the guide-bars are not included (bottom curve) and from the

numerical simulations where the guide-bars are included (top curve). The figure shows

that the guide-bars reduce the amplitude of the oscillations. The numerical simulations

are carried out with a constant angular velocity of 76 rpm.

Figure 5.26 shows the frequency content of the oscillations of the middle of chain segment

number one from the numerical simulation where the guide-bars are not included (top)

and from the numerical simulations where the guide-bars are included (bottom). The

top figure shows that when the guide-bars are not included the dominating frequency

is at approximately 3.8 Hz and we also see the tooth frequency of 81 Hz. The bottom
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Figure 5.25: Comparison of the oscillations of the middle of chain segment 4, with guide-bars (top curve)

and without guide-bars (bottom curve). A constant angular velocity is applied for the driving sprocket.

figure shows that when the guide-bars are included the dominating frequency is the tooth

frequency of 81 Hz and a lower frequency at approximately 7.8 Hz. These results show

that the inclusion of the guide-bars as expected changes the vibration frequency of the

chain strands with guide-bars.
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Figure 5.26: Frequency content of the oscillations of chain segment 1, without guide-bars (top) and with

guide-bars (bottom). A constant angular velocity is applied for the driving sprocket.

Figure 5.27 shows the frequency content of the oscillations of the middle of chain segment

number four from the numerical simulation where the guide-bars are not included (top)

and from the numerical simulations where the guide-bars are included (bottom). The top

figure shows that when the guide-bars are not included the dominating frequencies are at

approximately 2.6 Hz, at approximately 7.8 Hz and at the tooth frequency of 81 Hz. The
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bottom figure shows that when the guide-bars are included the dominating frequency is

the tooth frequency at 81 Hz. The dominating lower frequencies found are at approxi-

mately 6.6 Hz and at approximately 13.2 Hz. The inclusion of the guide-bars changes the

vibration frequency of the chain strands.
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Figure 5.27: Frequency content of the oscillations of chain segment 4, without guide-bars (top) and with

guide-bars (bottom). A constant angular velocity is applied for the driving sprocket.

The numerical simulations show no major difference in the vibration pattern of the two

chain segment number two and three, whether there is or is not included guide-bars at the

other chain strands.

Figure 5.28 shows the oscillations of the middle of chain segment number one from the

numerical simulation where the guide-bars are not included (top) and from the numerical

simulations where the guide-bars are included (bottom). The figure shows that the guide-

bars reduce the amplitude of the oscillations. The numerical simulations are carried out

with an oscillating angular velocity as shown in Figure 4.5.

In Figure 5.28 the segment seems to have no horizontal tangent when the segment vibrates

from a negative displacement to a positive, however a closer look at the curves as shown

in Figure 5.29, shows that this is not the case. The segment however changes faster from

negative to positive displacement, even in the case where no guide-bars are included. This

might be because the release direction of the roller, which is tangential to the sprocket

pitch circle, is in the positive direction of the distance shown in Figure 5.28.
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Figure 5.28: Comparison of the oscillations of the middle of chain segment 1, with guide-bars (bottom)

and without guide-bars (top). An oscillating angular velocity, as shown in Figure 4.5, is applied for the

driving sprocket.
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Figure 5.29: Comparison of the oscillations of the middle of chain segment 1, with guide-bars (bottom)

and without guide-bars (top). An oscillating angular velocity, as shown in Figure 4.5, is applied for the

driving sprocket.
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Figure 5.30 shows the oscillations of the middle of chain segment number four from the

numerical simulation where the guide-bars are not included (top) and from the numerical

simulations where the guide-bars are included (bottom). The figure shows that when the

guide-bars are included the amplitude of the oscillation is greater than when the guide-

bars are not included. The numerical simulations are carried out with an oscillating angu-

lar velocity as shown in Figure 4.5. As for the oscillations of the middle of chain segment

number one, a closer look at the oscillations of chain segment number four shows that

there is a horizontal tangent, when the displacements changes from negative to positive.

0.2

0.15

0.1

0.05

0

−0.05

−0.1
5 6 7 8 9 10

T ime[s]

D
is

ta
n
ce

[m
]

0.2

0.15

0.1

0.05

0

−0.05

−0.1
5 6 7 8 9 10

T ime[s]

D
is

ta
n
ce

[m
]

Figure 5.30: Comparison of the oscillations of the middle of chain segment 4, with guide-bars (bottom)

and without guide-bars (top). An oscillating angular velocity, as shown in Figure 4.5, is applied for the

driving sprocket.

Figure 5.31 shows the frequency content of the oscillations of the middle of chain segment

number one from the numerical simulation where the guide-bars are not included (top)

and from the numerical simulations where the guide-bars are included (bottom). The

figure shows that for both the case of included guide-bars and not included guide-bars

the dominating frequency is at approximately 7.6 Hz, which is the 6th order excitation

frequency, see Figure 4.4. The two higher order peaks at approximately 15.2 Hz and

approximately 22.9 Hz are also seen for both the case of included guide-bars and not

included guide-bars. However the bottom figure shows that some lower frequencies occur,
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when the guide-bars are included.
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Figure 5.31: Frequency content of the oscillations of chain segment 1, without guide-bars (top) and with

guide-bars (bottom). An oscillating angular velocity, as shown in Figure 4.5, is applied for the driving

sprocket.

Figure 5.32 shows the frequency content of the oscillations of the middle of chain seg-

ment number four from the numerical simulation where the guide-bars are not included

(top) and from the numerical simulations where the guide-bars are included (bottom).

The figure shows that for the case of included guide-bars the dominating frequency is at

approximately 7.6 Hz, which is the 6th order excitation frequency, see Figure 4.4. The

higher order peaks are at approximately 15.2 Hz, which is the 12th order excitation fre-

quency and a peak at approximately 19 Hz, which is the 15th order excitation frequency.

The figure shows that for the case when the guide-bars are not included the dominating

frequencies are at approximately 1.9 Hz, 5.6 Hz and 11.4 Hz, where none of them are

directly related to the excitation frequency.

5.7.2 Comparison of the Link Forces

Figure 5.33 shows the link force in a link, for the case of no guide-bars included (top)

and when guide-bars are included (bottom). The numerical results are carried out using a

constant angular velocity. The figure shows that the link force is similar for both the case

of inclusion of guide-bars and not. The figures also show that for the given position of the

tightener sprocket the pre-tension in the chain is approximately 70 kN.
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Figure 5.32: Frequency content of the oscillations of chain segment 4, without guide-bars (top) and with

guide-bars (bottom). An oscillating angular velocity, as shown in Figure 4.5, is applied for the driving

sprocket.
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Figure 5.33: The link force in a link, when no guide-bars are included (top) and guide-bars are included

(bottom). A constant angular velocity is applied for the driving sprocket.

Figure 5.34 shows the link force in a link, for the case of no guide-bars included (top)

and when guide-bars are included (bottom). The numerical results are carried out using
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an oscillating angular velocity as shown in Figure 4.5. The figures show that the amount

of the link force changes from a maximal link force of approximately 1.8 MN when no

guide-bars are included to approximately 1.2 MN when the guide-bars are included. The

link force when the oscillating angular velocity is applied is approximately twice the size

of the link force when the constant angular velocity is applied.
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Figure 5.34: The link force in a link, when no guide-bars are included (top) and when guide-bars are in-

cluded (bottom). An oscillating angular velocity, as shown in Figure 4.5, is applied for the driving sprocket.

5.7.3 Comparison of the Contact Forces

Figure 5.35 shows the contact force on a link, for the case of no guide-bars included

(top) and when guide-bars are included (bottom). The numerical results are obtained with

a constant angular velocity for the driving sprocket. The figure shows that the contact

force is similar for both the cases. The figure also shows that the largest contact force is

approximately 25 kN.

Figure 5.36 shows the contact force on a link, for the case of no guide-bars included (top)

and when guide-bars are included (bottom). The numerical results are carried out using

an oscillating angular velocity as shown in Figure 4.5. The figures show that the contact

force changes from a maximal value of approximately 400 kN when the guide-bars are

not included to a maximal value of approximately 200 kN when guide-bars are included.
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Figure 5.35: The contact force on a link, when no guide-bars are included (top) and when guide-bars are

included (bottom). A constant angular velocity is applied for the driving sprocket.
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Figure 5.36: The contact force on a link, when no guide-bars are included (top) and when guide-bars

are included (bottom). An oscillating angular velocity, as shown in Figure 4.5, is applied for the driving

sprocket.

The contact forces from the numerical simulation using an oscillating angular velocity are

more than ten to twenty times larger than the contact force from the numerical simulation



5.8 Results with Tightener System 117

using a constant angular velocity for the driving sprocket.

5.8 Results with Tightener System

In this sections the results from numerical simulations are shown, where the tightener

system is included and the tightener sprocket centre is allowed to move. The influence

of including the tightener system is in this section presented with application to a MAN

B&W 6S90MC-C marine diesel engine fore end chain drive. The chain drive data are

given in section 5.3.1. In the numerical simulation friction between the roller and sprocket

was included, with a dynamic friction coefficientµd = 0.1 and the dynamic correction

factorµc is modelled by Equation (3.98), that is the Heaviside approximation withH1(x)

(see appendix G), usingε = 0.01 andv∗
t = 0.1. Rotational damping is included with a

damping coefficient chosen to beCd = 0.5 Ns.

The tightener system is modelled with the centre of mass of the weight-arm at(xw1, yw1) =

(0.1975, 4.7328)m, the point on the weight-arm where the spring is attached at(xw2, yw2) =

(−0.3, 4.425)m, the two grounded points at(xG1, yG1) = (0.490, 4.680)m and(xG2, yG2) =

(−0.3, 5.625)m, see Figure 5.37 and Figure 5.11. The initial position of the centre of

sprocket number three, which is in the tightener system, is given in table 5.5. The mass

and mass moment of inertia of the weight-arm are chosen to bemw = 300 kg andJw = 10

kgm2 respectively. The data for the spring-damper in the tightener system are chosen

such that the undeformed length of the spring isL0 = 1.19 m, the stiffness coefficient

is Kt = 6 MN/m and the damping coefficient isDct = 0.8 kNs/m. The bodies in the

tightener system are connected as described in section 3.8.1 and shown in Figure 3.20.

The results from two different numerical simulations are compared, where both include

a tightener system and guide-bars. The two simulations are carried out, respectively with

a constant angular velocity and with an oscillating angular velocity, applied to the driver

sprocket. The guide-bars are positioned parallel with the tangent line between the sprock-

ets and are pressed0.005 m into the chain. Three guide-bars are applied, one on chain

segment number one and two on chain segment number four, which are the two longest

chain segments in the chain drive system, see Figure 5.11. An average generalized coef-

ficient of stiffness for the guide-bar contact, is calculated using (3.32) and the value used

in (3.47) isKg = 3 MN/m. The data used to calculate the average stiffness coefficient

is given in Table 5.7 and for the guide-bars Poisson’s ratio isν = 0.5 and the value of

Young’s modulus is set to beE = 5 MN/m2.
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Figure 5.37:The connection points between the bodies in the model of the tightener system of the 6S90MC-

C fore end chain drive system.

5.8.1 Oscillations of the weight-arm centre of mass

In section 5.7 it was shown that the oscillations of the middle of the chain segments are

larger, when an oscillating angular velocity is applied to the driver sprocket, than when

a constant angular velocity is applied. However the results shown in this section are not

directly comparable with those shown in the previous section, because the centre position

of the sprocket in the tightener system is slightly different from the position given in

Table 5.5. When the static equilibrium is found the centre position of sprocket number 3

is changed to(xs, ys) = (0.334, 4.749)m, due to the chosen configuration of the tightener

system.

Figure 5.38 shows thex coordinate of the centre of mass position of the weight-arm, that

is xw1 as a function of time. The figure shows result from a 10 seconds simulation, where

a constant angular velocity is applied.

Figure 5.39 shows thex coordinate of the centre of mass position of the weight-arm,

that isxw1 as a function of time. The figure shows result from a 10 seconds simulation,

where an oscillating angular velocity, as shown in Figure 4.5, is applied. For both the

numerical simulation with a constant angular velocity and an oscillating angular velocity,

only the oscillations of thexw1 coordinate is presented, since the vibration pattern of the

yw1 coordinate is similar.

The figures show that when a constant angular velocity is applied the amplitude of the
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Figure 5.38: Thex coordinate of the centre of mass position of the weight-arm. A constant angular velocity

is applied for the driving sprocket.
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Figure 5.39: The x coordinate of the centre of mass position of the weight-arm. An oscillating angular

velocity, as shown in Figure 4.5, is applied for the driving sprocket.

oscillations of the weight-arm are smaller than when an oscillating angular velocity is

applied, since the chain vibrations become much larger.

Figure 5.40 shows the frequency content of the oscillations of thex coordinate of the

centre of mass position of the weight-arm. For a constant angular velocity applied for

the driver sprocket (top) and for an oscillating angular velocity is applied (bottom). The

figure shows that the dominating frequencies are at approximately 7.6 Hz, 15.2 Hz and we

also see the tooth frequency of 81 Hz, when the constant angular velocity is applied. For

the case of an oscillating angular velocity applied to the driver sprocket, the dominating

frequencies are again at approximately 7.6 Hz and at approximately 15.2 Hz, which also

is the 6th order excitation frequency, see Figure 4.4, and twice the 6th order excitation

frequency, respectively.
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Figure 5.40: Frequency content of the oscillations of thex coordinate of the centre of mass position of

the weight-arm. For a constant angular velocity applied for the driving sprocket (top) and for an oscillating

angular velocity, as shown in Figure 4.5, is applied for the driving sprocket.

5.8.2 Oscillations of the Middle of the Chain Segments

Figure 5.41 shows oscillations of the middle of chain segment number one from the nu-

merical simulation done with a constant angular velocity of 76 rpm is applied for the

driver sprocket. Figure 5.42 shows oscillations of the middle of chain segment number

one from the numerical simulation done with an oscillating angular velocity, as shown in

Figure 4.5, applied for the driving sprocket.
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Figure 5.41: The oscillations of the middle of chain segments 1. A constant angular velocity is applied for

the driving sprocket.

Figure 5.43 shows the frequency content of the oscillations of the middle of chain segment

number one from the numerical simulation where a constant angular velocity is applied for
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Figure 5.42: The oscillations of the middle of chain segments 1. An oscillating angular velocity, as shown

in Figure 4.5, is applied for the driving sprocket.

the driver sprocket (top) and when an oscillating angular velocity is applied (bottom). The

figure shows that the dominating frequencies are at approximately 5.1 Hz and we also see

the tooth frequency of 81 Hz, when the constant angular velocity is applied. For the case

of an oscillating angular velocity applied to the driver sprocket, the dominating frequency

is at approximately 7.6 Hz, which is the 6th order excitation frequency, see Figure 4.4.

The peaks at approximately 15.2 Hz is at twice the 6th order excitation frequency.
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Figure 5.43: Frequency content of the oscillations of chain segment 1, a constant angular velocity applied

for the driving sprocket (top) and an oscillating angular velocity, as shown in Figure 4.5, is applied for the

driving sprocket.
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5.8.3 Comparison of the Link Forces

Figure 5.44 shows the link force in a link, when a constant angular velocity is applied

for the driving sprocket. The figure shows that the link force pattern is different from the

results obtained when the tightener sprocket was fixed, see Figure 5.33. The pre-tension

in the chain is also different and is, when the tightener system is applied, approximately

90 kN.

Figure 5.45 shows the link force in a link, when an oscillating angular velocity, is applied

for the driving sprocket. The figure again shows that the amount and pattern of the link

force changes, when compared to the results obtained with a fixed tightener sprocket, see

Figure 5.34. The maximal link force is when the tightener system is included approxi-

mately 0.8 MN.
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Figure 5.44: The link force in a link, when a constant angular velocity is applied for the driving sprocket.
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Figure 5.45: The link force in a link, when an oscillating angular velocity, as shown in Figure 4.5, is applied

for the driving sprocket.
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5.8.4 Comparison of the Contact Forces

Figure 5.46 shows the contact force on a link, when a constant angular velocity is applied

for the driving sprocket. The figure shows the contact force is similar, to the contact forces

obtained, when the tightener sprocket is fixed, see Figure 5.35. The figure also shows that

the approximately larges contact force is 35 kN.
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Figure 5.46: The contact force on a link, when a constant angular velocity is applied for the driving

sprocket.

Figure 5.47 shows the contact force on a link, when an oscillating angular velocity, is

applied for the driver sprocket. The figure shows the contact force is similar, to the contact

forces obtained, when the tightener sprocket is fixed, see Figure 5.36. The figures show

that the contact force has a maximum value of approximately 160 kN when guide-bars

are included.
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Figure 5.47: The contact force on a link, when an oscillating angular velocity, as shown in Figure 4.5, is

applied for the driving sprocket.

It is observed that the contact forces looks somewhat similar to the contact forces calcu-

lated, when the tightener sprocket was fixed, see Figure 5.35 and Figure 5.36.
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5.9 Analysis of Resonance

One of the purposes of a chain drive simulation program is to be able to investigate possi-

ble resonance for e.g. different values of pre-tension and driver velocity. Several simula-

tions have been carried out with application to marine diesel engine 6S90MC-C fore end

chain drive. The chain drive data are given in section 5.3.1. The results presented in this

section are from numerical simulations, which were carried out before the friction and

rotational damping models were developed and implemented. The number of numerical

simulations that where carried out to calculate these results is large, therefore due to lack

of remaining time in the project period, friction and rotational damping are not included

in these presented results.

5.9.1 Natural Frequency of the Chain Segment.

Resonance can occur when the excitation frequency coincides with the natural frequen-

cies of the chain segments between the sprockets. Figure 5.48 shows the cyclic natural

frequency of chain segment one, see Figure 5.11, for different values of the pre-tension in

the string as a function of the chain speed presented in percentage of Maximum Contin-

uous Rating, MCR = 76 rpm (the driver velocity). The cyclic natural frequency is given

by fn = ωn

2π
, where the radial natural frequencyωn is given by Equation (4.27). The

pre-tension in the chain, given as a fraction of the fracture load of the chainPb = 2002

kN, shown in the figure are 1/5, 1/10, 1/25, 1/30, 1/35, 1/40 and 1/45. The solid lines

are for the relaxation factor in (4.31)η = 0 and the dotted lines are for the relaxation

factor in (4.31)η = 1. The different marks on the solid and dotted lines represent the

different amount of pre-tension as follows, star ( —∗—/ · ·∗· · ) is for F = 1/5Pb, cir-

cle ( —◦—/ · ·◦· · ) is for F = 1/10Pb, square ( —�—/ · ·�· · ) is for F = 1/25Pb, dia-

mond ( —�—/ · ·�· · ) is for F = 1/30Pb, plus ( —+—/ · ·+· · ) is for F = 1/35Pb, triangle

( —�—/ · ·�· · ) is for F = 1/40Pb and cross (—x—/· ·x· · ) is for F = 1/45Pb. The dot-

ted line that crosses the natural frequency lines is the cyclic tooth engagement frequency

fp = ωp

2π
, whereωp is given by Equation (4.33). The dashed-dotted line with a circle

represents the 6th order excitation frequency and the dashed-dotted line being half the 6th

order excitation frequency.

Figure 5.49 shows the cyclic natural frequency of chain segment one as in figure 5.48,

but for only one pre-tension force, that isF = 1/25Pb. The most critical resonance

value of the frequency occurs when half the excitation frequency is equal to the natural

frequency of the chain string. Figure 5.49 shows that when the pre-tension is set to 1/25
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Figure 5.48: The natural cyclic frequency of chain segment 1, for different values of the pre-tension. The

different marks on the solid and dotted lines represent∗: 1/5Pb, ◦: 1/10Pb, �: 1/25Pb, �: 1/30Pb, +:

1/35Pb, �: 1/40Pb and x:1/45Pb respectively. The dotted line is the cyclic tooth engagement frequency.

The dashed-dotted line with a circle represents the 6th order excitation frequency and the dashed-dotted

line being half the 6th order excitation frequency.
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Figure 5.49: The natural frequency of chain segment (1), for the pre-tension force of 1/25 of the fracture

load Pb. The dotted line is the cyclic tooth engagement frequency. The dashed-dotted line with a circle

represents the 6th order excitation frequency and the dashed-dotted line being half the 6th order excitation

frequency.
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of the fracture load, then resonance is reached for values of the speed higher than MCR,

that is at between 107 %MCR and 116 %MCR, dependent on the factor of relaxation

of the structureη ∈ [0, 1]. Resonance with the tooth engagement frequency is reached

at approximately 6 %MCR and resonance with the excitation frequency is reached at

approximately 60 %MCR.

Figure 5.50 shows the cyclic natural frequency of the other three chain segments in the

chain drive system, see Figure 5.48, for one pre-tension force, that isF = 1/25Pb. These

three strings are in contact with the three small driven sprockets, which are half the size

of the driver sprocket, so they run with twice the angular velocity, yielding MCR for the

smaller to152 rpm. The most critical resonance value of the frequency occurs when half

the excitation frequency is equal to the natural frequency of the chain string.
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Figure 5.50: The natural frequency of chain segment 2, 3 and 4, for the pre-tension force of 1/25 of the

fracture loadPb. The dotted line is the cyclic tooth engagement frequency. The dashed-dotted line with

a circle represents the 6th order excitation frequency and the dashed-dotted line being half the 6th order

excitation frequency.

Figure 5.50 shows that when the pre-tension is set to 1/25 of the fracture load resonance

is reached for values of the speed higher than MCR for segment number 2, but for seg-
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ment number 3 it is reached at approximately 93 %MCR and for segment number 4 at

approximately 42 %MCR.

5.9.2 Variation of the Pre-tension in the Chain.

Knowing the coordinates of the grounded point on the weight-arm in the tightener system,

the center position of the sprocket can be found for any angleφtg, because the distanceRtg

is fixed. When the angle is changed the chain becomes either more tight or more slack.

Figure 5.51 shows how the center of the sprocket in the tightener system is connected

to the weight-arm, which is connected to ground. The distance between the tightener

sprocket center and the grounded point is set to beRtg = 0.171 m. The angleφtg is the

angle between the global x-axis and the line between the center of the tightener sprocket

and the grounded point, having the local coordinate system for the ground coincident with

the global coordinate system, see Figure 5.51.

Ground

Ground

Revolute JointSpring-Damper

Rtg

φtg

Figure 5.51: The relation between the grounded point on the weight-arm and the center of the sprocket.

Figure 5.52 shows the maximal link force in one link normalized with the fracture load of

the chainPb = 2002 kN. These results are obtained from numerical simulations, where

the center of the tightener sprocket is fixed during the simulation, but for each simulation

at a different point dependent on the angleφtg in the rangeφtg ∈ [152◦; 161◦]. When the

angle is increased the pre-tension in the chain is decreased.

The solid line is the results from simulations of 10 seconds, when the driving sprocket is
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rotating with a constant angular velocity of76 rpm, the three different dashed lines are

results from simulations, when the driving sprocket rotates with a oscillating angular ve-

locity as shown in Figure 4.5. The dashed line is results obtained from a simulation of 10

seconds using the end positions and velocities from the simulation with constant velocity

as the initial positions and velocities. The dashed-dotted line are results obtained from a

simulation of 10 seconds using the end positions and velocities from the previous simu-

lation with the previous angle being smaller than the present angle as the initial positions

and velocities. The dotted line are results obtained from a simulation of 10 seconds us-

ing the end positions and velocities from the previous simulation with the previous angle

being larger than the present angle as initial positions and velocities. For all of the four

simulations the maximal force in the link is calculated in the time from 5 to 10 seconds.
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Figure 5.52: The maximal link force for constant and oscillating velocity of the driving sprocket.

In Figure 5.52 we observe that a resonance peak occur when the angleφtg is around 155

degrees. This indicates which angles/positions of the tightener sprocket are preferable and

which are not. The numerical results presented here are given merely to give an impres-

sion of what kind of analysis can be performed with the numerical simulation tool, since

friction and rotational damping was not included, which as shown in the prior sections
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has a major influence on e.g. the magnitude of the link force and the oscillations of the

chain segments.

5.9.3 Variation of the Angular Velocity.

In Figure 5.53 results from simulations with a fixed angleφtg = 156.5◦ are shown, yield-

ing the coordinates for the center of the tightener sprocket(xs, ys) = (0.333199, 4.748179)m.

The simulations are carried out for different angular velocitiesθ̇s ∈ [32rpm; 90rpm], with

sweeps of2 rpm. The solid line is from the simulation using a constant angular velocity,

the dashed line is from the simulation using a oscillating angular velocity as shown in

Figure 4.5 and the dotted line is from the simulation using a oscillating angular velocity

with a pure sinus excitation as given in Equation (4.5), withk = 6.
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Figure 5.53: The maximal link force for constant and oscillating velocity of the driving sprocket.

Figure 5.53 shows the maximal link force in one link normalized with the fracture load

of the chainPb = 2002 kN as a function of the speed given in percentage of the MCR =

76 rpm. In Figure 5.53 we observe that a resonance peak occur around 98 %MCR. This

indicates that the critical speed of the engine is reached before MCR for the given chain

drive system configuration analysed here.
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The angular acceleration provided by MAN B&W Diesel A/S is shown in Figure 4.5 and

the frequency content in Figure 4.4. From the frequency content of the angular oscillation

we see that the major peak is at the 6th excitation order. Therefore the pure 6th order

sinus excitation was analysed separately. Comparing the two resonance peaks from the

two different excitations shown in Figure 5.53, it can be concluded that the resonance

peak is triggered by the 6th order excitation.

However the numerical results presented here are given merely to give an impression of

what kind of analysis can be performed with the numerical simulation tool, since friction

and rotational damping was not included, which as shown in the prior sections has a

major influence on e.g. the magnitude of the link force and the oscillations of the chain

segments.

5.10 Experimental Validation

The numerical simulation tool is yet to be validated by experimental results. The company

MAN B&W Diesel A/S has earlier done some experiments on their roller chain drives,

but for these results no chain drive system data is available. However MAN B&W Diesel

A/S is planning to do some new experiments in the near future.

In order to validate the results obtained by the simulation program several things should

be measured while the engine is running at different angular velocities. The kind of

experiments that has earlier been performed included e.g. measurement of a link force, the

pre-tension force, transversal vibration of the chain segments, vibration of the tightener

system and angular acceleration of the sprockets. Such measurements can all be directly

compared with the results obtained from the simulation program.

By placing wireless Strain Gauges on one or more links and doing measurement while the

engine is running the link force in a chain link can be calculated. In order to calculate the

pre-tension force in the chain, strain gauge measurements are performed on the tightener

bolt in the chain tightener system. In a similar way the position of the centre of the

sprocket in the tightener system can be moved and the pre-tension can be found from the

simulation.

The transversal vibrations of the chain segments between the sprockets can be monitored

by a light-emitting diode device developed by MAN B&W Diesel A/S. These measure-

ments are to be compared with the transversal vibrations of the middle of the chain seg-
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ments that are calculated by the simulation program, both with and without guide-bars.

It is also important to measure the angular accelerations of all the sprockets in the chain

drive system, in order to verify the numerical simulation program. This can be done using

a sensor that traces the sprocket teeth, from which the measurement of the change in time

can represent the torsional vibrations of the sprocket axle. Due to the fact that the angular

acceleration of the sprockets in numerical simulations depend on the contact forces and

the position where the contact forces acts on the sprocket, these experiments can verify

the usefulness of the contact force model as it is used in the simulation program.

Other experiments are also planned, such as measuring the temperature in the guide-bars,

measuring the translation of the sprocket centres and measuring the loss of power in the

chain drive. The most important measurements related with verification of the numer-

ical simulation program are the link force, the angular acceleration and the transversal

oscillation of the chain segments in order to validate the simulation program.

5.11 Discussion

In this chapter it was shown that the mathematical model including the real shape of

the tooth profile is preferable compared with a circular tooth profile. Using the real tooth

profile it was shown that some of the noise, that occurs when the circular tooth profile was

used, was smoothed out. Comparing the contact force between the rollers and sprockets

obtained by the two tooth shape models with a simplified analytical model also showed

that the real shaped tooth profile is a better model. Furthermore the real tooth profile

model has shown to be more numerically stable and able to solve some problems, where

the circular tooth profile model has failed.

Including friction between the rollers and sprockets in contact has shown to have a

smoothing effect on the contact force and therefore also on the link forces and chain vibra-

tions. When the rotational damping was included the results showed that this had a major

influence. For the same configuration of a chain drive system the calculated amount of

pre-tension in the chain changed significantly when the rotational damping was included.

When the rotational damping was included the chain vibrations had smaller amplitudes

and therefore the link forces became significantly lower. The rotational damping also

showed to be important in order for the numerical simulation quickly to reach steady

state.
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Numerical results including the simplified models of the guide-bars and tightener systems

shows the kind of simulations that can be performed using the chain drive program, which

are important when one wants to make comparison with a real marine engine. The last

section in this chapter presents a number of different experiments that are described and

related to the important validation of the numerical simulation program, which is left for

future work.

In the numerical results it is observed that, when a constant angular velocity is applied to

the driver sprocket, the frequency responses originate from the chain string eigenfrequen-

cies, the tooth frequency etc. In the case of applying an oscillating angular velocity to the

driver sprocket, the dominating excitation frequency is also seen in the response.



Chapter 6
Conclusion

A novel formulation for the simulation of the dynamics of roller chain drives using a con-

tinuous contact force method is developed in this work. With this model it is possible to

perform a dynamic simulation of the roller-chain/sprocket system, including the polygo-

nal effect, which appears when the individual chain links engage and disengage with the

sprockets, the roller impact at engagement, the flexibility of the links and the coupling

between axial and transverse vibrations. Moreover, the formulation allows for the intro-

duction of multiple and different sized sprockets and different parts present in real marine

engines.

The application to chain drives of large marine engines demonstrates the level of mod-

elling that is possible to achieve with the proposed formulation. The variation of the link

forces and analysis of the transversal oscillations of the chain strands exemplify the type

of results useful for the design of the roller chain drives in terms of fatigue and wear.

The continuous contact force model includes the tooth flexibility, modelled by the actual

shape. The model does, however, not include for example clearance between pin and

bushing or the rotational inertia of the link elements.

The continuous contact force model used throughout this thesis has earlier been compared

with a kinematic constraint method and was found to be the most numerical stable method

and the simulation time was found to be much lower, why the emphasis has been put on

this method. Through the application of this method, it is shown that the interrelated

dynamics of the elements in the chain drive system is captured and the contact problem is

characterized.

A mathematical model including the actual shape of the sprocket teeth is suggested and

compared with other contact models and analytical results. The numerical results obtained

from the simulations with two different contact models, the circular tooth profile and the

real tooth profile, are compared with each other and with analytical results for simplified

models. The model with a real tooth profile proves superior to the model with a circular

tooth profile. The simulation time is more or less the same for both the circular tooth

profile method and the real tooth profile method. For some large examples with more
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links and sprockets, the circular tooth profile method fails to solve the problem.

Using the real tooth profile it is observed that much of the noise, that occurs when the

circular tooth profile is used, is damped out. The frequencies of the oscillations of the

middle of the segments are somewhat similar for the two methods, but the amplitudes

are different in some of the segments. The real tooth profile method is preferable to

model the contact, because the model is numerically more stable, the noise on the results

are damped out and the results obtained with this method are in better agreement with

analytical expected results and it is closer to reality.

Including friction between the rollers and sprockets in contact has shown to have a

smoothing effect on the contact force and therefore also on the link forces and chain

vibrations. When the rotational damping is included the numerical results show that

this also has a large influence. For the same configuration of a chain drive system the

calculated amount of pre-tension in the chain change significantly, when the rotational

damping is included. When the rotational damping is included the chain vibrations are

smaller and therefore the link forces are significantly lower. The inclusion of friction and

rotational damping is found to be important for the process of finding static equilibrium

and a steady state. Including friction and rotational damping also makes the model more

realistic. Even though the chain drive system at all times is lubricated, which reduces the

friction, friction will always be present.

The influence of the moment applied to the sprocket due to contact forces is important

to verify experimentally, because it has an influence on the angular velocity of the driven

sprockets and thereby also on the vibration pattern of the chain strands oscillations both

transversal and longitudinal. In the simulation program rotational damping can e.g. be

applied to the sprocket centre, which can be used in order to calibrate the numerical results

with experimental results.

Including simple models of the guide-bars and the tightener system shows the possible

analysis, which can be done for different chain drive systems. This is important due

to their influence on the vibration patterns of the whole system. With the simulation

program the influence of design changes for these parts can be estimated. The analyses

of the influence of the off-centre sprockets in the roller-chain drives, which are sources of

extra excitations on the drive, are left for future studies.

The amount of pre-tension in the chain is an important part of the performance of the
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chain drives system, because resonances between the external excitation and the eigen-

frequency of the free chain strands depend on this. The effect of different values of the

pre-tension can be analysed e.g. by moving one of the sprockets. The results from the nu-

merical simulation presented in this thesis, showed that a resonance peak occurred before

it is expected from the analytical results of the string eigenfrequencies. However since

for instance the simulation program has not been experimentally validated, these results

are presented to give an impression of what kind of analysis can be performed with the

numerical simulation tool.

With the numerical model presented in the thesis it is possible to perform realistic dynamic

simulation of large marine engine chain drives, within a moderate simulation time. It is

therefore possible to compare the numerical results with experimental results.

6.1 Suggestions for Further Work

As shown in the numerical results presented in this thesis, the influence of the data used

has a noticeable effect on the results. Therefore it is necessary to validate the simulation

program experimentally, in order to more accurately evaluate the model. Using the pro-

gram as an alternative to performing experiments each time a design change is suggested

is only possible after such a validation has been done.

A parameter study using the simulation program is a possible extension which does not

imply large programming changes. By application to the chain drive systems this can be

used for suggesting design changes or even optimizing the design. Design changes are

needed in order to avoid damage on the system due to vibration patterns, and this might

be obtained by changing e.g. the position and angle of the guide-bars, the different length

and sizes on the weight-arm in the tightener system and by the pre-tension of the chain.

Implementation of a lubrication model, such as e.g. suggested in Flores et al. (2003), is

a possible extension to the program. This can be preferable in order to get a more real-

istic model and it would further smoothen out the contact forces between the rollers and

sprockets. The inclusion of lubrication might e.g. be done by modelling a squeeze film

force during free flight of the roller combined in a hybrid model also including friction

force.

Regarding the chain tightener system a possible extension is e.g. to change the simplified

model of the hydraulic damping system, such that a model taking the hydraulics into
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account is used instead of a spring damper connection. The model of the guide-bars is

also a simplified model and a possible extension to this model could e.g. be to include

the characteristics of the rubber material on the surface of the guide-bar instead of the

simplified model where a constant contact spring stiffness coefficient is used.

Several other methods of modelling the chain and sprockets and their contact exist as

discussed earlier. Two of the models, which both could be interesting to compare with

the formulation presented in this thesis, are e.g. the hybrid method between a continuous

contact force method and a point follower constraint method and a rigid body model

where the links are modelled as rigid bodies connected with clearance joints.
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Appendix A
The Tangent Line Between two Circles

We wish to calculate the length of the tangent lines between two circles and the contact

angles. There exist four different tangents between two circles as shown in Figure A.1,

two outer tangent lines and two inner tangent lines.

R

r

d(x1, y1) (x2, y2)

Figure A.1: Tangent lines between two circles

The center position and radii of the two circles are: left sprocket center(x1, y1) and radius

R and right sprocket center(x2, y2) and radiusr. The distanced between the sprocket

centers are

d =
√

(x1 − x2)2 + (y1 − y2)2 (A.1)

A.1 Outer Tangent Lines

The contact angleα for an outer tangent, see Figure A.2 and A.3, is given by

cos(α) =
R − r

d
(A.2)

and the anglesθ1 andθ2 are given by

θ1 = 2π − 2α (A.3)

θ2 = 2α (A.4)

A-1
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R
r

d
θ1 θ2

αα

R − r

L

Figure A.2: The outer tangent lines between two circles

d

αR − r

L

Figure A.3: The outer tangent lines between two circles

The length of the outer tangent line, see Figure A.3, is

L = (R − r) tan(α) (A.5)

or directly from Pythagoras

L2 = d2 − (R − r)2 (A.6)

A.2 Inner Tangent Lines

The contact angleα for an inner tangent line, see Figure A.4 and A.5, is given by

cos(α) =
R

d1

cos(α) =
r

d2

⇓ d =d1 + d2 =
(R + r)

cos(α)
(A.7)

which yields
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cos(α) =
R + r

d
(A.8)

and the angleθ = θ1 = θ2 is given by

θ = 2π − 2α (A.9)

R
r

d
θ1 θ2

αα

Figure A.4: The inner tangent lines between two circles

R

r

d

d1 d2

αα

L

L1

L2

Figure A.5: The inner tangent lines between two circles

The length of the tangent lineL, see Figure A.5, A.6 and A.7, is given by
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tan(α) =
R

L1

tan(α) =
r

L2

⇓ L =L1 + L2 =
(R + r)

tan(α)
(A.10)

which yields

tan(α) =
(R + r)

L
(A.11)

or directly from Pythagoras

L2 = d2 − (R + r)2 (A.12)

R

r

d

d1 d2

α

α

L

L1

L2

Figure A.6: The inner tangent lines between two circles

d

αR + r
L

Figure A.7: The inner tangent lines between two circles
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A.3 Rotated Sprockets

When the two sprockets are not horizontal aligned the rotation has to be included in the

contact angle, see Figure A.8. The rotation of the sprockets are given by

tan ψ =
y2 − y1

x2 − x1

(A.13)

(x1, y1)

(x2, y2)

ψ

Figure A.8: The rotation of the sprockets.

A.4 Contact Angles

For the case of outer tangents the contact angles, see Figure A.9, are given by

ζ11 = ζ12 = α + ψ (A.14)

ζ21 = ζ22 = 2π − α + ψ (A.15)
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α

2α

2π − 2α

ζ11

ζ12

ζ21

ζ22

ψ

Figure A.9: The outer tangent lines between two circles

For the case of inner tangents the contact angles, see Figure A.10 are given by

ζ11 = α + ψ (A.16)

ζ21 = 2π − α + ψ (A.17)

ζ12 = π + α + ψ = ζ21 + π (A.18)

ζ22 = π − α + ψ = ζ11 + π (A.19)
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α

2π − 2α

2π − 2α

ζ11

ζ12

ζ21
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ψ

Figure A.10: The inner tangent lines between two circles
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Appendix B
The Link Stiffness (Engine 6S90MC-C)

The pitch angleα is calculated by

α =
2π

nt

(B.1)

wherent is the number of teeth on the sprocket. The chain pitchP is calculated by

P = 2Rs sin
α

2
(B.2)

whereRs is the radius of the sprocket, see Figure B.1.

α
2

α

Rs

P

Figure B.1: Pitch angleα and chain pitchP

One of the sprockets used in the chain drive of the engine 6S90MC-C has the radius

Rs = 1.164715 m and number of teethnt = 64, which gives a pitch angleα = 0.9817

rad and a chain pitchP = 0.1143 m. The chain used in MAN B&W Diesel A/S’s diesel

engine 6S90MC-C is in a category of chains that has the chain constantk (flexibility)

given as

k = 8.19 · 10−9 m
m N

(B.3)

which is a constant from the producer of the chain. The chain constant is the elongation

of an 1 m long chain, when loaded withF = 1 N. The elongation∆L of one link is given

by

∆L = kPF (B.4)

yielding a stiffness coefficientK given by

B-1
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K =
1

kP
=

1

8.19 · 10−9 m
m N0.1143m

= 1068
MN
m

(B.5)



Appendix C
The Real Shaped Tooth Profile

The standard tooth form (Type II per ASA B29.1-1950) is shown in the Figure C.1, taken

from Binder (1956). According to American standards the dimensions shown in Figure

C.1 are defined below (in inches).P is the chain pitch,nt is the number of teeth,Dr =

2Rr is the roller diameter,Dt = 2Rt is the seating curve diameter. The anglesA andB

in Figure C.1 are defined by

A = 35◦ + 60o

nt

B = 18◦ − 35o

nt

(C.1)

A

B

W3

W4

S

W1

W2

H

H1 Rt

RF

RE

90◦
90◦

α/2

b

c c∗

Figure C.1: The standard sprocket tooth form (Type II per ASA B29.1-1950)

The different lengths shown in Figure C.1 are defined by

C-1
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Dt = 1.005Dr + 0.003, W1 = 0.8Dr cos A

W2 = 0.8Dr sin A, RE = 1.3025Dr + 0.0015

W3 = 1.24Dr cos 180◦
nt

, W4 = 1.24Dr sin 180◦
nt

RF = Dr[0.8 cos B + 1.24 cos C − 1.3025] − 0.0015

H =
√

RF F 2 − (1.24Dr − P
2
)2, S = P

2
cos 180◦

nt
+ H sin 180◦

nt

(C.2)

where the angleC is given by

C = 17◦ − 64o

nt

(C.3)

Separating the tooth-profile into areas we obtain 7 areas where the roller-sprocket contact

can occur, see Figure C.2.
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Figure C.2: The real tooth profile separated in 7 contact areas.

The contact areas can be defined by local vectors given in the local coordinate system

(ξt, ηt), see Figure C.3 and the angles shown in figure C.5.
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ξt

ηt

s
′
b

s
′
c∗s

′
c

s
′
b∗

c c∗

b∗ b

ee∗
d

d∗

ff∗

gg∗

Figure C.3: The 10 reference points used to describe the shape of the tooth profile.

All the points denoted with∗ in superscript are related to the left side of the tooth and

those without relates to the right side. The vectors in Figure C.3 are given by

s
′
b = {W3,W4}T , s

′
b∗ = {−W3,W4}T ,

s
′
c = {−W1,W2}T , s

′
c∗ = {W1,W2}T (C.4)

The local coordinate system placed at the center of thej’th tooth is rotated with an angle

θt = θs− π
2
±jα with respect to the global coordinate system, where again the± depends

on the rotational direction of the sprocket. The transformation matrixAt going from the

local tooth coordinates system to the global coordinate system, is given by (2.5), with the

angleθ = θt. The global vectors to the 10 reference points shown in Figure C.3 are all

found in the same way, e.g. the global vectorrc∗ to pointc∗ is given by

rc∗ = rt + Ats
′
c∗ (C.5)
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α
2

α
2

α
2

P
2

H

s
′
f∗

Figure C.4: The local vectors
′
f∗ used to describe the shape of the tooth profile

The local vectors
′
f∗ shown in Figure C.4 is given by

s
′
f∗ =




−P
2

cos(α
2
) − H sin(α

2
)

−P
2

sin(α
2
) + H cos(α

2
)


 (C.6)

The local vector from pointb∗ to pointf∗ is given by

s
′
bf∗ = s

′
f∗ − s

′
b∗ =

{
s
′
bf∗x

s
′
bf∗y

}
(C.7)

The global vector to the center of the tooth is given by

rt = rs + Rsur (C.8)

Equation (C.8) is similar to (3.57), but with a difference of∆R, that was added for nu-

merical reasons in the circular tooth profile.
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ψ1c∗

ψ2c∗

ψ1c

ψ2c

ψ1b∗

ψ2b∗
ψ1a

ψ2a

ψ1b

ψ2b

Figure C.5: Angles used to describe the shape of the tooth profile.

The angles shown in Figure C.5 are given by

ψ1a = π + A, ψ2a = 2π − A, ψ1c = 2π − A,

ψ2c = 2π − A + B ψ1c∗ = π + A − B, ψ2c∗ = π + A,

ψ2b = π − A + B, ψ1b∗ = A − B

The angles at pointb andb∗ are found by

tan (ψ2b∗) =
s
′
bf∗y

s
′
bf∗x

ψ1b = 2π − ψ2b∗ (C.9)
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Appendix D
The Guide-bars

In this appendix the vectors and angles used to define contact with the guide-bars are

given. Figure 3.21 shows an example of the placement of three guide-bars in a chain

drive system.
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Figure D.1: Guide-bars in a 6S90MC-C fore end chain drive system.

The contact between the roller chain strands and the guide-bars is modelled with the

continuous contact force model. The global coordinates of the end points of the flat part

of the guide-bars arergi andrgj, the radius of the rounded ends isRge, the length of the

rounded end isLge and the length of the flat part isLg, see Figure 3.22. The end points of

the flat part of the guide-bars are specified such that the tangential vector is given by

tg =
rgi − rgj

Lg

(D.1)

and the normal vector to the contact surface is given by

ng = t̂g (D.2)

D-1
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where the hat (̂) indicates that the vector is perpendicular totg, rotated in the counter

clockwise direction.
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Figure D.2: Contact with the guide-bar area 2 (flat part)

The vectordg2 in Figure 3.22 is given by

dg2 = ri − rgi (D.3)

whereri is the global coordinates of the roller. The centre of the arc of the rounded end

at area 1 is in global coordinates given by (see Figure D.3)

rgei = rgi − Rgeng (D.4)

The vectordg1 in Figure D.3 is given by

dg1 = ri − rgei (D.5)

The centre of the arc of the rounded end at area 3 is in global coordinates given by (see

Figure D.4)

rgej = rgj − Rgeng (D.6)
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Figure D.3: Contact with guide-bar area 1 (rounded end)
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Figure D.4: Contact with guide-bar area 3 (rounded end)
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The vectordg3 in Figure D.3 is given by

dg3 = ri − rgej (D.7)

Indentation of Guide-bar

If the end points of the guide-bar is placed on the tangent line between the sprockets, then

the initial indentation of the guide-bar into the chain is zero. In order to investigate the

effect of other values of the indentation the end points is translated along theng vector,

see Figure D.5. The new global vectors to the guide-bar end points are denotedr∗gi and

r∗gj and are given by

r∗gi = rgi + δgng

r∗gj = rgj + δgng (D.8)

whereδg is the amount of the initial indentation, that is the amount the guide-bar is pressed

into the chain initially, see Figure D.5. Having the new guide-bar end point coordinates

for the rotated guide-bar the contact detection follows as described prior in this section.
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��������������������+ +

r∗gei

r∗gi r∗gj

r∗gej

Rge Rge

ng

tg

x

y

δg

Figure D.5: The indentation of the guide-bar into the chain.

Rotated Guide-bar

At the present the guide-bars in the marine diesel engines are fixed parallel to the tangent

line between the sprockets. However it might be desirable to investigate whether a small

rotation of the guide-bar with respect to the tangent line could reduce the contact forces on
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the guide-bar. In the model the rotation of the guide-bar is chosen to be around the middle

point of the guide-bar and the global coordinates of the middle point of the guide-barrgc

is given by

rgc = rgi +
Lg

2
tg (D.9)

Figure D.6 shows the positive direction of rotation of the guide-bar relative to the tangent

line. The local coordinate system(ξg, ηg) of the guide-bar is fixed at the middle point,

with ξg parallel to the flat part (area 2) of the guide-bar, see Figure D.6.
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Figure D.6: Rotation of guide-bar relative to the tangent line.

The local vectorss
′
gi = {−Lg

2
, 0}T ands

′
gj = {Lg

2
, 0}T are given in the(ξg, ηg) coordinate

system the vectors to the guide-bar end points. The new global vectors to the rotated

guide-bar end points are denotedr∗gi andr∗gj and are given by
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r∗gi = rgc + Ags
′
gi

r∗gj = rgc + Ags
′
gj (D.10)

where the transformation matrixAg going from the local guide-bar coordinate system to

the global coordinate system, is given by (2.5), with the angleθ = ϕt + ϕg. The angleϕt

is the angle from the globalx-axis to the tangent line and the angleϕg is the angle of the

rotated guide-bar relative to the tangent line, see Figure D.6. Having the new guide-bar

end point coordinates for the rotated guide-bar the contact detection follows as described

prior in this section.



Appendix E
Oscillation of the Middle of a Chain Segment

The chain segments between the sprockets are initially placed along the tangent line be-

tween two sprockets. The points on the two sprockets where the tangent line is in contact

are known and the middle point(xm, ym) of the tangent line piece between the contact

points can be found. The tangent line is denoted linel1, and can be described by the slope

α and the line constantq.

When the transversal vibrations of the chain segments are analysed, first the two rollers

that are nearest to the middle point(xm, ym) are found. The two rollers nearest to the

middle point are denoted rolleri and rollerj, and their positions are(xi, yi) and(xj, yj),

see Figure E.1.

(xm, ym)

(xc, yc)

l1

l2

l3

(xi, yi)

(xj , yj)

Figure E.1: The distance perpendicular to the segment line.

The three lines shown in Figure E.1 are given by the equations
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l1 : y = αx + q

l2 : y = βx + p

l3 : y = ξx + r (E.1)

Line l1 and linel2 are perpendicular and crosses in the middle point(xm, ym), yielding,

with line l2 given by the slopeβ and line constantp

β =
−1

α
, p = ym − βxm (E.2)

The line l3 goes through the points(xi, yi) and (xj, yj), yielding the slopeξ and line

constantr for the line

ξ =
yj − yi

xj − xi

, r = yi − ξxi (E.3)

The linesl2 andl3 crosses in the point(xc, yc) given by

xc =
r − p

β − ξ
, yc = βxc + p (E.4)

The distance between(xm, ym) and(xc, yc) is used as a measure of how the middle of a

chain segment oscillates. The sign of the displacement is calculated by the dot-product of

a vector from(xm, ym) to (xc, yc) and a chosen unit normal vector to the initial tangent

line and since these two vectors are parallel this dot-product in fact gives the wanted

distance including the sign.



Appendix F
The Stiffness Matrix

The stiffness matrix in general for a chain drive system model consisting of multiple

sprockets and chain links is, whenK is the stiffness coefficient of the springs between the

rollers and the radius of sprocket numberi is Ri, given by
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Appendix G
Various Modifications for the Friction Force

The modification of the friction force can be done by using different approximations of

the signum functionsgn(x). The signum function is given by

sgn(x) =




−1, x < 0

0, x = 0

1, x > 0

(G.1)

or

sgn(x) = 2H(x) − 1 (G.2)

whereH(x) is the Heaviside Step Function given by

H(x) =




0, x < 0
1
2
, x = 0

1, x > 0

(G.3)

The Heaviside Step Function can be approximated by the following three limits

H1(x) = lim
ε→0

1

2
(1 + tanh (x/ε))

H2(x) = lim
ε→0

(
1

2
+

1

π
arctan (x/ε)) (G.4)

H3(x) = lim
ε→0

(1 + exp (−x/ε))−1

The Heaviside approximations are shown in the three figures G.1, G.2 and G.3, the solid

line for ε = 0.01, the dashed line forε = 0.1 and the dashed-dotted line forε = 0.5, see

e.q. http://mathworld.wolfram.com/HeavisideStepFunction.html.

Other approximations for the signum function can also be made by using e.g. a super

elliptic approximation or a Bézier curve approximation as shown in the figures G.4(a)

and G.4(b). For further information about the Bézier curve see e.q. Pedersen (2002) and

about the super elliptic approximation see e.q. Pedersen (2003). With the Bézier curve

approximations it is possible to control the slope at the ends of the curve and for the
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x

H
1
(x

)

0

0

Figure G.1: Heaviside approximationH1(x) for ε = 0.5, 0.1, 0.01

x

H
2
(x

)

0

0

Figure G.2: Heaviside approximationH2(x) for ε = 0.5, 0.1, 0.01

super elliptic approximation the slope at one end is vertical and at the other horizontal.

Both the super elliptic approximation and the Bézier approximations shown in the figures

G.4(a) and G.4(b), consist of four curve parts two in the 1 st quadrant and two in the third

quadrant, calculated by either of the approximations. The approximations are given by

A(x) =




−1, x < −x∗

−A∗(x), −x∗ < x ≤ 0

A∗(x), 0 ≤ x < x∗

1, x > x∗

(G.5)

For the super elliptic approximationA∗(x) is given by
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x

H
3
(x

)
0

0

Figure G.3: Heaviside approximationH3(x) for ε = 0.5, 0.1, 0.01

A∗(x) = sin (arccos (
−x

x∗ + 1
)

ε
2

)

ε
2

(G.6)

For the Bézier approximationA∗(x) is given by

x =
1 − ε2

ε1 − ε2

(3t − 3t2) + x∗t3 (G.7)

A∗(x) = ε1
1 − ε2

ε1 − ε2

(3t − 3t2) + t3 (G.8)

For values ofx the third order polynomial (G.8) is solved for the correspondingt, which

used in (G.8) gives the wanted value ofA∗(x). The Bézier approximation isB(x) = A(x),

usingA∗(x) calculated from (G.8) and the super elliptic approximation isS(x) = A(x),

usingA∗(x) calculated from (G.6).

Figure G.5(a) shows a comparison of the three Heaviside approximations withε = 0.01

(dashed lines), the Bézier approximation (dashed-dotted line), the super elliptic approxi-

mation (dotted) and the signum function (solid line).

Figure G.5(b) shows a polynomial modification (dashed line) compared with the signum

function (solid line). The polynomial modificationP (x) = A(x), with A∗(x) given by

A∗(x) =
1

(x∗)3
x2(3x∗ − 2x) (G.9)
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Figure G.4: (a) Bézier modification forε1 = 1015/4, ε2 = 0 and (b) Super elliptical modification forε = 5
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Figure G.5: (a) Comparison of the different modifications and (b)The polynomial modifications.


