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1 Preface
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BYG: DTU, M. Sc. Ph.D. Bent Feddersen RAMB@LL and Architect MAA Sgren Bggh
MURO for their engagement and criticism to the present work and our Ph.D.-projectsin
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! Further details may be found in section 11.1.




Stahility of Concrete Columns




Tim Gudmand-Hgyer & Lars Zenke Hansen

2 Summary

In this paper an investigation of reinforced concrete columns and beam-columns are carried
out. Thetheory is general but thisinvestigation is limited to statically determined beam-
columns and certain other specia columns. The columns considered correspond to the tests
reported in the literature.

A linear elastic — perfectly plastic material behaviour of the reinforcement and a parabolic
material behaviour of the concrete with no tensile strength are assumed. The maximum strain
of the concrete in compression is limited in the traditional way.

The behaviour of columns and beam-columns are analysed numerically and compared with

experimental data from the literature. A good agreement has been found.

Further the results of calculations according to the Danish Code of Practice (DS411) have
been compared with experiments. A good, but a bit conservative, agreement has been found.

The comparison between the two calculation procedures and experiments covers 311 tests of
which 200 are eccentrically loaded beam-columns, 73 are concentrically loaded columns and

38 are laterally loaded beam-columns.

A short investigation of the shape of the deflection curve isincluded in order to justify a
simplified calculation formulafor the deflection in the mid point of the beam. This
simplification is aso used in the Danish Code of Practice.
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3 Resume

| neavazrende rapport undersgges opferslen af armerede betonsgjler og bjadkesgjler. Teorien
er generel, men indskraankes her til at behandle statisk bestemte bjadkesgjler og en ragkke
specielle sgjler. De behandlede sgjler svarer til sgjler med hvilke der er rapporteret forsag i
litteraturen.

Armeringen antages at opfare sig lineagrel astisk-ideal plastisk med flydespaendingen f, i bade
trask og tryk. Betonen antages at have en parabolsk arbejdskurve i tryk og trakstyrken sadtes
til nul. Den maksimale tgjning for beton i tryk er begramset pé traditionel méde.

Pa denne baggrund er sgjlers opfarelse analyseret numerisk og der er foretaget

sammenligninger med forsgg indsamlet fra litteraturen. Der er fundet god overensstemmel se.

Y dermere er der foretaget beregninger, som baserer sig pA metoder i den danske norm for
betonkonstruktioner, DS411 1999. Sammenligninger med forsag har vist, at der er god

overensstemmel se. Beregningsmetoden er lidt p& den sikre side.

Fralitteraturen er samlet 311 forsgg, som fordeler sig med 200 forsag med excentrisk
normalkraft, 73 med en centralt angribende normalkraft og 38 forsag hvor der udover en
central normalkraft er pafert en tvaerbelastning.

Der er i forbindelse med rapporten ogsa foretaget en undersagelse af udbgjningskurvens form.
Dette er gjort for at verificere brugen af et simpelt udtryk for udbgjningen i bjadkemidten.
Denne simplificering bliver ogsa brugt i den danske norm for betonkonstruktioner.
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5 Notation

The most commonly used symbols are listed below. Exceptions from the list may appear.

They will be commented upon in the text.

Geometry
h
b
k

X, Y, Z

Height of a cross-section
Width of a cross-section
Coreradius

fe

0,8- 400

o
Area of across-section

Area of reinforcement at the bottom face

Area of reinforcement at the top face

Area of reinforcement in compression

Moment of inertia

Radius of inertia

Distance from the bottom face to the centre of the bottom reinforcement
Distance from the top face to the centre of the top reinforcement
Distance from the top face to the neutral axis

Length of abeam or column

Eccentricity

Initial eccentricity at top

Initial eccentricity at bottom

Deflection

Deflection in the mid section

Curvature

Curvature when bottom reinforcement yields

Parameter of shape

Cartesian coordinates
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Physic
K N
El
k 2
e, B9
“&ho
e Strain
[ Strain in concrete
€y Strain in concrete at the stress f.,
€ Maximum strain in concrete
& Strain in reinforcement
ey Yield strain of reinforcement
S Stress
S Stress in concrete
Ss Stress in reinforcement
Ser Critical stress (stressin the concrete at failure due to instability)
Sg Critical Euler stress
fe Compressive strength of concrete
fy Yield strength of reinforcement
Es Modulus of elasticity of the reinforcement
Eco Initial modulus of elasticity of the concrete
Es Tangent modulus of concrete
n Ratio between the stiffness of the reinforcement and the concrete
r Reinforcement ratio
Fo Degree of Reinforcement
. AEe,
o bhf,
C. Resulting compressive force in concrete
Cs Resulting compressive force in reinforcement
T Resulting tensile force in reinforcement
N Axia load
N, Maximum compressive load
Ne Maximum compressive load, concrete only

-8-
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Critical load (load at failure due to instability)
Bending moment

Bending moment when bottom reinforcement yields
Applied bending moment

Maximum bending moment

Point load

Lineload
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6 Introduction

A column is defined as a structural element loaded by a concentric axial load only. A beam
column is defined as a beam loaded with axial load and an applied moment, either from an
eccentrically applied axial load or atransverse load. These structural members may collapse

due to instability. Thistype of failure is sudden and therefore very dangerous.

This investigation sets out to analyse columns and beam-columns. It aims to justify present
design procedures, mainly the procedures used in the Danish Code of Practice, by theoretical
calculations and by comparing the methods with experiments. These experiments are taken

from the literature where numerous investigations have been reported.

The paper will be subdivided into two sections. The first one deals with theoretical
calculations based on the so-called equilibrium method, which to some extent will be
compared with existing methods. Furthermore some simplified procedures are suggested,
which may be used instead of the traditional method suggested in the Danish Code of
Practice.

In the second section, a comparison with experiments and the equilibrium method and the
Danish Code of Practice will be presented. This comparison will be subdivided into 3 parts,
one for concentrically loaded columns, one for eccentrically loaded columns and one for

laterally loaded columns.

At the end, concluding remarks on the investigation will be presented.

-11-
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7 Theory

7.1 Introduction

In this chapter a theoretical investigation is made on columns and beam-columns. A column is
defined as an element loaded by a concentric axial load. Eccentrically loaded elements,
laterally loaded elements and elements |oaded with a combination of these actions are defined
as beam-columns.

The chapter is subdivided into 3 sections. These sections concern the material behaviour and
assumptions made in the theoretical analysis, analysis of columns and beam-columns
respectively.

Short descriptions of the most common of the existing methods are made in both the second
and the third section. Thisis followed by an analysis based on the equilibrium method. This
method is compared with existing methods for columns and used to analyse the behaviour of
beam-columns. Furthermore simplified solutions to calculate the moment-curvature

relationship and the interaction diagram are proposed.

7.2 Material behaviour, assumptions and definitions

7.2.1 Materia behaviour

In order to analyse the behaviour of areinforced concrete column and a beamcolumn some
basic assumptions regarding the material behaviour for concrete and reinforcement have to be
introduced. In this paper effects from unloading and possible subsequent rel oading are
neglected. In some parts of the paper concrete is modelled as alinear elastic material and in
some parts a more accurate modelling of the actual behaviour is considered.

Numerous investigations have been made concerning the stress-strain relationship for both

concrete and reinforcement. In this paper the stress-strain relationship of concretein

-12 -
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compression is assumed parabolic until the maximum strain e, is reached. The tensile
strength of concreteis set to zero. The reinforcement is assumed to behave linear elastic-
perfectly plastic in both compression and tension. Thisisillustrated in Figure 7.1, where only

the stress-strain relationship for reinforcement in tension is shown.

s [MPaq] ‘ s [MPgq] (fy.ey)
y

e [%] e [%]
TRz es35 T e

Figure 7.1 The assumed material behaviour for concrete and reinforcement
The variation of the compressive stresses in the concrete is determent by (7.1).

(7.2)

QII-O:

= iae i
‘e g e
7.2.2 Assumptions

In the forthcoming analyses of columns and of beamcolumns the following assumptions are
made regarding the behaviour:
Plane cross-sections remain plane and normal to the curve of deflection Thus shear
strains are neglected (Bernoulli-beam)
The strain in the concrete and in the reinforcement is the same. This means that the
bond between concrete and reinforcement is considered perfect.
Transverse bars (stirrups) have no influence on the axial stresses and strains. They are
supplied to prevent longitudinal reinforcement from buckling and as shear

reinforcement in beam-columns.

Definitions
The reinforcement ratio r is defined as:
r=ATA_ATA (72)
A bh

The degree of reinforcement F o is defined as:

-13-
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Aty

F = 7.3
°= bt (7.3)
Maximum compressive load is defined as:
N, =bhf, +(A +A)f, (7.4
Al
h o« o
A h
. ‘/\.
b

Figure7.2. Cross-section

The sectional forces are defined asillustrated in Figure 7.3. Thus a positive moment gives
tensile stresses in the bottom of a beam-column and the axial load is positive in compression.
Statical equivalenceis used to express the sectional forces by the stressesin the sectionina

Cross-section.

Figure 7.3. Sressand strain distribution in cross-section analysis

7.3 Columns

7.3.1 Existing methods

In this section some of the existing methods used in stability analysis of concrete columns are
presented. The methods of interest here are the linear elastic solution and the solutions

presented by Engesser and Ritter.

“14 -
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7.3.1.1 Ingtability of linear elastic columns
Instability of linear elastic columns are analysed either by solving the column differential

equation or by the energy method.

In Figure 7.4 asimply supported column is shown.

Positive sign of internal forces:

v M M
N_) Constant El 779:_ N x
e !
< >|
A

Figure 7.4 Smply supported column concentrically loaded

Moment equilibrium immediately gives:

M- N>u=0 (7.5)
The bending moment is determined by M = - El 372;‘ , which inserted in (7.5) givesthe
differential equation:

2,
H%§+Nm:0 (7.6)

Thisis an ordinary homogeneous second order differential equation, which must be solved

using the boundary conditions.

u(x=0)=0
Y= (7.7)
u(x=1)=0
It is convenient to introduce a factor k, given by.
N
kK> =— 7.8
T (7.8)
Equation (7.6) may then be rewritten as:
d?u
2 +Kk¥u=0 7.9
Ve (7.9)
The complete solution to (7.9) is:
u = Axcoskx + Bsinkx (7.10)

-15-
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The constants A and B are determined from the boundary conditions and besides the trivial
solution A = B = 0 the solution to the differential equation requires:

sinkl =00 kKl =p+n:p n=012... (7.12)
The axial load solutions to this problem are the so-called eigenvalues and the corresponding
solution u(x) is an eigenfunction. The magnitude of the eigenfunctions can not be determined
from the differential equation, the only information is the shape.
The lowest value of Nisfound for kI =p which gives the well-known Euler equation:

2
N:pEI

cor
I 2

(7.12)

As seen from equation (7.12) the load-carrying capacity calculated from the Euler equation
goestoinfinity when | ® 0.

Euler’s equation can only be used if the material has constant modulus of elasticity in the
entire interval from zero stress to the compressive strength of the material. If the moment of
inertiavarieswith x this has to be taken into consideration when solving the differential
equation (7.9).

Since all materials have alimited strength, the Euler equation has to be cut off at this strength,

see Figure 7.5.

(%]

Figure 7.5 The Euler curve with a cut off at the compressive strength f,

The energy method for a column provides a criterion, which determines whether the column

is stable or not. The criterion for a stable columniis:

2, .2
dEI STL;dx- QL Na%g dx>0 (N positivein compression) (7.13)

-16 -
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Equation (7.13) states that for a stable column, the bending energy for an arbitrary state of
deflectionsis larger than the work done by the axial load for the same state of deflections. The
energy method is equivalent to the equilibrium method.

7.3.1.2 Indlagtic prediction of thecritical load

7.3.1.2.1 Engesser’sfirst column formula

A column with non-linear material behaviour belongs to an area in which numerous
investigations have been made. Engesser stated his first theory in 1890 (see [5]). Thistheory
was based on the Euler equation [2], with a modification of the modulus of lasticity. Hisidea
was to introduce the tangent modulus of the stress-strain relationship at the current stress
level, i.e. to use theinclination of the tangent (Es) as the elastic modulus of the material, see
Figure 7.6. Then the critical stress may be calculated by the formula:

s :&:_pZE; (7.14)
A ato
&i 5

Since this theory does not consider whether alayer in the concrete is reloaded or unloaded,
Engesser stated a second theory in 1895 taken this into account. He assumed that 1oaded
concrete has the stiffness equal to the tangent modulus and unloaded concrete has the initial
stiffness (the stiffness for s = 0). Engesser’ s second theory thus leads to more complicated
calculations. In 1946 Shanley [1] proved, by calculations and experimental investigations that
the critical load is only alittle higher than that given by Engesser’ s first theory, which was
shown to furnish the load for which deflections of a perfect column become possible. In
return, he proved that Engesser’ s second theory provided an upper limit for the critical load.
This suggests that for practical purposes the first theory of Engesser may be used.

SA
E(s)

Figure 7.6. Sress-strain curve for a soft material in general.

For a parabolic stress-strain relation (illustrated in Figure 7.1) the stiffness is determined by:

-17 -
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E =E,[1- sf— (7.15)

If equation (7.15) isinserted into equation (7.14) and the equation is solved for the critical
stress, equation (7.16) is obtained.

*® .2 0
Sa _1Seg gs_Eg +4. 5% (7.16)
fc 2 fc 9 e'c@ fC -

e a

2
where s . =P Eg
il
§io

A simple way of including the influence of the reinforcement is to assume that the concrete

determines the critical stress and the contribution from the reinforcement are calculated on the
basis of this critical stress. This means that the critical load for the column in genera should
be calculated as:

N, =S bh+s A (7.27)
This simplification leads to an underestimation of the critical stress since the stiffness of the
reinforced column is higher than the stiffness of the unreinforced column.
If the yielding of the reinforcement isincluded, formula (7.17) may be written as:

N, =minj
S

cr

(7.18)

where A is the entire area of reinforcement and n is the ratio E4/500f.. The ratio n could also
have been calculated as s4/s . Thisis not done since an equal way of introducing the

reinforcement is preferred.

7.3.1.2.2 Ritter’s column formula

Equation (7.16) is, in terms of history, considered complicated because it contains a square
root. Thisled to the simplification made by Ritter.

The Ritter equation is also derived from the Euler equation by assuming a stiffness-stress

relation for concrete as;
E, =Eogl- 1o (7.19)
e

The difference between the Ritter stiffness and the stiffness corresponding to a parabolic
stress-strain curveisillustrated in Figure 7.7. It is seen that the simplification used by Ritter is
conservative.

-18-
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. E(S)/E,,

T

—— Ritter
0.9 —— Parabolic stress-strain relation

0.8

0.7

0.6

0.5
0.4 \
0.3
0.2 \
0.1
S /f
Cc

0 0.2 0.4 0.6 0.8 1

Figure7.7. Sifnessstress relations as described by (7.19) and (7.15).

Inserting the Ritter stiffness into Eulers column formula leads to the Ritter column formula:

fe
S cr ,Ritter = fc % 62 (720)
1+— -
P Eyp g' ]
Results of calculations from Ritter’s as well as Engesser’s column formula are shown in

Figure 7.8 for two different initial module of elaticity.

-19-



Stahility of Concrete Columns

o ¢

T T

T T T
— Ritter Ec0:15000MPa
—— Engesser (parabolic) E_,=15000MPa (f.=15MPa) 1
——- Ritter E ;=30000MPa

---- Engesser (parabolic) E_,=30000MPa (f =30MPa)

o o
2
=
I W
[ e
=== —_—

/ e T -

0. X

\‘.\

o
S

0.1 =

] =

\i\\
0 E— /h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.8. Critical stressfor e,=0,2%.

The reinforcement isincluded in the same way as for Engesser’sformula, i.e.:

is bh(1+nr)

N, =min 7.21
« “MM s bh+Af, (7.21)
where A also denotes the entire area of reinforcement.
According to [27] the modular ratio may approximated by:
n= B (7.22)
500 f

Under the assumption of a parabolic stress-strain relation the secant modulus of elasticity

corresponds to an arbitrary strain eis:

2e,-e|f
E w :_(. _____ Wz) ...... (7.23)
eCy
The modular ratio then becomes:
e 2
neo ol (7.24)
(2e,-e)f,

It appears that the modular ratio depends on the strain at the critical load. It aso appears that
if failure occurs at a strain close to the strain corresponding to maximum concrete stress (e =
&y = 0,2%) the two formulas ((7.22) and (7.24)) are identical.

-20-
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For acritical load leading to a strain lower than the strain at maximum concrete stress, the
simple formula (7.22) overestimates the modular ratio. This means that the contribution from
the reinforcement is overestimated. However, in [27] this overestimation of the stress in the
reinforcement is considered compensated by the underestimation of the stiffness when
determining the critical stress. Thisis confirmed by the numerical calculations carried out

|ater on.

7.3.2 Danish Code of Practice, D411

In the Danish Code of Practice, DS411, the procedure for calculating the load-carrying
capacity of columnsis based on the critical stress calculated by Ritter’s equation.

s = < (7.25)

where

i 1000f,
(7.26)

|
=minj
Eoe = 10,75551000 fo
I f +13

Cc

The reinforcement isincluded as described previously,

isC,AC(1+nr)

Ls A+ A (7-27)

N, =min
ES

where Ay isthe area of the longitudinal reinforcement and n = 007

7.3.3 The equilibrium method

For columns made of materials with softening the load-carrying capacity may be reached long
before failure in the critical section. Thus the |oad-carrying capacity must be determined by a
maximum condition. This method normally used for beam-columns may also be used for
concentrically loaded columns. In this paper this method is named the equilibrium method.
For a.column simply supported at both ends the maximum deflection in the mid point may be

determined as:

u_ =1k (7.29)
a

where k isthe curvature in the mid point and a is aform parameter dependent on the

curvature function along the column.

-21-
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Stress Strain

Figure 7.9. Sresses and strainsin a cross-section.

Cross-section analysisis carried out expressing statical equivalence between sectional forces
(stress resultants) and stresses.

The equations of statical equivalence for an unreinforced column with arectangular cross-
section and with a maximum deflection determined by (7.28) (see Figure 7.9) are:

Projection equation:

N:bQY(’ fceclecy(?z-eclewg
o-h Yo e Yo %] (729)
& e 2\ 1, e? 3 .
N=bgf —¢ 2. h) |- =f —=¢ °-(y,- h)')=
§°yoecy(y° (¥ h)’) 3cyozecyz(yo (Yo ))a
Moment equation:
M = b(‘j’0 fie. =€y ¢2- e e,y
Yo e 0
, (7.30)
2 € 3 4
M =bg— ¢ *-(y,-h)’)-=f —= ‘- (y,- h)' )+
63 "y (- h)°) 2 cyozewz(yo (%o ))E
The moment in the mid point is:
M =Nu= Nk (7.31)
a
Combining(7.29), (7.30) and (7.31) leads to adetermination of e.:
% 6
+2-2(12+ 1+4 ;—-4 —+2 +576 —-1_+144‘
e _ hgs Pa 8(7.32)
e 0
8§ ?L? 3Yo4q;
hg h 5
where k = 5
&
e, o+
“&hg

-22-
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Inserting (7.32) into (7.29) leads to a determination of the axial load as afunction of yg. By
letting Yo go towards infinity the maximum axial load may be found. Thisis equivalent to
letting the deflection go towards zero and furnishes a limiting criterion of stability since the
column is no longer deflected, and the maximum load is therefore the same as the critical load
for which deflection becomes possible. The critical load is found to be:

N, ke[ 1., 0

= =X ,/1-_k k= (7.33)
bnf, 6%\ 122
S ke 1 o]

o KB L ks 7.34
foe&NT 122 Ty (739

By comparing (7.34) with (7.16) it is seen that the critical stress found by Engesser’s column

and the critical stressis:

formula and the critical stress found by the statical equivalence method are identical if a = p?.
Normally a is set to 10, as suggested in [27].

If the curvature is constant a = 8, and if the curvature is parabolic a= 9,6. Theinfluence of a
isillustrated in Figure 7.10.

T T T

~<] -
~ \\\ ——- Ritter
~

N ----- Engesser (parabolic)

0.9 N —— Equilibrium method a=8
\ —— Equilibrium method a=10

/h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.10. Results from calculations e,,=0,2%.
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Reinforcement may be taken into account as described previoudly. The equilibrium condition
depends on whether yielding occurs in the reinforcement or not. This leads to three different
Cases.

Case 37 Case 38 Case 39

<— Noyieding <— Yielding
Figure 7.11. lllustration of three different cases with and without yielding in the reinforcement. Regarding the
nubering af cases, seeFigure7.27

The three formulas, and their limitations, are determined for the column with arectangular
cross-section shown in Figure 7.12. The calculations may be done analytically asin the case
of an unreinforced cross-section.

A=A A
r =-%
he' =he ./ \‘ bh
A h
- ‘/\.
b

Figure 7.12.Crass-section of the column used in the calculations.

If itisassumed that h'= h. and AJ = A the following results are found:

R & o)
fo=Lyrr, 1o |(F, +2)-F, kgeel 2R I L (s
12 Gy &y oy g

e, &hg ~h 35 12°
f
w1y (7.36)
€y €yE
Co - Lyiq i2k2+2Fe +1 (7.37)
e, 12 12 i
N, &0
s . ol ] +2e0i(1+|:o) (7.38)
bhfc gew B o
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2

N _ R0 | & o (7.39)
bhf,  Se, 5 ey  °
62
Nop _ 00 |, o€, o o (7.40)
ont, e, 5 ey
e
where FEc :b and k = a >
+ " bhf, & 6
em/ — =
&hg

In Figure 7.13 the results of the calculations are shown for f,=200 MPa. N, is defined in
section 7.2.

From Figure 7.13 it appears that a horizontal line governs the load-carrying capacity in a
small I/h-interval. Above this line the column formulavalid for yielding of all reinforcement
bars (formula (7.40)) is used and below the column formula valid for no yielding in all
reinforcement bars (formula (7.38)) is used. The column formula found for yielding only in

the top reinforcement bars (formula (7.39)) results in the horizontal part.

NN
£ T T T T T
f =5MPa f=200MPa F =0.1h /h=0.15
c y 0 c
Equilibrium method
o Engesser plus reinforcement
1 \—\\ ——— Ritter plus reinforcement [l
038 ___\
0.6
0.2
o h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.13. Results from calculations for a=8, b=250mm, h=250, E=240°MPa, €,=0,2%, f.=5MPa,
f,=200MPa,F ¢=0,10, h,/h=0,15.

Asillustrated in Figure 7.14, formula (7.38) isthe only formula used if f,>400 MPa. With a
modulus of elasticity of 2x10° MPa for the reinforcement, this means that the yield strain for

the reinforcement is the same as, or higher than, the strain a maximum concrete stress
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(e4y=0,2%). In general the presence of a horizontal part only depends on whether the yield

strain for the reinforcement is higher than the strain at maximum concrete stress or not.

N/N
P

T T T T T
f =5MPa f =400MPa F =0.1 h /h=0.15
c y 0 c

Equilibrium method
o Engesser plus reinforcement

1 \\ — _Ritter plus reinforcement

0.6

0.4 .
0.2
o /h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.14 Results for a=8, b=250mm, h=250, E=240°MPa, €,,=0,2%, f.=5MPa, f,=400MPa,F ,=0,10,
h/h=0,15.

The “width” of the horizontal part depends mainly on the degree of reinforcement as may be
seen by comparing Figure 7.15 with Figure 7.13 where only the degree of reinforcement is
varied. Thisis as expected since the horizontal part originates from yielding or no yielding of

the reinforcement.
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N/N
)

T T T T T

f =5MPa f=200MPa F =0.2 h /h=0.15
c y 0 c

Equilibrium method
o Engesser plus reinforcement
1 = — Ritter plus reinforcement

A

0.4

0.2

/h

Figure 7.15 Results for a=8, b=250mm, h=250, E=24.0°MPa, e,,=0,2%, f,=5MPa, f,=200MPa,F 4= 0,20,
ho/h=0,15.

Asseenin Figure 7.13, Figure 7.14 and Figure 7.15 there are regions where Ritter’s modified
column formula overestimates the critical load. Thisis the case for columns with al/h-ratio
higher than 40. However, these plots are for a concrete strength of 5 MPa. From Figure 7.16 it
appears that there is no overestimation for higher strengths of concrete (in this case 35MPa).
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N/N
)

T T T T T

f =35MPa f =400MPa F _=0.1 h /h=0.15
c y 0 c

Equilibrium method
o Engesser plus reinforcement

T \ — Ritter plus reinforcement

0.4

0.2

Figure 7.16 Results for a=8, b=250mm, h=250, E=24.0°MPa, e,=0,2%, f,=35MPa, f,=400MPa/F ,=0,10,
ho/h=0,15.

The calculations are made under the assumption that the strain at maximum concrete stress
remains constant at 0,2%, independently of the compressive strength. This means that the
modulus of elasticity changes as afunction of the compressive strength. As the strength
increases the error in the formula used to express the modulus of elasticity in the Ritter
column formula (see section 7.3.1.2.2) gets more pronounced.

InFigure7.13to Figure 7.16 a isset to 8. Asdescribed in section 7.4.4a =8isa
conservative value and normally a isset at 10. If a isset at 10 the critical load found by the
equilibrium formulas is almost the same at the critical load found by the modified Engesser

formula. Thismay be seenin Figure 7.17.
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N/N
)

T T T T T
fc:35MPa fy:4OOMPa F 0:0.1 hC/h:O.ls
Equilibrium method

o Engesser plus reinforcement
— Ritter plus reinforcement

\\\
.

~—

I
\\\\

0.2

Figure 7.17. Results for a=10, b=250mm, h=250, E.=24.0°MPa, €,=0,2%, f,=35MPa, f,=400MPa,F ,=0,10,
h/h=0,15

An interesting result of the equilibrium formulas is found where the yield strain of the
reinforcement is high and when the case 37 of Figure 7.11 is used for al slendernessratios. In
this situation the highest critical load is found for a column with aslenderness ratio different
from zero. Thisisillustrated in Figure 7.18. It appears that the maximum critical load in the
case considered is found for 1/h »6. The explanation is the following: The strain is decreasing
as the slendernessratio increases at all times as shown in Figure 7.19. However, since the
strain islarger than the yield strain for the concrete for small slenderness ratios the
contribution from the concrete to the |oad-carrying capacity does not decrease with an
increasing slenderness ratio. Maximum concrete contribution is of course found where the
critical strain equals the strain at maximum concrete and when combined with the
contribution from the reinforcement it is evident that maximum is found for a slenderness

ratio different from zero.
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N/N
b
T T T T T
fC:15MPa fy:SOOMPa F 0:0.2 hC/h:O.lS
Equilibrium method
o Engesser plus reinforcement
1 — Ritter plus reinforcement Il
0.8 \ \\
0.6 \
0.4 i\\\
S
0.2
0 /h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.18 Results for a=10, b=250mm, h=250, E=240°MPa, €,,=0,2%, f.=15MPa, f,=500MPaF 1=0,20,
ho/h=0,15.

€ in [0/00]
25 T T T T
—— — f,=15MPaf =500MPa F,=0.2h/h=0.15
\ ~ Equilibrium method
2
1.5
1
0.5 —
\
o /h
0 5 10 15 20 25 30 35 40 45 50

Figure 7.19 Results for a=10, b=250mm, h=250, E=240°MPa, €,=0,2%, f.=15MP4a, f,=500MPaF ,=0,20,
h./h=0,15.
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7.4 Beam-columns

7.4.1 Existing methods

7.4.1.1 Stability of linear elastic beam-columns
In this section, the solution of the linear elastic problem for beam-columnsisbriefly

introduced. Theload carrying capacity for beam-columns loaded with an eccentric axial load
and concentrically axial load along with lateral loading will be derived. These two cases are
treated by the equilibrium method.

A
Yy

Figure 7.20 Satical system of an eccentrically loaded beam-column

The equilibrium equation for the deflected beam-column loaded with an eccentric axial load
becomes:

M- M,- Nxu=0 (7.41)
where Mo = Ne. WithM = - EI £% we get

d?u B
Bl 7 *N {u+e) =0 (7.42)
X

Thisis an inhomogeneous second order differential equation, which must be solved with the
boundary conditions,

X=0)=
l:((X = ?)) = (()) (7.43)
The complete solution is a sum of the homogeneous and one inhomogeneous sol ution.
Equation (7.42) may be rewritten as:
g—::+ k*{u+e)=0 (7.44)
The solution of (7.44) is:
u = A>sinkx+ B>coskx+e (7.45)
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The constants A and B are determined from the boundary conditions. This gives the following
valuesfor A and B.

B=0and A= —— (7.46)
sinkl

When (7.46) isinserted into (7.45) equation (7.45), the latter equation with some geometric
subsgtitutions are made, becomes:

u(x)=—2_ Ros. kx_ cos 30 (7.47)
cos— 8 8 2p
2
The maximum deflection is obtained for x =1/2
6= cos (7.48)
aa% k| ?

When this solution is inserted into the equilibrium equation the combinations of N and M
which the beam can carry, may be determined.

p
A A A
N
—_— < N—>»X
Yaeram | 77%7‘
el \I
<< >
Y u

Figure 7.21.Beamcolumn with lateral load.

For beam-columns with lateral load and a concentrically axial load, the procedure is the same
as above. The differential equation isfound to be:

d* u, d’u
The complete solution is:
. pX
u = Assinkx+ Bxcoskx+Cx+ D +— (7.50)

The constants A, B, C and D are found from the boundary conditions
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u=0,x=0:B=-D= 2p
KN (7.51)
u=0,x=l: A=_P & coskl 8 and - P .
T TT KNG Sk g 2N

The deflection is at maximum in the mid point due to symmetry. The magnitude is determined
by:

e 12§’éec£2'- 2 2()'2
u = - o (7.52)
?"25 384 El 5&19
&2
It is seen from equation (7.52) that the deflection is equal to the deflection for the laterally

loaded beam multiplied by afactor. For further details see [3] and [5].

7.4.2 Danish Code of Practice, DS411

In DS411 “Method 1" isvalid for calculation of the load-carrying capacity of beam-columns.
This method is based on alinear elastic material behaviour for concrete in compression with a
modulus of elasticity for section analysis equal to 500f.. The maximum compressive stressis

given by equation (7.53)

f =i & S ¢ pin O (7.53)

I],ZSfc ¢l- 0 2f’—+

| e c @
The maximum stress in the concrete in the case of cracked cross-section is determined by the
upper equation in (7.53). When the entire cross-section isin compression the maximum stress
is determined by the lower equation in (7.53).
Based on the assumptions stated above a cross-section anaysis is performed and based on the
stress state the deflection is calculated as:

u= 1—10—S °'maécr_DSh°'m‘" 12 (7.54)

where s min IS Set equal to zero when the cross-section is cracked and Dh isthe distance
between the levels of the section with the stresses S ¢ max and S min, respectively. To include
the nontlinear behaviour of the concrete a modulus of elasticity (E), which vary with the
stress state, isintroduced. Thisis calculated as:

E, = kZem (1. k) Sem O (7.55)
e fc fc %]
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where
k =0,8- 400 fe
and
E. :mini'looof°
o 10,75E,

(7.56)

(7.57)

This modulus of elasticity is only used for the calculation of deflections.

The calculations using this method are compared with the equilibrium method in Figure 7.22.

The equilibrium method is described in the next section.

[0
1 T T T

ook
&l
o7k
ne-
DSk
D4k
03

0.2

:
Theary

D541

Figure 7.22 The Danish Code of Practice method compared with the equilibrium method

The agreement is seen to be good.

In the Danish Code of Practice, another method is suggested. This method is referred to as

“Method I1”. The procedure is to calculate the maximum moment and axial load from a cross-

section analysis, where the stress block of the concrete is a square with the maximum stress

equal to f. and the extent of 4/5 y,. From this, the load-carrying capacity is calculated from the

equilibrium equation with the deflection set as
u :lecu +e9/ |2

a h

(7.58)
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The deflection calculation assumes that the reinforcement yields. The deflection obtained
from equation (7.58) is often conservative, however in the case of columns where material
failure determines the load carrying capacity it is a good approximation.

In Figure 7.23, Method | and Method |1 are compared with the statical equivaence method.
The calculations are made for a rectangular cross-section whereh =b =250 mm, h,’ = h, =

20mm, A= A’ = 28162, f, = 500 MPa, f,= 20 MPaand I/h=10.

T =
Theery
os41 |
na — DS |

s
o7

06 -

05- b -
n4-

03

0.2

Figure 7.23 Cal culation made by the theory using parabolic stress block, Method | and Method |1

It is seen that if Mo/Mgp, = 1,5 the maximum axial load obtained by using Method | is0,2 N,
and 0,4 N, by using Method I1. This means using Method |1 leads to an increase of 50 %in
load-carrying capacity.

However, asthe slendernessis increased Method |1 becomes conservative asillustrated in
Figure 7.24.

-35-



Stahility of Concrete Columns

Bt

:
Theary
D541 1
U.Q._ — DS

0
o7

06 -

oSk 5 ; _
Dk

031y

0.2

Figure 7.24 Calculationsfor I/h=10, 20, 30 and 40

7.4.3 Moment-curvature relation

To describe the behaviour of a beam-column one needs the moment curvature relationship.
The load-carrying capacity for a given axial load may either be determined from the moment
— curvature diagram or from an applied mo ment — curvature diagram.

For acolumns with a given length, loaded with a given axial load, the right-hand side of the
equilibrium equation, (7.59),

M =M, +Nu (7.59)
for a deflected beam element may be plotted as a straight line in the moment curvature
diagram. Theinclination of the line is proportional to the axial load. The intersection points of
the straight line and the moment-curvature relationship determine the deflections possible for
agiven load. Thus the whole curve showing the applied moment, Mg, as afunction of the
curvature may be constructed as shown in Figure 7.25. It is seen that the maximum applied
moment corresponds to the point where the straight line is a tangent to the moment-curvature
diagram. In the case shown in Figure 7.25 the maximum load corresponds to the point where
yielding in the bottom reinforcement begins. Another caseisillustrated in Figure 7.26 where
maximum load is found before yielding in the bottom reinforcement begins. The transition
point between the two cases corresponds to a change from case 31 to 32. The case numbers

areshown in Figure 7.27.
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The situation shown in Figure 7.26 only occurs for slender beam-columns. Figure 7.26 has

been drawn for alength-height ratio of 35.

M M(N=0)

5 MM(N=0)

T 1 3r T
_ fC=35M Paf =400MPaF O=O,1O hC/h:0’15 I/h=15
2.5¢ 1 25¢
2 L
1.5¢ N ;0’2
R
1 1
0.5¢ 1 0.5}
) K mm™ ) K [mmY
00 2 4 00 2 4
-5 -5
x 10 x 10

Figure 7.25. Moment versus curvature and applied moment, M, versus curvature.

Figure 7.25 also shows that the straight line may intersect the moment curvature diagram in
two points, which enables the applied moment variation with the curvature to have a
downward section as shown in Figure 7.25 (right hand side of the figure). Furthermore, this
means that the beam-column is stable for curvatures smaller than or equal to the curvature
corresponding to the point where the straight line is a tangent to the moment curvature
diagram. For other applied loads, the beam-column is unstable.

The combinations of Mg and N, corresponding to critical loads of the beam, are most easily
found from the applied moment curvature relationship. For one level of the axial load, a
unique My —k-relationship exists and the maximum of this curve is the critical combination of
N and M.
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M/M(N=0)
3 imax

MOIM(NZO)W

—_ fc=35M Paf y=4OOM Pa F

0

=0,10 hC/h=O,15 1/h=355

25¢

&

i

X 10_5

Figure 7.26 Moment versus curvature and applied moment versus curvature.

37
<:> i
I

25}

N/N 30,2
p
K [mm
4
X 10_5
39
Pem
35
>
<— Yielding

<— Noyielding

Figure 7.27 The moment curvature relationship is based on nine cross-section analyses.
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Cross-section analysisis carried out expressing statical equival ence between the sectional
forces (stress resultants) and the stresses.

The different situations are shown in Figure 7.27, where the cases are numbered from 31 to
39.

The procedure in each case is for a certain axial load and concrete strain to find the distance
from the top face of the cross-section to the neutral axis (yo) by solving the projection
equation and then calculate the moment and the curvature.

The case 31 is shown in Figure 7.28, with the notation used.

he

Figure 7.28 Stress and the strain distribution in cross-section analysis

The variation of the stresses and the strainsis described in section 7.2.

The projection equation is

N=C,+C,-T
where
C.= b(‘gy"s Jdy

o Ev® e 20  fp @@ 0
e . e =

oy v g oy v g

C.=s A ze EA =Y e p A
Y

0

T=s A =e A =" Yoo A
Y,

0

The moment equation is
ah 0
M :MC+C5(y0- hc)+T(he- y0)+NQ_- yO+
e2 o
where

M. =bg)’s .ydy

-39-



Stahility of Concrete Columns

M, =

Jo ecy_);w
bQ fc e—QZ -

y &

=0
cy =

“ydy =

oy

(]

fe
e

oy

b
eC

2
0

By solving these equations for the nine cases the M-k relationship and the My-k relationship

may be obtained for a specific beam-column.
In the following the data listed in Table 7.1 are used if nothing elseis noted.

In Figure 7.29 the M-k -relationship is shown. The dependency of the degree of reinforcement

ratio, the compressive strength and the yield strength can be seen in Figure 7.29.

b h hc [ fc Eey fy Fo
[(mm] | [mm] | [mm] | [mm] | [MPa] | [95,] | [MPa] | ]
250 250 20 3000 15 2 300 0.05

Table7.1. The data used in present calculationsif other values are not listed.

The value of the axial load used in Figure 7.29is 2/9 N,,.

F, =020

F,=015

F,=010

F, =005

",

()

M

fe= 80 MPe

fe=60MPa

fe=40MPa

fe=20MPa

Figure 7.29 Moment curvature relationship when the degree of reinforcement, the compressive strength and the
yield strength are varied. Normal force 2/9 N,

InFigure 7.30 and Figure 7.31, the data aslisted in Table 7.1 are used to illustrate the
variation of the M-k relationship and Mo-k relationship for different axial loads:
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M [KMm] N3

A0 fmm

Figure 7.30 Moment-curvaturerelationship for different axial loads

M, [EHm]

Ao pmm™
35

Figure 7.31 Applied moment-curvature relationship for the same axial loadsasinFigure 7.30
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N M-interval in KNm Case
NP

0 0OEM£20 31

M 3 20 32

1 OEM £10 37

5 10£M £40 31
M 3 40 32 and 34

2 O£M £ 20 37

5 20EM £58 31

58£M £ 60 32
M 3 60 32and 34

3 0EM £29 37

5 29£M £65 31
M 3 65 34 and 36

4 OE£M £38 37

5 38EM £60 31

M 3 60 36

5 OEM £ 45 37

9 45£M £51 31

M 3 51 36

E OEM £35 37
9 M 3 35 36and 38

7 0E£EM £12 37
9 M 312 37 and 38
8 OEMET 37 and 38

5 M3 7 38

Table7.2 The situations for which the moment curvature relationship is calculated

Table 7.2 shows that agreat variety of N levels may be described by the same cases. All

curvesin Figure 7.30 except for N = O starts in situation 37, where the entire cross section is

in compression, then the case changes to one of the cases where the compression zoneis

smaller than the depth of the cross section. For Nl £ g the case after 37 is 31 (dependent on
p

the degree of reinforcement). For N larger than this level the case will be 36 since the axial
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load is large and therefore the top face reinforcement yields (also dependent on the
reinforcement ratio). The moment-curvature relationship changes its shape for an N level
above 3/9. At thislevel the compressive reinforcement begins to yield before the tension
reinforcement yields indicating that the depth of the cracked part of the cross sectionis
reduced. After thislevel there is no slope discontinuity in the moment-curvature relation.

7.4.4 Deflection shape and comparison with simplified method
Up to now the mid point deflection has been calculated as

u_ =1k (7.60)
a

In this section, an analysis of the deflection of the entire beam-column is carried out. This
analysisis made for an eccentrically loaded beam-column simply supported at both ends.
The analysisis doneiteratively by subdividing the beam into smaller sections. In Figure 7.32

the procedureisillustrated by aflow diagram.

>N is given

—>

Calculate the deflection for each point until the end point isi
reached

\

lif not-increase ugd

[Evaluate if umig isincreasing

|if not => FALIURE| |if umidlisincreasind

|N and the data for the deformation points are vali u'<
\

Increase N

Figure 7.32. Flow diagram for deflection calculations.

As seen, the deflection is found by varying the axial load until failure occurs. The deflections
are calculated from the midpoint towards the end. The deflection in the midpoint is increased
gradually until the deflection at the end points are zero, unless an increase in the midpoint

deflection does not lead to an increase of the end point deflections. If an increase in the
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midpoint deflection does not lead to an increase in the end point deflections the beam-column
will fail at the corresponding value of the axial |oad”.
The deflection has been cal culated assuming each beam section to have constant curvature.

~u
_ 1 2 1

Dl U =U_,- Eki—lDl -u i—lDI

u' =k, ,Di+u’,

U1
Figure 7.33. Calculation of deflections.

In Figure 7.34 plots of the calculations are shown for two beam-columns with different
lengths. These plots show the variation of the curvature (the plots on the left) and the
deflection aong the beam-column (to the right). For the two plots showing the variation of the
curvature, lines of constant curvature and lines of atriangular curvature are shown. If the

curvatureis constant a in (7.60) is 8 and for triangular one a is12.

2 This corresponds to accelerations perpendicul ar to the beam axis
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k108 Tmm™1 u[mm]
k 10" Tmm™ u[mm]
mid x [mm] end mid x [mm] end

Figure 7.34. Left: Curvature as a function of the length (measured from the midpoint of the beam-column).Right:
Deflection asa function of the length for two beam-columns. The plotsin the top are for a beam-column with a
total length of 4000mm and the plotsin the bottomare for a beam-column with a total length of 2000mm .They
both have a cross-section of 100x100mn?, A=A’ =50mnt, he=h' =10mm, e=50mm f.=30MPa ,f,=400MPa and
€,=0,2%.

As seen the curvature found from a more thorough analysis, is somewhere between constant
and triangular. The beam-column with alength of 2000mm (the bottom) is seen to be closer

to aconstant curvature (a=8) than the beamcolumn with the length of 4000mm. Thisisas
expected since a short beam-column will have almost a constant curvature and along beam
column will have an amost triangular variation of the curvature. A long eccentrically loaded
column actually has a curvature variation, which may be described as a combination of a
constant and a sine-function as for linear elastic beam-columns, since the concrete will behave

amost linear elastic in this case.

Although the plots are only valid for two beam-columns the behaviour is the same for any

beam-column.
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No quantitative evaluation of the error made by using (7.60) and a = 10 is made in this paper.

Such an evaluation would depend on many geometrical and physical parameters and the form
of loading. It is believed that the error is of minor importance.

The procedure described above may also be used to determine the behaviour of a beam
column when proportionally loaded. In Figure 7.35 the calculations are compared with
measured |oad deflection curves. The main dataare givenin Table 7.3. In these plots both the
model taking into account the actual variation of the curvature (solid) and the simplified
model (dashed) with a = 10 are plotted.

Results are a so shown from some of the test described in section 12.5. In some of these tests
load cycles with loading and unloading have been applied. The main data of the tests are aso
givenin Table7.3.
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N 10°[N] N 10°[N]

u[mm] u [mm]
N 10*[N] N 10*[N]

u[mm] u[mm]
N10°[N] N 10°[N]

u[mm] u [mm]
N10°[N]

u[mm]

Figure 7.35.Results of calculations plotted along with measurements for beam-column |_5, 11_4, 11_5, I11_1,
I11_2, 111_3, I11_4 (in that order) taken from[17]. The x-axis shows the deflection in the midpoint in mmand the
y-axisistheaxial loadin N.
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I5 | na|ns|malm2lmalins
Age | [days| 22 [ 12 | 3 [ 25 [ 25 | 25 | 15
L [mm] | 2940 | 2940 | 2940 | 3540 | 3540 | 3540 | 3540
b [mm] | 154 | 154 | 154 | 154 | 154 | 154 | 154
h [mm] | 1200 | 100 | 100 | 100 | 100 | 100 | 100
e [mm] | 20 50 50 50 50 50 50
h=h.= [mm] | 125 | 125 | 125 | 125 | 125 | 125 | 125
W, [ko/enf]| 327,0 | 307,0 | 322,0 | 335,0 | 292,0 | 290,0 | 396,0
Conversion factor il 080 | 080 | 080 | 0,80 | 0,80 | 0,80 | 0,80
fe [MPa] | 257 | 241 | 253 | 263 | 229 | 228 | 311
€y [%d] | 20 20 | 20 | 20 20 | 20 | 20
fy [ka/cnf]| 2942,3 | 2787,5| 2776,3| 3332,5 | 3320,0 | 3325,0 | 3333,0
fy [MPa] | 288,6 | 2735 | 272,4 | 326,9 | 3257 | 326,2 | 327,0
A= A= [mm? | 77,0 | 770 | 770 | 770 | 770 | 770 | 770
AJA [%] 1,0 10 | 10 | 10 1,0 1,0 | 10

W, isthe compressive strength of a cube 200x200x200mm”.

“* The conversion factor is the relation between the cube strength and the cylinder strength.
Table7.3. Main data for the beam-column testsin[17]

The predictions of the behaviour of the beamcolumns show good agreement with the

measurements. It is seen that the model accurately taking into account the variation of the

curvature along the beam column overestimates the deflection for low axia load. Thisisas

expected since the model neglects the tensile strength of concrete, which has a significant

influence for low axial load.

The calculations and the comparisons with test demonstrates that the simplified model is

sufficiently accurate for the analysisin this paper and for practical purposes.

7.4.5 Simplification of the moment-curvature relationship

Since the detailed calculation of the moment-curvature relation for a beam-column is not

suitable for practical design asimplification is desired. The simplification suggested here
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consist of choosing a few characteristic points on the curve and then simplifying the curve
with straight lines through the characteristic points.

In Figure 7.36, the moment-curvature relation is plotted along with some important point
related to the casesin Figure 7.27.

M/M(N=0)
3 r—max T T T T T
—— f =35MPaf =400MPa F =0,10 h /h=0,15
c y 0 C
2.5t
3132 32/34
7 NIN,=0,2
N/N,=0,1
N/N,=0,0
, K [mm Y]
35 4
x10°

Figure 7.36. Moment-curvature relation and transition points for the different cases (seeFigure 7.27).

From Figure 7.36 it is seen that the points of interest are the transition points between the

following cases.

3132 yielding in the bottom

31/32 > 32/34 yielding in the bottom - yielding in both top and bottom
31/36 yielding in thetop

37/38 > 38/36 yielding in the top = yo<h

37/38 yielding in the top

Figure 7.36 shows that the peak of the moment-curvature diagram is reached where yielding
occurs in the bottom for low axial loads and in the top for high axial loads. A distinction
between alow and a high axial load may be found by considering the situation where yielding
in both top and bottom occurs simultaneously. It is seen, that the plot for N/N,=0,3 has a small
flat part. If the axial load isincreased, thisflat part will narrow into a point. Thisisthe point

where yielding occurs in the top and the bottom simultaneously.
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For high axial loads, a straight line from the origin to the peak is a good approximation to of
the curve. The curve after the peak is of no importance since the intersection with the straight
load line always takes place before or at the peak. In Figure 7.36, the criterion for high axial
load would bethat N islarger than approximetely 0,7N,. In general terms this is the axial |oad
for which the moment calculated by assuming yielding in the top in the uncracked state
(Yo>h) islarger than the moment calculated by assuming yielding in the top in the cracked
state (yo<h).

For axial loads lower than this level, a calculation of a second point is needed in order to have
agood approximation. It is obvious that an important situation is the transition from the
uncracked to the cracked cross-section. In addition, the situation where the bottom
reinforcement changes from tension to compression is of interest. The points marking these

situations are shown in Figure 7.37.

M/M(N=0)
3 —max__

—— f =35MPa f=400MPaF =0,10 h/h=0,15
C y 0 C
2.5f o y0: h m
+Yo=h-h N.=0,3
oo N/N,=0,2
2 - -
/N,=0,4
N/N,=0,1
1.5t _ .
N/N,=0,5
N/N_=0,0
1k /N,=0.6 P
0.5¢ R
o U k [
0 05 1 15 2 25 3 35 4
X107

Figure 7.37. Moment- curvature relation and transition points.

The point corresponding to zero stress in the bottom reinforcement seems to be the best point
to choose. Of course, the approximation isimproved if several points are used, but it is
believed that two points are sufficient.

In Figure 7.38 and Figure 7.39, the simplified moment-curvature relations are shown for
different axial loads.
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. MM(N=0), .

— f =356MPaf =400MPaF =0,10 h /h=0,15
c y 0 c
2.5 b
=0,3
N/N =0,2
2_ p .
N/N =0,1
1.5 s B
N/N =0,0
1t P o
0.5 i
. . . . . . . K [mm]
0 0.5 1 1.5 2 2.5 3 35 4
x 10°

Figure 7.38. Moment-curvature relations and simplified moment-curvaturerelationsfor low axial loads.

s M/M(N:\O)max

— f =35MPa fy:400M PaF =0,10 h /h=0,15
2.5.. ..
2.. .

/N =0,4
P
L5 ' /N =0,5 ’
p
1k IN=0,6 -
IN =0,7
0.5 P i
NN =0,8
rN/ND 0’19 1 ' 1 1 1 k [mm-l]

0 0.5 1 15 2 25 3 35 4
x10°

Figure 7.39. Moment-curvature relations and simplified moment-curvature relations for high axial loads.

The simplified moment-curvature relation is used in stead of the correct one as explained
previoudly. Thus the maximum value of the applied moment may be determined for agiven
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axial load. Examples are shown in Figure 7.40 to Figure 7.43 where calcul ations are presented

for two different I/h-ratios and various levels of axia load.

s MIM(N=0) . M /M(N=0) -

— f =35MPaf =400MPaF =0,10 h/h=015 |/h=15

2.5¢ 1 2.5}

o 1 L
1 0.5
k [mm’l]o . K [mm™]
4 0 2 4
x10° x10°

Figure 7.40. Moment-curvature relations (simplified and not simplified) and applied moment-curvature relations
(simplified and not simplified).

s MIM(N=0) . M /M(N=0) -

T 1 [

— fc=35M Pafy=4OOM PaF O:O,lO hc/h:O,15 I/h=15

2.5p b 2.5}

k [mm™]
4

x10° x10°
Figure 7.41. Moment-curvature relations (ssmplified and not simplified) and applied moment-curvature relations

(simplified and not simplified).
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. MIM(N=0)__

2.5¢

M/M(N=0)

— fc=35MPafy=4OOM PaF O=O,1O hc/h=0,15 I/h=15

o
Nk

x10°

k [mm™]
C L
4 0 2

2.5

1.5

0.5¢

k [mm™]

4

x10°

Figure 7.42. Moment-curvature relations (s mplified and not simplified) and applied moment-curvature relations

(smplified and not simplified).

2.5¢

M/M(N=0)
3 max

MOIM(N=0)maX‘

[ fC=35M Pafy:400M PaF ,-0.10 hC/h=0,15 I/h=15

2.5

1.5

0.5¢

kfmm™]

x10°

4 0 2

k [mm™]

4

x10°

Figure 7.43. Moment-curvature relations (ssmplified and not simplified) and applied moment-curvature relations

(smplified and not simplified).

-B3-



Stahility of Concrete Columns

It appears that the point calculated for zero stress in the bottom reinforcement becomes
critical asthe slenderness increases.
The accuracy of the proposed approximation seems to be sufficient for most practical

purposes.
7.4.6 Interaction diagrams

In practice a beam-column is often subjected to different levels of axial load and applied
moment. Therefore, it is convenient if an interaction curve for axial l1oad versus applied
moment is available. Such curves may be established by calculating the maximum applied
moment for an adequate number of axial loads.

The load-carrying capacity is influenced by the degree of reinforcement and the slenderness
ratio, see Figure 7.44 and Figure 7.45.

In Figure 7.44 the length, |, is small so instability is of no importance for the load-carrying
capacity.

N/Np

05
08t
0T -
06
WY
04

03+

4 ! Mun'Mh
o a5

Figure 7.44 Influence of the degree of reinforcement. Other data asin Table7.1

Figure 7.44 shows that the effect of axial load on the load-carrying capacity is pronounced for

low degrees of reinforcement.
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>|l—

Mu'lMIlz-

-k

Figure 7.45 Influence of the slendernessratio. Other data asin Table 7.1.

Figure 7.45, which has been calculated for F o= 0.05, shows that the load carrying-capacity is
also strongly influenced by the slendernessratio. A radical change in the form of the
interaction diagram takes place when the beam-column becomes slender (see for example the
curve drawn for I/h = 30).

Theinteraction diagramsin Figure 7.45 are not convex. A convex curve isacurve, which
intersects a straight line in only two points. Otherwise the curve is non-convex see Figure
7.46.

N A NA
Non-convex Convex curve
points
’MQ ’Mo

Figure 7.46. Non-convex and convex curves

7.4.7 Simplification of interaction diagrams

The method described above is only suitable for calculations on a computer. For design

purposes, a hand cal culation method may be desirable. This section sets out to establish a
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simplified interaction diagram based on a parabolic stress-strain relationship as above. Further
simplifications are made in section 7.4.8.

When establishing a simplified interaction diagram it may be of interest to notice, that, since
the moment-curvature relation is a convex curve, a point different from the correct
intersection point may always be used to determine the applied moment. Thisisillustrated in
Figure 7.47.

‘\

\ Chosen intersection point
Mo correct Correct intersection point

Mo caic

>k

Figure 7.47. Choice of a safe intersection point.

From Figure 7.47, it appears that a calculation of the applied moment from a point different
from the correct tangent point always leads to alover value of the applied load.
This theorem is useful when it comes to determine the interaction diagram The points used in

the calculations do not necessarily have to be the tangent points.

Further simplifications are made by studying moment-curvature relations for a beam-column
such asthe onesillustrated in Figure 7.48. It is seen that for axial loads lower than
approximately 0,3 N, there is an almost straight part on the curves. The first assumption made
isthat this part is a straight line and the second assumption is that the straight parts for each
level of axial load are parallel, cf. Figure 7.48.
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max

L MIM(N=0)

— fc=35M Pa fy=4OOM PaF 0=0,10 hc/h=0,15

251 b

Figure 7.48. Moment-curvature relations.

As seen these simplifications are fairly accurate until the axial load reaches a certain level.
Thislevel may be determined by considering the situation where the yield strain is reached at
the bottom aswell as at the top.
Consider first the situation where the axial load islow (say lower than 0,3 N/N,). In this case
the inclination of the straight part may be set equal to the inclination of the curve valid for
pure bending. It appears from Figure 7.49, that the inclination of the line a and the inclination
of theline b is the same and may be calculated as:
M,(N=0

3—? = w (7.62)
Here (ky,My) is the point where the yield strain is reached at the bottom.
In Figure 7.49 the line (1) and the line (2) are two load lines for a given beam-column and a
given axial load. Since the deflection may be calculated from the curvature in the mid point,
the inclination of the load curve may be found as:

Z—'\kﬂ =N all 2 (7.62)

If the moment-curvature relation is given by the line a or the lines b and ¢, there is one level
of axial load where the inclination of the load lines are the same as the inclination of the line

b. In this situation, the applied moment may be found by using any point on the line b. For a
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dlightly higher axial load, the applied moment is found using point A and for an
infinitesimally lower axial load, the applied load is found using point B.

Point A and B changes along with the axial load. However, since the inclination of theline
between these points is constant the applied moment for a steep load line (1) is determined by
the A-point and the specific axial load and the specific length of the beamcolumn.

M

@ ]
)

Figure 7.49. Moment-curvature relations composed of straight lines.

The inclination of line the a may be used to determine whether the applied moment has to be
found from an A or a B-point. Such a distinction may always be made since it does not effect
the calculation of the applied moment directly, but only decides from which point the applied
moment has to be calculated. Keeping in mind that a calculation of the applied moment from
any other point than the tangent point will lead to alower value of the applied moment, it
appears that the distinction might lead to a poor, but always safe result.

The axial load, which governs whether the calculation of the applied moment has to be found
using an Aor aB-points, isnamed N; and is determined by inserting (7.61) into (7.62):

L= (N =0

k(N =0) (7.63)
N =2My (N =0) '
" 1%, (N =0)
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For an axial load increasing from zero, the load curve will always intersect a B-point first
since the inclination of the load lineis amost zero. Asillustrated in Figure 7.51 point Bis
almost on a straight line (i) and the vertical distance between the points is almost constant for
aconstant change in the axial load. If this property is adopted the moment at a B-point may be
calculated as:

N

—2L+M

N ) Y(N :0) (764)

MB,l :(MB,z - MY(N:O))

This means that the moment at any B-point may be calculated from another B-point and My. A
similar relation may be established for the curvature:

N
k BLT (kB,Z - k\((N:o))N_l +kY(N:O) (7.65)

2
From this it may be seen that the applied moment may be calculated as:

1
Mo,l = MB,l' ;Ilek Bl

N 6
My, aTMBZ ] N1+M |NlaTkBz ) 1+k( )e (7.66)
2 2 7]
Ky Kyne Mg,- M, _ 0
MM:-ER( 22 Y(“"’))ij( 52 Y(”’°’) —I2k o N My
' a N, g N, s

Since kg isfound from N, (N, being larger than N,) it is seen that the coefficient on N,2is

negative. Thisleads to a convex curve in the interaction diagram asillustrated in Figure 7.50.

I

Mo

Figure 7.50. Convex formin theinteraction diagram.

Thusit is safe to simplify this curve even more, namely with a straight line. Thisisvalid as
long as both the moment and the curvature can be assumed to depend linearly with the axial
load. A linear relation valid for an axia load varying from zero to the point of yielding in both

top and bottom reinforcement, correspondsto the line (ia) in Figure 7.51. As seen, the vertical

-59-



Stahility of Concrete Columns

distance between the intersection pointsis almost constant which may be introduced as a
further assumption.
M/Mmmax(n=0)

S T

— f =35MPa_=400M P4 =0,10 h=0,1
C \" 0 C

25 O ]

k [mm‘l]

0 0.5 1 1.5 2 25 3 35 4
x 10°

Figure 7.51. Moment curvatur erelations composed of straight lines.

The relation, (7.66), between Mg and N means that the interaction curve may be smplified as
astraight line aslong as the axial load is lower than Ngg (the axial load causing yielding in top
and bottom) and N;.

If N;islower than Ngg a straight line may be drawn from the point corresponding to pure
bending to the point corresponding to N; in the interaction diagram. If N; islarger than Ngg a
straight line may be drawn from the point corresponding to pure bending to the point
corresponding to Nag.

This criterion is used in what follows to obtain a distinction between short and slender beam:
columns. For slender beam-columns N; is lower than Ngg. Thus the inclination of the load line
will be steep since |? enters in the expression of the inclination, and calculations for N larger

than N;, is therefore made using an A-point.

Similar approximations may be made regarding the A-points. Asillustrated in Figure 7.51 the
A-points are amost on a straight line (ii) and the distance between the intersections are the

same. Using similar simplifications and approximations as for the B-points leads to the
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conclusion that the interaction diagram is convex and a straight line may therefore be used to

simplify the curve, cf. Figure 7.52.

N A

\

Mo

Figure 7.52. Convex formof theinteraction diagram.

The linear approximation is safe for all the A-points until the critical column load is reached.
Therefore, the line may be drawn from the first A-point to the critical load.

Three points therefore characterize slender beam-columns.
1. Pure bending
2. Point corresponding to N;.
3. Thecritical column load

Between these points, straight lines may be used.

N A
Critical column load

._ N; point
/ Pure bending

.
>
“IO

Figure 7.53. Interaction diagram for slender beam-columns.

For short columns the first two points in the interaction diagram correspond to pure bending
and Ngg. For an axia load larger than Ngg the situation becomes a bit more difficult. In Figure
7.54 both the point corresponding to yielding in the top and bottom reinforcement, Mgg', and
the point corresponding to yielding at the top and zero stress in the bottom Mg are marked.
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M/Mmax(n=0)

3 T

— f=35M Pay=4OOM Pér ;=0,10 yh=0,1

25

8,3 N/N,=0,2

N/N,=0,1

N/N,=0,0

k [mm'l]

0 0.5 1 15 2 2.5

Figure 7.54.Moment-curvaturerelations.

3 35
x 10

4

To prove analytically that it is safe to assume alinear relation in the interaction diagram

between these points is not ssmple. However, from numerical calculationsit appears that the

curve between these two points are convex and a straight line may therefore be used asa

simplification asillustrated in Figure 7.55.

N A

/AB’ -point

\

BB’ -point

Mo

Figure 7.55. Convex form of the interaction diagram.

Numerical calculations also show that for axial loads larger than Nag the interaction curve is

concave, which means that alinear simplification is not conservative and this cannot be used.
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"
>

Mo

Figure 7.56. Concave formin theinteraction diagram.

Instead a conservative simplification would be to calculate the critical column load from the

tangent at the AB'-point. Thisisillustrated in Figure 7.56. N s iS determined numerically.

Three points therefore characterize short beam-columns

1. Purebending

2. Point of Ngg:

3. Point of Nag:

4. Thecritical column load, Ng s
Between these points, straight lines may be used to simplify the curve of the interaction
diagram. Thisisillustrated in Figure 7.57.

-AB’-paint

BB’ -point

\

My Mo

Figure 7.57. Interaction diagramfor short beam-columns.

All in al the simplifications made above mean that only five points are of interest when
calculating the interaction diagram. These five points are;

1. Purebending

2. Yieldingin the top and bottom reinforcement simultaneously, BB’ -point

3. Yidding in the top reinforcement and cracking in the concrete simultaneously, AB' -

point
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4. The situation where N=N;
5. Thecritical column load (calculated in a simplified manner if Ni>Ngg').
Thisisillustrated in Figure 7.58.

N/N M

cr A
T T T T T T T

[N

08} :
0.7} AB' :

05} 1

0.3} BB’ §

01f .
>k MC{M

max

0 0.5 B1 15 2 25 3 35

fy fy
f—— o
N,
<~ > 3\ =T
> Ty fy
A B BB’ AB’

C represents the critical column load N,
calculated as N s if Ni>Ngg

Figure 7.58. Review of the simplificationsintroduced for interaction diagrams.

In Figure 7.59, aflow diagram for the determination of the important pointsis shown. It is
seen that according to the simplifications made, it is only necessary to determine three levels

of axial load and from this, three or four points are found.
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Calculate N, N; and Ngg

Point: My(N=0)
Situation for low axial force

Ni>Ngg;

yes / \
Point: Mgg: Point: Ma(N) /'

/\ Point: Mag Point; N

l

Point: Critical column load calculated as:
Ncr,s

Figure 7.59. Flow diagramfor the determination of pointsused in sinplified interaction diagrams.

If the calculations are made as described above and, the simplified interaction curves become
asshownin Figure 7.60.
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f.=35MPafy =400MPa F(=0,10 h/h=0,15

Mo/Mrrax

Figure 7.60. Smplified interaction curves for pointsin the applied moment- axial load diagram.

7.4.8 Practical calculation of beam-columns

7481

Interaction diagram

A simple hand calculation method for calculating the load-carrying capacity of a beamt

column may be developed on the basis of the investigations made in the previous sections.

However the interaction diagram may be simplified even more. The simplified interaction

diagram is constructed from 3-4 cross-section analyses as shown in Figure 7.61. In thisfigure

five cases are outlined.

Bsimp:

BB’ smpa
BB’ smp2!

Pure bending with a max concrete strain equal to 3,5 %, and the stressiin the
stressblock is constant at s = f..

Bending with axial load. Othervise the same as Bgmp,

Bending with axial load. The concrete is considered linear elastic with a
maximum stress equal to 1,25 f. (asin the Danish Code of Practice) in the
concrete and yielding in the bottom reinforcement.

Compression in the entire cross-section, where the stress in the bottom face
is zero and the maximum stress at the top face is 1,25 f. (asin the Danish
Code of Practice).
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Asimp: Bending with axial load, where the concreteis linear elastic and cracked.

The bottom reinforcement yields.

[N Bgimp, BB’ simp1 @nd BB’ gy the top reinforcement might also yield for certain reinforcement
ratios and yield strengths. BB’ gmp1 and BB’ gmp are both points, which estimate the point BB’
in the previous simplifications this point being a maximum point of the interaction diagram
for short columns.

In al cross-section analyses with linear elastic material behaviour, the modulus of elasticity is
equal to the secant modulus 500 f. (as in the Danish Code of Practice).
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&5 Semax—1,25 .
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Figure 7.61 Cross-section analyses used to estimate the interaction curve between the applied moment and the

axial load.

7.4.8.2 Thecalculation procedure
1. Determinethe critical load by use of Ritter’s equation.

2. Caculate the bending moment, applied moment and curvature by the cross-
section analysis Asmp With N = 0 and determine N..

3. Calculate the maximum M, N -combination from the cross-section analyses
BB’ simp1 O BB’ gmp2 and determine if the column is slender or short.

4. If the column is short, calculate the point obtained using the cross-section
analysis AB' gp; plot this point together with Bgyp, BB gmp1 OF BB’ simp2 and the
critical load in an interaction diagram.

5. If the column is slender, calculate the point obtained from the cross-section
analysis Ay, and plot this point together with the point obtained from the

cross-section analysis Bgiyp and the critical 1oad in an interaction diagram.

Rel.
The critical stress according to the Ritter equation is
S,z e (7.67)
f. ao
1+ C—c-=
p’E,q &i
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where

. 11000f,
Eye = ming
10,75E,

The maximum axia load is, according to DS411, determined by.

is A Xl+nx)

i

TS + Xf

N, =min{ «fe A, . o ,
i2% A (Without overlap splicesin the reinforcement)

',*'1.5>s « A (With overlap splices in the reinforcement)

Re 2.
Calculate the moment and curvature for the situation Agn, when N = 0.

Calculate the N; level from the equation.

P
3
=
4
R

AgpN=0
Re 3.

Calculate the N, Mg -combination from the cross-section analyses BB' gmp1 OF BB’ gimp2
If N; > N using BB’ gmp1 O BB’ s, then the column is short

If Ni < N using BB’ gmp1 Or BB’ simp2, then the column is slender

Point 4 and 5 do not require any more comments.

7.4.8.3 Interaction diagrams compared with theory
In this section, the simple procedure outlined in the previous section will be compared with

calculations using the equilibrium method. First, the results for short columns will be
illustrated and then the results for slender columns.

In the calculation the parameters shown in

Table 7.4 are used. The results may be seen in Figure 7.62 where the endernessratio is

varied between
5£—-£25

with astep of 5.
In Figure 7.64 similar results may be seen. The slenderness ratio isin these plots varied

within:
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Table7.4 The data used if other values are not listed.
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Figure 7.62 Interaction diagrams for short columns
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In Figure 7.62 a, interaction diagrams using point BB’ g, as the maximum point is shown as

the broken lines. It is seen that they fit the theoretical interaction diagram very well. It isalso

seen that the line between the top point and point AB' g is cut off by the horizontal line at the

critical load (AB' 4y, IS represented by acirclein Figure 7.62 &). Thus a moment may be

applied at the critical load. This corresponds to the Danish Code of Practice where a small

initial eccentricity is allowed for columns calculated as concentrically loaded columns.
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The four figuresillustrate the simplified interaction diagram for two different yield strength
and two degrees of reinforcement. As seen the result is very good. In Figure 7.63, the
difference between using point BB’ gmp; and BB’ gmp. isillustrated.

If the columns are slender, the results are shown in Figure 7.64.

—— Theoretical calculations
Critival load
Calculation By
Calculation BB’ gmp1
Calculation AB' g

Figure 7.63 lllustration of the difference by using the two top points corresponding to BB' g, and BB’ .
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Figure 7.64 Interaction diagramsfor slender columns

Figure 7.64 show that a ssimple and conservative interaction diagram for slender columns may
be produced. However, the underestimation by using the approximate curves isin some cases
large. This indicates that the stiffness of the column is underestimated. If the modulus of
elasticity is set to the initial modulus of elasticity (1000f.) instead of 500f, the interaction
diagramsillustrated in Figure 7.65 are obtained.
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—— Theoretical calculations
Critival load
Calculation By,
Calculation BB’ gmp;
Calculation AB' gy,

e JOXSD

Figure 7.65 Interaction diagramusing E, ., asthe modulus of elasticity

Figure 7.65 show that thisimproves the interaction diagram and the simplification leads to

interaction diagrams, which, compared with the theoretical ones, are very good.

As mentioned previously, the Danish Code of Practice prescribes that a column can be
calculated as concentrically loaded if the eccentricity is smaller than 1/5 of the core radiusk.
The critical load for I/h=25 is 0,56N, which gives a maximum applied moment of

M g 05 = 0,56N pg = 0,56bhf (1+ 2F 0)3—2 =9,63kNm

since the core radius is h/6 for arectangular cross section.
The values used are listed in
Table 7.4, which justifies the cut off of the interaction curve at the critical load.
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8 Comparison with experiments

8.1 Investigators and experiments

In this section the calculations are compared with experiments taken from the literature.
Inthe calculationsa = 10 is used. Regarding the detailed experimental results, see section 12.

Bauman, O. 1935, [13]

The experimental investigation made by Baumann was subdivided into two sections, a pilot
series and amain series. Both series consider concentrically as well as eccentrically loaded
columns. The pilot series consists of 12 tests and the main series of 31 tests. The columnsin
the pilot series and in the first 15 tests of the main series were ssmply supported. In the
remaining of the tests in the main series the end conditions were changed. The cross-section
was varied in many of the tests, which means that comparison by using interactions diagrams

isvery cumbersome. The data are presented in the supplements, section 12.1.

Rambgll, B. J. 1951 [14]
The experimental investigation made by Rambgl| consisted of 38 tests with columns loaded
eccentrically aswell as concentrically. The cross section was kept constant. The investigation

dealt with four different column-lengths and within each series the eccentricity was varied:
% =0,0,08,0,17,0,33,0,67 and 0,83 . Furthermore, the reinforcement was the same for al

columns, except column 35. The data are presented in the supplements, section 12.2.

Ernst, G. C., Hromdik, J. J. and Riveland, A. R. 1953 [15]
This experimental investigation consisted of 16 tests with columns loaded eccentrically as

well as concentrically. The eccentricity was % =0,0,13,0,25and 0,38. Eight of the tests were

made on elements, which had the same size as the standard compressive specimens. They all

failed in compression as reported in the investigation, which is why they are not plotted in the
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interaction diagram. The columns were simply supported in both ends and the load was

applied through a knife-edge. The data are presented in the supplements, section 12.3.

Gehler, W. and Htter, A. 1954 [16]

Thisinvestigation is a collection of tests carried out over a period of ten years. The first test
serieswas carried out from 1940-41 and contained 18 tests with concentrically loaded
columns. The concrete cross-section was kept constant and the reinforcement was either 4 g 8
or 4¢14. The second test series was carried out from 1951-52. This series contained 12
concentrically loaded columns and 24 |aterally loaded columns; the lateral 1oad was applied at
the midpoint as a point load. The columns were simply supported in all cases. The data are

presented in the supplements, section 12.4.

Gaede, K. 1958 [17]
Thisinvestigation contained eight tests on eccentrically loaded, simply supported columns.
The length of the columns was varied between, 2,94 m and 3,54 m. Two eccentricities were

used, % =0,2and 0,5. The load was applied through knife-edges. The deflections were

measured and reported for the entire series. The cross-section and reinforcement were kept
constant. The data are presented in the supplements, section 12.5.

Chang, W. F. and Ferguson, P. M. 1963 [18]

In thisinvestigation six columns were tested, each simply supported. The load was applied as
aconcentrically axia load, by two jacks and then the moment was applied by changing the
ratio between the loads in the two jacks so that the sum was kept constant. This makesis
possible to investigate the moment curvature relationship for the column. The constant level
of axia load was according to the investigators very difficult to obtain. The cross-section and
the reinforcement were kept constant in each test. The data are presented in the supplements,
section 12.6.

Pannell, F. N. and Robinson, J. L. 1968 [19]

Thisinvestigation contained 10 columns, 6 of which were concentrically loaded, and 4
laterally loaded. The lateral load was applied at mid point of the column as a point load. The
cross-section and the reinforcement were kept constant in each experiment. Each column was

simply supported in both ends. The data are presented in the supplements, section 12.7.

-75-



Stahility of Concrete Columns

Breen, J. E. and Ferguson, P. M. 1969 [20]

This investigation contained 10 tests on columns, which were fixed in one end and free in the
other one. The loads applied were axial load and lateral |oad both applied at the free end. The
cross-section and the reinforcement were kept constant in each experiment. The ratio between
the lateral load and the axial 1oad was kept at five constant values. The data are presented in

the supplements, section 12.8.

Mehmel, A., Schwarz, H., Kasparek, K. H. and Makovi, J. 1969, [21]

Thisinvestigation contained 16 tests, 14 of these with the same eccentricity in both ends and
two with different eccentricities at the ends. Three different types of reinforcement were used
and the cross-section had three different sizes. The deflection at failure was measured together

with the deflection during the tests. The data are presented in the supplements, section 12.9.

Kim, J. K and Yang, J. K. 1993 [28]

In thisinvestigation 30 tests on simply supported columns were reported. Two of the columns
failed at the ends and are therefore disregarded. The investigation contained three different
levels of compressive strength, low, medium and high. Furthermore, two different
reinforcement ratios were tested. In the case of areinforcement ratio of 4 % two of the bars
are disregarded, because they were placed at the centre of the cross-section. The deflection at

failure was reported. The data are presented in the supplements, section 12.10.

Chuang, P. H. and Kong, F. K. 1997 [29]

In thisinvestigation, 26 eccentrically loaded simply supported columns were tested. Normal
strength concrete as well as high strength concrete was used. The concrete cross-section had
two different sizes and three types of reinforcement were used. M easurements of the

deflection at failure were reported. The data are presented in the supplements, section 12.11.

Foster, S. J. and Attrad, M. M. 1997 [30]

In this investigation 68 tests on simply supported columns were reported. Theinvestigation
contained three different levels of compressive strength, low, medium and high. Furthermore,
two different reinforcement ratios were tested. In the case of areinforcement ratio of 4 % two
of the bars are neglected, because they were placed at the centre of the cross-section. The
deflection at failure was reported. The data were presented in the supplements, section 12.12.
Cleason, C. 1997 [31]
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12 experiments were reported in this investigation. Normal aswell as high strength concrete
was used. Two different cross-sections along with two types of reinforcement were designed.
The deflections at failure were measured and reported. The data are presented in the

supplements, section 12.13.
In Table 8.1 the types of columns are indicated. These types refer to the columns shown in

Figure8.1. They arenamed A, B, ..., G.

e e

U S S

E NS s ol A
A B C D E F G H

Figure 8.1. Illustration of the different kinds of columns used in the investigations.

In Table 8.1 the number of tests made by each investigator is presented. In the column to the
left the mean value, 1, and the standard deviation, s, is shown. Subscript “theory” and “DS’
denotes calculations done with the equilibrium method and cal culations according to DS411,
method |, respectively. The mean value and standard deviation are calculated for the ratio:
Nexn
N_cajc (7.68)

where Ny may either be the axial load when using the equivalence method or the axial load
calculated by using D411, method I.
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Investigator Y ear References | Number of Mean value and standard
tests deviation
Baumann 1935 [13] 14A Mheory = 0,98; Speory =0,16
13B M, =1,14; s, =0,18
4E
3F
3¢c
6 G*
Rambgl | 1951 [14] 38B Mecory =1,19; Spery = 0,21
My =1,30; 555 =0,22
Ernst, G. C,, 1953 [15] 2A Mecory = 0,92; ey =0,22
Hromdik, J. J. and 6B My =1,02; 5,0 =0,25
S = l s — Y
Riveland
Gehler, W. and 1954 [16] 30A Mheory =1,09; Speory =0,19
Huttef, A n.bs 2129’ SDS 20,26
24 D r‘Qheory = 11121 Sheory = O’ 10
my =1,14; 5, =0,11
Gaede, K. 1958 [17] 8B Mheory = 0,89; Speory = 0,05
mys =0,81; s, = 0,06
Chang, W. F. and |1963 [18] 6B Mheory = 0,65; Speory =0,04
F P. M.
erguson, Mys =0,66; S,5 =0,05
Pannell, F. N. and | 1968 [19] 6A Mheory =1,18; Speory = 0,33
Robinson, J. L. 4D My =1,22; s, =0,23
Breen, J. E. and 1969 [20] 10H Mhcory = 0,77, Speory =0,18
Ferguson, P. M. My =0,76; s, =0,14
Mehmel, A, 1969 [21] 14B Mecory = 0,87, Speery =0,10
Schwarz, H., 2¢ Mhs =0,96; Sps =0,11
Kasparek, K. H.
and Makovi, J.
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Kim, J. K and 1993 [28] 28B Mhcory = 0,85} Spery =0,08
Yang, J. K. My =1,01; 5,6 =0,14
Chuang, P. H. and | 1997 [29] 26 B Mheory =157} Speory = 0,50
Kong, F. K. My =178; 5, =0,54
Foster, S.J.and [ 1997 [30] 68B Mheory = 0,93; Sry =0,09
Attrad, M. M. My =113 ., = 0,13
Cleason, C. 1997 [31] 12B Mhcory = 0,77 Sipeory = 0,12
My =0,89; s, =0,15

Total 55A
311 tests 200B

5C*

28D

4E

3F

6 G*

10H

*) Theses tests are neglected in the comparison
Table8.1 Sandard deviation and mean val ue of tests used for comparison with theory.

8.2 Comparison

The difference between theory and experiment for beamcolumns are measured by the

distance from the measured point and the intersection point between the interaction diagram
and theline Mg = Ne. Thisisillustrated in Figure 8.2. Strictly speaking this method is only

fully jusitfied for eccentrically loaded beam-columns.

-79-



Stahility of Concrete Columns

N=Ne
N
A / Point from

. experiment

Interaction
diagram

5y,
>
vio

Figure 8.2. Illustration of the method used to compar e cal culation methods with experiments.

The method is questionable for laterally loaded columns since the loading may not always be
proportional loading. Often the loading procedure is unknown. However, the method is used

for all tests since the results seam to indicate proportional loading.

8.2.1 Concentrically loaded columns

An unreinforced concrete column is seldom built and is therefore of lessinterest than a
reinforced column. Therefore, no comparison will be made between theory and experiments
in this report for this type of column.

In Figure 8.3 and Figure 8.4 the results of 2 test series are compared with the formulas
described previously. The data used in these plots may be found in section 12.4 and 12.7.

In the calculations, the modulus of elasticity, in Ritter’s column formulais calculated
according to the Danish Code of Practice (see section 7.3.2).

It appears that the formulas show good agreement with the experiments. It should be noted
that anideal column experiment is almost impossible carry out because of imperfections such
asinitial deflections from casting etc.

-80-



Tim Gudmand-Hgyer & Lars Zenke Hansen

1000 KNI

*  Gehler and Hutter (first series)
900 —— Equlibirium formula H
e Engesser plus reinforcement
800 ——— Ritter plus reinforcement

700

600

500

400

300

200

100
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Figure 8.3. Plot of test results versus theory. Details may be found in section12.4.

300 N [kN] . .
+* Pannell and Robinson
—— Equlibirium formula
»ob———— oL Engesser pl us reinforcement |
—— Ritter plus reinforcement
200 S

100 N -

50

I/h
0 10 20 30 40 50

Figure 8.4. Plot of test results versus theory. Details may be found in section 12.7.

The results from al tests on concentrically loaded columns areillustrated in Figure 8.5-Figure
8.8.
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Figure 85. The equilibrium method compared with experiments.
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Figure 8.6 The equilibrium method compared with experiments as a function of the compressive strength of the
concrete, the yield strength of the reinforcement and the slendernessratio I/h, respectively.

The agreement between the equilibrium method and experiments is seen to be good for
concentrically loaded columns. The mean value and standard deviation are, respectively:

rnheory ::LOB and sheory = 0'19

-83-



Stahility of Concrete Columns

2500

2000

1500

1000

500

0

theor [kN]
o
o (@]
<o/ 0
N g [KN]
0,0 500,0 1000,0 1500,0 2000,0 2500,0

0O Oskar Baumann 1935

¢ B. J. Rambgll 1951

A George C. Ernst, Joseph

J. Hromadik & Arvin R.

Riveland 1953
X W. Gehler & Alfred
Hitter 1954

X F.N. Parnell & J. L.
Robinson 1968

Figure 8.7. The Danish Code of Practice, method |, compared with experiments
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Figure 8.8 The Danish Code of Practice, method |, compared with experiments as a function of the compressive
strength of the concrete, the yield strength of the reinforcement and the slendernessratio I/h, respectively.

The agreement between the Danish Code of Practice, method I, and experiments for
concentrically loaded columns is seen to be good. The mean value and standard deviation are,
respectively:

mys =1,18 and s, = 0,25

8.2.2 Eccentrically loaded beam-columns

In this section comparisons are made for eccentrically loaded beam-columns. This includes
columns of type B (see Figure 8.1). The interaction diagramsin Figure 8.9 show the statical
results from the equilibrium method compared with experiments by Mehmel, A., Schwarz, H.,
Kasparek, K. H. & Makovi, H. (section 12.9). It appears that the tests fit the theoretical curve
well. In section 12 the tests are plotted in interaction diagrams for each test series using the
equilibrium method.

gz 1AM : gan 1A x
Treeoay Treods
Emesven Exetent

1480 148

et wans

o P i

Figure 8.9 Interaction diagramwhere the equilibrium method is compared with experiments by Mehmel, A.,
Schwarz, H., Kasparek, K. H. & Makovi, H.(section12.9).
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The test pointsin Figure 8.9 are for all investigations where beam-columns of the type B are
tested. Similar diagrams are produced in section 12 for each test series.
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Figure 8.10 The equilibrium method compared with experiments

Furthermorein Figure 8.11, the results from the calculations are compared with experimental
values as a function of the eccentricity, the compressive strength of the concrete, the yield
strength of the reinforcement and the slenderness ratio I/h, respectively
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Figure 8.11. The equilibriummethod compared with experiments as a function of the eccentricity, the
compressive strength of the concrete, the yield strength of thereinforcement and the slendernessratiol/h,

respectively.
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The agreement between the equilibrium method and experiments made on eccentrically

loaded beam-columns is very good. The mean value and standard deviation are, respectively:
Mheory =108 and s, = 0,23

To compare with the Danish Code of Practice similar plots have been made. These are shown

in Figure 8.12and Figure 8.13.
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Figure 8.12. The Danish Code of Practice, method |, compared with experiments
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Figure 8.13. The Danish Code of Practice, method I, compared with experiments as a function of the
eccentricity, the compressive strength of the concrete, the yield strength of the reinforcement and the slenderness

ratio I/h, respectively.

The agreement between the Danish Code of Practice and experimentsiis relatively good. It
appears that the method is a bit conservative, which is clearly demonstrated by the mean
value. The mean value and the standard deviation are, respectively:

mys =1,19 and s, = 0,27

8.2.3 Laterally loaded beam-columns

Similar comparison as for eccentrically loaded beam-columns has been made in the case of
laterally loaded beam-columns. The types of beamcolumns, which are used for in the
comparisons, are of type D and H. The interaction diagram in Figure 8.14 illustrates how the
equilibrium method compares with the experiments by Gehler, W. and Hitter, A. (section
12.4).
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Figure 8.14. Interaction diagrams comparing the equilibrium method with experiments taken fromthe
investigation by Gehler, W. and Hutter, A. (section 12.4).

In Figure 8.15 and Figure 8.16 all tests with lateral 1oad are compared with the equilibrium
method.
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Figure 8.15. The equilibrium method compared with experiments
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Figure 8.16. The equilibriummethod compared with experiments as a function of the the eccentricity, the

compressive strength of the concrete, the yield strength of the reinforcement and the slendernessratiol/h,

respectively.

The agreement between the equilibrium method and experiments is relatively good also for

|aterally loaded beam-columns too. The mean value and standard deviation are, respectively:

Mheory =1,06 and Sheory = 0,25

The method used in the Danish Code of Practice has been compared with experiments as well.

The results are shown in Figure 8.17 and Figure 8.18.
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Figure 8.17. The Dani sh Code of Practice, method |, compared with experiments
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Figure 8.18. The Danish Code of Practice, method |, compared with experiments as a function of the
eccentricity, the compressive strength of the concrete, the yield strength of the reinforcement and the slenderness
ratio I/h, respectively.

The eccentricity used in the comparisonsin Figure 8.16 and Figure 8.18 is calculated as the
moment from the applied lateral 1oad divided by the axial load.
The agreement between the Danish Code of Practice and experimentsis seen to be good and it
appears that the method is a bit conservative. The mean value and standard deviation are,
respectively:

my,s =1,07 and s, = 0,24
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9 Conclusion

This paper provides atheoretical verification of calculation methods in the Danish Code of
Practice DS411, using the equilibrium method. Furthermore, comparisons with experiments
both the Danish Code method and a more theoretically correct approach have been made.
The equilibrium method is based on a parabolic stress-strain relation of concretein
compression. The tensile strength is set equal to zero. Furthermore the reinforcement bars are

assumed linear elastic-perfectly plastic in both compression and tension.

Since the calculation procedures are iterative in the case of beam-columns, asimplified
calculation procedure has been suggested. The simplified method provides an interaction
diagram for short and slender columns by calculating 4 or 3 points dependent on whether the
column is short or slender, respectively.

The procedure has been compared with the equilibrium method and good agreement has been

found.

A number of 311 experiments have been collected from the literature. Among these 200
experiments were made on eccentrically loaded columns, 73 with concentrically loaded
columns and 38 with laterally loaded columns. In each case the Danish Code of Practice and
the equilibrium method show good agreement. However, as expected, the Danish Code of
Practiceis abit conservative. In all cases, the standard deviation between theory and
experiments is about 25%, which is relatively high when compared with standard derivations
for theories on concrete in general. The large values of the standard derivations may be

explained as an effect of unavoidable imperfections.

The conclusion is that the Danish Code of Practice provides a conservative but sufficiently
good procedure for calculating both concentrically loaded columns and eccentrically and
laterally loaded beam-columns.
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11 Appendix

11.1Author contribution list

Since this paper has been written by two authors the following list of the contributions by the

two authors has been made.

Tim Gudmand-Hgyer

Sections:

7.3.3 The equilibrium method

7.4.4 Deflection shape and comparison with simplified method
7.4.5 Simplification of the moment-curvature relationship
7.4.6 Interaction diagrams

7.4.7 Simplification of interaction diagrams

7.4.8 Practical calculation of beam-columns

Lars Zenke Hansen

Sections:

8 Comparison with experimerts

12 Supplement: Experimental results for concrete beam-columns
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12 Supplement: Experimental results for concrete beam-

columns

Investigations used to compare theory with experiments:

Oskar Baumann 1935

B. J. Rambgll 1951

George C. Ernst, Joseph J. Hromadik & Arvin R. Riveland 1953
W. Gehler & Alfred Hiitter 1954

Kurt Gaede 1958

Wen F. Chang & Phil M. Ferguson 1963

F.N. Parnell & J. L. Robinson 1968

John E. Breen & Phil M. Ferguson 1969

Alfred Mehmel, HeinzSchwarz, Karl-Heinz Kasparek & Joszef Makovi 1969
Jin-Keun Kim & Joo.Kyoung Yang 1993

P. H. Chuang & F. K. Kong 1997

Stephen J. Foster & Mario M. Attrad, 1997

Christina Cleason 1997

The compressive strength is the compressive strength of a Danish standard cylinder (diameter
150 mm and height 300mm).
In the interaction diagrams the compressive strength used for plotting the theoretical curvesis

taken as a mean value within the individual series.
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12.1Baumann, O. 1935

[Test No. b h d/h | 1000 fe fy e/h | eph I/h Negp Un Type | Negp Negp

[mm] | [mm] [MPa] | [MPa] [kN] | [mm] Niw | Nos
| 200,0 100,0 0,9 1,6 16,0 326,0 0,0 0,0 321 265,1 - A 1,08 134
la 2000 | 1000 [ 09 | 16 16,6 3260 [ 01 | 01 | 321 | 1522 - B 083 083
11 140,0 140,0 0,9 1,6 16,9 326,0 0,0 0,0 22,9 343,7 - A 0,91 1,23
[E 1400 | 1400 | 09 | 16 171 3260 [ 01 | 01 | 229 | 2357 - B 090 094
177,0 139,0 0,9 25 27,7 296,6 0,0 0,0 233 648,1 - A 0,86 1,19
a 1780 | 1400 | 09 | 25 21,7 2966 | 00 | 00 | 231 | 6854 - A 090 1.4
| 198,0 98,0 09 | 16 26,2 3260 [ 00 | 00 | 328 | 3928 - A 11 14§
ia 2000 | 1000 [ 09 | 16 26,2 3260 [ 00 | 00 | 321 | 4026 - A 113 143
1 1820 | 1780 | 09 | 19 29,7 2966 | 00 | 00 | 180 | 6874 - A 064 084
lla 1800 | 1800 | 09 | 19 29,7 2966 | 00 | 00 | 178 | 8249 - A 076 099
1 1820 | 1780 | 09 | 19 303 2966 [ 00 | 00 | 175 | 10704 - A 097 1,24
Ia 180,0 180,0 0,9 19 30,3 296,6 0,0 0,0 15,6 1217,7 - A 1,11 1,33
1 2500 [ 2500 [ 1,0 [ 1,3 353 2720 [ 00 | 00 | 119 | 20426 - A 087 1,01
2 250,0 125,0 0,9 0,6 353 3339 0,0 0,0 25,8 697,2 - A 0,84 1,19
3 2500 [ 1600 [ 09 | 08 353 3260 [ 00 | 00 | 407 | 6678 - A 109 14
14 250,0 250,0 1,0 13 338 272,0 0,2 0,2 11,9 962,4 - B 0,71 0,83
5 2500 [ 1250 [ 09 | 06 336 3339 [ 02 | 02 | 2568 | 3437 - B 099 1,04
6 250,0 160,0 0,9 0,8 338 326,0 0,2 0,2 40,7 2259 - B 0,97 1,03
7 2500 [ 2500 [ 1,0 [ 1,3 214 2720 | 02 | 02 | 119 | 8445 - B 090 1,04
8 250,0 126,0 0,9 0,6 214 3339 0,2 0,2 25,6 3339 - B 1,32 1,34
9 2500 [ 1620 [ 09 | 08 213 3260 [ 02 | 02 | 402 | 2062 - B 119 1,07
10 253,0 251,0 1,0 13 31,4 272,0 0,3 0,3 11,8 692,3 - B 0,82 0,94
11 2520 [ 1260 [ 09 | 06 314 3339 [ 03 | 03 | 256 | 194 - B 123 123
12 250,0 162,0 0,9 0,8 31,2 326,0 0,3 0,3 40,2 112,9 - B 1,03 0,99
13 2510 | 2470 [ 09 | 13 345 2720 [ 03 | 03 | 120 | 7011 - B 080 093
14 2480 | 1260 [ 09 | 06 345 3339 [ 03 | 03 | 256 | 1630 - B 104 1,03
15 2470 | 1610 [ 09 | 08 34,7 3260 [ 00 | 00 | 404 | 5499 - A 091 1,29
17 200,0 90,0 09 | 11 20,7 3339 [ 00 | 00 | 162 | 3781 - E 089 114
18 201,0 91,0 09 | 11 20,7 3339 [ 00 | 00 | 239 | 3594 - F 1,04 133
19 2500 [ 1300 [ 09 | 1,0 251 3260 [ 02 | 00 | 247 | 3879 - C 114 14
20 2500 | 1300 [ 09 | 1,0 251 3260 [ 00 | 00 | 161 | 8494 - F 09 1,19
21 200,0 89,0 09 | 11 358 3339 [ 00 | 00 | 163 | 5499 - E 083 1,04
22 200,0 89,0 0,9 11 35,8 3339 0,0 0,0 16,3 623,6 - E 0,94 1,23
23 2480 [ 1290 [ 09 | 1,0 394 3260 [ 00 | 00 | 107 | 10753 - E 081 093
24 248,0 129,0 0,9 1,0 394 326,0 0,0 0,0 16,2 947,6 - F 0,73 0,94
25 2480 [ 2500 [ 1,0 [ 1,0 312 2966 | 02 | 00 81 | 1306,1 - G 099 1,19
26 2520 250,0 1,0 1,0 31,2 296,6 0,2 0,0 12,6 1325,7 - C 1,08 1,24
27 201,0 92,0 09 | 17 322 3260 [ 02 | 00 | 237 | 3388 - G 128  1.3]
28 200,0 89,0 0,9 18 30,2 326,0 0,2 0,0 245 289,7 - G 1,22 1,24
29 2500 [ 1300 [ 09 | 19 335 2966 | 02 | 00 | 160 | 7365 - G 1,07 121
30 250,0 132,0 0,9 19 335 296,6 0,2 0,0 15,8 770,9 - G 111 1,Zq
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31 250,0 | 2500 | 1,0 | 20 | 289 | 2828 | 02 | 00 | 81 | 14337 119 139
32 2500 | 2500 | 1,0 | 20 | 289 | 2828 | 02 | 00 | 126 | 13503 08§ 094
Table 12.1 Data used for calculations, taken from[13]
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Figure 12.1 Theresults of calculations by the equilibrium method compared with experiments for e=0

Figure 12.2 The results of calculations by the Danish Code of Practice compared with experiments for e=0
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Figure 12.3 Theresults of calculations by the equilibrium method compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.4 Theresulst of cal culations by the equilibrium method compared with experiments for eccentrically
|oaded beam columns
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12.2Rambgll, B. J. 1951

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type Nep Ne.
[mm] | [mm] [MPe] | [MPd] [kN] | [mm] Neo  [Nos

1 1820 | 1440 | 08 | 10 | 286 | 2946 | 00 | 00 | 89 | 8593 - A | 105 | 114
2 1810 | 1410 | 08 | 10 | 255 | 2946 | 00 | 00 | 91 | 6383 - A | 08 | 0%
3 1820 | 1430 | 08 | 10 | 265 | 2946 | 01 | 01 | 90 | 6874 - B | 075 | 086
4 1810 | 1410 | 08 | 10 | 212 | 2946 | 01 | 01 | 91 | 5892 - B | 098 | 11l
5 1810 | 1430 | 08 | 10 | 278 | 2946 | 02 | 02 | 90 | 5106 - B | 092 | 103
6 1810 | 1430 | 08 | 10 | 251 | 2946 | 02 | 02 | 90 | 5303 - B | 092 | 103
7 1800 | 1450 | 08 | 10 | 237 | 2946 | 03 | 03 | 88 | 3388 - B | 084 | 106
8 1810 | 1440 | 08 | 10 | 254 | 2946 | 03 | 03 | 89 | 2946 - B | 068 | 086
g 1810 | 1420 | 08 | 10 | 234 | 2946 | 0,7 | 0,7 | 90 | 1178 - B | 105 | 130
10 1810 | 1440 | 08 | 10 | 245 | 2946 | 0,7 | 0,7 | 89 | 1061 - B | 122 | 141
11 1810 | 1410 | 08 | 10 | 258 | 2946 | 08 | 08 | 9.1 786 - B | 129 | 147
12 1810 | 1410 | 08 | 10 | 216 | 2946 | 08 | 08 | 9.1 786 - B | 115 | 1,32
13 1810 | 1420 | 08 | 10 | 285 | 2946 | 00 | 00 | 130 | 5794 - A | 110 | 127
14 1810 | 1420 | 08 | 10 | 257 | 2946 | 00 | 00 | 130 | 6874 - A | 123 | 130
15 1810 | 1470 | 08 | 10 | 247 | 2946 | 00 | 00 | 126 | 6481 - A | 111 | 13
16 1830 | 1460 | 08 | 10 | 247 | 2946 | 00 | 00 | 127 | 6481 - A | 126 | 149
17 1800 | 1420 | 08 | 10 | 251 | 2946 | 01 | 01 | 130 | 5794 - B | 128 | 145
18 1810 | 1440 | 08 | 10 | 236 | 2946 | 01 | 01 | 128 | 5342 - B | 136 | 153
19 1800 | 1420 | 08 | 10 | 242 | 2946 | 02 | 02 | 130 | 4714 - B | 098 | 103
20 1820 | 1430 | 08 | 10 | 244 | 2946 | 02 | 02 | 129 | 5106 - B | 139 | 174
21 1830 | 1450 | 08 | 10 | 231 | 2946 | 0,3 | 03 | 128 | 2946 - B | 114 | 143
22 1820 | 1440 | 08 | 10 | 233 | 2946 | 03 | 03 | 128 | 3064 - B | 138 | 159
23 1810 | 1440 | 08 | 10 | 235 | 2946 | 0,7 | 0,7 | 128 | 943 - B | 144 | 172
24 1810 | 1440 | 08 | 10 | 220 | 2946 | 0,7 | 07 | 128 | 943 - B | 132 | 139
25 1820 | 1440 | 08 | 10 | 282 | 2946 | 08 | 08 | 128 | 687 - B | 15 | 115
26 1810 | 1410 | 08 | 10 | 268 | 2946 | 08 | 08 | 131 | 668 - B | 158 | 158
27 1820 | 1410 | 08 | 10 | 294 | 2946 | 00 | 0,0 | 206 | 5794 - A | 135 | 135
28 1830 | 1460 | 08 | 10 | 287 | 2946 | 00 | 0,0 | 199 | 4910 - A | 137 | 137
29 1820 | 1440 | 08 | 10 | 296 | 2946 | 02 | 02 | 201 | 3339 - B | 132 | 145
30 1820 | 1430 | 08 | 10 | 272 | 2946 | 0,3 | 03 | 203 | 194 - B | 123 | 123
31 1830 | 1440 | 08 | 10 | 292 | 2946 | 0,7 | 0,7 | 201 | 727 - B | 119 | 119
32 1830 | 1420 | 08 | 10 | 295 | 2946 | 08 | 08 | 204 | 570 - B | 13 | 153
33 1830 | 1430 | 08 | 10 | 276 | 2946 | 00 | 00 | 301 | 4949 - A | 139 | 157
34 1820 | 1450 | 08 | 10 | 296 | 2946 | 01 | 01 | 297 | 4124 - B | 141 | 141
35 1830 | 1440 | 08 | 17 | 266 | 2946 | 02 | 02 | 299 | 2357 - B | 126 | 126
36 1830 | 1430 | 08 | 10 | 273 | 2946 | 03 | 03 | 301 | 1178 - B | 135 | 135
37 1820 | 1450 | 08 | 10 | 269 | 2946 | 0,7 | 0,7 | 297 | 560 - B | 118 | 118
38 1820 | 1450 | 08 | 10 | 325 | 2946 | 08 | 08 | 297 | 442 - B | 113 | 113
Table 12.2 Data used for calculations, taken from [ 14]
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Figure 12.5 Theresult of calculations plotted in an interaction diagram.
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Figure 12.6 The results of cal culations by the equilibrium method compared with experiments for e=0
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Figure 12.7 The results of calculations by Danish Code of Practice compared with experiments for e=0
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Figure 12.8 The results of calculations by the equilibrium method compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.9 The results of calculations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.3Ernst, G. C, Hromadik, J. J. & Riveland, A. R. 1953

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Ne

mml | [mm] [MPa] | [MPd] RNT | [mm] Neo | Nos
1 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 2,0 503,3 - A 0,88 0,89
2 152,4 152,4 0,8 12 20,1 356,8 0,0 0,0 50 432,1 - A 0,76 0,78
3 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 15,0 490,0 - A 0,89 1,07
4 152,4 152,4 0,8 12 20,1 356,8 0,0 0,0 25,0 449,9 - A 1,10 1,36
5 152,4 152,4 0,8 12 20,1 356,8 0,1 0,1 2,0 4232 - B 057 057
6 152,4 152,4 0,8 12 20,1 356,8 0,1 0,1 50 409,8 - B 0,71 0,73
7 152,4 152,4 0,8 12 20,1 356,8 0,1 0,1 15,0 356,3 - B 1,06 1,24
8 152,4 152,4 0,8 1,2 20,1 356,8 0,1 0,1 25,0 289,5 - B 1,04 1,22
9 152,4 152,4 0,8 12 20,1 356,8 0,3 0,3 2,0 203,6 - B 1,04 1,18
10 152,4 152,4 0,8 1,2 20,1 356,8 0,3 03 50 249,4 - B 1,24 1,24
11 152,4 152,4 0,8 1,2 20,1 356,8 0,3 0,3 15,0 259,2 - B 0,70 0,87
12 152,4 152,4 0,8 1,2 20,1 356,8 0,3 03 250 172,4 - B 0,88 1,07
13 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 2,0 325,2 - A 111 1,26
14 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 50 405,3 - A 1,16 1,16
15 152,4 152,4 0,8 1,2 20,1 356,8 0,4 0,4 15,0 89,1 - B 0,52 0,63
16 152,4 152,4 0,8 1,2 20,1 356,8 04 0,4 250 110,5 - B 1,02 1,02

Table 12.3 Data used for calculations, taken from[15]
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Figure 12.10 Theresults of calculations plotted in an interaction diagram, f. ¢ jinser = 20.1 MPa
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Figure 12.11 Theresulst of cal culations by the equilibrium method compared with experiments for e=0
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Figure 12.12 Theresults of calculations by the Danish Code of Practice compared with experiments for e=0
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Figure 12.13 Theresults of calculations by the equilibriummethod compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.14 The results of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.4Gehler, W. & Hutter, A. 1954

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Nep

[mml | [mm] [MPa] | [MPd] KN | [mm] Neo | Nos
la 160,0 140,0 0,9 0,9 193 282,8 0,0 0,0 40,0 241,0 - A 1,18 1,38
la 160,0 140,0 0,9 0,9 193 282,8 0,0 0,0 40,0 258,1 - A 1,26 1,48
Ib 160,0 140,0 0,9 0,9 194 282,8 0,0 0,0 30,0 384,6 - A 1,26 1,56
Ib 160,0 140,0 0,9 0,9 194 282,8 0,0 0,0 30,0 399,2 - A 131 1,62
ic 160,0 140,0 0,9 0,9 20,7 282,8 0,0 0,0 250 497,4 - A 1,27 1,61
Ic 160,0 140,0 0,9 0,9 20,7 282,8 0,0 0,0 25,0 533,8 - A 1,36 1,72
Id 160,0 140,0 0,9 0,9 20,5 282,8 0,0 0,0 20,0 486,5 - A 1,06 134
Id 160,0 140,0 0,9 0,9 20,5 282,8 0,0 0,0 20,0 552,0 - A 1,20 1,52
le 160,0 140,0 0,9 0,9 198 282,8 0,0 0,0 150 595,7 - A 1,28 1,47
le 160,0 140,0 0,9 09 198 282,8 0,0 0,0 15,0 566,5 - A 1,22 1,40
If 160,0 140,0 0,9 0,9 188 282,8 0,0 0,0 10,0 475,3 - A 1,01 1,10
If 160,0 140,0 0,9 09 1838 282,8 0,0 0,0 10,0 498,4 - A 1,06 1,15
lia 160,0 140,0 0,8 28 195 337,8 0,0 0,0 40,0 324,6 - A 1,18 1,45
lia 160,0 140,0 0,8 28 195 337,8 0,0 0,0 40,0 348,2 - A 114 1,40
1 160,0 140,0 0,9 0,5 250 235,2 0,0 0,0 40,0 174,3 - A 0,96 1,18
1 160,0 140,0 0,9 0,5 25,0 235,2 0,0 0,0 40,0 196,3 - A 1,01 1,24
2 160,0 140,0 0,8 2,0 26,0 316,2 0,0 0,0 40,0 218,6 - A 1,04 1,29
2 160,0 140,0 0,8 2,0 26,0 289,4 0,0 0,0 40,0 2854 - A 1,04 1,29
3 160,0 140,0 0,8 56 24,0 289,4 0,0 0,0 40,0 326,0 - A 0,72 0,85
3 160,0 140,0 0,8 5,6 24,0 289,4 0,0 0,0 40,0 2854 - A 0,81 0,96
14 160,0 140,0 0,9 0,9 134 206,5 0,0 0,0 30,0 262,3 - A 0,75 0,85
14 160,0 140,0 0,9 0,9 134 206,5 0,0 0,0 30,0 253,1 - A 0,97 112
5 160,0 140,0 0,9 0,9 211 206,5 0,0 0,0 30,0 3113 - A 1,25 1,40
5 160,0 140,0 0,9 0,9 211 206,5 0,0 0,0 30,0 327,0 - A 1,34 1,50
6 160,0 140,0 0,9 0,9 26,2 206,5 0,0 0,0 30,0 405,7 - A 0,91 092
6 160,0 140,0 0,9 0,9 26,2 206,5 0,0 0,0 30,0 405,7 - A 0,79 081
[Test No. b h d/h [ 100r | T f, H [ 7h | Nep Un Type New | Nop

[mm] | [mm] [MPa] | [MPa] | [kN] [kN] | [mm] D Niw | Nos
7 160,0 140,0 0,8 2,0 187 289,4 47 | 150 | 4733 - D 1,09 1,20
7 160,0 140,0 0,8 2,0 18,7 289,4 45 | 150 | 4488 - D 1,03 113
8 160,0 140,0 0,8 2,0 239 289,4 48 | 20,0 | 480,2 - D 1,06 1,16
8 160,0 140,0 0,8 2,0 239 289,4 45 | 20,0 | 446,55 - D 0,99 1,08
9 160,0 140,0 0,8 2,0 219 289,4 32 | 300 | 3214 - D 1,17 1,15
9 160,0 140,0 0,8 2,0 219 289,4 3,0 | 300 | 298,7 - D 1,09 1,07
10 160,0 140,0 0,8 2,0 217 289,4 15 | 400 | 152,6 - D 099 092
10 160,0 140,0 0,8 2,0 21,7 289,4 1,7 | 400 | 1657 - D 1,07 1,00
11 160,0 140,0 0,8 2,0 1838 289,4 8,7 | 150 | 433,0 - D 1,12 1,23
11 160,0 140,0 0,8 2,0 188 289,4 94 | 150 | 470,3 - D 1,22 1,33
12 160,0 140,0 0,8 2,0 239 289,4 79 | 200 | 397,5 - D 1,03 111
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12 160,0 140,0 0,8 2,0 239 289,4 8,1 | 20,0 | 405,1 - D 1,05 1,13
13 160,0 140,0 0,8 2,0 244 289,4 47 | 300 | 2364 - D 1,13 1,09
13 160,0 140,0 0,8 2,0 244 289,4 4,8 | 300 | 2381 - D 1,14 1,10
14 160,0 140,0 0,8 20 20,9 289,4 2,5 | 400 | 126,6 - D 1,24 111
14 160,0 140,0 0,8 2,0 209 289,4 2,3 | 400 | 1135 - D 111 1,00
15 160,0 140,0 0,8 2,0 188 289,4 | 121 | 150 | 402,6 - D 1,16 1,28
15 160,0 140,0 0,8 2,0 18,8 289,4 13,2 | 15,0 | 439,2 - D 1,26 1,40
16 160,0 140,0 0,8 2,0 187 289,4 79 | 200 | 2645 - D 0,96 1,02
16 160,0 140,0 0,8 2,0 18,7 289,4 92 | 20,0 | 307,8 - D 1,12 1,19
17 160,0 140,0 0,8 2,0 19,0 289,4 59 | 300 | 196,3 - D 1,36 131
17 160,0 140,0 0,8 2,0 19,0 289,4 52 | 300 | 1743 - D 1,20 1,16
18 160,0 140,0 0,8 2,0 20,1 289,4 3,1 | 400 | 104,8 - D 1,20 113
18 160,0 140,0 0,8 2,0 20,1 289,4 3,0 | 400 | 100,5 - D 1,15 1,08
Table12.4 Data used for calculations, taken from[16]
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Figure 12.15 Theresults of calculations plotted in an interaction diagram, f. o jinser = 18.6 MPa
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Figure 12.16 The results of calculations plotted in an interaction diagram, . ¢ jinger = 21.8 MPaand f cjinger =
20.9 MParespectively
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Figure 12.17 Theresults of calculations plotted in an interaction diagram, fe o jinger = 24.3 MPa.and f cyjinger =
23.8 MParespectively
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Figure 12.18 Theresults of cal culations by the equilibrium method compared with experiments for e=0
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Figure 12.19 Theresults of calculations by the Danish Code of Practice compared with experiments for e=0
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Figure 12.20 Theresults of cal culations by the equilibriummethod compared with experiments for laterally

loaded beam-columns
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Figure 12.21 The results of cal culations by the Danish Code of Practice compared with experiments for laterally

loaded beam-columns
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12.5Gaede, K. 1958

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Ne
[mm] | [mm] [MPe] | [MPd] [kN] | [mm] Niw | Nos
I/1 1540 | 12000 | 09 [ 1,0 198 | 3354 [ 02 | 02 | 204 75,6 - B 085 | 082
1/5 1540 | 1000 | 09 [ 10 257 | 2889 | 02 | 02 | 294 97,0 - B 092 | 088
i1/4 1540 | 1000 [ 09 [ 10 241 [ 2737 | 05 [ 05 | 294 36,1 28,0 B 079 | 073
i1/5 1540 | 1000 | 09 [ 1,0 253 | 2726 | 05 | 05 | 294 378 235 B 088 | 080
i1171 1540 | 1000 [ 09 [ 1,0 263 | 3273 | 05 [ 05 | 354 334 330 B 092 | 073
i11/2 1540 | 1000 | 09 [ 1,0 229 | 3260 | 05 [ 05 | 354 334 430 B 092 | 083
I1173 1540 | 1000 [ 09 [ 10 28 | 3265 | 05 [ 05 | 354 336 450 B 093 | 084
i11/4 1540 | 1000 | 09 [ 1,0 311 | 3266 | 05 | 05 | 354 373 385 B 088 | 088
Table 12.5 Data used for calculations, taken from[17]
app NI T —
Theory Ih = 29.4
O Experinent bh = 29.4
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. ; ; . i, [ichim]
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Figure 12.22 Theresults of cal culations plotted in an interaction diagram
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Figure 12.23 Theresults of calculations by the equilibriummethod compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.24 The results of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.6 Chang, W. F. & Ferguson, P. M. 1963

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Ne

[mm] | [mm] [MPe] | [MPd] [kN] | [mm] N | Nos
1 1556 | 1032 | 08 | 1,8 | 233 | 3448 | 01 | 01 | 256 | 1681 - B | 070 | 068
2 1556 | 1032 | 08 | 1,8 | 350 | 3448 | 04 | 04 | 256 | 689 - B | 062 | 065
3 1556 | 1032 | 08 | 1,8 | 289 | 3448 | 01 | 01 | 256 | 1895 - B | 060 | 061
4 1556 | 1032 | 08 | 1,8 | 301 | 3448 | 04 | 04 | 256 | 725 - B | 066 | 066
5 1556 | 1032 | 08 | 1,8 | 328 | 3448 | 02 | 02 | 256 | 1228 - B | 062 | 062
6 1556 | 1032 | 08 | 18 | 336 | 4344 | 01 | 01 | 256 | 1975 - B | 0,703 | 0,729

Table 12.6 Data used for calculations, taken from [ 18]
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Figure 12.25 The results of calculations plotted in an interaction diagram, I/h = 30
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Figure 12.26 Theresults of calculations by the equilibriummethod compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.27 Theresults of calculati ons by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.7Panell , F. N. & Robinson, J. L. 1969

[Test No. b h d/h | 2000 fe fy e/h | eyh Ilh Negp Up, Type | Nep Neo
[mm] | [mm] [MPa] | [MP4] [kN] | [mm] Nieo | Nos

1A 953 635 | 08 | 33 | 191 | 3521 | 00 | 00 | 41,6 | 609 - A 09§ 097
2A 953 635 | 08 | 33 | 183 | 3659 | 0,0 | 0,0 | 416 | 747 - A 121 1.4
BA 953 635 | 08 | 33 | 170 | 3659 | 00 | 00 | 27.2 | 996 - A 091 104
4A %53 635 | 08 | 33 | 212 | 3659 | 0,0 | 0,0 | 152 | 1744 B A 089 1,09
BA 953 635 | 08 | 33 | 213 | 3659 | 00 | 00 | 320 | 987 - A 09§ 107
6B %53 635 | 08 | 33 | 228 | 3521 | 14 | 14 | 416 | 149 E D 120 129
7B 635 953 | 09 | 33 | 245 | 3521 | 18 | 1.8 | 27.7 | 199 - D 131 131
8B 953 635 | 08 | 33 | 159 | 3521 | 02 | 02 | 41,6 | 547 - D 194 174
9B 635 %53 | 09 | 33 | 159 | 3521 | 07 | 07 | 27,7 | 399 - D 120 134
Table 12.7 Data used for calculations, taken from[19]
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Figure 12.28 The results of calculations plotted in an interaction diagram, the compressive strength is

calculated as a mean of the values given in the table above

-119-



Stahility of Concrete Columns

500

N theory| [KN] X F.N. Parnell & J. L.
450 Robinson 1968

400

350

300

250

200 »

150

100

50

Negp [KN]

0

0,0 100,0 2000 3000 4000 5000

Figure 12.29 The results of calculations by the equilibrium method compared with experiments for e=0
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Figure 12.30 Theresults of calculations by the Danish Code of Practice compared with experiments for e=0
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Figure 12.31 Theresults of calculations by the equilibriummethod compared with experimentsfor laterally

loaded beam-columns
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Figure 12.32 Theresults of calculations by the Danish Code of Practice compared with experiments for laterally

loaded beam-columns
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12.8Breen, J. E. & Ferguson, P. M. 1969

[Test No. b h d/h | 100r i {iy H I/h Nexp Un Type Neo Nep
[mm] | [mm] [MPa] | [MPa] | [kN] [kN] | [mm] N | Nos
G1 155,6 100,6 0,8 18 25,6 409,6 45 | 200 | 151,2 - D 0,65 0,68
G2 154,0 101,6 0,8 18 252 405,4 14 | 400 | 478 - D 0,85 0,72
G3 153,2 102,0 0,8 18 255 409,6 0,9 | 500 | 300 - D 0,83 0,73
G4 153,6 101,6 0,8 18 255 402,7 0,6 | 500 534 - D 0,95 0,80
G5 152,8 101,6 0,8 18 28,7 464,7 09 | 600 | 294 - D 1,02 1,02
G6 153,2 101,6 0,8 18 30,2 450,2 0,6 | 50,0 | 489 - D 0,74 0,74
G7 154,8 102,2 0,8 18 334 440,6 0,7 | 400 | 66,7 - D 0,49 0,54
G8 152,4 101,8 0,8 18 28,0 428,2 04 | 60,0 | 480 - D 0,96 0,96
G9 152,6 101,4 0,8 18 274 419,9 44 | 200 | 1468 - D 0,61 0,64
G10 152,2 101,6 0,8 18 277 4116 | 125 | 100 | 209,1 - D 0,64 0,77
Table 12.8 Data used for calculations, taken from[20]
gop M1 ; ; —
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400 - T 0 Experment bh = 60
00k 5 .
200 2!
1100
-+ e =
o_*# +
T R M, fitim]
Cl 1 1 1 1
0 1 2 3 B T

Figure 12.33 The results of calculations plotted in an interaction diagram
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Figure 12.34 The results of calculations by the equilibriummethod compared with experiments for laterally
|oaded beamcolumns
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Figure 12.35 The results of cal culations by the Danish Code of Practice compared with experiments for laterally
|oaded beamcolumns
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12.9 Mehmdl, A., Schwartz, H., Kasparek, K. H. & Makovi, J. 1969

[Test No. b h d/h | 1000 fe fy e/h | eyh | I/h Negp Upy Type | Negp Negp
[mm] | [mm] [MPa] | [MPa] [kN] | [mm] Nio | Nos
0.1 2530 | 1590 | 09 | 1,1 | 374 | 5099 | 01 | 01 | 88 | 9427 | 50 B | 073 | 086
0.2 2540 | 1560 | 09 | 11 | 406 | 5099 | 1,0 | 10 | 90 | 1373 | 120 | B | 087 | 0%
11 2530 | 2030 | 08 | 1,2 | 393 | 4834 | 02 | 02 | 167 | 8574 | 220 | B | 08 | 093
12 2530 | 2020 | 08 | 12 | 378 | 4834 | 05 | 05 | 168 | 3198 | 430 | B | 079 | 084
2.1 2520 | 2020 | 09 | 1,2 | 37,3 | 4834 | 02 | 02 | 223 | 5886 | 430 | B | 079 | 084
2.2 2520 | 2030 | 08 | 12 | 408 | 4834 | 05 | 05 | 222 | 2590 | 600 | B | 087 | 099
3.1 2520 | 1520 | 08 | 1,2 | 383 | 5099 | 02 | 02 | 224 | 4709 | 300 | B | 090 | 095
B2 2520 | 1510 | 0,8 | 1,2 | 4L1 | 5099 | 05 | 05 | 225 | 1766 | 480 | B | 096 | L12
33 2540 | 1590 | 08 | 1,1 | 354 | 5099 | 01 | 01 | 214 | 7828 | 240 | B | 080 | 0%0
34 2530 | 1580 | 08 | 11 | 428 | 5099 | 10 | 10 | 215 | 1020 | 450 | B | 084 | 084
41 2530 | 1500 | 08 | 1,2 | 406 | 5099 | 02 | 02 | 300 | 3679 | 350 | B | 08 | 082
4.2 2530 | 1480 | 08 | 1,2 | 415 | 5099 | 05 | 05 | 304 | 1452 | 700 | B | 090 | 102
5.1 2530 | 1580 | 08 | 31 | 407 | 4268 | 02 | 02 | 215 | 7358 | 320 | B | 087 | L02
52 2520 | 1590 | 08 | 31 | 370 | 4268 | 05 | 05 | 214 | 3698 | 520 | B | 108 | L15
6.1 2540 | 1590 | 08 | 11 | 425 | 5099 | 02 | 00 | 145 | 9398 | 120 | B | 107 | 107
6.2 2530 | 1570 | 08 | 1,1 | 442 | 5099 | 05 | 00 | 146 | 3434 | 280 | B | 088 | 105
Table 12.9 Data used for calculations, taken from[21]
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Figure 12.36 The results of calculations plotted in an interaction diagram, f. o jinser = 31.2 MPa
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Figure 12.37 Theresults of calculations plotted in an interaction diagram, f; o jinser = 30.9 MPa
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Figure 12.38 The results of calculations plotted in an interaction diagram, f; o jinger = 31.2 MPa
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Figure 12.39 The results of calculations plotted in an interadtion diagram, f. o jinger = 31.7 MPa
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Figure 12.40 The results of calculations plotted in an interaction diagram, f; oyjinger = 31.2 MPa
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Figure 12.41 The results of calculations plotted in an interaction diagram, f; o jinser = 32.8 MPa
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Figure 12.42 The results of calculations plotted in an interaction diagram, f; o jinser = 31.0 MPa
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Figure 12.43 Theresults of calculations by the equilibriummethod compared with experiments for eccentrically
|oaded beamcolumns
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Figure 12.44 The results of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.10 Kim, J-K. & Yang, J.-K. 1993

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Ne

mml | [mm] [MPa] | [MPd] RNT | [mm] Neo | Nos
10L4-1 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 3,0 109,5 0,4 B 093 1,07
10L4-2 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 3,0 109,3 0,4 B 0,96 1,10
60L2-1 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 18,0 63,7 14,9 B 0,96 0,96
60L2-2 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 18,0 65,7 16,2 B 0,88 0,88
100L2-1 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 30,0 38,2 298 B 0,90 114
100L2-2 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 30,0 35,0 32,7 B 0,91 1,16
100L4-1 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 30,0 49,0 38,2 B 0,86 0,98
100L4-2 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 30,0 47,0 36,2 B 0,95 1,08
10M2-1 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 3,0 179,0 0,4 B 0,79 0,86
10M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 03 3,0 182,8 0,4 B 0,383 091
10M4-1 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 3,0 207,7 0,4 B 091 117
10M4-2 80,0 80,0 0,8 4,0 66,7 387,0 0,3 03 3,0 204,6 05 B 093 1,20
60M 21 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 18,0 102,8 20,3 B 0,84 097
60M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 03 18,0 1135 18,1 B 0,86 0,98
100M2-1 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 30,0 45,2 26,2 B 0,79 1,08
100M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 03 30,0 47,6 272 B 0,79 1,09
100M4-1 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 30,0 59,6 311 B 0,87 1,13
100M4-2 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 30,0 60,5 34,2 B 0,86 113
10H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 3,0 235,3 0,5 B 0,83 0,87
10H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 3,0 240,4 0,4 B 0,79 0,83
10H4-1 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 3,0 255,8 0,5 B 0,90 1,16
10H4-2 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 3,0 257,7 05 B 0,89 1,15
60H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 18,0 122,1 15,4 B 0,71 0,76
60H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 18,0 123,7 16,7 B 0,72 0,77
100H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 30,0 54,3 243 B 0,88 1,14
100H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 30,0 54,9 237 B 0,89 1,15
100H4-1 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 30,0 66,6 324 B 0,70 0,82
100H4-2 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 30,0 64,7 333 B 0,68 0,80

Table 12.10 Data used for calculations, taken from[28]
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Figure 12.45 The reinforcement in the middle of the section is not considered in the calculations
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Figure 12.46 The results of calculations plotted in an interaction diagram
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Figure 12.47 The results of calculations plotted in an interaction diagram
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Figure 12.48 Theresults of calculations plotted in an interaction diagram

600

500

400

S0

200

N [kH]

U =300

p=198%

. Thearyf, =862 MPa

Theary f, = 25,3 MPa
Experiment f, = 25.5 MPs
Theory f =635 MPa

Experimert f, =535 WP

Experimert I =382 MPa

25

Figure 12.49 Theresults of calculations plotted in an interaction diagram
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Figure 12.50 The results of calculations plotted in an interaction diagram
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Figure 12.51 The results of cal culations by the equilibrium method compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.52 Theresults of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.11 Chuang, P. H. & Kong, F. K. 1997
[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Nep
[mm] | [mm] [MPa] | [MPa] [kN] | [mm] Neeo Nos
IA-15-0.25 300,0 200,0 0,8 33 249 493,0 0,3 0,3 150 | 1286,2 | 29,0 B 141 1,69
IA-17-0.25 300,0 200,0 0,8 3,3 30,6 493,0 0,3 0,3 17,0 1185,0 41,0 B 1,24 1,46
IA-18-0.25 300,0 200,0 0,8 33 26,2 493,0 0,3 0,3 180 | 1084,1 | 39,0 B 1,29 1,47
IA-19-0.25 300,0 200,0 0,8 33 258 493,0 0,3 0,3 19,0 1246,6 43,0 B 1,60 1,77
IA-15-0.50 300,0 200,0 0,8 33 26,4 493,0 0,5 05 150 886,2 310 B 1,51 1,93
IA-17-0.50 300,0 200,0 0,8 3,3 32,2 493,0 0,5 0,5 17,0 904,5 55,0 B 1,48 1,83
IA-18-0.50 300,0 200,0 0,8 33 26,2 493,0 0,5 05 18,0 851,6 58,0 B 1,60 1,97
IA-19-0.50 300,0 200,0 0,8 33 24,2 493,0 0,5 0,5 19,0 816,3 45,0 B 1,60 1,98
B-17-0.25 300,0 200,0 0,8 13 298 519,0 0,3 0,3 170 | 10868 | 230 B 1,49 1,64
B-18-0.25 300,0 200,0 0,8 13 337 519,0 0,3 03 18,0 989,1 250 B 131 1,45
B-19-0.25 300,0 200,0 0,8 13 318 519,0 0,3 0,3 190 | 1048,0 | 26,0 B 1,50 1,61
B-17-0.50 300,0 200,0 0,8 13 309 519,0 05 05 17,0 476,7 38,0 B 117 131
B-18-0.50 300,0 200,0 0,8 13 34,0 519,0 0,5 05 18,0 479,7 37,0 B 1,15 1,30
B-19-0.50 300,0 200,0 0,8 13 36,0 519,0 0,5 05 19,0 459,8 37,0 B 112 1,27
C-27.5-0.25 200,0 120,0 0,7 34 337 520,0 0,3 0,3 275 531,3 17,0 B 2,71 2,89
IC-30.0-0.25 200,0 120,0 0,7 34 34,1 520,0 0,3 0,3 30,0 484,8 24,0 B 2,80 3,02
IC-31.7-0.25 200,0 120,0 0,7 34 355 520,0 0,3 0,3 31,7 332,3 45,0 B 2,01 2,18
IC-27.5-0.50 200,0 120,0 0,7 34 34,1 520,0 0,5 05 275 2423 720 B 1,78 1,9
IC-30.0-0.50 200,0 120,0 0,7 34 332 520,0 0,5 0,5 30,0 319,7 60,0 B 2,63 292
IC-31.7-0.50 200,0 120,0 0,7 34 350 520,0 0,5 05 3.7 254,9 94,0 B 2,25 2,53
HB-17-0.25 300,0 200,0 0,8 13 77,0 531,0 0,3 0,3 17,0 1802,6 35,0 B 1,23 1,43
HB-18-0.25 300,0 200,0 0,8 13 758 531,0 0,3 0,3 180 | 14784 | 300 B 1,10 1,29
HB-19-0.25 300,0 200,0 0,8 1,3 76,3 531,0 0,3 0,3 19,0 1569,8 15,0 B 1,25 1,43
HB-17-0.50 300,0 200,0 0,8 13 753 531,0 0,5 05 17,0 706,2 34,0 B 1,19 1,30
HB-18-0.50 300,0 200,0 0,8 13 76,7 531,0 0,5 0,5 18,0 646,4 40,0 B 1,17 1,29
HB-19-0.50 300,0 200,0 0,8 13 76,9 531,0 0,5 05 19,0 608,8 39,0 B 1,21 1,34

Table12.11 Data used for calculations, taken from[29]
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Figure 12.54 Theresults of calculations plotted in an interaction diagram, r = 1.34%
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Figure 12.56 The results of calculations plotted in an interaction diagram, r = 3.35%
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Figure 12.57 The results of calculations by the equilibrium method compared with experiments for eccentrically
|oaded beamcolumns
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Figure 12.58 The results of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beam-columns
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12.12 Foster, S. J. & Attard, M. M. 1997

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Nep

[mml | [mm] [MPa] | [MPd] KN | [mm] Neo | Nos
2L8-30 150,0 150,0 0,9 2,0 430 480,0 0,1 0,1 9,7 960,0 6,5 B 0,98 113
2L.8-60 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 857,0 6,0 B 0,88 1,02
2L8-120 150,0 150,0 0,9 2,0 430 480,0 0,1 0,1 9,7 912,0 6,0 B 0,95 1,09
2L 20-30 150,0 150,0 0,9 2,0 40,0 480,0 0,1 0,1 9,7 750,0 4.8 B 0,99 1,22
2L 20-60 150,0 150,0 0,9 2,0 430 480,0 0,1 0,1 9,7 700,0 6,2 B 0,88 1,08
2L20-120 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 782,0 52 B 1,00 1,22
2L.50-30 150,0 150,0 0,9 2,0 40,0 480,0 0,3 0,3 9,7 440,0 9,0 B 0,94 1,23
2L 50-60 150,0 150,0 0,9 2,0 43,0 480,0 0,3 0,3 9,7 472,0 8,5 B 0,95 121
2L.50-120 150,0 150,0 0,9 2,0 40,0 480,0 0,3 0,3 9,7 440,0 9,0 B 0,96 1,23
4L8-30 150,0 150,0 0,9 30 430 480,0 0,1 0,1 9,7 1100,0 9,0 B 1,04 1,20
14L8-60 150,0 150,0 0,9 3,0 430 480,0 0,1 0,1 9,7 1150,0 6,0 B 1,06 1,24
4L8-120 150,0 150,0 0,9 3,0 430 480,0 0,1 0,1 9,7 975,0 57 B 091 1,06
4L 20-30 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 1020,0 7,0 B 1,23 1,49
4L 20-60 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 968,0 35 B 1,18 144
14L20-120 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 900,0 4,0 B 1,08 1,34
4L 50-30 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 517,0 185 B 1,01 1,32
14L50-60 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 550,0 8,0 B 1,00 1,28
4L 50-120 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 525,0 8,0 B 097 1,26
2M8-30 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1348,0 50 B 0,87 1,00
2M8-60 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1432,0 50 B 093 1,06
2M8-120 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1239,0 4,0 B 0,80 0,93
2M20-30 150,0 150,0 0,9 20 74,0 480,0 0,1 0,1 9,7 1160,0 6,0 B 093 114
2M20-60 150,0 150,0 0,9 2,0 74,0 480,0 0,1 0,1 9,7 1231,0 6,0 B 0,99 1,21
2M20-120 150,0 150,0 0,9 2,0 74,0 480,0 0,1 0,1 9,7 1067,0 50 B 0,87 1,05
2M50-30 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 630,0 9,5 B 0,88 1,12
2M50-60 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 747,0 115 B 1,07 1,37
2M50-120 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 652,0 115 B 0,89 1,16
14M8-30 150,0 150,0 0,9 3,0 74,0 480,0 0,1 0,1 9,7 1102,0 3,0 B 0,68 0,79
1AM 8-60 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1404,0 4,0 B 0,87 1,00
1AM 8-120 150,0 150,0 0,9 3,0 74,0 480,0 0,1 0,1 9,7 1404,0 35 B 0,86 0,99
4M20-30 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1052,0 4,0 B 0,79 097
1AM 20-60 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1004,0 50 B 0,77 0,94
1AM 20-120 150,0 150,0 0,9 30 75,0 480,0 0,1 0,1 9,7 1226,0 50 B 092 113
1AM 50-30 150,0 150,0 0,9 3,0 74,0 480,0 0,3 0,3 9,7 656,0 95 B 0,87 1,10
4M50-60 150,0 150,0 0,9 3,0 75,0 480,0 0,3 03 9,7 686,0 95 B 0,90 114
4M50-120 150,0 150,0 0,9 3,0 74,0 480,0 0,3 0,3 9,7 677,0 9,5 B 0,85 1,10
2H8-30 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1576,0 35 B 0,85 0,98
2H8-60 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1647,0 45 B 0,88 1,02
2H8-120 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1806,0 3,6 B 098 112
2H20-30 150,0 150,0 0,9 2,0 92,0 480,0 0,1 0,1 9,7 1207,0 6,5 B 0,81 1,00
2H20-60 150,0 150,0 0,9 2,0 92,0 480,0 0,1 0,1 9,7 1247,0 53 B 0,85 1,03
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2H20-120 150,0 150,0 0,9 2,0 92,0 480,0 01 ] 01 9,7 1473,0 56 B 1,01 1,22
2H50-30 150,0 150,0 0,9 2,0 92,0 480,0 03 | 03 9,7 749,0 9,7 B 0,94 117
2H50-60 150,0 150,0 0,9 2,0 92,0 480,0 03 | 03 9,7 685,0 10,0 B 0,86 107
2H50-120 150,0 150,0 0,9 2,0 92,0 480,0 03 | 03 9,7 851,0 83 B 106 133
AH8-30 150,0 150,0 0,9 3,0 91,0 480,0 01 1] 01 9,7 1601,0 4,8 B 0,82 0,95
14H8-60 150,0 150,0 0,9 3,0 92,0 480,0 01 | 01 9,7 1702,0 55 B 0,88 102
AH8-120 150,0 150,0 0,9 3,0 92,0 480,0 01 | 01 9,7 1654,0 42 B 0,85 0,99
4H20-30 150,0 150,0 0,9 3,0 88,0 480,0 01 | 01 9,7 1352,0 7,0 B 0,89 109
AH20-60 150,0 150,0 0,9 3,0 83,0 480,0 01 | 01 9,7 1358,0 75 B 0,88 1,09
4H20-120 150,0 150,0 0,9 3,0 92,0 480,0 01 | 01 9,7 1374,0 7,0 B 0,87 106
AH50-30 150,0 150,0 0,9 3,0 83,0 480,0 03 | 03 9,7 781,0 105 B 0,87 1,09
4H50-60 150,0 150,0 0,9 3,0 88,0 480,0 03 | 03 9,7 791,0 9,5 B 0,88 111
AH50-120 150,0 150,0 0,9 3,0 92,0 480,0 03 | 03 9,7 818,0 9,5 B 0,88 110
2L.8-120R 150,0 150,0 0,9 2,0 56,0 480,0 01 | 01 9,7 1092,0 4,5 B 0,91 106
2L20-120R 150,0 150,0 0,9 2,0 56,0 480,0 01 | 01 9,7 897,0 50 B 0,92 113
AL8-120R 150,0 150,0 0,9 3,0 56,0 480,0 01 1] 01 9,7 1247,0 4,0 B 0,95 111
AL20-120R 150,0 150,0 0,9 3,0 53,0 480,0 01 | 01 9,7 945,0 6,0 B 0,93 113
4L50-30R 150,0 150,0 0,9 3,0 40,0 480,0 03 | 03 9,7 546,0 10,0 B 104 135
2M8-30R 150,0 150,0 0,9 2,0 68,0 480,0 01 | 01 9,7 1326,0 10 B 0,94 108
2M20-60R 150,0 150,0 0,9 2,0 730 480,0 01 1] 01 9,7 1303,0 7,0 B 1,06 1,30
2M20-120R 150,0 150,0 0,9 2,0 730 480,0 01 | 01 9,7 1180,0 7,0 B 0,98 118
2M50-60R 150,0 150,0 0,9 2,0 67,0 480,0 03 | 03 9,7 670,0 8,4 B 1,02 1,30
2M50-120R 150,0 150,0 0,9 2,0 730 480,0 03 | 03 9,7 672,0 132 B 0,95 121
1AM 20-60R 150,0 150,0 0,9 3,0 68,0 480,0 01 ] 01 9,7 1198,0 4,4 B 0,98 1,20
AM20-120R 150,0 150,0 0,9 3,0 730 480,0 01 | 01 9,7 1105,0 72 B 0,84 102
AM50-60R 150,0 150,0 0,9 3,0 730 480,0 03 | 03 9,7 800,0 85 B 1,02 131
AM50-120R 150,0 150,0 0,9 3,0 70,0 480,0 03 | 03 9,7 633,0 9,5 B 0,83 108

Table 12.12 Data used for calculations, taken from[30]
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Figure 12.59 The results of calculations plotted in an interaction diagram
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Figure 12.60 The results of cal culations plotted in an interaction diagram
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Figure 12.61 The results of calculations plotted in an interaction diagram
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Figure 12.62 Theresults of calculations by the equilibriummethod compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.63 The results of calculations by the Danish Code of Practice compared with experiments for
eccentrically loaded beamcolumns
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12.13 Cleason, C. 1997

[Test No. b h d/h | 100r i {iy e/h | eyh I/h Negp Un Type | Nep Ne

mml | [mm] [MPa] | [MPd] RNT | [mm] Neo | Nos
1A 120,0 120,0 0,9 3,0 430 684,0 0,2 0,2 20,0 320,0 26,0 B 0,85 0,95
2A 120,0 120,0 0,9 3,0 43,0 684,0 0,2 0,2 20,0 280,0 46,0 B 0,75 0,83
I3A 120,0 120,0 0,9 3,0 86,0 684,0 0,2 0,2 20,0 370,0 36,0 B 0,60 0,69
14A 120,0 120,0 0,9 3,0 86,0 684,0 0,2 0,2 20,0 330,0 47,0 B 054 0,61
5B 200,0 200,0 0,9 2,0 330 636,0 0,1 0,1 15,0 990,0 22,0 B 0,86 1,02
6B 200,0 200,0 0,9 2,0 33,0 636,0 0,1 0,1 15,0 990,0 21,0 B 0,86 1,02
7B 200,0 200,0 0,9 2,0 91,0 636,0 0,1 0,1 150 | 2310,0 | 230 B 0,88 1,05
8B 200,0 200,0 0,9 2,0 92,0 636,0 0,1 0,1 15,0 2350,0 20,0 B 0,89 1,06
9C 200,0 200,0 0,9 2,0 37,0 636,0 0,1 0,1 20,0 900,0 40,0 B 0,82 0,92
10C 200,0 200,0 0,9 2,0 37,0 636,0 01 01 20,0 920,0 36,0 B 084 0,94
11C 200,0 200,0 0,9 2,0 93,0 636,0 0,1 0,1 200 | 1530,0 | 390 B 0,67 0,77
12C 200,0 200,0 0,9 2,0 93,0 636,0 0,1 01 200 | 1560,0 | 41,0 B 0,68 0,78

Table 12.13 Data used for calculations, taken from[31]
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Figure 12.64 The results of cal culations by equilibrium method compared with experiments for eccentrically
|oaded beam-columns
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Figure 12.65 The results of cal culations by the Danish Code of Practice compared with experiments for
eccentrically loaded beamcolumns
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