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2 Summary 

In this paper an investigation of reinforced concrete columns and beam-columns are carried 

out. The theory is general but this investigation is limited to statically determined beam-

columns and certain other special columns. The columns considered correspond to the tests 

reported in the literature. Equation Section (Next) 

 

A linear elastic – perfectly plastic material behaviour of the reinforcement and a parabolic 

material behaviour of the concrete with no tensile strength are assumed. The maximum strain 

of the concrete in compression is limited in the traditional way.  

 

The behaviour of columns and beam-columns are analysed numerically and compared with 

experimental data from the literature. A good agreement has been found. 

 

Further the results of calculations according to the Danish Code of Practice (DS411) have 

been compared with experiments. A good, but a bit conservative, agreement has been found. 

  

The comparison between the two calculation procedures and experiments covers 311 tests of 

which 200 are eccentrically loaded beam-columns, 73 are concentrically loaded columns and 

38 are laterally loaded beam-columns. 

 

A short investigation of the shape of the deflection curve is included in order to justify a 

simplified calculation formula for the deflection in the mid point of the beam. This 

simplification is also used in the Danish Code of Practice. 
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3 Resume 

I nærværende rapport undersøges opførslen af armerede betonsøjler og bjælkesøjler. Teorien 

er generel, men indskrænkes her til at behandle statisk bestemte bjælkesøjler og en række 

specielle søjler. De behandlede søjler svarer til søjler med hvilke der er rapporteret forsøg i 

litteraturen. Equation Section (Next) 

 

Armeringen antages at opføre sig lineærelastisk-ideal plastisk med flydespændingen fy i både 

træk og tryk. Betonen antages at have en parabolsk arbejdskurve i tryk og trækstyrken sættes 

til nul. Den maksimale tøjning for beton i tryk er begrænset på traditionel måde. 

 

På denne baggrund er søjlers opførelse analyseret numerisk og der er foretaget 

sammenligninger med forsøg indsamlet fra litteraturen. Der er fundet god overensstemmelse. 

 

Ydermere er der foretaget beregninger, som baserer sig på metoder i den danske norm for 

betonkonstruktioner, DS411 1999. Sammenligninger med forsøg har vist, at der er god 

overensstemmelse. Beregningsmetoden er lidt på den sikre side. 

 

Fra litteraturen er samlet 311 forsøg, som fordeler sig med 200 forsøg med excentrisk 

normalkraft, 73 med en centralt angribende normalkraft og 38 forsøg hvor der udover en 

central normalkraft er påført en tværbelastning. 

 

Der er i forbindelse med rapporten også foretaget en undersøgelse af udbøjningskurvens form. 

Dette er gjort for at verificere brugen af et simpelt udtryk for udbøjningen i bjælkemidten. 

Denne simplificering bliver også brugt i den danske norm for betonkonstruktioner. 
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5 Notation 

The most commonly used symbols are listed below. Exceptions from the list may appear. 

They will be commented upon in the text. 

 

Geometry Equation Section (Next) 

h Height of a cross-section 

b Width of a cross-section 

k Core radius 

k 
0

0,8 400 c

cr

f
E

−   

A, Ac Area of a cross-section 

As Area of reinforcement at the bottom face 

As’ Area of reinforcement at the top face 

Asc Area of reinforcement in compression 

I Moment of inertia 

i Radius of inertia 

hc Distance from the bottom face to the centre of the bottom reinforcement 

hc’ Distance from the top face to the centre of the top reinforcement 

y0 Distance from the top face to the neutral axis 

l Length of a beam or column 

e Eccentricity 

ei,t Initial eccentricity at top  

ei,b Initial eccentricity at bottom 

u Deflection 

um Deflection in the mid section 

κ Curvature 

κY Curvature when bottom reinforcement yields 

α Parameter of shape 

x, y, z Cartesian coordinates 
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Physic  

k N
EI

  

k 2

cy
l
h

α

ε  
 
 

  

ε Strain 

εc Strain in concrete  

εcy Strain in concrete at the stress fc 

εcu Maximum strain in concrete 

εs Strain in reinforcement 

εsy Yield strain of reinforcement 

σ Stress 

σc Stress in concrete  

σs Stress in reinforcement  

σcr Critical stress (stress in the concrete at failure due to instability) 

σE Critical Euler stress 

fc Compressive strength of concrete 

fy Yield strength of reinforcement 

Es Modulus of elasticity of the reinforcement 

Ec0 Initial modulus of elasticity of the concrete 

Eσ Tangent modulus of concrete 

n Ratio between the stiffness of the reinforcement and the concrete 

ρ Reinforcement ratio 

Φ0 Degree of Reinforcement  

cyεΦ  s s cy

c

A E

bhf

ε
 

Cc Resulting compressive force in concrete  

Cs Resulting compressive force in reinforcement 

T Resulting tensile force in reinforcement 

N Axial load 

Np Maximum compressive load 

Nc Maximum compressive load, concrete only 
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Ncr Critical load (load at failure due to instability) 

M Bending moment 

MY Bending moment when bottom reinforcement yields  

M0 Applied bending moment 

Mp Maximum bending moment 

P Point load 

p Line load 
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6 Introduction 

A column is defined as a structural element loaded by a concentric axial load only. A beam-

column is defined as a beam loaded with axial load and an applied moment, either from an 

eccentrically applied axial load or a transverse load. These structural members may collapse 

due to instability. This type of failure is sudden and therefore very dangerous.  

 

This investigation sets out to analyse columns and beam-columns. It aims to justify present 

design procedures, mainly the procedures used in the Danish Code of Practice, by theoretical 

calculations and by comparing the methods with experiments. These experiments are taken 

from the literature where numerous investigations have been reported.  

 

The paper will be subdivided into two sections. The first one deals with theoretical 

calculations based on the so-called equilibrium method, which to some extent will be 

compared with existing methods. Furthermore some simplified procedures are suggested, 

which may be used instead of the traditional method suggested in the Danish Code of 

Practice. 

In the second section, a comparison with experiments and the equilibrium method and the 

Danish Code of Practice will be presented. This comparison will be subdivided into 3 parts, 

one for concentrically loaded columns, one for eccentrically loaded columns and one for 

laterally loaded columns. Equation Section (Next) 

 

At the end, concluding remarks on the investigation will be presented. 

 



Stability of Concrete Columns 
 

 - 12 - 
 

7 Theory 

7.1 Introduction 

In this chapter a theoretical investigation is made on columns and beam-columns. A column is 

defined as an element loaded by a concentric axial load. Eccentrically loaded elements, 

laterally loaded elements and elements loaded with a combination of these actions are defined 

as beam-columns. Equation Section (Next) 

 

The chapter is subdivided into 3 sections. These sections concern the material behaviour and 

assumptions made in the theoretical analysis, analysis of columns and beam-columns 

respectively.  

Short descriptions of the most common of the existing methods are made in both the second 

and the third section. This is followed by an analysis based on the equilibrium method. This 

method is compared with existing methods for columns and used to analyse the behaviour of 

beam-columns. Furthermore simplified solutions to calculate the moment-curvature 

relationship and the interaction diagram are proposed.  

7.2 Material behaviour, assumptions and definitions 

7.2.1 Material behaviour 

In order to analyse the behaviour of a reinforced concrete column and a beam-column some 

basic assumptions regarding the material behaviour for concrete and reinforcement have to be 

introduced. In this paper effects from unloading and possible subsequent reloading are 

neglected. In some parts of the paper concrete is modelled as a linear elastic material and in 

some parts a more accurate modelling of the actual behaviour is considered. 

Numerous investigations have been made concerning the stress-strain relationship for both 

concrete and reinforcement. In this paper the stress-strain relationship of concrete in 
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compression is assumed parabolic until the maximum strain εcu is reached. The tensile 

strength of concrete is set to zero. The reinforcement is assumed to behave linear elastic-

perfectly plastic in both compression and tension. This is illustrated in Figure 7.1, where only 

the stress-strain relationship for reinforcement in tension is shown. 

 

(fc,εcy) 

    ][ 00
0ε  

σ [MPa] 

εcy=2   εcu=3,5 

 fc 

 

 (fy,εsy) 

    ][ 00
0ε  

σ [MPa] 
 fy 

εsy   
 

Figure 7.1 The assumed material behaviour for concrete and reinforcement 

The variation of the compressive stresses in the concrete is determent by (7.1). 

 2c c
cy cy

f
ε ε

σ
ε ε

 
= −  

 
 (7.1) 

7.2.2 Assumptions 

In the forthcoming analyses of columns and of beam-columns the following assumptions are 

made regarding the behaviour: 

• Plane cross-sections remain plane and normal to the curve of deflection. Thus shear 

strains are neglected (Bernoulli-beam) 

• The strain in the concrete and in the reinforcement is the same. This means that the 

bond between concrete and reinforcement is considered perfect. 

• Transverse bars (stirrups) have no influence on the axial stresses and strains. They are 

supplied to prevent longitudinal reinforcement from buckling and as shear 

reinforcement in beam-columns. 

 

Definitions 

The reinforcement ratio ρ is defined as: 

 
' 's s s s

c

A A A A
A bh

ρ
+ +

= =  (7.2) 

The degree of reinforcement Φ0 is defined as: 
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 0
s y

e c

A f

bh f
Φ =  (7.3) 

Maximum compressive load is defined as: 

 ( ')p c s s yN bhf A A f= + +  (7.4) 

 

h 

hc’  

b 

hc 

As’  

As 

 
Figure 7.2. Cross-section 

The sectional forces are defined as illustrated in Figure 7.3. Thus a positive moment gives 

tensile stresses in the bottom of a beam-column and the axial load is positive in compression. 

Statical equivalence is used to express the sectional forces by the stresses in the section in a 

cross-section. 

 εc 
εcs 

εs 

Cc Cs 

T 

y0 

M N 

σ ε 

he 

hc 

h/2 

 
Figure 7.3. Stress and strain distribution in cross-section analysis 

7.3 Columns 

7.3.1 Existing methods 

In this section some of the existing methods used in stability analysis of concrete columns are 

presented. The methods of interest here are the linear elastic solution and the solutions 

presented by Engesser and Ritter. 
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7.3.1.1 Instability of linear elastic columns 
Instability of linear elastic columns are analysed either by solving the column differential 

equation or by the energy method.  

In Figure 7.4 a simply supported column is shown.  

 

 x 

 u 

N N 

 l 

Positive sign of internal forces: 

N N 

M M V 

V 

Constant EI 

 
Figure 7.4 Simply supported column concentrically loaded 

Moment equilibrium immediately gives: 

 0M N u− ⋅ =  (7.5) 

The bending moment is determined by 2

2

dx
udEIM −= , which inserted in (7.5) gives the 

differential equation: 

 
2

2 0
d u

EI N u
dx

+ ⋅ =  (7.6) 

This is an ordinary homogeneous second order differential equation, which must be solved 

using the boundary conditions. 

 
( 0) 0
( ) 0

u x
u x l

= =
= =

 (7.7) 

It is convenient to introduce a factor k, given by.  

 2 N
k

EI
=  (7.8) 

Equation (7.6) may then be rewritten as: 

 
2

2
2 0

d u
k u

dx
+ ⋅ =  (7.9) 

The complete solution to (7.9) is: 

 cos sinu A kx B kx= ⋅ + ⋅  (7.10) 
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The constants A and B are determined from the boundary conditions and besides the trivial 

solution A = B = 0 the solution to the differential equation requires: 

 K2,1,00sin =⋅+=⇔= nnklkl ππ  (7.11) 

The axial load solutions to this problem are the so-called eigenvalues and the corresponding 

solution u(x) is an eigenfunction. The magnitude of the eigenfunctions can not be determined 

from the differential equation, the only information is the shape. 

The lowest value of N is found for π=kl which gives the well-known Euler equation: 

 2

2

l
EI

N cr

π
=  (7.12) 

As seen from equation (7.12) the load-carrying capacity calculated from the Euler equation 

goes to infinity when 0→l . 

Euler’s equation can only be used if the material has constant modulus of elasticity in the 

entire interval from zero stress to the compressive strength of the material. If the moment of 

inertia varies with x this has to be taken into consideration when solving the differential 

equation (7.9). 

Since all materials have a limited strength, the Euler equation has to be cut off at this strength, 

see Figure 7.5. 

 

 

1 

cr

cf
σ

 

 
Figure 7.5 The Euler curve with a cut off at the compressive strength fc 

The energy method for a column provides a criterion, which determines whether the column 

is stable or not. The criterion for a stable column is: 

 
22

20 0
0 (  positive in compression)

L Ld u du
EI dx N dx    N

dx dx
 − > 
 ∫ ∫  (7.13) 
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Equation (7.13) states that for a stable column, the bending energy for an arbitrary state of 

deflections is larger than the work done by the axial load for the same state of deflections. The 

energy method is equivalent to the equilibrium method. 

7.3.1.2 Inelastic prediction of the critical load 

7.3.1.2.1 Engesser´s first column formula 

A column with non-linear material behaviour belongs to an area in which numerous 

investigations have been made. Engesser stated his first theory in 1890 (see [5]). This theory 

was based on the Euler equation [2], with a modification of the modulus of elasticity. His idea 

was to introduce the tangent modulus of the stress-strain relationship at the current stress 

level, i.e. to use the inclination of the tangent (Eσ) as the elastic modulus of the material, see 

Figure 7.6. Then the critical stress may be calculated by the formula:    

 
2

2
cr

cr
c

N E
A l

i

σπ
σ = =

 
 
 

 (7.14) 

Since this theory does not consider whether a layer in the concrete is reloaded or unloaded, 

Engesser stated a second theory in 1895 taken this into account. He assumed that loaded 

concrete has the stiffness equal to the tangent modulus and unloaded concrete has the initial 

stiffness (the stiffness for σ = 0). Engesser’s second theory thus leads to more complicated 

calculations. In 1946 Shanley [1] proved, by calculations and experimental investigations that 

the critical load is only a little higher than that given by Engesser’s first theory, which was 

shown to furnish the load for which deflections of a perfect column become possible. In 

return, he proved that Engesser’s second theory provided an upper limit for the critical load. 

This suggests that for practical purposes the first theory of Engesser may be used. 

 
E(σ) 

σ 

ε 
 

Figure 7.6. Stress-strain curve for a soft material in general. 

For a parabolic stress-strain relation (illustrated in Figure 7.1) the stiffness is determined by: 
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 0 1
c

E E
fσ

σ
= −  (7.15) 

If equation (7.15) is inserted into equation (7.14) and the equation is solved for the critical 

stress, equation (7.16) is obtained.  

 
2

1
4

2
cr E E E

c c c cf f f f
σ σ σ σ   = + −    

 (7.16) 

where 
2

0
2E

E

l
i

π
σ =

 
 
 

 

A simple way of including the influence of the reinforcement is to assume that the concrete 

determines the critical stress and the contribution from the reinforcement are calculated on the 

basis of this critical stress. This means that the critical load for the column in general should 

be calculated as: 

 cr cr s sN bh Aσ σ= +  (7.17) 

This simplification leads to an underestimation of the critical stress since the stiffness of the 

reinforced column is higher than the stiffness of the unreinforced column. 

If the yielding of the reinforcement is included, formula (7.17) may be written as: 

 
( )1

min cr
cr

cr s y

bh n
N

bh A f
σ ρ
σ

+=  +
 (7.18) 

where As is the entire area of reinforcement and n is the ratio Es/500fc. The ratio n could also 

have been calculated as σs/σcr. This is not done since an equal way of introducing the 

reinforcement is preferred. 

7.3.1.2.2 Ritter’s column formula 

Equation (7.16) is, in terms of history, considered complicated because it contains a square 

root. This led to the simplification made by Ritter. 

The Ritter equation is also derived from the Euler equation by assuming a stiffness-stress 

relation for concrete as: 

 0 1c
c

E E
fσ

σ 
= − 

 
 (7.19) 

The difference between the Ritter stiffness and the stiffness corresponding to a parabolic 

stress-strain curve is illustrated in Figure 7.7. It is seen that the simplification used by Ritter is 

conservative.  
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Figure 7.7. Stifness-stress relations as described by (7.19) and (7.15). 

Inserting the Ritter stiffness into Eulers column formula leads to the Ritter column formula: 

 , 2

2
0

1

c
cr Ritter

c

c

f

f l
E i

σ

π

=
 +   

 (7.20) 

Results of calculations from Ritter’s as well as Engesser’s column formula are shown in 

Figure 7.8 for two different initial module of elasticity.  
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Figure 7.8. Critical stress for εcy=0,2%.  

The reinforcement is included in the same way as for Engesser’s formula, i.e.: 

 
( )1

min cr
cr

cr s y

bh n
N

bh A f
σ ρ
σ

+=  +
 (7.21) 

where As also denotes the entire area of reinforcement. 

According to [27] the modular ratio may approximated by: 

 
500

s

c

E
n

f
=  (7.22) 

Under the assumption of a parabolic stress-strain relation the secant modulus of elasticity 

corresponds to an arbitrary strain ε is: 

 
( )

, 2

2 cy c
sek

cy

f
Eσ

ε ε

ε

−
=  (7.23) 

The modular ratio then becomes: 

 ( )
2

2
s cy

cy c

E
n

f

ε

ε ε
=

−
 (7.24) 

It appears that the modular ratio depends on the strain at the critical load. It also appears that 

if failure occurs at a strain close to the strain corresponding to maximum concrete stress (ε = 

εcy = 0,2%) the two formulas ((7.22) and (7.24)) are identical.  
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For a critical load leading to a strain lower than the strain at maximum concrete stress, the 

simple formula (7.22) overestimates the modular ratio. This means that the contribution from 

the reinforcement is overestimated. However, in [27] this overestimation of the stress in the 

reinforcement is considered compensated by the underestimation of the stiffness when 

determining the critical stress. This is confirmed by the numerical calculations carried out 

later on. 

7.3.2 Danish Code of Practice, DS411 

In the Danish Code of Practice, DS411, the procedure for calculating the load-carrying 

capacity of columns is based on the critical stress calculated by Ritter’s equation.  

 , 2

2
0

1

c
cr Ritter

c

cr

f

f l
E i

σ

π

=
 +   

 (7.25) 

where  

 0

1000
min

0,75 51000
13

c

cr c

c

f
E f

f


=  ⋅ +

 (7.26) 

The reinforcement is included as described previously,  

 
( )1

min cr c
cr

cr c y sc

A n
N

A f A
σ ρ
σ

+=  +
 (7.27) 

where Asc is the area of the longitudinal reinforcement and 
500

s

c

E
n

f
= .  

7.3.3 The equilibrium method 

For columns made of materials with softening the load-carrying capacity may be reached long 

before failure in the critical section. Thus the load-carrying capacity must be determined by a 

maximum condition. This method normally used for beam-columns may also be used for 

concentrically loaded columns. In this paper this method is named the equilibrium method. 

For a column simply supported at both ends the maximum deflection in the mid point may be 

determined as: 

 2
max

1
u lκ

α
=  (7.28) 

where κ is the curvature in the mid point and α is a form parameter dependent on the 

curvature function along the column. 
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Figure 7.9. Stresses and strains in a cross-section. 

Cross-section analysis is carried out expressing statical equivalence between sectional forces 

(stress resultants) and stresses. 

The equations of statical equivalence for an unreinforced column with a rectangular cross-

section and with a maximum deflection determined by (7.28) (see Figure 7.9) are: 

Projection equation: 

 

( )( ) ( )( )

0

0 0 0

2
2 32 3

0 0 0 02 2
0 0

2

1
3

y

c c cy c cyy h

c c
c c

cy cy

y y
N b f

y y

N b f y y h f y y h
y y

ε ε ε ε

ε ε
ε ε

−

 
= − 
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∫
 (7.29) 

Moment equation: 
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∫
 (7.30) 

The moment in the mid point is: 

 21
M Nu N lκ

α
= =  (7.31) 

Combining(7.29), (7.30) and (7.31) leads to a determination of εc: 

 

( )
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20 0 0 0 0 0

c
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(7.32) 

where 2

cy

k
l
h

α

ε
=
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Inserting (7.32) into (7.29) leads to a determination of the axial load as a function of y0. By 

letting y0 go towards infinity the maximum axial load may be found. This is equivalent to 

letting the deflection go towards zero and furnishes a limiting criterion of stability since the 

column is no longer deflected, and the maximum load is therefore the same as the critical load 

for which deflection becomes possible. The critical load is found to be:  

 2
2

1
1

6 12
cr

c

N k
k k

bhf

 
= − −  

 
 (7.33) 

and the critical stress is:  

 2
2

1
1

6 12
cr

c

k
k k

f
σ  

= − −  
 

 (7.34) 

By comparing (7.34) with (7.16) it is seen that the critical stress found by Engesser´s column 

formula and the critical stress found by the statical equivalence method are identical if α = π2. 

Normally α is set to 10, as suggested in [27]. 

If the curvature is constant α = 8, and if the curvature is parabolic α= 9,6. The influence of α 

is illustrated in Figure 7.10. 
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Figure 7.10. Results from calculations εcy=0,2%. 



Stability of Concrete Columns 
 

 - 24 - 
 

Reinforcement may be taken into account as described previously. The equilibrium condition 

depends on whether yielding occurs in the reinforcement or not. This leads to three different 

cases.  

 

 No yielding  Yielding 

Case 37                   Case 38                 Case 39  

 
Figure 7.11. Illustration of three different cases with and without yielding in the reinforcement. Regarding the 

nubering af cases, see Figure 7.27  

The three formulas, and their limitations, are determined for the column with a rectangular 

cross-section shown in Figure 7.12. The calculations may be done analytically as in the case 

of an unreinforced cross-section. 

 

h 

hc’ =hc 

b 

hc 

sA
bh

ρ =
As’ =As 

As 

 
Figure 7.12.Cross-section of the column used in the calculations. 

If it is assumed that hc’= hc and As’= As the following results are found: 
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1 1 11 1 2 2
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 (7.38) 
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where 
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s s cy

c

A E

bhfε

ε
Φ =  and 2

cy

k
l
h

α

ε
=

 
 
 

 

In Figure 7.13 the results of the calculations are shown for fy=200 MPa. Np is defined in 

section 7.2.  

From Figure 7.13 it appears that a horizontal line governs the load-carrying capacity in a 

small l/h-interval. Above this line the column formula valid for yielding of all reinforcement 

bars (formula (7.40)) is used and below the column formula valid for no yielding in all 

reinforcement bars (formula (7.38)) is used. The column formula found for yielding only in 

the top reinforcement bars (formula (7.39)) results in the horizontal part.  
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Figure 7.13. Results from calculations for α=8, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=5MPa, 

fy=200MPa,Φ0=0,10, h c/h=0,15.  

As illustrated in Figure 7.14, formula (7.38) is the only formula used if fy>400 MPa. With a 

modulus of elasticity of 2⋅105 MPa for the reinforcement, this means that the yield strain for 

the reinforcement is the same as, or higher than, the strain a maximum concrete stress 
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(εcy=0,2%). In general the presence of a horizontal part only depends on whether the yield 

strain for the reinforcement is higher than the strain at maximum concrete stress or not.  
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Figure 7.14 Results for α=8, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=5MPa, f y=400MPa,Φ0=0,10, 

hc/h=0,15. 

The “width” of the horizontal part depends mainly on the degree of reinforcement as may be 

seen by comparing Figure 7.15 with Figure 7.13 where only the degree of reinforcement is 

varied. This is as expected since the horizontal part originates from yielding or no yielding of 

the reinforcement. 
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Figure 7.15 Results for α=8, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=5MPa, f y=200MPa,Φ0=0,20, 

hc/h=0,15. 

As seen in Figure 7.13, Figure 7.14 and Figure 7.15 there are regions where Ritter´s modified 

column formula overestimates the critical load. This is the case for columns with a l/h-ratio 

higher than 40. However, these plots are for a concrete strength of 5 MPa. From Figure 7.16 it 

appears that there is no overestimation for higher strengths of concrete (in this case 35MPa). 
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Figure 7.16 Results for α=8, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=35MPa, fy=400MPa,Φ0=0,10, 

hc/h=0,15. 

The calculations are made under the assumption that the strain at maximum concrete stress 

remains constant at 0,2%, independently of the compressive strength. This means that the 

modulus of elasticity changes as a function of the compressive strength. As the strength 

increases the error in the formula used to express the modulus of elasticity in the Ritter 

column formula (see section 7.3.1.2.2) gets more pronounced. 

In Figure 7.13 to Figure 7.16 α is set to 8. As described in section 7.4.4 α = 8 is a 

conservative value and normally α is set at 10. If α is set at 10 the critical load found by the 

equilibrium formulas is almost the same at the critical load found by the modified Engesser 

formula. This may be seen in Figure 7.17. 
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Figure 7.17. Results for α=10, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=35MPa, fy=400MPa,Φ0=0,10, 

hc/h=0,15 

An interesting result of the equilibrium formulas is found where the yield strain of the 

reinforcement is high and when the case 37 of Figure 7.11 is used for all slenderness ratios. In 

this situation the highest critical load is found for a column with a slenderness ratio different 

from zero. This is illustrated in Figure 7.18. It appears that the maximum critical load in the 

case considered is found for l/h ≈6. The explanation is the following: The strain is decreasing 

as the slenderness ratio increases at all times as shown in Figure 7.19. However, since the 

strain is larger than the yield strain for the concrete for small slenderness ratios the 

contribution from the concrete to the load-carrying capacity does not decrease with an 

increasing slenderness ratio. Maximum concrete contribution is of course found where the 

critical strain equals the strain at maximum concrete and when combined with the 

contribution from the reinforcement it is evident that maximum is found for a slenderness 

ratio different from zero. 
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Figure 7.18 Results for α=10, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=15MPa, fy=500MPa,Φ0=0,20, 

hc/h=0,15. 
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Figure 7.19 Results for α=10, b=250mm, h=250, Es=2⋅105MPa, εcy=0,2%, fc=15MPa, fy=500MPa,Φ0=0,20, 

hc/h=0,15. 
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7.4 Beam-columns 

7.4.1 Existing methods 

7.4.1.1 Stability of linear elastic beam-columns 
In this section, the solution of the linear elastic problem for beam-columns is briefly 

introduced. The load carrying capacity for beam-columns loaded with an eccentric axial load 

and concentrically axial load along with lateral loading will be derived. These two cases are 

treated by the equilibrium method. 

 x 

 u 

N N 

 l 

e 

 
Figure 7.20 Statical system of an eccentrically loaded beam-column   

The equilibrium equation for the deflected beam-column loaded with an eccentric axial load 

becomes: 

 0 0M M N u− − ⋅ =  (7.41) 

where M0 = Ne. With 2

2

dx
udEIM −=  we get 

 ( )
2

2 0
d u

EI N u e
dx

+ ⋅ + =  (7.42) 

This is an inhomogeneous second order differential equation, which must be solved with the 

boundary conditions, 

 
( 0) 0
( ) 0

u x
u x l

= =
= =

 (7.43) 

The complete solution is a sum of the homogeneous and one inhomogeneous solution.  

Equation (7.42) may be rewritten as: 

 ( )
2

2
2 0

d u
k u e

dx
+ ⋅ + =  (7.44) 

The solution of (7.44) is: 

 sin cosu A kx B kx e= ⋅ + ⋅ +  (7.45) 
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The constants A and B are determined from the boundary conditions. This gives the following 

values for A and B. 

 0 and 
sin

e
B A

kl
= =  (7.46) 

When (7.46) is inserted into (7.45) equation (7.45), the latter equation with some geometric 

substitutions are made, becomes: 

 ( ) cos cos
2 2cos

2

e kl kl
u x kx

kl
  = − −    

 (7.47) 

The maximum deflection is obtained for x = l/2 

 
2

1 cos
2cos

2

lx

e klu
kl = 

 

 = −  
 (7.48) 

When this solution is inserted into the equilibrium equation the combinations of N and M, 

which the beam can carry, may be determined. 

 

 x 
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Figure 7.21.Beam-column with lateral load. 

For beam-columns with lateral load and a concentrically axial load, the procedure is the same 

as above. The differential equation is found to be: 

 
4 2

4 2

d u d u
EI N p

dx dx
+ =  (7.49) 

The complete solution is: 

 
2

sin cos
2
px

u A kx B kx Cx D
N

= ⋅ + ⋅ + + +  (7.50) 

The constants A, B, C and D are found from the boundary conditions 
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 (7.51) 

The deflection is at maximum in the mid point due to symmetry. The magnitude is determined 

by: 
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 (7.52) 

It is seen from equation (7.52) that the deflection is equal to the deflection for the laterally 

loaded beam multiplied by a factor. For further details see [3] and [5].  

7.4.2 Danish Code of Practice, DS411 

In DS411 “Method I” is valid for calculation of the load-carrying capacity of beam-columns. 

This method is based on a linear elastic material behaviour for concrete in compression with a 

modulus of elasticity for section analysis equal to 500fc. The maximum compressive stress is 

given by equation (7.53) 

 *
,min

1,25

1,25 1 0, 2

c

c c
c

c

f

f
f

f
σ


=   − 

 

 (7.53) 

The maximum stress in the concrete in the case of cracked cross-section is determined by the 

upper equation in (7.53). When the entire cross-section is in compression the maximum stress 

is determined by the lower equation in (7.53). 

Based on the assumptions stated above a cross-section analysis is performed and based on the 

stress state the deflection is calculated as: 

 ,max ,min 21
10

c c

cr

u l
E h

σ σ−
=

∆
 (7.54) 

where σc,min is set equal to zero when the cross-section is cracked and h∆  is the distance 

between the levels of the section with the stresses σc,max and σc,min, respectively. To include 

the non-linear behaviour of the concrete a modulus of elasticity (Ecr), which vary with the 

stress state, is introduced. This is calculated as: 

 ( ),max ,min
01 1c c

cr cr
c c

E k k E
f f

σ σ 
= − − − 

 
 (7.55) 
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where 
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0,8 400 c

cr
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= −  (7.56) 

and 
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c

cr

f
E

E


= 


 (7.57) 

This modulus of elasticity is only used for the calculation of deflections. 

The calculations using this method are compared with the equilibrium method in Figure 7.22. 

The equilibrium method is described in the next section. 

 
Figure 7.22 The Danish Code of Practice method compared with the equilibrium method  

The agreement is seen to be good. 

 

In the Danish Code of Practice, another method is suggested. This method is referred to as 

“Method II”. The procedure is to calculate the maximum moment and axial load from a cross-

section analysis, where the stress block of the concrete is a square with the maximum stress 

equal to fc and the extent of 4/5 y0. From this, the load-carrying capacity is calculated from the 

equilibrium equation with the deflection set as 

 21 cu sy

e

u l
h

ε ε

α

+
=  (7.58) 
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The deflection calculation assumes that the reinforcement yields. The deflection obtained 

from equation (7.58) is often conservative, however in the case of columns where material 

failure determines the load carrying capacity it is a good approximation.  

In Figure 7.23, Method I and Method II are compared with the statical equivalence method. 

The calculations are made for a rectangular cross-section where h = b = 250 mm, hc’ = hc = 

20 mm, As = As’ = 2
42 16π , fy = 500 MPa, fc = 20 MPa and l/h=10. 

 
Figure 7.23 Calculation made by the theory using parabolic stress block, Method I and Method II 

It is seen that if M0/M0p = 1,5 the maximum axial load obtained by using Method I is 0,2 Np 

and 0,4 Np by using Method II. This means using Method II leads to an increase of 50 % in 

load-carrying capacity.  

However, as the slenderness is increased Method II becomes conservative as illustrated in 

Figure 7.24. 



Stability of Concrete Columns 
 

 - 36 - 
 

 
Figure 7.24 Calculations for l/h=10, 20, 30 and 40 

7.4.3 Moment-curvature relation 

To describe the behaviour of a beam-column one needs the moment curvature relationship. 

The load-carrying capacity for a given axial load may either be determined from the moment 

– curvature diagram or from an applied mo ment – curvature diagram.  

For a columns with a given length, loaded with a given axial load, the right-hand side of the 

equilibrium equation, (7.59),  

 0M M Nu= +  (7.59) 

for a deflected beam element may be plotted as a straight line in the moment curvature 

diagram. The inclination of the line is proportional to the axial load. The intersection points of 

the straight line and the moment-curvature relationship determine the deflections possible for 

a given load. Thus the whole curve showing the applied mome nt, M0, as a function of the 

curvature may be constructed as shown in Figure 7.25. It is seen that the maximum applied 

moment corresponds to the point where the straight line is a tangent to the moment-curvature 

diagram. In the case shown in Figure 7.25 the maximum load corresponds to the point where 

yielding in the bottom reinforcement begins. Another case is illustrated in Figure 7.26 where 

maximum load is found before yielding in the bottom reinforcement begins. The transition 

point between the two cases corresponds to a change from case 31 to 32. The case numbers 

are shown in Figure 7.27. 
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The situation shown in Figure 7.26 only occurs for slender beam-columns. Figure 7.26 has 

been drawn for a length-height ratio of 35. 
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Figure 7.25. Moment versus curvature and applied moment, M0, versus curvature. 

Figure 7.25 also shows that the straight line may intersect the moment curvature diagram in 

two points, which enables the applied moment variation with the curvature to have a 

downward section as shown in Figure 7.25 (right hand side of the figure). Furthermore, this 

means that the beam-column is stable for curvatures smaller than or equal to the curvature 

corresponding to the point where the straight line is a tangent to the moment curvature 

diagram. For other applied loads, the beam-column is unstable.  

The combinations of M0 and N, corresponding to critical loads of the beam, are most easily 

found from the applied moment curvature relationship. For one level of the axial load, a 

unique M0 –κ-relationship exists and the maximum of this curve is the critical combination of 

N and M0. 
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Figure 7.26 Moment versus curvature and applied moment versus curvature. 
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Figure 7.27 The moment curvature relationship is based on nine cross-section analyses. 

l/h=35 
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Cross-section analysis is carried out expressing statical equivalence between the sectional 

forces (stress resultants) and the stresses. 

The different situations are shown in Figure 7.27, where the cases are numbered from 31 to 

39.   

The procedure in each case is for a certain axial load and concrete strain to find the distance 

from the top face of the cross-section to the neutral axis (y0) by solving the projection 

equation and then calculate the moment and the curvature. 

The case 31 is shown in Figure 7.28, with the notation used.       
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Figure 7.28 Stress and the strain distribution in cross-section analysis 

The variation of the stresses and the strains is described in section 7.2. 
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By solving these equations for the nine cases the M-κ  relationship and the M0 -κ  relationship 

may be obtained for a specific beam-column. 

In the following the data listed in Table 7.1 are used if nothing else is noted. 

In Figure 7.29 the M-κ -relationship is shown. The dependency of the degree of reinforcement 

ratio, the compressive strength and the yield strength can be seen in Figure 7.29. 

 

b h hc l fc εcy fy Φ0 

[mm] [mm] [mm] [mm] [MPa] [ 00
0 ] [MPa] [] 

250 250 20 3000 15 2 300 0.05 

Table 7.1. The data used in present calculations if other values are not listed.  

The value of the axial load used in Figure 7.29 is 2/9 Np.  
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 fc = 20 MPa 

 

 fy = 200 MPa 
 fy = 400 MPa 
 fy = 600 MPa 
 fy = 800 MPa 

 
Figure 7.29  Moment curvature relationship when the degree of reinforcement, the compressive strength and the 

yield strength are varied. Normal force 2/9 Np 

In Figure 7.30 and Figure 7.31, the data as listed in Table 7.1 are used to illustrate the 

variation of the M-κ  relationship and M0-κ  relationship for different axial loads: 
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Figure 7.30 Moment-curvature relationship for different axial loads 
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Figure 7.31 Applied moment-curvature relationship for the same axial loads as in Figure 7.30 
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pN
N  

M-interval in kNm Case 

0 200 ≤≤ M  

20≥M  

31 

32 

9
1

 
100 ≤≤ M  

4010 ≤≤ M  

40≥M  

37 

31 

32 and 34 

9
2

 
200 ≤≤ M  

5820 ≤≤ M  

6058 ≤≤ M  

60≥M  

37 

31 

32 

32 and 34 

9
3

 
290 ≤≤ M  

6529 ≤≤ M  

65≥M  

37 

31 

34 and 36 

9
4

 
380 ≤≤ M  

6038 ≤≤ M  

60≥M  

37 

31 

36 

9
5

 
450 ≤≤ M  

5145 ≤≤ M  

51≥M  

37 

31 

36  

9
6

 
350 ≤≤ M  

35≥M  

37 

36 and 38 

9
7

 
120 ≤≤ M  

12≥M  

37 

37 and 38 

9
8

 
70 ≤≤ M  

7≥M  

37 and 38 

38 

Table 7.2 The situations for which the moment curvature relationship is calculated 

Table 7.2 shows that a great variety of N levels may be described by the same cases. All 

curves in Figure 7.30 except for N = 0 starts in situation 37, where the entire cross section is 

in compression, then the case changes to one of the cases where the compression zone is 

smaller than the depth of the cross section. For 
9
5

≤
pN

N  the case after 37 is 31 (dependent on 

the degree of reinforcement). For N larger than this level the case will be 36 since the axial 
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load is large and therefore the top face reinforcement yields (also dependent on the 

reinforcement ratio). The moment-curvature relationship changes its shape for an N level 

above 3/9. At this level the compressive reinforcement begins to yield before the tension 

reinforcement yields indicating that the depth of the cracked part of the cross section is 

reduced. After this level there is no slope discontinuity in the moment-curvature relation. 

7.4.4 Deflection shape and comparison with simplified method 

Up to now the mid point deflection has been calculated as 

 21
mu lκ

α
=  (7.60) 

In this section, an analysis of the deflection of the entire beam-column is carried out. This 

analysis is made for an eccentrically loaded beam-column simply supported at both ends. 

The analysis is done iteratively by subdividing the beam into smaller sections. In Figure 7.32 

the procedure is illustrated by a flow diagram.  

N is given 
  

 umid is given 

Calculate the deflection for each point until the end point is 
reached 

  Evaluate if uend<0  

 if not-increase umid  if uend>0 
   
  Evaluate if umid is increasing 

  if not => FALIURE  if umid is increasing 

N and the data for the deformation points are valid 

Increase N 
 

Figure 7.32. Flow diagram for deflection calculations. 

As seen, the deflection is found by varying the axial load until failure occurs. The deflections 

are calculated from the midpoint towards the end. The deflection in the midpoint is increased 

gradually until the deflection at the end points are zero, unless an increase in the midpoint 

deflection does not lead to an increase of the end point deflections. If an increase in the 
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midpoint deflection does not lead to an increase in the end point deflections the beam-column 

will fail at the corresponding value of the axial load2. 

The deflection has been calculated assuming each beam section to have constant curvature. 

 

ui-1 
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∆l 
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1 1 1

1 1
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'
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' '
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u u l u l

u l u

κ
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− −

= − ∆ − ∆

= ∆ +

 
Figure 7.33. Calculation of deflections. 

In Figure 7.34 plots of the calculations are shown for two beam-columns with different 

lengths. These plots show the variation of the curvature (the plots on the left) and the 

deflection along the beam-column (to the right). For the two plots showing the variation of the 

curvature, lines of constant curvature and lines of a triangular curvature are shown. If the 

curvature is constant α in (7.60) is 8 and for triangular one α is12.  

                                                 
2 This corresponds to accelerations perpendicular to the beam axis 
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Figure 7.34. Left: Curvature as a function of the length (measured from the midpoint of the beam-column).Right: 

Deflection  as a function of the length for two beam-columns. The plots in the top are for a beam-column with a 

total length of 4000mm and the plots in the bottom are for a beam-column with a total length of 2000mm .They 

both have a cross-section of 100x100mm2, As=A’s=50mm2, hc=h’c=10mm, e=50mm ,fc=30MPa ,fy=400MPa and 

εcy=0,2%. 

As seen the curvature found from a more thorough analysis, is somewhere between constant 

and triangular. The beam-column with a length of 2000mm (the bottom) is seen to be closer 

to a constant curvature (α=8) than the beam-column with the length of 4000mm. This is as 

expected since a short beam-column will have almost a constant curvature and a long beam-

column will have an almost triangular variation of the curvature. A long eccentrically loaded 

column actually has a curvature variation, which may be described as a combination of a 

constant and a sine-function as for linear elastic beam-columns, since the concrete will behave 

almost linear elastic in this case. 

 

Although the plots are only valid for two beam-columns the behaviour is the same for any 

beam-column.  

end end mid mid x [mm] x [mm] 

u [mm] 

u [mm] κ 10−6 [mm-1] 

κ 10−6 [mm-1] 
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No quantitative evaluation of the error made by using (7.60) and α = 10 is made in this paper. 

Such an evaluation would depend on many geometrical and physical parameters and the form 

of loading. It is believed that the error is of minor importance. 

 

The procedure described above may also be used to determine the behaviour of a beam-

column when proportionally loaded. In Figure 7.35 the calculations are compared with 

measured load deflection curves. The main data are given in Table 7.3. In these plots both the 

model taking into account the actual variation of the curvature (solid) and the simplified 

model (dashed) with α = 10 are plotted.  

Results are also shown from some of the test described in section 12.5. In some of these tests 

load cycles with loading and unloading have been applied. The main data of the tests are also 

given in Table 7.3. 
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Figure 7.35.Results of calculations plotted along with measurements for beam-column I_5, II_4, II_5, III_1, 

III_2, III_3, III_4 (in that order) taken from [17]. The x-axis shows the deflection in the midpoint in mm and the 

y-axis is the axial load in N. 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 

N 104 [N] 

u [mm] 
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  I_5 II_4 II_5 III_1 III_2 III_3 III_4 

Age [days] 22 11 3 25 25 25 15 

L [mm] 2940 2940 2940 3540 3540 3540 3540 

b [mm] 154 154 154 154 154 154 154 

h [mm] 100 100 100 100 100 100 100 

e [mm] 20 50 50 50 50 50 50 

hc=hc'= [mm] 12,5 12,5 12,5 12,5 12,5 12,5 12,5 

Wn
* [kg/cm2] 327,0 307,0 322,0 335,0 292,0 290,0 396,0 

Conversion factor** [] 0,80 0,80 0,80 0,80 0,80 0,80 0,80 

fc [MPa] 25,7 24,1 25,3 26,3 22,9 22,8 31,1 

εcy [0/00] 2,0 2,0 2,0 2,0 2,0 2,0 2,0 

fy [kg/cm2] 2942,3 2787,5 2776,3 3332,5 3320,0 3325,0 3333,0 

fy [MPa] 288,6 273,5 272,4 326,9 325,7 326,2 327,0 

As= As'= [mm2] 77,0 77,0 77,0 77,0 77,0 77,0 77,0 

As/Ac [%] 1,0 1,0 1,0 1,0 1,0 1,0 1,0 
* Wn is the compressive strength of a cube 200x200x200mm3. 
** The conversion factor is the relation between the cube strength and the cylinder strength. 
Table 7.3. Main data for the beam-column tests in [17]  

The predictions of the behaviour of the beam-columns show good agreement with the 

measurements. It is seen that the model accurately taking into account the variation of the 

curvature along the beam column overestimates the deflection for low axial load. This is as 

expected since the model neglects the tensile strength of concrete, which has a significant 

influence for low axial load. 

 

The calculations and the comparisons with test demonstrates that the simplified model is 

sufficiently accurate for the analysis in this paper and for practical purposes.  

 

7.4.5 Simplification of the moment-curvature relationship 

Since the detailed calculation of the moment-curvature relation for a beam-column is not 

suitable for practical design a simplification is desired. The simplification suggested here 
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consist of choosing a few characteristic points on the curve and then simplifying the curve 

with straight lines through the characteristic points.  

In Figure 7.36, the moment-curvature relation is plotted along with some important point 

related to the cases in Figure 7.27.  
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Figure 7.36. Moment-curvature relation and transition points for the different cases (see Figure 7.27). 

From Figure 7.36 it is seen that the points of interest are the transition points between the 

following cases. 

31/32  yielding in the bottom  

31/32 à 32/34 yielding in the bottom à yielding in both top and bottom 

31/36  yielding in the top  

37/38 à 38/36 yielding in the top à y0<h 

37/38  yielding in the top 

Figure 7.36 shows that the peak of the moment-curvature diagram is reached where yielding 

occurs in the bottom for low axial loads and in the top for high axial loads. A distinction 

between a low and a high axial load may be found by considering the situation where yielding 

in both top and bottom occurs simultaneously. It is seen, that the plot for N/Np=0,3 has a small 

flat part. If the axial load is increased, this flat part will narrow into a point. This is the point 

where yielding occurs in the top and the bottom simultaneously. 
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For high axial loads, a straight line from the origin to the peak is a good approximation to of 

the curve. The curve after the peak is of no importance since the intersection with the straight 

load line always takes place before or at the peak. In Figure 7.36, the criterion for high axial 

load would be that N is larger than approximately 0,7Np. In general terms this is the axial load 

for which the moment calculated by assuming yielding in the top in the uncracked state 

(y0>h) is larger than the moment calculated by assuming yielding in the top in the cracked 

state (y0<h).  

For axial loads lower than this level, a calculation of a second point is needed in order to have 

a good approximation. It is obvious that an important situation is the transition from the 

uncracked to the cracked cross-section. In addition, the situation where the bottom 

reinforcement changes from tension to compression is of interest. The points marking these 

situations are shown in Figure 7.37. 
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Figure 7.37. Moment- curvature relation and transition points. 

The point corresponding to zero stress in the bottom reinforcement seems to be the best point 

to choose. Of course, the approximation is improved if several points are used, but it is 

believed that two points are sufficient.  

In Figure 7.38 and Figure 7.39, the simplified moment-curvature relations are shown for 

different axial loads.  
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Figure 7.38. Moment-curvature relations and simplified moment-curvature relations for low axial loads. 
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Figure 7.39. Moment-curvature relations and simplified moment-curvature relations for high axial loads. 

The simplified moment-curvature relation is used in stead of the correct one as explained 

previously. Thus the maximum value of the applied moment may be determined for a given 
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axial load. Examples are shown in Figure 7.40 to Figure 7.43 where calculations are presented 

for two different l/h-ratios and various levels of axial load. 
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Figure 7.40. Moment-curvature relations (simplified and not simplified) and applied moment-curvature relations 

(simplified and not simplified). 
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Figure 7.41. Moment-curvature relations (simplified and not simplified) and applied moment-curvature relations 

(simplified and not simplified). 
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Figure 7.42. Moment-curvature relations (simplified and not simplified) and applied moment-curvature relations 

(simplified and not simplified). 
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Figure 7.43. Moment-curvature relations (simplified and not simplified) and applied moment-curvature relations 

(simplified and not simplified). 
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It appears that the point calculated for zero stress in the bottom reinforcement becomes 

critical as the slenderness increases.  

The accuracy of the proposed approximation seems to be sufficient for most practical 

purposes. 

7.4.6 Interaction diagrams 

In practice a beam-column is often subjected to different levels of axial load and applied 

moment. Therefore, it is convenient if an interaction curve for axial load versus applied 

moment is available. Such curves may be established by calculating the maximum applied 

moment for an adequate number of axial loads. 

The load-carrying capacity is influenced by the degree of reinforcement and the slenderness 

ratio, see Figure 7.44 and Figure 7.45. 

In Figure 7.44 the length, l, is small so instability is of no importance for the load-carrying 

capacity.  

 

N/Np 

05.0=Φ
10.0=Φ
15.0=Φ
20.0=Φ

 
Figure 7.44 Influence of the degree of reinforcement. Other data as in Table 7.1 

Figure 7.44 shows that the effect of axial load on the load-carrying capacity is pronounced for 

low degrees of reinforcement.  
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Figure 7.45 Influence of the slenderness ratio. Other data as in Table 7.1. 

Figure 7.45, which has been calculated for Φ0 = 0.05, shows that the load carrying-capacity is 

also strongly influenced by the slenderness ratio. A radical change in the form of the 

interaction diagram takes place when the beam-column becomes slender (see for example the 

curve drawn for l/h = 30).  

The interaction diagrams in Figure 7.45 are not convex. A convex curve is a curve, which 

intersects a straight line in only two points. Otherwise the curve is non-convex see Figure 

7.46. 

 
N 

M0 

Non-convex 
points 

N 

M0 

Convex curve 

 
Figure 7.46. Non-convex and convex curves 

7.4.7 Simplification of interaction diagrams 

The method described above is only suitable for calculations on a computer. For design 

purposes, a hand calculation method may be desirable. This section sets out to establish a 
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simplified interaction diagram based on a parabolic stress-strain relationship as above. Further 

simplifications are made in section 7.4.8. 

 

When establishing a simplified interaction diagram it may be of interest to notice, that, since 

the moment-curvature relation is a convex curve, a point different from the correct 

intersection point may always be used to determine the applied moment. This is illustrated in 

Figure 7.47. 

 

Chosen intersection point 
Correct intersection point M0 correct 

M0 calc 

M  

κ  

 

 
Figure 7.47. Choice of a safe intersection point. 

From Figure 7.47, it appears that a calculation of the applied moment from a point different 

from the correct tangent point always leads to a lover value of the applied load.  

This theorem is useful when it comes to determine the interaction diagram. The points used in 

the calculations do not necessarily have to be the tangent points.  

 

Further simplifications are made by studying moment-curvature relations for a beam-column 

such as the ones illustrated in Figure 7.48. It is seen that for axial loads lower than 

approximately 0,3 Np there is an almost straight part on the curves. The first assumption made 

is that this part is a straight line and the second assumption is that the straight parts for each 

level of axial load are parallel, cf. Figure 7.48. 
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Figure 7.48. Moment-curvature relations. 

As seen these simplifications are fairly accurate until the axial load reaches a certain level. 

This level may be determined by considering the situation where the yield strain is reached at 

the bottom as well as at the top.  

Consider first the situation where the axial load is low (say lower than 0,3 N/Np). In this case 

the inclination of the straight part may be set equal to the inclination of the curve valid for 

pure bending. It appears from Figure 7.49, that the inclination of the line a and the inclination 

of the line b is the same and may be calculated as: 

 
( )
( )

0
0

Y

Y

M NdM
d Nκ κ

=
=

=
 (7.61) 

Here (κY,MY) is the point where the yield strain is reached at the bottom. 

In Figure 7.49 the line (1) and the line (2) are two load lines for a given beam-column and a 

given axial load. Since the deflection may be calculated from the curvature in the mid point, 

the inclination of the load curve may be found as: 

 21dM
N l

dκ α
=  (7.62) 

If the moment-curvature relation is given by the line a or the lines b and c, there is one level 

of axial load where the inclination of the load lines are the same as the inclination of the line 

b. In this situation, the applied moment may be found by using any point on the line b. For a 
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slightly higher axial load, the applied moment is found using point A and for an 

infinitesimally lower axial load, the applied load is found using point B.  

Point A and B changes along with the axial load. However, since the inclination of the line 

between these points is constant the applied moment for a steep load line (1) is determined by 

the A-point and the specific axial load and the specific length of the beam-column.  
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Figure 7.49. Moment-curvature relations composed of straight lines. 

The inclination of line the a may be used to determine whether the applied moment has to be 

found from an A or a B-point. Such a distinction may always be made since it does not effect 

the calculation of the applied moment directly, but only decides from which point the applied 

moment has to be calculated. Keeping in mind that a calculation of the applied moment from 

any other point than the tangent point will lead to a lower value of the applied moment, it 

appears that the distinction might lead to a poor, but always safe result. 

The axial load, which governs whether the calculation of the applied moment has to be found 

using an A or a B-points, is named Ni and is determined by inserting (7.61) into (7.62): 
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 (7.63) 
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For an axial load increasing from zero, the load curve will always intersect a B-point first 

since the inclination of the load line is almost zero. As illustrated in Figure 7.51 point B is 

almost on a straight line (i) and the vertical distance between the points is almost constant for 

a constant change in the axial load. If this property is adopted the moment at a B-point may be 

calculated as: 

 ( )( ) ( )
1

,1 ,2 0 0
2

B B Y N Y N

N
M M M M

N= == − +  (7.64) 

This means that the moment at any B-point may be calculated from another B-point and MY. A 

similar relation may be established for the curvature: 
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1
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From this it may be seen that the applied moment may be calculated as: 
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 (7.66) 

Since κB,2 is found from N2 (N2 being larger than N1) it is seen that the coefficient on N1
2 is 

negative. This leads to a convex curve in the interaction diagram as illustrated in Figure 7.50. 

 

 
N 

M0 
 

Figure 7.50. Convex form in the interaction diagram. 

Thus it is safe to simplify this curve even more, namely with a straight line. This is valid as 

long as both the moment and the curvature can be assumed to depend linearly with the axial 

load. A linear relation valid for an axial load varying from zero to the point of yielding in both 

top and bottom reinforcement, corresponds to the line (ia) in Figure 7.51. As seen, the vertical 
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distance between the intersection points is almost constant which may be introduced as a 

further assumption.  
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N/Np=0,2 
 
 

N/Np=0,1 
 
 

M/Mmax(N=0)  
 
 

x 10-5  
Figure 7.51. Moment curvature relations composed of straight lines. 

The relation, (7.66), between M0 and N means that the interaction curve may be simplified as 

a straight line as long as the axial load is lower than NBB (the axial load causing yielding in top 

and bottom) and Ni. 

If Ni is lower than NBB a straight line may be drawn from the point corresponding to pure 

bending to the point corresponding to Ni in the interaction diagram. If Ni is larger than NBB a 

straight line may be drawn from the point corresponding to pure bending to the point 

corresponding to NBB. 

This criterion is used in what follows to obtain a distinction between short and slender beam-

columns. For slender beam-columns Ni is lower than NBB. Thus the inclination of the load line 

will be steep since l2 enters in the expression of the inclination, and calculations for N larger 

than Ni, is therefore made using an A-point. 

 

Similar approximations may be made regarding the A-points. As illustrated in Figure 7.51 the 

A-points are almost on a straight line (ii) and the distance between the intersections are the 

same. Using similar simplifications and approximations as for the B-points leads to the 
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conclusion that the interaction diagram is convex and a straight line may therefore be used to 

simplify the curve, cf. Figure 7.52. 

 
N 

M0 
 

Figure 7.52. Convex form of  the interaction diagram. 

The linear approximation is safe for all the A-points until the critical column load is reached. 

Therefore, the line may be drawn from the first A-point to the critical load. 

 

Three points therefore characterize slender beam-columns. 

1. Pure bending  

2. Point corresponding to Ni. 

3. The critical column load 

Between these points, straight lines may be used. 

 
N 

M0 

Critical column load 
Ni point 
Pure bending 

 
Figure 7.53. Interaction diagram for slender beam-columns. 

For short columns the first two points in the interaction diagram correspond to pure bending 

and NBB. For an axial load larger than NBB the situation becomes a bit more difficult. In Figure 

7.54 both the point corresponding to yielding in the top and bottom reinforcement, MBB’, and 

the point corresponding to yielding at the top and zero stress in the bottom MAB’ are marked.  
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Figure 7.54.Moment-curvature relations. 

To prove analytically that it is safe to assume a linear relation in the interaction diagram 

between these points is not simple. However, from numerical calculations it appears that the 

curve between these two points are convex and a straight line may therefore be used as a 

simplification as illustrated in Figure 7.55. 

 
N 

M0 

AB’-point 

BB’-point 

 
Figure 7.55. Convex form of the interaction diagram. 

Numerical calculations also show that for axial loads larger than NAB the interaction curve is 

concave, which means that a linear simplification is not conservative and this cannot be used. 
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Figure 7.56. Concave form in the interaction diagram. 

Instead a conservative simplification would be to calculate the critical column load from the 

tangent at the AB’-point. This is illustrated in Figure 7.56. Ncr,s is determined numerically.  

 

Three points therefore characterize short beam-columns 

1. Pure bending 

2. Point of NBB’ 

3. Point of NAB’ 

4. The critical column load, Ncr,s 

Between these points, straight lines may be used to simplify the curve of the interaction 

diagram. This is illustrated in Figure 7.57. 

 
N 

M0 

AB’-point 

MY 

Ncr,s 

BB’-point 

 
Figure 7.57. Interaction diagram for short beam-columns. 

All in all the simplifications made above mean that only five points are of interest when 

calculating the interaction diagram. These five points are: 

1. Pure bending  

2. Yielding in the top and bottom reinforcement simultaneously, BB’-point  

3. Yielding in the top reinforcement and cracking in the concrete simultaneously, AB’-

point 



Stability of Concrete Columns 
 

 - 64 - 
 

4. The situation where N=Ni 

5. The critical column load (calculated in a simplified manner if Ni>NBB’). 

This is illustrated in Figure 7.58. 
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Figure 7.58. Review of the simplifications introduced  for interaction diagrams. 

In Figure 7.59, a flow diagram for the determination of the important points is shown. It is 

seen that according to the simplifications made, it is only necessary to determine three levels 

of axial load and from this, three or four points are found.  



Tim Gudmand-Høyer & Lars Zenke Hansen 
 

 - 65 - 
 

Calculate Ncr, Ni and NBB’ 
 

Point: MY(N=0) 
Situation for low axial force 

 
 
 
 

Ni>NBB’   
         

yes  no 
 
 

Point: MBB’   Point: MA(Ni)  
 
 
            
 

Point: MAB’  Point: Ncr  
 
            
 
 

Point: Critical column load calculated as:  
Ncr,s  

 

 

 

 
Figure 7.59. Flow diagram for the determination of  points used in simplified interaction diagrams. 

If the calculations are made as described above and, the simplified interaction curves become 

as shown in Figure 7.60. 
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Figure 7.60. Simplified interaction curves for points in the applied moment- axial load diagram. 

7.4.8 Practical calculation of beam-columns 

7.4.8.1 Interaction diagram 
A simple hand calculation method for calculating the load-carrying capacity of a beam-

column may be developed on the basis of the investigations made in the previous sections. 

However the interaction diagram may be simplified even more. The simplified interaction 

diagram is constructed from 3-4 cross-section analyses as shown in Figure 7.61. In this figure 

five cases are outlined.  

Bsimp: Pure bending with a max concrete strain equal to 3,5 0/00 and the stress in the 

stress block is constant at σc = fc. 

BB’simp1: Bending with axial load. Othervise the same as Bsimp.  

BB’simp2:  Bending with axial load. The concrete is considered linear elastic with a 

maximum stress equal to 1,25 fc (as in the Danish Code of Practice) in the 

concrete and yielding in the bottom reinforcement. 

AB’simp: Compression in the entire cross-section, where the stress in the bottom face 

is zero and the maximum stress at the top face is 1,25 fc (as in the Danish 

Code of Practice). 
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Asimp: Bending with axial load, where the concrete is linear elastic and cracked. 

The bottom reinforcement yields. 

 

In Bsimp, BB’simp1 and BB’simp2 the top reinforcement might also yield for certain reinforcement 

ratios and yield strengths. BB’simp1 and BB’simp2 are both points, which estimate the point BB’ 

in the previous simplifications this point being a maximum point of the interaction diagram 

for short columns. 

In all cross-section analyses with linear elastic material behaviour, the modulus of elasticity is 

equal to the secant modulus 500 fc (as in the Danish Code of Practice). 
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Figure 7.61 Cross-section analyses used to estimate the interaction curve between the applied moment and the 

axial load. 

7.4.8.2 The calculation procedure  
1. Determine the critical load by use of Ritter’s equation. 

2. Calculate the bending moment, applied moment and curvature by the cross-

section analysis Asimp with N = 0 and determine Ni. 

3. Calculate the maximum M, N -combination from the cross-section analyses 

BB’simp1 or BB’simp2 and determine if the column is slender or short. 

4. If the column is short, calculate the point obtained using the cross-section 

analysis AB’simp; plot this point together with Bsimp, BB’simp1 or BB’simp2 and the 

critical load in an interaction diagram. 

5. If the column is slender, calculate the point obtained from the cross-section 

analysis Asimp and plot this point together with the point obtained from the 

cross-section analysis Bsimp and the critical load in an interaction diagram. 

 

Re 1.  

The critical stress according to the Ritter equation is 

 2

2
0,

1

c
cr

c

cr

f

f l
E i

σ

π

=
 +  
 

 (7.67) 
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where 





=
0

0 75,0
1000

min
E
f

E c
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The maximum axial load is, according to DS411, determined by. 

(1 )

min
2             (Without overlap splices in the reinforcement)
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Re 2.  

Calculate the moment and curvature for the situation Asimp when N = 0.  

Calculate the Ni level from the equation. 

, 0

2
, 0

simp

simp

A N

i
A N

M
N

l
α

κ
=

=

=  

Re 3. 

Calculate the N, M0 -combination from the cross-section analyses BB’simp1 or BB’simp2 

If Ni > N using BB’simp1 or BB’simp2, then the column is short 

If Ni < N using BB’simp1 or BB’simp2, then the column is slender 

Point 4 and 5 do not require any more comments. 

 

7.4.8.3 Interaction diagrams compared with theory 
In this section, the simple procedure outlined in the previous section will be compared with 

calculations using the equilibrium method. First, the results for short columns will be 

illustrated and then the results for slender columns. 

In the calculation the parameters shown in  

Table 7.4 are used. The results may be seen in Figure 7.62 where the slenderness ratio is 

varied between 

5 25
l
h

≤ ≤  

with a step of 5. 

In Figure 7.64 similar results may be seen. The slenderness ratio is in these plots varied 

within: 
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25 50
l
h

≤ ≤  

b h hc fc εcy Φ0 

[mm] [mm] [mm] [MPa] [ 00
0 ] [] 

250 250 20 30 2 0.05 
 

Table 7.4 The data used if other values are not listed.  

 

 

 
Figure 7.62 Interaction diagrams for short columns 

In Figure 7.62 a, interaction diagrams using point BB’simp2 as the maximum point is shown as 

the broken lines. It is seen that they fit the theoretical interaction diagram very well. It is also 

seen that the line between the top point and point AB’simp is cut off by the horizontal line at the 

critical load (AB’simp is represented by a circle in Figure 7.62 a). Thus a moment may be 

applied at the critical load. This corresponds to the Danish Code of Practice where a small 

initial eccentricity is allowed for columns calculated as concentrically loaded columns. 
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The four figures illustrate the simplified interaction diagram for two different yield strength 

and two degrees of reinforcement. As seen the result is very good. In Figure 7.63, the 

difference between using point BB’simp1 and BB’simp2 is illustrated. 

If the columns are slender, the results are shown in Figure 7.64. 

 
Figure 7.63 Illustration of the difference by using the two top points corresponding to BB’simp1 and BB’simp2. 
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           Calculation Bsimp 

           Calculation BB’simp1 

           Calculation AB’simp 
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Figure 7.64 Interaction diagrams for slender columns 

Figure 7.64 show that a simple and conservative interaction diagram for slender columns may 

be produced. However, the underestimation by using the approximate curves is in some cases 

large. This indicates that the stiffness of the column is underestimated. If the modulus of 

elasticity is set to the initial modulus of elasticity (1000fc) instead of 500fc the interaction 

diagrams illustrated in Figure 7.65 are obtained. 
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Figure 7.65 Interaction diagram using Eo,cr as the modulus of elasticity 

Figure 7.65 show that this improves the interaction diagram and the simplification leads to 

interaction diagrams, which, compared with the theoretical ones, are very good.  

 

As mentioned previously, the Danish Code of Practice prescribes that a column can be 

calculated as concentrically loaded if the eccentricity is smaller than 1/5 of the core radius k. 

The critical load for l/h=25 is 0,56Np which gives a maximum applied moment of 

( ) kNm 63,9
30

2156,0
5

56,0 0max,,0 =Φ+==
h

bhf
k

NM cpDS  

since the core radius is h/6 for a rectangular cross section. 

The values used are listed in 

Table 7.4, which justifies the cut off of the interaction curve at the critical load. 
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           Calculation Bsimp 

           Calculation BB’simp1 

           Calculation AB’simp 
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8 Comparison with experiments 

8.1 Investigators and experiments 

In this section the calculations are compared with experiments taken from the literature.  

In the calculations α = 10 is used. Regarding the detailed experimental results, see section 12.  

 

Bauman, O. 1935, [13]  

The experimental investigation made by Baumann was subdivided into two sections, a pilot 

series and a main series. Both series consider concentrically as well as eccentrically loaded 

columns. The pilot series consists of 12 tests and the main series of 31 tests. The columns in 

the pilot series and in the first 15 tests of the main series were simply supported. In the 

remaining of the tests in the main series the end conditions were changed. The cross-section 

was varied in many of the tests, which means that comparison by using interactions diagrams 

is very cumbersome. The data are presented in the supplements, section 12.1.  

 

Rambøll, B. J. 1951 [14]  

The experimental investigation made by Rambøll consisted of 38 tests with columns loaded 

eccentrically as well as concentrically. The cross section was kept constant.  The investigation  

dealt with four different column-lengths and within each series the eccentricity was varied: 

83,0 and 67,0 ,33,0 ,17,0 ,08,0 ,0=
h
e

. Furthermore, the reinforcement was the same for all 

columns, except column 35. The data are presented in the supplements, section 12.2. 

 

Ernst, G. C., Hromdik, J. J. and Riveland, A. R. 1953 [15]  

This experimental investigation consisted of 16 tests with columns loaded eccentrically as 

well as concentrically. The eccentricity was 38,0 and 25,0 ,13,0 ,0=
h
e

. Eight of the tests were 

made on elements, which had the same size as the standard compressive specimens. They all 

failed in compression as reported in the investigation, which is why they are not plotted in the 
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interaction diagram. The columns were simply supported in both ends and the load was 

applied through a knife-edge. The data are presented in the supplements, section 12.3.  

 

Gehler, W. and Hütter, A. 1954 [16]  

This investigation is a collection of tests carried out over a period of ten years. The first test 

series was carried out from 1940-41 and contained 18 tests with concentrically loaded 

columns. The concrete cross-section was kept constant and the reinforcement was either 4 ø 8 

or 4ø14. The second test series was carried out from 1951-52. This series contained 12 

concentrically loaded columns and 24 laterally loaded columns; the lateral load was applied at 

the midpoint as a point load. The columns were simply supported in all cases. The data are 

presented in the supplements, section 12.4. 

 

Gaede, K. 1958 [17]  

This investigation contained eight tests on eccentrically loaded, simply supported columns. 

The length of the columns was varied between, 2,94 m and 3,54 m. Two eccentricities were 

used, 5,0 and 2,0=
h
e

. The load was applied through knife-edges. The deflections were 

measured and reported for the entire series. The cross-section and reinforcement were kept 

constant. The data are presented in the supplements, section 12.5. 

 

Chang, W. F. and Ferguson, P. M. 1963 [18]  

In this investigation six columns were tested, each simply supported. The load was applied as 

a concentrically axial load, by two jacks and then the moment was applied by changing the 

ratio between the loads in the two jacks so that the sum was kept constant. This makes is 

possible to investigate the moment curvature relationship for the column. The constant level 

of axial load was according to the investigators very difficult to obtain. The cross-section and 

the reinforcement were kept constant in each test. The data are presented in the supplements, 

section 12.6.    

 

Pannell, F. N. and Robinson, J. L. 1968 [19]  

This investigation contained 10 columns, 6 of which were concentrically loaded, and 4 

laterally loaded. The lateral load was applied at mid point of the column as a point load. The 

cross-section and the reinforcement were kept constant in each experiment. Each column was 

simply supported in both ends. The data are presented in the supplements, section 12.7.    
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Breen, J. E. and Ferguson, P. M. 1969 [20]  

This investigation contained 10 tests on columns, which were fixed in one end and free in the 

other one. The loads applied were axial load and lateral load both applied at the free end. The 

cross-section and the reinforcement were kept constant in each experiment. The ratio between 

the lateral load and the axial load was kept at five constant values. The data are presented in 

the supplements, section 12.8. 

 

Mehmel, A., Schwarz, H., Kasparek, K. H. and Makovi, J. 1969, [21]  

This investigation contained 16 tests, 14 of these with the same eccentricity in both ends and 

two with different eccentricities at the ends. Three different types of reinforcement were used 

and the cross-section had three different sizes. The deflection at failure was measured together 

with the deflection during the tests. The data are presented in the supplements, section 12.9. 

 

Kim, J. K and Yang, J. K. 1993 [28]  

In this investigation 30 tests on simply supported columns were reported. Two of the columns 

failed at the ends and are therefore disregarded. The investigation contained three different 

levels of compressive strength, low, medium and high. Furthermore, two different 

reinforcement ratios were tested. In the case of a reinforcement ratio of 4 % two of the bars 

are disregarded, because they were placed at the centre of the cross-section. The deflection at 

failure was reported. The data are presented in the supplements, section 12.10. 

 

Chuang, P. H. and Kong, F. K. 1997 [29]  

In this investigation, 26 eccentrically loaded simply supported columns were tested. Normal 

strength concrete as well as high strength concrete was used. The concrete cross-section had 

two different sizes and three types of reinforcement were used. Measurements of the 

deflection at failure were reported. The data are presented in the supplements, section 12.11. 

 

Foster, S. J. and Attrad, M. M. 1997 [30]  

In this investigation 68 tests on simply supported columns were reported. The investigation 

contained three different levels of compressive strength, low, medium and high. Furthermore, 

two different reinforcement ratios were tested. In the case of a reinforcement ratio of 4 % two 

of the bars are neglected, because they were placed at the centre of the cross-section. The 

deflection at failure was reported. The data were presented in the supplements, section 12.12.  

Cleason, C. 1997 [31] 
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12 experiments were reported in this investigation. Normal as well as high strength concrete 

was used. Two different cross-sections along with two types of reinforcement were designed. 

The deflections at failure were measured and reported. The data are presented in the 

supplements, section 12.13. 

 

In Table 8.1 the types of columns are indicated. These types refer to the columns shown in 

Figure 8.1. They are named A, B, …, G. 
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Figure 8.1. Illustration of the different kinds of columns used in the investigations. 

In Table 8.1 the number of tests made by each investigator is presented. In the column to the 

left the mean value, µ , and the standard deviation, s, is shown. Subscript “theory” and “DS” 

denotes calculations done with the equilibrium method and calculations according to DS411, 

method I, respectively. The mean value and standard deviation are calculated for the ratio: 

 exp

calc

N

N
 (7.68) 

where Ncalc may either be the axial load when using the equivalence method or the axial load 

calculated by using DS411, method I. 



Stability of Concrete Columns 
 

 - 78 - 
 

 

Investigator Year References Number of 

tests 

Mean value and standard 

deviation 

Baumann 1935 [13]  14 A  

13 B 

4 E 

3 F 

3 C* 

6 G* 

0,98; 0,16theory theorysµ = =  

1,14; 0,18DS DSsµ = =  

Rambøll 1951 [14]  38 B 1,19; 0,21theory theorysµ = =  

1,30; 0,22DS DSsµ = =  

Ernst, G. C., 

Hromdik, J. J. and 

Riveland 

1953 [15]  2 A  

6 B 

0,92; 0,22theory theorysµ = =  

1,02; 0,25DS DSsµ = =  

Gehler, W. and 

Hütter, A. 

1954 [16]  30 A 

 

 

24 D 

1,09; 0,19theory theorysµ = =  

1,29; 0,26DS DSsµ = =  

1,12; 0,10theory theorysµ = =  

1,14; 0,11DS DSsµ = =  

Gaede, K. 1958 [17]  8 B 0,89; 0,05theory theorysµ = =  

0,81; 0,06DS DSsµ = =  

Chang, W. F. and 

Ferguson, P. M.  

1963 [18]  6 B 0,65; 0,04theory theorysµ = =  

0,66; 0,05DS DSsµ = =  

Pannell, F. N. and 

Robinson, J. L.  

1968 [19]  6 A 

4 D 

1,18; 0,33theory theorysµ = =  

1,22; 0,23DS DSsµ = =  

Breen, J. E. and 

Ferguson, P. M.  

1969 [20]  10 H 0,77; 0,18theory theorysµ = =  

0,76; 0,14DS DSsµ = =  

Mehmel, A., 

Schwarz, H., 

Kasparek, K. H. 

and Makovi, J.  

1969 [21]  14 B 

2 C* 

0,87; 0,10theory theorysµ = =  

0,96; s 0,11DS DSµ = =  
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Kim, J. K and 

Yang, J. K.  

1993 [28] 28 B 0,85; 0,08theory theorysµ = =  

1,01; 0,14DS DSsµ = =  

Chuang, P. H. and 

Kong, F. K.  

1997 [29]  26 B 1,57; 0,50theory theorysµ = =  

1,78; 0,54DS DSsµ = =  

Foster, S. J. and 

Attrad, M. M. 

1997 [30]  68 B 0,93; 0,09theory theorysµ = =  

1,13;  0,13DS DSsµ = =  

Cleason, C.  1997 [31] 12 B 0,77; s 0,12theory theoryµ = =  

0,89; 0,15DS DSsµ = =  

Total 

311 tests 

  55 A  

200 B 

5 C* 

28 D 

4 E 

3 F 

6 G* 

10 H 

 

*) Theses tests are neglected in the comparison 
Table 8.1 Standard deviation and mean value of tests used for comparison with theory.  

8.2 Comparison  

The difference between theory and experiment for beam-columns are measured by the 

distance from the measured point and the intersection point between the interaction diagram 

and the line M0 = Ne. This is illustrated in Figure 8.2. Strictly speaking this method is only 

fully jusitfied for eccentrically loaded beam-columns. 
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Point from 
experiment 

Interaction 
diagram 

N = Ne 

 M0 

 N 

Calculated 
point 

 
Figure 8.2. Illustration of the method used to compare calculation methods with experiments.  

The method is questionable for laterally loaded columns since the loading may not always be 

proportional loading. Often the loading procedure is unknown. However, the method is used 

for all tests since the results seam to indicate proportional loading. 

8.2.1 Concentrically loaded columns 

An unreinforced concrete column is seldom built and is therefore of less interest than a 

reinforced column. Therefore, no comparison will be made between theory and experiments 

in this report for this type of column. 

In Figure 8.3 and Figure 8.4 the results of 2 test series are compared with the formulas 

described previously. The data used in these plots may be found in section 12.4 and 12.7. 

In the calculations, the modulus of elasticity, in Ritter´s column formula is calculated 

according to the Danish Code of Practice (see section 7.3.2). 

It appears that the formulas show good agreement with the experiments. It should be noted 

that an ideal column experiment is almost impossible carry out because of imperfections such 

as initial deflections from casting etc. 
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Figure 8.3. Plot of test results versus theory. Details may be found in section 12.4. 
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Figure 8.4. Plot of test results versus theory. Details may be found in section 12.7. 

The results from all tests on concentrically loaded columns are illustrated in Figure 8.5-Figure 

8.8. 

l/h 

l/h 
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Figure 8.5. The equilibrium method  compared with experiments. 
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Figure 8.6 The equilibrium  method  compared with experiments as a function of the compressive strength of the 

concrete, the yield strength of the reinforcement and the slenderness ratio l/h, respectively. 

The agreement between the equilibrium method and experiments is seen to be good for 

concentrically loaded columns. The mean value and standard deviation are, respectively: 

1,06 and 0,19theory theorysµ = =  

l
h
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Figure 8.7. The Danish Code of Practice, method I, compared with experiments 
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Figure 8.8 The Danish Code of Practice, method I, compared with experiments as a function of the compressive 

strength of the concrete, the yield strength of the reinforcement and the slenderness ratio l/h, respectively. 

The agreement between the Danish Code of Practice, method I, and experiments for 

concentrically loaded columns is seen to be good. The mean value and standard deviation are, 

respectively: 

1,18 and 0,25DS DSsµ = =  

8.2.2 Eccentrically loaded beam-columns 

In this section comparisons are made for eccentrically loaded beam-columns. This includes 

columns of type B (see Figure 8.1). The interaction diagrams in Figure 8.9 show the statical 

results from the equilibrium method compared with experiments by Mehmel, A., Schwarz, H., 

Kasparek, K. H. & Makovi, H. (section 12.9). It appears that the tests fit the theoretical curve 

well. In section 12 the tests are plotted in interaction diagrams for each test series using the 

equilibrium method. 

 
Figure 8.9 Interaction diagram where the equilibrium  method  is compared with experiments by Mehmel, A., 

Schwarz, H., Kasparek, K. H. & Makovi, H.(section 12.9). 

l
h
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The test points in Figure 8.9 are for all investigations where beam-columns of the type B are 

tested. Similar diagrams are produced in section 12 for each test series. 
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Figure 8.10 The equilibrium method  compared with experiments 

Furthermore in Figure 8.11, the results from the calculations are compared with experimental 

values as a function of the eccentricity, the compressive strength of the concrete, the yield 

strength of the reinforcement and the slenderness ratio l/h, respectively 
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Figure 8.11. The equilibrium method  compared with experiments as a function of the eccentricity, the 

compressive strength of the concrete, the yield strength of the reinforcement and the slenderness ratio l/h, 

respectively. 
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The agreement between the equilibrium method and experiments made on eccentrically 

loaded beam-columns is very good. The mean value and standard deviation are, respectively: 

1,08 and 0,23theory theorysµ = =  

To compare with the Danish Code of Practice similar plots have been made. These are shown 

in Figure 8.12and Figure 8.13. 

0

500

1000

1500

2000

2500

3000

0,0 1000,0 2000,0 3000,0

Oskar Baumann 1935

B. J. Rambøll 1951

George C. Ernst, Joseph J. Hromadik &
Arvin R. Riveland 1953

Kurt Gaede 1958

Wen F. Chang & Phil M. Ferguson
1963

Alfred  Mehmel, Heinz Schwarz, Karl-
Heinz Kasparek & Joszef Makovi 1969

Jin-Keun Kim & Joo.Kyoung Yang
1993

P. H. Chuang & Professor F. K. Kong
1997

Stephen J. Foster & Mario M. Attrad,
1997

Christina Cleason 1997

N exp  [kN]

N theory  [kN]

 
Figure 8.12. The Danish Code of Practice, method I, compared with experiments 
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Figure 8.13. The Danish Code of Practice, method I, compared with experiments as a function of the 

eccentricity, the compressive strength of the concrete, the yield strength of the reinforcement and the slenderness 

ratio l/h, respectively. 

The agreement between the Danish Code of Practice and experiments is relatively good. It 

appears that the method is a bit conservative, which is clearly demonstrated by the mean 

value. The mean value and the standard deviation are, respectively: 

1,19 and 0,27DS DSsµ = =  

8.2.3 Laterally loaded beam-columns 

Similar comparison as for eccentrically loaded beam-columns has been made in the case of 

laterally loaded beam-columns. The types of beam-columns, which are used for in the 

comparisons, are of type D and H. The interaction diagram in Figure 8.14 illustrates how the 

equilibrium method compares with the experiments by Gehler, W. and Hütter, A. (section 

12.4).  

e
h

l
h
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Figure 8.14. Interaction diagrams comparing the equilibrium method  with experiments taken from the 

investigation by Gehler, W. and Hütter, A. (section 12.4). 

In Figure 8.15 and Figure 8.16 all tests with lateral load are compared with the equilibrium 

method. 
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Figure 8.15. The equilibrium  method  compared with experiments 
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Figure 8.16. The equilibrium method  compared with experiments as a function of the the eccentricity, the 

compressive strength of the concrete, the yield strength of the reinforcement and the slenderness ratio l/h, 

respectively. 

The agreement between the equilibrium method and experiments is relatively good also for 

laterally loaded beam-columns too. The mean value and standard deviation are, respectively: 

1,06 and 0,25theory theorysµ = =  

The method used in the Danish Code of Practice has been compared with experiments as well. 

The results are shown in Figure 8.17 and Figure 8.18. 
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Figure 8.17. The Danish Code of Practice, method I, compared with experiments 
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Figure 8.18. The Danish Code of Practice, method I, compared with experiments as a function of the  

eccentricity, the compressive strength of the concrete, the yield strength of the reinforcement and the slenderness 

ratio l/h, respectively. 

The eccentricity used in the comparisons in Figure 8.16 and Figure 8.18 is calculated as the 

moment from the applied lateral load divided by the axial load.  

The agreement between the Danish Code of Practice and experiments is seen to be good and it 

appears that the method is a bit conservative. The mean value and standard deviation are, 

respectively: 

1,07 and 0,24DS DSsµ = =  
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9 Conclusion 

This paper provides a theoretical verification of calculation methods in the Danish Code of 

Practice DS411, using the equilibrium method. Furthermore, comparisons with experiments 

both the Danish Code method and a more theoretically correct approach have been made.  

The equilibrium method is based on a parabolic stress-strain relation of concrete in 

compression. The tensile strength is set equal to zero. Furthermore the reinforcement bars are 

assumed linear elastic-perfectly plastic in both compression and tension. 

 

Since the calculation procedures are iterative in the case of beam-columns, a simplified 

calculation procedure has been suggested. The simplified method provides an interaction 

diagram for short and slender columns by calculating 4 or 3 points dependent on whether the 

column is short or slender, respectively. 

The procedure has been compared with the equilibrium method and good agreement has been 

found.   

 

A number of 311 experiments have been collected from the literature. Among these 200 

experiments were made on eccentrically loaded columns, 73 with concentrically loaded 

columns and 38 with laterally loaded columns. In each case the Danish Code of Practice and 

the equilibrium method show good agreement. However, as expected, the Danish Code of 

Practice is a bit conservative. In all cases, the standard deviation between theory and 

experiments is about 25%, which is relatively high when compared with standard derivations 

for theories on concrete in general. The large values of the standard derivations may be 

explained as an effect of unavoidable imperfections. 

 

The conclusion is that the Danish Code of Practice provides a conservative but sufficiently 

good procedure for calculating both concentrically loaded columns and eccentrically and 

laterally loaded beam-columns. 
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11 Appendix 

11.1 Author contribution list 

Since this paper has been written by two authors the following list of the contributions by the 

two authors has been made.  

Tim Gudmand-Høyer 

Sections:  

7.3.3 The equilibrium method 

7.4.4 Deflection shape and comparison with simplified method  

7.4.5 Simplification of the moment-curvature relationship 

7.4.6 Interaction diagrams 

7.4.7 Simplification of interaction diagrams 

7.4.8 Practical calculation of beam-columns  

Lars Zenke Hansen 

Sections: 

8 Comparison with experiments 

12 Supplement: Experimental results for concrete beam-columns 
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12 Supplement: Experimental results for concrete beam-

columns  
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George C. Ernst, Joseph J. Hromadik & Arvin R. Riveland 1953 

W. Gehler & Alfred Hütter 1954 

Kurt Gaede 1958 

Wen F. Chang & Phil M. Ferguson 1963 

F.N. Parnell & J. L. Robinson 1968 

John E. Breen & Phil M. Ferguson 1969 

Alfred  Mehmel, HeinzSchwarz, Karl-Heinz Kasparek & Joszef Makovi 1969 

Jin-Keun Kim & Joo.Kyoung Yang 1993 

P. H. Chuang & F. K. Kong 1997 

Stephen J. Foster & Mario M. Attrad, 1997 

Christina Cleason 1997 

 

The compressive strength is the compressive strength of a Danish standard cylinder (diameter 

150 mm and height 300mm). 

In the interaction diagrams the compressive strength used for plotting the theoretical curves is 

taken as a mean value within the individual series. 
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12.1 Baumann, O. 1935 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

I 200,0 100,0 0,9 1,6 16,0 326,0 0,0 0,0 32,1 265,1 - A 1,08 1,34

Ia 200,0 100,0 0,9 1,6 16,6 326,0 0,1 0,1 32,1 152,2 - B 0,88 0,83

III 140,0 140,0 0,9 1,6 16,9 326,0 0,0 0,0 22,9 343,7 - A 0,91 1,23

IIIa 140,0 140,0 0,9 1,6 17,1 326,0 0,1 0,1 22,9 235,7 - B 0,90 0,96

V 177,0 139,0 0,9 2,5 27,7 296,6 0,0 0,0 23,3 648,1 - A 0,86 1,19

Va 178,0 140,0 0,9 2,5 27,7 296,6 0,0 0,0 23,1 685,4 - A 0,90 1,24

VI 198,0 98,0 0,9 1,6 26,2 326,0 0,0 0,0 32,8 392,8 - A 1,16 1,45

Via 200,0 100,0 0,9 1,6 26,2 326,0 0,0 0,0 32,1 402,6 - A 1,13 1,42

VII 182,0 178,0 0,9 1,9 29,7 296,6 0,0 0,0 18,0 687,4 - A 0,64 0,82

VIIa 180,0 180,0 0,9 1,9 29,7 296,6 0,0 0,0 17,8 824,9 - A 0,76 0,98

VIII 182,0 178,0 0,9 1,9 30,3 296,6 0,0 0,0 17,5 1070,4 - A 0,97 1,24

VIIIa 180,0 180,0 0,9 1,9 30,3 296,6 0,0 0,0 15,6 1217,7 - A 1,11 1,32

1 250,0 250,0 1,0 1,3 35,3 272,0 0,0 0,0 11,9 2042,6 - A 0,87 1,01

2 250,0 125,0 0,9 0,6 35,3 333,9 0,0 0,0 25,8 697,2 - A 0,84 1,19

3 250,0 160,0 0,9 0,8 35,3 326,0 0,0 0,0 40,7 667,8 - A 1,09 1,54

4 250,0 250,0 1,0 1,3 33,8 272,0 0,2 0,2 11,9 962,4 - B 0,71 0,83

5 250,0 125,0 0,9 0,6 33,6 333,9 0,2 0,2 25,8 343,7 - B 0,99 1,06

6 250,0 160,0 0,9 0,8 33,8 326,0 0,2 0,2 40,7 225,9 - B 0,97 1,03

7 250,0 250,0 1,0 1,3 21,4 272,0 0,2 0,2 11,9 844,5 - B 0,90 1,04

8 250,0 126,0 0,9 0,6 21,4 333,9 0,2 0,2 25,6 333,9 - B 1,32 1,32

9 250,0 162,0 0,9 0,8 21,3 326,0 0,2 0,2 40,2 206,2 - B 1,19 1,07

10 253,0 251,0 1,0 1,3 31,4 272,0 0,3 0,3 11,8 692,3 - B 0,82 0,98

11 252,0 126,0 0,9 0,6 31,4 333,9 0,3 0,3 25,6 196,4 - B 1,23 1,23

12 250,0 162,0 0,9 0,8 31,2 326,0 0,3 0,3 40,2 112,9 - B 1,03 0,92

13 251,0 247,0 0,9 1,3 34,5 272,0 0,3 0,3 12,0 701,1 - B 0,80 0,93

14 248,0 126,0 0,9 0,6 34,5 333,9 0,3 0,3 25,6 163,0 - B 1,02 1,02

15 247,0 161,0 0,9 0,8 34,7 326,0 0,0 0,0 40,4 549,9 - A 0,91 1,27

17 200,0 90,0 0,9 1,1 20,7 333,9 0,0 0,0 16,2 378,1 - E 0,89 1,10

18 201,0 91,0 0,9 1,1 20,7 333,9 0,0 0,0 23,9 359,4 - F 1,04 1,33

19 250,0 130,0 0,9 1,0 25,1 326,0 0,2 0,0 24,7 387,9 - C 1,14 1,14

20 250,0 130,0 0,9 1,0 25,1 326,0 0,0 0,0 16,1 849,4 - F 0,96 1,19

21 200,0 89,0 0,9 1,1 35,8 333,9 0,0 0,0 16,3 549,9 - E 0,83 1,08

22 200,0 89,0 0,9 1,1 35,8 333,9 0,0 0,0 16,3 623,6 - E 0,94 1,23

23 248,0 129,0 0,9 1,0 39,4 326,0 0,0 0,0 10,7 1075,3 - E 0,81 0,93

24 248,0 129,0 0,9 1,0 39,4 326,0 0,0 0,0 16,2 947,6 - F 0,73 0,98

25 248,0 250,0 1,0 1,0 31,2 296,6 0,2 0,0 8,1 1306,1 - G 0,99 1,18

26 252,0 250,0 1,0 1,0 31,2 296,6 0,2 0,0 12,6 1325,7 - C 1,08 1,26

27 201,0 92,0 0,9 1,7 32,2 326,0 0,2 0,0 23,7 338,8 - G 1,25 1,31

28 200,0 89,0 0,9 1,8 30,2 326,0 0,2 0,0 24,5 289,7 - G 1,22 1,22

29 250,0 130,0 0,9 1,9 33,5 296,6 0,2 0,0 16,0 736,5 - G 1,07 1,21

30 250,0 132,0 0,9 1,9 33,5 296,6 0,2 0,0 15,8 770,9 - G 1,11 1,25
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31 250,0 250,0 1,0 2,0 28,9 282,8 0,2 0,0 8,1 1433,7 - G 1,19 1,33

32 250,0 250,0 1,0 2,0 28,9 282,8 0,2 0,0 12,6 1350,3 - C 0,86 0,96

 Table 12.1 Data used for calculations, taken from [13] 
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Figure 12.1 The results of calculations by the equilibrium method  compared with experiments for e=0 
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Figure 12.2 The results of calculations by the Danish Code of Practice  compared with experiments for e=0 
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Figure 12.3 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.4 The resulst of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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12.2 Rambøll, B. J. 1951 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

1 182,0 144,0 0,8 1,0 28,6 294,6 0,0 0,0 8,9 859,3 - A 1,05 1,14 

2 181,0 141,0 0,8 1,0 25,5 294,6 0,0 0,0 9,1 638,3 - A 0,89 0,96 

3 182,0 143,0 0,8 1,0 26,5 294,6 0,1 0,1 9,0 687,4 - B 0,75 0,86 

4 181,0 141,0 0,8 1,0 21,2 294,6 0,1 0,1 9,1 589,2 - B 0,98 1,11 

5 181,0 143,0 0,8 1,0 27,8 294,6 0,2 0,2 9,0 510,6 - B 0,92 1,03 

6 181,0 143,0 0,8 1,0 25,1 294,6 0,2 0,2 9,0 530,3 - B 0,92 1,03 

7 180,0 145,0 0,8 1,0 23,7 294,6 0,3 0,3 8,8 338,8 - B 0,84 1,06 

8 181,0 144,0 0,8 1,0 25,4 294,6 0,3 0,3 8,9 294,6 - B 0,68 0,86 

9 181,0 142,0 0,8 1,0 23,4 294,6 0,7 0,7 9,0 117,8 - B 1,05 1,30 

10 181,0 144,0 0,8 1,0 24,5 294,6 0,7 0,7 8,9 106,1 - B 1,22 1,41 

11 181,0 141,0 0,8 1,0 25,8 294,6 0,8 0,8 9,1 78,6 - B 1,29 1,47 

12 181,0 141,0 0,8 1,0 21,6 294,6 0,8 0,8 9,1 78,6 - B 1,15 1,32 

13 181,0 142,0 0,8 1,0 28,5 294,6 0,0 0,0 13,0 579,4 - A 1,10 1,27 

14 181,0 142,0 0,8 1,0 25,7 294,6 0,0 0,0 13,0 687,4 - A 1,23 1,30 

15 181,0 147,0 0,8 1,0 24,7 294,6 0,0 0,0 12,6 648,1 - A 1,11 1,31 

16 183,0 146,0 0,8 1,0 24,7 294,6 0,0 0,0 12,7 648,1 - A 1,26 1,49 

17 180,0 142,0 0,8 1,0 25,1 294,6 0,1 0,1 13,0 579,4 - B 1,28 1,45 

18 181,0 144,0 0,8 1,0 23,6 294,6 0,1 0,1 12,8 534,2 - B 1,36 1,53 

19 180,0 142,0 0,8 1,0 24,2 294,6 0,2 0,2 13,0 471,4 - B 0,98 1,03 

20 182,0 143,0 0,8 1,0 24,4 294,6 0,2 0,2 12,9 510,6 - B 1,39 1,74 

21 183,0 145,0 0,8 1,0 23,1 294,6 0,3 0,3 12,8 294,6 - B 1,14 1,43 

22 182,0 144,0 0,8 1,0 23,3 294,6 0,3 0,3 12,8 306,4 - B 1,38 1,59 

23 181,0 144,0 0,8 1,0 23,5 294,6 0,7 0,7 12,8 94,3 - B 1,44 1,72 

24 181,0 144,0 0,8 1,0 22,0 294,6 0,7 0,7 12,8 94,3 - B 1,32 1,39 

25 182,0 144,0 0,8 1,0 28,2 294,6 0,8 0,8 12,8 68,7 - B 1,25 1,15 

26 181,0 141,0 0,8 1,0 26,8 294,6 0,8 0,8 13,1 66,8 - B 1,58 1,58 

27 182,0 141,0 0,8 1,0 29,4 294,6 0,0 0,0 20,6 579,4 - A 1,35 1,35 

28 183,0 146,0 0,8 1,0 28,7 294,6 0,0 0,0 19,9 491,0 - A 1,37 1,37 

29 182,0 144,0 0,8 1,0 29,6 294,6 0,2 0,2 20,1 333,9 - B 1,32 1,45 

30 182,0 143,0 0,8 1,0 27,2 294,6 0,3 0,3 20,3 196,4 - B 1,23 1,23 

31 183,0 144,0 0,8 1,0 29,2 294,6 0,7 0,7 20,1 72,7 - B 1,19 1,19 

32 183,0 142,0 0,8 1,0 29,5 294,6 0,8 0,8 20,4 57,0 - B 1,34 1,53 

33 183,0 143,0 0,8 1,0 27,6 294,6 0,0 0,0 30,1 494,9 - A 1,39 1,57 

34 182,0 145,0 0,8 1,0 29,6 294,6 0,1 0,1 29,7 412,4 - B 1,41 1,41 

35 183,0 144,0 0,8 1,7 26,6 294,6 0,2 0,2 29,9 235,7 - B 1,26 1,26 

36 183,0 143,0 0,8 1,0 27,3 294,6 0,3 0,3 30,1 117,8 - B 1,35 1,35 

37 182,0 145,0 0,8 1,0 26,9 294,6 0,7 0,7 29,7 56,0 - B 1,18 1,18 

38 182,0 145,0 0,8 1,0 32,5 294,6 0,8 0,8 29,7 44,2 - B 1,13 1,13 

 Table 12.2 Data used for calculations, taken from [14]  
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Figure 12.5 The result of calculations plotted in an interaction diagram. 
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Figure 12.6 The results of calculations by the equilibrium method  compared with experiments for e=0 
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Figure 12.7 The results of calculations by Danish Code of Practice compared with experiments for e=0 
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Figure 12.8 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.9 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.3 Ernst, G. C, Hromadik, J. J. & Riveland, A. R. 1953 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

1 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 2,0 503,3 - A 0,88 0,89 

2 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 5,0 432,1 - A 0,76 0,78 

3 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 15,0 490,0 - A 0,89 1,07 

4 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 25,0 449,9 - A 1,10 1,36 

5 152,4 152,4 0,8 1,2 20,1 356,8 0,1 0,1 2,0 423,2 - B 0,57 0,57 

6 152,4 152,4 0,8 1,2 20,1 356,8 0,1 0,1 5,0 409,8 - B 0,71 0,73 

7 152,4 152,4 0,8 1,2 20,1 356,8 0,1 0,1 15,0 356,3 - B 1,06 1,24 

8 152,4 152,4 0,8 1,2 20,1 356,8 0,1 0,1 25,0 289,5 - B 1,04 1,22 

9 152,4 152,4 0,8 1,2 20,1 356,8 0,3 0,3 2,0 203,6 - B 1,04 1,18 

10 152,4 152,4 0,8 1,2 20,1 356,8 0,3 0,3 5,0 249,4 - B 1,24 1,24 

11 152,4 152,4 0,8 1,2 20,1 356,8 0,3 0,3 15,0 259,2 - B 0,70 0,87 

12 152,4 152,4 0,8 1,2 20,1 356,8 0,3 0,3 25,0 172,4 - B 0,88 1,07 

13 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 2,0 325,2 - A 1,11 1,26 

14 152,4 152,4 0,8 1,2 20,1 356,8 0,0 0,0 5,0 405,3 - A 1,16 1,16 

15 152,4 152,4 0,8 1,2 20,1 356,8 0,4 0,4 15,0 89,1 - B 0,52 0,63 

16 152,4 152,4 0,8 1,2 20,1 356,8 0,4 0,4 25,0 110,5 - B 1,02 1,02 

 Table 12.3 Data used for calculations, taken from [15] 

 
Figure 12.10 The results of calculations plotted in an interaction diagram, fc,cylinder = 20.1 MPa 
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Figure 12.11 The resulst of calculations by the equilibrium method  compared with experiments for e=0 
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Figure 12.12 The results of calculations by the Danish Code of Practice compared with experiments for e=0 
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Figure 12.13 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.14 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.4 Gehler, W. & Hütter, A. 1954 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

Ia 160,0 140,0 0,9 0,9 19,3 282,8 0,0 0,0 40,0 241,0 - A 1,18 1,38 

Ia 160,0 140,0 0,9 0,9 19,3 282,8 0,0 0,0 40,0 258,1 - A 1,26 1,48 

Ib 160,0 140,0 0,9 0,9 19,4 282,8 0,0 0,0 30,0 384,6 - A 1,26 1,56 

Ib 160,0 140,0 0,9 0,9 19,4 282,8 0,0 0,0 30,0 399,2 - A 1,31 1,62 

Ic 160,0 140,0 0,9 0,9 20,7 282,8 0,0 0,0 25,0 497,4 - A 1,27 1,61 

Ic 160,0 140,0 0,9 0,9 20,7 282,8 0,0 0,0 25,0 533,8 - A 1,36 1,72 

Id 160,0 140,0 0,9 0,9 20,5 282,8 0,0 0,0 20,0 486,5 - A 1,06 1,34 

Id 160,0 140,0 0,9 0,9 20,5 282,8 0,0 0,0 20,0 552,0 - A 1,20 1,52 

Ie 160,0 140,0 0,9 0,9 19,8 282,8 0,0 0,0 15,0 595,7 - A 1,28 1,47 

Ie 160,0 140,0 0,9 0,9 19,8 282,8 0,0 0,0 15,0 566,5 - A 1,22 1,40 

If 160,0 140,0 0,9 0,9 18,8 282,8 0,0 0,0 10,0 475,3 - A 1,01 1,10 

If 160,0 140,0 0,9 0,9 18,8 282,8 0,0 0,0 10,0 498,4 - A 1,06 1,15 

Iia 160,0 140,0 0,8 2,8 19,5 337,8 0,0 0,0 40,0 324,6 - A 1,18 1,45 

Iia 160,0 140,0 0,8 2,8 19,5 337,8 0,0 0,0 40,0 348,2 - A 1,14 1,40 

  

1 160,0 140,0 0,9 0,5 25,0 235,2 0,0 0,0 40,0 174,3 - A 0,96 1,18 

1 160,0 140,0 0,9 0,5 25,0 235,2 0,0 0,0 40,0 196,3 - A 1,01 1,24 

2 160,0 140,0 0,8 2,0 26,0 316,2 0,0 0,0 40,0 218,6 - A 1,04 1,29 

2 160,0 140,0 0,8 2,0 26,0 289,4 0,0 0,0 40,0 285,4 - A 1,04 1,29 

3 160,0 140,0 0,8 5,6 24,0 289,4 0,0 0,0 40,0 326,0 - A 0,72 0,85 

3 160,0 140,0 0,8 5,6 24,0 289,4 0,0 0,0 40,0 285,4 - A 0,81 0,96 

4 160,0 140,0 0,9 0,9 13,4 206,5 0,0 0,0 30,0 262,3 - A 0,75 0,85 

4 160,0 140,0 0,9 0,9 13,4 206,5 0,0 0,0 30,0 253,1 - A 0,97 1,12 

5 160,0 140,0 0,9 0,9 21,1 206,5 0,0 0,0 30,0 311,3 - A 1,25 1,40 

5 160,0 140,0 0,9 0,9 21,1 206,5 0,0 0,0 30,0 327,0 - A 1,34 1,50 

6 160,0 140,0 0,9 0,9 26,2 206,5 0,0 0,0 30,0 405,7 - A 0,91 0,92 

6 160,0 140,0 0,9 0,9 26,2 206,5 0,0 0,0 30,0 405,7 - A 0,79 0,81 

               

Test No. b h d/h 100r fc fy  H l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa] [kN]   [kN] [mm] D Nteo NDS 

7 160,0 140,0 0,8 2,0 18,7 289,4 4,7 15,0 473,3 - D 1,09 1,20 

7 160,0 140,0 0,8 2,0 18,7 289,4 4,5 15,0 448,8 - D 1,03 1,13 

8 160,0 140,0 0,8 2,0 23,9 289,4 4,8 20,0 480,2 - D 1,06 1,16 

8 160,0 140,0 0,8 2,0 23,9 289,4 4,5 20,0 446,5 - D 0,99 1,08 

9 160,0 140,0 0,8 2,0 21,9 289,4 3,2 30,0 321,4 - D 1,17 1,15 

9 160,0 140,0 0,8 2,0 21,9 289,4 3,0 30,0 298,7 - D 1,09 1,07 

10 160,0 140,0 0,8 2,0 21,7 289,4 1,5 40,0 152,6 - D 0,99 0,92 

10 160,0 140,0 0,8 2,0 21,7 289,4 1,7 40,0 165,7 - D 1,07 1,00 

11 160,0 140,0 0,8 2,0 18,8 289,4 8,7 15,0 433,0 - D 1,12 1,23 

11 160,0 140,0 0,8 2,0 18,8 289,4 9,4 15,0 470,3 - D 1,22 1,33 

12 160,0 140,0 0,8 2,0 23,9 289,4 7,9 20,0 397,5 - D 1,03 1,11 
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12 160,0 140,0 0,8 2,0 23,9 289,4 8,1 20,0 405,1 - D 1,05 1,13 

13 160,0 140,0 0,8 2,0 24,4 289,4 4,7 30,0 236,4 - D 1,13 1,09 

13 160,0 140,0 0,8 2,0 24,4 289,4 4,8 30,0 238,1 - D 1,14 1,10 

14 160,0 140,0 0,8 2,0 20,9 289,4 2,5 40,0 126,6 - D 1,24 1,11 

14 160,0 140,0 0,8 2,0 20,9 289,4 2,3 40,0 113,5 - D 1,11 1,00 

15 160,0 140,0 0,8 2,0 18,8 289,4 12,1 15,0 402,6 - D 1,16 1,28 

15 160,0 140,0 0,8 2,0 18,8 289,4 13,2 15,0 439,2 - D 1,26 1,40 

16 160,0 140,0 0,8 2,0 18,7 289,4 7,9 20,0 264,5 - D 0,96 1,02 

16 160,0 140,0 0,8 2,0 18,7 289,4 9,2 20,0 307,8 - D 1,12 1,19 

17 160,0 140,0 0,8 2,0 19,0 289,4 5,9 30,0 196,3 - D 1,36 1,31 

17 160,0 140,0 0,8 2,0 19,0 289,4 5,2 30,0 174,3 - D 1,20 1,16 

18 160,0 140,0 0,8 2,0 20,1 289,4 3,1 40,0 104,8 - D 1,20 1,13 

18 160,0 140,0 0,8 2,0 20,1 289,4 3,0 40,0 100,5 - D 1,15 1,08 

Table 12.4 Data used for calculations, taken from [16] 

 
Figure 12.15 The results of calculations plotted in an interaction diagram, fc,cylinder = 18.6 MPa 
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Figure 12.16 The results of calculations plotted in an interaction diagram, fc,cylinder = 21.8 MPa and  fc,cylinder = 

20.9 MPa respectively 

 
Figure 12.17 The results of calculations plotted in an interaction diagram, fc,cylinder = 24.3 MPa and  fc,cylinder = 

23.8 MPa respectively 
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Figure 12.18 The results of calculations by the equilibrium method  compared with experiments for e=0 
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Figure 12.19 The results of calculations by the Danish Code of Practice compared with experiments for e=0 
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Figure 12.20 The results of calculations by the equilibrium method  compared with experiments for laterally 

loaded beam-columns 
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Figure 12.21 The results of calculations by the Danish Code of Practice compared with experiments for laterally 

loaded beam-columns 
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12.5 Gaede, K. 1958 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

I/1 154,0 100,0 0,9 1,0 19,8 335,4 0,2 0,2 29,4 75,6 - B 0,85 0,82 

I/5 154,0 100,0 0,9 1,0 25,7 288,9 0,2 0,2 29,4 97,0 - B 0,92 0,88 

II/4 154,0 100,0 0,9 1,0 24,1 273,7 0,5 0,5 29,4 36,1 28,0 B 0,79 0,73 

II/5 154,0 100,0 0,9 1,0 25,3 272,6 0,5 0,5 29,4 37,8 23,5 B 0,88 0,80 

III/1 154,0 100,0 0,9 1,0 26,3 327,3 0,5 0,5 35,4 33,4 33,0 B 0,92 0,73 

III/2 154,0 100,0 0,9 1,0 22,9 326,0 0,5 0,5 35,4 33,4 43,0 B 0,92 0,83 

III/3 154,0 100,0 0,9 1,0 22,8 326,5 0,5 0,5 35,4 33,6 45,0 B 0,93 0,84 

III/4 154,0 100,0 0,9 1,0 31,1 326,6 0,5 0,5 35,4 37,3 38,5 B 0,88 0,88 

 Table 12.5 Data used for calculations, taken from [17] 

 
Figure 12.22 The results of calculations plotted in an interaction diagram 
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Figure 12.23 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.24 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.6  Chang, W. F.  & Ferguson, P. M. 1963 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

1 155,6 103,2 0,8 1,8 23,3 344,8 0,1 0,1 25,6 168,1 - B 0,70 0,68 

2 155,6 103,2 0,8 1,8 35,0 344,8 0,4 0,4 25,6 68,9 - B 0,62 0,65 

3 155,6 103,2 0,8 1,8 28,9 344,8 0,1 0,1 25,6 189,5 - B 0,60 0,61 

4 155,6 103,2 0,8 1,8 30,1 344,8 0,4 0,4 25,6 72,5 - B 0,66 0,66 

5 155,6 103,2 0,8 1,8 32,8 344,8 0,2 0,2 25,6 122,8 - B 0,62 0,62 

6 155,6 103,2 0,8 1,8 33,6 434,4 0,1 0,1 25,6 197,5 - B 0,703 0,729 

 Table 12.6 Data used for calculations, taken from [18] 

 N [kN] 

 
Figure 12.25 The results of calculations plotted in an interaction diagram, l/h = 30 
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Figure 12.26 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.27 The results of calculations by the Danish Code of Practice  compared with experiments for 

eccentrically loaded beam-columns 
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12.7 Panell , F. N. & Robinson, J. L. 1969 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

1A 95,3 63,5 0,8 3,3 19,1 352,1 0,0 0,0 41,6 60,9 - A 0,96 0,97

2A 95,3 63,5 0,8 3,3 18,3 365,9 0,0 0,0 41,6 74,7 - A 1,21 1,23

3A 95,3 63,5 0,8 3,3 17,0 365,9 0,0 0,0 27,2 99,6 - A 0,91 1,04

4A 95,3 63,5 0,8 3,3 21,2 365,9 0,0 0,0 15,2 174,4 - A 0,88 1,08

5A 95,3 63,5 0,8 3,3 21,3 365,9 0,0 0,0 32,0 98,7 - A 0,96 1,07

6B 95,3 63,5 0,8 3,3 22,8 352,1 1,4 1,4 41,6 14,9 - D 1,20 1,20

7B 63,5 95,3 0,9 3,3 24,5 352,1 1,8 1,8 27,7 19,9 - D 1,31 1,31

8B 95,3 63,5 0,8 3,3 15,9 352,1 0,2 0,2 41,6 54,7 - D 1,94 1,74

9B 63,5 95,3 0,9 3,3 15,9 352,1 0,7 0,7 27,7 39,9 - D 1,20 1,34

 Table 12.7 Data used for calculations, taken from [19] 

 
Figure 12.28 The results of calculations plotted in an interaction diagram, the compressive strength is 

calculated as a mean of the values given in the table above 
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Figure 12.29 The results of calculations by the equilibrium method  compared with experiments for e=0 
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Figure 12.30 The results of calculations by the Danish Code of Practice compared with experiments for e=0 
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Figure 12.31 The results of calculations by the equilibrium method  compared with experiments for laterally 

loaded beam-columns 
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Figure 12.32 The results of calculations by the Danish Code of Practice compared with experiments for laterally 

loaded beam-columns 



Stability of Concrete Columns 
 

 - 122 - 
 

12.8 Breen, J. E. & Ferguson, P. M. 1969 

Test No. b h d/h 100ρ fc fy  H l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa] [kN]   [kN] [mm]   Nteo NDS 

G1 155,6 100,6 0,8 1,8 25,6 409,6 4,5 20,0 151,2 - D 0,65 0,68 

G2 154,0 101,6 0,8 1,8 25,2 405,4 1,4 40,0 47,8 - D 0,85 0,72 

G3 153,2 102,0 0,8 1,8 25,5 409,6 0,9 50,0 30,0 - D 0,83 0,73 

G4 153,6 101,6 0,8 1,8 25,5 402,7 0,6 50,0 53,4 - D 0,95 0,80 

G5 152,8 101,6 0,8 1,8 28,7 464,7 0,9 60,0 29,4 - D 1,02 1,02 

G6 153,2 101,6 0,8 1,8 30,2 450,2 0,6 50,0 48,9 - D 0,74 0,74 

G7 154,8 102,2 0,8 1,8 33,4 440,6 0,7 40,0 66,7 - D 0,49 0,54 

G8 152,4 101,8 0,8 1,8 28,0 428,2 0,4 60,0 48,0 - D 0,96 0,96 

G9 152,6 101,4 0,8 1,8 27,4 419,9 4,4 20,0 146,8 - D 0,61 0,64 

G10 152,2 101,6 0,8 1,8 27,7 411,6 12,5 10,0 209,1 - D 0,64 0,77 

 Table 12.8 Data used for calculations, taken from [20] 

 
Figure 12.33 The results of calculations plotted in an interaction diagram 
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Figure 12.34 The results of calculations by the equilibrium method  compared with experiments for laterally 

loaded beam-columns 
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Figure 12.35 The results of calculations by the Danish Code of Practice compared with experiments for laterally 

loaded beam-columns 
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12.9  Mehmel, A., Schwartz, H., Kasparek, K. H. & Makovi, J. 1969 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

0.1 253,0 159,0 0,9 1,1 37,4 509,9 0,1 0,1 8,8 942,7 5,0 B 0,73 0,86 

0.2 254,0 156,0 0,9 1,1 40,6 509,9 1,0 1,0 9,0 137,3 12,0 B 0,87 0,94 

1.1 253,0 203,0 0,8 1,2 39,3 483,4 0,2 0,2 16,7 857,4 22,0 B 0,82 0,93 

1.2 253,0 202,0 0,8 1,2 37,8 483,4 0,5 0,5 16,8 319,8 43,0 B 0,79 0,84 

2.1 252,0 202,0 0,9 1,2 37,3 483,4 0,2 0,2 22,3 588,6 43,0 B 0,79 0,84 

2.2 252,0 203,0 0,8 1,2 40,8 483,4 0,5 0,5 22,2 259,0 60,0 B 0,87 0,99 

3.1 252,0 152,0 0,8 1,2 38,3 509,9 0,2 0,2 22,4 470,9 30,0 B 0,90 0,95 

3.2 252,0 151,0 0,8 1,2 41,1 509,9 0,5 0,5 22,5 176,6 48,0 B 0,96 1,12 

3.3 254,0 159,0 0,8 1,1 35,4 509,9 0,1 0,1 21,4 782,8 24,0 B 0,80 0,90 

3.4 253,0 158,0 0,8 1,1 42,8 509,9 1,0 1,0 21,5 102,0 45,0 B 0,84 0,84 

4.1 253,0 150,0 0,8 1,2 40,6 509,9 0,2 0,2 30,0 367,9 35,0 B 0,82 0,82 

4.2 253,0 148,0 0,8 1,2 41,5 509,9 0,5 0,5 30,4 145,2 70,0 B 0,90 1,02 

5.1 253,0 158,0 0,8 3,1 40,7 426,8 0,2 0,2 21,5 735,8 32,0 B 0,87 1,02 

5.2 252,0 159,0 0,8 3,1 37,0 426,8 0,5 0,5 21,4 369,8 52,0 B 1,08 1,15 

6.1 254,0 159,0 0,8 1,1 42,5 509,9 0,2 0,0 14,5 939,8 12,0 B 1,07 1,07 

6.2 253,0 157,0 0,8 1,1 44,2 509,9 0,5 0,0 14,6 343,4 28,0 B 0,88 1,05 

 Table 12.9 Data used for calculations, taken from [21] 

 
Figure 12.36 The results of calculations plotted in an interaction diagram, fc,cylinder = 31.2 MPa 
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Figure 12.37 The results of calculations plotted in an interaction diagram, fc,cylinder = 30.9 MPa 

 
Figure 12.38 The results of calculations plotted in an interaction diagram, fc,cylinder = 31.2 MPa 
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Figure 12.39 The results of calculations plotted in an interaction diagram, fc,cylinder = 31.7 MPa 

 
Figure 12.40 The results of calculations plotted in an interaction diagram, fc,cylinder = 31.2 MPa 
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Figure 12.41 The results of calculations plotted in an interaction diagram, fc,cylinder = 32.8 MPa 

 
Figure 12.42 The results of calculations plotted in an interaction diagram, fc,cylinder = 31.0 MPa 
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Figure 12.43 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.44 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.10 Kim, J.-K. & Yang, J.-K. 1993 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

10L4-1 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 3,0 109,5 0,4 B 0,93 1,07 

10L4-2 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 3,0 109,3 0,4 B 0,96 1,10 

60L2-1 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 18,0 63,7 14,9 B 0,96 0,96 

60L2-2 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 18,0 65,7 16,2 B 0,88 0,88 

100L2-1 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 30,0 38,2 29,8 B 0,90 1,14 

100L2-2 80,0 80,0 0,8 2,0 26,8 387,0 0,3 0,3 30,0 35,0 32,7 B 0,91 1,16 

100L4-1 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 30,0 49,0 38,2 B 0,86 0,98 

100L4-2 80,0 80,0 0,8 4,0 26,8 387,0 0,3 0,3 30,0 47,0 36,2 B 0,95 1,08 

10M2-1 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 3,0 179,0 0,4 B 0,79 0,86 

10M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 3,0 182,8 0,4 B 0,83 0,91 

10M4-1 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 3,0 207,7 0,4 B 0,91 1,17 

10M4-2 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 3,0 204,6 0,5 B 0,93 1,20 

60M2-1 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 18,0 102,8 20,3 B 0,84 0,97 

60M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 18,0 113,5 18,1 B 0,86 0,98 

100M2-1 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 30,0 45,2 26,2 B 0,79 1,08 

100M2-2 80,0 80,0 0,8 2,0 66,7 387,0 0,3 0,3 30,0 47,6 27,2 B 0,79 1,09 

100M4-1 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 30,0 59,6 31,1 B 0,87 1,13 

100M4-2 80,0 80,0 0,8 4,0 66,7 387,0 0,3 0,3 30,0 60,5 34,2 B 0,86 1,13 

10H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 3,0 235,3 0,5 B 0,83 0,87 

10H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 3,0 240,4 0,4 B 0,79 0,83 

10H4-1 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 3,0 255,8 0,5 B 0,90 1,16 

10H4-2 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 3,0 257,7 0,5 B 0,89 1,15 

60H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 18,0 122,1 15,4 B 0,71 0,76 

60H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 18,0 123,7 16,7 B 0,72 0,77 

100H2-1 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 30,0 54,3 24,3 B 0,88 1,14 

100H2-2 80,0 80,0 0,8 2,0 90,5 387,0 0,3 0,3 30,0 54,9 23,7 B 0,89 1,15 

100H4-1 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 30,0 66,6 32,4 B 0,70 0,82 

100H4-2 80,0 80,0 0,8 4,0 90,5 387,0 0,3 0,3 30,0 64,7 33,3 B 0,68 0,80 

 Table 12.10 Data used for calculations, taken from [28] 

 

This reinforcement is not 
considered in the calculations 

ρcalc = 2% ρcalc = 3% 

 
Figure 12.45 The reinforcement in the middle of the section is not considered in the calculations 
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Figure 12.46 The results of calculations plotted in an interaction diagram 

 
Figure 12.47 The results of calculations plotted in an interaction diagram 
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Figure 12.48 The results of calculations plotted in an interaction diagram 

 
Figure 12.49 The results of calculations plotted in an interaction diagram 
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Figure 12.50 The results of calculations plotted in an interaction diagram 
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Figure 12.51 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.52 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.11 Chuang, P. H. & Kong, F. K. 1997  

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

A-15-0.25 300,0 200,0 0,8 3,3 24,9 493,0 0,3 0,3 15,0 1286,2 29,0 B 1,41 1,69 

A-17-0.25 300,0 200,0 0,8 3,3 30,6 493,0 0,3 0,3 17,0 1185,0 41,0 B 1,24 1,46 

A-18-0.25 300,0 200,0 0,8 3,3 26,2 493,0 0,3 0,3 18,0 1084,1 39,0 B 1,29 1,47 

A-19-0.25 300,0 200,0 0,8 3,3 25,8 493,0 0,3 0,3 19,0 1246,6 43,0 B 1,60 1,77 

A-15-0.50 300,0 200,0 0,8 3,3 26,4 493,0 0,5 0,5 15,0 886,2 31,0 B 1,51 1,93 

A-17-0.50 300,0 200,0 0,8 3,3 32,2 493,0 0,5 0,5 17,0 904,5 55,0 B 1,48 1,83 

A-18-0.50 300,0 200,0 0,8 3,3 26,2 493,0 0,5 0,5 18,0 851,6 58,0 B 1,60 1,97 

A-19-0.50 300,0 200,0 0,8 3,3 24,2 493,0 0,5 0,5 19,0 816,3 45,0 B 1,60 1,98 

B-17-0.25 300,0 200,0 0,8 1,3 29,8 519,0 0,3 0,3 17,0 1086,8 23,0 B 1,49 1,64 

B-18-0.25 300,0 200,0 0,8 1,3 33,7 519,0 0,3 0,3 18,0 989,1 25,0 B 1,31 1,45 

B-19-0.25 300,0 200,0 0,8 1,3 31,8 519,0 0,3 0,3 19,0 1048,0 26,0 B 1,50 1,61 

B-17-0.50 300,0 200,0 0,8 1,3 30,9 519,0 0,5 0,5 17,0 476,7 38,0 B 1,17 1,31 

B-18-0.50 300,0 200,0 0,8 1,3 34,0 519,0 0,5 0,5 18,0 479,7 37,0 B 1,15 1,30 

B-19-0.50 300,0 200,0 0,8 1,3 36,0 519,0 0,5 0,5 19,0 459,8 37,0 B 1,12 1,27 

C-27.5-0.25 200,0 120,0 0,7 3,4 33,7 520,0 0,3 0,3 27,5 531,3 17,0 B 2,71 2,89 

C-30.0-0.25 200,0 120,0 0,7 3,4 34,1 520,0 0,3 0,3 30,0 484,8 24,0 B 2,80 3,02 

C-31.7-0.25 200,0 120,0 0,7 3,4 35,5 520,0 0,3 0,3 31,7 332,3 45,0 B 2,01 2,18 

C-27.5-0.50 200,0 120,0 0,7 3,4 34,1 520,0 0,5 0,5 27,5 242,3 72,0 B 1,78 1,96 

C-30.0-0.50 200,0 120,0 0,7 3,4 33,2 520,0 0,5 0,5 30,0 319,7 60,0 B 2,63 2,92 

C-31.7-0.50 200,0 120,0 0,7 3,4 35,0 520,0 0,5 0,5 31,7 254,9 94,0 B 2,25 2,53 

HB-17-0.25 300,0 200,0 0,8 1,3 77,0 531,0 0,3 0,3 17,0 1802,6 35,0 B 1,23 1,43 

HB-18-0.25 300,0 200,0 0,8 1,3 75,8 531,0 0,3 0,3 18,0 1478,4 30,0 B 1,10 1,29 

HB-19-0.25 300,0 200,0 0,8 1,3 76,3 531,0 0,3 0,3 19,0 1569,8 15,0 B 1,25 1,43 

HB-17-0.50 300,0 200,0 0,8 1,3 75,3 531,0 0,5 0,5 17,0 706,2 34,0 B 1,19 1,30 

HB-18-0.50 300,0 200,0 0,8 1,3 76,7 531,0 0,5 0,5 18,0 646,4 40,0 B 1,17 1,29 

HB-19-0.50 300,0 200,0 0,8 1,3 76,9 531,0 0,5 0,5 19,0 608,8 39,0 B 1,21 1,34 

 Table 12.11 Data used for calculations, taken from [29] 
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Figure 12.53 The results of calculations plotted in an interaction diagram,  ρ = 3.27% 

 
Figure 12.54 The results of calculations plotted in an interaction diagram,  ρ = 1.34% 
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Figure 12.55 The results of calculations plotted in an interaction diagram,  ρ = 1.34% 

 
Figure 12.56 The results of calculations plotted in an interaction diagram,  ρ = 3.35% 
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Figure 12.57 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.58 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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12.12 Foster, S. J. & Attard, M. M. 1997 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

2L8-30 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 960,0 6,5 B 0,98 1,13 

2L8-60 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 857,0 6,0 B 0,88 1,02 

2L8-120 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 912,0 6,0 B 0,95 1,09 

2L20-30 150,0 150,0 0,9 2,0 40,0 480,0 0,1 0,1 9,7 750,0 4,8 B 0,99 1,22 

2L20-60 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 700,0 6,2 B 0,88 1,08 

2L20-120 150,0 150,0 0,9 2,0 43,0 480,0 0,1 0,1 9,7 782,0 5,2 B 1,00 1,22 

2L50-30 150,0 150,0 0,9 2,0 40,0 480,0 0,3 0,3 9,7 440,0 9,0 B 0,94 1,23 

2L50-60 150,0 150,0 0,9 2,0 43,0 480,0 0,3 0,3 9,7 472,0 8,5 B 0,95 1,21 

2L50-120 150,0 150,0 0,9 2,0 40,0 480,0 0,3 0,3 9,7 440,0 9,0 B 0,96 1,23 

4L8-30 150,0 150,0 0,9 3,0 43,0 480,0 0,1 0,1 9,7 1100,0 9,0 B 1,04 1,20 

4L8-60 150,0 150,0 0,9 3,0 43,0 480,0 0,1 0,1 9,7 1150,0 6,0 B 1,06 1,24 

4L8-120 150,0 150,0 0,9 3,0 43,0 480,0 0,1 0,1 9,7 975,0 5,7 B 0,91 1,06 

4L20-30 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 1020,0 7,0 B 1,23 1,49 

4L20-60 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 968,0 3,5 B 1,18 1,44 

4L20-120 150,0 150,0 0,9 3,0 40,0 480,0 0,1 0,1 9,7 900,0 4,0 B 1,08 1,34 

4L50-30 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 517,0 18,5 B 1,01 1,32 

4L50-60 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 550,0 8,0 B 1,00 1,28 

4L50-120 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 525,0 8,0 B 0,97 1,26 

2M8-30 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1348,0 5,0 B 0,87 1,00 

2M8-60 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1432,0 5,0 B 0,93 1,06 

2M8-120 150,0 150,0 0,9 2,0 75,0 480,0 0,1 0,1 9,7 1239,0 4,0 B 0,80 0,93 

2M20-30 150,0 150,0 0,9 2,0 74,0 480,0 0,1 0,1 9,7 1160,0 6,0 B 0,93 1,14 

2M20-60 150,0 150,0 0,9 2,0 74,0 480,0 0,1 0,1 9,7 1231,0 6,0 B 0,99 1,21 

2M20-120 150,0 150,0 0,9 2,0 74,0 480,0 0,1 0,1 9,7 1067,0 5,0 B 0,87 1,05 

2M50-30 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 630,0 9,5 B 0,88 1,12 

2M50-60 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 747,0 11,5 B 1,07 1,37 

2M50-120 150,0 150,0 0,9 2,0 74,0 480,0 0,3 0,3 9,7 652,0 11,5 B 0,89 1,16 

4M8-30 150,0 150,0 0,9 3,0 74,0 480,0 0,1 0,1 9,7 1102,0 3,0 B 0,68 0,79 

4M8-60 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1404,0 4,0 B 0,87 1,00 

4M8-120 150,0 150,0 0,9 3,0 74,0 480,0 0,1 0,1 9,7 1404,0 3,5 B 0,86 0,99 

4M20-30 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1052,0 4,0 B 0,79 0,97 

4M20-60 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1004,0 5,0 B 0,77 0,94 

4M20-120 150,0 150,0 0,9 3,0 75,0 480,0 0,1 0,1 9,7 1226,0 5,0 B 0,92 1,13 

4M50-30 150,0 150,0 0,9 3,0 74,0 480,0 0,3 0,3 9,7 656,0 9,5 B 0,87 1,10 

4M50-60 150,0 150,0 0,9 3,0 75,0 480,0 0,3 0,3 9,7 686,0 9,5 B 0,90 1,14 

4M50-120 150,0 150,0 0,9 3,0 74,0 480,0 0,3 0,3 9,7 677,0 9,5 B 0,85 1,10 

2H8-30 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1576,0 3,5 B 0,85 0,98 

2H8-60 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1647,0 4,5 B 0,88 1,02 

2H8-120 150,0 150,0 0,9 2,0 93,0 480,0 0,1 0,1 9,7 1806,0 3,6 B 0,98 1,12 

2H20-30 150,0 150,0 0,9 2,0 92,0 480,0 0,1 0,1 9,7 1207,0 6,5 B 0,81 1,00 

2H20-60 150,0 150,0 0,9 2,0 92,0 480,0 0,1 0,1 9,7 1247,0 5,3 B 0,85 1,03 
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2H20-120 150,0 150,0 0,9 2,0 92,0 480,0 0,1 0,1 9,7 1473,0 5,6 B 1,01 1,22 

2H50-30 150,0 150,0 0,9 2,0 92,0 480,0 0,3 0,3 9,7 749,0 9,7 B 0,94 1,17 

2H50-60 150,0 150,0 0,9 2,0 92,0 480,0 0,3 0,3 9,7 685,0 10,0 B 0,86 1,07 

2H50-120 150,0 150,0 0,9 2,0 92,0 480,0 0,3 0,3 9,7 851,0 8,3 B 1,06 1,33 

4H8-30 150,0 150,0 0,9 3,0 91,0 480,0 0,1 0,1 9,7 1601,0 4,8 B 0,82 0,95 

4H8-60 150,0 150,0 0,9 3,0 92,0 480,0 0,1 0,1 9,7 1702,0 5,5 B 0,88 1,02 

4H8-120 150,0 150,0 0,9 3,0 92,0 480,0 0,1 0,1 9,7 1654,0 4,2 B 0,85 0,99 

4H20-30 150,0 150,0 0,9 3,0 88,0 480,0 0,1 0,1 9,7 1352,0 7,0 B 0,89 1,09 

4H20-60 150,0 150,0 0,9 3,0 88,0 480,0 0,1 0,1 9,7 1358,0 7,5 B 0,88 1,09 

4H20-120 150,0 150,0 0,9 3,0 92,0 480,0 0,1 0,1 9,7 1374,0 7,0 B 0,87 1,06 

4H50-30 150,0 150,0 0,9 3,0 88,0 480,0 0,3 0,3 9,7 781,0 10,5 B 0,87 1,09 

4H50-60 150,0 150,0 0,9 3,0 88,0 480,0 0,3 0,3 9,7 791,0 9,5 B 0,88 1,11 

4H50-120 150,0 150,0 0,9 3,0 92,0 480,0 0,3 0,3 9,7 818,0 9,5 B 0,88 1,10 

2L8-120R 150,0 150,0 0,9 2,0 56,0 480,0 0,1 0,1 9,7 1092,0 4,5 B 0,91 1,06 

2L20-120R 150,0 150,0 0,9 2,0 56,0 480,0 0,1 0,1 9,7 897,0 5,0 B 0,92 1,13 

4L8-120R 150,0 150,0 0,9 3,0 56,0 480,0 0,1 0,1 9,7 1247,0 4,0 B 0,95 1,11 

4L20-120R 150,0 150,0 0,9 3,0 53,0 480,0 0,1 0,1 9,7 945,0 6,0 B 0,93 1,13 

4L50-30R 150,0 150,0 0,9 3,0 40,0 480,0 0,3 0,3 9,7 546,0 10,0 B 1,04 1,35 

2M8-30R 150,0 150,0 0,9 2,0 68,0 480,0 0,1 0,1 9,7 1326,0 1,0 B 0,94 1,08 

2M20-60R 150,0 150,0 0,9 2,0 73,0 480,0 0,1 0,1 9,7 1303,0 7,0 B 1,06 1,30 

2M20-120R 150,0 150,0 0,9 2,0 73,0 480,0 0,1 0,1 9,7 1180,0 7,0 B 0,98 1,18 

2M50-60R 150,0 150,0 0,9 2,0 67,0 480,0 0,3 0,3 9,7 670,0 8,4 B 1,02 1,30 

2M50-120R 150,0 150,0 0,9 2,0 73,0 480,0 0,3 0,3 9,7 672,0 13,2 B 0,95 1,21 

4M20-60R 150,0 150,0 0,9 3,0 68,0 480,0 0,1 0,1 9,7 1198,0 4,4 B 0,98 1,20 

4M20-120R 150,0 150,0 0,9 3,0 73,0 480,0 0,1 0,1 9,7 1105,0 7,2 B 0,84 1,02 

4M50-60R 150,0 150,0 0,9 3,0 73,0 480,0 0,3 0,3 9,7 800,0 8,5 B 1,02 1,31 

4M50-120R 150,0 150,0 0,9 3,0 70,0 480,0 0,3 0,3 9,7 633,0 9,5 B 0,83 1,08 

 Table 12.12 Data used for calculations, taken from [30] 

 

This reinforcement is not 
considered in the calculations 

ρcalc = 2% ρcalc = 3% 

 
 



Stability of Concrete Columns 
 

 - 140 - 
 

 
Figure 12.59 The results of calculations plotted in an interaction diagram 

 
Figure 12.60 The results of calculations plotted in an interaction diagram 
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Figure 12.61 The results of calculations plotted in an interaction diagram 
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Figure 12.62 The results of calculations by the equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 



Stability of Concrete Columns 
 

 - 142 - 
 

0

500

1000

1500

2000

2500

3000

0,0 1000,0 2000,0 3000,0

Stephen J. Foster & Mario M. Attrad,
1997

N exp  [kN]

N theory  [kN]

 
Figure 12.63 The results of calculations by the Danish Code of Practice  compared with experiments for 

eccentrically loaded beam-columns 
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12.13 Cleason, C. 1997 

Test No. b h d/h 100ρ fc fy  ei,t/h ei,b/h l/h Nexp um Type Nexp Nexp 

  [mm] [mm]     [MPa] [MPa]       [kN] [mm]   Nteo NDS 

1A 120,0 120,0 0,9 3,0 43,0 684,0 0,2 0,2 20,0 320,0 26,0 B 0,85 0,95 

2A 120,0 120,0 0,9 3,0 43,0 684,0 0,2 0,2 20,0 280,0 46,0 B 0,75 0,83 

3A 120,0 120,0 0,9 3,0 86,0 684,0 0,2 0,2 20,0 370,0 36,0 B 0,60 0,69 

4A 120,0 120,0 0,9 3,0 86,0 684,0 0,2 0,2 20,0 330,0 47,0 B 0,54 0,61 

5B 200,0 200,0 0,9 2,0 33,0 636,0 0,1 0,1 15,0 990,0 22,0 B 0,86 1,02 

6B 200,0 200,0 0,9 2,0 33,0 636,0 0,1 0,1 15,0 990,0 21,0 B 0,86 1,02 

7B 200,0 200,0 0,9 2,0 91,0 636,0 0,1 0,1 15,0 2310,0 23,0 B 0,88 1,05 

8B 200,0 200,0 0,9 2,0 92,0 636,0 0,1 0,1 15,0 2350,0 20,0 B 0,89 1,06 

9C 200,0 200,0 0,9 2,0 37,0 636,0 0,1 0,1 20,0 900,0 40,0 B 0,82 0,92 

10C 200,0 200,0 0,9 2,0 37,0 636,0 0,1 0,1 20,0 920,0 36,0 B 0,84 0,94 

11C 200,0 200,0 0,9 2,0 93,0 636,0 0,1 0,1 20,0 1530,0 39,0 B 0,67 0,77 

12C 200,0 200,0 0,9 2,0 93,0 636,0 0,1 0,1 20,0 1560,0 41,0 B 0,68 0,78 

 Table 12.13 Data used for calculations, taken from [31] 
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Figure 12.64 The results of calculations by equilibrium method  compared with experiments for eccentrically 

loaded beam-columns 
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Figure 12.65 The results of calculations by the Danish Code of Practice compared with experiments for 

eccentrically loaded beam-columns 
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