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Abstract

This Ph�D� thesis
 A Multivariate Approach to Functional Neuro Modeling
 deals with the
analysis and modeling of data from functional neuro imaging experiments� A multivariate
dataset description is provided which facilitates e�cient representation of typical datasets
and
 more importantly
 provides the basis for a generalization theoretical framework re
lating model performance to model complexity and dataset size� Brie�y summarized the
major topics discussed in the thesis include�

� An introduction of the representation of functional datasets by pairs of neuronal
activity patterns and overall conditions governing the functional experiment
 via
associated micro and macroscopic variables� The description facilitates an e�
cient microscopic rerepresentation
 as well as a handle on the link between brain
and behavior� the latter is obtained by hypothesizing variations in the micro and
macroscopic variables to be manifestations of an underlying system�

� A review of two microscopic basis selection procedures
 namely principal component
analysis and independent component analysis
 with respect to their applicability to
functional datasets�

� Quantitative model performance assessment via a generalization theoretical frame
work centered around measures of model generalization error� Only few
 if any

examples of the application of generalization theory to functional neuro modeling
currently exist in the literature�

� Exempli�cation of the proposed generalization theoretical framework by the ap
plication of linear and more �exible
 nonlinear microscopic regression models to a
realworld dataset� The dependency of model performance
 as quanti�ed by gener
alization error
 on model �exibility and training set size is demonstrated
 leading to
the important realization that no uniformly optimal model exists�

� Model visualization and interpretation techniques� The simplicity of this task for
linear models contrasts the di�culties involved when dealing with nonlinear models�
Thus
 a novel visualization technique for nonlinear models is proposed�

A single observation emerges from the thesis as particularly important� optimal model
�exibility is a function of both the complexity and the size of the dataset at hand� This is
something that has not received appropriate attention by the functional neuro modeling
community so far� The observation implies that optimal model performance rarely is
achieved with black�box models� rather
 model �exibility must be matched to the speci�c
functional dataset� The potential advantage is a model that more precisely approximates
the true nature of the relationship between brain and behavior
 thus paving the way for
increased insight into the function of the human brain�
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Resum�e
�Abstract in Danish�

N�rv�rende Ph�D� afhandling
 A Multivariate Approach to Functional Neuro Modeling

omhandler analyse og modellering af data fra metoder til funktionel afbildning af den
menneskelige hjerne� En multivariat datas�t beskrivelse introduceres
 hvilket tillader
e�ektiv repr�sentation af typiske datas�t og
 endnu vigtigere
 udg	r fundamentet for et
generaliseringsteoretisk begrebsapparat
 der sammenknytter en models ydeevne med dens
kompleksitet og st	rrelsen af datas�ttet� Emnerne behandlet i afhandlingen omfatter�

� En introduktion til repr�sentation af funktionelle datas�t ved hj�lp af par af neu
ronale aktivitets m	nstre og generelle vilk�ar for det funktionelle eksperiment
 via
tilh	rende s�akaldte mikro og makroskopiske variable� Beskrivelsen tillader e�ektiv
mikroskopisk repr�sentation
 samt indsigt i sammenh�ngen mellem hjerne og han
dling� det sidste gennem en antagelse om at variationer i de mikro og makroskopiske
variable er manifestationer af et underliggende system�

� Gennemgang af to procedurer til udv�lgelses af en mikroskopisk basis
 nemlig prin�

cipal component analysis og independent component analysis
 specielt med hensyn
til deres anvendelighed p�a funktionelle datas�t�

� Kvantitativ vurdering af modelydeevne ved hj�lp af et generaliseringsteoretisk be
grebsapparat baseret p�a modellers generaliseringsfejl� Kun f�a
 om nogen
 eksempler
p�a anvendelsen af generaliseringsteori indenfor funktionel hjerne modellering �ndes
i litteraturen�

� Praktisk eksempli�cering af det foresl�aede begrebsapparat med anvendelse af line�re
samt mere �eksible
 uline�re mikroskopiske regressions modeller� Modelydeevnens

som kvantiseret ved hj�lp af generaliseringsfejl
 afh�ngighed af model �eksibilitet
og datas�ttets st	rrelse demonstreres
 hvilket leder til den v�sentlige erkendelse
 at
der ikke �ndes �en model
 der er universelt bedre end alle andre�

� Model visualiserings og fortolkningsteknikker� Enkeltheden af denne opgave for
line�re modeller st�ar i skarp kontrast til vanskelighederne forbundet med visualis
ering af uline�re modeller� En ny visualiserings teknik for uline�re modeller bliver
derfor foresl�aet�

Et enkelt faktum kommer til at fremst�a som s�rligt vigtigt� optimal model �eksibilitet
afh�nger af b�ade kompleksiteten og st	rrelsen af det datas�t modellen anvendes p�a� Dette
er en ting
 der hidtil ikke har v�ret genstand for tilstr�kkelig opm�rksomhed indenfor det
funktionelle modelleringsfelt� Observationen medf	rer at optimal modelydeevne ikke altid
kan opn�aes med en standard model� istedet b	r model �eksibilitet tilpasses det enkelte
funktionelle datas�t� Den potentielle fordel er en model der bedre approksimerer den
underliggende sammenh�ng mellem hjerne og handling
 og s�aledes viser vejen mod 	get
indsigt i hjernens virkem�ade�
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Preface

This thesis serves as partial ful�llment of the requirements for the Ph�D� degree� The work
has been funded by the Danish Research Academy and carried out partly at the Technical
University of Denmark
 and partly at the Copenhagen University Hospital�

�Causes shall not be multiplied beyond necessity�


William of Occam �������	
��

These words wisely state that the simplest explanation is the best� The principle is known
as Occams razor and applies equally well to a Ph�D� thesis title as to everything else� a
title should be just long enough to clearly and concisely convey the contents of the work
that it names� The title of the present work
 �A Multivariate Approach to Functional
Neuro Modeling� is
 however
 rather long� E�orts to �nd a shorter
 equally precise title
were unsuccessful
 owing to the fact that all the words are important in understanding the
intention of the work�

Neuro � � � It is all about the brain� In fact
 the title may even be too short since it
holds no indication of the fact that we investigate only the human brain�

Functional � � � We are not concerned with the anatomical structures of the brain
 at
least not per se� Rather
 we investigate the functional behavior of the brain
 implying
that we engage in the study of the living human brain� Speci�cally
 images of
�approximated� neuronal activity form the basis on which the approach rests�

A�n� � � � Approach to � � � Clearly
 the views presented here constitute but a single
approach to understanding the living human brain� Many other approaches exist
and some have considerable overlap with the one presented here�

Multivariate � � � The images and other measures that form the basis of the approach
herein can be regarded as either univariate or multivariate stochastic variables�
Many multivariate methods as well as several univariate approaches have proved
themselves very viable� The view presented here
 however
 is strictly multivariate�

Modeling � � � The complex behavior exhibited by man is remarkable� From a biochem
ical point of view
 so is the human brain� However interesting the two phenomena
may seem in isolation
 the really interesting questions
 with equally signi�cant an
swers
 arise when hypothesizing that brain and behavior can be linked� It is exactly
this link that we study and attempt to model�
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vi Preface

With these guidelines in place the scene has been set and we can take a closer look on the
way the thesis is organized�

Thesis overview

The thesis is organized into seven chapters and six appendices� The �rst two chapters
serve as an introduction to functional neuro imaging and system modeling
 while the next
four form the main part of the thesis
 concerned with multivariate analysis
 modeling and
visualization of functional datasets� In addition to smaller illustrative examples presented
as the thesis progresses
 a larger realworld dataset is analyzed continuously as methods
are derived and described� In more detail the contents of the individual chapters and
appendices are�

Chapter � brie�y describes the human brain� Two ways of imaging its function �func
tional neuro imaging modalities� are introduced and characteristics of functional
datasets given�

Chapter � reviews the concepts of real world systems and mathematical models thereof�
Signals
 inputs and outputs are de�ned in the context of functional datasets� The
chapter concludes with a discussion of the validity of a system hypothesis in brain
science�

Chapter � formalizes a number of vector spaces relevant to the analysis of functional
datasets
 and further investigates coordinate transformation methods in the space
spanned by the set of preprocessed image volumes�

Chapter � discusses modeling as joint density estimation and focuses on generic aspects
of model performance
 in particular generalization and model complexity control�

Chapter � exempli�es the joint density estimation of chapter � by employing linear mod
els in order to relate properties of macroscopic and microscopic variables� A duality
between two types of linear models is shown to exist�

Chapter 	 considers nonlinear models in an attempt to improve model performance over
that achievable with linear models� The complexities introduced by nonlinear models
with respect to parameter estimation are assessed�

Chapter 
 summarizes the work presented and outlines possible conclusions� Suggestions
for further work are also provided�

Appendix A describes the functional neuro imaging experiment and resulting dataset
used to illustrate the various analysis and modeling techniques�

Appendix B provides the basics of information theory as needed to derive and under
stand the concepts underlying independent component analysis described in chap
ter ��

Appendix C algebraically estimates the expected generalization error as de�ned in chap
ter ��

Appendix D reproduces the author�s contribution to the ���� International Conference
on Neural Networks in Perth
 Australia�
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Appendix E reproduces the author�s contribution to the Second International Confer
ence on Functional Mapping of the Human Brain ����
 in Boston
 USA�

Appendix F reproduces the author�s contribution to the ��th International Conference
on Information Processing in Medical Imaging ���� in Vermont
 USA�

This list almost concludes the prefatory remarks� Before getting into the nittygritty

however
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Nomenclature

An attempt has been made to use symbols
 operators
 and names of variables consistently
throughout the text
 such that e�g� z almost always denotes a vector of projections�
However
 exceptions do exist so apart from the general guidelines below no comprehensive
index of notation and meaning is provided� instead the introduction of naming conventions
is left to the chapter where they �rst occur�

Vectors and matrices

Unless otherwise stated all vectors are column vectors
 denoted by boldface lowercase
letters

x �

�
����
x�
x�
���
xn

�
���� �  x� x� � � � xn!T �

where T denotes the vector transpose� Matrices are denoted by boldface uppercase letters

X �

�
����
x�� x�� � � � x�m
x�� x�� � � � x�m

���
���

� � �
���

xn� xn� � � � xnm

�
���� �  x� x� � � � xm! �

�
�����
xT���
xT���

���
xT�n�

�
����� �

Here xj is the j�th column of X
 and x�i� the i�th row of X arranged in a column vector�
As for vectors T denotes the matrix transpose

XT �
�
x��� x��� � � � x�n�

�
�

A matrix composed from individual scalars xij is written as X � �xij�
 whereas the scalar
in the j�th row and i�th column of matrix X is denoted Xij�

A few special vectors and matrices deserves mention here� In particular
 all elements
of the i�th unit vector are zero except for the i�th element

ei �  � � � � � � � � �!T �

The ddimensional identity matrix consists of the unit vectors from order one up to d

Id �  e� e� � � � ed! �

�
����

� � � � � �
� � � � � �
���

���
� � �

���
� � � � � �

�
���� �
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where the subscript is omitted if the dimension is clear� The identity matrix is a special
example of a diagonal matrix
 of which all o�diagonal elements are zero�

Operators

With few exceptions operators are typeset nonslanted to make them stand out in equa
tions� Unless the operator itself is a pair of delimiters �like the determinant operator
below� the operator is followed by its arguments enclosed in brackets� The type of brack
ets vary from operator to operator� Operators not mentioned in the list below or other
sections of this nomenclature are introduced in the text where they �rst appear�

rank �A� rank of matrix A
 i�e� the maximum number of linearly independent
columns�

diag  x! diagonal matrix with the elements of vector x in its diagonal� For a
matrix
 diag  A! is the vector of diagonal elements
 Aii�

jAj determinant of the square matrix A�

kAk� matrix norm of A
 which does not need to be square� Corresponds to the
largest singular value of A�

hzi mean of the stochastic variable z� also labeled "z�

V  z! variance of the stochastic variable z�

Vector spaces

Uppercase caligraphic letters are used to denote vector spaces� In particular
 ddimensional
Euclidean space is labeled Rd� The subspace operator is � so that

S � Rd

means that S is a subspace of Rd� The dimension of a vector space is denoted by dim���

so we have

dim�Rd� � d �

Vector space notation is further explained in section ����

Other symbols

A set de�nition is enclosed in curly braces
 as in

fxn j n � �� � � � � Ng �

and named using an uppercase sansserif letter
 e�g� D� For a stochastic variable the
symbol � means �distributed as�
 e�g� z � N��� ���� The same symbol is also used
to mean �in the range of� when specifying deterministic values
 e�g� d � ���� Finally

estimates are generally accented with a �hat�
 as in #x�
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Acronyms

In the text some commonly used terms are abbreviated� At its �rst occurrence a term is
written out in full
 followed by the acronym in parentheses� The acronym is subsequently
used instead of the term
 except where context dictates otherwise
 e�g� in the beginning
of a sentence� A full list of acronyms
 capitalized as they appear in the text and followed
by the term they abbreviate
 completes the nomenclature�

AIR Automated image registration

ANN Arti�cial neural network

ANOVA Analysis of variance

BOLD Blood oxygenation level dependent

BS Bootstrapping

CBF Cerebral blood �ow

c�d�f� Cumulative density function

CPH�SAC Copenhagen saccade PET dataset

CV Crossvalidation

EOG Electrooculography

fMRI Functional magnetic resonance imaging

FWHM Full width
 half maximum

GLM General linear model

ICA Independent component analysis

LED Light emitting diode

LM LevenbergMarquardt

LRT Likelihood ratio test

MAP Maximum a posteriori

ML Maximum likelihood

MLP Multilayer perceptron

MRI Magnetic resonance imaging

MSE Mean square error

OBD Optimal brain damage

OBS Optimal brain surgeon

PCA Principal component analysis

p�d�f� Probability density function

PET Positron emission tomography

RBF Radial basis function

rCBF Regional cerebral blood �ow

RF Radio frequency

SPM Statistical parametric mapping
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SSM Scaled subpro�le model

SVD Singular value decomposition
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Chapter �

Introduction

Is there a link between brain and behavior and
 perhaps
 the mind% Many years of scienti�c
investigations indicate that indeed such links exist� Most work has been concerned with
the �rst of the two� the link between brain and behavior� This is the possible relation
between the neuronal activity of the human brain and �mechanical� actions performed
by humans
 such as walking and performing visual recognition of faces� It is this link we
shall investigate and attempt to quantify� The existence of a link between brain and mind
is a di�erent and much more involved question since it involves perceptions derived from
mental entities&it is essentially concerned with consciousness and self and we will not
address it here�

��� Measuring brain function

The human brain is amazing� It enables us to perform complex tasks in a great diversity
of situations
 often without apparent e�ort� Some neurobiologists like to say that the
sole function of the rest of the human body is to support the brain� This intriguing organ
deserves thorough investigation
 as a deeper understanding will provide much more than
simply better chances of treating brainrelated disease� it potentially opens a window to
the mind�

Despite the prospects of tremendous insights it is only in the last few decades scientists
attempting to link brain and behavior have been able to study the normal� living human
brain in a noninvasive manner� In earlier times one had to assent to the study of the
unfortunate individuals who happened to su�er brain injury� One particularly well known
such case is that of Phenias T� Gage who in ����
 while setting up a charge of explosives
during railroad construction
 su�ered severe head damage when the charge exploded and
blew the tamping iron he was using straight through the front of his head �Nolte
 ������
He survived the incident and soon regained his strength� However
 just as he had been
hardworking and responsible before the accident
 his behavior now became tactless and
impulsive� Unfortunate for the poor man as it was the episode gave valuable knowledge
about the function of the prefrontal cortex�

Attempting to understand the function of �part of� the human brain may seem a
daunting and almost impossible task� Indeed
 it is hard
 but examining ways to describe

or quantify
 behavior is a �rst step� For example
 consider what happens in the brain
when light is �ashed in a person�s eyes� To assess this we might ask the subject a series of
questions� We could ask her to discriminate between �ashes occurring with di�erent fre

�
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quencies
 colors
 or intensities� This approach implicitly relies on the subject�s conscious
ness
 since it depends on her personal experience of the stimulus� This conscious�ltered
way of describing behavior has a major drawback� There are many types of brain activity
which are inaccessible to introspection� �There may also be other practical problems
 e�g�
the inability of a young child to verbally convey its experiences�� In other words
 simply
observing the external manifestations of brain function
 �ltered through the conscious
mind
 is insu�cient in quantifying the link between brain and behavior� Instead
 methods
of measuring the �activity� inside the brain are needed�

����� Functional neuro imaging

A large number of techniques �modalities� exist for in vivo imaging of the human brain�
While some
 such as magnetic resonance imaging �MRI�
 re�ect anatomical �tissue depen
dent� information
 functional neuro imaging methods are characterized by their facilitation
of indirect measures of the neuronal �ring patterns of the brain �Malonek and Grinvald

������ The two techniques described below quantify the spatial and temporal distribution
of blood �ow and oxygenation
 respectively
 and thus indirectly provide threedimensional
��D� image volumes �scans� of brain activity�

������� Positron emission tomography

Positron emission tomography �PET� relies on a positron emitting tracer to quantify an
indirect measure of neuronal activity �Phelps
 ������ By using a tracer that is involved
in biochemical processes in the brain the processes can be located and quanti�ed� A
commonly used tracer is  ��O! labeled water
 since water is transported freely between
blood and brain tissue
 i�e� over the bloodbrain barrier� Water injected into the blood will
reach the brain and be distributed according to the regional cerebral blood �ow �rCBF��

Figure ���� PET scanning� Left panel � Gamma ray coincidence detection� Right panel � The
Advance General Electric PET scanner at the National University Hospital in Copenhagen�
The front is open and the detector rings are clearly visible�

During the decay of the tracer positrons are emitted� After traveling a short distance� a
positron annihilates with an electron from the surrounding tissue and the mass is converted

�The distance traveled depends on the isotope used� For ���O� labeled water it is in the order of
millimeters�
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to electromagnetic energy in the form of two gamma quanta
 emitted simultaneously in
almost opposite� directions� By placing gamma ray detectors around the subject the
emitted quanta can be detected and used to estimate the tracer distribution� Simultaneous
detection in two detectors localize the annihilation on the line connecting them� By
organizing detectors in rings around the subject and counting simultaneous detections
the socalled sinogram is obtained� The sinogram is a collection of projections of the
distribution of the tracer inside the detector rings� By employing the inverse Radon
transform �Radon
 ����� the �D distribution of the tracer can be reconstructed from the
sinogram yielding an estimate of rCBF� The left panel of �gure ��� outlines the principle
of PET scanning� Gamma quanta emitted by positron annihilations occurring in the
subject�s brain are absorbed in the ring of detectors� Precise timing is used to determine
the coincidences �simultaneous detections� that form the sinogram�

It is important to realize that the reconstructed tracer distribution deviates from the
true distribution� The discrepancy is the result of confounding factors and propagates to
models based on the estimated distribution and thus a�ects the conclusions drawn from
such models� The confounding factors are many
 but su�ce it here to mention a few�

� The distribution of the distance traveled by the positrons before annihilation e�ec
tively results in blurring of the estimated tracer distribution image� As mentioned
above the blurring depends on the positron energy of the isotope used�

� Due to the nonzero momentum of the emitted positrons the annihilation results
in the emission of gamma quanta that are not exactly opposite� Thus
 assuming
that an annihilation occurred on the line connecting two detectors in which gamma
quanta are detected simultaneously is incorrect
 although the errors introduced in
this way are small�

� Absorption and scatter of the gamma rays occur in the tissue before detection in the
detector rings� These e�ects can be partially corrected for by acquiring a transmis�

sion scan prior to tracer injection using an external gamma source for each subject�
The transmission scan is used to correct subsequent histograms from the same sub
ject�

� Limitations in the detectors� The size
 homogeneity
 speed and separation of the
detectors all a�ect histogram acquisition and limit both the spatial and temporal
resolution of the reconstructed distributions�

� The need for a su�cient number of counts �detected annihilations� across the his
togram coupled with the limited amount of radiation allowed for one subject argues
in favor of isotopes with short halflives� In practice  ��O! labeled water has a halflife
of approximately two minutes�

A more rigorous treatment of the theory and practical issues relating to PET scanning
can be found in �Phelps
 ������ The Radon transform and it�s application to PET image
reconstruction is treated in e�g� �Toft
 ������

������� Functional magnetic resonance imaging

Magnetic resonance imaging �MRI� has traditionally been used to image anatomy and
pathology� Independent of an injected radioactive tracer MRI is based on the magnetic

�The directions are not exactly opposite because of the non�zero momentum of the positron�
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spin properties of hydrogen
 which force the protons to align themselves with any externally
applied magnetic �eld �Kramer and Buonanno
 ������ In the presence of a magnetic �eld
gradient protons in selected slices of the brain volume can be excited by the application
of a magnetic radio frequency �RF� pulse� The excitation induces a precessing of the
proton dipoles
 as indicated in the left panel of �gure ���� By measuring the relaxation
characteristics of the resulting macroscopic magnetization after the RF signal has been
turned o� and using phase and frequency modulation techniques it is possible to obtain
an image volume that re�ects the magnetic properties of the brain tissue� Macroscopic
magnetization is illustrated in the right panel of �gure ����

B�

�

m

Figure ���� Principles of MRI scanning� Left panel � The magnetic dipole � of a proton
precesses �wobbles� in the presence of an external magnetic �eld B�� Right panel � A non�
zero macroscopic magnetic moment m arises when the magnetic dipoles of an ensemble of
precessing protons is unevenly distributed�

The application of MRI in functional neuro imaging �fMRI� was �rst reported by
�Ogawa et al�
 ����� using the blood oxygenation level dependent �BOLD� technique�
The BOLD technique measures the increase in oxyhemoglobin content and its application
to human subjects was reported simultaneously by several researchers
 e�g� �Bandettini
et al�
 ������ It was demonstrated how the MR signal can be modulated by changes in
rCBF and oxygen utilization as a consequence of the altered deoxyhemoglobin content�
the regional onset of neuronal activity causes a rapid local increase in oxygen consumption
while the increase in rCBF lags behind� The result is a local increase �in both space and
time� in deoxyhemoglobin and a subsequent local alteration of the magnetic �eld leading
to a negative BOLD signal that peaks after around ��� sec� The ensuing rCBF increase
exceeds the elevated level of oxygen consumption� this overshoot increases oxyhemoglobin
content in an area large relative to the area of initial oxygen consumption increase�

Compared to positron emission tomography fMRI holds two major advantages�

� It has considerable higher temporal resolution for comparable inplane �single slice�
spatial resolution�

� It is noninvasive and can therefore be repeated many times for a single subject�

The technique is
 on the other hand
 hampered by the compound and indirect nature of
the signal it measures� since the e�ect of an rCBF increase is most readably observable
in the veins problems with signal localization are likely� For a review of fMRI �Kim and
Ugurbil
 ����� is a good source�
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����� Preprocessing

To improve the statistical power of subsequent modeling from functional neuro imaging
datasets it is desirable to have a large number of observations
 each with minimal in�uence
from confounding factors� Meeting the �rst of these goals poses a problem
 at least when
working with PET
 since the amount of radiation an individual can be subjected to is
limited� This means that datasets must consist of image volumes from more than one
subject
 thus potentially introducing intersubject variation�

To minimize the e�ect of intersubject variation and other confounding factors as
discussed above
 a standardized set of processing steps is applied to all acquired functional
neuro imaging datasets before further analysis and modeling is performed �Strother et al�

����a� Friston
 ������ The processing steps comprise what we call standard preprocessing

and essentially consists of realignment
 stereotactic normalization
 smoothing
 global CBF
normalization
 and masking as depicted in �gure ����

scans
Single�subject

Intra�subject
realignment

Inter�subject
stereotactic
normalization

smoothing
Spatial

Single�subject
reference scan

Stereotactic
template

Smoothing
kernel

Global CBF
Masking

modeling
Analysis and

normalization

Figure ���� Standard preprocessing steps include intra�subject realignment� inter�subject
stereotactic normalization� spatial smoothing� global CBF normalization� and masking of non�
cerebral areas�

������� Intra�subject realignment

Realignment involves estimation and removal of intrasubject movement and is performed
relative to a reference scan for each subject� Often a scan selected randomly� from the
set of scans for each subject serves this purpose� Realignment transformations are rigid

i�e� combinations of translations and rotations� One robust intrasubject single modality
approach is automated image registration �AIR� which is based on image ratio measures
�Woods et al�
 ������ Despite the very good performance of most intrasubject realignment
schemes problems may occur� if movement between scans is large the overlap between the
realigned image volumes is signi�cantly reduced
 causing masking problems as discussed
later� Monitoring realignment parameters �translation and rotation� allows poorly aligned
scans to be discarded from further analysis�

�The reference scan is selected randomly to avoid the introduction of systematic e�ects if the scan
acquisition sequence is improperly randomized�
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������� Inter�subject stereotactic normalization

Stereotactic normalization aims to minimize intersubject anatomical variation
 i�e� achieve
the best possible coregistration of homologous areas across subjects� This is obtained by
reducing di�erences in position
 size
 and shape on a subject by subject basis� Assuming
correspondence
 at least at a certain scale
 between functional and structural anatomy
�meaning that di�erent subjects employ the same anatomical brain structures to per
form a given task� stereotactic normalization is the identi�cation of a �D deformation
that makes a subject�s anatomy match a template anatomy� Template anatomy space is
often referred to as stereotactic space �Talairach and Tournoux
 �����
 hence the name
stereotactic normalization�

Stereotactic normalization is hampered by the di�culties involved in quantifying inter
subject functional correspondence� Clearly
 overall anatomical structures must be mapped
correctly� Very detailed mapping of �ne anatomical structures
 however
 may both be
impossible and lead to lower performance of subsequent analysis and modeling procedures�
This is because intersubject variation is a mixture of measurement noise
 anatomical
variation and functional variation� Medium scale template based minimization of variation
increases coregistration of homologous functional areas
 leading to a decrease in functional
variation� Extending the structural match to very small scales
 however
 may actually
introduce variation rather than remove it
 since intersubject topographical di�erences
may exist at these scales� This phenomenon is quantitatively investigated in �Kjems et al�

�����
 in which a �exible
 nonlinear stereotactic normalization procedure is proposed� See
also �Woods et al�
 ����� Kjems et al�
 ������

������� Spatial smoothing

The signaltonoise ratio of functional neuro images can often be improved by spatial
smoothing �lowpass �ltering�� This stems from the fact that the scale over which blood
�ow and oxygenation �the signal� varies is several millimeters
 whereas noise typically
contains higher spatial frequencies� In PET the noise is determined by the process of
reconstructing the spatial distribution of blood �ow from the sinogram� In fMRI the noise
is approximately independent for each voxel �volume element�� In both cases the spatial
noise frequencies are high relative to the spatial signal frequencies� As discussed above
spatial smoothing is also employed in order to match the spatial frequency contents �the
image resolution� to the scale where functional anatomy can be assumed homologous
 i�e�
to reduce residual topographical variation� It is hard to identify an optimal smoothing ker
nel� In fact
 it may be optimal to use a spatially varying kernel� Typically
 however
 a �xed
Gaussian smoothing kernel with full width half maximum �FWHM� of ���� millimeters is
used�

������� Global cerebral blood 	ow normalization

The change in estimated cerebral blood �ow has two components� a global
 regional
independent change and a local
 regionaldependent change� The variation due to global
di�erences must be removed in order to analyze and model the regional e�ects� Global
variation is introduced by things like di�erences in injected tracer dose �for PET�
 gender

cardiac output
 and the weight of the subject� Considerable investigation has gone into
the global normalization issue �Fox and Mintun
 ����� Friston
 ����� Friston et al�
 �����
Moeller et al�
 �����
 but complete consensus has not yet been achieved� However
 it
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has become standard practice to normalize scans by division by the scan mean
 possibly
preceded by explicit multiplicative correction of measured factors
 such as subject weight
and injected tracer dose�

������
 Masking

Volume images yielded by functional neuro imaging are intended for analysis and modeling
of cerebral neuronal activity� However
 large parts of the images cover noncerebral areas�
the skin
 the skull
 the ventricles
 the empty space outside the head
 etc� Further analysis
of functional data from these areas makes little sense and so they should be masked out�
To this end an intracerebral voxel mask volume is created for each scan� The procedure
is semiautomatic and based on thresholding and the anatomical knowledge of a trained
operator� For analysis and modeling of functional datasets containing more than a single
scan voxels not present in all scans are discarded
 i�e� analysis proceeds using a common

mask which is the intersection of the individual scan masks�

��� Experimental design

Scan acquisition is only one part of a functional experiment� In the design of the ex
periment the researcher must attempt to induce signal changes in the neurophysiological
system of interest in an optimized fashion� This is achieved by selecting and controlling
behavioral variables that govern the selected neurophysiological system
 thus introducing
controlled experimental variation� In this process it is pivotal to optimize the signalto
noise ratio� large changes in the level of neuronal activity must be induced in the system
of interest �the signal� while minimizing interference from other neurophysiological sys
tems �behavioral noise�� Since interaction between cognitive modules is abundant good
experiments are di�cult to design� One approach often taken is the categorical design of
cognitive subtraction
 also known as baselineactivation paradigms� Scans are acquired in
two conditions� the activated state
 where subjects perform a task designed to activate
the system of interest
 and the baseline state
 which mimics the activated state except
that cerebral activity in the system of interest is attempted minimized� In this way exper
imental variation between the group of baseline scans and the group of activated scans is
introduced primarily by the neurophysiological system of interest� In contrast the para�

metric design induces neurophysiological signal changes by parametric
 as opposed to
categorical
 variation of selected behavioral variables�

Regardless of experimental design we need to be able to include all relevant factors
quantitatively in the analysis� We therefore introduce some notational conventions�

����� Microscopic variables

After scan acquisition and standard preprocessing the result is a set of spatiallydistributed
multivariate stochastic variables that quantify neuronal activity� We call this the set of
microscopic variables� Each scan is conveniently arranged in a vector which we usually
denote x� The microscopic variables of a functional experiment with N observations can
be further organized into the matrix X �  x� x� � � � xN !
 which we call the microscopic
data matrix�
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����� Macroscopic variables

The general conditions governing the experiment are described by a corresponding set of
macroscopic variables� These quantify relevant factors other than the neuronal activity
distribution
 and may include experimental manipulations
 such as labels distinguishing
baseline scans from activation scans
 demographic and physiological measures
 such as age
and heartrate
 respectively
 and behavioral measurements used to monitor task perfor
mance� The macroscopic variables are in general multivariate and stochastic� Like above

they are conveniently arranged in a vector which we denote g� The macroscopic data
matrix becomes G �  g� g� � � � gN !
 accordingly�

��� Summary

Functional neuro imaging facilitates indirect quantitative spatiallydistributed measures
of brain function at a microscopic level� A functional experiment consists of such micro
scopic measurements of neuronal activity along with variables governing the macroscopic
conditions under which the experiment is performed� Depending on features of the ex
perimental design
 as well as imaging modality and associated limitations
 uncontrolled
anatomical and topographical variations can be partially eliminated by the application of
a set of standard preprocessing steps
 designed to deal primarily with intra and inter
subject alignment issues� Functional neuro modeling aims to investigate the existence of
a link between brain and behavior by attempting to relate the preprocessed sets of micro
and macroscopic variables�
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The system hypothesis

If we can regard the human brain as a system with associated observable quantities
 the
process of analyzing and understanding it belongs to the realm of system modeling� To
assess the usefulness of this approach
 however
 we need clear de�nitions of the concepts
of systems and models� These in turn provide the basis for re�ections on the validity of a
system modeling approach in functional brain science� This chapter attempts to provide
both�

��� Systems

A system can be de�ned as an object with variables that interact with each other and
parts of the world that are external to the system itself �Ljung
 ������ The system must be
clearly delimited to facilitate the distinction between it and the rest of the world
 but the
delimitation needs not be physical� the notion of a system is a broad concept that applies
equally well to mechanical arrangements characterized by the interaction of physical forces
and to
 say
 a display driver for a computer operating system characterized by the �ow
and interaction of information�

����� Signals� inputs and outputs

Here we consider only systems with realworld manifestations
 i�e� systems that produce
observable quantities� Systems without observable manifestations are possible
 but not
very interesting because we are unable to measure their behavior� The observable quanti
ties are usually called system outputs
 and are a subset of the total set of system variables
or signals� We generally distinguish between output
 input
 and latent variables relative
to the system�

Outputs are the observable signals of interest to the observer�

Inputs are external signals that a�ect system behavior� Normal inputs can be observed
and manipulated directly by the observer
 whereas disturbances cannot be manipu
lated and are observed only indirectly through their in�uence on the outputs�

Latent signals are internal to the system itself and cannot be directly observed� Their
existence is evidenced solely by their in�uence on the system outputs�

Figure ��� contains two simple sketches of the system that governs human speech� The
output is sound vibrations �changes in air pressure� and possible disturbances include

�
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characteristics of foreign bodies on the vocal chord� If the shape of the vocal tract can
be quanti�ed and measured it can be regarded as system input
 as indicated in the left
panel� If the shape of the vocal tract is unmeasurable
 on the other hand
 an extension
of the system boundaries
 as indicated in the right panel
 to include the parts of the
central nervous system that relate to speech generation causes the variables that describe
the shape of the vocal tract to become latent� From this example it is clear that system
boundaries to some extent determine the classi�cation of system signals�

on vocal chord
Foreign bodies

Shape of
vocal tract

Changes in
air pressure

on vocal chord
Foreign bodies

Shape of
vocal tract Changes in

air pressure

Figure ���� Sketches of the human speech system� Left panel � Regarding the shape of the
vocal tract as system input� Right panel � By extending the system boundaries to include the
parts of the central nervous system that relate to speech generation the shape of the vocal
tract becomes internal to the system� i�e� it is described by latent variables�

����� Brain science and the system hypothesis

When dealing with data from experiments aimed at understanding human brain function
it is convenient to assume that the brain can be described as a system
 i�e� to employ
what we will call the system hypothesis� It means that the brain is viewed as an unknown
�blackbox� with associated
 measurable signals� The signals and their characterization
varies depending on what we include in the de�nition of the brain system
 just as in the
simple case above� From the set of macroscopic variables that was de�ned in section ���
we are able to identify

The inputs as the variables that characterize the task to be performed� They could
include task labels �baseline or activation�
 and parameters that quantify task di�
culty�

The outputs as behavioral measures that describe task performance and other manifes
tations of the neuronal activity that takes place
 such as limb movement�

Disturbances to include in�uences that cannot be manipulated
 both measurable ones
like age and body weight
 and unmeasurable ones�

If we de�ne the system �blackbox� to be the human body and measurements are per
formed only by external observation
 the inputs
 outputs and disturbances are described
as above� This is the case in traditional psychological experiments� In this setting the
microscopic variables of section ���
 i�e� the spatial distribution of neuronal activity
 are
latent signals
 as they are internal to the system and their existence re�ected only by their
in�uence on the system outputs
 i�e� the movements and other actions of the subject�
However
 the application of functional neuro imaging allows us to shift the system bound
ary by regarding the images of estimated neuronal activity �the microscopic variables� as
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system outputs
 thus opening the door to quantitative analysis and
 potentially
 deeper un
derstanding of the brain� The shift identi�es the previously de�ned microscopic variables
x as system outputs as mentioned
 and the macroscopic variables g as system inputs��
With associated marginal probability density functions �p�d�f��s� x � p�x� and g � p�g�
the system is
 in terms of the observable quantities
 governed by the joint inputoutput
distribution

p�x�g� � p�gjx�p�x� � p�xjg�p�g� � �����

In this presentation we are
 in essence
 concerned with estimation and interpretation of
properties of this distribution�

It is important to keep in mind that the value of models based on the notion of a brain
system is heavily dependent on the assumption that such a system exists� In other words

we assume that some sort of systematic relation exists between the input
 output
 and
latent variables de�ned above� The existence of such a link between brain and behavior is
evidenced by many aspects of modern neuro science&see �Frackowiak et al�
 ����� for a
discussion� The extent to which the brain system hypothesis warrants a similar hypothesis
regarding the existence of a link between brain and mind is
 however
 a di�erent and more
involved question with deep philosophical aspects� The topic shall not be addressed herein�

��� Models

The general nature of the system de�nition above emphasizes the important role the
concept plays in modern science� by assuming an underlying system we are able to quan
titatively investigate the relationships between its variables� Such assumed relationships
between system variables are called models
 and the process of identifying and estimating
relevant properties accordingly denoted system modeling �Ljung
 ������ The nature of the
system determines the mathematical sophistication of the model needed to obtain satis
factory agreement between the two� Many greatly diverse �elds rely on system modeling
for problem solving�

In line with ����� we model the relation between system variables by a parameterized
distribution estimate

#p�x�g� � p�x�gjw� � �����

where w denotes a set of adjustable parameters used to approximate p�x�g�� By identi
fying a proper set of parameters w� we seek to make the model behave like the system

p�x�gjw�� � p�x�g� � �����

For this approach to succeed we must not only assume that the observed data has been
generated according to some wellde�ned mathematical rules
 i�e� that a �true� system
exists� the corresponding set of �true� parameters must also fall within the set of relation
ships that the parameterized model can implement� In the context of functional neuro
science the �rst of these assumption is di�cult to validate� we can only compare certain
aspects of the realworld system and our mathematical abstraction
 but not establish exact

�In the following we will not consider disturbances� i�e� observable inputs like age and gender that
cannot be manipulated experimentally� a special class of inputs� but rather include them in the class of
normal inputs� such as those characterizing task di�culty�
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connections between them� In practice the system hypothesis involves the assumed exis
tence of a system that is governed completely by a set of mathematical rules� The second
prerequisite for successful modeling relates to model complexity and will be discussed in
later chapters�

����� Modeling from data

In general knowledge about a system comes from observations� We could also say that
systems are modeled from data� This is true both for mental models of everyday tasks
such as moving one�s body around the physical world
 and for more mathematical models
like the distribution estimate in ������ Two rather di�erent approaches to modeling can
be employed� for

A known system we may have welltested models for all subsystems comprising the
overall system� In a mechanical system such subsystems could be springs and elec
tric motors for which valid models already exist� Proper values for the parameters of
the subsystems models may even be known in advance �maybe they are provided by
the vendor�� so the complete system can be accurately modeled by joining together
the individual subsystem models� This buildingblock approach is generally referred
to simply as modeling�

An unknown system� where we have no knowledge other than what we observe
 mea
surements of the inputs and outputs are used to infer a model� This modelingfrom
data approach is often called system identi�cation and is what we shall focus on
here��

The process of modeling from data involves both data acquisition
 application of candi
date models
 and model performance assessment� In the current context the �rst of these
steps entails experimental design and functional brain scanning
 as discussed in sections
��� and ���
 respectively� This results in a number of simultaneous observations of x and
g


D � f�xn�gn� j n � �� � � � � Ng � �����

arranged in a dataset� The dataset used to estimate the model parameters w is called a
training set� In the remainder of the thesis a number of selected&the list is by no means
exhaustive&candidate models are introduced and analyzed with respect to parameter esti
mation� Further
 we concentrate on model performance assessment and model validation

i�e� the problem of choosing the best model from a set of candidates�

����� Using functional brain models

From the above it is clear that the identi�cation and estimation of a suitable functional
brain model is a di�cult task with many open ends� Should we
 however
 prove success
ful we must address the usefulness of the resulting model �M	rch and Thomsen
 �����
Lundsager and Kristensen
 ������

�The term 	vendor
 is perhaps somewhat improper� while the vendor of electric motors may supply
relevant parameter information� the issue of a sub�system 	vendor
 in the context of the hypothesized
brain�system is something the author will leave for philosophers to discuss�

�From a system modeling point of view a more appropriate thesis title may in fact be� 	A Multivariate
Approach to Functional Neuro System Identication
� However� the generic meaning of 	modeling
 let us
to the use of that word over 	system identication
�
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Prediction The model allows for prediction of system signals� In this way a correct model
facilitates robust estimation of e�g� normal neuronal activity in the visual cortex
during di�erent kinds of visual stimulation� This in turn enables identi�cation of
abnormalities and possibly enhanced treatment of disease�

Interpretation A successful model potentially provides insight into the function of the
brain� the model can be investigated in an attempt to identify the features that the
model emphasizes� This process is closely connected to model visualization which is
a topic of chapters � and ��

The second of these uses is currently being pursued in many research laboratories across the
globe
 steadily increasing our knowledge about human brain function� Further
 examples
of the �rst use listed above are beginning to appear in clinical environments
 aiding neuro
surgeons in their quest not to harm normal tissue during surgery�

��� Summary

In a neurobiological context the system hypothesis entails the assumption of the human
brain being a system in a mathematical sense� wellde�ned relationships among the as
sociated signals are assumed to exist� Depending on the speci�c classi�cation of signals
the system hypothesis implies that insight into human behavior �but not necessarily the
human mind� may be gained by modeling properties of the joint probability distribution
of system inputs and outputs� These
 in turn
 may be approximated by the micro and
macroscopic variables of functional datasets�



��



Chapter �

Coordinate transformations

In datasets from typical functional experiments the number of elements �voxels� in the
microscopic variables exceeds the number of observations by orders of magnitude
 which
means that the original representation is highly ine�cient� This chapter brie�y reviews
relevant parts of linear algebra as it applies to the problem of coordinate transformations

and introduces and evaluates a number of basis selection procedures�

��� Euclidean vector spaces

Denote by Rd the ddimensional Euclidean space
 i�e� the set of all real ddimensional
vectors x �  x� x� � � � xd!

T� We say that x belongs to or falls in Rd and write x � Rd�
The vectors in the microscopic data matrix X �  x� x� � � � xN ! all fall in the Euclidean
space with dimension
 d
 equal to the number of elements in each vector
 i�e� xn � Rd�
This space we shall denote input space and label I �M	rch et al�
 �����


I
def
� Rd � �����

����� Subspaces� bases and projections

Consider again the set of microscopic vectors� The span of these vectors is the set of all
vectors x � Rd that can be generated from linear combinations of the set


span �x��x�� � � � �xN � �

	
x j x �

NX
n	�

anxn



� �����

Itself being a vector space the span is a subspace of Rd� Since it is spanned by the observed
�microscopic� signals we call it signal space and label it S� With the microscopic vectors
arranged in the data matrix X �  x� x� � � � xN ! we can also express signal space as the
range of the data matrix

S
def
� span �x��x�� � � � �xN � � hXi � �����

A set of linearly independent vectors B �  b� b� � � � bB ! forms a basis for a subspace
when every vector in the subspace can be written as a linear combination of the basis
vectors

x �

BX
b	�

abbb � Ba � �����

��
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where a contains the coordinates of x with respect to basis B �we say that a is the rep�

resentation of x using basis B� �Scharf
 ������ Note that the microscopic data matrix
itself forms a basis for signal space
 provided that all microscopic vectors are linearly in
dependent� From the de�nition it is further clear that the ddimensional identity matrix

Id �  e� e� � � � ed!
 forms a basis for signal space�� We denote it the Euclidean basis�
coordinates are usually given with respect to this basis and we do not di�erentiate between
a vector and its coordinates� When dealing with more than one basis
 however
 �B�x indi
cates that the coordinates of vector x are given with respect to basis B� The coordinates
of one basis
 A
 with respect to another
 B
 arranged in the socalled coordinate transfor�

mation matrix �B�M�A� facilitates the change in representation from the �rst basis to the
second


�B�x � �B�M�A� �A�x � �����

i�e� a coordinate transformation�� If the rank of the coordinate transformation matrix
equals the dimension of the span of the original basis A


rank
�
�B�M�A�

�
� dim�span �A�� � �����

which is the case when �B�M�A� is regular
 the bases span the same space�
Consider a vector
 x
 in signal space
 represented using the ddimensional Euclidean

basis� The projection of the vector onto the subspace spanned by a basis B is

�B�#x � �BTB�
��
BTx � �����

where the projection is represented using B� The projection is a special case of ����� with

�B�M�Id� � �BTB���BT� If rank �B� � d
 i�e� the dimension of the space spanned by basis
B is smaller than that of basis Id
 ����� does not hold and the projection in ����� reduces
the dimension of x�s coordinate vector by ignoring the parts of x that fall in the part of
Euclidean space that is orthogonal to the space spanned by basis B� If the basis vectors
are mutually orthogonal and all of unit length then B is an orthogonal matrix that forms
an orthonormal basis� It means that BTB � I so ����� simpli�es to

�B�#x � BTx � �����

����� Ill�posed datasets

Even after preprocessing where extracerebral voxels are removed the number of elements
in the microscopic vectors is typically quite large
 often ����� or more
 i�e� d � ����
The number of observations
 on the other hand
 is orders of magnitude smaller
 typically
N � ���� This means that signal space is a lowdimensional subspace of input space

dim�S� � dim�I� � S � I � �����

We say that the microscopic data matrix is ill�posed �Lautrup et al�
 ����� M	rch et al�

������ The situation is illustrated in �gure ���
 where the three �d � �� dashed vectors
represent input space ��D Euclidean space�� With only two �N � �� observations in the
microscopic data matrix signal space is the plane indicated in gray� No information about
the parts of input space that are orthogonal to signal space is available�

�The basis vector ei is the unit vector parallel to the i�th Euclidean axis� i�e� ei � �� � � � � � � � ��
T�

�The notation is inspired by �Hansen et al�� ����� and may appear unnecessary complex� We shall not�
however� make much use of it in the following�
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I

S

x�

x�

Figure ���� Ill�posed microscopic data matrix� With a three�dimensional input space �repre�
sented by the dashed vectors�� signal space spanned by the two observations in the microscopic
data matrix is the plane indicated in gray� The dataset contains no information about the parts
of input space that are orthogonal to signal space because dim�S� � dim�I��

Now
 the rank of a basis matrix is equal to the dimensionality of the space it spans

so rank �X� � dim�S� � min�d�N� � N for an illposed data matrix� This signi�es
that the Euclidean basis is a poor choice when it comes to representing the microscopic
observations e�ciently in the lowdimensional signal space� By employing a projection
as in ����� the dimensionality of the representation can be reduced� To avoid discarding
information
 however
 we have to make sure that none of the microscopic variables fall in
parts of input space that are orthogonal to the space spanned by the basis onto which we
project� The basis must
 in other words
 span signal space�

The data matrix X by de�nition forms a basis for signal space and is an obvious can
didate when looking for an e�cient
 lossfree dimensionality reduction of the microscopic
variables

v � �X�#x � �XTX���XTx � ������

which reduces� the dimensionality from d to N � The projection eases later analysis because
of the more e�cient representation of the microscopic vectors
 but that is not the only
reason why projection onto a signal space spanning basis is of interest� we may aim to
identify a subset of informative projections�

����� Model space

The low number of observations
 N 
 in a functional experiment is a confounding factor
in analysis and modeling
 since it limits the available degrees of freedom� It makes little
sense to estimate more than N model parameters
 in fact models with substantially fewer
parameters often perform better
 as we shall see later� In the context of vector spaces this
translates to the problem of identifying a subspace of signal space
 which we call model
space and label M
 that retains the signi�cant parts of the information in the microscopic
variables� The pivotal point here is the interpretation of the word �signi�cant��

Recall from chapter � that models are based on estimated properties of the joint micro
and macroscopic probability distribution� To limit the number of model parameters we

�Provided that all the microscopic vectors are linearly independent�
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perform dimensionality reduction via a coordinate transformation prior to modeling
 which
means that information lost by projecting the microscopic variables onto a poorly selected
model space basis is inaccessible in the modeling process� This in turn implies that model
space should retain the parts of signal space needed to successfully model the relationships
between the microscopic and macroscopic variables� It follows that model space depends
on what macroscopic variables we focus our attention on� We need to have this in mind
when evaluating di�erent basis selection procedures&in the next chapter we will address
that problem quantitatively� For now
 however
 the representation of the microscopic
variables by the candidate basis vectors
 i�e� the projections
 will su�ce to illuminate
important aspects of di�erent basis selection procedures�

��� Principal component analysis

The aim of principal component analysis �PCA� is to �nd a ranked set of orthogonal
basis vectors in signal space
 called principal axes
 that account for as much as possible of
the variance of the microscopic variables �Jackson
 ����� Mardia et al�
 ������ The �rst
principal axis is along the direction of maximum variance in signal space
 the second along
the direction of maximum variance in the subspace of signal space that is orthogonal to
the �rst principal component
 and so on� Before addressing the problems imposed on PCA
by the illposed nature of the microscopic data matrix we review the basic properties of
the transformation�

����� De�nition and basic properties

Consider the sample covariance matrix of the microscopic variables

S �
�

N

NX
n	�

�xn 	 "x��xn 	 "x�T �
�

N
XXT 	 "x"xT � ������

where "x is the vector of means� Spectral decomposition of S yields

S � ELET � ������

where E �  e� e� � � � ed! is an orthogonal matrix of principal axes and L is a diagonal
matrix of the eigenvalues of S
 l� 
 l� 
 � � � 
 ld 
 �� This de�nes the principal component
transformation as the coordinate transformation resulting from the projection onto E
 as
in �����


z � �ETE�
��
ET �x	 "x� � ET �x	 "x� � ������

where the second equality follows from ETE � I for the orthogonal matrix E� The trans
formed variables
 z
 are called the principal components� It follows from ������ that their
sample covariance matrix is diagonal

Sz � ETSE � ETELETE � L ������

so their elements are uncorrelated� Using ������ and ������ a few properties of the principal
components are evident

hzii � � ������

V  zi! � li ������

V  z�! 
 V  z�! 
 � � � 
 V  zd! 
 � � ������
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The variance ranking of the principal component elements in ������ indicates that the
last few principal axes often account only for a very small fraction of the total variance

suggesting that they can be ignored� Further dimensionality reduction is achieved by
doing so
 but the transformation is no longer lossfree� Ignoring the last principal axes
corresponds to the identi�cation of model space as the space spanned by the �rst few
principal axes� The variance relative to the total variance

'li �
V  zi!Pd
j	� V  zj !

�
liPd
j	� lj

������

is a measure of the fraction of variance accounted for by the individual axes and can
be used to determine the number of axes to retain� Model space identi�cation will be
addressed in more detail in chapter ��

If the microscopic variables are multivariate Gaussians
 xn � N���(�
 so are the
principal components

zn � N���(z� � #(z � diag  l�� l�� � � � � ld! � ������

They are also uncorrelated and since uncorrelated Gaussians are independent
 we �nd
that the principal components of linearly mixed multivariate Gaussians have independent
elements� Note
 however
 that PCA is just one of many transformations that result in
uncorrelated elements in the transformed variables
 so the identi�ed independent com
ponents are not unique� Principal component analysis is more rigorously treated in e�g�
�Mardia et al�
 ����� and �Jackson
 ������

����� Singular value decomposition

The sample covariance matrix in ������ is d� d which is huge for an illposed microscopic
data matrix� This poses practical problems when computing the eigenvalues and eigen
vectors that comprise the principal component transformation� However
 the covariance
matrix will be highly singular when the data matrix is illposed
 since

rank �S� � rank �XXT�	 rank �"x"xT� � rank �X�	 � � N 	 � � ������

This means that S has only N 	 � nonzero eigenvalues� the eigenvectors corresponding
to the remaining eigenvalues of zero have no relevance� The �rst N 	 � eigenvectors are

in other words
 enough to span signal space�� This observation can be utilized to avoid
computing the large number of irrelevant eigenvectors�

Starting from the centered data matrix


D �  d� d� � � � dN ! � dn � xn 	 "x � ������

and observing that a rescaling of S changes only the eigenvalues in ������ while leav
ing the eigenvectors the same
 we can rewrite the eigenvector equation as the spectral
decomposition of SN � NS � DDT

SN � ELNE
T � ������

�The need for only N � � basis vectors and not N is the result of the mean removal in �������
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where LN � NL relates the eigenvalues of ������ and ������� Now
 by considering the
singular value decomposition �SVD� of D

D � UGVT � ������

where U and V are orthogonal matrices with the left and right singular vectors
 respec
tively
 and G is a diagonal matrix with the singular values
 we �nd

SN � DDT ������

� UGVTVGTUT ������

� UG�UT � ������

Thus we have the identities

E � U � L �
�

N
LN �

�

N
G� � ������

while the matrix of principal components becomes

Z �  z� z� � � � zN ! ������

� ETD ������

� UTUGVT ������

� GVT � ������

Both the principal axes
 the principal components
 and the PCA eigenvalues can
 in other
words
 be found from the singular value decomposition of D� The SVD can be computed
much more e�ciently than spectral decomposition of the huge sample covariance matrix
S
 so ������ has important practical implications�

��� Independent component analysis

We have seen how the principal components have independent elements when computed
from a set of linearly mixed multivariate Gaussians� Generally
 however
 uncorrelated
elements of multivariate stochastic variables are not independent� it holds for multivariate
Gaussians only because they are completely parameterized by the mean vector and the
covariance matrix� To achieve independence in the general case we turn to independent
component analysis �ICA��

����� Model assumptions

Let si j i � �� � � � � N be statistically independent random variables arranged in a vector of
source signals s �  s� � � � sN !T � We assume the si�s to have zero mean and unit variance�
Due to the independence assumption the probability density function �p�d�f�� of s factors
out as

f�s� �

NY
i	�

fi�si� � ������

where fi�si� is the p�d�f� of si� Further
 assume that a vector of N observable linear

mixtures is produced

x � As ������
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via the invertible N �N mixing matrix A� The aim of independent component analysis
�Comon
 ����� and it�s application to blind source separation �Jutten and Herault
 �����
is
 based on the above assumptions and on realizations of x
 to estimate A� Equivalently
we may look for an unmixing matrix W such that

u � Wx � WAs � Cs � #s � ������

is an estimate of the source signals� Here the combined mixingunmixing matrix C is
called the system matrix� Since the ordering of the source signals is by mere convention

they can at best be recovered up to a permutation� Further
 the product of each source
signal si and the corresponding column in the mixing matrix ai remains constant when
si is multiplied by a scalar factor �i as long as ai is correspondingly multiplied by ���

i �
Even with the normalization assumption of zero mean and unit variance for each source
signal
 the signs of the source signal estimates therefore remain undetermined� Thus
 if we
by a quasiidentity matrix Iq de�ne the product of a permutation matrix with a diagonal
matrix with unitnorm diagonal elements
 we seek to identify a W that satis�es

C � WA � Iq � ������

Due to the sign and ordering indeterminations the parameter space W � hIN�N i has a
high degree of symmetry� many W�s result in the same e�ective system matrix�

In the present context of functional neuro imaging equation ������ has two possible
interpretations� we may assume independence in either time or space� In the �rst case the
observed signal in a single voxel over time �across scans� is assumed to be a linear mixture
of independent time �scan� pro�les� This timedelayed correlation approach is investigated
in �Molgedey and Schuster
 ����� Hansen and Larsen
 ������ Alternatively
 independence
in space implies that the microscopic variables are generated as linear mixtures of N
spatial patterns of neuronal activity with independent p�d�f��s
 as discussed in �McKeown
et al�
 ������ It is this latter approach we shall employ here� A discussion of the extent
to which the assumption of spatial independent source patterns is realistic is deferred to
section ������ As a notational aside we observe that the mixtures x in ������ in the latter
case are N dimensional and thus correspond to rows of the microscopic data matrix X�

����� Maximum likelihood estimation

Consider N independent realization x�� � � � �xN of the vector of mixtures
 distributed as

f�x� � f�As� � ������

Let fW�x� denote a model of the density f�x� parameterized by W � )W
 where )W is
the subspace of W that consists of all invertible N �N matrices� According to �B��� the
negative loglikelihood that the sample is drawn from fW�x� converges in probability to
the crossentropy

L�W� � h	 log fW�x�if�x� ������

as N goes to in�nity� By setting

fW�x� �
fW�x�

f�x�
f�x� ������
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in the above and employing �B���
 the asymptotic normalized negative loglikelihood be
comes

L�W� � K  f�x�� fW�x�! * H  f�x�! � ������

Since the entropy of the mixtures


H  f�x�! � H  f�As�! � ������

is independent on the unmixing matrix W
 maximum likelihood estimation involves min
imization of the cost function

ML�W� � K  f�x�� fW�x�! � ������

Simplifying the notation by using x for f�x� and 'x for fW�x� we get

ML�W� � K  x� 'x! ������

� K
�
x�W��'s

�
������

� K  Wx� 's! � ������

where we have used the relationship ������� In ������ the p�d�f�

p�'s� �

NY
i	�

pi�'si� � ������

of the random variable 's approximates the joint p�d�f� of the source signals
 f�s��
Now
 if we let gi�'si� be the cumulative density function �c�d�f�� of pi�'si�

gi�'si� �

Z 
si

��
pi�'si� d'si � ������

and employ �B���� and �B����
 the cost function in ������ becomes

ML�W� � K  Wx� 's! ������

� K  g�Wx��g�'s�! ������

� K  g�Wx����'s�! ������

� 	H  g�Wx�! � ������

Denoting y � g�Wx� � g�u� we have shown that maximum likelihood estimation of W
is achieved by maximizing� the joint entropy of the nonlinearly transformed source signal
estimates y� For more details
 see �Cardoso
 ������

����� Information maximization

The result above can also be derived using the information maximization principle
 as
in e�g� �Bell and Sejnowski
 ����a� Bell and Sejnowski
 ����b�� To brie�y sketch the
approach we reiterate the aim of ICA� Identify W to obtain statistically independent

source signal estimates u� Independence is achieved when

f�u� �
NY
i	�

f�ui� � all ui�s are statistically independent
 ������

�Obviously� maximization of the entropy corresponds to minimization of the negative entropy�
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which can be quanti�ed by the KullbackLeibler entropy

K


f�u��

NY
i	�

f�ui�

�
� ������

With the straightforward generalization of mutual information �B���� to more than two
variables

I  u! �

�
log

f�u�QN
i	� f�ui�

�
f�u�

������

we see that minimum KullbackLeibler divergence ������ is achieved when the mutual
information ������ is minimized with respect to W
 resulting in maximally independent
source signal estimates�

Direct minimization of I  u! is not simple� In �Comon
 ����� a truncated Edgeworth
expansion of the involved p�d�f��s together with minimization of all pairwise mutual infor
mation terms I  ui�uj ! is investigated
 and shown to lead to good performance� Others

e�g� �Amari et al�
 �����
 propose to use a truncated GramCharlie expansion to evaluate
the KullbackLeibler divergence� A di�erent approach is to conveniently rewrite ������ as

I  u! �

�
log

f�u�QN
i	� f�ui�

�
f�u�

������

� hlog f�u�if�u� 	
NX
i	�

hlog f�ui�if�u� ������

�
NX
i	�

H  ui!	H  u! � ������

which shows that mutual information can be decreased either by decreasing some or all of
the individual entropies H  ui! or by increasing the joint entropy H  u!� Both terms diverge
to in�nity for an arbitrarily large unmixing matrix W� To avoid this �Bell and Sejnowski

����b� introduces squashing functions yi � gi�ui� that limit the estimated source signals�
Further
 they conjecture that the �interference� from the sum of individual entropies is
small when the slopes of the nonlinearities gi��� match the p�d�f��s of the source signals

in which case ICA can be performed by maximizing the joint entropy of the nonlinearly
transformed source signal estimates&so
 despite the speculative nature of the above
 it
leads to the same result as maximum likelihood estimation under a constraint similar
to ������� The duality between the information maximization and maximum likelihood
approaches is also discussed in �MacKay
 ����� and �Cardoso
 ������

����� Robustness

When the model source densities are correct


p�'s� � f�s� � ������

the ML estimator ������ of W is ML�W� � 	K  WAs� s!
 which is minimized at C� �
W�A � Iq where ML�W�� � �� Thus the source signals can be completely recovered�


�Assuming that we are actually able to nd a global maximum W�� The answer to that question
lies in the properties of the procedure we employ to locate W��an issue that will be addressed shortly�
�Remember that many global optima exist due to the high symmetry of W��
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given that the model densities are correct� More interestingly
 however
 is the situation
of incorrect source models so that ������ no longer holds� Su�ce it here to summarize
the analysis in �Cardoso
 ����� which argues that �small errors� in the source model
speci�cation lead to solutions with C � diag  �i� � � � � �S ! �� I� The source signals are
recovered up to a set of scaling factors so the solution is still satisfactory� Large density
mismatches
 on the other hand
 may make the stationary point C � diag  �i� � � � � �S !
unstable&a situation that has been reported by many researchers on a wide range of
problems� We shall investigate the e�ects of incorrect source density models in section ����

����	 Iterative entropy maximization

To �nd a �potentially local� maximum
 W�
 of the joint entropy of the nonlinearly trans
formed source signal estimates


H  y! � H  g�u�! � H  g�Wx�! � ������

one approach is to iteratively update the timet estimate of the unmixing matrix
 Wt

along the direction of the gradient of H  y! with respect to W
 evaluated in W � Wt� In
other words
 we employ gradient ascent

Wt�� � Wt * �
�H  y!

�W

����
W	Wt

������

for some initial estimate W�� However
 �Amari et al�
 ����� shows that ������ is subopti
mal� optimization is better performed using what they call the natural gradient� This is
equivalent to the relative gradient derived in �Cardoso and Laheld
 �����
 and amounts
to multiplying the absolute gradient ������ by WTW resulting in natural gradient ascent

Wt�� � Wt * �

�
�H  y!

�W
WTW

�����
W	Wt

� ������

The most immediate advantage of the natural gradient over the absolute gradient is in
creased convergence speed
 often by several orders of magnitude �Bell and Sejnowski
 �����
Cardoso and Laheld
 ����� Amari et al�
 ������

To evaluate ������ we �rst recall that with all partial derivatives arranged in the
Jacobian

J � det

�
��

�y�
�x�

� � � �y�
�xN

���
���

�yN
�x�

� � � �yN
�xN

�
�� � �detW�

NY
i	�

�yi
�ui

������

the relation between the p�d�f��s for x and y is �Papoulis
 �����

fy�y� �
fx�x�

jJj
� ������
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It is now straightforward to derive the absolute gradient

�H  y!

�W
� 	

�

�W
hlog fy�y�i ������

� 	
�

�W

�
log

fx�x�

jJj

�
������

�

�
�

�W
log jJj

�
������

�
�

�W
log jdetWj*

�

�W
log

NY
i	�

�����yi�ui

���� ������

�  WT!
��

*
�

�W
log

NY
i	�

�����yi�ui

���� � ������

where the third equality ������ is the result of fx�x� being independent of W
 and the last
due to one of many notsoobvious matrix gradients
 see e�g� �Scharf
 ����
 page ����� In
������ the �yi	�ui terms depend on gi�ui�
 which in turn should match the c�d�f� of the
true source distribution
 f�s�� This follows from ������
 ������
 and the comments above
about robustness
 and means that source density models must be identi�ed before the
natural gradient ascent rule ������ can be implemented�

����
 Source density models

The asymmetric generalized logistic function

�y

�u
� yp��	 y�r ������

proposed in �Bell and Sejnowski
 ����b� provides source density models that via two
parameters can be tweaked to become very �at �p� r � �� or very peaked �p� r 
 ��
 as
well as symmetric �p � r� and asymmetric �p �� r�� For p � r � � we get

p � r � � � y � g�u� �
�

� * e�u
� ������

i�e� the ordinary sigmoid function�
Recall that the �peakyness� of a random variable s with corresponding p�d�f� f�s� is

quanti�ed by the kurtosis

k  s! �

�
�s	 hsi��

�
h�s	 hsi��i�

	 �� ������

where � is subtracted in order to make the kurtosis of a random variable with Gaussian
density zero� Densities more sharply peaked than a Gaussian are called super�Gaussian

and have k  s! 
 �
 whereas less sharply peaked
 more �at distributions are called sub�

Gaussian and have k  s! � �� Figure ��� shows the cumulative density �y � g�u�� and
probability density ��y	�u� functions for a few combinations of p and r �solid lines��
For comparison a Gaussian distribution with zero mean and unit variance is also plotted

�The densities were computed by numeric integration of ������� The resulting densities were sampled
to yield empirical kurtosis estimates�
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Figure ���� The generalized logistic cumulative density �y � g�u�� and probability density
��y	�u� functions for a few combinations of p and r �solid lines� with increasing kurtosis� The
dash�dotted lines depict a Gaussian distribution with zero mean and unit variance� Columns

��� � Symmetric densities �p � r�� Columns � and � � Asymmetric densities �p �� r��

�dashdotted lines�� In the �rst three columns the densities are symmetric
 and we see how
kurtosis increases with increasing values of p � r� The last two columns are asymmetric
�p �� r� and provide a better �t for some source signals
 as we shall see shortly�

To use the generalized logistic function we insert ������ into ������ and obtain

�H  y!

�W
�  WT!

��
* �p��	 y�	 ry�xT � ������

which yields the natural gradient

�H  y!

�W
WTW �

h
�WT�

��
* �p��	 y�	 ry�xT

i
WTW ������

� W * �p��	 y�	 ry�xTWTW ������

�  I* �p��	 y�	 ry�uT!W � ������

Apart from the increased converge speed ������ also has the advantage of avoiding the
matrix inversion in �������

��� Examples

Before assessing the two reviewed coordinate transformations on realworld functional
neuro imaging data
 we will
 in order to gain insight into the respective methods and
their properties
 pause to investigate a couple of relatively simple example datasets� one
consisting of realworld sound samples
 and one consisting of constructed �D brainlike
images�
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����� A sound dataset

The sound dataset�
 Ss �  s� s� s� s�!
 consists of the four sound signals depicted in
�gure ���
 each with ���� samples� They were chosen randomly to be the sounds of a bell
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Figure ���� The sound dataset source signals� They are the sounds of a bell� a cash register�
the phrase 	easy left
� and running water� All four sources are �� samples long�

a cash register
 the phrase �easy left�
 and running water
 respectively� The corresponding
source signal histograms are shown in �gure ���� All four sources appear to have symmetric
distributions more sharply peaked than a Gaussian
 which is con�rmed by the source
signal kurtosises� k  s�! � ������ k  s�! � ����� k  s�! � ����� k  s�! � ����� The symmetric

superGaussian nature is a characteristic feature of most sound signals�

We proceed to generate a random
 fullrank mixing matrix A with values uniformly
distributed between 	� and �
 and use it to generate a data matrix of four linear mixture
signals
 XT

s � AsS
T

s �  x� x� x� x�!T
 which
 from �gure ���
 appear qualitatively similar�
Listening to the mixtures con�rms this� at best it is extremely hard for the human ear to
single out the sources from the mixtures�

������� Principal component analysis

Before further analysis all four mixtures are normalized to unit variance� Singular value
decomposition of the centered data matrix yields the principal axes as the left singular
vectors
 E � U� Via ������ and ������ the corresponding singular values provide the vari
ances of the principal components� The variances relative to the total variance are found
to 'l� � �����+� 'l� � �����+�
 and 'l� � ����+ respectively� The �rst N 	 � � � principal
axes span signal space so projection onto them provides a lossfree dimensionality reduc
tion as described in section ������ However
 one could hope for something more
 namely

	The notation Ss is used to distinguish the source data matrix from the sample covariance matrix
dened in ������� Note that the ���� vectors of source signals are the rows of Ss� unlike in section ���
where source and mixture vectors are column vectors�
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Figure ���� The sound dataset source signal histograms� All source signals are symmetric
and have positive kurtosis� meaning that they are super�Gaussian�a characteristic feature of
sound signals�
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Figure ��
� Linear mixtures of the four sound sources� All mixtures appear qualitatively
similar�something that is veri�ed by listening to them�

informative basis vectors which
 in this context
 translates to the recovery of the original
source signals� From �gure ��� the �rst principal axes looks similar to the fourth source
signal� In fact
 correlation of the columns of the mixing matrix
 ai
 with the principal
components
 zi
 yields �z��a� � 	������
 so we identify the principal axis that accounts
for most variance as an estimate of the fourth source signal� The two remaining axes do
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Figure ���� The principal axes of the set of linearly mixed sound signals� While they form a ba�
sis that provides loss�free dimensionality reduction by projection� they are not very informative�
Speci�cally� they do not recover any of the original source signals�

not
 however
 recover any of the source signals� Based on this relatively simple example
it seems that the principal basis provides only one informative basis vector
 reducing it to
little more than a lossfree dimensionality reduction&something we could achieve simply
by projecting the mixtures onto themselves� Instead we look at the independent basis
vectors provided by ICA�

������� Independent component analysis

The application of ICA involves selection of a set of source density models� From �gure ���
and the computed kurtosises it seems that symmetric
 sharply peaked models should
be used� We therefore choose� a set of symmetric
 generalized logistic density models
with relatively large parameter values p � r �  � � ���� ���!� These values are found
experimentally to yield density models that match the empirical distributions
 at least
kurtosiswise�

The independence assumption ������ is key to ICA as derived in section ���� To test
the assumption pairwise plots of the twodimensional joint densities and marginal product
densities appear in �gure ���� For most twosource combinations there is good agreement
between the two twodimensional densities
 qualitatively validating the independence as
sumption� However
 the correlation matrix Ps � ��si�sj � have several nonzero o�diagonal
elements
 as can be seen in �gure ���� Accordingly
 the generalized correlation coe�cient
jPsj evaluates to ������ � �� This means that the sources are slightly correlated and thus
not completely independent� Whether or not the slight discrepancies between the two
rows in �gure ��� can be contributed solely to the small correlations or stem from higher
order dependencies the violation of the independence assumption ������ for this dataset
remains a fact� however
 the sources are realworld sound signals
 so dependencies are not
unlikely� In any event
 ICA will attempt to provide maximally independent source signal
estimates�

The performance of the natural gradient ascent approach to entropy maximization is
assessed by monitoring the relative transformed joint output entropy H  g�Wx�! as well


As reported by �Bell and Sejnowski� ����b� and others the exact shape of the density models is not
critical� good convergence is achieved for a wide range of shapes�
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Figure ���� Assessing independence of the source signal elements of the sound dataset� For
most two�source combinations there is good agreement between the joint density �upper row�
and the product of the marginal densities �lower row��
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Figure ��� The source signal correlation matrix Ps � ��si�sj � for the sound dataset� There
are several non�zero o��diagonal elements� meaning that some of the sources are slightly
correlated� and thus not completely independent� The generalized correlation coe�cient is
jPsj � ������ � ��

as measures based on the system matrix C � WA� The evolution of the entropy
 plotted
in �gure ���
 displays a sharp early increase� After relatively few iterations convergence
is achieved as the curve �attens� To determine if the algorithm has successfully recovered
some or all of the source signals we inspect �gure ����
 which displays the evolution of the
individual elements of the system matrix
 as well as the matrix norm kC	Ik�� As iteration
progresses the system matrix evolves into an approximate quasiidentity matrix�� Iq� Four
matrix elements converge towards 	� or *� and the rest converge towards zero �upper
panel�� This is also re�ected by the matrix norm of C 	 I �lower panel���� A possible
explanation as to why a few system matrix elements seem to converge to small
 nonzero

��Recall that the source signals are transformed to have zero mean and unit variance� By also scaling
the source signal estimates u � �s to unit variance the unknown scaling of C is removed� Note that u is
rescaled only for the calculation of C� the scaling does not a�ectW�

��Since signal ordering is arbitrary the matrix norm is in fact based on �C� which is the column permu�
tation of C that makes it as diagonal as possible�
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Figure ���� Evolution of the relative transformed joint output entropy for the sound dataset�
After a sharp early increase convergence is achieved�
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Figure ����� Evolution of the system matrix C � WA for the sound dataset� Upper panel �
The individual elements Cij of the system matrix� Lower panel � The matrix norm kC	 Ik��
As iteration progresses the system matrix evolves into an approximate quasi�identity matrix Iq�

values is that the algorithm has found an unmixing matrix that results in source estimates
that are more independent that the source signals themselves� The generalized correlation
coe�cient of the source estimates is jPuj � ������
 hinting that this is in fact the case� The
nonzero elements of the system matrix are not large
 though
 and convergence is con�rmed
by looking at the independent axes
 i�e� the source signal estimates
 in �gure ����� Up
to a set of scaling factors
 it appears that all source signals have been recovered
 which is
con�rmed by the fact that the absolute correlation with the proper mixing vector exceeds
���� for all independent components�

It is interesting to investigate how the source density models a�ect performance� Inde
pendent component analysis is therefore applied to another set of symmetric
 generalized
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Figure ����� Independent axes of the set of linearly mixed sound signals� Up to a set of
scaling factors� all sources have been correctly estimated�

logistic source density models
 this time identical with p � r �  � � � �!� Figures ���� and
���� reveal that the form of the density models is noncritical� just as for the more care
fully selected density models convergence is fast
 resulting in an approximate quasiidentity
system matrix�

0 50 100 150
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3
p=[1; 1; 1; 1], r=[1; 1; 1; 1]

R
el

at
iv

e 
en

tr
op

y

Time

Figure ����� Evolution of the relative joint output entropy for the sound dataset� based on
identical source density models� Convergence is just as fast as before�

We conclude that ICA performs well when applied to linear mixtures of realworld
sound signals� The symmetric
 superGaussian nature of most sound sources is however

unlikely to be mirrored in spatially distributed patterns of neuronal activity� This issue
is investigated in the next section
 which also addresses the more fundamental problem
of assuming neuronal activity patterns to be generated as linear mixtures of a number of
independent source patterns�
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Figure ����� Evolution of the system matrix C � WA for the sound dataset� based on
identical source density models� Upper panel � The individual elements Cij of the system
matrix� Lower panel � The matrix norm kC	 Ik�� Like for estimation based on more carefully
selected density models the system matrix evolves into a quasi�identity matrix Iq as iteration
progresses�

����� A two�dimensional brain�like dataset

The activation of a particular neurophysiological system manifest itself as a spatial pat
tern of neuronal activity� This is the basic fact that facilitates functional neuro imaging�
At any one time many neurophysiological systems are involved in the complex tasks per
formed by a living human� The massive number of interconnections in the brain indicates
heavy interaction between cognitive modules
 meaning that the pattern of neuronal ac
tivity observable at a given time is a mixture of the activity of many neurophysiological
systems� Independent component analysis aims to identify such spatial activity patterns
by assuming them independent
 see also �McKeown et al�
 ������

The application of ICA on sets of microscopic variables with the aim of obtaining im
ages of all involved neurophysiological systems is bound to fail
 however
 since it implicitly
assumes that the linear mixture model ������ holds for human brain function� We can not
expect interactions to occur purely in a linear fashion&in fact
 many feedback loops can be
identi�ed anatomically
 which clearly violates ������� However
 this does not necessarily
mean that ICA is useless in the context of functional neuro imaging� Rather
 we recall
that it is one of several dimensionality reducing coordinate transformations� With this in
mind
 the use of ICA basis vectors over those yielded by other methods should be war
ranted by the existence of a subset that provides �informative� projections
 as discussed
in sections ����� and ������ Before assessing if such a subset can be identi�ed from a set
of realworld microscopic observations
 we shall investigate coordinate transformations of
an arti�cial set of �D brainlike images with realistic source distributions�

The set of six images depicted in �gure ���� was constructed for that purpose� Each im
age contains ����� � ���� pixels
 resulting in the ������ data matrix Sb �  s� s� � � � s�!�
The �rst source contains superGaussian noise within an elliptic shape
 chosen to make it
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Figure ����� The two�dimensional brain�like source signals� The �rst is super�Gaussian noise
within a head�like shape� while the remaining �ve contain spatially localized patterns with only
a few 	active
 pixels�

resemble the shape of a head sliced horizontally� The remaining �ve source images contain
spatially localized patterns with only a few �active� pixels� These images are intended
to represent possible patterns of activity for di�erent neurophysiological systems� When
designing the images the aim was not so much to derive realistic spatial patterns
 as to
construct realistic source distributions� The source signal histograms plotted in �gure ����
are both skewed and extremely peaked� Only the distribution of the noise image seem
close to densities that can be modeled with the generalized logistic function �������

Linear mixtures of the source images ��gure ����� are generated as XT

b � AbS
T

b �
 x� x� � � � x�!T
 with the mixing matrix Ab being constructed with relatively large values
in the �rst column compared to the rest� Therefore the headshaped noise is relatively
dominant in most mixture images� The second column contains the vector  � � � � � �!T

so that the dot in the second source image appears to be systematically o� and on in
the mixture images� This is meant to simulate variation induced experimentally by a
categorical paradigm�

������� Principal component analysis

After variance normalization the principal axes and corresponding eigenvalues are com
puted via an SVD of Xb� The relative variances are from ������ computed to be 'l� �
�����+� 'l� � �����+� 'l� � ����+� 'l� � ����+� 'l� � ����+� The principal images are
depicted in �gure ����� The headshaped noise appears to have been somewhat captured
by the �rst principal axis
 �z��a� � ������
 even though some portions of the second and
fourth source signals are visible with the naked eye� However
 all the remaining princi
pal axes contain elements of most of the �ve source �activity� patterns� only the noise
component is approximately removed�

The basis vectors provided by PCA are not very informative since the source signals
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Figure ���
� The empirical source distributions of the two�dimensional brain�like dataset� All
but that of the noise image are both skewed and extremely peaked�
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Figure ����� Linear mixtures of the images in the two�dimensional brain�like dataset� The
�absolute� values of the elements in the �rst column of the mixing matrix are larger than
those in the other columns� meaning that all mixtures have a relatively large component of the
head�shaped noise� as is clearly seen�

remain mostly unrecovered� Recall that the second source image is systematically on and
o� in the mixtures� To see if the categorical paradigm has been captured by any of the
principal axes the data matrix is projected onto the PCA basis� Observing the principal
components
 zi
 as displayed in �gure ����
 it is clear that the systematically induced
variation remains undetected� The results indicate that only e�ects with large variations in
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Figure ����� Principal axes of the linear mixtures of two�dimensional brain�like sources� The
head�shaped noise signal seems to be somewhat captured by the �rst principal axis� but the
remaining axes do not recover any of the sources�

1 2 3 4 5 6
−100

−50

0

50

 z
1

1 2 3 4 5 6
−50

0

50

 z
2

1 2 3 4 5 6
−20

0

20

40

 z
3

1 2 3 4 5 6
−40

−20

0

20

 z
4

1 2 3 4 5 6
−20

−10

0

10

 z
5

Figure ���� The projection of the linear mixtures onto the principal axes for the two�
dimensional brain�like dataset� The on�o� paradigm is not recovered�

the level of activity are recovered in individual principal axis
 in this case the headshaped
noise� Still
 the variation accounted for by the last principal axes is so small that they may
be ignored all together� In doing so we assume that the information needed to successfully
model relevant relationships between the microscopic and macroscopic variables exists in
model space as spanned by the �rst few principal axes� the principal axes may not recover
the source signals but do provide a reasonablysized model space�

������� Independent component analysis

Generalized logistic functions are employed as source density models before application of
ICA� As for the sound dataset the model parameters were originally chosen so that the
model densities match the empirical distributions� one model with p � r � ���
 which
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resembles the distribution of the headshaped noise
 and �ve models with p � ��� and
r � ���
 which are both skewed and very peaked�

Natural gradient ascent progresses as depicted in �gure ����� Convergence is achieved
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Figure ����� Evolution of the relative transformed joint output entropy for the two�dimensional
brain�like dataset� Convergence is rapid�

rapidly� The elements of the system matrix in the upper panel of �gure ���� stops evolving
around the same time� Despite a few elements with values di�erent from �
 	� or *�
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Figure ����� Evolution of the system matrix C � WA for the two�dimensional brain�like
dataset� Upper panel � The individual elements Cij of the system matrix� Lower panel � The
matrix norm kC	 Ik��

the resulting system matrix is almost a quasiidentify matrix
 as con�rmed by the lower
panel of the �gure� The degree to which the brainlike image sources have independent
distributions has only been quanti�ed by the generalized correlation coe�cient jPsj �
������
 but it seems likely that the small nonzero elements of the system matrix can be
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credited to small dependences between the source images��� Still
 the independent axes
shown in �gure ���� are very close to the source images� In particular
 the fourth estimated
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Figure ����� Independent axes of the linear mixtures of two�dimensional brain�like sources�
Up to a set of scaling factors� all sources have been correctly estimated�

source image greatly resembles the pattern of the categorical paradigm� The projection of
the data matrix onto the independent components in �gure ���� veri�es this
 as the fourth
component correctly discriminates between the mixtures in which the spot is on and those
in which it is o�� The absolute correlation with the proper mixing vector exceeds ���� for
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Figure ����� The projection of the linear mixtures onto the independent axes for the two�
dimensional brain�like dataset� The on�o� paradigm is recovered as the fourth independent
component�

all independent components�

��The source signal estimates are signicantly more independent� The generalized correlation coe�cient
evaluates to jPbj � �������
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Finally
 �gures ���� and ���� reveal that the shape of the source density models is non
critical� Choosing six identical models
 all with p � r � �
 still results in fast convergence
towards the true source images�
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Figure ����� Evolution of the relative transformed joint output entropy for the two�dimensional
brain�like dataset based on poor source density models� Convergence is still good so a wide
range of density models appear to be applicable�
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Figure ����� Evolution of the system matrix C � WA for the two�dimensional brain�like
dataset based on poor source density models� The shape of the models is clearly noncritical�

We conclude that both principal and independent component analysis are tools well
suited for dimensionality reduction of illposed datasets� The variance ranking of PCA
allows identi�cation of model space as a subspace of signal space in which most signi�cant
information is likely to be present� A similar ranking of the independent basis vectors is
not directly available
 but we shall investigate other model space identi�cation procedures
in the next chapter� However
 the individual independent axes seem more informative than
their principal counterparts&in fact
 they have been demonstrated to closely approximate
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the original signals when working on linear mixtures of closeto independent sources� When
considering the relative success of ICA on the arti�cial brainlike dataset we must keep in
mind
 though
 the infeasibility of a linear mixture model for human brain function�

��� Application to functional neuro imaging data

To demonstrate the reviewed coordinate transformations as well as the modeling and
interpretation techniques to be described in the chapters to come
 we investigate the PET
CPH$SAC dataset described in section A���

After standard preprocessing and the application of the common mask to all scans
the microscopic data matrix consists of �� scans
 each with ����� intracerebral voxels�
We have just seen how projection of the data matrix onto a basis that spans signal space
yields lossfree dimensionality reduction� Now we brie�y discuss the application of PCA
and ICA to the CPH$SAC dataset in order to obtain an e�cient representation� Further

the di�culties connected with model space identi�cation based solely on the transformed
microscopic variables will become apparent�

��	�� Principal component analysis

Singular value decomposition of the centered data matrix yields a set of eigenvalues and
corresponding principal axes
 as in ������� Figure ���� reproduces the relative variances
accounted for
 'li
 by all principal axes��� The space spanned by the last axes accounts
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Figure ���
� Principal component analysis of the CPH�SAC dataset� The plot shows the
relative variance accounted for by each of the principal axes�

for very little variance� If the interesting variance in the set of microscopic variables

which in this context is the experimentally induced variation
 is relatively large compared
to variance induced by other sources
 it is reasonable to ignore the last principal axes�
This e�ectively identi�es model space as the space spanned by the �rst few principal axes�
However
 it is not evident that the experimentally induced variance indeed is large� By
ignoring the principal axes accounting for relatively little variance we therefore risk to

��Since we cannot rank the principal axes according to their signicance relative to the induced variance�
we defer depiction of �selected� principal axes to later�
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discard information that is signi�cant when it comes to modeling aspects of the joint
micro and macroscopic probability density�

The model space identi�cation problem relates to the fact that we have no exact
knowledge about the true source signals that underly the observed dataset
 as we did
for the arti�cially mixed datasets investigated earlier� We are
 in other words
 unable to
identify model space based solely on the microscopic variables� Instead we must utilize
information about the experimental design as provided by the macroscopic variables� A
simpleminded approach towards this end is to investigate the basis vector projections
 i�e�
the principal components� These are plotted for the �rst �� principal axes in �gure �����
The dotted vertical lines group the projection values into eight groups
 each with scans
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Figure ����� The principal components of the �rst �� principal axes of the CPH�SAC dataset�
The dotted vertical lines group the projection values into eight groups� each with scans from
a single subject�

from a single subject� The �rst seven components appear di�erent from the other �ve
in the �gure� strong di�erences between subjects are evident� These di�erences will be
quanti�ed in section ������

��	�� Independent component analysis

We recall from section ����� that the linear mixture model ������ cannot be assumed to
hold for human brain function� Still
 ICA may provide �informative� basis vectors leading
to the identi�cation of model space in such a way that variance related to the experimental
design is retained�

With reference to the noncritical selection of source density models in the application
of ICA to the arti�cially mixed datasets above we employ identical
 generalized logistic
density models with p � r � �� Figure ���� depicts the evolution of the relative trans
formed joint output entropy� The issues concerning model space identi�cation from a set
of principal axes apply to model space identi�cation from a set of independent axes as well�
we cannot tell �informative� axes from �noninformative� ones without utilizing informa
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Figure ����� Application of ICA to the CPH�SAC dataset� The relative transformed joint
output entropy was only evaluated every �fth iteration� resulting in the coarse appearance of
the plot� Nevertheless� convergence is achieved after relatively few iterations�

tion about the experimental design� A selection of independent basis vector projections
�which we will call independent projections� are depicted in �gure ����� Structure similar
to that of the principal components is not apparent in the limited set shown� However

no equivalent to the ranking of the principal axes based on relative variance exists for
ICA
 making model space identi�cation even more di�cult� Quantitative model space
identi�cation together with a more general approach towards modeling of the joint micro
and macroscopic distribution will be presented in the next chapter�

��� Summary

In typical functional datasets the dimensionality of each microscopic observation exceeds
the number of observations by orders of magnitude� This illposed nature holds two
major implications for further analysis and modeling� primarily
 e�ciency can be increased
using a basis that spans the same space as the set of all microscopic observations �signal
space�� Secondly
 modeling can bene�t from the identi�cation of an even smaller subspace

designed to minimize loss of modelrelevant information�

Two basis selection procedures have been reviewed� principal component analysis and
independent component analysis� The latter seems to outperform the �rst when it comes
to the identi�cation of informative basis vectors for sets of linearly mixed
 independent
signals� The extent to which this conclusion holds for sets of microscopic observations of
realworld functional datasets is
 however
 unclear� the unrealistic assumption of a linear
mixture model for brain function
 coupled with the di�culties related to measuring model
relevance of individual basis vectors based solely on microscopic information
 necessitates
the inclusion of macroscopic information�
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Figure ���� The independent projections of �� independent axes of the CPH�SAC dataset�
The dotted vertical lines group the projection values into eight groups� each with scans from
a single subject�
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Chapter �

Modeling from signal space

By employing macroscopic information we derive a modeling framework based on gener
alization theory� The framework helps to highlight an important relation between model
performance on one side
 and the number of available observations and model �exibility
on the other�

��� Model space identi	cation

As we saw in the previous chapter a signi�cant dimensionality reduction of the microscopic
data representation can be achieved by a coordinate transformation� The reduction is loss
free when the selected basis spans signal space
 yielding variables of dimension N instead
of d� Such a coordinate transformation does not
 however
 change the fundamental fact
of illposed datasets� the observations provide an extremely sparse population of signal
space� This sparse sampling of the microscopic probability distribution presents a major
problem for techniques based on models of distributional properties of signal space
 which
is exactly what the analysis and modeling methods we employ are�

In an attempt to remedy the poor sampling of signal space we seek to identify a sub
space of signal space which we call model space and denote M� Model space must be small
�lowdimensional� enough to signi�cantly reduce the sparseness of the microscopic sam
pling
 but at the same time big enough to retain the important aspects of the microscopic
probability distribution� The �rst part of this chapter addresses ways to meet these two
con�icting goals�

����� Model space identi�cation from principal axes

Concentrating �rst on the basis provided by PCA we recall from ������ that it is a set
of N 	 � orthogonal basis vectors ranked according to the amount of variance they ac
count for� If the last N 	 k 	 � eigenvalues are small it means that the space spanned
by the corresponding eigenvectors accounts for a relatively small portion of the total vari
ance� Ignoring that part of signal space only a�ects the microscopic sample distribution
slightly
 so it seems reasonable to identify model space as the space spanned by the �rst
k eigenvectors�

To quantitatively address the issue consider the case of deciding whether or not the
�k * ���th principal axis contributes signi�cantly to the variance accounted for by model
space� If the variances accounted for by all the last N 	 k	 � axes
 ek��� ek��� � � � � eN��

are identical then the decision to include the �k* ���th axis should lead to the inclusion of

��
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all the remaining N 	 k 	 � axes� they all account for an equal amount of variance� This
is a case of isotropic variance and implies that the space spanned by the �rst k principal
axes
 where k is the minimum number for which the remaining N 	 k 	 � principal axes
account for an equal amount of variance
 is a model space candidate� If the eigenvalue
spread of the sample covariance matrix is small
 however
 the resulting model space may
still account for a relatively small portion of the total variance
 so the approach is not
guaranteed to identify model space in a useful manner�

By assuming the microscopic variables to be multivariate Gaussians
 xn � N���(�

we �nd the principal components �transformed variables� to be likewise from ������� A
likelihood ratio test �LRT� for the hypothesis of the last dim�S� 	 k eigenvalues of the
covariance matrix being equal


H� � lk�� � lk�� � � � � � ldim�S� � �����

can then be derived �Mardia et al�
 ����
 page ����

N �dim�S�	 k� log

�
a�
g�

�
� ��

�dim�S��k����dim�S��k����� � �����

where

a� �

Pdim�S�
q	k�� lq

dim�S�	 k
�����

g� �

�
�dim�S�Y
q	k��

lq

�
�
���dim�S��k�

� �����

Since we are dealing with an LRT the distribution of the test statistic in ����� holds
asymptotically for N �� The illposed nature of functional datasets taken together with
the assumption of Gaussianity means we should be careful when attempting to identify
model space by employing ������

Figure ��� reproduces the eigenvalue spectrum of the CPH$SAC dataset in the top
panel
 now on a log scale� The lower panel depicts the maximum level for which we can
accept the hypothesis �����
 plotted as a function of k� At a signi�cance level of �+ we
cannot reject the hypothesis for k � �
 meaning that the variance in the space spanned
by the last N 	 k	 � � �� principal axes can be regarded as isotropic� It follows that the
sixth principal axis should not be included in model space without including all remaining
axes as well� the space spanned by the �rst �ve principal axes

MLRT � span �ei j i � �� � � � � �� �����

candidates for model space� The fraction of variance accounted for by MLRT is not very
large
 however� We �nd

V  MLRT! �
�X

i	�

'li � ����+ � �����

which means that while we achieve better sampling of the microscopic probability distri
bution we ignore some ��+ of the total variance
 potentially including information that
is important in order to satisfactory model the joint micro and macroscopic density� In
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Figure ���� Model space identi�cation from the principal axes for the CPH�SAC dataset�
Upper panel � The eigenvalue spectrum� Lower panel � Maximum acceptance level of H� �
lk�� � lk�� � � � � � ldim�S� as a function of k�

fact
 it is likely that the experimentally induced saccadic variance is small compared to
functional �and potentially remaining anatomical� intersubject variance�

Generally
 model space identi�cation based on eigenvalue LRT�s is hampered by the
fact that it relies solely on microscopic information� The utilization of information from
selected macroscopic variables facilitates a more re�ned model space identi�cation
 as we
shall see next�

����� Analysis of variance

The factors contributing variance to the microscopic variables can be assessed by variance

partitioning
 i�e� the decomposition of the variance into a sum of several factors �Strother
et al�
 ����a� Lautrup et al�
 ������ This is also known as analysis of variance �ANOVA��
If we index subjects by t and scans by u
 and label the total number of subjects and
scans by T and U 
 respectively
 we can decompose the total variance of the i�th principal
component

�N 	 ��V  zi! �
X
tu

�zi�tu 	 "zi����
�

� U
X
t

�"zi�t� 	 "zi����
� * T

X
u

�"zi��u 	 "zi����
�

*
X
tu

�zi�tu 	 "zi�t� 	 "zi��u * "zi����
� � �����

where dotnotation is used for the means

"zi��� �
�

N

X
tu

zi�tu "zi�t� �
�

U

X
u

zi�tu "zi��u �
�

T

X
t

zi�tu � �����
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The three terms in ����� attribute the total variance of zi to subject related
 scan related

and residual e�ects� Correspondingly
 we label the terms inter�subject
 intra�subject�
 and
residual variance�

For the CPH$SAC dataset the application of twoway ANOVA on all principal com
ponents yields �gure ���� Despite the fact that the sources of variance are unlikely to
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Figure ���� Two�way ANOVA of the principal components of the CPH�SAC dataset� The
�rst seven principal axes are completely dominated by inter�subject variance� and only in the
tenth component is a signi�cant e�ect related to saccade frequency variance apparent�

combine in a linear fashion
 ANOVA may still provide insight into the structure of signal
space� In particular
 the �rst seven principal components are almost entirely dominated
by intersubject e�ects&something that con�rms the qualitative impression of the princi
pal components as plotted in �gure ����� Whether it is due to topographical di�erences
between subjects or shortcomings in the realignment and stereotactic normalization pro
cedures employed as part of the preprocessing
 it remains a fact that the most signi�cant
saccadefrequency related e�ect doesn�t appear until the tenth component
 which accounts
for a mere �+ of the total variance� In fact
 we are e�ectively able to identify two orthog
onal subspaces� inter�subject space spanned by the �rst seven principal axes which are
dominated by intersubject variance
 and intra�subject space spanned by the remaining
axes�� The relatively clear transition that occurs between the �T 	 ���th and the T �th
principal axes turns out to be very characteristic for datasets with T subjects �Strother
et al�
 ����b���

�The term 	intra�subject
 is used to denote variations within subjects� Since the scans of all subjects
are consistently organized according to the frequency of the performed saccades� e�ects related to scan
index are identied as saccade�frequency e�ects�

�It is interesting to note that primarily the variance structure of inter�subject space changes when
advanced nonlinear stereotactic normalization techniques are used� the structure of intra�subject as re�
solved by ANOVA of the principal components is relatively robust with respect to di�erent stereotactic
normalization schemes �Kjems et al�� ����� Kjems� ������

�Actually� the separation of signal space into spaces dominated by inter� and intra�subject e�ects is a
feature of other orthogonal bases too� In particular� the basis vectors of the scaled subprole model �SSM��
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Figure ��� con�rms what we suspected all along
 namely that the experimentally in
duced variance of interest
 i�e� the variance related to the visual saccades
 is small com
pared to the variance accounting for di�erences between subjects� This renders model
space identi�cation based on eigenvalue LRT�s
 as described in the previous section
 de
batable� Instead we may attempt to use twoway ANOVA to identify model space� First

however
 let us examine its application to the independent components of the CPH$SAC
dataset
 as depicted in �gure ���� In contrast to the principal axes no variance related
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Figure ���� Two�way ANOVA of the independent components of the CPH�SAC dataset
ranked according to the amount of variance that can be attributed to intra�subject e�ects� No
single component is dominated by intra�subjects e�ects�

ranking is available for the independent axes� Instead
 the components have been ranked
according to the amount of variance that can be accounted to intrasubject e�ects
 i�e�
saccade frequency variance� While the variance in a number of components appear to be
somewhat attributable to this factor no single component isolates the e�ect as clearly as
the tenth principal component in �gure ���� The immediate interpretation is that ICA
provides basis vectors that are less informative than those provided by PCA&however

it may be a bit more involved� the observed microscopic variables measure the combined
neuronal activity of many neurophysiological systems� It is possible
 perhaps even likely

that of those systems involved in the task of performing visual saccades activity levels may
relate nonlinearly to the frequency with which the saccades are performed� For example

the activity of a neurophysiological system may exhibit an almost linear relationship with
the saccade frequency for small frequencies
 but �saturate� when the frequency increases
above a certain threshold� This kind of behavior would diminish ANOVA�s ability to
identify a single intrasubject component related to the saccade frequency
 since ANOVA
is based on linear decomposition of the variance�

It is hard to determine what causes the di�erences in the variance decomposition
patterns for PCA and ICA
 but the very existence of the di�erences indicates the need

which attempts to account for multiplicative scan e�ects �Moeller et al�� ����� Moeller and Strother� ������
often yields an inter�subject space more completely dominated by inter�subject e�ects than does PCA�
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for more sophisticated model space identi�cation methods� In fact
 since we by ANOVA
attempt to identify one of the basis vectors as the onedimensional linear subspace that
re�ects variance related to one particular macroscopic variable
 ANOVA constitutes a
model portraying properties of the joint micro and macroscopic distribution� As outlined
earlier
 proper model space identi�cation may indeed depend on the type of model we
employ
 be it simple as the linear ANOVA model or more complex� We therefore turn to
discuss model performance measures�

��� Quantifying model performance

Recall from chapter � that the system functional neuro imaging aims to investigate is gov
erned by the joint micro and macroscopic probability distribution p�x�g��� To estimate
or identify the system we employ a model
 as in �����

#p�x�g� � p�x�gjw� � �����

where w is a vector of model parameters� We aim to identify the set of parameters w�

such that the model density approximates the system

p�x�gjw�� � p�x�g� � ������

We call w� the set of true parameters� Next we shall examine quantitative measures of
this modeltosystem approximation�

While most of what follows is relatively straightforward and results similar to those
we derive here exist in the literature
 the application of generalization measures is novel
in the context of functional neuro modeling� Speci�cally
 the relations between model
complexity on model performance have been left largely unaddressed until now�

����� Maximum a posteriori estimation

For the unknown system p�x�g� we are left to identify a proper set of parameters from a
dataset of observations of x and g drawn simultaneous from the joint distribution p�x�g��
We call a dataset used in this way a training set and label it D

D � f�xn�gn� j n � �� � � � � Ng � ������

Consider the joint distribution of model parameters and the training set
 which we can
rewrite using Bayes theorem �Duda and Hart
 �����

p�w�D� � p�wjD�p�D� � p�Djw�p�w� ������

m

p�wjD� �
p�Djw�p�w�

p�D�
� ������

where the normalization factor

p�D� �

Z
p�w�p�Djw� dw ������

ensures that
R

p�wjD� dw � �� In ������ we identify

�The microscopic variables may be represented using any basis that spans signal space� so when we
write x in the following it may be substituted for other representations� such as the principal components
z�
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The prior p�w� as the marginal distribution of model parameters that we assume before
observing the data in the training set D�

The likelihood p�Djw� as the conditional distribution of data for a speci�c set of model
parameters� It quanti�es the probability of observing di�erent training sets for a
given set of model parameters�

The posterior p�wjD� as the conditional distribution of model parameters for the spe
ci�c training set
 i�e� the probability of di�erent sets of model parameters for the
observed training set�

Now
 a model as in �����
 #p�x�g� � p�x�gjw�
 with parameters estimated from the
training set D will depend on D through the parameters� By integration over the param
eters we obtain

p�x�gjD� �

Z
p�x�g�wjD� dw ������

�

Z
p�x�gjw�D�p�wjD� dw ������

�

Z
p�x�gjw�p�wjD� dw � ������

where the third equality holds because the model density is independent of D once the
parameters w have been set� The approach in ������ is called Bayesian inference and
approximates the joint distribution of x and g from the training set as a weighted average
over all parameters �Bishop
 ����
 chapter ���
 �Mardia et al�
 ������

If the posterior distribution is relatively sharply peaked around w� then this value will
dominate the integral in ������
 so we get

p�x�gjD� � p�x�gjw��

Z
p�wjD� dw ������

� p�x�gjw�� � ������

using the normalization condition
R

p�wjD� dw � �� We have in e�ect substituted the
weighted posterior average by its maximum value
 meaning that the system is modeled by
choosing the parameters w� that maximize the posterior probability p�wjD�

w�
MAP � arg max

w
 p�wjD�! � ������

The principle is known as maximum a posteriori �MAP� estimation�

����� Maximum likelihood and cost functions

If the training set tuples �xn�gn� are drawn independently we can factor out the likelihood

p�Djw� �
NY
n	�

p�xn�gnjw� � ������

Similarly
 the prior distribution of independent parameters becomes

p�w� �

WY
v	�

p�wv� � ������
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where W is the total number of parameters� By observing that a monotonic �onetoone�
transformation leaves the maximum unchanged we can employ a logtransformation of the
posterior distribution

w�
MAP � arg max

w
 p�wjD�! ������

� arg max
w

�
�

N

p�Djw�p�w�

p�D�

�
������

� arg max
w


�

N

NY
n	�

p�xn�gnjw�

WY
v	�

p�wv�

�
������

� arg min
w


	

�

N

NX
n	�

log p�xn�gnjw�	
�

N

WX
v	�

log p�wv�

�
������

to achieve an additive rather than a multiplicative measure� Note that the posterior has
been normalized by N which shall prove bene�cial latter�

With no prior knowledge of the parameter distribution we can assume all parameters
to be equally likely
 i�e� a uniform prior p�w�� Maximum a posteriori estimation then
reduces to maximum likelihood �ML� estimation

w�
ML � arg max

w
 p�Djw�! ������

� arg min
w


	

�

N

NX
n	�

log p�xn�gnjw�

�
������

� arg min
w


	

�

N

NX
n	�

e�xn�gn�w�

�
������

� arg min
w

 E�D�w�! � ������

which identi�es the model parameters as those that maximize the probability of the ob
served training set� Maximum likelihood measures of model performance
 E�D�w�
 are
often called error functions or cost functions� they measure the sum of errors
 i�e� the
loglikelihood e�xn�gn�w� � log p�xn�gnjw�
 for independent observations� Next we shall
investigate one particular such cost function�

����� Mean square error

In chapter � we discussed the identi�cation of system signals� In particular
 we outlined a
system in which taskdescribing macroscopic variables
 e�g� the nominal saccade frequency

were considered as inputs and the microscopic patterns of neuronal activity as outputs�
However
 we could also consider the saccade frequency performance measure as system
output�� Consequently
 we would regard the microscopic variables as system inputs� The
renewed signal identi�cation in e�ect corresponds to a shift of the system boundaries
 as
discussed in section ������ In chapter � we shall investigate the relationship between the
two approaches for linear models�

For now we consider the system that governs the performance of visual saccades� The
saccades
 in particular the frequency with which they are performed
 are the result of the

�As described in appendix A the frequency of the performed saccades di�ers only insignicantly from
the frequency of the �ashing LED�s� Therefore the latter is used instead of the actual saccade frequency�
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microscopic patterns of neuronal activity� Therefore
 a convenient decomposition of the
the joint inputoutput density is

p�x�g� � p�gjx�p�x� � ������

in which we identify the conditional density p�gjx� as the system that governs the macro
scopic behavior g for a given set of microscopic variables x� The marginal distribution of
x plays an important role in the modeling process
 speci�cally in signal and model space
identi�cation as we saw in the previous chapter� However
 for the purpose of relating
saccade frequency to the patterns of neuronal activity it is the conditional density p�gjx�
we aim to model� To this end we employ y�x�w� � #p�gjx� � p�gjx�w� in line with ������

Assume that the K elements of the macroscopic vector are independent

p�gjx� �

KY
k	�

p�gkjx� � ������

Further
 assume that the macroscopic variables gk are given by a deterministic function
of x with added Gaussian noise

gk � hk�x� * ek � ek � N��� ��� � ������

meaning that the macroscopic variables themselves are Gaussians� Since we employ
yk�x�w� as our model of hk�x� assumption ������ yields

yk�x�w� � hk�x� � gk 	 ek � ������

It follows that p�gkjx�w� � yk�x�w� � N�hhk�x�i�V  hk�x�!� � N�gk� �
��
 i�e�

p�gkjx�w� �
�p

�����
exp


	

�yk�x�w�	 gk��

���

�
� ������

which
 by using ������ and ������
 leads to the ML estimator

w�
ML � arg min

w


	

�

N

NX
n	�

log p�gnjxn�w�

�
������

� arg min
w


	

�

N

NX
n	�

KX
k	�

log p�gn�kjxn�w�

�
������

� arg min
w


�

�N��

NX
n	�

KX
k	�

�yk�xn�w�	 gn�k�� * K log � *
K

�
log���

�
������

� arg min
w


�

�N

NX
n	�

KX
k	�

�yk�xn�w�	 gn�k��
�

� ������

where the second and third terms in the third line vanish because they are independent of
w� The same goes for the overall factor �	��
 resulting in the socalled mean square error

�MSE� �Duda and Hart
 ����� Mardia et al�
 ������ To reiterate
 ������ is the result of
ML estimation of the model parameters when assuming the macroscopic variables to be
Gaussian� The MSE cost function is often used
 even when the Gaussian assumption is
unwarranted�
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For the CPH$SAC dataset the saccade frequency is the macroscopic variable of interest

so we set K � �� This yields the MSE cost function

EMSE �D�w� �
�

�N

NX
n	�

�y�xn�w�	 gn�� � ������

where the individual error �loglikelihood� terms are

e�xn� gn�w� � log p�gnjxn�w� �
�

�
�y�xn�w�	 gn�� � ������

����� Gaussian prior

To constrain model complexity and ensure numerical stability when estimating model
parameters we can often bene�t from assuming a Gaussian parameter prior� The reason
for this become clear in section ������ So
 assume that the parameter distribution is
Gaussian p�wv� � N��� �v�
 meaning that the individual parameters are independent with
p�d�f�

p�wv� �
�p

����v�
exp

�
	
w�
v

���v

�
� ������

Inserting this into the MAP parameter estimate of ������ we �nd

w�
MAP � arg min

w


	

�

N

NX
n	�

log p�xn�gnjw�	
�

N

WX
v	�

log p�wv�

�
������

� arg min
w


E�D�w� *

�

N

WX
v	�

w�
v

���v

�
� ������

The augmented cost function is called the regularized cost function

C�D�w� � E�D�w� *
�

N

WX
v	�

w�
v

���v
������

� E�D�w� *
�

N
R�w� � ������

where the regularization term is

R�w� �
WX
v	�

w�
v

���v
�

WX
v	�

�v
�
w�
v �

�

�
wTRw � ������

The �v�s in ������ are inversely proportional to the prior variances
 and are as such non
negative� Arranging them in a diagonal matrix R � diag  ��v�! the regularization term is
conveniently expressed as a quadratic form� As we shall see in section ����� the regularized
cost function is closely linked to Ridgeregression �Hoerl and Kennard
 ������
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��� Generalization

In the limit in which the number of training set observations goes to in�nity the summa
tion in E�D�w� can be replaced with an integral over the joint micro and macroscopic
distribution

lim
N��

E�D�w� � lim
N��

�

N

NX
n	�

e�xn� gn�w� ������

�

ZZ
e�x� g�w�p�g�x� dgdx ������

�

ZZ
e�x� g�w�p�gjx�p�x� dgdx � ������

We de�ne the generalization error G as the cost function value in this limit �Larsen
 �����

G�D�w�
def
� lim

N��
E�D�w� �

ZZ
e�x� g�w�p�gjx�p�x� dgdx � ������

i�e� the expectation of the cost function with respect to the joint distribution of inputs and
outputs� Generalization error is
 in other words
 the average error over the true joint input
output distribution as measured by the chosen cost function� We note how generalization
error depends on the model parameters and through them also on the training set�� The
de�nition of generalization error applies to all cost functions
 even though we focus on the
MSE cost function here�

Ideally
 model performance should be assessed by measuring generalization error� In
practice
 however
 generalization error cannot be computed
 being the result of a limiting
process� It is the integration over the true
 but unknown density p�g�x� that causes
the problems� To assess model performance we must substitute p�g�x� by an empirical
estimate� This is in fact the opposite of the limiting process in ������
 and we have already
seen that the empirical training set density

p
D
�g�x� �

�

N

NX
n	�

��g 	 gn�x	 xn� � �gn�xn� � D ������

results in the summation in ������ in the case of mean square error� For this reason
the mean error of the training set is denoted training error� Before addressing the issue
of generalization error estimates further we will turn our attention to the training set
dependency of the generalization error as de�ned in �������

����� Expected generalization error

Generalization error measures model performance� More speci�cally it measures perfor
mance of the model with the speci�c set of parameters w� When these have been estimated
based on training error
 generalization error implicitly depends on the training set� To
eliminate this dependency we de�ne expected generalization error as the average general
ization error over training sets

"G
def
� hG�D�w�ip�D�N�� �

Z
G�D�w�p�D�N�� dD�N� � ������

�Actually� generalization error depends on the training set only because the parameters w in ������ are
estimates of the set of 	true
 parameters w� which correctly model h�x�� More rigorously� we would write
�w � w�D�� causing generalization error based on such models to be labelled G�w�D���
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where D�N� denotes training sets of size N �

����� Empirical estimates

Generalization error can be estimated using an empirical density estimate� The empirical
training set density in ������ yields training error
 as we have already seen� Training
error is
 however
 a biased estimate of generalization error
 since the latter depends on
the training set via the estimated parameters w� Analytical properties of the training
error bias are investigated in detail in the next section� However
 to obtain an unbiased
empirical estimate we can use a test set with observations independent of those in the
training set �but still drawn from the true distribution p�g�x�� �Larsen
 ����� Larsen and
Hansen
 ����a�

T � f�xn�gn� j n � �� � � � � NTg ������

with the empirical density

p
T
�g�x� �

�

NT

NTX
n	�

��g 	 gn�x	 xn� � �gn�xn� � T � ������

resulting in the socalled test error

#GT�NT�
�D�w� �

�

NT

NTX
n	�

e�xn� gn�w� � �gn�xn� � T � ������

The subscript T�NT� indicates that the estimate is based on a test set with NT observations�
An empirical estimate of expected generalization error is obtained as the average test error
for training sets of size N �

������� Cross�validation

In practical applications the total number of available observations
 label it Ntot
 is limited�
This presents a tradeo�
 since the NT observations used for evaluating the test error
reduces the size of the training set
 N � Ntot 	 NT� Now
 test error corresponds to
generalization error in the limit of an in�nitely large test set

lim
NT��

#GT�NT�
�D�w� � G�D�w� � ������

so we should opt for a test set as large as possible� However
 increasing NT reduces N
resulting in models with poorer generalization abilities
 so we face a dilemma�

One way to limit the number of observations �lost� to the test set is to employ leaveN 
out cross�validation� �CV�
 see e�g� �Stone
 ����� Toussaint
 ����� Efron
 ����� Larsen and
Hansen
 ����b� Hansen and Larsen
 ������ The idea is to successively leave NT samples
of the training set out for test error evaluation
 using the remaining N � Ntot 	 NT for
training� For NT � �
 which is called leaveoneout CV
 the training and test sets can
be chosen in N di�erent ways
 each time yielding a test error estimate #G�D�w�j�� � j �

�As we shall see in section ����� generalization error increases with decreasing N �
	With the notation used here it is� in fact� more appropriate to label the technique leave�NT�out cross�

validation�
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�� � � � � N � Here w�j� denotes the parameters estimated from the training set segment with
the j�th observation left out� The average CV generalization error

#GCV�D� �
�

N

NX
j	�

#G�D�w�j�� ������

then provides an unbiased estimate of expected generalization error�

������� Bootstrap methods

For CV all observations in each training set segment are unique
 which means that training
sets no larger than N � Ntot	NT can be generated� An alternative approach is to sample
training sets with replacement
 so that each observation may occur more than once in
the same training set segment� This technique is known as bootstrapping �BS� and has
one important property� individual generalization error estimates #G�D�w�j�� based on BS
parameter estimates w�j� � j � �� � � � �M facilitates BS estimates
 such as the average

#GBS�D� �
�

M

MX
j	�

#G�D�w�j�� � ������

that are asymptotically central �Efron
 ����� Efron and Tibshirani
 ����� Young
 ������
Sampling with replacement does not
 in other words
 introduce bias when estimating
properties of the distribution of measures based on the samples� This can be use to
generate a large number M of bootstrapped training set samples which in turn facilitates
estimates of things like the average and standard deviation of the test error� This will
come in handy for the practical applications in chapters � and ��

����� Algebraic estimates

The quality of the parameter estimates depends on the number of observations in the
training set� more observations provide better estimates
 so we should avoid reducing
the training set by holding observations out for a test set� While the situation can be
somewhat remedied using CV or BS this involves the estimation of a large number of
models� An alternative approach is to eliminate the observationconsuming test set all
together
 reverting to algebraic generalization error estimates based on model complexity
considerations�

An algebraic generalization error estimate is exactly what we derive in appendix C�
While some of the steps may seem somewhat involved the result is well worth the e�ort�
For a general discussion see �Ljung
 ������ Under a few assumptions
 namely

� The set of true parameters w� falls within the set of relationships that the parame
terized model can implement �see also the discussion in section �����

� Noise is additive and independent between observations
 and has zero mean�

� The number of observations is large� �This is not the case for typical functional
datasets��
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and writing D for D�N� and hGi
D

for hG�D�w�ip�D�N��
 equation �C���� approximates the
expected generalization error hGi

D
from the expected training error hEi

D
as �in line with

�Akaike
 ����� Murata et al�
 ������

hGi
D

� hEi
D

*
�

N
tr
�
J��Q

�
� ������

In ������ Q is Fishers information matrix �Mardia et al�
 ����
 page ���

Q � hre�x� g�w��rTe�x� g�w��i
D

� ������

i�e� the second order moment of the error �loglikelihood� gradient of independent obser
vations
 evaluated at the true parameters w�� Further
 J is the Hessian matrix of second
order derivatives of the regularized training error ������

J �
��C�w��

�w�wT
�

��E�w��

�w�wT
*

�

N

��R�w��

�w�wT
� H*

�

N
R � ������

conveniently expressed as the sum of the unregularized Hessian H and the second order
derivative of the regularization term�

The very interesting relationship ������ expresses that the expected training error is
a biased estimator of expected generalization error
 something that we already argued
in section ������ The derived generalization error estimate quanti�es the bias
 enabling
us to estimate expected generalization performance without setting aside observations in
a test set� We must keep in mind
 however
 the assumption of N being large� Later we
shall investigate the extent to which empirical and algebraic generalization error estimates
agree�

For a single training error estimate equation ������ yields the equivalent nonaveraged
estimate

#G�D�w� � #E�D�w� *
�

N
tr
�
J��Q

�
� ������

Since training error is the normalized negative loglikelihood

E�D�w� � 	
�

N
log p�Djw� ������

we identify �writing p
D

instead of p�Djw�� for simplicity� the expected second order deriva
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tive of the training error as Fisher�s information matrix

��

�w�wT
hE�D�w�i

D
������

�
��

�w�wT

Z
p
D

�
	

�

N
log p

D

�
dD ������
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dD ������
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��p
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�w�wT
dD ������

� Q	
�

N

��

�w�wT

Z
p
D

dD ������

� Q � ������

where we in ������ use �C����� So
 for a single training set we have Q � H
 and the
generalization error estimate ������ becomes

#G�D�w� � #E�D�w� *
�

N
tr
�
J��H

�
� ������

������� E�ective number of parameters

With no prior knowledge of the parameters we assume them all to be equally likely
 making
p�w� uniform� In this case �v � � for all v
 and the regularized cost function equals the
unregularized one

C�D�w� � E�D�w� � ������

If follows that J � H
 so ������ reduces to

#G�D�w� � #E�D�w� *
W

N
� ������

where W is the number of model parameters� This means that we by using training error
as an estimate of generalization error introduce a bias of W	N 
 i�e� a term that measures
model complexity relative to the number of training set observations� In the general case
where J �� H the numerator of the bias term in ������ still describes model complexity�
we label it the e�ective number of parameters �Moody
 ����� Larsen
 ����� Svarer et al�

����� and �nd

#G�D�w� � #E�D�w� *
We

N
� We � tr

�
J��H

�
� ������

����� Model output interpretation

Having observed the value of the expected generalization error as a performance measure
we investigate it further� In the MSE case its de�nition in ������ provides for an interesting
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decomposition
 leading to an intuitive understanding of the model output y�x�w�� By
labeling

hgjxi �

Z
gp�gjx� dg ������

�
g�jx

�
�

Z
g�p�gjx� dg ������

we can rewrite the integration over p�gjx� asZ
�y�x�w�	 g�� p�gjx� dg ������

�

Z
�y�x�w�	 hgjxi * hgjxi 	 g�� p�gjx� dg ������

�

Z n
�y�x�w� 	 hgjxi�� * �hgjxi 	 g��

*� �y�x�w�	 hgjxi� �hgjxi 	 g�
o

p�gjx� dg ������

�

Z n
�y�x�w� 	 hgjxi�� * �hgjxi 	 g��

o
p�gjx� dg � ������

Inserting this back into ������ we obtain a decomposition of MSE generalization error

GMSE�D�w� �
�

�

Z
�y�x�w�	 hgjxi�� p�x� dx

*
�

�

Z ��
g�jx

�
	 hgjxi�

�
p�x� dx � ������

The second term is independent of w and expresses the variance of the system output�
The �rst term shall be decomposed further in a minute
 but before doing so we note that
generalization error is minimum when the �rst term in ������ is zero
 leading to

y�x� #w�� � hgjxi � ������

where #w� are the optimal model parameters� This observation is of some importance�
it states that the optimal model equals the conditional average of the system output�
This is also called the regression of g on x� Intuitively
 it seems reasonable that the
estimated system output is the average of the true conditional system output distribution

at least when modeling the saccade frequency� The situation is sketched in the left panel
of �gure ���� In categorical designs in which the conditional output density is likely to
be multimodal
 however
 other cost functions may be more appropriate� In that case the
averaging of a MSE regressor makes less sense
 as outlined in the right panel of �gure ����
rather
 we should attempt to model the modes relative to each other
 e�ectively employing
a classi�cation model� Cost functions for classi�cation are discussed in more detail in e�g�
�Bridle
 �����
 �Bishop
 ����
 chapter �� and �HintzMadsen et al�
 ������

����	 Bias and variance

Looking again at the MSE generalization error decomposition in ������ we recall that
the second term is independent of the model parameters� it is merely the system output
variance
 or system noise
 which we shall denote ��gjx� In the following we focus on the
�rst term
 investigating its properties when averaged over training sets�
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y�x�w�

� E�gjx�

x

y�x�w�

� E�gjx�

x

Figure ���� Modeling using the mean square error �MSE� cost function� Left panel � For
regression problems the average of the output conditioned on the input is a reasonable model�
Right panel � For classi�cation problems the conditional distribution may be multi�modal in
which case the average MSE cost function is inappropriate�

The speci�c training set used to estimate the model parameters enters the general
ization error in ������� Now
 consider the expected generalization error written using the
decomposition ������

"GMSE �
�

�

Z D
�y�x�w�	 hgjxi��

E
D

p�x� dx * ��gjx � ������

where we have simpli�ed the expectation notation by substituting D for p�D�N��� We can
further decompose the average operand in the integrand as �Geman et al�
 ����� M	rch
et al�
 ����a�

�y�x�w�	 hgjxi��

� �y�x�w�	 hy�x�w�i
D

�� * �hy�x�w�i
D
	 hgjxi��

*� �y�x�w� 	 hy�x�w�i
D

� �hy�x�w�i
D
	 hgjxi�

� �y�x�w�	 hy�x�w�i
D

�� * �hy�x�w�i
D
	 hgjxi�� � ������

to �nd

"GMSE � ��gjx ������

*
�

�

Z D
�y�x�w�	 hy�x�w�i

D
��
E
D

p�x� dx ������

*
�

�

Z
�hy�x�w�i

D
	 hgjxi�� p�x� dx ������

� ��gjx * �variance� * �bias� � ������

We have achieved a decomposition of the expected generalization error into a system noise
term ������
 a variance term ������
 and a bias term� ������� A closer look at the two
last terms justi�es the labelling� The variance term expresses the variance of the model
y�x�w� over training sets
 i�e� the extent to which the model is sensitive to the choice of
training set� Conversely
 the bias is the squared di�erence between the average model and
the correct regression hgjxi

D
�


Sometimes the bias is dened only as the di�erence hy�x�w�i
D
� hgjxi� In that case ������ becomes a

squared bias term� �	bias
���
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Two imaginary models of a system g � h�x� * e �as in ������� help to illuminate the
meaning of bias and variance� Firstly
 consider a model that is completely independent
of the training set� This can be achieved by �xing the parameters w�D� � w�� Unless
we employ some form of prior knowledge the �xed parameter estimate is likely to be
poor
 resulting in high bias� the model approximates the system rather poorly on average�
However
 the variance term vanishes since the parameters and thus the model is �xed�
Secondly
 consider a model that �ts the observations in the training set perfectly� Given
a su�ciently �exible model this will always be possible��� For such a model the expected
model output will equal the true regression

hy�x�w�i
D

� hgjxi � h�x� ������

for the observations in the training set� If h�x� is smooth it follows that bias will be small
in the neighborhood of the training set observations� The variance
 on the other hand

becomes large sinceD

�y�x�w�	 hy�x�w�i
D

��
E
D

�
D

�y�x�w�	 h�w���
E
D

�
�
e�
�
D

� ������

i�e� the variance of the stochastic noise e� It is obvious that a tradeo� between bias and
variance exists� for training sets of a given size we can reduce bias by employing a relatively
complex model� This will
 however
 increase the variance of the model output due to the
model�s increased sensitivity to the training set observations� To reduce variance the
model needs to be constrained� Yet
 a constrained model approximates the system less
accurately
 meaning that the bias is increased� Hence
 we face the socalled bias�variance

trade�o�
 as further illustrated in �gure ���� as functions of model complexity
 e�g� the

M
S

E

Model complexity, e.g. W
eff

Bias             
Variance         
〈 G 〉

Figure ��
� Illustration of the bias�variance trade�o�� For a given training set size and within
the set of possible models as governed by one or more complexity controlling parameters� e�g�
We�� the trade�o� between bias and variance may result in an optimal model complexity�

e�ective number of parameters We
 bias decreases and variance increases� The result may
be that an optimal model complexity exists� Clearly
 such a model is optimal for a speci�c
training set size
 and only within the set of possible models governed by the complexity
controlling parameters�

��An unregularized polynomial model of at least the same degree as the number N of training set
observations will have zero training error�
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To improve model performance for a speci�c model with �xed complexity we must
decrease bias and variance simultaneously
 or at least reduce one of the terms without
a�ecting the other� This can be achieved by increasing the number of training set obser
vations
 as we discuss next�

����
 Learning curves

For a given model bias can be decreased by relaxing model constraints
 e�g� by including
second order polynomial terms in a linear model
 or by employing a nonlinear model
instead of a linear one� If
 at the same time
 the number N of training set observations is
increased the potential increase in variance can be avoided� model sensitivity to individual
observations decreases as their number grows� To illustrate this point we introduce the
notion of a learning curve �Hertz et al�
 ������ A learning curve depicts how expected
generalization error evolves with increasing N � it quanti�es the improved performance of
models based on increasingly large training sets� For an example of learning curves in the
context of functional neuro modeling
 see �M	rch et al�
 ������

Figure ��� sketches the learning curves for two di�erent models� For both
 the expected
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]  D

Number of observations in trainingset, N

Model with high bias
Model with low bias 

Figure ���� Learning curves for two models with di�erent �exibility� A high�bias model �dashed
line� is constrained� leading to a rapid� but small generalization error decrease as the training
set grows� The larger �exibility of a low�bias model �solid line� holds the potential of improved
performance� however� it takes more training set observations for the improvement to manifest
itself�

generalization error decreases with large training set sizes� The model variance term ������
in the biasvariance decomposition decreases as more and more observations are added to
the training set� Eventually
 model performance is governed completely by the bias and
system noise terms ������ and �������

The dashed line in the �gure illustrates the performance evolution of a model with
relatively high bias� The bias constrains the model�s ability to approximate complex rela
tionships
 thereby reducing it�s sensitivity to the training set� Consequently
 a relatively
low number of observations is needed to decrease model variance� This is re�ected in the
rapid generalization error decrease� However
 the high bias means that model performance
is limited
 even when the model is based on large training sets� The situation is di�erent
for the more �exible model depicted by the solid line� The lower bias means that many
observations are needed to reduce the model variance� the generalization error decrease
is slower than for the more biased model� Nevertheless
 for large N the performance will
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predominantly be controlled by the bias
 which in this case is low� The important lesson
to be learned is that performance depends on both the size of the training set and the
complexity of the model employed� We shall quantitatively investigate this phenomenon in
the chapters � and �� Before doing so
 however
 we discuss techniques aimed at controlling
model complexity�

��� Complexity control

Generalization performance depends on both training set size and model complexity��
 as
we have just seen� While the �rst is easily manipulated�� the issue of controlling the latter
is more involved�

����� Parameter priors and regularization

We now show how we
 by employing a Gaussian parameter prior as in section �����
 can
control model �exibility via the variance of the individual parameters� Reiterating
 the
regularized cost function is

C�D�w� � E�D�w� *
�

N
R�w� � ������

with

R�w� �

WX
v	�

�v
�
w�
v �

�

�
wTRw � ������

as the regularization term� The �v�s in the diagonal of R are the inverse of the prior
variances
 meaning that R is positive semide�nite�

Insight into the �exibility constraining properties of ������ is gained by considering a
Taylor expansion to second order around w� of the unregularized cost function E�D�w� �
E�w�

E�w� � E�w�� *rE�w���w 	w�� *
�

�
�w	w��

TH�w	w�� � ������

where H is the unregularized Hessian matrix
 as in ������� For the unregularized model
with parameters #w� � wE estimated by minimizing E�w� we �nd

rE�wE� � rE�w�� *H�wE 	w�� � � � ������

where we have used ������
 ignoring terms of higher order than two� Similarly
 the cost
function gradient for the estimated regularized model parameters wC is

rC�wC� � rE�w�� *H�wC 	w�� * ��wC 	w�� � � � ������

To simplify the following we have assumed all regularization parameters to be identical
�w � �� Combining ������ and ������ and translating the center of the coordinate system
to w� we �nd

HwE � HwC * �wC � ������

��In the following we shall use the terms 	complexity
 and 	�exibility
 interchangeably�
��The limited number of observations in functional datasets constitutes an upper limit on N � The situ�

ation is further aggravated if some observations are reserved for empirical estimation of the generalization
error� i�e� held out in a test set�
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To relate the two sets of parameters further we apply the spectral decomposition of
the Hessian

Hei � liei � ������

which provides a set of orthogonal basis vectors
 ei
 for parameter space� The representa
tion of wE and wC using this basis

wE �
X
i

wE� iei � wC �
X
i

wC� iei �������

inserted into ������ yields

H
X
i

wE� iei � H
X
i

wC� iei * �
X
i

wC� iei � �������

Since the ei�s are orthogonal we obtain an interesting relation between the two sets of
transformed parameters

liwE� iei � liwC� iei * �wE� iei �������

m �������

wC� i �
li

li * �
wE� i � �������

So
 in the transformed coordinate system the magnitude of the regularized parameters are
reduced compared to the unregularized ones� The reduction depends on the cost function
curvature along the axes of the transformed coordinate system
 as determined by the li�s�
This is illustrated in �gure ���
 where the ellipse represent a contour of constant unregular
ized error��� The parameters are e�ectively forced towards � by the regularization term�

w�

e�

e�

wC

wE

w�

Figure ���� The relation between regularized� wC� and unregularized� wE� parameter estimates�
The regularization reduces the magnitude of the parameters according to the cost function
curvature�

this corresponds nicely to the intuitive interpretation of the application of a zeromean
Gaussian parameter prior� The result is a model more constrained than before� It is in
this sense that regularization controls model �exibility�

��To aid understanding the center of the transformed coordinate system has been translated to wE in
the gure�
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����� Optimizing the parameter con�guration

While regularization facilitates some control over model complexity
 a more direct ap
proach is to somehow select which parameters to include in the model� For nonlinear
models this �eld was pioneered by Le Cun et al�
 see e�g� �Le Cun
 Y� et al�
 ����� Le
Cun
 Y� et al�
 ������ The approach is
 however
 hampered by the fact that the number of
possible model parameters is in�nite��� We therefore need a systematic way of exploring
the space of parameter con�gurations� The next section addresses that problem
 while the
issue of assessing parameter importance is the topic of section ��������

������� Exploring the space of parameter con�gurations

Several approaches can be taken when exploring the space of parameter con�gurations�
A useful �rst step is to restrict the class of possible models in such a way that the explo
ration is limited to a con�guration space of �nite size� Having done this
 three di�erent
exploration approaches are�

Exhaustive search where all possible parameter con�gurations are examined� The ob
vious problem with this approach is the number of models that require examination�
if con�guration space is spanned by
 say
 polynomial models up to order M the
number
 W 
 of possible model parameters scales as  dim�x�!M � Consequently
 even
for small M the number of possible parameter con�gurations is huge
 rendering the
exhaustive search approach impractical�

Model growing which starts from a model with a limited number of parameters� Con
�guration space is explored by successively adding parameters� In the context of
linear models an example of this approach is forward selection where parameters are
added based on tests of signi�cance �Kendall and Stuart
 ������ Another example
is the cascadecorrelation learning architecture used for growing nonlinear models
�Fahlman and Lebiere
 ������

Model pruning� conversely
 starts with a relatively complex model with many parame
ters� In this case
 and in contrast to model growing
 con�guration space is explored
by removing �or pruning� parameters
 successively reducing the size of the model
�Ripley
 ������ For linear models the approach is known as backwards elimina�

tion when based on tests of signi�cance
 as for forward selection mentioned above��

�Kendall and Stuart
 ������

Here we shall focus on model pruning approaches� After choosing a su�ciently complex
initial parameter con�guration
 the exploration of con�guration space basically proceeds
as follows

�� Estimate the model parameters by minimizing the training error

�� Rank parameters by relative importance

�� Remove �prune� the least important parameters
 and return to step ��

The process continues until only a single parameter remains�

��In the context of a polynomial model we can keep adding terms of higher and higher order� each time
introduce more model parameters�

��For linear models backwards elimination and forward selection may even be combined� in which case
we talk of stepwise regression� A similar approach can� of course� be employed for other model types�
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������� Estimating parameter importance

When exploring con�guration space the importance of individual parameters must be
evaluated and compared� We shall denote measures of parameter importance as saliency
measures� The following lists a few candidates� Most attention will be directed to the
second of these in the chapters to come�

Magnitude based measures The magnitude jwvj of parameter v to some extent measures
it�s saliency� it at least seems that the e�ect of removing very small parameters will be
limited� Recall
 however
 from section ����� that regularization reduces model complexity
by forcing parameters towards zero
 based on the cost function curvature� So
 while a
magnitude based saliency measure may seem valid from an ad hoc point of view
 an
approach that explicitly takes the cost function curvature into account is better justi�ed�
The next section describes such a measure�

Optimal brain surgeon As a quantitative measure of the e�ect of removing a parameter
�Hassibi and Stork
 ����� proposes the resulting increase in training error��� The prun
ing scheme is called optimal brain surgeon �OBS� since it not only estimates parameter
saliency
 but also provides an estimated location of the cost function minimum after the
removal of the least salient parameter� In line with �Hansen and Pedersen
 ����� we ex
tend the approach to deal with regularization� We will assume that the model parameters
have been optimized based on the regularized cost function ������
 so that rC�wC� � ��
From the Taylor expansion to second order of the unregularized cost function around wC

we �nd the increase due to a small parameter change �w

�E�w� � �wTrE�wC� *
�

�
�wTH�w � �������

Now
 the parameters are optimized based on the regularized cost function
 which means

rC�wC� � rE�wC� *
�

N
RwC � � �������

m

rE�wC� � 	
�

N
RwC � �������

and the training error increase becomes

�E�w� � 	
�

N
�wTRwC *

�

�
�wTH�w � �������

The removal of the v�th parameter corresponds to the parameter change

�wv � 	wv �������

m

eTv�w * wv � � � �������

��Parameter saliency may also dened as the increase in estimated generalization error� see �Pedersen
et al�� ����� for a discussion of saliency measures based on an algebraic generalization error estimate� and
�Larsen et al�� ����� for an example of empirical saliency assessment based on an independent set of data�
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To �nd the parameter change that minimizes the cost function increase we employ a
Lagrange multiplier of the constraint �������

S�w� � C�w� * � �eTv�w * wv� �������

�
�

�
�wTJ�w * � �eTv�w * wv� � �������

and minimize it to �nd the corresponding parameter change

�S�w�

��w
� J�w * �ev � � �������

m

�w � 	�J��ev � �������

Inserted into ������� this yields the Lagrange multiplier

� �
wv

�J���vv
� �������

which in turn yields the the optimal parameter change

�w � 	�J��ev �������

� 	
wv

�J���vv
J��ev � �������

Finally
 we �nd the saliency for parameter v as the estimated training error increase by
inserting ������� into �������

�Ev�w�OBS � 	
�

N
�wTRwC *

�

�
�wTH�w �������

�
�

N

wv

�J���vv
eTvJ

��RwC *
�

�

�
wv

�J���vv

��

eTvJ
��HJ��ev �������

�
�

N

wv

�J���vv
eTvJ

��RwC *
�

�

�
wv

�J���vv

�� �
J��HJ��

�
vv

� �������

We observe that with no regularization
 �v � � � R � � � J � H
 the saliency
reduces to

�Ev�w�OBSj�v	� �
�

�

�
wv

�J���vv

�� �
J��JJ��

�
vv

�������

�
�

�

w�
v

�J���vv
� �������

Optimal brain damage By employing a diagonal approximation of the Hessian matrices
the optimal parameter change becomes

�w � 	
wv

�J���vv
J��ev � 	

wv

�J���vv
�J���vvev � 	wvev � �������

which trivially reiterates the removal of the v�th parameter� only trivial information about
the parameter change is gained
 since we ignore information about second order derivatives
with respect to di�erent parameters� For this reason the pruning scheme based on diagonal
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approximations of the Hessian matrices is called optimal brain damage� �OBD� �Le Cun

Y� et al�
 ������ The OBD saliency estimate correspondingly becomes

�Ev�w�OBD �
w�
v

N
Rvv *

�

�

�
wv

�J���vv

�� �
J��

�
vv
Hvv

�
J��

�
vv

�������

�
w�
v

N
�v *

�

�
w�
vHvv �������

�

�
�v
N

*
Hvv

�

�
w�
v � �������

While a diagonal approximation of the Hessian may seem crude experience shows their
performance to be close to identical� In fact
 �Pedersen
 ����� reports cases where OBD
performs better than OBS
 due to inaccuracies of the quadratic approximation�

��� Summary

Analysis of variance reveals that experimentally induced variance of interest constitutes
only a tiny fraction of the total microscopic variance� for the analyzed functional dataset
only the variance along the tenth principal axis
 which accounts for a mere �+ of the total
variance
 is dominated by e�ects related to intrasubject di�erences� The relatively strong
correlation with the microscopic observations along one particular principal basis vector
is not re�ected in the basis provided by independent component analysis� However
 the
phenomenon is not easily interpretable� it is possible that the activity of involved neuro
physiological systems combine in a nonlinear fashion to produce the observed microscopic
patterns�

To quantitatively assess model performance a statistical framework is proposed� The
approach is centered around measures of model generalization ability
 i�e� performance
of models with parameters estimated in the limit of in�nitely many observations� While
generalization theory is wellstudied in many areas
 it�s application is novel in the context
of functional neuro modeling� Speci�cally
 the observation that performance depends on
both the number of observations and model complexity is important� it facilitates the
determination of the extent to which a given dataset supports the application of complex
models over other
 more simple ones�

��As opposed to optimal brain surgeon which potentially provides non�trivial information about the
parameter change�



	�



Chapter �

Linear modeling

In this chapter we exemplify the generalization theoretical framework proposed in the pre
vious chapter in the context of linear models of the conditional inputoutput distribution

and apply the techniques to the CPH$SAC dataset�

��� Linear microscopic regression

Recall from chapter � how Bayes theorem provides decompositions of p�x�g�� As in the
previous chapter we focus �rst on the conditional macroscopic distribution p�gjx�
 i�e� the
conditional distribution of the macroscopic behavior on the microscopic variables
 like in
�������

We investigate one speci�c example of the ML estimation approach of section ������
in line with ������ we assume the elements of the macroscopic vector to be governed by a
deterministic
 but linear
 function of x with added Gaussian noise� for the k�th macroscopic
element it reads

gk � h�x� * ek �����

�

dX
i	�

wk�ixi * ek �����

� wT

kx* ek � �����

where i indices the elements of the microscopic vector�� Since gk is linearly expressed in
terms of the microscopic vector x we talk of linear microscopic regression� By arranging
the model parameters in a matrix we can simultaneously express all K elements

g �  w� w� � � �wK !T x* e �����

� WTx * e � �����

Note that parameter vectors for individual macroscopic elements are columns of W� The
noise is assumed to be Gaussian with zero mean and covariance structure (e
 i�e� e �
N���(e��

�Again� the microscopic variables may be represented using any basis that spans signal space� so when
we write x �which is d�dimensional� in the following it may be substituted by other representations� such
as the vector of principal components z �which is �N � ���dimensional��

	�
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	���� Parameter estimation

Analogous to section ����� the Gaussian noise assumption yields the conditional distribu
tion

p�gjx�W� �
�p
j�(ej

exp

�
	

�

�
�g 	WTx�T(��

e �g 	WTx�

�
� �����

likewise multivariate normal� Under the assumption of independent observations the un
regularized MSE cost function correspondingly becomes�

E�D�W� � 	
�

N

NX
n	�

log p�gnjxn�W� �����

�
�

�N

NX
n	�

�gn 	WTxn�T(��
e �gn 	WTxn� �����

�
�

�N
tr
�
�G	WTX�T(��

e �G	WTX�
�

� �����

where terms that are independent of W have been ignored� In ����� the summation over
observations is expressed as a matrix trace by employing the micro and macroscopic data
matrices de�ned in chapter �
 both with individual observations arranged in columns��

Employing ML estimation the optimal parameters are those that minimize E�D�W�

so we �nd the cost function derivative

�E�D�W�

�W
� 	

�

N
X(��

e �G	WTX�T ������

and set it equal to zero to yield

�E�D� #W�

�W
� �

m

X(��
e GT � X(��

e XT #W
m

#W �
�
X(��

e XT
���

X(��
e GT

������

as the ML estimate of the model parameters� If the true covariance matrix is unknown
we assume it diagonal
 e�g� (e � ��I
 which leads to the parameter estimate

#W � �XXT�
��
XGT � ������

In the speci�c case of the CPH$SAC dataset we have K � �� with the row vector
g �  g��� g��� � � � g��N ! denoting the vector of scalar macroscopic observations �saccade
frequency observations� we obtain

#w � �XXT�
��
XgT � ������

�In this chapter we consider only MSE cost functions� for simplicity the subscript used in chapter � is
dropped�

�This is in contrast to traditional notation as in e�g� �Mardia et al�� ������ where data matrices are
composed of observations in rows� As a consequence care has to be taken when comparing expressions
herein� e�g� parameter estimates� with derivations elsewhere�
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��� Complexity control

To facilitate complexity control of the linear microscopic regression model we evaluate
the two approaches
 regularization and parameter con�guration optimization
 proposed in
section ����

	���� Gaussian prior and ridge regression

Consider the case of univariate macroscopic observations
 as above� If we assume a Gaus
sian parameter prior of the form discussed in section �����

R�w� �
�

�
wTRw � ������

the regularized cost function becomes

C�D�w� �
�

�N
�g 	wTX�T�g 	wTX� *

�

�N
wTRw � ������

Di�erentiation with respect to w yields

�C�D�w�

�w
�

�

N
 	X�g 	wTX�T *Rw! ������

leading to the corresponding regularized parameter estimate

XgT � XXT #w *R #w
m

#w � �XXT *R���XgT �

������

If the regularizer is of simple diagonal form
 R � �I
 equation ������ is the Ridge estimate
of w �Hoerl and Kennard
 ������ Thus
 from the discussion in section ����� we recog
nize Ridge regression is a linear model
 of which the �exibility can be controlled via the
regularization parameter ��

	���� Parameter pruning

With reference to section ����� we recall how model pruning is one particular way to explore
the space of parameter con�gurations
 the aim of course being to control model complexity
more directly than what is possible using regularization� In particular
 OBS was derived
as an estimate of parameter importance� Next we compute the Hessian matrices for the
linear microscopic regression model� Further
 we brie�y discuss pruning techniques based
on tests of parameter signi�cance�


������ Optimal brain surgeon

The regularized Hessian matrix of second order derivatives is easily found from ������

J �
��C�D�w�

�w�wT
�

�

N
XXT *

�

N
R � H*

�

N
R � ������

Insertion into ������� yields the minimum parameter change caused by the removal of a
single parameter� The cost function increase is correspondingly estimated by inserting J
and H into the OBS saliency expression ��������

It is evident from ������ that the second order Taylor expansion of the cost function
that underlies the OBS parameter saliency estimate is exact in the linear case�
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������ Testing parameter signi�cance

For the linear model it is possible to devise a parametric test of the hypothesis that the
squared error of the model based on one subset of microscopic variables di�ers signi�cantly
from the squared error of that based on a di�erent set� When applied successively to an
initially large model
 each time removing the least signi�cant parameter
 this approach is
known as backwards elimination �Kendall and Stuart
 ������

The technique closely resembles parameter pruning based on OBS or OBD in that
it facilitates the elimination of parameters based on their contribution to the squared
model error� For a further discussion of backwards elimination and illustrations of it�s
application in functional neuro modeling see e�g� �M	rch and Thomsen
 ����� Lundsager
and Kristensen
 ������

��� Application to the CPH
SAC dataset

We now turn to investigate the e�ects of model complexity and training set size on the
generalization performance of the linear microscopic regression model when applied to the
CPH$SAC dataset� E�cient microscopic representations in signal space are provided by
the principal components and independent projections as computed in section ����

	���� Complexity control

To empirically estimate generalization error a test set of NT � �� observations was ran
domly selected� The remaining observations were bootstrapped �sampled with replace
ment� to yield M � �� training sets
 all of size N � ��� Varying both the regularization
and the parameter con�guration as described below
 the parameters of the linear micro
scopic regression model was subsequently estimated from each of the training sets to yield
sets of models #h�m��x� � m � �� � � � �M of the macroscopic variable �saccade frequency��
These in turn facilitated the average test error as an estimate of the expected generalization
error�

While bootstrap sampling apparently facilitates an estimate of the expected general
ization error
 sample statistics for which bootstrapping fails do exist� One such example
is the expected sample maximum� Attempting to estimate this by bootstrapping an ob
servation pool of �nite size yields no additional information since the bootstrap sample
maximum is limited by the sample maximum of the original observation pool� At present

however
 we have no reason to believe that the sample test error belongs to the class of
sample statistics for which bootstrapping fails
 but this issue de�nitely deserves further
investigation�

In the following we empirically investigate how model complexity a�ects the estimated
generalization ability of the linear microscopic regression model�


������ Regularization

We begin by controlling model complexity via a single regularization parameter � as in
section �����
 e�ectively employing Ridge regression models� Ideally
 we should evaluate
generalization performance for all combinations of model complexity and training set size�
In practice
 however
 it is impossible to sample the space of possible combinations in more
than a few points� something especially true for the nonlinear models of chapter �
 as
we shall see� Consequently
 the results that appear in the current as well as the next
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chapter serve merely to illustrate the principles of chapter �� they by no means convey the
whole picture� Therefore
 models with better performance than those reported here almost
certainly exist
 even within the restricted class of linear microscopic regression models�

Figure ��� shows the result of controlling model complexity via regularization for the
microscopic vectors represented using the PCA basis� It appears that generalization error
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Figure 
��� The expected generalization error �test error� as function of the regularization
parameter � for linear microscopic Ridge regression PCA�based models of the saccade frequency
for the CPH�SAC dataset� The estimate indicates that heavily constrained models �large
values of �� yield reduced generalization performance� The dotted lines represent one standard
deviation of the test error estimate�

increases with large values of �� this is in line with the discussion of the model �exibility
constraining properties of regularization in section ������ However
 no wellde�ned gener
alization error minimum exists� rather
 generalization error is constant for small values of
�� Decreasing generalization performance for small values of � would be the result of a
model overly sensitive to the training set data� The fact that generalization error remains
constant for even very small values of � in �gure ��� seems to indicate that the bias in
troduced by the linear nature of the model itself reduces the problem of over�tting� The
in�exible nature of the linear model may mean
 however
 that performance better than
the estimated generalization error of ������ can be obtained with more �exible models�
We shall investigate this issue in the next chapter�

For models based on the microscopic observations represented using the ICA basis
the situation is as illustrated in �gure ���� The picture resembles that of the PCAbased
models� However
 the minimum value of the estimated generalization error is smaller than
before� Consequently
 for the speci�c
 fully parameterized linear models�
 the ICA basis
seems more informative than it�s PCA counterpart� Next we investigate if this holds for
other parameter con�gurations as well�

Together
 �gures ��� and ��� indicate that
 for regularized linear models based on
bootstrapped training sets of a given size
 model performance can be partially controlled
via the regularization parameter �� For large values of � the models are heavily constrained
and model performance su�ers� performance improves with decreasing regularization and
thus model bias
 but only down to a certain level�

�Meaning that they are based on all elements of the projection vectors�
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Figure 
��� The expected generalization error �test error� as function of the regularization
parameter � for linear microscopic Ridge regression ICA�based models of the saccade frequency
for the CPH�SAC dataset� The dotted lines represent one standard deviation of the test error
estimate� The situation resembles that of PCA�based models� however� the minimum estimated
expected generalization error value is smaller�


������ Parameter pruning

Using the Hessian matrices in ������ model complexity can be controlled by OBSbased
parameter pruning� Starting from linear models based on all elements of the projection vec
tors �be it the vectors of principal components or the vectors of independent projections�
we proceed by eliminating a single parameter at a time� The elimination of parameters
corresponds to model space reduction� since the j�th parameter quanti�es the in�uence of
the j�th basis vector
 model space is reduced when the parameter is removed�

Figure ��� reproduces the evolution of model performance for the PCAbased models
as pruning progresses� The regularization parameter was set to � � ����
 which from
�gure ��� yields close to optimal generalization performance� We observe that both the
algebraic and the empirical generalization error estimates predict optimal model perfor
mance for models with a relatively low number of parameters� The algebraic estimate

however
 su�ers from the very low number of independent training set observations� This
in turn limits the rank of the Hessian matrices and thus the e�ective number of parameters�
The e�ect is clearly seen in the �gure� the e�ective number of parameters is never larger
than ��
 resulting in an almost constant algebraic generalization error estimate for models
with some forty parameters or more� In e�ect
 the algebraic generalization error estimate
is rendered inadequate by the low number of independent observations� consequently
 we
shall use only test error estimates to empirically identify optimal model complexity in the
following�

The dotted vertical line in �gure ��� indicates the average test error minimum which
occurs for models with two parameters� For better illustration the algebraic estimate is left
out in �gure ��� which reproduces the test error estimate of the expected generalization
error
 along with errorbars indicating one standard deviation�

While the parameter con�guration of the individual optimal models may di�er
 so that
they not all correspond to the same model space
 the tenth principal axis is included in
all of them� Referring back to the ANOVA plot in �gure ��� we recognize this axis as the
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Figure 
��� The estimated expected generalization error as function of the number of param�
eters for linear microscopic Ridge regression PCA�based models of the saccade frequency for
the CPH�SAC dataset� The regularization parameter is � � ����� The empirical �dash�dotted
line� as well as the algebraic �solid line� estimates predict model performance to be optimal
for models with a relatively small number of parameters�
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Figure 
��� The empirically estimated expected generalization error as function of the num�
ber of parameters for linear microscopic Ridge regression PCA�based models of the saccade
frequency for the CPH�SAC dataset� The regularization parameter is � � ����� Error�bars
represent one standard deviation of the error estimates�

one most dominated by intrasubject e�ects�� The minimum average test error amounts
to ������
 which is considerably less than the minimum value of ������ achieved when
controlling model complexity only by varying regularization as plotted in �gure ���� The
interpretation is straightforward� models that incorporate information from all principal
components are overly sensitive to the training set observations� Better generalization
performance is achieved by ignoring the information along all but a few principal axis�

Figure ��� displays the evolution of model performance for models based on the inde
pendent projections� Again optimal performance is estimated for models with a limited

�Remember that the variances in gure ��� are relative� the true variances are obtained by scaling with
the eigenvalues as plotted in the upper panel of gure ����
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Figure 
�
� The estimated expected generalization error as function of the number of param�
eters for linear microscopic Ridge regression ICA�based models of the saccade frequency for
the CPH�SAC dataset� The regularization parameter is � � ����� Error�bars represent one
standard deviation of the error estimates�

number of parameters� However
 the empirical test error estimate indicates that only a few
elements of the vector of independent projections should be ignored� The resulting models
are relatively large compared to the small models that were predicted to be optimal based
on the principal axes� further
 they yield slightly worse generalization performance� The
independent axes
 in other words
 provide less informative projections than does their prin
cipal equivalents� It seems reasonable to assume that the di�erence relates to the fact that
the variance of the independent projections remain relatively unrelated to intrasubject
e�ects on an individual basis
 as we saw in the beginning of chapter �� Hence
 the results
argue in disfavor of linear models based on the basis provided by ICA� However
 since a
linear mixture model for brain function is unrealistic the apparent problems with model
space identi�cation based on the ICA representation may be related to the application of
linear models rather than to the ICA basis itself� The next chapter will attempt to address
this issue�

	���� Learning curves

To investigate the impact of training set size on generalization performance the pool of
�� training observations was bootstrapped to provide sets of increasing size� Twenty sets
were generated for each size� sizes ranged from �� to ���� Model regularization was �xed
by employing Ridge regression models with identical ��s of �����

The resulting learning curve� for models with two parameters based on the PCA basis
is displayed in �gure ���� As the number of training set observations increases generaliza
tion ability improves� Eventually the average test error stabilizes at a level close to the
minimum value ������ of �gure ���� Similarly
 �gure ��� depicts the learning curve of ICA
based models with �� parameters� Again the average test error is high for models based
on small training sets� As more observations become available performance approaches
and eventually falls below the test error of ������ in �gure ���� For all the examined
training set sizes models based on the ICA basis performs worse than the PCAbased

�As before expected generalization error is empirically estimated using the test set�
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Figure 
��� Empirical learning curve for two�parameter Ridge regression models with identical
regularization parameters � � ����� based on the PCA basis for the CPH�SAC dataset� The
error�bars represent one standard deviation of the error estimates� As the number of training
set observations increases generalization performance improves�
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Figure 
��� Empirical learning curve for ���parameter Ridge regression models with identical
regularization parameters � � ����� based on the ICA basis for the CPH�SAC dataset� Error�
bars represent one standard deviation of the error estimates� As the number of training set
observations increases generalization error settles at higher value than for the PCA�based
models�

ones� However
 the di�erence for relatively large training sets is less than for smaller
training set sizes� this observation is in line with the comments in section ����� and owes
to the fact that ICAbased models with �� parameters are more �exible than their two
parameter PCAbased counterparts
 meaning that more observations are needed to obtain
comparable generalization performance�

The estimated learning curves for the linear Ridge regression models verify that model
performance is a function of the size of the training set� whether or not a particular model
is used to it�s full potential depends on the number of observations available to estimate the
parameters� An initial performance increase can be achieved by adding more observations
to the training set� However
 when the training set increases above a certain size very little
is gained� this is due to �exibility constraints in the model itself� To improve generalization
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performance beyond this point a di�erent
 more �exible class of models must be employed�
We shall investigate one particular such model class in the next chapter� First
 however

we address linear models further�

��� The general linear model

An alternative to linear microscopic regression can be obtained by decomposing the joint
micro and macroscopic density as p�x�g� � p�xjg�p�g�
 in which case we can regard
the system governed by the conditional distribution p�xjg� as the one to model� This
e�ectively corresponds to a shift in system boundaries
 as discussed in chapter �� The
widely used socalled statistical parametric mapping �SPM� tools �Friston et al�
 �����
Friston et al�
 ����� models p�xjg� rather than p�gjx�
 and do so by employing the general
linear model �GLM�� In the following we discuss GLM and compare it to linear microscopic
regression� For a recent review of linear modeling of functional datasets see �Worsley et al�

������

In contrast to linear microscopic regression the GLM assumes the elements of the
microscopic vector to be governed by a deterministic
 linear function of the macroscopic
vector g with added Gaussian noise� Thus
 the i�th microscopic vector element �which is
a voxel if the original Euclidean basis is used� is

xi � f�g� * �i ������

�
KX
k	�

bi�kgk * �i ������

� bT

i g * �i � ������

As for the linear microscopic regression model we can simultaneously express the relation
ship for all d elements of all N observations as

X �  b� b� � � � bd!
TG* � ������

� BTG* � � ������

where the parameter matrix B is composed of the individual parameter vectors bi in
columns� In this context the macroscopic data matrix G is called the design matrix � it is
often divided into two distinct parts assumed to hold interesting and uninteresting e�ects
�frequently dubbed covariates�
 respectively �Friston et al�
 ������

By assuming the noise to be Gaussian as before
 i�e� � � N���(��
 it is straightforward
to obtain the ML estimate

#B �
�
G(��

� GT
���

G(��
� XT � ������

in analogy to �������

	���� Relationship between linear microscopic regression and GLM

The two linear modeling approaches of linear microscopic regression and the general linear
model may seem principally di�erent at �rst sight� They are
 however
 analogous� to see

�While the design matrix is normally partitioned column�wise asG � �G�jG�� the partitioning would be
row�wise in our case due to the transposed nature of the data matrices described in chapter � as compared
to the conventional notation used in e�g� �Mardia et al�� ����� Friston et al�� ������
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this we �rst use Bayes theorem to rewrite the joint density

p�x�g� � p�gjx�p�x� ������

� p�xjg�p�g� � ������

This establishes a link between p�xjg� and p�gjx� that requires knowledge of the marginal
distributions p�x� and p�g�� If we assume the microscopic variables to be Gaussian

x � N���(x�
 so that

p�x� �
�p
j�(xj

exp

�
	

�

�
xT(��

x x

�
� ������

and similarly for the macroscopic variables
 meaning that g � N���(g�

p�g� �
�p
j�(gj

exp

�
	

�

�
gT(��

g g

�
� ������

and recall that the conditional density of the linear microscopic regression model in �����
is Gaussian

p�gjx� �
�p
j�(ej

exp

�
	

�

�
�g 	WTx�T(��

e �g 	WTx�

�
� ������

it follows from ������ that p�gjx�p�x� is Gaussian as well�

p�gjx�p�x� �

�p
j�(ej

�p
j�(xj

exp

�
	

�

�
�g 	WTx�T(��

e �g 	WTx�	
�

�
xT(��

x x

�
� ������

We obtain a similar expression for ������

p�xjg�p�g� �

�p
j�(�j

�p
j�(gj

exp

�
	

�

�
�x	BTg�T(��

� �x	BTg� 	
�

�
gT(��

g g

�
� ������

Now
 the two distributions ������ and ������ are identical via Bayes theorem
 so we expand
and compare their operands� Ignoring the constant factors the operand of ������ is

�g 	WTx�T(��
e �g 	WTx� * xT(��

x x ������

� gT(��
e g * �WTx�T(��

e WTx	 �gT(��
e WTx* xT(��

x x � ������

A similar expansion of ������ yields

�x	BTg�T(��
� �x	BTg� * gT(��

g g ������

� xT(��
� x* �BTg�T(��

� BTg 	 �gTB(��
� x* gT(��

g g � ������

Finally
 by comparing the terms in x

xT(��
� x � xTW(��

e WTx * xT(��
x x � ������
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we are able to identify

(��
� � W(��

e WT * (��
x � ������

Further
 the corresponding mixed term relationship

	�gT(��
e WTx � 	�gTB(��

� x ������

yields the identity

B � (��
e WT(� � ������

This shows that we
 by assuming the marginal distributions p�x� and p�g� to be Gaussian

can compute the parameters of the GLM from the parameters of the linear microscopic
regression model� The inverse relationships are easily found to be

(��
e � B(��

� BT * (��
g ������

W � (��
� BT(e � ������

��� Visualization

In the discussion about possible uses of successful models �which we can now identify
as models with small generalization error� in section ����� we argued that insight into
the function of the brain could potentially be gained by the identi�cation of the features
emphasized by such models�

With the proposed framework of conditional macroscopic density modeling in place
we have a handle that allows us to interpret the somewhat vague notion of �features
emphasized by the model�� they are the aspects of the microscopic density that a�ects the
model�s ability to approximate the macroscopic density� We must
 in other words
 identify
the parts of input space that are used by the model� While these parts of signal space
are always contained in model space� the two are not
 in general
 identical� That is to
say
 the information in some parts of model space may remain unused by the model� The
linear microscopic regression models
 however
 is a special case� the estimated macroscopic
variables are simply linear combinations of the microscopic observations as represented by
the model space basis� So
 for each element of the macroscopic vector we can identify an
associated direction in signal space �and thus in input space� that fully identi�es the parts
of model space emphasized by the linear model� This direction forms a onedimensional
linear subspace of input space
 which we shall refer to as the projection space of the linear
model�

The simple projection space of linear models has the huge advantage of being something
we can visualize� it is
 in e�ect
 merely a vector in input space� In general
 though

projection space may be a nonlinear manifold in model space �Bell
 ������ This leads to
visualization and interpretation problems
 as we shall discover for the nonlinear models
discussed in the next chapter�

	Recall that model space is dened as the space spanned by the subset of basis vectors �with which
the microscopic observations are represented� that remain after non�salient parameters are pruned away
during model complexity optimization�
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	�	�� Application to the CPH�SAC dataset

To demonstrate how the simple projection space of linear models facilitates model visu
alization �gure ��� depicts the average emphasis of the twenty PCAbased
 OBSpruned
twoparameter models with estimated optimal generalization ability �see also �gure �����
The panels depict a transverse
 a coronal and a sagittal slice
 respectively� The objective

Transverse

Coronal Sagittal

Figure 
�� A transverse� a coronal� and a sagittal slice of the average linear one�dimensional
projection space of two�parameter� OBS�optimized linear microscopic regression models based
on the PCA representation of the CPH�SAC dataset� The large emphasized area in the back
of the brain is the visual cortex�

of the present work is not so much to provide neurophysiological insights
 but rather to
facilitate modeling and visualization based on a generalization theoretical framework� We
therefore refrain from detailed interpretation of the current as well as later visualizations�
Brie�y
 however
 we note the relatively large emphasized area in the back of the brain�
We identify this as the visual cortex � an area we clearly expect to be active during the
performance of visual saccades� For further interpretation of linear model emphasis for
the CPH$SAC dataset see e�g� �M	rch et al�
 ����b� Law
 ����� M	rch and Thomsen

����� Lundsager and Kristensen
 ������

��� Summary

We have exempli�ed the proposed generalization theoretical framework by providing es
timates of the parameters of linear microscopic regression models which approximates
the conditional macroscopic density� Further
 the linear microscopic regression model has
been proved analogous to the general linear model that approximates the conditional mi
croscopic density� the latter is widely used in existing tools for analysis and modeling of
functional datasets�

The dependency of model performance
 as quanti�ed by generalization error
 on model
�exibility and training set size has been demonstrated� For the restricted class of regu
larized linear models the proposed framework is shown to provide estimates of optimal
model complexity� implicitly as the optimal regularization parameter value
 and explicitly
as the limited model space identi�ed by OBSbased parameter pruning� Moreover
 the
estimated learning curves of model performance as functions of training set size empha
size the importance of matching model �exibility to the number of available observations�
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large datasets may well support the application of relatively complex models�
Finally
 linear models have been shown to emphasize a onedimensional linear subspace

of input space� This facilitates straightforward visualization of model emphasis�



Chapter �

Nonlinear modeling

In the previous chapter we observed how model performance depends on model complex
ity� The investigated microscopic linear regression model is relatively in�exible by nature�
no matter how we tweak the regularization and parameter con�guration the model is con
strained to linear �rst order relationships between the micro and macroscopic variables�
In an attempt to increase model performance beyond what is possible with simple linear
models we examine a speci�c class of more �exible
 nonlinear models�

��� Model basis functions

Consider models of which the output can be expressed as a linear combination of a set of
model basis functions zj�x�w�

y�x�w� �

JX
j	�

'wjzj�x�w� � �����

where the socalled output parameters 'wj are elements of the overall parameter vector w�
For convenience we use an index of zero to denote basis functions �and inputs� �xed to a
value of one� the corresponding socalled bias parameters enable the mean of the model
output to be nonzero
 even for zeromean basis functions�

The linear microscopic regression model investigated in chapter � is a special case of
������ the basis functions are simply the projection of the observations onto the signal
space spanning basis� In the following we shall not regard such projections as part of the
model� Rather
 we use x to denote the microscopic variables regardless of the basis used
to represent them� A fairly simpleminded extension of the linear regression model is to
include polynomial terms of second order
 i�e�

y�x�w� �

dX
i�	�

dX
i�	�

wi�i�xi�xi� � �����

Written out for the �rst two elements of the microscopic vector� �d � �� equation �����

�Or the rst two elements of e�g� the vector of principal components� if the PCA basis is used to
e�ciently represent the microscopic vectors in signal space�


�
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reads

y�x�w� �

�X
i�	�

�X
i�	�

wi�i�xi�xi� �����

� w�� * �w�� * w���x� * �w�� * w���x� �����

*w��x
�
� * w��x

�
� * �w�� *w��� x�x�

�

�X
j	�

'wjzj�x�� x�� � �����

We identify ����� as a special case of ����� in which all basis functions are �xed
 i�e�
independent of the model parameters w� The simple linear regression model of the previous
chapter includes only the zero and �rst order order terms of ������

It is clear that model �exibility is increased by including terms of higher order� Con
sequently
 a generalization of the polynomial model ����� to high order constitutes a very
�exible model with potentially lower bias than&and improved generalization performance
over&the simple �rst order linear microscopic regression model� It is important to note
that the increased model �exibility does not complicate parameter estimation� the out
put is still a linear combination of �xed functions of the inputs so the parameters can be
estimated analytically
 exactly as in section ������


���� The curse of dimensionality

From the discussion above a polynomial model seems a good choice when looking for
increased model �exibility� However
 there is no such thing as a free lunch
 and the
polynomial model does have a major drawback related to what is known as the curse of

dimensionality �Bellman
 ����� Duda and Hart
 ������ The problem is easy to see� for an
M �th order polynomial model with input vectors containing d elements the total number
of adjustable parameters grows like

W � dM � �����

To obtain a reasonably �exible model W must be huge� This is true even for the illposed
datasets we are considering here� the projection of the microscopic variables onto a signal
space spanning basis reduces the dimensionality of the model input vectors from d to N 

but a very large number of parameters is still needed for all but simple �rst order models�
To estimate the many parameters correctly
 i�e� with low variance
 a correspondingly large
number of training set observations is required� Since observations are in short supply the
poor dimensionality scaling of polynomial models constitutes a problem�


���� Adaptive basis functions

To obtain a model with �exibility that scales with the dimensionality of the input vec
tors better than ����� we reexamine the model expression ������ The polynomial model
increases model �exibility by implementing a large number of �xed basis functions zj�x��
This approach is hampered by the di�culties associated with choosing the basis functions
in a way suitable for the modeling task at hand� Instead
 we may let the basis functions
themselves be parameterized
 zj�x�w�
 so that they can adapt to the observed data��

�Note that adaptive basis functions that are linear in x e�ectively result in a simple rst order linear
model� since the basis function parameters can be included in the output parameters �wj �
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There are many possible ways to implement adaptive basis functions� One particu
lar approach is that of radial basis functions �RBF� �Moody and Darken
 ������ Here

however
 we shall focus on another adaptive basis function model
 namely the multilayer
perceptron�

������� The multi�layer perceptron

The multilayer perceptron �MLP� implements adaptive basis functions as monotonic �one
toone�
 nonlinear transformation g��� of signal space projections

zj�x�w� � g

�
dX
i	�

wijxi

�
� g�aj� � �����

The direction of the signal space projections are determined by the adaptive parameters
wji � i � �� � � � � d� The total number of parameters for models based on ����� scales as
W � d
 which is better than for polynomial models� However
 there is a price to pay�
since the activation functions are nonlinear
 the model itself is nonlinear in �some of�
the parameters� This signi�cantly complicates parameter estimation
 as we shall discuss
shortly�

Typically
 activation functions are sigmoidal� Using the hyperbolic tangent
 g�aj� �
tanh�aj�
 the model obtained by combining ����� and ����� becomes

y�x�w� �

JX
j	�

'wjzj�x�w�

�

JX
j	�

'wj tanh

�
dX
i	�

wijxi

�
� �����

This is the model we shall investigate in the remainder of this chapter� It can be regarded
as a twolayer model� it consists of two separate layers of processing units
 each of which
computes a function of a linear combination of the output from units in the previous layer�
This is visualized in �gure ���
 where the notion of hidden units is introduced for the
processing units in the �rst layer� The model may be generalized to more than two layers


z� z�

x�x� xd

zJ

y

Bias

Hidden units

Output

Inputs

Bias

Figure ���� An MLP with two layers� The processing units in each layer feeds forward functions
of linear combinations of the output from units in the previous layer� Note the �xed bias units
which allow arbitrary mean outputs�

as implied by the �rst part
 multi�layer
 of the MLP name� The second part
 perceptron
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indicates the roots of models of this kind� The origin of the perceptron traces back to
�Rosenblatt
 ����� and his work on networks of threshold units� The study of these single
layer networks was motivated by e�orts to understand the computational workings of the
brain at a neuronal level� This and related works gave rise to the �eld of arti�cial neural
networks �ANN�� In ���� the rediscovery of an iterative parameter estimation scheme
originally investigated by �Werbos
 �����
 but now dubbed back�propagation sparked the
�eld anew �Rumelhart et al�
 ������ Since then progress has been great
 as has the hype
about the brainlike function of ANN models� The ANN �eld is
 however
 merely concerned
with a certain class of parametere�cient nonlinear models
 and as such plays a role in
statistics and mathematical modeling in line with more traditional disciplines�

The approximation capability of MLP�s with sigmoidal activation functions has been
studied intensely� An important result that can be found in various versions in the liter
ature states that a twolayer perceptron can approximate arbitrarily well any continuous
functional mapping from one �nitedimensional space to another
 provided the number J
of hidden units is su�ciently large �Cybenko
 ����� Hornik et al�
 ������ It is our purpose
in this chapter to investigate if the above result and the fact that the total number of model
parameters scales better for MLP�s than for polynomial models justi�es the application of
complex
 nonlinear models in the analysis of functional datasets�

��� Parameter estimation

The twolayer perceptron ����� is nonlinear in the parameters w
 which means that it is
impossible to analytically estimate the parameters that minimize the cost function� Instead
we turn to iterative estimation procedures where the timet estimate wt is updated along
a search direction ,wt

wt�� � wt * �,wt � �����

The approach is outlined in �gure ���
 from which the problem of local optima is clear�
while we are attempting to locate the global minimum w� an iterative parameter estima
tion procedure may get stuck in the local minimum w�
 depending on the initial parameter
estimate w�� We shall not address this di�culty further here� for details on parameter
initialization and optimization of MLP�s and other ANN models �Bishop
 ����� is an ex
cellent source� In the next sections we review some of the schemes for computing the
parameter search direction ,wt and determining a proper value of ��


���� First order optimization

The negative cost function gradient

,wt � 	rC�wt� ������

leads to the straightforward gradient descent optimization approach� A Taylor expansion
to �rst order of the cost function around wt evaluated at wt�� yields

C�wt��� � C�wt� *rC�wt�
T,wt ������

� C�wt�	 �rC�wt�
TrC�wt� � ������
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w�

w�

C�w�

w�

w�

wt

 wt

Figure ���� Iterative parameter estimation� The cost function can be regarded as a surface
in parameter space of which we aim to �nd the global minimum w�� Depending on the initial
parameter estimate we may end up in a local minimum w��

which ensures that C�w� decreases for su�ciently small �� Consequently
 wt converges
towards a local minimum w�� If the cost function is smooth and the parameter estimate
is properly initialized
 the global minimum w� may be found��

For the twolayer perceptron with hyperbolic tangent activation functions in ����� the
gradient of the regularized MSE cost function

rC�w� � rE�w� *
�

N
rR�w� ������

�
�

�N

NX
n	�

� �y�xn�w�	 gn��

�w
*

�

N
Rw ������

�
�

N

NX
n	�

�y�xn�w�

�w
� �y�xn�w�	 gn� *

�

N
Rw ������

is easily computed from the �rst layer derivatives

�y�x�w�

�wij
� 'wj

�
�	 zj�x�w��

�
xi ������

and their second layer counterparts

�y�x�w�

� 'wj
� zj�x�w� � ������

������� Gradient computation by error back�propagation

Straightforward gradient computation via ������ and ������ requires W calculations for
each of the �rst layer derivatives
 leading to a total computational e�ort that scales as
W �� A much more e�cient way of calculating the derivatives is obtained by employing
error back�propagation �Werbos
 ����� Rumelhart et al�
 ������

�However� there is no way of distinguishing a local from the global minimum once the iterative procedure
has converged�
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While backpropagation lessens the computational burden of gradient evaluation and
thus parameter estimation it shall not be a topic of further investigation here� the above
references as well as ANN textbooks like �Bishop
 ����� discuss it in detail� Su�ce it to
say that the approach rests on a chain rule decomposition of the cost function derivate

which facilitates the computation of the gradient by storing local error measures for each
unit�


���� Second order optimization

The convergence of gradient descent can be very slow� Consequently
 a large number
of re�nements to the algorithm have been proposed
 all aiming to improve convergence
speed� Rather than investigating any of these in detail
 we shall explore how information
of second order derivatives may improve optimization� The Taylor expansion to second
order of the regularized cost function around the global minimum w� yields�

C�w� � C�w�� *
�

�
�w	w��TJ�w 	w�� � ������

since the �rst order derivative is zero� The Hessian matrix J consists of second order
derivatives� The gradient of the expansion

rC�w� � J�w 	w�� ������

leads to Newtons formula

w� � w	 J��rC�w� � ������

Provided that the set of parameters w is close to the global minimum so that the second
order Taylor expansion constitutes a good approximation to the cost function surface
 a
Newton step of

,wt � 	
�
Jj
w	wt

���
rC�wt� � ������

with � � �
 moves w very close to the global minimum� In practice the Taylor expansion
is less than perfect so we reduce the stepsize �&in fact
 a onedimensional line search
along the parameter search direction is often employed in an attempt to �nd an optimal
stepsize�

������� Levenberg�Marquardt approximation

It is complicated and computationally expensive to compute the second order derivatives
exactly� Eventhough it can be done
 see e�g� �Buntine and Weigend
 �����
 approxima
tions hold a number of advantages as we shall see next�

The cost function consists of two terms� the unregularized cost function and the regu
larizer� The �rst and second order derivatives of the latter are straightforward to compute

R�w� �
�

�
wTRw �

�R�w�

�w
� Rw �

��R�w�

�w�wT
� R � ������

�The following is true for any optimum� meaning that the procedure may identify both minima and
maxima� local as well as global� Therefore the parameters must be close to the �global� minimum before
the approach is employed�
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Concentrating therefore on the Hessian matrix H of the unregularized cost function
E�D�w� we apply the chainrule to yield the gradient

�E�D�w�

�w
�

�

�N

NX
n	�

��y�xn�w�	 gn��

�w
������

�
�

N

NX
n	�

�y�xn�w�

�w
� �y�xn�w�	 gn� � ������

The two factors lead to the decomposition of the corresponding Hessian matrix of second
order derivatives

H �
��E�D�w�

�w�wT
������

�
�

N

NX
n	�

�
�y�xn�w�

�w
�
�y�xn�w�

�wT
*
��y�xn�w�

�w�wT
� �y�xn�w�	 gn�

�
� ������

Consider now the limit of many training set observations
 in which training error is
de�ned as generalization error� In ������ generalization error was decomposed into two
terms
 repeated here for convenience

GMSE�D�w� �
�

�

Z
�y�x�w�	 hgjxi�� p�x� dx

*
�

�

Z ��
g�jx

�
	 hgjxi�

�
p�x� dx � ������

Only the �rst term of ������ depends on the model parameters
 meaning that the expected
Hessian matrix can be expressed in terms of the conditional average
 hgjxi
 of the system
output Z

��E�D�w�

�w�wT
p�x� dx ������

�

Z �
�y�x�w�

�w
�
�y�x�w�

�wT
*
��y�x�w�

�w�wT
� �y�x�w� 	 hgjxi�

�
p�x� dx � ������

If the parameters are close the global minimum
 w � w� the model is close to the condi
tional system output
 y�x�w� � hgjxi
 according to ������� Consequently
 the last term
in ������ will be small� So
 for parameters close to the global minimum
 model error is
small on average
 justifying that the second term of ������ be ignored �Hassibi and Stork

������ The result is the Levenberg�Marquardt �LM� approximation �Marquardt
 �����

H �
�

N

NX
n	�

�y�xn�w�

�w
�
�y�xn�w�

�wT
� ������

also referred to as the outerproduct approximation� The LM approximated Hessian holds
two major advantages� �rstly
 it involves only �rst order derivative information
 meaning
that it is computationally relatively inexpensive to employ� Secondly
 when used in the
second order iterative optimization procedure of ������ it will always lead to a cost function
decrease
 since it is guaranteed to be positive semide�nite�
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������� Diagonal approximation

A computationally even less expensive Hessian approximation is achieved by ignoring the
o�diagonal terms in the LM approximation �Le Cun
 Y� et al�
 ������ For a diagonal
regularizer R � diag  �i! the resulting iterative updating scheme
 here written for a single
parameter i


,wi�t � 	
�
Jj
w	wt

���

ii
�rC�wt��i � 	N

�rC�wt��i
�ry�x�wt��

�
i * �i

� ������

is called pseudo Gauss Newton optimization�


���� Example

To exemplify the iterative approach above �gure ��� depicts the evolution of training error
during parameter estimation for one particular nonlinear model of the saccade frequency
for the CPH$SAC dataset� An MLP with three hidden units was used
 resulting in a
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Figure ���� Evolution of the MSE training error during iterative parameter estimation for one
particular MLP model on the CPH�SAC dataset� After �� �rst order iterations �dashed line��
a second Newton method speeds up convergence�

total of W � ��� parameters� The �rst few iterations �to the left of the dashed vertical
line� are performed using gradient descent
 for which convergence quickly becomes very
slow� After �� iterations a second order Newton method is employed based on the LM
approximation of the Hessian� A sharp increase in convergence speed results� After some
��� iterations convergence is again slow
 and iteration is stopped� the resulting parameters
are subsequently used as an estimate of w�� For details on issues such as parameter
initialization and iteration stopping criteria
 see e�g� �Bishop
 ������

��� Complexity control

As discussed in chapter �
 and investigated for the linear models in the previous chapter

�exibility and training set size a�ect model generalization performance� So too for non
linear MLP models� Recalling the earlier discussion of the infeasibility of sampling more
than a few points in the space of possible combinations of model complexity and training
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set size
 the computationally expensive iterative parameter estimation needed for MLP
optimization emphasizes the following results as illustrative rather than conclusive�


���� Regularization

In the context of ANN�s the simple diagonal regularizer R�w� � �
�w

TRw is often called
weight decay �WD��
 see also �Hinton
 ������ The name results from the regularization
term�s ability to force parameters towards zero
 as we saw in section ������

Since the second order derivative

��R�w�

�w�wT
� R ������

is simply the diagonal regularization matrix itself
 the regularized Hessian is simple to com
pute� In ������ we saw how simple WD combined with a diagonal Hessian approximation
provides for a particularly simple second order optimization scheme�


���� Parameter pruning

Parameter pruning from saliency measures based on the estimated training error increase
was explained in section �������
 where the general OBS expression as well as the OBD
approximation based on a diagonal Hessian approximation were derived� These may be
directly applied to the MLP�s considered here�

��� Application to the CPH
SAC dataset

In analogy to the linear models of chapter � the nonlinear twolayer perceptron was applied
to the CPH$SAC dataset in order to investigate the e�ects of training set size and model
complexity� Three hidden units were included in all models discussed in the following�
The same bootstrap samples that were used to investigate the linear models were applied
to the nonlinear models
 meaning that the same test set of NT � �� observations was left
out for empirical generalization error assessment� The remaining �� observations yielded
M � �� training sets of size N � ��
 as before�


���� Complexity control

Model �exibility was varied in order to investigate it�s in�uence on estimated generalization
error� Again
 both regularization and parameter pruning was employed to control model
complexity�

������� Regularization

The nonlinear MLP models were regularized using one common regularization parameter�
Several regularization parameters are often used in practice
 e�g� one for each layer of
parameters
 or even one for each model parameter� Due to the complexity involved with
exploring the multidimensional regularization space spanned by more than a single regu
larization parameter we here investigate generalization performance dependency for one
common parameter only�

Figure ��� depicts the results for the microscopic vectors represented using the PCA
basis� For both small and large values of � the empirical generalization error estimate

�In ANN�s the parameters are also called weights�
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Figure ���� The expected generalization error �test error� as function of the regularization
parameter for PCA�based nonlinear MLP models of the saccade frequency for the CPH�SAC
dataset� The dotted lines represent one standard deviation of the test error estimate� A
medium valued regularization parameter appears to yield optimal performance�

is large� only for values in the middle of the investigated range is model performance
good� The minimum test error of ������ is achieved for � � ����� Comparing the �gure
to the corresponding �gure ��� for the linear models
 the di�erence for small values of
the regularization parameters is obvious� in contrast to the linear models
 the nonlinear
MLP�s are �exible to such a degree that they become overly sensitive to the training
set observations unless some amount of regularization is applied� Conversely
 for very
large values of � the regularization introduces so much model bias that generalization
performance su�ers� The two e�ects combine to produce the observe generalization error
minimum�

We also observe how the minimum estimated expected generalization error is smaller
for the nonlinear MLP models than for the linear models� in chapter � the corresponding
test error evaluated to ������� The increased model performance can be accounted to the
increased model �exibility of the MLP model over it�s linear counterpart�

For models based on the ICA basis representation of the microscopic observations the
situation is very similar
 as shown in �gure ���� The minimum estimated generalization
error of ������ occurs for � � �����
 but as before model performance is close to identical
over a range of intermediate regularization parameter values� Only for very small or very
large values is model performance signi�cantly a�ected� The signi�cant average test error
di�erence between optimally regularized
 fully connected PCA and ICA models that we
observed in the linear case is not re�ected to the same degree in �gures ��� and ����
estimated generalization performance is still better for the fully connected ICAbased
models
 but only slightly� It means that the increased �exibility of the MLP models is
better utilized when representing the microscopic observations using the PCA than the
ICA basis� The nonlinear nature of the MLP models does not
 in other words
 render the
independent basis vectors more informative&at least not for fully connected models�

������� Parameter pruning

We proceed to control model �exibility more directly by employing parameter pruning�
Due to the large number of parameters in the fully connected MLP models
 a pruning
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Figure ��
� The expected generalization error �test error� as function of the regularization
parameter for ICA�based nonlinear MLP models of the saccade frequency for the CPH�SAC
dataset� The dotted lines represent one standard deviation of the test error estimate� As for
the PCA�based models a regularization parameter in the middle of the range of investigated
values yields optimal performance�

scheme is adopted in which several parameters are removed simultaneously� More speci�
cally a small fraction of the remaining parameters are removed
 meaning that while quite a
few parameters are removed simultaneously from large models
 �ner complexity control is
achieved for smaller models� To this end the OBD rather than the OBS parameter saliency
estimate is used� experience indicate that while OBD and OBS based parameter pruning
often perform comparably
 situations sometimes arise in which OBS signi�cantly underes
timates parameter saliency
 leading to sudden increases in generalization error �Pedersen
et al�
 ����� Pedersen
 ������

Figure ��� reproduces the evolution of model performance for the PCAbased models as
parameters are pruned� The regularization parameter was set to � � ���� as for the linear
models� This value yields close to optimal performance on the fully connected model
 as
seen from �gure ���� The errorbars represent one standard deviation of the test error
 and
at the same time serve as indications of the fractional pruning scheme that was adopted�
the number of parameters eliminated at one time decreases as the models get smaller�

Figure ��� is identical to �gure ��� except for the errorbars� This aids identi�cation
of the test error minimum which occurs for models with � parameters� The average
generalization performance for these models evaluates to ������
 compared to the value of
������ yielded by the twoparameter linear PCAbased models from �gure ���� The slight
error decrease reveals how the �exibility of the MLP�s provides for a small performance
increase� The di�erence is not very large
 however
 and is from �gures ��� and ��� evidenced
only for training sets of size ��� We shall return to this issue in section ������

For the nonlinear MLP models based on the ICA representation of the microscopic
observations the picture is similar
 as seen in �gures ��� and ���� However
 the estimated
optimal model is relatively complex with it�s ��� parameters� The situation closely re�ects
the linear case where almost all independent projections were likewise retained� The
similarity extends to generalization performance in that the ICAbased nonlinear MLP
models yield higher average test error
 namely ������
 than PCAbased models with �
parameters which average to a value of ������� The interpretation is straightforward�
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Figure ���� The estimated expected generalization error as function of the number of parame�
ters for PCA�based nonlinear MLP models of the saccade frequency for the CPH�SAC dataset�
The regularization parameter is � � ����� The empirical generalization error estimate predicts
model performance to be optimal for models with a relatively small number of parameters�
Error�bars represent one standard deviation of the error estimates�
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Figure ���� The estimated expected generalization error as function of the number of parame�
ters for PCA�based nonlinear MLP models of the saccade frequency for the CPH�SAC dataset�
The regularization parameter is � � ����� The empirical generalization error estimate predicts
model performance to be optimal for models with � parameters�

an ICA representation of the microscopic observations seems less informative than the
corresponding PCA representation� This �nding may be the result of the infeasibility
of a linear mixture model for human brain functions
 shortcomings in the adopted ICA
entropy maximization scheme�
 or issues related speci�cally to the investigated CPH$SAC
dataset� In any event
 the applicability of ICA for e�cient representation of functional
datasets needs to be studied further�

�Such shortcomings may lead to the localization of a local rather than the global maximum�
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Figure ��� The estimated expected generalization error as function of the number of parame�
ters for ICA�based nonlinear MLP models of the saccade frequency for the CPH�SAC dataset�
The regularization parameter is � � ����� The empirical generalization error estimate predicts
model performance to be optimal for relatively large models�
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Figure ���� The estimated expected generalization error as function of the number of parame�
ters for ICA�based nonlinear MLP models of the saccade frequency for the CPH�SAC dataset�
The regularization parameter is � � ����� The empirical generalization error estimate predicts
model performance to be optimal for models with ��� parameters�


���� Learning curves

To quantify the e�ect of training set size on model performance the empirical expected
generalization error for models based on training sets of increasing size were computed�
The bootstrap samples with sizes ranging from �� to ��� that were generated for the linear
models were once again utilized� Regularization was �xed to � � ���� in accordance with
�ndings above�

The �veparameter PCAbased MLP models result in the learning curve depicted in
�gure ����� We observe how the large generalization error that results from small training
sets decreases as more observations become available� For training sets containing more
than some �fty observations
 i�e� the same size as the training set used in the parameter
prunings above
 no performance improvement occurs� test error settles at a level very close
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Figure ����� Empirical learning curve for PCA�based nonlinear MLP models for the CPH�SAC
dataset� The error�bars represent one standard deviation of the error estimates� As the number
of training set observations increases the generalization performance improves�

to the ������ achieved by the �veparameter MLP models based on a training set size of
���

The nonlinear MLP learning curve is very similar to it�s linear twoparameter equiva
lent� Figure ���� combines the two curves in one plot� Performance is close to identical for
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Figure ����� Empirical learning curves for PCA�based linear and nonlinear models for the
CPH�SAC dataset� As the number of training set observations increases the generalization
performance improves for both model types in a very similar manner� Only for large training
sets does a small� but essentially insigni�cant� di�erence manifest itself�

practically all training set sizes� A small
 but essentially insigni�cant
 di�erence is barely
visible for large set sizes� So
 despite the small test error di�erence between the linear
twoparameter models averaging to ������ and the nonlinear �veparameter MLP mod
els averaging to ������ when based on training sets containing �� observations
 we must
conclude that the lowdimensional model spaces identi�ed by the corresponding principal
axis only to a very low degree support the application of �exible nonlinear models over
simpler linear ones�

For the more heavily parameterized ICAbased models the picture looks only slightly
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di�erent� The learning curve of the MLP models
 depicted in �gure ���� and repeated
together with the corresponding linear model learning curve in �gure ����
 settles at a
level slightly lower than that of the linear learning curve� This again indicates very little
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Figure ����� Empirical learning curve for ICA�based nonlinear MLP models for the CPH�SAC
dataset� More observations yield better performance�
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Figure ����� Empirical learning curves for ICA�based linear and nonlinear models for the
CPH�SAC dataset� Larger training sets increase the generalization performance for both model
types� The small di�erence between the linear and nonlinear models is largest for medium sized
training sets�

support for the application of �exible nonlinear models on this particular dataset� The
situation may be di�erent
 however
 for datasets from other functional experiments�

������� Other learning curve examples

As examples of a more clear learning curve or generalization crossover
 we include �g
ures ���� and ����� They reproduce �gures from the paper �M	rch et al�
 �����
 which
appears as appendix F� Figure ���� reproduces the empirical learning curves for PCA
based linear and nonlinear classi�ers applied to a categorically designed functional PET
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Figure ����� Empirical learning curves for PCA�based linear and nonlinear classi�ers applied
to a categorically designed functional PET experiment involving a simple �nger opposition
task� Generalization cross�over occurs for medium sized training sets�

experiment involving a simple �nger opposition task� For this dataset the linear classi
�ers seem optimal for small datasets
 while the availability of more observations eventually
clearly warrants to use of the more �exible nonlinear classi�er�

The learning curves for an fMRI experiment involving a �ngertothumb opposition
task are depicted in �gure ����� Again linear and nonlinear classi�ers were employed


Linear classifier   
Nonlinear classifier

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Number of examples in training set

M
ea

n 
m

is
cl

as
si

fic
at

io
n 

in
 p

er
ce

nt

Figure ���
� Empirical learning curves for PCA�based linear and nonlinear classi�ers applied
to a categorically designed functional fMRI experiment involving a �nger�to�thumb opposition
task� Generalization cross�over occurs for very small training sets�

but for this dataset the picture is di�erent� generalization crossover occurs for relatively
small datasets� As the number of training set observations increases the nonlinear models
signi�cantly outperform their linear counterparts�

�For a more detailed description of the experimental design refer to the paper �M!rch et al�� ������
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��� Visualization

Having obtained a nonlinear MLP that appears to perform well it is of interest to investi
gate which parts of signal space it emphasizes� However
 the only thing we can visualize is
a direction of input space
 i�e� a onedimensional linear subspace� This complicates MLP
visualization since an MLP with three hidden units e�ectively operates nonlinearly from
projections onto the threedimensional model space spanned by the parameter vectors of
the three hidden units� It means that model emphasis is hard to quantify
 resulting from
a nonlinear manifold in model space�

Referring back to section ����� where we investigated the relationship between the lin
ear microscopic regression model and the GLM which models the expected microscopic
vector from a set of macroscopic variables
 we recall how it was possible to derive simple
expressions relating the parameters of the two models� In analogy
 a natural approach to
visualization of nonlinear microscopic regression models
 of which the MLP as described in
this chapter is an example
 would be to attempt to relate the estimated conditional macro
scopic model average hgjxi to the conditional microscopic density via Bayes theorem� By
obtaining an estimate of this density we could compute onedimensional properties suit
able for visualization� An obvious candidate would be the conditional microscopic average
hxjgi� Encouraging preliminary investigations into this approach appear in �Lundsager
and Kristensen
 ������


�	�� The saliency map

In this presentation we shall limit ourselves to consider the socalled saliency map
 which
we proposed in �M	rch et al�
 ������ the paper appears as appendix D herein� While
the approach targets the identi�cation of model emphasis and as such facilitates MLP
visualization
 it su�ers from some problems� These will be discussed at the end of this
section�

In close analogy to the saliency measures of OBD and OBS the idea behind the saliency
map is to estimate the increase in training error that results from the elimination of one
particular voxel� Assume that the microscopic observations are represented by the basis
E �  e� � � � eE! consisting of E basis vectors� We label the corresponding microscopic
projections v � ETx� In the following we assume the microscopic vectors to have zero
mean� The model depends on the microscopic vectors and thus on the basis used to
represent them
 so we write

y�ETx�w� �

JX
j	�

'wj tanh
�
wT

jE
Tx
�

� ������

where the summation over microscopic vector elements is written as an inner product� We
now de�ne the saliency of the i�th voxel as the increase in training error resulting from
the elimination of that voxel� Letting Ei denote the basis where the i�th voxel is removed

i�e�

eie�i� �

�
ee�i� i� �� i
� i� � i �

������

and wi the corresponding set of optimal model parameters
 the saliency can be written as

�Ei � E�D�wi�Ei�	 E�D�w�E� � ������
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��
���� Approximating the saliency map

Straightforward computation of the saliency map is extremely computationally expensive
since it involves estimation of d di�erent sets of model parameters
 where d is the total
number of voxels� Instead we employ an approximation�

A Taylor expansion of the cost function to second order with respect to the basis
vectors and the parameter vector yields

�E �
EX
e	�

�E

�eTe
�ee *

�E

�wT
�w ������

*
�

�

EX
e	�

�eTe
��E

�ee�eTe
�ee *

�

�
�wT

��E

�w�wT
�w *

EX
e	�

�eTe
��E

�ee�wT
w � ������

If the model parameters have been successfully estimated then the second term in ������
is zero� We may further ignore all terms involving the parameter change �w as argued in
�M	rch et al�
 �����
 to obtain

�E �
EX
e	�

�E

�eTe
�ee *

�

�

EX
e	�

�eTe
��E

�ee�eTe
�ee � ������

e�ectively disregarding parameter reoptimization
 i�e� �Ei � E�D�w�Ei� 	 E�D�w�E��
Finally
 the o�diagonal elements of the second order derivative matrix are zero since we
compute the saliency for one voxel at a time
 leading to

�Ei �
EX
e	�

�E

�ee�i
�ee�i *

�

�

EX
e	�

��E

�e�e�i
�e�e�i ������

as the voxel saliency estimate�
For the twolayer hyperbolic tangent perceptron and the MSE cost function we �nd

the derivatives

�E

�ee�i
�

�

N

NX
n	�

 y�ETxn�w�	 gn!

JX
j	�

'wj��	 zj�E
Txn�w���wejxn�i ������

and

��E

�e�e�i
�

�

N

NX
n	�

�
� JX
j	�

'wj��	 zj�E
Txn�w���wej

�
�
�

x�n�i ������

by employing the LM approximation� Finally
 the basis vector change for the i�th voxel is
�ee�i � 	ee�i trivially� it corresponds to that voxel being removed�

��
���� The saliency map and correlated voxels

Appealing as the saliency map may appear there are situations were it reveals nothing�
Consider a simple example where the signal is zero expect for a few voxels which correlate
completely with the macroscopic variable� In this case the training error will remain
the same no matter what voxel is removed� the saliency map provides no information
whatsoever� Further
 as argued in �M	rch et al�
 �����
 the saliency map is not necessarily
con�ned to the model space spanned by the parameter vectors of the hidden units� These
di�culties suggest that the saliency may be unsuited for MLP visualization
 something
which is a topic of current investigation�
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�	�� Application to the CPH�SAC dataset

In lack of better visualization tools the saliency map was computed for a single of the
optimal PCAbased MLP models with � parameters� The result is shown in �gure �����
The panels depict a transverse
 a coronal and a sagittal slice
 respectively� When compared
to the visualization of the microscopic linear regression model in �gure ���� a number of
similarities are evident
 in particular the large emphasized area in the back of the brain
which we once again identify as the visual cortex� However
 detailed interpretation of the
saliency map should be avoided due to it�s debatable value as a visualization tool�

Transverse

Coronal Sagittal

Figure ����� A transverse� a coronal� and a sagittal slice of the saliency map for a single
nonlinear MLP model with � parameters based on the PCA representation of the CPH�SAC
dataset� The large emphasized area in the back of the brain is the visual cortex�

��� Summary

Using twolayer perceptrons
 which form a linear combination of nonlinear adaptive basis
functions
 we have provided empirical evidence of the applicability of �exible
 nonlinear
models in functional neuro modeling�

Model performance has been shown to depend on model �exibility and training set
size� For the investigated class of twolayer perceptrons optimal model �exibility has
been estimated using regularization and parameter pruning techniques� Further
 empir
ical learning curves of model performance measures provide increasing support for the
application of �exible nonlinear models with increasing training set size� By comparing
the learning curves of linear and nonlinear models a generalization crossover has been
demonstrated
 for which model performance of linear and nonlinear models coincide� for
larger training set sizes the nonlinear model yields slightly better performance than it�s
linear counterpart�

Finally
 the saliency map has been proposed in an attempt to visualize the emphasis
of the nonlinear twolayer perceptron� Nonlinear model visualization deserves further
investigation
 however
 since the proposed approach fails in certain situations�



���
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Conclusion

We have dealt with the analysis and modeling of data from functional neuro imaging
experiments� In particular
 we have proposed a generalization theoretical framework which
relates model performance to model complexity and dataset size�

��� Summary of the proposed framework

Functional neuro imaging facilitates indirect quantitative spatiallydistributed measures
of brain function at a microscopic level� A functional experiment consists of such micro
scopic measurements of neuronal activity along with variables governing the macroscopic
conditions under which the experiment is performed� The brain governs human behavior

so by assuming variations in the micro and macroscopic variables to be manifestations
of an underlying system we aim to gain insight into the function of the brain via system
modeling� Consequently
 we have proposed to investigate the joint probability density of
sets of microscopic image volumes and corresponding macroscopic variables�

In typical functional datasets the dimensionality of each microscopic observation ex
ceeds the number of observations by orders of magnitude� The illposed nature of the
datasets holds major implications for analysis and modeling� primarily
 e�ciency can be
increased by representing the microscopic observations using a basis that spans the same
space as the set of microscopic observations themselves� Two basis selection procedures
have been reviewed� principal component analysis and independent component analysis

providing uncorrelated and independent basis vectors
 respectively� The assessment of
their applicability has been approached using analysis of variance
 which reveals that
experimentally induced variance of interest constitutes only a tiny fraction of the total
microscopic variance� Also
 the variance related to intrasubject e�ects appears to be con
centrated along a single of the principal basis vectors� For the independent basis no single
such intrasubject related basis vector can be identi�ed� The reason is not immediately
clear� it is possible that the activity of involved neurophysiological systems combine in a
nonlinear fashion to produce the observed microscopic patterns�

To quantitatively assess model performance a statistical framework has been proposed�
The approach is centered around measures of model generalization ability
 i�e� the perfor
mance of models with parameters estimated in the limit of in�nitely many observations�
While generalization theory is wellstudied in many areas
 it�s application is novel in the
context of functional neuro modeling� Speci�cally
 the observation that performance de
pends on both the number of observations and model complexity is important� it facilitates

���
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the determination of the extent to which a given dataset supports the application of com
plex models over simpler ones�

We have exempli�ed the proposed generalization theoretical framework by providing
estimates of the parameters of linear as well as �exible nonlinear microscopic regression
models� These approximate the conditional macroscopic density� Speci�cally
 the depen
dency of model performance
 as quanti�ed by generalization error
 on model �exibility and
training set size has been demonstrated� For the investigated model classes the proposed
framework was shown to provide estimates of optimal model complexity� implicitly as the
optimal regularization parameter value
 and explicitly as the limited model space identi
�ed by parameter pruning� Moreover
 the estimated learning curves of model performance
as functions of training set size signify the necessity of matching model �exibility to the
number of available observations� large datasets support the application of more complex
models�

Finally
 linear models have been shown to emphasize a onedimensional linear subspace
of input space
 which facilitates straightforward visualization of model emphasis� The
saliency map has been proposed in an attempt to visualize nonlinear model emphasis
 but
the topic deserves further investigation due to de�ciencies inherent to the saliency map�

��� Implications for functional neuro modeling

We have discussed and observed the suitability of generalization error as a measure of
model performance� Speci�cally
 training error has been proved a biased estimate of gen
eralization error� This observation
 which we have con�rmed empirically
 has a relatively
important implication for functional neuro modeling� model �exibility should be chosen
to match both the complexity and the size of the training set at hand� It follows that no
model is uniformly better than all others� As a consequence optimal model performance
can not be expected from black�box models� rather
 model �exibility should be matched
to each speci�c modeling task� The potential advantage is a model that more precisely
approximates the true nature of the micro and macroscopic relationship
 paving the way
for increased insight into the function of the human brain�

��� Suggestions for further work

While the realization that model �exibility relates to the number of available observations
is important
 much work along the lines of the proposed generalization theoretical frame
work remains� As examples of obvious areas that deserve further attention we mention
the extension of the approach to cost functions other than mean square error� General
biasvariance decompositions will provide for additional insights into the behavior of e�g�
classi�cation models applied to categorical experimental designs� Also
 methods for model
inversion as derived for the linear models should be examined in the general case� they
potentially facilitate nonlinear model visualization and interpretation
 which is something
otherwise very di�cult� Finally
 the results herein deserve to be veri�ed on other and
larger datasets�



Appendix A

Dataset description

A�� Copenhagen saccade PET dataset

The Copenhagen saccade PET dataset �CPH$SAC� is the result of a functional study
aimed at characterizing the relationship between rate of eye movements and the regional
neuronal activity in normal subjects during antisaccadic eye movements �Law et al�
 �����
Law
 ������

A���� Experimental design

Eight �six male
 two female� strongly righthanded �Old�eld
 ����� normal subjects of
age ����� �median age ��� were examined over two days in six activation and two �xa
tion states� Stimulus was delivered by an array of light emitting diodes �LED�s� located
at visual angles 	���
 �� and ��� on a black perimeter arch with a radius of �� cm�
Performance was monitored using electrooculography �EOG�
 measuring eye movement
frequency
 saccade amplitude
 direction
 latency and error rate� During activation the
subjects performed suppression of a re�exive saccade with performance of a volitional
antisaccade to the mirrored location of a randomly presented visual target� The con
dition was performed during six di�erent target presentation frequencies� ����
 ���
 ���

���
 ���
 and ��� Hz� Each target was followed by two saccades� the saccade towards the
target and the return saccade towards the central LED
 so the movement frequency was
twice that of the presentation frequency� During each session subjects were �xating on the
central LED which disappeared for a ��� ms gab before the appearance of a lateral target
�exposure duration ��� ms�� The gab was used to facilitate the execution of saccades
�Fischer and Breitmeyer
 ������

A���� Acquisition and variables

Volumes of estimated neuronal activity were acquired with an Advance General Electric
PET scanner� Standard preprocessing as described in section ����� was applied� Scans
were intrasubject realignment to the �rst baseline scan using AIR �Woods et al�
 �����

normalized by the injected dose relative to subject weight and spatially smoothed using
a �D boxcar �lter� Subsequent intersubject stereotactic normalization to a simulated
PET reference volume in Talairach space �Talairach and Tournoux
 ����� using the ��
parameter linear transformation described in �Woods et al�
 ����� yielded volumes with
�� slices
 interslice distance of ��� mm
 and inplane resolution of ��� mm � ��� mm�

��	
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An intracerebral voxel mask was then created for each volume using thresholding and
the anatomical knowledge of a trained operator� The intersection of the individual masks
produced a common mask with ����� remaining voxels� this was applied to all scans

leading to the set of microscopic variables X � fxn j n � �� � � � � ��g and the corresponding
microscopic data matrix X�

A number of macroscopic variables were recorded during acquisition� They included
eye movement frequency
 saccade amplitude
 direction
 latency
 and error rate
 as well
as subject sex
 age
 and weight
 giving rise to the set of macroscopic variables G �
fgn j n � �� � � � � ��g and the corresponding macroscopic data matrix G� Of the �� scans

none were classi�ed as errors �de�ned as absent saccades
 saccades outside a target interval
of ��� or misdirected$corrected saccades�� For analysis focusing on the frequency of the
saccades the frequency of the �ashing LED targets was used� The frequency of the actual
saccades di�ered only insigni�cantly from this estimate�



Appendix B

Information theory

Information theory was originally formulated by Shannon at Bell Labs while working on
the problem of e�ciently transmitting information over a noisy communication channel
�Shannon
 ������ His work has since formed the basis for methods and algorithms in many
�elds�

B�� Entropy

Given a random variable x with an associated probability density function �p�d�f�� f�x�
the entropy of x is denoted H�x� and de�ned as

H  f�x�!
def
� 	

Z
f�x� log f�x� dx � 	hlog f�x�if�x� �

�
log

�

f�x�

�
f�x�

�B���

where we use h�if�x� to denote expectation with respect to probability density f�x�� In
cases where the p�d�f� of x is clear convenient abuses of notation are

H  f�x�! � H  f ! � H  x! � �B���

Entropy measures the uncertainty of a random variable� More precisely it measures the
uncertainty about the events quanti�ed by the random variable x given its p�d�f� f�x� prior
to the realization of x� The realized value of x removes the uncertainty
 and thus provides
information equal to the entropy of x� Maximum uncertainty occurs for a random variable
with uniform p�d�f�
 whereas realizations of a random variable with a delta function p�d�f�
always are the same� The entropy measure quanti�es this di�erence in uncertainty�

Example B�� Let x denote the outcome of a fair die roll� We have

P �x � �� � P �x � �� � � � � � P �x � �� �
�

�
�

Hence

H  x! � 	
�

�
log

�

�
	 � � �	

�

�
log

�

�
� log � � ���� �

where we use log��� � loge���� If� on the other hand� y denotes the outcome of an unfair
die with a non�uniform p�d�f�

P �y � �� � � � � � P �y � �� �
�

��
� P �y � �� �

�

�

���
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we have

H  y! � 	
�

��
log

�

��
	

�

�
log

�

�
�

�

�
�log �� * log �� � ���� �

The entropy is smaller in the non�uniform case due to the less uncertain outcome of the

unfair die roll�

The de�nition �B��� can be derived from a number of postulates based on our intuitive
understanding of uncertainty
 see e�g� �Papoulis
 ����� which provides a more rigorous
treatment of entropy and related subjects� However
 �B��� may also be viewed simply as
a de�nition with a number of useful properties
 of which a few will be introduced below�

B�� Joint and conditional entropy

Entropy easily generalizes to multivariate random variables
 also resulting in the straight
forward de�nition of joint entropy for random variables x and y with joint p�d�f� f�x� y�

H  f�x� y�!
def
� 	

ZZ
f�x� y� log f�x� y� dx dy �

�
log

�

f�x� y�

�
f�x�y�

� �B���

Similarly
 with the conditional p�d�f� f�xjy� the conditional entropy of x on y is de�ned as

H  f�xjy�!
def
� 	

ZZ
f�xjy� log f�xjy� dx dy �

�
log

�

f�xjy�

�
f�xjy�

� �B���

These two de�nitions will help us understand the important concept of mutual information
as explained in section B���

B�� Kullback�Leibler entropy

Given N realizations
 x�� x�� � � � � xN 
 of a random variable x we are often faced with the
problem of estimating the associated p�d�f� f�x�� In a maximum likelihood �ML� setting
this problem leads to the de�nition of the KullbackLeibler entropy� as follows��

Let f��x� j � � - denote a parametric model of the density f�x�� Assuming indepen
dent realizations the likelihood that the sample is drawn from distribution f� is

lN ��� �

NY
n	�

f��xn� �B���

resulting in the corresponding normalized negative loglikelihood

	LN ��� � 	
�

N
log lN ��� � 	

�

N

NX
n	�

log f��xn� � �B���

which in turn is the negative sample average of log f��x�� As the number of realizations
goes to in�nity �B��� converges in probability to the expectation

L��� � 	 lim
N��

LN ��� � 	

Z
f�x� log f��x� dx � h	 log f��x�if�x� � �B���

�Also called the Kullback�Leibler distance or the Kullback�Leibler divergence�
�Derivation inspired by �Cardoso� ������



Section B��� Mutual information ���

Expression �B��� is the socalled cross�entropy between the densities f�x� and f��x� and
can be regarded as a measure of the extent to which the model density and the true density
agree� By observing that the crossentropy for f��x� � f�x� evaluates to the entropy of
f�x�

L���
��
f��x�	f�x�

� h	 log f�x�if�x� � H  f�x�! � �B���

we can subtract this value from �B��� to achieve the nonnegative KullbackLeibler entropy

K  f�x�� f��x�! � L���	H  f�x�! �B���

� h	 log f��x�if�x� 	 h	 log f�x�if�x� �B����

� 	

�
log

f��x�

f�x�

�
f�x�

�B����

�

�
log

f�x�

f��x�

�
f�x�

� �B����

It is important to note that the integration is with respect to f�x�
 meaning that K  �� �! is
nonsymmetric

K  f�x�� f��x�! �� K  f��x�� f�x�! � �B����

The KullbackLeibler entropy has some important properties� Firstly
 it is invariant
under an invertible transformation t��� of the sample space

K  f�x�� g�x�! � K  t�f�x��� t�g�x��! � K
�
t���f�x��� t���g�x��

�
� �B����

Secondly
 the KullbackLeibler entropy between a distribution f�x� and the uniform dis
tribution ��x� over the interval  �� �! equals the negative entropy of f�x�
 as can be seen
by

K
�
f�x�� ��x������

�
�

�
log

f�x�

��x������

�
f�x�

� 	H  f�x�! � �B����

B�� Mutual information

For two random variables we label

I  x� y!
def
� H  x! * H  y!	H  x� y! �B����

the mutual information of x and y� Using the de�nitions of entropy �B��� and �B��� to
rewrite it as an expected value

I  x� y!
def
� H  x! * H  y!	H  x� y! �B����

�

�
log

�

f�x�

�
f�x�

*

�
log

�

f�y�

�
f�y�

* hlog f�x� y�if�x�y� �B����

�

�
log

f�x� y�

f�x�f�y�

�
f�x�y�

�B����

we see that mutual information quanti�es the extent to which the joint distribution of
two random variables resembles the product of their marginal distributions� Since two
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random variables x and y are statistically independent when the product of their marginal
distributions equals the joint distribution

f�x�f�y� � f�x� y� � x and y are statistically independent
 �B����

mutual information is a measure of statistical independence� In fact
 by comparing �B����
and �B����
 we see that mutual information is the KullbackLeibler distance between
f�x� y� and f�x�f�y�

I  x� y! � K  f�x� y�� f�x�f�y�! � �B����

Inserting f�x� y� � f�xjy�f�y� into �B����

I  x� y! �

�
log

f�x� y�

f�x�f�y�

�
f�x�y�

�

�
log

f�xjy�

f�x�

�
f�x�y�

�B����

and using the de�nition of conditional entropy �B��� we can reexpress mutual information
as

I  x� y! � H  x!	H  xjy! � �B����

and by substituting y for x and vice versa also as

I  x� y! � H  y!	H  yjx! � �B����
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Expected generalization error

estimation

The quality of model parameter estimates depends on the number of observations in the
training set� more observations provide better estimates� To avoid holding out observations
in a test set to obtain an empirical generalization error estimate thus reducing the size of
the training set
 we derive an algebraic generalization error estimate�

C�� Assumptions and de	nitions

We begin with a number of assumptions

� The set of true parameters w� falls within the set of relationships that the parame
terized model can implement �see the discussion in section �����

� Noise is additive and independent between observations
 and has zero mean�

� The number of observations is large�

Let e�xn�w� denote the loglikelihood of a single observation so that the unregularized
training error can be written as

E�D�w� �
�

N

NX
n	�

e�xn�w� � �C���

In the following we leave out the explicit mention of the training set D for ease of notation

so we write E�w� instead of E�D�w�� Let further wE denote a minimum of E�w�
 and wC

a minimum of the regularized cost function C�w��

The aim is to �nd a relationship between the expected generalization error

"G � hGi
D

�

Z
G�D�w�p�D� dD �C���

and its training error equivalent

"E � hEi
D

�

Z
E�D�w�p�D� dD �C���

���
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where we have simpli�ed the notation further by writing D and hGi
D

instead of D�N� and
hG�D�w�ip�D�N��
 respectively� As the number of training examples increases
 N  �


the parameters w approach the true parameters w�
 for which we label the expected�

generalization and training error G�w�� and E�w���

C�� Parameter uctuations

With the assumptions and de�nitions in place we investigate a Taylor expansion of the
regularized cost function to second order around the true parameters w�

C�w� � C�w�� *
�C�w��

�wT
�w *

�

�
�wT

��C�w��

�w�wT
�w *O

�
j�wj�

�
�C���

� C�w�� *rTC�w���w *
�

�
�wTJ�w *O

�
j�wj�

�
� �C���

where we have introduced the cost function gradient

rC�w�� �
�C�w��

�w
� rE�w�� *

�

N
rR�w�� �C���

and the Hessian matrix of second order derivatives

J �
��C�w��

�w�wT
�

��E�w��

�w�wT
*

�

N

��R�w��

�w�wT
� H*

�

N

��R�w��

�w�wT
� �C���

In the following we ignore the higher order terms O
�
j�wj�

�
�

For w � wC the parameter �uctuation is �wC � wC 	w�� Since wC by de�nition is a
minimum of the regularized cost function the derivative of �C��� evaluated in wC is zero

rC�wC� � � � rC�w�� * J�wC �C���

m �C���

�wC � wC 	w� � 	J��rC�w�� � �C����

We can now compute the �rst order moment of the parameter �uctuations around w�

h�wCiD �

�
	J��

�
rE�w�� *

�

N
rR�w��

��
D

�C����

� 	J��

�
hrE�w��i

D
*

�

N
hrR�w��i

D

�
�C����

� 	
�

N
J��hrR�w��i

D
� �C����

where we use hrE�w��i
D

� rG�w�� � �� Similarly
 the second order moment of the
parameter �uctuations is

h�wC�w
T

CiD �
D
	J��rC�w��rTC�w��

�
J��

�
T

E
D

�C����

� J��hrE�w��rTE�w��i
D

�
J��

�
T

*
�

N�
J��hrR�w��rTR�w��i

D

�
J��

�
T

�C����

� J��hrE�w��rTE�w��i
D

�
J��

�
T

*
�

N�
J��rR�w��rTR�w��

�
J��

�
T

� �C����

�In the limit N �� the expectation over D vanishes so we write G�w�� instead of hG�w��i
D�
� where

D� signies the innitely large training set�
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In �C���� we have employed hrE�w��rTR�w��i
D

� � which holds since rG�w�� � � as
before� Further
 for the �rst expectation in �C���� we �nd

hrE�w��rTE�w��i
D

�
�

N�

X
nn�

hre�xn�w
��rTe�xn� �w

��i
D

�C����

�
�

N
hre�x�w��rTe�x�w��i

D
�C����

�
�

N
Q � �C����

where we identify Q as Fishers information matrix �Mardia et al�
 ����
 page ���� In
�C���� we have used to fact that the error is independent between observations� Substi
tuting �C���� back into �C���� yields

h�wC�w
T

CiD �
�

N
J��Q

�
J��

�
T

*
�

N�
J��rR�w��rTR�w��

�
J��

�
T

� �C����

C�� Estimating the expected generalization error

Using the derived moments �C���� and �C���� we can compute the expected generalization
error in �C���� The Taylor expansion to second order around w� becomes

hGi
D

� hG�w��i
D

*rTG�w��h�wCiD *
�

�

�
�wT

C

��G�w��

�w�wT
�wC

�
D

�C����

� G�w�� *
�

�
tr

�
��G�w��

�w�wT
h�wC�w

T

CiD

�
�C����

� G�w�� *
�

�N
tr

�
��G�wC�

�w�wT
J��Q

�
J��

��

*
�

�N�
tr

�
��G�wC��

�w�wT
J��rR�wC��rTR�wC��

�
J��

�
T

�
� �C����

where we in �C���� assume that wC is close to w� so the second order derivative of the
generalization error is close to the second order derivative of the training error and likewise
for the regularization gradient� The gradient term in �C���� vanishes since rG�w�� � ��

C�� Estimating the expected training error

In a manner similar to �C���� we approximate the expected training error in �C��� by a
Taylor expansion to second order around w�

hEi
D

�

�
�

N

NX
n	�

e�xn�w
��

�
D

�C����

*

�
�

N

NX
n	�

rTe�xn�w
���wC

�
D

�C����

*
�

�

�
�

N

NX
n	�

�wT

C

��e�xn�w
��

�w�wT
�wC

�
D

� �C����
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For the �rst term �C���� we �nd�
�

N

NX
n	�

e�xn�w
��

�
D

� G�w�� � �C����

while the second term �C���� becomes�
�

N

NX
n	�

rTe�xn�w
���wC

�
D

�C����

� 	

�
�

N

NX
n	�

rTe�xn�w
��J��

�
�

N

NX
n�	�

re�xn� �w
�� *

�

N
rR�w��

��
D

�C����

� 	tr


J��

�
�

N�

X
nn�

re�xn�w
��rTe�xn� �w

��

�
D

�
�C����

� 	
�

N
tr
�
J��Q

�
� �C����

by using �C����� Finally
 the third term �C���� is

�

�

�
�

N

NX
n	�

�wT

C

��e�xn�w
��

�w�wT
�wC

�
D

�C����

�
�

�N
tr

�
��E�wC�

�w�wT
J��Q

�
J��

�
T

�
�C����

*
�

�N�
tr

�
��E�wC�

�w�wT
J��rR�wC�rTR�wC�

�
J��

�
T

�
� �C����

Substituting the terms back into the Taylor expansion of the expected training error we
�nd

hEi
D

� G�w��	
�

N
tr
�
J��Q

�
*

�

�N
tr

�
��E�wC�

�w�wT
J��Q

�
J��

�
T

�

*
�

�N�
tr

�
��E�wC�

�w�wT
J��rR�wC�rTR�wC�

�
J��

�
T

�
� �C����

C�� Combining the estimates

Comparing the approximated expected training error �C���� with the approximated ex
pected generalization error in �C���� most terms cancel
 leaving us with the very interesting
relationship

hGi
D

� hEi
D

*
�

N
tr
�
J��Q

�
� �C����

subject to assumptions and approximations as noted throughout this appendix� The
implication of �C���� is that the expected training error is a biased estimator of expected
generalization error� The derived generalization error estimate quanti�es the bias
 enabling
us to estimate expected generalization performance without setting aside observations in
a test set� We must keep in mind
 however
 the assumption of N being large�
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Contribution to ICNN���

This appendix contains the paper �Visualization of Neural Networks Using Saliency Maps�
�M	rch et al�
 �����
 orally presented at the ���� IEEE International Conference on Neural
Networks �ICNN���� in Perth
 Australia�

��	
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ABSTRACT

The saliency map is proposed as a new method for understanding and visualizing the non�
linearities embedded in feed�forward neural networks� with emphasis on the ill�posed case� where
the dimensionality of the input��eld by far exceeds the number of examples� Several levels of
approximations are discussed� The saliency maps are applied to medical imaging �PET�scans�
for identi�cation of paradigm�relevant regions in the human brain�
Keywords� saliency map� model interpretation� ill�posed learning� PCA� SVD� PET�

�� Introduction

Mathematical modeling is of increasing importance
in medical informatics� In bio�medical context the
aim of neural network modeling is often twofold�
Besides using empirical relations established within
a given model� there is typically a wish to interpret
the model in order to achieve an understanding of
the processes underlying and generating the data�
This paper presents a new tool for such opening of
the neural network 	black box
�
Our method is aimed at neural network applic�

ations where the network is trained to provide a
relation between huge� highly correlated� measure�
ments and simple 	labels
� The measurement could
e�g� be a spectrum� an image� or as in our particular
case a brain scan volume� The label could be a
concentration� a diagnosis etc�
In neural network applications� an important as�

pect of the training process is the architecture syn�
thesis� An architecturally optimized network sup�
plies structural information about the input �eld as
used by the model� thus giving a qualitative measure
of importance�
The output of our new procedure is a 	map


quantifying the importance �saliency c�f� ��� of each

individual component of the measurement �i�e� pin�
pixel� or voxel� with respect to the obtained empir�
ical relation� Hopefully� this so�called saliency map

will assist the modeler in interpreting the model and
in communicating the interpretation to the end�user�

In bio�medical context it is often hard �not to say
expensive� to gather large samples of data� Hence�
if modeling from high dimensional data based on
small samples� one faces an extremely ill�posed
learning problem and standard practice has been
to apply hand crafted tools �	a priori knowledge
�
for preprocessing and data reduction in order to
bring down the dimensionality of the neural net�
work� However� we have recently shown that one
may cure this extremely ill�posed problem using
straightforward linear algebra without loss of in�

formation ��� ��� The scheme achieves massive

weight sharing �� by projecting the high dimen�
sional data onto a low dimensional basis spanning
the so�called signal space of the training set input
vectors� The saliency map is an attempt to visualize
this induced geometry and the speci�c manner in
which this geometry is used by the trained network�

As a speci�c case� we consider modeling of im�
ages obtained from Positron�Emission�Tomography



���

�PET��scans which is a technique o�ering ��
dimensional volume measurements of human brain
activity� A neural network may be trained using
supervised learning on a given training set of PET�
scans ��	
 ��	� We investigate two cases
 based
on two sets of � scans each �� subjects scanned
� times�� one where the subjects perform an eye
movement task according to a graduated �paramet�
erized� paradigm ��	
 and one where they perform
a �nger opposition task ���	� In the �rst case the
network is trained to predict the paradigm gradu�
ation parameter�the frequency of the saccadic eye
movements�using the measured activation patterns
in the brain volume as input� In the latter the net�
work is trained to classify the measured activation
patterns as rest or activated �i�e� doing the �nger
opposition task�� Since the models are nonlinear

the interpretations are not straightforward� In this
particular case the saliency map can be viewed as a
tool for visualizing the regions in the brain
 which
are related most strongly to the speci�c tasks�

�� The Saliency Map

It is well�known that a�ne preprocessing ��
 ��	
can assist training and generalization signi�cantly�
A�ne preprocessing of an input vector xj �i�e� an
element of the training set of inputsX � �x� � � �xJ 	�
can be expressed as vj � B

T �xj � c�� In fact

translating by the training set averaged input vector
c � �x and computing the projection matrix B from
a diagonalization of the input covariance matrix we
may obtain vj as the principal components� of X�
For simplicity we replace xj � c with xj in the
following
 without loss of generality�

In image or volume processing
 where the number
of input channels I is often much greater than the
number of examples J 
 a transformation like above
can be used to reduce the dimensionality of the data�
representation� However
 it should be noted that
within our scheme for handling extremely ill�posed
problems the preprocessing doesn�t necessarily re�
duce the data�
 in contrast to what is often the pur�
pose when employing PCA
 but may merely trans�
form the data to a convenient �orthogonal� basis�
thus we may have rank�X� � rank��v� � � �vJ 	��
In this way we map the high dimensional input
data vector onto a much smaller data vector of
projections�hence
 enforcing relations between ele�
ments of the weights connecting input to hidden
units of the feed forward neural network
 in other
words we achieve a massive weight sharing� For a
more detailed description see ��	
 ��	� Spelled out in

�The principal components as obtained from SVD �Sin�
gular Value Decomposition�� or PCA �Principal Component
Analysis�� In either case the basis vectors correspond to the
eigenvectors of the input data covariance matrix� see ��	�

�In the sense of loosing information�

terms of the neural network this can be written


F �W �B�x� � F �W �BT
x�

�
X
a

Wa tanh
�
w

T
aB

T
x
�

���

which is now a function of the input x projec�
ted on the set of K � rank�X� basis vectors�

bk forming the basis B �
�
b� � � � bK

�
and a set

of weight parameters W � fWa�wag� The con�
strained weights are in turn optimized using a train�
ing set� T �

�
�xj � yj� j j � �� � � � � J

�
by minimizing

the cost function with respect to W

E�W �B� T � �
�

J

JX
j��

�
yj � F �W �BT

xj�
��

� ���

and we de�ne�

The saliency of input channel i �or pixel i
if x is an image vector� is the change in the
cost�function when the i�th input channel
is removed�

This removal can be thought of as changing the
basis vectors in B
 resulting in the new basis �Bi

�b
i

k�i� �

�
bk�i� i� �� i

� i� � i
���

i�e� setting the i�th component� of all basis vectors
to �� Introducing this new basis
 the model should
be retrained to yield a new set of weight parameters
�W i� The saliency of input channel i is therefore

�Ei � E� �W i� �Bi� T ��E�W �B� T �� ��

If pruning is used to eliminate the e�ect of noise
it should be applied to the full network prior to the
calculation of the saliency map
 so the retraining
after removing the individual inputs conserves the
network architecture�

Ideally one could estimate the change in general�
ization ability ���	� Such an estimate would�given
a limited amount of data�be quite inaccurate
 and
since we only want to use the saliency map for com�
paring the relative input importance
 it seems reas�
onable to consider only the change in the training
error as indicated in equation ���

Further approximations depend on the speci�c
problem� In image processing the number of in�
put channels �pixels� is often much greater than the
number of examples
 so that the computational bur�
den of the direct computation of the saliency may
be impractical� For such applications we develop

�See also section 
�� for a more detailed explanation of
the notation�

�The outputs are assumed scalar for simplicity�
�By the notation bk�i we mean the i�th element of bk�
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approximations of the saliency map using an expan�
sion of the cost function� This is further described
in section ����
Finally� let us note that the saliency map as such

is not con�ned to the ill�posed learning problem�
In more conventional neural network applications�
where the number of network inputs I is much smal�
ler than the number of examples J � the saliency
is similar to the sensitivity measure proposed in
��	
� ���
 and ��
� and to the Optimal Cell Damage
Scheme suggested in ��
� In this case the removal
of a single input may cause a notable change in the
optimal weights thus making the I network retrain�
ings essential in contrast to the ill�posed case� as
we shall see��

���� The Saliency Map in the Ill�Posed Case

As discussed a signi�cant computational reduction
can be obtained by projecting on the set of basis
vectors B spanning the signal space� S� if I � J �
It is easily seen ��
� ��
 that training in this case

preserves signal space� i�e�� if the initial weights of
a hidden unit are con�ned to signal space they will
stay there during training� This is a consequence
of the fact that the cost function is independent
of any component of the weight parameters outside
signal space� S� regardless of the basis B used for
representing the data� as long as B spans S�
After preprocessing the neural network is not fed

the actual pixel data� but the projection of the
images on the basis B� This justi�es the nota�
tion F W �BT

xj� for the model� in that the model
can be said to be working on the projected data
vj � BT

xj �

������ Approximating the Saliency Map

If the number of input channels I is large� the task
of retraining I networks�i�e� to compute �W i as im�
plied by equation 	��is immense� In this section
some approximations are presented to speed up the
computation�
The second order expansion of the cost function

with respect to the basis vectors and the weight

vector u �
�
w
T
�
� � �wT

A W� � � �WA

�T
consisting of

all the parameters in W is given by

�E �

KX
k��

�E

�bTk
�bk �

�E

�uT
�u

�
�

�

KX
k��

�bTk
��E

�bk�b
T
k

�bk �
�

�
�uT

��E

�u�uT
�u

�

KX
k��

�bTk
��E

�bk�uT
�u� ��

�We denote the space spanned by the input vectors xj in
the training set T by signal space S � spanfxjg�

where �bk is the change in the k�th basis vector� and
�u is the change in the optimal weight parameters�
due to the changed basis� If the network is fully
trained �E

�u � � so the second term vanishes��
In the ill�posed case� modeling will only be mean�

ingful if the stochastic part of the signal is highly
correlated� i�e�� the individual pixels are spatially
correlated� Thus it can be assumed that the term �u
roughly scales inversely with the number of inputs�
i�e� as ��I � We therefore neglect all terms scaling
with �u yielding

�E �

KX
k��

�E

�bTk
�bk �

�

�

KX
k��

�bTk
��E

�bk�b
T
k

�bk� ��

thus eliminating the e�ect of retraining� e�ectively
estimating �Ei � EW � �Bi� T � � EW �B� T � c�f�
equation 	�� This is in line with the Optimal Brain
Damage scheme ��
 for estimating weight saliency
and the approximation is indeed supported by the
numerical example� Since we compute the saliency
for one input channel at a time� the o��diagonal

elements of ��E

�bk�b
T

k

vanish� so we �nally get

�Ei �

KX
k��

�E

�bk�i
�bk�i �

�

�

KX
k��

��E

�b�k�i
�b�k�i� ��

For the two�layer network speci�ed in equation
��� with haj � tanh

�
w
T
aB

T
xj

�
we �nd�

�E

�bk�i
� �

�

J

JX
j��

h �
yj � F W �BT

xj�
�

�
X
a

Wa�� h�aj�wa�kxj�i

i

� �
�

J

JX
j��

ejsjkxj�i ��

where we have introduced the quantities ej � yj �
F BT

xj �W� and sjk �
P

aWa� � h�aj�wa�k� By
further invoking the Gauss�Newton approximation

 ��E

�bk�b
T

k

�
PJ

j��
�F

�bk

�F

�b
T

k

� for least squares prob�

lems� see e�g� ��
� yielding

��E

�b�k�i
�

�

J

JX
j��

s�jkx
�

j�i� ��

�If we eliminate over�tting by pruning the network� i�e�
forcing some parameters u� to �� only the remaining para�
meters u� � u n u� are optimized so that �E

�u�
� �� On the

other hand� we will generally have �E
�u�

�� �� which may cause
negative estimates of the saliency� This can be explained as
follows� If the network models from a subspace of S� called
model�space M� one might say that the basis change in �	

perturbs signal space� so that some of the noise eliminated
by pruning re�entersM� Sometimes this will allow the model
to perform better on the training set� thus yielding negative
saliencies� We therefore choose to interpret these as zero�

�Again wa�k means the k�th element of wa� and xj�i the
i�th element of xj �



���

and since we remove only one input channel in the
basis� i�e� �bk�i � �bk�i� we get

�Ei �
�

J

KX

k��

JX

j��

ejsjkxj�ibk�i�
�

J

KX

k��

JX

j��

s
�

jkx
�

j�ib
�

k�i�

��	

as the estimate of the saliency map�

�� Ill�posed Example� Modeling from

PET images

We now proceed to demonstrate the practical use of
the saliency map� Positron�Emission�Tomography
�PET
 is a way of indirectly measuring the neural
activity of di�erent regions of the human brain�
resulting in �dimensional images� As the dimen�
sion of the images is very large� a�ne preprocessing
�projection of the data on the corresponding PCA�
basis
 is applied� thus reducing the computational
requirement of the modeling�
More speci�cally� we �rst examined �� PET�

scans of � subjects� each scanned � times� exposed
to � di�erent levels of saccadic eye movement activ�
ation ���� We thus analyze J � �� image vectors of
I � ���� ���� �� � ����� voxels��
A two�layer feed�forward neural network was

trained to predict the paradigm activation level �the
frequency of the saccadic eye movements
 from the
�� �dimensional brain volumes�
An estimated saliency map was computed em�

ploying the approximation in equation ��	
� In �g�
ure � iso surfaces �surfaces of equal saliency
 cap�
turing the most salient voxels are depicted as bright
bodies �oating in a box� To help localize the salient
areas� slices of a corresponding anatomical brain im�
age �an MR scan
 are shown on the walls of the box�
with the shadows of the salient bodies projected in
black� The slices correspond to the middle of the
brain� one in each of the three dimensions�
The result is in correspondence with what has

been found using other analysis methods�e�g� Stat�
istical Parametric Mapping �SPM
� and the Scaled
Subpro�le Model �SSM
�on the same data ���� �����
The larger cluster of salient pixels� as seen in the
back of the brain� is identi�ed as the visual cortex�
To demonstrate the accuracy of the �st and �nd

order approximations of the saliency� c�f� equation
��	
� we computed the images shown in �gure ��
The �rst column shows the true change in the cost
function�� for horizontal slices through the volume
corresponding the AC�PC�� level ���mm� AC�PC�

�Of these a large portion is masked out� leaving vectors
of �only� active ����� voxels	

��Computed as the change in the cost function without

retraining �Ei 
 E�W� �Bi�T  � E�W�B�T � so that only
the e�ects of neglecting the higher order �pure� �bk terms of
�� and �� are assessed	

��Anterior Comisura � Posterior Comisura� which are eas�
ily identi�ed centers in the brain� and thus used for reference	

Fig	 �� Using the saliency map to asses paradigm related
brain regions in the saccadic eye movement task	 The most
salient voxels are depicted as iso surfaces �surfaces of equal
saliency here seen as bright bodies �oating in a box with
slices of a corresponding anatomical brain scan depicted on
the walls	 Shadows of the iso surfaces are projected in black
on the walls	 The larger cluster in the back of the brain is
the visual cortex	
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Fig	 �� From left to right� Computed saliency map� �st order�
and �nd order approximations� all for � di�erent slices of
the brain	 The slices correspond to the AC�PC level ���
mm� the AC�PC level and the AC�PC level � ��mm	 Bright
areas have high saliencies	 In the speci�c case �I 
 �����
pixels all columns are almost identical�thus validating the
approximations	 In fact� the �nd order term seems visually
negligible	

and AC�PC � ��mm� This corresponds to expand�
ing E to in�nitely high order with respect to b� The
second and third columns are the �st and �nd order
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approximations of ����� It is evident� that even the
�st order term alone is a useful approximation in
the case of I � 	
��	 voxels�

Fig� �� Saliency map of the �nger opposition task� The
most salient voxels are depicted as iso surfaces �surfaces of
equal saliency� here seen as bright bodies �oating in a box
with slices of a corresponding anatomical brain scan depicted
on the walls� Shadows of the iso surfaces are projected in
black on the walls� The salient area identi�ed is the primary

sensory�motor cortex�

Secondly� the saliency map was computed for a
neural network modeling the nger opposition task�
which involves areas of the brain controlling mo�
tion� The data has previously been analyzed in
����� Again� � subjects were scanned � times each� 

times resting and 
 times doing the nger opposition
task� Thus the paradigm is on�o� corresponding
to a problem of classication��� Figure 	 shows
the saliency map in a manner similar to gure ��
The method clearly identies the area known as the
primary sensory�motor cortex�

Further� we investigated the e�ect of the dimen�
sion of the input�eld I � on the approximation �����
For simplicity this is done on a single slice� which
is sub�sampled to yield Q � � datasets with de�
creasing I � After performing the entire modeling
procedure Q times� we measure as a function of I
the normalized mean squared error for both the �st

��Note that for classi�cation problems better optimization
schemes �costfunctions� exist	 see e�g 
���

and �nd order expansions� i�e

f��I� �

PI

i��

�
�Ec�i � �E��i

��
PI

i�� �E
�

c�i

f��I� �

PI

i��

�
�Ec�i � �E��i

��
PI

i�� �E
�

c�i

�E��i �
KX

k��

�E

�bk�i
�bk�i

�E��i � �E��i �
�

�

KX

k��

��E

�b�k�i
�b�k�i

�Ec�i � E�T �W � �Bi��E�T �W �B�

����
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Fig� �� Normalized mean squared error of the st ��� and
�nd � � � � � order approximations of the saliency� With increas�
ing input��eld dimension I	 the errors decrease�for large I

the st order approximation su�ces�

These quantities are shown in gure 
� We see
that the error introduced by the approximations de�
creases when I gets large� Further� for very large I �
the �nd order term seems negligible� This is in line
with the visual impression of gure ��
Finally� let us note that the saliency map easily

computes for linear models as well�

�� Discussion

We have proposed the saliency map as a new
method for understanding and visualizing feed�
forward neural networks� Furthermore� several
levels of approximations have been derived provid�
ing signicant computational savings� The viability
of the approach was demonstrated on a series of 	D
brain activation volumes�
Though the emphasis has been on the so�called

ill�posed case� the proposed technique can easily be



���

applied to the more standard setting� i�e� the well�
posed case�
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Figure 1. Functional activation patterns with bias-variance plots

Generalization Performance of Nonlinear vs. Linear Models for 
[ O]water PET Functional Activation Studies 15

N. Mørch , L.K. Hansen , S.C. Strother , I. Law , C. Svarer ,1,2 2 3,4 1 1

B. Lautrup , J.R. Anderson , N. Lange  and O.B. Paulson5 3 6 1

Department of Neurology, National University Hospital, Copenhagen, Denmark1

Department of Mathematical Modelling, Technical University of Denmark, Denmark2

Veterans Affairs Medical Center and the University of Minnesota, Minneapolis, USA3 4

Niels Bohr Institute, Denmark and National Institutes of Health, Bethesda, USA 5 6

Introduction. We use empirical measures of predictive performance (i.e., generalization error) to demonstrate a sig-nificant
improvement in a nonlinear model (artificial neural network, ANN) over a linear model. We obtained improved predictive
performance for the analysis of a set of 64 [ O]water PET scans of 8 subjects performing a saccadic eye-movement task15

(1). A recently developed visualization tool for ANN's, the "saliency map," provides spatial patterns for the optimized
nonlinear model (2) that may be compared with linear techniques, e.g., SSM/PCA (3).

Methods. Generalization refers to a quantitative measure of the extent to which model parameters estimated from one
(training) dataset predict the structure of another (test) dataset. Generalization may be defined for a finite training set of
functional neuroimages, x. With a label, y, attached to each neuroimage (e.g., activation/rest) the modeling problem is to
estimate the joint distribution p(x,y) expressed as a mapping between neuroimages and labels through a set of model
parameters, �. For a fixed number of neuroimages the bias-variance trade-off within a family of models relates to model
complexity. If a model is too simple (i.e., the dimension of � is too small), it is biased and makes systematic prediction errors,
whereas if a model is too complex (i.e., the dimension of � is too large), it will overfit and produce unreliable predictions.
In order to estimate generalization errors we split the saccadic scans into a training set containing 6 scans from each of the
subjects, and a test set containing the remaining 2 scans for each subject. Using the training set, families of linear models
and ANN's were estimated. Starting with a complex model, parameters were eliminated sequentially ("pruned", 4) in order
to select a model with optimal performance (i.e., minimum empirical generalization error) measured using the test set. Such
generalization error estimates are unbiased because they are based on an independent test set, and stochastic because they
depend on the training set via the estimated �. Techniques are being developed for rigorously comparing generalization error
estimates within model families. Optimized ANN models may be visualized using saliency maps, which depict the relative
importance of individual voxels in model generalization (2).

Results. In panel B of Fig. 1, the mean of the estimated
generalization error is depicted for both linear and ANN
model families. The optimal ANN performs significantly
better than its optimal linear counterpart (i.e., smallest
generalization error in lower-right graph). In panel A we
compare the optimal ANN model's saliency map with
functional activation images from SPM'95 (6) and
SSM/PCA (3). The spatial patterns are reproducible in
that all methods produce the expected visual/occipital
cortical activation, but there are important similarities
and differences between the saliency map and the other
models' patterns that need to be further investigated.

Conclusions. It is important to assess the predictive
performance of a model of functional activation based on
test data not used to estimate the model parameters. We
have shown that nonlinear artificial neural network models have better generalization performance than linear models. Our
results demonstrate that "complex" nonlinear models, such as ANN's, may have an important role to play in the analysis of
functional activation datasets.

Acknowledgements. Funded in part by Human Brain Project R01 DA092461, the Danish Research Councils for the Natural
and Technical Sciences through the Computational Neural Network Center, and the Danish Research Council for Medical
Science.
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Nonlinear versus Linear Models in Functional

Neuroimaging� Learning Curves and

Generalization Crossover

Niels M�rch���� Lars K� Hansen�� Stephen C� Strother�� Claus Svarer�

David A� Rottenberg�� Benny Lautrup�� Robert Savoy�� Olaf B� Paulson�

� Neurobiology Research Unit
Copenhagen University Hospital� Rigshospitalet

DK����� Copenhagen �� Denmark

� Department for Mathematical Modelling
Technical University of Denmark
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and
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Minneapolis VA Medical Center
Minnesota� 		
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University of Copenhagen
DK����� Copenhagen �
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Abstract� We introduce the concept of generalization for models of func�
tional neuroactivation� and show how it is a�ected by the number� N � of
neuroimaging scans available By plotting generalization as a function
of N �ie a �learning curve�� we demonstrate that while simple� lin�
ear models may generalize better for small N �s� more �exible� low�biased
nonlinear models� based on arti�cial neural networks �ANN�s�� generalize
better for larger N �s We demonstrate that for sets of scans of two simple
motor tasks�one set acquired with �O���water using PET� and the other
using fMRI�practical N �s exist for which �generalization crossover� oc�
curs This observation supports the application of highly �exible� ANN
models to su�ciently large functional activation datasets
Keywords� Multivariate brain modeling� ill�posed learning� generaliza�
tion� learning curves

� Introduction

Datasets that result from functional activation studies of the living� human brain

typically consist of two corresponding sets of observables� themicroscopic and the



���

macroscopic ����� The brains haemodynamic response� re�ecting the microscopic
neuronal �ring pattern� is measured by modern three	dimensional 
�D� imaging
techniques such as positron emission tomography 
PET� and functional magnetic
resonance imaging 
fMRI� by integrating in space and time ���� Along with the
resulting set of �D image volumes 
scans� a corresponding set of macroscopic
descriptors governs the overall conditions of the experiment� This set can include
experimentally controlled factors� such as paradigm labels and variables� and
physiological and demographic measures� such as age and heart	rate� The micro	
and macroscopic observables are generally both sets of multivariate� stochastic
variables� Arranging the microscopic variables 
the �D image volumes� in vectors
x and the macroscopic variables in vectors g a functional activation dataset D
consisting of N observations can be written as

D � f
xj �gj� j j � � � � � � Ng � 
�

Generally� we will assume the observations to be random� independent samples of
an underlying stationary process with distribution P
x�g�� As we shall see this
distribution plays a central role in the analysis of functional activation datasets
����

In the following we discuss the so	called �curse of dimensionality� that re	
sults from the extremely ill	posed nature of typical functional activation datasets
������� The problem is discussed in terms of probability density estimation and
we brie�y mention ways to remedy the inevitable over	parameterization that
otherwise occurs in modeling procedures based on such datasets ���� The main
point we hope to convey is how model generalization�as studied intensively in
other �elds dealing with probability density estimation and multivariate modeling
�����������applies to functional neuroimaging ���� and speci�cally how it is
a�ected by the number� N � of available observations�

� Models of Functional Activation Datasets

In terms of x and g the analysis of functional activation datasets can be phrased
as the estimation 
of properties� of P
x�g�� For instance� we can estimate the
conditional mean� Efxjgg� using multivariate linear models as in ���� thus e�ect	
ively modeling the expected scan from a set of macroscopic variables� Or� we
can estimate the alternative conditional mean Efgjxg� using multivariate linear
models as in ���� e�ectively modeling the expected value of a set of macroscopic
variables from the scan��

In general� we employ parameterized models of the properties we wish to
estimate� In this work we focus on models that estimate Efgjxg� Being a function
of x we denote these models f�
x�� explicitly indicating the dependency on the set
of parameters �� Parameter values are estimated using some or all of the available
data� We call such a set of data used for parameter estimation the training set�

Dtrain � f
xj �gj� j j � � � � � � Ntraing � 
��

� In fact� it can be shown that the two linear models are analogous and simple relations

between the parameters exist�
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For a given set of parameters model performance is quanti�ed using the cost

function� c�x�g� ��� which is often derived from maximum likelihood �ML� argu�
ments ���	
�	��� Parameter values are estimated by optimizing the cost function
based on the observations in the training set �we say that the model is trained�
hence the name�� Averaged over the training set this evaluates to

C�Dtrain� �� 

ZZ
c�x�g� ��Ptrain�x�g� dx dg � ���

By using the empirical density estimate Ptrain�x�g�  �

Ntrain

PNtrain

j�� ��x �
xj �g � gj� we get the so�called training error

C�Dtrain� �� 
	

Ntrain

NtrainX
j��

c�xj �gj � ��� �xj �gj� � Dtrain � ���

The choice of cost function will depend on the noise model and potential con�
straints we impose on the model outputs �e�g� to make them interpretable as
probabilities�� For more details on these issues see ���	
�	���

Equipped with a training set� a model� and a cost function we are ready to
gain knowledge about P�x�g� and� hopefully� underlying information processing
relationships in the human brain� However� several important additional issues
must be considered before attempting to build practical models� Rather than
using ��� to model Efgjxg from the observations directly we can reduce the
computational burden dramatically by taking the extremely ill�posed nature of
typical functional activation datasets into account�

��� Ill�posed Datasets

While we often include only a few descriptors in the macroscopic variables g

making them low�dimensional� the microscopic variables x that represent the
scans are often high�dimensional� Despite preprocessing that� among other things�
mask out voxels outside the brain more than �



 voxels often remain� Using I
to denote the space in which all possible observations fall �i�e�� the input space�
we have dim�I� � 	
�� The space spanned by the actual observations in the
dataset is called signal space and denoted S� Often no more than a few hundred
observations are available� so dim�S� � 	
��

Typically dim�S�� dim�I�� making S a small subspace of I� This is exactly
what characterizes extremely ill�posed datasets� In Fig� 	 an ill�posed situation
is illustrated� Input space is �D Euclidean space indicated by the dashed vectors�
With only two observations in the dataset represented by the solid vectors� signal
space is a �D subspace� i�e� a plane� The dataset does not contain information
about the parts of I that are orthogonal to S�

Because the dimension of S is low we have a correspondingly low number of
degrees of freedom available in any subsequent modeling� and naive estimation
based directly on the observation pairs �x�g� will result in strong linear relations
between the estimated parameters� the original basis in which observations in



���
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Fig� �� Illustration of an ill�posed dataset� With input space� I� being three�dimensional
�represented by the dashed vectors� the signal space� S� which is the space spanned by
the two observations in the dataset �represented by the solid vectors�� is the plane
indicated in gray� The dataset contains no information about the parts of input space
that are orthogonal to signal space because dim�S� � dim�I��

input space are represented is a poor choice when it comes to representing ob�
servations e�ciently in signal space� We can easily construct other� more e�cient
bases� however� that reduce the dimensionality of the representation without loss
of information �����	
� The only requirement is that the basis chosen spans signal
space� One particularly choice of basis is to use the observations in the dataset
themselves� Even�though e�cient in reducing an extremely ill�posed problem to
an only marginally ill�posed one bases that reveal more about the signal struc�
ture are available� In particular� a singular value decomposition �SVD� basis
��������
 has been shown to reveal an interesting subspace structure ���������
�
In the following v will denote the projection of a scan x onto an e�cient basis
that spans signal space� for more details see ���
�

��� Model Flexibility and Bias

Having reduced the extremely ill�posed dataset to a marginally ill�posed one
where the dimension of each observation� v� equals the number of observations�
it is now part of the modeling task to impose further constraints in order to avoid
over��tting� Di�erent model families approach this in various ways� by limiting
model �exibility and thus the e�ective dimensionality of the parameterization to
match the available degrees of freedom�

In the following we focus on models for classi�cation� Assuming the macro�
scopic variables to be univariate labels we seek to build models that optimally
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classify the microscopic variables�� x� into the correct classes� In other words�
we seek a decision boundary in signal space that allows the observations to be
correctly classi�ed according to their macroscopic labels� More speci�cally we
will apply two model families that di�er in model �exibility�

� Fishers Linear Discriminant
Fishers Linear Discriminant �FLD	 is a family of linear classi�er that are
based on a cost function that measures the di�erence between class means
relative to the within class variance 
����� The term linear refers to the fact
that the models are linear in the parameters which makes parameter estima�
tion straight forward� However� this relatively high bias limits the �exibility
of the relationships �decision boundaries	 that the models can implement�

� Arti�cial neural network �ANN� classi�ers
Arti�cial neural networks is a family of parameter e�cient models that deal
with the curse of dimensionality by employing nonlinearities 
���� The mod�
els are nonlinear in the parameters in contrast to FLD� This complicates
parameter estimation but makes the models less biased and allow them to
implement a much more �exible and wider range of relationships �decision
boundaries	 
������

� Generalization

Although cost functions allow us to quantify model performance the training
error in ��	 is the average over the speci�c and limited training set only� If
the distribution of observations in this set� Ptrain�x�g	� does not match the true
distribution� P�x�g	� su�ciently well the cost function value will not re�ect model
performance correctly� Rather� as training sets are often small we should use
generalization error�

G��train	 �

ZZ
c�x�g� �train	P�x�g	 dx dg � ��	

as our measure of model quality� Unfortunately this requires complete knowledge
of P�x�g	 which� of course� we do not have� Instead we can estimate generalization
either analytically 
���� or empirically 
��� The latter is often called test error

bG��train	 � C�Dtest� �train	 ��	

�
�

Ntest

NtestX
j��

c�xj �gj � �train	� �xj �gj	 � Dtest ��	

and evaluated using an independent set of observations organized in a test set

Dtest � f�xj �gj	 j j � �� � � � � Ntestg � ��	

� In practice we use v of course� thus e�ciently representing the scans using a basis

that spans signal space�



���

In ��� we have indicated how generalization error depends on the training set
via the estimated parameters �train� To eliminate this dependency we average
over training sets of size Ntrain to yield the expected generalization error

ENtrain
�G� �

Z
G��train�P�DNtrain

� dDNtrain
� ���

which can be estimated empirically by using the test error in ��� to estimate
G��train�� Clearly	 using a set of the available observations to independently
estimate generalization reduces the number of observations left for training� The
optimal split of the available data into training
 and test sets constitutes a non

trivial problem that has been studied in the context of ANN�s and statistical
re
sampling techniques ��� In the remainder of this paper we will �x the size
of the test set as well as the observations therein to allow measures of model
performance that are unbiased�or at least comparable between di�erent model
families�

��� Learning Curves and Generalization Crossover

Using generalization we are now ready to investigate how the number of observa

tions in the training set	 Ntrain	 a�ects model performance� We hypothesize that	
as Ntrain increases	 generalization error will decrease� This downwards slope of
the so
called learning curve is caused by the improved estimates of P�x�g� �on
which the models are based� that increasingly larger training sets provide�

For a given model family the learning curve will eventually �atten out as ad

ditional observations no longer improve model performance due to limitations in
the models themselves� This naturally leads to the further hypothesis that learn

ing curves look di�erent for di�erent model families� Models that are very �ex

ible typically need many examples to obtain stable parameter estimates� These
models will in return generalize very well� In contrast	 the implicit constraints
in highly biased models enable them to obtain stable parameter estimates from
fewer observations� However	 they may not generalize as well as their more �exible
counterparts� Thus	 while generalization error is highest for very �exible models
for small training sets	 it decreases to a lower level than for highly biased	 less
�exible models as Ntrain increases� This means that a generalization crossover

occurs at which point the data support the use of the more �exible models� The
situation is illustrated in Fig� ��

� Methods

To estimate learning curves data from two functional activation studies	 both
involving simple motor tasks	 was used�

��� �O���Water PET Scanning

A set of �� subjects were each scanned � times using a Siemens
ECAT ���B
PET scanner while alternately resting and performing a simple �nger opposition
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Fig� �� Model generalization as a function of number of observations� Ntrain� used to

estimate model parameters� Generalization error decreases with increasing Ntrain for

both highly �exible and more biased models� The decrease is more rapid for the latter�

whereas the former reaches a lower level for large values of Ntrain� At the point of

generalization crossover enough data is available to support the use of more �exible�

low�biased models�

task with their left hand ����� For each subject four scans were acquired in each
of the two states yielding a total of ��� scans�

Before scanning �O���water was automatically injected in the subjects right
arm leaving the left arm free to perform the task� With the eyes covered by a
patch an auditory timing signal was delivered by insert earphones�

For baseline �rest	 scans
 subjects were instructed to lie still and remain
awake� they received no stimulation� For motor activation scans
 the subjects left
arm was positioned perpendicular to the scanning couch� At the start of the injec�
tion
 the timing signal was initiated and the nger�thumb opposition task contin�
ued for �� s� The nger�thumb opposition task consisted of sequential opposition
of the thumb and successive digits
 and back again ��� �� �� �� �� �� �� �� �� � � �	 at a
rate of � Hz�

PET scanning commenced when the radioactive material reached the brain

typically ����� s after injection
 and data acquisition continued for �� s� Each
scanning session consisted of eight �� s PET scans separated by �� min rest
periods to allow for O�� decay
 for a total experimental time of approximately
�� min� The rst
 third
 fth
 and seventh scans were acquired in the baseline
state
 and the second
 fourth
 sixth
 and eighth scans were acquired in the activ�



���

ated state� Scans corrected for randoms� dead�time� and attenuation� but not for
scatter� were reconstructed using �D �ltered back�projection�

��� fMRI Scanning

A single subject performing a left�handed �nger�to�thumb opposition task was
scanned during eight ��	 s runs� In each run 
� baseline� 
� activation� and

� baseline whole brain echo planar scans were acquired �
�s�scan� with an
interslice distance of � mm and an in plane voxel resolution of ��� � ��� mm��
This yielded a total of �� scans� During activation the task was timed with an
auditory signal at a rate of � Hz�

��� Scan Alignment and Preprocessing

The PET and fMRI scans were intra�subject aligned using AIR �Automated
Image Registration� �
�� and only the PET scans were then stereo�tactically
normalized to a simulated PET reference volume in Talairach space �
� using the
�
 parameter linear transformation described in �
�� �see �

� for more details��
This yielded scans with �� slices� inter�slice distance of ��� mm and in plane
voxel resolution of ���� ��� mm�� After masking out voxels outside the brain an
SVD basis was computed based on the entire� set of scans�

��� Modeling

After normalizing the singular vectors� v� to zero mean and a standard deviation
of one� a �xed test set was randomly selected ��		 for the PET data and 
		 for
the fMRI data�� The remaining observations were utilized to yield training sets of
increasing size� A number of training sets of each size �
 for the PET data and 
	
for the fMRI data� were randomly sampled with replacement� from the singular
vectors� For each of the resulting training sets a linear �FLD� and a nonlinear
�ANN� classi�er were estimated� Model performance was then assessed using
the �xed test set� The linear and nonlinear classi�ers are based on di�erent cost
functions� so to allow a quantitative comparison generalization was measured as
the mean misclassi�cation on the independent test set�

� Results

Figure � depicts the learning curves for the linear and nonlinear classi�ers on
the PET data� The two curves are slightly o�set horizontally to better show the

� Basing models on an SVD of the entire set of observation limits results from gen�
eralization measures to the speci�c set of subjects in the PET case� and the speci�c
subject in the fMRI case� Thus� generalization error does not implicate the extent to
which models generalize to subjects other than those included in the datasets�

� Estimators based on sampling with replacement �also known as bootstrapping�� where
the same observation may appear more than once in the same sample� are asymptot�
ically central �	
�however counter�intuitive this may seem�
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error�bars that indicate one standard deviation of the mean for each training

set size� As hypothesized both learning curves decrease� The nonlinear classi�er
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Fig� �� For an �O���water PET study of a simple �nger opposition task model general�
ization �measured as the mean misclassi�cation on an independent test set� is plotted
as a function of number of observations� Ntrain� used to estimate model parameters	
Generalization error decreases with increasing Ntrain for the linear as well as the non�
linear classi�ers	 However� generalization error decreases more rapidly and settles at
a higher level for the linear classi�er than for its nonlinear counterpart	 Thus� for this
task linear classi�ers seem optimal for small datasets	 As more observations become
available we are better o
 using the more �exible nonlinear classi�ers	

seems to generalize worse for small training sets but perform relatively better as

Ntrain increases� Indeed� a generalization crossover occurs for training sets with

around �� examples� and as Ntrain increases further generalization error for the

nonlinear classi�er settles at a lower level than that of its linear counterpart�

For the fMRI dataset Fig� � shows a similar picture� Again the learning curves

for the linear and nonlinear classi�ers cross as the number of observations in the

training set is increased� Thus� for small training sets we can not reject the linear

model�

� Discussion

We have introduced a general framework for the analysis of functional activation

datasets� In this framework the extremely ill�posed nature of typical datasets
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Fig� �� For an fMRI study of a left�handed �nger�to�thumb opposition task model
generalization �measured as the mean misclassi�cation on an independent test set�
is plotted as a function of number of observations� Ntrain� used to estimate model
parameters� Generalization error decreases with increasing Ntrain for the linear as well
as the nonlinear classi�ers� However� generalization error decreases more rapidly and
settles at a higher level for the linear classi�er than for its nonlinear counterpart� Again�
the linear classi�ers can not be rejected for small datasets� As more observations become
available we are better o� using the more 	exible nonlinear classi�ers�

imposes an immense computational burden on any modeling procedures� We have
shown how a simple coordinate transform reduces data representation without
loss of information� thus minimizing the computational load�

The importance of not measuring model performance on the same set of
data used to estimate the model parameters has been stressed� and we have
sketched how independent test sets provide empirical estimates of generalization�
We have hypothesized how generalization error decreases as more observations
become available for parameter estimation� Decreasing learning curves satisfying
our hypothesis have been demonstrated on two functional activation datasets of
PET and fMRI scans of subjects performing simple motor tasks�

By employing model families that di�er in �exibility we have further shown
the e�ect of model �exibility on the slope of the learning curves� For the studied
tasks we have identi�ed generalization crossovers� at which point enough ob�
servations are available to support the use of a more �exible� nonlinear model�
We believe this to have implications for the future of modeling in functional
neuroimaging� as more and more data become available the support for more
sophisticated and �exible models increase� While introducing problems of their
own 	by e�g� not being linear in their parameters
� these models can potentially
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lead to increased knowledge of the systems that govern information processing

in the living� human brain�
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