17 CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Hardware Learning in Analogue VLSI Neural Networks

Lehmann, Torsten; Bruun, Erik

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lehmann, T., & Bruun, E. (1995). Hardware Learning in Analogue VLSI Neural Networks. Kgs. Lyngby,
Denmark: Technical University of Denmark (DTU).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13738060?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/hardware-learning-in-analogue-vlsi-neural-networks(c961a1be-46f5-4d7f-b6c2-876f0188263f).html

ELECTRONICS <A
]
INSTITUTE g

Hardware Learning in
Analogue VLSI

Neural Networks

A thesis by

Torsten Lehmann

In partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

==

September 1994

Technical University of Denmark

DK-2800 Lyngby, Denmark

Page 11

Typeset using TEX
(plain format ver. 3.1415N,

PhDMac ver. 1.31 by TL)

Edition 1.03

Copyright (¢) 1994
Torsten Lehmann
All rights reserved

Page 111

Abstract

English

In this thesis we are concerned with the hardware implementation of learning al-
gorithms for analogue VLSI artificial neural networks. Artificial neural networks
(ANNSs) are often successfully applied to problems for which no algorithmic solution
exist, but can be described by examples. ANNs are fault tolerant and parallel of
nature; analogue VLSI is a technology that can efficiently exploit these properties
providing high performance systems. Analogue VLSI implementations of recall
mode ANNs are maturing, but the equally important problem of implementing
programming (or learning) hardware for these is still in its infancy.

We shall present the analogue VLSI implementation of two supervised, gra-
dient descent learning algorithms for ANNs: the error back-propagation learning
algorithm (BPL) for layered feed forward ANNs and the real-time recurrent learn-
ing algorithm (RTRL) for general recurrent networks. Both algorithms teach a
cascadable analogue VLSI chip set for ANNs which we shall also describe. This
chip set use simple capacitive weight storage with a digital RAM back-up memory.
The BPL algorithm is implemented on-chip based on a novel bidirectional prin-
ciple resulting in a very modest hardware increase compared to the recall mode
system. The RTRL algorithm is implemented as add-on hardware to the recall
mode system, using a compromise between computational speed and hardware
consumption. The implementations of several algorithmic variations are also con-
sidered (eg. weight decay and momentum). Results from measurements on the
fabricated chips are presented as well as measurements on a recall mode system.

We display the novel category of gradient descent like algorithms, non-linear
gradient descent, which are better suited for hardware implementations than or-
dinary gradient descent; both in terms of accuracy and hardware consumption.
Further, we argue that ANN ensembles should be used to improve performance
of analogue neural systems. Also included are novel considerations on analogue
computing accuracy, offset compensation, derivative computation, analogue mem-
ories, network topologies, process parameter dependency canceling, and learning
in systems with RAM back-up, among other things.

We conclude that though the technology is promising for implementing learn-
ing algorithms much research is still needed; both at a algorithmic level and at a
implementation level.

Abstract Page iv

Dansk

I denne athandling skal vi beskaeftige os med hardware implementeringer af indlee-
ringsalgoritmer til analoge VLSI kunstige neurale netveerk. Kunstige neurale net-
veerk (artificial neural networks, ANNs) er ofte med held brugt pa problemer for
hvilke der ikke eksisterer nogen lgsningsalgoritme, men som kan beskrives ved
hjeelp af eksempler. ANNs er af natur fejltolerante og parallelle; analog VLSI er en
teknologi, som effektivt kan udnytte disse egenskaber til implementering af syste-
mer med stor ydeevne. Analog VLSI implementeringer af fast-programerede ANNs
er ved at modnes, men det ligesa vigtige problem at implementere programerings
(eller indleerings) hardware til disse er stadig i sin speede begyndelse.

Vi skal her praesentere analoge VLSI implementeringer af to overvagede, gradi-
ent nedstignings indleeringsalgoritmer til ANNs: “Error back-propagation” indlae-
ringsalgoritmen (BPL) til lagdelte netveerk uden tilbagekobling samt “real-time re-
current learning” algoritmen (RTRL) til generelle, tilbagekoblede netveerk. Begge
algoritmer opleerer et kaskadekoblet, analogt VLSI chipsaet til ANNs, som vi ogsa
skal beskrive. Dette chipsaet benytter et simpelt kapacitivt veegtlager med en dig-
ital RAM hukommelse til vaegtopfriskning. BPL algoritmen er baseret pa et nyt
bidirektionelt princip og implementeres internt pa ANN chipsaettet ved brug af
ganske lidt ekstra hardware. RTRL algoritmen implementeres med extern hard-
ware og som et kompromis mellem beregningshastighed og hardware forbrug. Im-
plementeringer af forskellige varianter af algoritmerne bliver ogsa overvejet (fx.
veegt henfald og moment). Resultater fra malinger pa de fremstillede chips vil
blive praesenteret, savel som malinger pa et system baseret pa ANN chipsattet.

Vi fremviser den ny kategori af gradient nedstignings lignende algoritmer, ikke-
lineaer gradient nedstigning, som er bedre egnet til hardware implementeringer end
seedvanlig gradient nedstigning; bade med hensyn til praecision og hardware for-
brug. Endvidere papeger vi at ANN “ensembles” bgr benyttes for at forbedre
ydeevnen af analoge neurale systemer. 1 teksten praesenteres ogsa nye overve-
jelser angaende, blandt andet, preecision af analoge beregnende enheder, offset
kompensering, differentialkvotient beregning, analoge hukommelser, netvzerks to-
pologier, udligning af proces-parameter atheengighed, og indlzering 1 systemer med
RAM opfrisknings hukommelse.

Vi konkluderer at, selvom teknologien er lovende for implementering af indlee-
ringsalgoritmer, er megen forskning stadig ngdvendig; bade pa et algoritmemeessigt
niveau samt pa et implementeringsmeessigt niveau.

Page v

Preface

The present thesis is a partial fulfillment of the requirements for the degree of
Doctor of Philosophy (licentiatgraden, Philosophiae Doctor, Ph.D.). The work was
carried out at the Electronics Institute, the Technical University of Denmark, and
was funded on a scholarship from the Technical University of Denmark. Professor
Erik Bruun of the Electronics Institute was supervisor.

I have tried to make this thesis a coherent presentation of hardware learning in
analogue VLSI neural networks — though by no means exhaustive. This has made
it necessary to include work that is not entirely my own and I will state it clearly
whenever this is the case. In particular, my fellow Ph.D. student, John Lansner,
was responsible for large parts of the work in implementation of neural networks.
Thomas Kaulberg was responsible for the op-amps (and current conveyors) used on
the chips. A Masters student of mine, Jesper Schultz, did much of the work on the
sparse input synapse chip architecture. Finally, John Hertz, Benny Lautrup and
Anders Krogh were responsible for the development of non-linear back-propagation.
I have tried to refer other authors whenever possible; what is not refered (apart
from well known matters) is, for most parts, my own work. Some people will
undoubtedly find parts of the text provocative (eg. when I argue that one should
refrain from using floating gate memories for synapse strengths) — please do not
take offense, it is by no means a mark of disrespect of other peoples work; merely
personal views (as well as a deliberate attempt to provoke which I think is sound
for development in any field of research).

Regarding the layout of the thesis: Disgracefully (some would say) I have the
habit of using parenthesis quite often. Note that often they act like subordinate
clauses; their contents being important. Figure- and equation numbers, which are
globally enumerated, carry chapter labels as superscripts for the ease of location
(as figure 37* and (9*)). In most places references to other peoples work (as
Sanchez-Sinencio and Lau [206]) are incomplete in the sense that only a few of the
relevant references are displayed; references that cover material related to the text
are usually preceded by “cf.” or “se also”. [talics font are used for emphasis and
for concepts that are found in the index. T use “we” as as the personal pronoun
throughout the thesis as I think this eases reading.

The thesis is organized as follows:
In the wntroduction, the field of analogue VLSI neural networks, including
hardware learning, is briefly introduced. Motivations for the research are given

Preface Page vi

and the objective of the thesis is defined.

In the implementation of the neural network chapter, the neural network ar-
chitecture that will make the basis of the rest of this thesis is presented. The results
of the chip-in-the-loop training also serves as a standard of reference for on-chip
learning implementations.

In the preliminary conceptions on hardware learning chapter, the choices of
learning algorithms for implementation are considered and I elaborate on general
considerations on hardware learning.

In the implementation of on-chip back-propagation chapter, the first hardware
learning system is described. It is based on a simple, but elegant, idea and was
meant to be just a minor part of the thesis (my initial work was that of implementing
RTRL). As it turned out, however, there was a lot of hard work involved in verifying
this simple idea (work worth at least 1% vears). The work has borne fruit, though,
in several paper invitations.

The second hardware learning system is described in the implementation of
RTRL hardware chapter. The system architecture of this work was developed
during my studies for the Masters degree. As for the first system, there was a
lot of hard work involved in the implementation and testing of the experimental
system. A work that is not complete at the time of writing.

In the thoughts on future analogue VLSI neural networks chapter, I have col-
lected some odds and ends of the field which did not fit into the other chapters:
During my Ph.D. study, a lot of ideas have come to my mind on network architec-
tures, subcircuits, learning algorithms, etc. Also, I have formed my own personal
opinion on several matters. These thoughts are not all mature; however, I find it
important to propagate this information to the scientific community in order that
other scientists can benefit from the ideas.

Finally, in the last chapter, conclusions, the conclusions are drawn. In this
section, I have tried to emphasize what is my own contributions to science (denoted
by “we” or “our”).

The appendices hold material that is of interest mostly to the meticulous
reader.

The enclosures hold material that is of interest only to the reader who want
to carry on my work; and they serves as documentation for my work.

Being organized in a project oriented way, many considerations are placed
in the bulk of the text, where it is used, for readability rather than being orga-
nized in a logical manner. I hope the index will prove adequate for locating such
considerations.

Lyngby
September 1994

Torsten Lehmann

Page vii

Acknowledgements

I should like to thank the analogue integrated electronics group at the Electron-
ics Institute for valuable discussions during this work; in particular, Gudmundur
Bogason, Erik Bruun, Thomas Kaulberg, John Lansner and Peter Shah. Thanks
to the members of CONNECT for discussions on neural networks; especially Lars
Kai Hansen and Anders Krogh. Also, thanks to Ole Hansen of the Mikroelek-
tronik Centeret who was always ready with answer and a helping hand. Thanks
to Mogens Yndal Petersen of the Electronics Institute for the layout and solder-
ing of numerous PCBs. Thanks to the DTU EUROCHIP staff who endured many
questions and pushed deadlines during chip manufacturing.

Thanks to Peter A. Toft, John A. Lansner, Lars Kai Hansen, Thomas Kaulberg

and Gudmundur Bogason for valuable criticism of the thesis.

Finally, thanks are due to the Danish Technical Research Council, the Danish
Natural Science Council and Analog Devices, Denmark for financial support.

Page viu

Contents

Abstract iii
Preface v
Acknowledgements vii
Contents viii
Abbreviations xii
Symbols xiv
List of figures xvii
Chapter 1, Introduction 1
1.1, Implementing ANNs in analogue hardware 2

1.2, Implementing learning algorithms in analogue hardware 5
Chapter 2, Implementation of the neural network 7
2.1, The artificial neural network model 8
2.1.1, The neurons e 8

2.1.2, The network i 9

2.2, Mapping the algorithm on VLST 10
2.2.1, Architecture 10

2.2.2, Signalling 13

2.2.3, MEMOTIES .ottt e e e e 15

2.2.4, Multipliersooiii 20

2.2.5, Activation functions 26

2.3, Chip design ... e 28
2.3.1, The neuron chip ... et 29

2.3.2, The synapse chip i i 31

2.3.3, Sparse input synapse chip i 34

2.4, Chip measurementsouuuu ettt 36
2.4.1, The neuron chip ... i e 36

2.4.2, The synapse chips i i 37

2.4.3, Chip compound 38

2.5, System desi@n 39

2.6, System measurementsttt 40

2.7, Further work 42

Contents

2.7.1, Process parameter dependency canceling
2.7.2, Temperature compensation
2.7.3, Other improvements,
2.8, SUINIMATY ..ttt ettt ettt e e e e

Chapter 3, Preliminary conceptions on hardware learning

3.1, Hardware consumptionoiiiiiiieieennnnnn..
3.2, Choice of learning algorithms
3.2.1, Gradient descent learning
3.2.2, Error back-propagation L
3.2.3, Real-time recurrent learning
3.3, Hardware considerations,

Chapter 4, Implementation of on-chip back-propagation

4.1, The back-propagation algorithm
41,1, BasICS ot
4.1.2, Variatlonsuuiiiiiin i

4.2, Mapping the algorithm on VLST
4.2.1, Hardware efficient approach

4.3, Chip design
4.3.1, The synapse chip o i i
4.3.2, Theneuron chip

4.4, Chip measurementsoouiiiiiiieenn e,
4.4.1, The synapse chip i ...
4.4.2, The neuron chip i ..
4.4.3, Improving the derivative computation

4.5, System design ...
4.5.1, ASIC interconnectioncciiiiiiiiii...
4.5.2, Weight updating hardware

4.6, Non-linear back-propagation
4.6.1, Derivation of the algorithm
4.6.2, Hardware implementation

4.7, Further work
4.7.1, Chopper stabilizing i
4.7.2, Including algorithmic improvements
4.7.3, Other improvements,

4.8, SUIMIMATY oottt ettt e e e e

Chapter 5, Implementation of RTRL hardware

5.1, The RTRL algorithm oo i i,
5.1.1, Basics oo
5.1.2, Variations

5.2, Mapping the algorithm on VLST
5.2.1, System simulations i

5.3, Chip design ...
5.3.1, The width N data path module signal slice
5.3.2, Auto offset compensation

Contents Page x

5.4, Chip measurementsttt 106

5.5, System design 107
5.5.1, ASIC interconnectionc.eeeeieiiiiiiieeenennn. 109

5.5.2, The width 1 data path module 110

5.5.3, The interface 111

5.5.4, Algorithm variations i i 112

5.6, Non-linear RTRL ... e 113
5.6.1, Derivation of the algorithm 113

5.6.2, Hardware implementation iiii... 114

5.7, Further work o 115
5.7.1, Continuous time RTRL system 116

5.7.2, Other Improvementsouiiiiiiiiiiiieeiainn.. 117

5.8, SUINIMATY .« .ttt ettt e et e e e et e 117
Chapter 6, Thoughts on future analogue VLSI neural networks 119
6.1, Gradient descent learning? i i 120

6.2, Neuron clusteringo.iniiiiii i 121

6.3, Self refreshing system i i 123
6.3.1, Neural network ensembles 123

6.4, Hard /soft hybrid synapses ..., 127
Chapter 7, Conclusions 128
Bibliography 133
Index 154
Appendix A, Definitions 164
Appendix B, Artificial neural networks 166
B.1, The ANN model e 167
B.2, Applications and motivations i 169
B.3, Teaching ANNs ... 170
B.3.1, Gradient descent algorithms 170

B.4, Performance evaluation i 172
Appendix C, Integrated circuit issues 174
C.1, MOS transistorst e 174
C.2, Bipolar transistorsoueiiiii e 177
C.3, Analogue computing accuracycooueeieiieniiiiiieea... 178
C.4, Integrated circuit layout 180
Appendix D, System design aspects 183
D.1, The scalable ANN chip set, 184
D.1.1, The synapse chips ... 185

D.1.2, Chip set Improvementseeeeeiiiiinneeeeannn. 187

D.2, The on-chip back-propagation chip set 189
D.2.1, The back-propagation synapse chips 189

D.2.2, The back-propagation neuron chips 191

D.2.3, The scaled back-propagation synapse chips 196

Contents Page xi

D.2.4, Back-propagation chip set improvements 197

D.3, The RTRL chip ... e 198
D.3.1, RTRL chip improvementsooiiiuiieiiniiin... 203

D.4, The RTRL /back-propagation systemccooein... 204
Appendix E, Building block components 205
E.1, The op-amp and the CCII+ i i 205
E.2, The transconductor, 208
E.3, MOS resistive Circultou et e 209
Enclosure I, Published papers E1
Enclosure 11, Chip photomicrographs E 68
Enclosure III, Test PCB schematics E 74

Enclosure IV, RTRL/back-propagation system interface E 108

Abbreviations

AC
A/D
ADC
ANN
ASIC
BiCMOS
BJT
BPL
CCII
CCo
CMOS
CPS
CUPS
D/A
DAC
DC
DNA
DSP
EEPROM
FLOPS
FSM
GCPS
GCUPS
IPM

IS

ISA
LBM
LSB
MCPS
MCUPS
MDAC
MFLOPS
MLP
MOS
MOSFET

Alternating Current

Analogue/Digital

Analogue to Digital Converter
Artificial Neural Network

Application Specific Integrated Circuit
Bipolar/Complementary MOS integrated technology
Bipolar Junction Transistor
Back-Propagation Learning

Current Conveyor of second generation
Current Controlled Oscillator
Complementary MOS integrated technology
Connections Per Second

Connection Updates Per Second
Digital / Analogue

Digital to Analogue Converter

Direct Current

DesoxyriboNucleic Acid

Digital Signal Processor

Electrical Erasable Programmable ROM
FLoating-point Operations Per Second
Finite State Machine

Giga CPS

Giga CUPS

Inner Product Multiplier

Input Scale

Industry Standard Architecture
Lateral Bipolar Mode

Least Significant Bit

Mega CPS

Mega CUPS

Multiplying DAC

Mega FLOPS

Multi Layer Perceptron

Metal Oxide Semiconductor

MOS Field Effect Transistor

Page xu

MOST
MPC
MPW
MRC
mRNA
MSB
MVM
NARV
NLBP
NLRTRL
NLSM
OBD
OR
PC

PC AT
PCB
PFM
PLA
PSRR
PWM
RANN
RAM
RGC
RNA
ROM
RTRL
SAR
TTL
uv
VLSI
WSI

Abbreviations

MOS Transistor (MOSFET)

Multi Project Chip

Multi Project Wafer

MOS Resistive Cell

Messenger RNA

Most Significant Bit
Matrix-Vector Multiplier
Normalized Average Relative Variance
Non-Linear Back-Propagation
Non-Linear RTRL

Non-linear Synapse Multiplier
Optimal Brain Damage

Output Range

Personal Computer

IBM PC AT type compatible computer
Printed Circuit Board

Pulse Frequency Modulation
Programmable Logic Array

Power Supply Rejection Ratio
Pulse Width Modulation
Recurrent Artificial Neural Network
Random Access Memory
Regulated Gain Cascode
RiboNucleic Acid

Read-Only Memory

Real-Time Recurrent Learning
Successive Approximation Register
Transistor-Transistor Logic

Ultra Violet

Very Large Scale Integration
Wafer Scale Integration

Page xiu

Page xiv

Symbols

A list of the less commonly used symbols appearing in the thesis is given here. For
standard symbols refer to the literature (eg. Geiger et al. [77], Hertz et al. [95] or
Sanchez-Sinencio and Lau [206]).

As index: index runs over all possible values.

Vector multiplication by coordinates (§ @ ¢ = [£1¢1,&2C2, - J5).
Convolution operator.

As Superscript: ¢P¢: bit number ¢ of (.

Number of bits; B¢ is a B bit discretization/resolution of . Also band-
width.

Memory necessary to store &.

MOS gate oxide capacitance per unit area.

Neuron target value.

Non-linearity of £.

Accuracy of &.

Normalized average relative variance error measure.

Neuron activation function; also as vector of scalar functions, g(s).

ANN weight (neuron) index, 1 € U.

Set of ANN input indices (m).

Maximal signal current.

ANN input/output index, j € TUU.

Cost function (instantaneous), eg. quadratic (Jq) or entropic (Jg).
Total cost function.

ANN neuron index, k € U.

pfj (index k) RTRL chip access variable.

MOST process transconductance parameter (pCoy).

Number of layers in ANN. Also MOST channel length.

Sometimes used non unit-less for bit absolute measures.

ANN layer number (often indexing as superscript), l € {1,2,..., L}.
Geometric device size offset (eg. on L). et output
ANN input index, m € I.

Number of inputs in ANN.

Symbols

Number of inputs to neuron k.

Number of neurons in ANN.

Number of letters in input alphabet A.

Number of epochs ANN is trained.

In most places implicitly “order of N”: O(f(N)).
Number of networks in ANN ensemble.

Number of neurons in layer [of ANN.

As index: offset error.

Neuron derivative variables for RTRL.

Neuron derivative variables for non-linear RTRL.
As index: resolution.

Dynamic range.

Neuron net input; also as vector, s.

Time. Often unit less.

Propagation delay when calculating €.

Set of neuron indices (k) for which a target exist.
Learning cycle time.

Training epoch; ¢t € T, when training.

Indicates if k € T (T, =1 <=k € T).

Set of neuron indices (k).

Maximal signal voltage.
Thermal voltage: Vi = kT'/q.
MOSFET threshold voltage.

Page xv

Connection strength from input/neuron j (layer [— 1) to neuron ¢ (layer

[); also as matrix, w.

w without the columns corresponding to the inputs.

Connection strengths arranged as vector.

; Connection strength change.

Connection strength change threshold.
MOST channel width.
Input to ANN; also as vector, .

Neuron activation; also as vector, y.

Neuron input: ANN input or neuron activation; also as vector, z.

BJT forward emitter-collector current gain.
Learning momentum parameter.

NLBP domain parameter.

MOSFET transconductance parameter: 3 = W/L - uCoy.
Activation function steepness (3; = 89(3)/83‘8:0).

Derivative or Fahlman perturbation.

Weight strength error for back-propagation; also as vector, §'.

Symbols Page xvi

6%, NLBP weight strength error.
d¢ Droop rate of sampled signal (eg. weight drift in mV/s).
€k, €, Neuron activation error; also as vector, e.
€dec Weight decay parameter.
¢ General quantity (“random” variable) or free running index.
n ANN learning rate. Also neuron specific, ny.
O+ Neuron threshold.
A (Weight) restoration efficiency.
i Carrier surface mobility.
¢ General quantity (“random” variable) or free running index.
oy Current mismatch: standard deviation compared to reference device.

o¥ Neuron net input derivative variables for RTRL.

ij
¢¢ Clock phase €.

Generally, the rules below are obeyed, though deviations do appear. Not all differ-
ent kinds of signals are distinguished by the rules; the context in which a symbol
appear must supply this lack of information. The lack of a consistent, usable
standard necessitates this unfortunate “definition”.

For electrical signals, the case of the symbol indicates whether it is a DC signal
or an AC signal. For the first case (bias voltages, quiescent currents, etc.) we use
upper case letters, eg. Ipias; for the second (small signal quantities, instantaneous
values, etc.) we use lower case letters, eg. isignal.

The font of the subscript indicates if the subscript refer to another symbol (italics,
eg. vy) or if the subscript is descriptive (roman, eg. voyt)-

The case of a descriptive index usually indicates whether this is an compound
abbreviation (upper case, eg. vgg) or not (lower case, eg. vofs).

Page xvii

List of figures

Figure 1%, Expandable neural networkoooiiiiiiiiiiiin. .. 11
Figure 2%, Expandable recurrent neural network 12
Figure 3%, Reconfigurable neural networkoooiiiii... 13
Figure 4%, Typical electronic SYynapseou.eeeeeeeieeeieaeiiin, 14
Figure 5%, Capacitive SEOFAZE oerr e e e 15
Figure 62, Floating gate MOSFEToiiiiiiiii i, 17
Figure 7%, MOS Gilbert multipliercooooiriiiiii e, 22
Figure 82, MOS resistive circuit multiplier i.. 23
Figure 9%, MRC resistive equivalentooouiiuieeieiieiieniin, 23
Figure 10%, Multiplying DAC SYLaPSEovneniie e 24
Figure 11%, Simple non-linear synapse multiplier 25
Figure 12%, Weight-output characteristic of NLSM 25
Figure 13%, Pulse freqUency meUrOnouueeeu e 26
Figure 142, Distributed neuronc..oouiieiiiiiaeiiiaain, 27
Figure 15%, Hyperbolic tangent Neuroncoeueeueeeuieeeenenon.. 30
Figure 16%, Inner product multiplier 32
Figure 177, Synapse schematicoiruee it 33
Figure 18%, Current conveyor differencer o iiiiiiii... 33
Figure 19%, Nucleotide SEqUENCEt 35
Figure 20%, Sparse input synapse chip columnccoiiiiiiii.. 35
Figure 21%, Measured neuron transfer function 36
Figure 22%, Measured synapse characteristicscoouieiieeeii.... 37
Figure 23%, Measured synapse-neuron transfer characteristics 38
Figure 24%, Measured synapse-neuron step reSponse 38
Figure 25%, Two layer test perceptronoiueiiieiiieiieaniaai, 39
Figure 26%, Test perceptron system architecture 39
Figure 277, Sunspot predictionoeeee oo, 40
Figure 28%, Sunspot learning errorcouueiueeeriaeieaaaai. 41
Figure 292, Sunspot prediction errorooeeiiiiiiiiiii i 41
Figure 30%, Non unity e-c current gain canceling 43
Figure 31%, General process parameter canceling circuit 43
Figure 32*, Schematic back-propagation Synapsecooeeeiii.. 62
Figure 33*, Schematic back-propagation neuron 62
Figure 34*, MRC operated in forward modeccooiiiiiii.. 64

Figure 35*, MRC operated in reverse modecc.coiiiiiiiiiiiin, 64

List of figures Page xviii

Figure 36*, Back-propagation SySteImiiuiiiniiiiiaeaaa. .. 65
Figure 37%, Second generation synapse chipoiiuiiiiiiiiei... 67
Figure 38, Second generation hyperbolic tangent neuron 68
Figure 39%, Back-propagation mEeUTOnoiriir e 69
Figure 40*, Forward mode synapse characteristics 71
Figure 41*, Reverse mode synapse characteristics 71
Figure 42*, Forward mode weight offsetsc.c.oooiiiiii.. 72
Figure 43*, Reverse mode weight offsetsc..oiieiiiiiiiiin. 72
Figure 44", Forward mode neuron characteristics 73
Figure 45*, Computed neuron derivativecoiiiiiiiiiii ... 73
Figure 46, Different neuron transfer functions 73
Figure 47, Different neuron non-linearitiescoooiiii... 73
Figure 48*, Different parabola transfer functions 74
Figure 49*, Different parabola non-linearitiescccooiiiiii.. 74
Figure 50*, Neuron sampler droop rateoiuiiiniiiieinaiiii.. 74
Figure 51*, Differential quotient derivative approximation 76
Figure 52*, Back-propagation ANN architecturec.ooooo.... 78
Figure 53*, Digital weight updating hardware principle 79
Figure 54, NLBP training errorcoeeueeeieeeiaeeaaeaaann... 81
Figure 55, Continuous time non-linear back-propagation neuron 83
Figure 56*, Discrete time non-linear back-propagation neuron 84
Figure 57*, Neuron activation block schematicocooiun.... 85
Figure 58*, Simulatedi neuron transfer function 85
Figure 59*, Chopper stabilized weight updating 87
Figure 60°, The discrete time RANN Systemcooueieiuieennieenn... 96
Figure 61°, The discrete time RTRL Systemooiueiiieieienneenn... 97
Figure 62°, Order N signal sliceoouiiuieiiie i, 101
Figure 63°, Current auto zeroing principlecoooiiiieiiiiin... 103
Figure 64°, Double resolution D/A conversion 103
Figure 65°, SAR bit slicecooiiie 105
Figure 66°, Weight change IPM element characteristics 107
Figure 67°, Tanh derivative computing block characteristics 107
Figure 68°, Edge trigged sampler samplingcooeieieeeeen... 107
Figure 69°, Auto zeroing simulationoiiiiiiiiieeiiii.. 108
Figure 70°, RTRL ANN basic architectureccooiiii... 110
Figure 71°, Non-linear RTRL SYSteImc.oiuniiniiiieiiaaeaen.. 114
Figure 72°, Neuron clusteringccooueiunemeaeieeieaaaeaennn. 122
Figure 73°%, Self refreshing ANN SYSteImlouoeiiueeeieaeiiea... 125
Figure 74", General neural network model 167
Figure 752, Layered feed-forward neural network 168
Figure 76%, N-channel MOS transistor symbols 175
Figure 779, N-channel MOS transistorc.cooiiiiiieeeeeeenaaio... 175
Figure 78“, Short channel snap-backooiiiiii 176
Figure 79, NPN bipolar transistor symbolc.. ... 177

Figure 80, NPN bipolar transistoroeeiuieeeiiin i .. 177

List of figures Page xix

Figure 81¢, Lateral bipolar mode MOSFET symbol 178
Figure 82°, Lateral bipolar mode MOSFETooiiiiiiiiiiiin. .. 178
Figure 83%, Current subtraction by SYDapseoouuuuieeeiiein., 178
Figure 84%, Current subtraction by rowoooeiiiiieiiiii it 179
Figure 85%, Layout of matched transistorsccooiiiei ... 182
Figure 867, Digital level shifter cooiiiiiiii i, 185
Figure 870, Synapse Layout 186
Figure 88D, Table of ANN chip set characteristicsc.... 187
Figure 89, Table of row/column element control 189
Figure 90P, Back-propagation synapse column Jrow element 190
Figure 91P, Forward mode BPL synapse row element 191
Figure 92P Forward mode BPL synapse column element 191
Figure 93P, Route mode BPL synapse row element 191
Figure 94°, Route mode BPL synapse column element 191
Figure 95, Reverse mode BPL synapse row element 191
Figure 96", Reverse mode BPL synapse column element 191
Figure 97", Back-propagation neuron schematic 193
Figure 98, Back-propagation weight update schematic 194
Figure 99, Table of Back-propagation chip set characteristics 195
Figure 100P, Table of scaled BPL synapse chip characteristics 196
Figure 101P, Scaled synapse chip characteristicscccooooo... 197
Figure 1047, SAR start signal gatingcccooiiiiiiiiiaoiii... 199
Figure 1057, Transmission gate symboloooiiiiiiiiiiiiii... 199
Figure 102°, RTRL signal slice schematiccoooiiiiiiiieooo. .. 200
Figure 103”7, RTRL weight change schematic 201
Figure 1067, Clock generatoroooiiiiiiiiiiiiiii... 202
Figure 1072, Table of RTRL chip characteristicsooovieiiii .. 203
Figure 108%, The operational amplifiero i .. 206
Figure 109", Regulated gain cascodeccooiiiieiiiiiiiiii.. 206
Figure 1107, RGC current miITor «.......ooweee i 206
Figure 111, The current ConVEYOToue et 207
Figure 112%, Op-amp frequency responseccooiieiiieiiiii., 207
Figure 113", The transconductor i it 208

Figure 114", Typical MRC layoutoouuneeee e 209

Page 1

Chapter 1

Introduction

This thesis describes the analogue VLSI implementation of two supervised learning
algorithms for artificial neural networks. One is the error back-propagationlearning
algorithm for a layered feed-forward network and the other is the real-time recurrent
learning algorithm for a general recurrent network. Both operate in discrete time
on a cascadable analogue VLSI neural network that has a digital random access
backup memory for the weights. Also included in this thesis is the implementation
of a cascadable analogue VLSI neural network as well as some general conceptions
on hardware learning and thoughts on future analogue VLSI neural networks.

During the last decade or so, the field of artificial neural networks (ANNs, see
appendix B) has matured. Artificial neural networks are no longer “magic devices”
but powerful tools — when used in the right manner — for classification problems
and similar tasks for which no algorithmic solution is known. The ANN foundation
— both theoretically and on an application level — growing increasingly solid,
hardware implementations (primarily analogue and digital VLSI, see appendix C)
for high performance systems have begun to emerge. VLSI implementations of
recall-mode ANNs are maturing and the field is ready for the step towards fully
adaptive VLSI ANNs (ie. including learning). This is the objective of the present
thesis: to study analogue VLSI implementations of computational neural networks,
with the emphasis on learning hardware implementations. In this introduction
motivations for using analogue VLSI to implement ANNs and learning algorithms
are described and the objective of the present work is defined.

Chapter 1.1 Introduction Page 2

1.1 Implementing ANNs in analogue hardware

Why use analogue hardware? Artificial neural networks can easily be simulated
on standard, digital von Neumann computers. These general purpose computers
are rapidly moving into every imaginable part of our society. They are the subject
of very intense research world-wide, and the competition among manufactures is
very hard. The computational performance is growing exponentially over time.
How can we possibly hope to compete with them? We can not. There are niches,
though, where analogue integrated neural networks have the advantage. In this
section we will examine these.

o Parallelism: In the ever present pursuit for faster data processing, two ap-
proaches are possible: One is to use faster systems (eg. higher clock frequen-
cies). During the recent years, this procedure has been exploited to the utmost
limit: interfacing to and communication with these very fast systems is ever
more difficult (Seitz [213]). The other way to speed up data processing is to
use parallel data processing elements. This is no trivial task, though, as many
problems can not be parallelized (Almasi and Gottlieb [8], Leighton [148]).
Neural networks are inherently parallel and are therefore easily mapped on
parallel hardware. Further, though analogue data processing elements are in-
herently slower than their digital equivalents, the analogue versions of the neu-
ral network computing primitives, multiplication and addition, can be much
smaller than their digital equivalents. Thus massively parallel neural systems
are efficiently implemented using analogue VLSI, giving a potential for very
fast data processing (eg. Murray et al. [175], Ismail and Fiez [106], Graf and
Jackel [82]).

This claim requires a couple of remarks: As the exact mapping on parallel
hardware depends heavily on the network topology (which is application de-
pendent), the massively parallel neural systems should be application specific
rather than general purpose (Lehmann [142], Jackel [110], Mead [162]). Fur-
ther, an analogue neural network should not be thought of as an accelerator
for a von Neumann computer as using a serial computer to supply the data for
a massively parallel neural network would, in most cases, severely limit the
performance. Also note that, for very high precision computations digital cir-
cuits are required; however, it is generally believed that the precision offered
by analogue components is sufficient in many neural systems (though, cf. the
following chapters, Edwards and Murray [67], Hollis et al. [97], Tarassenko
et al. [238]).

Massively parallel analogue neural networks have been reported by Arima
et al. [16], Castro et al. [42] and Masa et al. [157] among others.

o Asynchronousness: Many neural networks are asynchronous in nature. This
asynchronousness can be efficiently exploited. Asynchronous (or self timed)
systems have a number of distinct advantages over systems governed by a
clock (Seitz [213], Sutherland [233], Ramacher and Schildberg [194], Murray
et al. [175]):

Chapter 1.1 Introduction Page 3

o Synchronous systems must be designed to run at a conservative clock
frequency to ensure functionality in worst case situations; asynchronous
systems run at the maximum speed of the present hardware. Further-
more, if a certain component is the bottleneck of the system, this can
be replaced by a faster component with immediate improvement of the
overall performance.
o When increasing a system clock frequency, communication between com-
ponents becomes a problem as it is very difficult to distribute the system
clock (without skew) over a large area. Asynchronous communication is
usually the solution.
o In synchronous systems all components change states (and thus draw
current from the power supply) simultaneously at the clock edges. This
puts very heavy demands on the tolerable power supply peak currents,
capacitive decoupling, etc. The heavy peak currents also introduce a lot
of noise. Asynchronous systems are power averaging.
o Real world interfacing is basically an asynchronous task; using asyn-
chronous systems for this is the natural approach and eliminates, for in-
stance, problems associated with metastability (Seitz [213], Gabara et al.
73))
In spite of the very attractive features of asynchronous systems, few “conven-
tional” digital data processing systems have been successfully implemented
because of the hardware overhead needed for handshaking (Sparsg et al. [227]).
Pure analogue systems have no need for handshaking and are thus well suited
to implement asynchronous systems. (Though in systems with feed-back the
stability must be considered.)

Asynchronously operated analogue neural networks have been reported

by Alspector et al. [9], Hollis and Paulos [98] and Mead [162] among others.

Fault tolerance: A well trained ANN is insensitive to small weight changes as
0J |Owy; ~ 0 at the equilibrium (where J is the error cost and wy; is a weight,
cf. (36B)). However it is not insensitive to the complete loss of a connection
(due to a short circuit, a RAM fault, radiation, etc.) as the network must have
as simple an architecture as possible to ensure good generalization ability. To
ensure fault tolerance, even down to the hardware level, it is necessary to
introduce redundant hardware. This is in favour of hardware implementations
of neural networks; in particular analogue hardware as the cost of an extra
synapse is relative low. In this context, a new emerging technology, wafer
scale integration (WSI), deserves mentioning, as fault tolerant systems are
crucial to the applicability of WSI. This technology is well tailored to the
implementation of massively parallel neural networks (Yasunaga et al. [273]).

Low power applications: The use of sub-threshold operated MOSFETSs offer
the possibility of extremely low power systems. Though digital systems can
function in sub-threshold, analogue systems carry more information per wire
and fewer transistors per operation and thus inherently use less power (cf. eg.
Ismail and Fiez [106]).

Low power analogue neural networks have been reported by Leong and

Chapter 1.1 Introduction Page 4

Jabri [149] and Mead [162] among others.

o Real-world interfacing: As well as being asynchronous, real-world interfaces
are often required to be analogue. Analogue neural networks obviously elim-
inate the need for A/D and D/A converters, which is an attractive feature.
However, this becomes of paramount importance when the data is applied in
massive parallelism. The use of hundreds or thousands of high speed A/D
converters would seldom be justified. For low power systems with real-world
interfaces it is also of great importance that no power is wasted in the pro-
cesses of A/D and D/A converting.

Analogue neural networks with real-world interfaces have been reported

by Leong and Jabri [149], Masa et al. [157] and Mead [162] among others.

o Regularity: The regularity of artificial neural networks makes them well suited
for massively parallel implementations: The design effort can be put in design-
ing a few efficient components which are used repeatedly and interconnected
in a regular way.

To conclude: At least two niches for analogue integrated neural systems exist, both
possibly asynchronous or with redundant hardware:

o Massively parallel, application specific systems having a parallel real-world
interface.
e Small, low power, application specific systems with a real-world interface.

In this work we will be predominantly interested in the massively parallel analogue
neural networks rather than the low power ones.

Today, several applications using analogue integrated neural networks have
been reported. For instance high energy particle-detector track-reconstruction de-
vices (Masa et al. [157]), implantable heart cardioverters/defibrillators (Leong and
Jabri [149]) and silicon cochleas, retinas and motion sensors (Mead [162], Park
et al. [185], Cao et al. [38]).

Though most systems reported embrace the principles above, general purpose
analogue neural systems have been reported (Mueller et al. [173], Van der Spiegel
et al. [228], Satyanarayana et al. [207]). Systems that do embrace the above prin-
ciples can be found in Bibyk and Ismail [23, 24|, Bruun et al. [32], Corso et al.
[53], Eberhardt et al. [65], Hollis and Paulos [98], Kub et al. [126], Lansner and
Lehmann [130, 131], Linares-Barranco et al. [151], Mead [162], Moon et al. [169],
Murray et al. [175, 176], Neugebauer and Yariv [180] and Ramacher and Riickert
[193].

Chapter 1.2 Introduction Page 5

1.2 Implementing learning algorithms in
analogue hardware

Because of the non-ideal characteristics, analogue integrated neural networks are
most often taught using chip-in-the-loop training (Castro et al. [42], Eberhardt
et al. [66]) — that is, rather than down loading predetermined weights for a given
application, each individual chip (or system) is trained by (i) applying an input
pattern to the chip, (ii) compute the network error on the basis of the target values
and the actual chip outputs, and (iii) adjust the weights on the chip according to the
learning algorithm such that the network error decreases. This can accommodate
for offset errors, non-linearities, ete.

There is a wealth of different training approaches which quite easily can be
programmed on a host computer for chip-in-the-loop training. The question now
arising is: Why should we sacrifice the flexibility of chip-in-the-loop training using
a host computer in favour of implementing learning algorithms in analogue hard-
ware? The reasons are similar to the reasons for implementing ANNs in analogue
hardware in the first place:

Performing similar operations on all synapses/neurons of a regular system
composed of synapses and neurons, many learning algorithms have the same prop-
erties as neural networks when implemented in analogue hardware:

o Parallelism: Learning is computationally a very heavy task. Typically of the
order O(N*) or O(N®) in a system with N neurons. (Compare to the recall-
mode task which is of the order O(N?), assuming the system has O(N?)
synapses.) In terms of speed, it is therefore of even greater importance to uti-
lize inherent parallelism for the learning algorithm than for the neural network
itself. Fortunately many learning algorithms can be parallelized to a great ex-
tent. The arguments for using analogue hardware to utilize the parallelism are
the same as above.

Massively parallel implementations of learning algorithms have been re-
ported by Arima et al. [16] among others.

o Adaptability: Adaptive neural systems are continuously taught while being
used. At least two situations exist where the learning algorithm must be
embedded in the system hardware: (i) In large adaptive systems, where it is
crucial to utilize the inherent parallelism of the learning algorithm. (ii) In
small, adaptive, low-power systems, where a host computer is not available.
In these two application areas it is likely that the neural network is analogue
— and the arguments that advocated the use of analogue hardware for the
neural network holds for the implementation of the learning algorithm too.

o Asynchronousness: Many learning algorithms can be formulated in continu-
ous time, which enables asynchronous, analogue hardware implementations of
learning algorithms. An asynchronous, analogue neural network with asyn-
chronous, analogue interfaces is most naturally taught by such a learning
algorithm.

o Fault tolerance: Some learning algorithms can be formulated to operate on
local data in such a way that the learning algorithm can be embedded in the

Chapter 1.2 Introduction Page 6

(extended) synapse and neuron hardware. In a fault tolerant analogue neural
network, the inclusion of such a learning algorithms does not sacrifice the fault
tolerance for the system as a whole.

o Low power applications: As is the case for the analogue neural networks,
analogue implementations of learning algorithms can use MOSFETSs operated
in sub-threshold for extremely low-power applications.

o Data conversion: The learning algorithm needs access to inputs, outputs and
intermediate variable of the neural network. If the neural network is analogue,
the use of analogue hardware for the learning algorithm eliminates the need
of A/D and D/A converters (cf. above).

o Regularity: As is the case for the neural networks, many learning algorithms
are regular in structure; thus the design of the equivalent hardware is inex-
pensive.

Combining these properties with the conclusion in section 1.1, we conclude that
at least two niches for analogue hardware implementations of learning algorithms
exist, both possibly asynchronous or with redundant hardware:

o Massively parallel, possibly adaptive, application specific systems having a
parallel real-world interface.

e Small, adaptive, low power, application specific systems with a real-world
interface.

As for the neural networks, it is believed in certain circles that the limited preci-
sion of analogue hardware is sufficient for the implementation of (certain) learning
algorithms, because of the present feed-back. Some even argue that limiting effects
as noise (Murray and Edwards [177]) can improve learning ability. Certain offset
errors, however, can be completely destructive for the learning scheme (Montalvo
et al. [168], Lehmann [139, 140]), and it is not yet generally accepted whether or
not this prohibits analogue implementations of learning algorithms (though a few
systems have been reported, eg. Alspector et al. [9], Shima et al. [220] and Valle
et al. [251]). Thus research on implementing analogue learning hardware still has a
wealth of unexplored areas. This is to what we will commit the following chapters.

Architectures for analogue hardware learning can be found in Alspector et al.
[9], Arima et al. [16], Card [39], Caviglia et al. [44], Hollis et al. [99], Jabri and
Flower [107], Lehmann [139, 141, 142|, Linares-Barranco et al. [151], Macq et al.
[154], Matsumoto and Koga [160], Montalvo et al. [168], Murray [174], Reyneri
and Filippi [196], Schneider and Card [210], Shima et al. [220], Tarassenko and
Tombs [237], Valle et al. [251], Wang [256] and Woodburn et al. [270].

Page 7

Chapter 2

Implementation of the neural
network

Rather than implementing a learning system all at once, we have chosen a se-
quential approach, first implementing an acting neural system, and second imple-
menting learning hardware for this system. In this chapter the implementation
of the artificial neural network that is the core of the systems in this thesis will
be presented. The chapter includes reflections on the choice of network models
and topologies suitable for an analogue VLSI implementation. Also, the choices of
hardware topologies and essential subcircuits (memories, multipliers and thresh-
olding hardware) are discussed — with the future implementation of hardware
learning in mind. Several examples from the literature are given. After the pre-
sentation of the design of and measurements on our cascadable ANN solution, and
after the presentation of system level measurements, reflections on future work are
given: the inclusion of process parameter dependency canceling and temperature
compensation. A summary concludes the chapter.

Chapter 2.1 Implementation of the neural network Page 8

2.1 The artificial neural network model

As the very first thing, we must decide on a model for our artificial neural network.
There are three properties that this model must possess; it must be:

e General purpose
e Simple
e Suitable for the technology

It was argued in chapter 1 that analogue ANNs have to be application specific.
With no particular application in mind at this point, we shall deviate slightly
from this principle without actually violating it: the object is to design a set of
general purpose building block components or modules (Eberhardt et al. [65], see
also Mueller et al. [173]). Application specific systems can then be composed of a
number of these.

Analogue computational hardware is typically limited to a relative precision of
about 1% (eg. O’Leary [182], see appendix C). For this reason, and for the reason
of limiting the hardware cost, it is preferable to use a simple ANN model. Some
researchers try to model the biological mechanisms of neural networks very closely
(Grillner et al. [86], see also MacGregor [153]) or use other complicated network
models. This should not be necessary for computational neural networks as many
of the properties of these are owing to the structure and non-linearity of the system.

It is of paramount importance that our ANN model is compatible with the
restrictions imposed by the analogue VLSI technology (eg. Mead [162]). Otherwise
the advantages of using the technology in the first place would be lost. It must
be absolutely clear that we thus can not justify the implementation of an arbitrary
model (just as we can not justify the use of analogue integrated ANNs for an
arbitrary application as argued in the previous chapter); the model must be easy
to map on the hardware in terms of both topology and computation primitives.

Our first objective will be to implement an acting system — which can be
refined later if necessary.

2.1.1 The neurons

Using stochastic neurons gives the possibility of implementing very powerful net-
works such as Boltzmann machines (Hertz et al. [95]). The activation, y, of the
stochastic neuron k, typically of value 1 or —1, is probabilistically determined:

Pr(yr =1) =1 —Pr(yr = —1) = gi(sk),

where sy, is the neuron k net input and gg(.) is the activation function (cf. appendix
B). Stochastic systems can very efliciently explore the state space of the system’s
free parameters during a learning process. They are somewhat slow, however, as
the outputs must be averaged over time to find the probability distributions of the
outputs, and the stochastic processes are not very well suited for analogue signal
processing (though see Alspector et al. [9] for a VLSI implementation that come
around these problem using different kinds of annealing processes).

Chapter 2.1.2 Implementation of the neural network Page 9

A very general, deterministic, network model uses higher order neurons (Wulff

[271], Giles et al. [79]):
Yk = gr(sk)

JE— . . / . . // . N N o« ..
= gk E wk]Z] —|— E wkj1j22112]2 ‘|‘ E wkj1j2j3211212213 ‘I’ y
J J1<]2 J1<j2<)3
(1%)

where the wy;s, w;m]és, wﬁc’jlhjgs, ... are the connection strengths and the zj, s are
the neuron k inputsi (cf. appendix B). The highest number of z;, -factors gives the
order of the neuron. Though higher order networks can be very efficient compared
to “conventional” (ie. first order) networks, they map poorly on VLSI because of
their high structural dimensionality (a Dth order network has a D + 1-dimensional
structure). Thus, using first order deterministic neurons is preferable from a VLSI
implementation point of view. This is also theoretically the most well-studied one
which is also significant.

Finally there is the choice of the neuron transfer function. The simplest pos-
sible choice would be setting gi(.) = sign(.) (a hard limiter) which is used in
Hopfield networks and which is well suited for an analogue VLSI implementation
(Hollis and Paulos [98], Sanchez-Sinencio and Lau [206]). This, however, would
sacrifice the generality of the system (obviously continuous valued outputs would
be impossible; also, many learning algorithms rely on a smooth transition from
“low” to “high” neuron output). The choice, therefore, is to set gx(.) = ¢(.), where
g(.) is a sigmoid-like function, which is a sufficiently general solution (networks us-
ing this kind of neurons can approximate any limited function (Lapedes and Farber

[134])).

2.1.2 The network

Ideally we should put no constraints on the network topology. However, as we shall
see in the following, sparse interconnections between neurons will be difficult to
implement in general. Thus the choice is to use fully interconnected (groups of)
neurons which is the most general topology.

Using an unconstrained topology imposes another problem if feedback is pre-
sent: instability. An unknown number of neurons in a feedback loop would cause
an unknown phase shift at high frequencies and might lead to oscillations. The
problem is further complicated by the fact that signs and magnitude of the gains
(weights) in the system change during learning. A solution is to place the feedback
as shown in figure 74” and ensuring a single dominating pole in the loop (refer

to Hollis and Paulos [98], Linares-Barranco et al. [151], Graf and Jackel [82], and

T 2j. can be either a network input, x;,, or the output activation from another
neuron, yj, (see sections 4.1.1 and 5.1.1).

Chapter 2.2 Implementation of the neural network Page 10

Mueller et al. [173], eg., for such systems). In non-relazation systemsy the network
time constants should — in some way — match the time constants of the input
data and of possible learning hardware. In this case it is easier to use a discrete
time feedback (ie. a sampler) in a general system, though the asynchronousness is
sacrificed. Even using discrete time systems, there is still a wealth of problems to
which we can apply analogue ANNs, and most of the systems in this thesis will be
designed to work in discrete time.

2.2 Mapping the algorithm on VLSI

Before presenting our analogue integrated ANN solution, we shall have a look at
different aspects of such implementations. More specifically we shall discuss dif-
ferent architectures, signalling methods, memories, multiplication and thresholding
circuits — with the future implementation of learning algorithms in mind.

2.2.1 Architecture

The architecture of a small, low power, application specific system (cf. chapter
1) must be tailored to the application. The building block components for such
systems are thus the atomic parts of neural networks — synapses and neurons —
and would have the form of, say, a cell library to a CMOS process. Though the
discussions in the present thesis are meant for massively parallel systems, many
of the considerations apply equally well for small, low power systems. Only, the
circuits should be replaced by low power ones. We shall use strong inversion
circuits rather than subthreshold ones as the former are inherently faster than the
latter.

For massively parallel, application specific systems, the level of integration of
the building block components is preferably very high (this reduces design time).
Unfortunately, this puts constraints on the architecture and minimizing these con-
straints is one of the objects of VLSI neural networks design.

Reformulating (1?) for a vector of first order neurons (cf. (30%)) — corre-
sponding to, say, a layer — we have:

y = g(s), where s=wz, (2?)
where ¢g(.) is a vector of sigmoid-like functions. Assuming we have a parallel oper-

ated matriz-vector multiplier (MVM) that gives as output the multiplication of its
input vector and a stored matrix, the number of rows in the multiplier is increased

T Systems where the network is not allowed to settle to a steady state before
the next input pattern is applied (Williams and Zipser [267] and others); these are
used in time sequence data processing.

Chapter 2.2.1 Implementation of the neural network Page 11

simply by adding another multiplier with the same input vector. The number of
columns is increased by adding the output vector to that of another multiplier.
As dimensions are easily added to a vector of functions, the implementation of an
ANN that is fully interconnected (between layers, if layered) and which can be
scaled to an arbitrary size, is feasible using two building block components (Eber-
hardt et al. [65], Lansner and Lehmann [131], Shima et al. [220]). This is shown
in figure 1% it is assumed that adding the outputs from several multipliers is done
simply by connecting their outputs together (cf. next section). This cascadability is
most important. We shall use the terms synapse chip (the multiplier) and neuron
chip (the squashing functions) for the two modules. Further, we shall refer to the
rows/columns of w as rows of synapses and columns of synapses.

For a recurrent network, an elegant approach is to place synapses on the
neuron chip as illustrated in figure 2° (here: y = g(wy)) (Duong et al. [63]). This
makes module interconnection easier. -

() ()

AT
B

\ J \ J

R I O {}

Synapse

1<

I

12

z

Figure 1%: Expandable neural network. This topology can implement systems
of arbitrary size, fully connected between the layers.

One could expect routing problems in systems with rigorously interconnected
units. The distributed and regular placement of the synapses in the above systems,
however, practically eliminates this problem (massive inter-chip communication is
still inconvenient, though). For sparse, random connectivity routing would con-
sume considerably more area per synapse.

Obviously, any first order ANN topology can be mapped on one of the above
systems by setting some of the connection strengths equal to zero (feedback and
extra layers can be added in figure 12). If the system is known to have sparse

Chapter 2.2.1 Implementation of the neural network Page 12

0 A

y

Figure 2*: Expandable recurrent neural network. This topology can also im-
plement systems of arbitrary size. The neurons must not be larger than the
synapses in order not to waste area.

connectivity, though, it would be preferable not to waste hardware for all the null-
connections. This could be accomplished by “folding” the synapse matrix, in a
way similar to the folding of sparse PLAs, if the structure of the network is known
in advance (Bruun et al. [32]). Often it is not, however; and certainly not when
implementing general neural architectures.

Solving a problem with unknown properties, one would typically arrive at
the sparse architecture by pruning (ie. removing unnecessary connections) a fully
connected network, eg. using optimal brain damage (OBD) (Le Cun et al. [55], see
also Larsen [135]). Thus preferably, a reconfigurable neural network should be able
to emulate a fully connected one during the pre-pruning phase. As, depending on
how it is used, OBD can remove as few as 50%—75% of the connections, and as
simple synapses can be very small, care should be taken that interconnections and
routing switches does not take up more area than left free by the reduced number
of synapses. Another way to avoid “wasting” hardware in a pruned network would
be to use the “null-connections” of a fully connected architecture to introduce
redundancy in the system.

We believe that the fully connected “building block” topology of figure 17 is,
though simple, a very capable one. We shall use this in the present work.

A number of systems with reconfigurable network topologies have been pro-
posed in the literature (Mueller et al. [173], Satyanarayana et al. [207], Graf and
Henderson [84], and others). Though it can be questioned if a “random” connected
neural network can be mapped efficiently on these systems, they do provide a gen-

Chapter 2.2.2 Implementation of the neural network Page 13

eral problem-solving environment. Also, the reconfigurability can be used to alter
the ANN topology during training and to map out defective blocks.

Routing switches Neuron-synapses

Figure 3% Reconfigurable neural network. The philosophy of this kind of
topology is to implement a general neural computer.

A particularly interesting reconfigurable ANN is found in Satyanarayana et al.
[207], see figure 3% and 142, p. 27. In this implementation the “lumped” synapses
and neurons above are replaced with “distributed neuron-synapses”: The neuron
squashing circuit is distributed among the connected synapses and can be con-
nected in parallel with other neuron-synapses, ensuring that the routing switch
area is kept reasonably low, as indicated in figure 3%,

2.2.2 Signalling

The domains in which the various signals are carried are closely related to the
needs of the matrix-multiplier above — or the needs of a synapse:

e The output from a neuron (or a network input) must easily be distributed to
a column of synapses.

e The outputs from a row of synapses must easily be accumulated.

Distributing a signal is most easily done using a voltage as this can be detected
using high impedance sensors in parallel (ie. MOS gates). In the current domain
the addition of analogue signals is simply done by connecting the input wires to
the output wire. Thus, using synapses with voltage inputs and current outputs
satisfies the above requirements — which is fortunate as multipliers typically have
voltage inputs and current outputs. This is illustrated in figure 4°. A variation of
the current output scheme is to use charge packages which can be accumulated on
an integrator.

Chapter 2.2 Implementation of the neural network Page 14

Figure 4*: Typical electronic synapse.
The multiplier has voltage inputs and X
j

current output to ensure the cascad-

ability of synapses. Vz,

Analogue signals carried in the voltage/current domains are sensitive to noise;
for instance coupled via the power supply or capacitive/inductive parasitics. In a
pulse stream neural network, the noise sensitivity of the neuron outputs is effi-
ciently reduced by moving the information from the voltage domain to the time
domain — for instance using pulse frequency modulation (PFM) or pulse width
modulation (PWM) (Murray et al. [175, 176]): A digital voltage signal can be
easily distributed and regenerated, and the temporal information is insensitive to
most noise sources. The noise sensitivity of the synapse outputs is not so easily
reduced because of the requirement for easy accumulation. The synapse outputs
would thus typically be charge packages (the connections strengths multiplied by
the stream of input pulses). To get the full advantage of the noise insensitive neu-
ron outputs it is therefore important that the synapse-to-neuron connections are
kept at a minimum, local area. That is, only neuron outputs should be used for
inter-chip communication.

The disadvantages of pulsed neural networks is a reduction in speed: Given
a bandwidth B of our system, we can process 2B data points (Tugal and Tugal
[250]) in a pure analogue system} whereas only 2B/100 in a PFM neural network
with a dynamic range of 40 dB.

The above are the most commonly used signalling methods in integrated neural
network contexts, though other methods exist (Neugebauer and Yariv [180], Murray
et al. [175], Mead [162], Webb [259], Mortara and Vittoz [171]). We shall use
continuous valued signalling in the voltage and current domains in this work as
this i1s inherently the fastest signalling method compatible with a simple synapse
architecture.

As seen in figure 42, the typical electronic synapse consists of two components: a

T That is the fundamental Nyquist upper limit, assuming we use sinc (sinc(x) def

sin(x)/x) pulses in a linear system. A more realistic measure would be, for instance,
B data points (per second): assuming the system has a single dominating pole at
the frequency f3qp, the output corresponding to a step input would settle to 8 bit
accuracy within the time 1/ fsqp = 1/B (Lehmann [140]); ie. we could process B
data points.

Chapter 2.2.3 Implementation of the neural network Page 15

multiplier and a connection strength memory cell. As the number of synapses in
an ANN (mostly) scale as O(N?), where N is the number of neurons, reducing
the synapse area has been one of the major objects of integrated neural network
research. Thus a discussion of memory cells and multipliers are the subject of the
following two sections.

2.2.3 Memories

Storing analogue signals are by no means simple; no true, efficient analogue elec-
tronic memory exists today. Thus, the storage of the synaptic strengths is a major
concern in analogue ANNs research; the solutions found in the literature are com-
promises of one kind or another, most of which can be put in one of the following
categories:

e Capacitive storage
e Storage using special process facilities
o Digital storage

Capacitive storage The simplest method for storing an analogue signal is
to put a charge on a capacitor and reading this using the very high impedance
gate terminal of a MOSFET (Tsividis and Satyanarayana [246]). The drawback
of this method is that the leakage current (primarily) through the sampling switch
(or some other weight changing device) eventually exhausts the weight. Several
approaches to reduce the leakage current are possible. For instance using a dif-
ferential scheme as shown in figure 5%, which cancels the predominant source-bulk
reverse biased junction current. (This scheme also cancels the offset error due to
charge injection.) Alternatively, using a low offset voltage buffer, one can ensure a
0V voltage drop across the source-bulk diode, efficiently eliminating this leakage
(see Shah [217], Vittoz et al. [254], Horio and Nakamura [101]). Whatever method
employed, though, weight decay can not totally be eliminated and some kind of
refresh is necessary.

write

TTT Multiplier
S ‘t —

TTT 1 II:

| =7 T 7T

+ Vw -

Figure 5% Capacitive storage. Several approaches to refreshing the charge
and reducing leakage (as the differential scheme shown) are possible.

Chapter 2.2.3 Implementation of the neural network Page 16

Most refreshing schemes rely on quantizing the weights and using these dis-
crete valued weights to recharge the weight capacitors. One of the more obvious
approaches to do so is to use a digital RAM backup memory: The weights are
stored digitally in the RAM and the capacitors are periodically refreshed via a
D/A converter (Lansner and Lehmann [131], Eberhardt et al. [65], Jackson et al.
[111]). One would typically have serial access to the weight capacitors as well as
to the words in the RAM; thus a count of O(1) D/A converters would be neededj.
As digital RAM is very cheap, this is an accountable solution (for large systems!).
The serial access to the updating of weights is a severe limitation for a system with
hardware learning: It will necessarily be an order O(N?) slower than a system with
parallel weight access. However, the much discussed issue of too coarse weight dis-
cretizing during learning (see eg. Hollis et al. [97], Tarassenko et al. [238], and the
following chapters) is less pronounced using this architecture than most others:
first, as only O(1) D/A and A/D converters are needed, it is accountable to use
high precision converters; second, the RAM backup can have words of arbitrary
widths (in number of bits) and thus very small weight changes can be accumulated
(cf. the following chapters).

It is also possible to employ a “quantize-regenerate” refreshing scheme: The
voltage on the weight capacitor is periodically compared to a discrete number of
reference voltages (eg. in the form of a staircase ramp) and the capacitor voltage
is “regenerated” to the closest reference (Vittoz et al. [254], Bjérk and Mattisson
[25], Horio and Nakamura [101]). For very high precision weights (compared to the
weight droop rate), it is necessary to place the regeneration circuit at the synapse
sites to allow parallel weight refresh. For lower precision weights, a column, say,
can share this circuit, but a voltage buffer must be placed at the synapse site
to drive the capacitance on the wire connecting the column to the regeneration
circuit. In either case, the quantize-regenerate technique is more area demanding
than simple capacitive storage with a RAM backup. For systems with on-chip
learning, the quantize-regenerate refreshing scheme is not particularly well suited
because of the required high resolution of the weights — unless the learning scheme
is so fast that several weight updates can be accumulated between successive weight
refreshes (compare to the following “analogue adjustment”).

An altogether different approach to refreshing relies on the presence of a learn-
ing scheme: refresh by relearning: During an idle phase of the neural network it
is trained using an epoch, say, of the original training data, thus restoring the
weights (cf. eg. Valle et al. [251], Woodburn et al. [270]; see also Arima et al.
[16]). The obvious disadvantages with this approach are (i) that the network can
not run continuously and (ii) that the whole training set needs to be stored in the
system (though see chapter 6.3). If the training scheme employed is an unsuper-
vised learning scheme, refresh by relearning can be employed in a more elegant
way: Learning can be applied on each input pattern, eliminating the need for an
idle phase and the storing of the training data (Schneider and Card [210]). (Such
weight refresh is also applicable if learning with a critic is employed: a reinforce-

T As before: for a system with N neurons.

Chapter 2.2.3 Implementation of the neural network Page 17

ment signal can usually be extracted from the environment of an acting system
at a minimum cost (Alstrem [10]).) The trouble with this approach is that the
network will tend to forget the classification of scarcely occurring input patterns.
Whether this is acceptable, or indeed an advantage, is strongly dependent on the
application.

In most situations it is necessary to be able to read the contents of the weight
matrix; for backup purposes, for example, or for transferring the network state to
another network (retraining would be necessary). It is possible to do so without
direct weight access if the outputs from the matrix-vector multiplier are accessible:
Applying z¢ = d¢;1 as inputs to the matrix-vector multiplier yields as outputs s; =
Wi 4W;jofs, Where w; ofs 1s the MVM output offset error (first order approximation)
which would have to be canceledi.

Special process facility storage Non-volatile analogue memories can over-
come the leakage problems of capacitive storage. The most popular of these is
floating gate storage where a charge is trapped on the completely insulated (float-
ing) gate of a MOSFET, thus programming the threshold voltage (cf. Sze [235]),
see figure 6% (Horio and Nakamura [101], Vittoz et al. [254]; compare to figure
779). (The MOSFET would be the input transistor(s) of the multiplier in figure
5°.) There exists numerous ways of trapping the charge on the floating gate; some
compatible with standard CMOS processes, other requiring special process steps
as those in EEPROM processes, for example. The programming is usually carried
out by (i) applying a high voltage across the gate oxide, thereby forcing a tunneling
current to charge the gate (Carley [41], Lee et al. [137]) or (ii) exposing the gate
to UV light, thereby inducing a parallel conductance caused by the generation of
holes/electron pairs in the oxide (Benson and Kerns [22], Abusland and Lande [5]).

control gate

Figure 6% Floating gate MOSFET.
Schematic drawing of physical float-
ing gate MOST. The control-gate/
floating-gate overlap need not, as in floating gate

the figure, be on top of the channel. bulk

A completely different approach is amorphous silicon storage (Reeder et al.
[195]). Here the resistance of a vanadium-amorphous silicon-chromium sandwich
can be programmed by applying high-voltage pulses — much like the way floating
gate MOSFETSs are programmed electrically.

1, for =y
0. for £ 4]

T Note that, unless the offset error is very small, such a readout would not be
accurate enough for a learning rule (as (9%)).

T Kronecker’s delta: d¢; = {

Chapter 2.2.3 Implementation of the neural network Page 18

Though these, often quite small, special process facility memories are the only
true analogue memories existing today, several matters weigh against their use in
analogue VLSI neural networks:

The writing on these analogue memories usually wear the devices. A typical
floating gate device can endure in the order of 10000 full scale changes, for example.
This is sufficient for programmable recall-mode systems (as in Castro et al. [42]),
but for adaptive systems it is not: Though weight changes can be accumulated on
a short term memory to reduce the number of device programmings, such systems
are in general taught by example (on-line learning rather than batch learning) and
continuously over time. Thus, the number of weight changes scale as O(N?t) (at
the least), quickly exhausting the endurable number of device programmings.

The driving force of VLSI processes is digital electronics (primarily RAM,
microprocessors, etc.). Thus a state of the art process will be tuned to digital
requirement (eg. a 5V, 0.7 um, single poly, triple metal, n-well CMOS process
without precision components). To get access to state of the art processes, the
analogue circuit designer must submit to the potentials offered by digital processes.
Further, some argue that special analogue devices (high resistive polysilicon, float-
ing capacitors, precision components — even BiCMOS processes) will eventually
cease to be available to the average designer because of the future role of most ana-
logue circuits: interfaces to digital signal processors (DSPs) on mixed analogue
digital integrated circuits (NEAR [3], see also Tsividis [247]). For this reason, one
should have a very good reason to use special process steps for analogue circuits —
especially in VLSI analogue circuits, as these would be exceedingly expensive. In
this context, it is important to note that in most systems minimizing the synapse
cost and power dissipation rather than the synapse area is the objective!

Even non-volatile analogue memories compatible with standard CMOS pro-
cesses should be used with caution: They rely on un-documented features of the
process which (i) must be characterized experimentally by the designer, (ii) would
probably be subjects to immense process variations, and (iii) could possibly be
changed without notice by the vendor. One very important characteristic, for in-
stance, is the memory life time which one should have a fairly good idea of before
considering a production (even floating gate devices do degrade; though on a time
scale of years rather than seconds as for capacitive storage). Further, the need for
high voltages or UV light for programming is inconvenient. (See also Murray et al.

[176].)

Digital storage The problems with weight degrading, weight wearing and
special processing steps can be overcome if one is willing to refrain from using
analogue storage.

Unless very high resolution synapse strengths are needed, digital memories
consume more area than simple analogue memories: The size of a digital memory
scale as O(log w,es) whereas analogue scale as O(w;es), where wyeq is the resolution
of the synapse strength (limited by noise; cf. eg. Geiger et al. [77]). For typical
ANN system which require a weight resolution of 8-16 bit, the analogue solution
is usually the smallest by far.

Chapter 2.2.3 Implementation of the neural network Page 19

The most severe problem with embedding digital circuitry in an analogue
system is the need for data converters; the area of such (monotonous) converters
typically scale as O(w?) (cf. Pelgrom et al. [187], Lakshmikumar et al. [129] and
Geiger et al. [77]). Using digital synapse strength storage require a digital to
analogue converter (DAC) at each synapse site, and though using a multiplying
DAC eliminates the need for the synapse multiplier, this will be the most area
consuming part of the synapse.

In spite of the area penalties of digital weight storage, there are several ap-
plication areas where such is very useful; especially in small systems that can not
tolerate the need for support hardware (as RAM). Flower and Jabri [71] use digi-
tal synapse strength storage in an implantable heart cardioverter-defibrillator, for
instance.

For analogue systems that include hardware learning, there is another obstruc-
tion connected with digital storage; the need for analogue to digital converters
(ADC'Ss) to write the synapse strengths. Using a parallel weight updating in such a
system is area inefficient (though see Hollis et al. [99], Shima et al. [220]) because
of the necessary high weight resolution during learning (typically 10-16 bit) (Hollis
et al. [97], Lehmann [139, 140], Tarassenko et al. [238], Hohfeld and Fahlman [96],
Brunak and Hansen [31]). Inspired by the fact that the weight changes during
learning is usually much smaller than the necessary resolution of the recall-mode
network (say 6-8bit), it has been proposed to use an analogue adjustment (an
analogue “bit”) to the digital memory, which is active during learning, see figure
10? (Lehmann et al. [146], Lansner [133], Bruun et al. [35]): The weight changes
determined by the on-chip learning algorithm are accumulated on the analogue
memory. When the equivalent of 1LSB has been accumulated, the digital word
is decreased or increased and the analogue adjustment is reset. This operation
basically requires two one bit ADCs and a digital adder, which could be shared by
a column of synapses.

Of other synapse memories, read-only memories should be mentioned (Masa et al.
[157], see also Mead and Ismail [163], Mead [162]) which for instance could be
programmed by transistor sizing. Read-only memories, though, are not interesting
in the context of hardware learning.

In this work, we have chosen the simple capacitive storage method with RAM
backup — not because it is particularly well suited for learning; it is not — because
this 1s a simple, reliable concept which allow the most dense synapse packaging.
The learning scheme will have to submit to this storage method.

Chapter 2.2.} Implementation of the neural network Page 20

2.2.4 Multipliers

Unlike analogue memories, analogue multipliers are very easily implemented in,
say, CMOS — provided the inherent offset and non-linearity are acceptable. Many
different multiplier architectures have been proposed in the literature (see Kub
et al. [126], Neugebauer and Yariv [180], Bibyk and Ismail [23], Hollis et al. [98],
Massengill [158], Woodburn et al. [270], Saxena and Clark [208], Sdanchez-Sinencio
and Lau [206]) and we shall restrict our examination to only a few.

The desired synapse multiplier key characteristics are the following (cf. above):

e Small

e Current output

e Voltage inputs. One of these should have a very high input impedance (ie. a
MOS gate) so that the capacitance on this node can be used for the synapse
strength storage.

Prior to implementing a synapse multiplier there are two questions we need to
answer. First: do we need a four quadrant multiplier? The synapse strengths in
a general neural network needs to be bipolar, thus we need two quadrant synapse
multiplicationj. Often the neuron activation function (eg. tanh(.)) yields as output
a bipolar value, indicating that we would need a four quadrant synapse multipli-
cation. However, doing a simple linear transformation on the activation function
(from bipolar units (superscript “+17), y,:fl € [—1,1], to unipolar units (super-
script “017), yp' € [0,1]):

W= 0+5 =

01 __ +1

+1 +1
0y =0 + > w;
J

, (3%)

where Oy is the neuron threshold (cf. (3OB)), we see that there is — in a mathe-
matical sense — no need for a bipolar activation function. (As would be expected
because pulse stream networks, as our brain, are operational.) When it comes
to learning, though, it is advantageous to use bipolar neuron outputs: Learning
algorithms typically have a factor €y; in the weight updating rule for wy;, where
€r is the neuron k error. Thus, if unipolar neurons are used (gx(.) = %tanh(.) + %,
say), the weight change is negligible when y; is close to the lower extreme value (0),
regardless of the neuron error. For this reason, ANNs using bipolar neurons tend
to learn faster (Stornetta and Huberman [230], Haykin [93], see also Le Cun et al.
[56]). It should be noted that the transformation (3%) can be applied to learning al-
gorithms as well as to networks. This would yield slightly more complicated weight

T Actually, by adding a constant prior to the multiplication and do a subtraction
afterwards (s = wz = (w+wp)z —wez) only one quadrant multiplication is strictly
necessary (Johnson et al. [115], see also Woodburn et al. [270]). However, this
method is bound to introduce additional offset errors which turns out to be a
major problem in analogue VLSI neural networks (cf. the following text).

Chapter 2.2.} Implementation of the neural network Page 21

updating rules and different rules for wg; and Oy, though, which is undesirable.
A quite different motivation to use a four quadrant synapse multiplier is that this
will be needed to the implementation of the learning hardware (cf. the following
chapters) and it reduces design time and error probability to reuse building blocks.

The second question is: do we need a linear multiplier? Doing gradient descent
learning, one needs to know the Jsy/0w;; derivative, where sj is the sum of the
synapse outputs. To fulfill this need, the multiplier should be linear (to be in
compliance with our simple ANN model) or at least have a computable transfer
function derivative. However, this is a requirement somewhat more strict than
needed: The inherent fault tolerance of ANNs relaxes this requirement and for
ANN chips taught using chip-in-the-loop training or hardware training inaccuracies
can be eliminated to a great extent by the learning algorithm (Eberhardt et al. [66],
Lehmann [139, 140], Montalvo et al. [168], Castro et al. [42], Valle et al. [251], Card
[40], Leong and Jabri [149], Woodburn et al. [270], among others; see also section
4.4.3). What is of greater importance than the multiplier linearity is its dynamic
range, usually restricted to about 60 dB, which puts constraints on the networks
that can be mapped on a given topology. In this connection, the multiplier output
offset error is very important: When connecting the outputs from many synapse
multipliers the output offsets will accumulate, easily giving a resulting offset that
is greater than the maximum output of a single synapse (if the multiplier has a
systematic offset, this is very probable). While in principle this resulting neuron
input offset error can be canceled by adjusting the bias, the dynamic range of the
bias synapse is thus easily exceeded, if steps to prevent this is not taken (eg. offset
canceling). These chip specific offset errors, and other process variation related
inaccuracies, are the reasons why analogue ANNs in general need to be taught
using chip-in-the-loop training. Also, in analogue systems with on-chip learning,
even small multiplier offsets can cause severe problems, cf. the following chapters.

Gilbert multiplier A very popular four quadrant multiplier is the Gulbert
maultiplier shown in figure 7% (Kub et al. [126], Schneider and Card [210]). Assum-
ing a square law approximation for the saturated MOSFETst, one can show that
the output current is given by:

lwz = lwz4+ — lwz— ~ \/ §ﬁwﬁz *Uwlz,

when v,, is small in the sense that the differential output current of the upper
differential pairs are linear in v,,I. 3, and 3, are the transconductance parameters
for the upper two and the lower differential pairs respectively.

When used as a synapse multiplier, a row of synapses can share the current
mirror that is needed to take the 7y.4+ — y.— difference (we call this circuit the
current differencer) thereby saving a current mirror per synapse — though for a

i ip = 50(vas — Vr)?.

I More precisely v, < 1/%\/1 — ﬁ;]:? — i%%g .

Chapter 2.2.} Implementation of the neural network Page 22

IWZ+\L

JlJ l
W S
Figure 7% MOS Gilbert multipli-

© § §
+ o—{
\' |
20
H I
er. All transistors work in satura-

Bias ¢ |
tion. A wide range version is pos- B
Vss

sible by adding a number of cur-
rent mirrors.

given accuracy of the difference, the total transistor area devoted to this task can
not be decreased, cf. appendix C.3. Note, that if local current differencing is used
and the multiplier output is not directly compatible with the neuron input, utmost
care should be taken in the design of the required signal converter as not to loose
the good accuracy in this component.

For a design with a restricted supply voltage, a wide range version of the
multiplier is easily implemented by the addition of a number of current mirrors. A
“folded” version of the multiplier is also a possibility.

The MOS resistive circuit Another, very linear, multiplier is the The MOS
resistive circuit (MRC') shown in figure 8° (Czarnul [57], Khachab and Ismail [123],
Tsividis et al. [245]). When ensuring virtual short-circuit of the output terminals,
the differential output current is given by:

1

MRC

iwz == iwz—l— - iwz— == ﬁvwvz == Uz .
The transistors operate in the triode region. Though requiring four matched tran-
sistors, the circuit has several nice properties: It cancels out most non-linearities of
the MOS transistors, making the difference current very linear in both v,, and v,.
The difference current is independent of the threshold voltage making it insensitive
to bulk effect and substrate noise. Further, the circuit is quite fast as the high fre-
quency effects of parasitic capacitances also tend to cancel out. The disadvantage
of the circuit is that the triode mode operation require a somewhat large power
supply voltage. For differential mode signals on the v, terminals, the circuit acts
as two controlled resistors (cf. figure 92) with resistances ryre as defined above —
an observation that is often very convenient when analyzing circuits with MRCs.
The need for a virtual short-circuit prevents the feasibility of local current
subtraction when this circuit is used as a synapse multiplier — thus the circuit will
usually exhibit relative large output offset errors. However, consisting of only four
transistors, the synapse density can be very high when using this multiplier. Actu-
ally, even higher synapse density is possible if single ended signalling is employed:

Chapter 2.2.} Implementation of the neural network Page 23

+ VW -
@) @)
P
M,
+ M I wz+ 'MRC I wz+
2 N by

7 Ms "oV" Vz "OV"
- "_’i My I wz-- _ I'MRC |%vvz--
© o NN\

Figure 8%: MOS resistive circuit mul- Figure 9% MRC resistive equivalent.
tiplier. All transistors work in triode This convenient equivalent circuit is
mode; the output potentials must be valid for differential mode signals on-
equal. The triode mode operation re- ly.

stricts the dynamic range.

Using one of the v, terminals as a constant reference, and forcing the output poten-
tials to be at that same potential, two of the transistors will have zero drain-source
voltage and can thus be eliminated as they do not conduct any current (Flower and
Jabri [71]). The problem with this approach is that very low impedance summing
nodes are necessary at the outputs, capable of sinking current from many synapses.

Multiplying DAC When using a digital synapse memory in an analogue
system, a multiplying DAC (MDAC) must be used as the synapse multiplier. The
disadvantage of this approach is its excessive area consumption. However, at the
expense of reduced accuracy (cf. above, appendix C.3), the scaling and summing
circuit of the DACs can be shared by (say) a row, k, of synapses. This way only
B identical voltage controlled current sources are needed at the synapse sites for
an Bbit resolution, see figure 10*(Bruun et al. [32], Dietrich [59], see also Van
der Spiegel et al. [228]). The transconductor and the diode coupled transistor

(common to a column, j) ensures a current proportional to the input voltage v.,

for all the synapse current sources that have the corresponding weight bit wa

set. The currents on the B output lines are scaled and summed by the current
adder (common to a row), producing the resulting output current. The accuracy
of this solution is primarily determined by the diode coupled transistor which has
to match all the synapse current sources of a column. The resolution is determined
by the local current source matching and the accuracy of the scaling current adder.
At a very modest area increase, the circuit can handle bipolar inputs (Dietrich
[59], Lehmann et al. [146], Lansner [133]). Such a 4 x 4 synapse chip designed
at our institute has been fabricated in a standard 1.5 ym CMOS process (giving
an accuracy of about 1%), proving the applicability of the scheme (Dietrich [39],
Lehmann et al. [146]).

When doing on-chip learning in a system with digital synapse weights, the
weight resolution can be temporary increased during learning by the addition of
an analogue adjustment, as noted in section 2.2.3. To get an accurate weight

Chapter 2.2.} Implementation of the neural network

|
/

—

B
- ESS)

Analogue
adjustment

N
™~

O

Figure 10% Multiplying DAC synapse. Simplified schematic for positive in-
puts. The switch transistors are controlled by a local weight register (bits wa;
not shown). The value of the optional “analogue adjustment” is controlled by

an on-chip learning algorithm.

multiplication during learning, an analogue multiplier should be added to the mul-
tiplying DAC, as indicated in the figure. Improved learning would result by the
omission of this multiplier, however, as the network errors would be calculated on
the actual resulting network rather than on an intermediate network with higher
weight resolution (Lansner [132]). See also section 2.6.

If the input neuron activation value (or the network input) is binary, the multi-
plier architecture can be very simple (Murray et al. [175], Woodburn et al. [270],
Graf and Jackel [82], Johnson et al. [115]). Basically, a weight controlled current
source is either switched to the multiplier output or not, depending on the state of
the input, requiring as few as three (or even one) transistors for unipolar neuron
activation. See also section 2.3.3.

Using a synapse multiplier which is non-linear in v, (NLSM) (eg. o sinh(vy,))
can reduce the problem of limited dynamic range (Van der Spiegel et al. [228], Hol-
lis et al. [99], Valle et al. [251], Kwan and Tang [128]). As it is the magnitude (and
sign) rather than the actual value of the weight that is of importance to the ANN
performance, the inevitably reduced resolution for large weights is of less concern.
Using MOS transistors operated above threshold achieving an exponential char-
acteristic is not easy. A square-law non-linearity, however, is easily achieved as
indicated in figure 11, This particular circuit also has the advantage that an offset
free zero weight can be ensured (ignoring subthreshold currents) by proper bias-
ing, see figure 122, Also, the flat plateau around zero output current will tend to

Chapter 2.2.} Implementation of the neural network Page 25

trap small weights at efficiently zero value — the multiplier could be said to be
“self-pruning” — which might improve the ANN generalization ability.

\Vbp

nlbml -- non-linear multplier with one input binary
Date/Time run: 07/25/94 11:47:56 Temperature: 27.0

AI: b

100uA

" B
I3|4as{|; | 1000A

-200uA

vV
o . 2V 4V 6V 8V 1ov
\/SS I(vo) ww

Figure 11%: Simple non-linear synapse Figure 12%: Weight-output character-
multiplier. The four leftmost tran- istic of NLSM. A simple double (a-
sistors act as level shifters that en- symmetric) square law characteristic.
sure only one of the saturated, middle Notice the null range which ensure ze-
“weight transistors” are turned on. ro output offset error.

The multiplication is performed by

the rightmost switch transistor.

In this work we have chosen to use the MOS resistive circuit multiplier. There
are several reasons to this: (i) The MRC is a small, fast multiplier which is im-
portant to the applicability of massively parallel analogue ANNs. (ii) The learning
algorithm, which we are to add at a later stage, not being determined in advance, we
should not reject the possibility of implementing a gradient descent algorithm. The
extent to which an unknown synapse non-linearity can be canceled by the learning
scheme is problem- and algorithm dependent; a reasonably linear multiplier is the
safe choice. (iii) The MRC is a very versatile component. One can, for instance,
implement a voltage in, voltage out multiplier/divider (vout = Vin1Vin2/vin3), us-
ing two MRCs and an op-amp, which is independent of process variations (cf. the
following chapters). This will be needed for the learning scheme and we can thus
reuse our multiplier cell which reduces the possibility of design errors. In this
connection it should be mentioned that there are several other possible choices for
process variation insensitive voltage in, voltage out multipliers (eg. Wang [257];

see also Sakurai and Ismail [204], Coban and Allen [49], Botha [28]).

Chapter 2.2.5 Implementation of the neural network Page 26

2.2.5 Activation functions

The last thing that needs to be considered before implementing the analogue neural
network is the threshold function. If a binary valued neuron transfer function
is sufficient for the application at hand, the neuron circuit can be very simple
(Bibyk and Ismail [23], Hollis and Paulos [98]). If, on the other hand, a continuous
valued non-linearity is sought (as in our case) the circuit is often somewhat more
complex. This complexity is usually not a major concern, though, as there are
only N neurons compared to the order O(N?) synapses. The exact shape of the
neuron transfer function is usually irrelevant (cf. eg. Sdnchez-Sinencio and Lau
[206]). What is more important is its qualitative shape; eg. that it is monotonous
and saturates for numerically large inputs. This is a very attractive feature which
means that transfer functions easily implemented in the technology can be chosen.

Pulse frequency neuron The neuron schematic is of course strongly depen-
dent on the network signalling domains. For pulse frequency neural networks, for
instance, a neuron must be a non-linear current controlled oscillator (CCO). A
sample implementation of such a neuron can be seen in figure 13 (Murray et al.

[176]).

&

I's,

I
CintI }; .
Tld

Vief+

- -

Vref_

Figure 13% Pulse frequency neuron. The output voltage alternates between
digital high and low at a frequency determined, in a non-linear way, by the
mput current.

The pulse frequency will be in the range fact € [0, Idep/Cint(Viet+ — Viet—)]-
This particular circuit does not have a particularly low input impedance which
must be compatible with the synapse multipliers.

Distributed neuron Using continuous valued current in/voltage out sig-
nalling for the neurons, the neuron non-linearity can be achieved simply by ap-
plying a non-linear load to the summed synapse outputs — the same wire would
then be used as both neuron input and output (we assume that the loads at the
neuron output has a very high impedance). This approach makes it very easy

Chapter 2.2.5 Implementation of the neural network Page 27

to distribute the neuron hardware on the synapses rather than using conventional
lumped neurons, see figure 14° (Satyanarayana et al. [207]). The distributed ap-
proach has the obvious advantage that the current range in the distributed elements
is that of a single synapse — thus making the system truly scalable to an arbitrary
size. The function implemented by the distributed neuron-synapse approach is

1
Ye = Gk (Ezwkj2j>)
J

where M} is the number of inputs to the resulting neuron, k. Some argue that
the typical weight magnitudes of a neuron is often proportional to 1/Mj, (though,
see section 2.3.1), in which case this very factor can actually improve the effective
dynamic range of the synapses by a factor M}, (Satyanarayana et al. [207]; see also
Eberhardt et al. [65]). Note that the distributed neuron elements must be kept
small as their number scale as O(N?).

Figure 14* Distributed neuron. The input current and output voltage are
carried on the same wire. The transfer function for this particular neuron
does not saturates in itself; the synapse would contribute to the transfer char-
acteristic. This distributed approach makes the network truly scalable.

Hyperbolic tangent neuron If we are to add learning hardware to an acting
neural network, we will (most probably) not have access to the neuron net inputs,
the sgs. For the implementation of a gradient descent algorithm Oyy/0sy needs
to be computed. Thus the choice of a hyperbolic tangent transfer function — the
transfer function of a bipolar differential pair — is well tailored to this situation:
we have

0
Etanh(sk) =1- tanhz(sk).

Chapter 2.3 Implementation of the neural network Page 28

Unfortunately, the differential pair has voltage input and current output, rather
than the other way around, which makes the use of input and output transre-
sistances necessary. A hyperbolic tangent neuron implementation can be seen in
figure 152, p. 29.

Bipolar transistors are not available in standard CMOS processes. However,
well MOS transistors can be operated in lateral bipolar mode (LBM MOSFET)
which turns on a reasonably good (though somewhat slow) bipolar transistor, see
appendix C.2. Though it is against the philosophy of section 2.2.3 to use non-
documented devices, the offense is not too severe in this case: using a fairly sim-
ple regulating circuit, the primary parameter of the LBM MOSFET, the emitter-
collector current gain, can be measured and adapted to. See section 2.7.

We shall discuss the necessity of computing the transfer function derivative in
later chapters; as well as problems related to this calculation. Further, we shall
examine other neuron circuits. For now, “not constraining the future implementa-
tion of the learning hardware” motivates our choice of transfer function, which is
this hyperbolic tangent one implemented using LBM MOSFETs.

Many other neuron architectures can be found in the literature, to which we refer
the interested reader (eg. Mueller et al. [173], Schneider and Card [210], Sanchez-
Sinencio and Lau [206], Mead [162]).

2.3 Chip design

In this section we will describe the chip set developed at our institute. Considera-
tions on the choices of the central components were given in the previous section.
A description of the chip set was published in Lansner and Lehmann [130, 131]
(see also Lehmann [141, 142], Schultz [211]). The cascadable chip set consist of a
neuron chip and a synapse chip, having the topologies shown in figure 17,

The chip set was designed primarily to test the ANN functionality, and thus
as little hardware as possible was included on the chips — to reduce the possibility
of malfunctioning chips. This design methodology has proven successful: all the
designed chips worked after first processing (though errors occurred). The price
for this reduced error probability is basically that the chips need a large number of
biases (voltages and currents) which severely complicates their use. As we, unfor-
tunately, did not have sufficient time to design a complete, volume manufacturable
set of chips, problems related to self-biasing, temperature compensation, etc. are
not experimentally covered in this thesis; though very important to VLSI design.

The integrated CMOS process we shall use is a standard analogue 12V, 2.4 ym,
double poly, double metal, n-well CMOS process. In order to put as few constraints
as possible on the analogue building blocks, we have chosen a rather large, £5V,
power supply. This was convenient as the different components on the first chip set

Chapter 2.3.1 Implementation of the neural network Page 29

was developed concurrently by three different designers (myself, John A. Lansner
and Thomas Kaulberg). In a future implementation, the building blocks should be
redesigned to a standard 5V (or 3.3V) digital process.

A design strategy that has been employed is to reuse components whenever
possible, in order to reduce the possibility of design errors and design time. This
is true for on-chip “micro components” (as the op-amp) as well as “macro compo-
nents” (as the matrix-vector multiplier) as we shall see in the following chapters.

A few preliminary, general system aspect considerations are needed before the
actual chip designs. These can be found in appendix D.1.

2.3.1 The neuron chip

The neuron chip design was done by John A. Lansner (see Lansner [133]). The
schematic of a neuron on the neuron chip is shown in figure 15%. The core of the
circuit is the bipolar differential pair implemented using two LBM MOSFETSs. The
differential output current of this pair is converted to a single ended voltage by the
“output range” (OR) MRC (and op-amp). (For the op-amp schematic, see appendix
E.1.) This is again buffered so the neuron can drive the relative low impedance
input of the synapse chip (cf. below). At the input of the neuron, the “input scale”
(IS) MRC (and op-amp) is likewise placed, acting as the input transresistance that
converts the input current to voltage needed to drive the differential pair. The
resulting transfer function is the following:

v — 705}—{‘ B tan A —

i, ,)
= Rorapclp tanh (15051)

2Vi

where Ip is the bias current and apc is the emitter-collector current gain. Because
of the undesired vertical collector of the LBM MOSFET, connected to the substrate,
we have apc = —ic/iEV%yO.E). The output voltage v, is referred to Vier = =2V
to be compatible with the synapse inputs.

The input impedance is non-linear and strongly dependent on (though always
smaller than) the resulting transresistance Rys. One should not be too offended by
this non-ideal load of the current source: When the tanh is saturated, even severe
non-linearities in the transresistance (or in the synapse output stage, caused by
the non-linear, finite load) are indifferent as an input current (i,) error would
be indistinguishable at the neuron output. The differential pair saturates for a
differential input voltage of a few V; (tanh(4V;/2V;) = 0.96), which is thus the
voltage shift from the input reference (0V) that must be tolerated by the synapse
chip (regardless of Rig). This is easily accomplished.

Though the input transresistance is adjustable, it has a dynamic range of
only 30dB—40dB. In other words, the neuron transfer function steepness, (¢, is
adjustable within this range (or the effective mazimum synapse weight, |w|max, if
one prefers to think of the transfer function with a fixed steepness, 5y = 1). Clearly,

Chapter 2.3.1 Implementation of the neural network Page 30

\Vbp

S Vis s OLx:
oM = Ly ..

I~ T
Isk
[re ;

e

V ref

Figure 15%: Hyperbolic tangent neuron. Basically a BJT differential pair
(using parasitic components) embedded in transresistances.

in a system with an arbitrary large number of synapses connected to each neuron,
this dynamic range does not allow a neuron to be saturated only if all synapses
are exiting it — as would be the case if the steepness scaled as 1/My, where Mj, is
the number of connected synapses. The dynamic range of our neuron steepness is
sufficient to cancel process variations, but not much more. In many classification
problems, it is often seen that the neurons in a trained network (both output and
hidden ones) are most often saturated (see eg. Brunak and Lautrup [30], Krogh
et al. [125]; see also Williams and Zipser [268]); that is, they act more or less as
hard limiters — clearly, this is not possible if the steepness scales as 1/Mj. If one
could ensure that the transresistance was adjustable down to 02, both extremes
could be embraced (Eberhardt et al. [65]; see also Mueller et al. [173]), but using
a lumped neuron approach this would prove most difficult: the lumped neuron
would have to be able to sink an arbitrarily large current. Further, even such
a system would not be able to handle the situation where all synapses but one
must agree to make a decision, which in turn can be overruled by the last synapse
(a situation which is not uncommon in the brain (Rumelhart et al. [200])). The
unfortunate conclusion is, that in order to be absolutely general, the dynamaic range
of a synapse must scale as My, which is incompatible with analogue VLSI. This,

Chapter 2.3.2 Implementation of the neural network Page 31

once again, stress the importance of making the dynamic range of the synapse as
large as possible.

In order to make reasonably simple neurons and learning algorithms, we have
chosen the “fixed” neuron steepness approach. The steepness has been selected
to be compatible with “typical” weight magnitudes found in reported systems and
our own simulations. It should be noted that, if the non-linearity introduced by
the non-linear neuron input impedance is acceptable, the neuron steepness can be
reduced simply by adding a parallel external resistance at the input. It could be
one of the objectives of further research to enhance the neuron steepness dynamic
range (the steepness should be governed by the learning algorithm).

2.3.2 The synapse chip

The synapse chip consists of a number of inner product multipliers (IPM) that
multiply the input vector (v.,)i with a row of the stored matrix (V,,,). Such
an inner product multiplier is shown in figure 162 (see eg. Bibyk and Ismail [23]).
The difference of the summed synapse MRC outputs is taken by the op-amp with
MRC feedback, which also ensures the required virtual short-circuit of the synapse
outputs. The resulting voltage is transformed by the transconductance (gmi) to
the output current (is,). (For the op-amp and the transconductance schematics,
see appendix E.1 and E.2.) The resulting transfer function is the following:

. Jmk 2
G = T Wi lL; Vi, v, 5
t k WO/LO'VC z]:]/ J kJUJ ()

where We/Lg are the MRC width /length ratios and Vi controls the total transcon-
ductance. This control voltage is used to adjust the effective maximum synapse
weight, though the dynamic range allow only for small adjustments (as compen-
sating process variations), as was the case for the neuron steepness adjustments.

The schematic of a single synapse is shown in figure 17%. The synapse strength
is stored in a differential manner on capacitors at each synapse site; this way offset
due to charge injection (Shieh et al. [219], Wegmann et al. [260]) is canceled, as well
as (the differential) charge leakage due to the reversed biased drain-bulk diodes
of the sampling switches; provided that the components match. To ensure random
synapse access, the sampling switches are controlled by a NAND gate rather than
directly by the row/column select signals provided by the row- and column decoders
(as in Lee et al. [137] or Kub et al. [126]). For minimum geometry transistors for
the gate, the area overhead is acceptable. See also appendix D.1.1.

T “%” meaning that the index runs over all possible values:
def []T

QZ* = UZ17U227"'7UZMk

Chapter 2.3.2 Implementation of the neural network Page 32

o Wkig o Yo
1 1
TTT TTT

4*M ¢ -’:’- eeco 4M -r—’-

~ 1 1

0O O 0O O
+ Vg, - + Vg, -
-V~ +
o Co

/)/ gmk .

| S

)

Figure 16 Inner product multiplier. One MRC per input vector dimension
is required (upper part). The MRC feed back opamp ensures virtual short-
circuit at the MRC outputs; the transconductance converts the opamp output
voltage to a current for cascadability.

The second generation synapse chip Using an op-amp with MRC feedback
as the synapse differencer, followed by a transconductance to obtain the desired
output current is somewhat indirect. A simpler and more accurate approach is to
use a current conveyor (see appendix E) to take the difference while ensuring the
virtual short-circuit, as shown in figure 18%. See also chapter 4. The i,, 4 input
is lead directly to the output and the 75, _ is negated by the current conveyor and
added to the output. The y-x voltage follower ensures the virtual short-circuit.
To avoid DC common mode currents in the synapses the output potential of the
current conveyor should be close to Vief, which requires a slightly changed neuron
schematic (cf. chapter 4). This solution does not allow the effective maximum
synapse weight to be tuned as above. Process variations must thus be canceled
by scaling the weights, which reduces the dynamic range of the synapse weights
slightly. The adjustments are carried out automatically during learning, though,

Chapter 2.3.2 Implementation of the neural network
OV .
Y Vij Cw+ Cw-- — M sw i
T O VWref
T | = I T
I
M 1
syn "_" S
. 3
TT
I wez-- ¢ ¢ I wz+)
— s, _
— i5k+
0
O 0O Row =k o
+ Vg, -

Page 33

Figure 17% Synapse schematic. In addition to the MRC multiplier weight-
storage (differential, capacitive) and access (switch transistors and NAND gate)

circuit is placed at the synapse sites.

without any weight scaling learning mechanism.

Figure 18*: Current conveyor differencer. This .
circuit gives as output ts, = 15,4+ — is,— while i’
buffering the y-node voltage to the x-node. The
input voltage is thus determined by the output

load.

X
CCll+z

I's,

e [——]
is, .

It is also possible to use a current-mode op-amp with resistive feedback as a
differencer. This way the effective maximum synapse weight can be adjusted while

preserving the good accuracy of a simple differencer.

The use of one of these current-mode operational devices to our current-mode
signal processing is the superior choice, when considering both speed and accuracy

of the circuit (Bruun [33], Bruun et al. [35]).

Chapter 2.3.3 Implementation of the neural network Page 34

2.3.3 Sparse input synapse chip

Often the inputs to a neural network are taken from a discrete input alphabet
consisting of a number, N4, of symbols (or letters), ai,az2,...,an,. To avoid
false distance relations among the different letters, unary coding of the letters is
usually employed; that is, N4 network input lines are assigned to every logical
input (or letter input), Xe:

Xe¢ = TeN440, TEN4+1, TEN 4425 -+ TEN 4+ Na—1
oy 1 0 0 0
Qs 0 1 0 0
N, 0 0 0 1

We notice that the network inputs are used sparsely. One can use —1 instead
of 0 as the inactive value, as discussed in section 2.2.4. In this particular case,
however, the choice of 0 can actually improve learning: only the weights related to
the present input letter in each letter input will be modified (by a typical algorithm,
cf. above).

Sample applications As examples of applications where unary input coding
are used, we shall mention prediction of splice sites and word hyphenation:

In the human genom project, which aim is to map all human genes, the prediction
of splice sites in pre-mRNA molecules (a copy of part the information in a DNA
molecule) is an important task. Much of the DNA information is “junk” that
does not code for proteins and much of this junk DNA is scattered about in DNA
sequences that does code for proteins. Prior to the protein synthesis, the body
cells cut out these junk sequences of the pre-mRNA molecules. The junk-code
boundaries are the splice sites, see figure 19? (Stryer [231], Brunak et al. [29]).
These splice sites are difficult to predict and are dependent on the context of the
nucleotide sequence. Applying neural networks to this problem has proven to be
very successful (Brunak et al. [29]). The input alphabet for this ANN application
has N4 = 4 letters, A, T (or U), G, and C, corresponding to the four nucleotide
bases of DNA (or RNA). Brunak et al. used two layer perceptrons with the order of
300 letter inputs (ie. 1200 network inputs) and 200 hidden and one output sigmoid
neurons for this classification task.

Another application that uses a discrete input alphabet is word hyphenation. Ig-
noring context dependent hyphenation (as de-sert vs. des-ert), a good solution
can be found using an ANN with an input window of a few letters: Brunak and
Lautrup [30] used a two layer perceptron with eight letter inputs and 30 hidden
and one output sigmoid neurons to hyphenate Danish words. The input alphabet
of this classification task has N 4 = 30 letters corresponding to the 29 letters of the
Danish alphabet (a,b,...,z,&,09,a) plus a “null” letter.

Chapter 2.3.3 Implementation of the neural network Page 35

pree-mRNA

Figure 19%: Nucleotide sequence. A splice site licesite

is shown for a sample schematic pre-mRNA mo-
lecule; RNA is composed of a sequence of the
bases adenosine, cytidine, guanosine and uri-
dine.

The sparse, unary coding of the letter inputs — say, applying 29 zero inputs for
each 1 input — clearly exploits the input bandwidth of a “standard” synapse chip
poorly. For systems with, say, hundreds of letter inputs even a small reduction
in the required input bandwidth can reduce the system cost considerably. This is
the motivation to develop a special input layer synapse chip for networks with a
discrete input alphabet — a sparse input synapse chip.

The basic idea of this synapse chip is simply to use binary coding of the
input alphabet and decode this to unary coding on-chip. Standard digital CMOS
design techniques can be used for the decoding or, alternatively, a demultiplexor
(controlled by the letter input) can be used to redirect a current as shown in figure
20°. The figure shows the current demultiplexor for a two bit letter input and
one of the four synapse columns connected to the demultiplexor. As discussed in
section 2.2.4, the synapse multiplier can be very simple when the z input is binary;
eg. as in figure 11%. One can also use the demultiplexed current to derive the bias
currents for synapse transconductors as shown in figure 20%; only one of the four
columns of synapse transconductances will have bias currents.

X bl
X { X 0% Vss Vss Vss
L L etter input Network inputs Synapse column

Figure 20*: Sparse input synapse chip column. A binary coded letter in-
put X corresponds to, say, four unary coded ANN inputs: The bias current
Iy is demultiplexed (left) to one of the four synapse columns (one shown to
the right) corresponding to the letter input. Turning off or on the synapse
transconductance bias currents act as multiplication by 0 or 1.

Chapter 2.} Implementation of the neural network Page 36

To implement a non application specific sparse input synapse chip, it is neces-
sary that the demultiplexor is reconfigurable — that is, one must be able to change
the number of outputs and control lines to fit the applications. The design of
such a reconfigurable sparse input synapse chip was done by Jesper S. Schultz (see
Schultz [211]). As the required input bandwidth to drive a given number of synapse
columns scale as O(log(N4)/N), one can not exploit both input bandwidth and
chip area 100% efficiently for all N4 (though, the input signals can be time mul-
tiplexed when N4 is low (to improve the exploitation of the chip area) and it is
usually not of paramount importance to fully exploit the input bandwidth when
N 4 is high). It is therefore necessary to select an “ideal” N4 where the number
of synapse rows is tuned to the input bandwidth. Also, when the number of letters
in the input alphabet is not a power of two, the binary input coding prohibits a
100% efficient exploitation of both input bandwidth and chip area. Thus, even a
reconfigurable sparse input synapse chip is “non application specific” rather than
“general purpose”.

2.4 Chip measurements

A 4 neuron neuron chip and a 4 x 4 synapse synapse chip has been fabricated in
a standard 2.4 ym CMOS process. In this section, we shall present measurements
on these chips (first published in Lansner and Lehmann [130, 131]). A table of the
most important chip characteristics can be found in appendix D.1.

2.4.1 The neuron chip

The measurements on the neuron chip were done by John A. Lansner (see Lansner
[133]). In figure 217 measured neuron transfer characteristics for different values
of the input scale voltage Vis can be seen. The maximum transfer function non-
linearity (compared to an ideal tanh) is Dy < 2% of the output range and the
non-linearity of the derivative is Dy, < 10%.

1 Neuron function
V_I1S=0.25V

Figure 21% Measured neu-
ron transfer function. Charac-
teristics for different input scale
control voltages Vig. The dotted -3 :
lines are ideal tanh curves. The -50 0 50
input offset has been canceled. Input current i_s,1/ uA

Output voltagev_out / V
N

Chapter 2.4.2 Implementation of the neural network Page 37

This low non-linearity proves the applicability of the LBM MOST differential
pair and the possibility of accurately computing the derivative on the basis of the
neuron output (see also section 4.4.2).

2.4.2 The synapse chips

The measured synapse transfer characteristics for a single synapse can be seen
in figure 22%. The characteristics showed a good linearity (D,. < 3% or 5 bits
accuracy) — with the exception of the case with negative V,,,; values and positive
v.; values (Dy. < 16%). This is because it was necessary to lower Vis to ensure
a reasonable output current swing (due to a layout error). This non-linearity is
by no means prohibitive for the application of the synapse chip; chip-in-the-loop
training or a future on-chip learning mechanism can easily compensate for it (cf.
eg. Castro et al. [42], Valle et al. [251]; see also section 5.2.1).

S){napse Characteri;ti c
< -
3 20 V_w,11=
iy 0.94v
9
5 0
5
Figure 292. Measured synapse ;5;_ -20 -0.94V
characteristics. Characteristics g
tfor different stored weight volt- ‘ : :
ages V. The output offset has -1 -0.5 0 0.5 1
been canceled. Input voltagev_y,1/V

The weight matriz resolution was measured to Viyres < 2mV or 10bit at the
least for a 2V range of “matrix voltages”. Smaller changes are possible but lies
below the noise floor at the synapse chip output. For a recall-mode system the
resolution is sufficient for a wide range of applications (cf. eg. sections 2.2.3, 5.2.1).

Second generation synapse chip For measurements on a synapse chip with
current conveyor based synapse differencing refer to chapter 4.4.

The output offset currents on the synapse chip and the input offset current on
the neuron chip are quite large; approaching in magnitude the maximum synapse
output current. The reason could be (in addition to component mismatch) that
the opamps have low gains (< 60dB), which together with opamp offset voltages

Chapter 2.4.3 Implementation of the neural network Page 38

of 2mV would give the measured current offsets. This, however, is not necessarily
a major problem (provided that the network is trained and used using the same
chips) as the offset currents just displaces the neuron biases. Likewise the matrix
offset voltages (which are relative small) could be used as small, random, initial
weights when the network is trained. It should be noted that the offset errors are
(mostly) non-systematic.

Even with the large current offsets, the chip set characteristics are compatible
with many ANN applications (though it is not as general as an ideal, simulated
network, of course). The primary limitation of the network is the limited dynamic
range of the synapses. For enlarging the application area, ensemble methods can
be employed (cf. section 6.3.1).

2.4.3 Chip compound

Interconnecting a synapse- and a neuron chip, the combined transfer characteristics
can be measured. This is shown in figure 23* for different values of the synapse
strength, verifying the synapse-/neuron-chip compatibility. The step response of
the synapse-neuron combination is shown in figure 24*. The delay through one
layer of an ANN based on our chips can be measured on this curve: for an 8 bit
output accuracy we have ;4 < 2.6 us, corresponding to 6 MCPS per synapse chip.
As the synapse chip propagation delay should be largely independent of the number
of synapses, a full-size (100 x 100 synapses) synapse chip would be expected to do
3.8 GCPS;.

] e YN &

S
NAN

1 Synapse & Neuron Step Respons

=
a1

\

1
=
a1

\

i

N
a1
T
1
N
a1
T
I

Output voltagev_out / V
N

Voltagesv_y,1 & v_out/V
N

25 2 15 -1 5 10
Input voltagev_y,1/V Time t/us

I

w
I

w

1
w
o

Figure 23% Measured synapse-neuron Figure 24%: Measured synapse-neuron

transfer characteristics. Characteris- step response. Combined chips. The

tics of combined chips (ANN layer) for dashed line is the input signal. The

different stored weight voltages V. effect of five cascaded opamps can be
seen in the evidently high order trans-
fer function.

T For comparison: A typical (1994) workstation would be able to to about
57 MFLOPS (HP 9000/735 125 MHz, HP Direct [2]) or almost two orders of mag-

nitude below the computational power of a single chip.

Chapter 2.5 Implementation of the neural network Page 39

2.5 System design

The system design was done by John A. Lansner (see Lansner [133]). To verify
the functionality of the chip set, a two layer test perceptron based on it was imple-
mented at our institute. Using five synapse chips and two neuron chips, an 8-4-4
architecture was implemented as shown in figure 25% (A layout error caused one
of the neurons on the neuron chip to be disconnected; also one of the inputs on the
synapse chip was malfunctioning. Thus this architecture.) The two linear output
neurons was implemented by simple resistors.

N0
-%@3///

<2
SO
&S

A

Figure 25%: Two layer test perceptron. This
simple architecture is capable of solving a lar-
ge range of non-trivial tasks.

A standard PC interface was added to test and teach the system (cf. figure
262). The synapse strengths are stored in a 16 bit RAM and are periodically
refreshed via a 12bit DAC. Both output and hidden neurons are accessible from
the PC via ~ 10bit ADCs. The inputs are driven by 12bit DACs.

ADC
—
PC z

. 2 ;J\
Figure 26”: Test perceptron system ar-
chitecture. To test the ANN system it

L RAM}==(DAC

is embedded in a digital system. In a -)
real-world application, only the weight
backup would be digital. M

Chapter 2.6 Implementation of the neural network Page 40

2.6 System measurements

The system measurements were done by John A. Lansner (see Lansner [132, 133]).
For a realistic performance evaluation, a well known real-world data set was applied
to the hardware system; namely the sunspot time series (Weigend et al. [261]).
This semi periodic time series is the yearly average of dark blotches on the sun,
see figure 277 (the data is normalized to be within the range [0, 1]). Using a tapped
delay line to feed the ANN the sunspot activity of the latest M years, the ANN
must predict the activity for the following year. (Note that the data set complexity
approximately matches the network architecture, which is essential for obtaining a
good generalization ability. Only one ANN output is used.)

Spnspot Predict‘i on Time Seri es

0.8

training set
0.6

Activity

0 1
1700 1750 1800 1850
Y ear

1900 1950 2000

Figure 27% Sunspot prediction. Classic regression problem. The actual
sunspot time series (solid) and the sunspot activity as predicted by the hard-
ware ANN (dotted).

The ANN was trained using a standard chip-in-the-loop back-propagation al-
gorithm. In the calculation of the neuron k transfer function derivative the tanh
characteristic was exploited ¢ ;. = Bk(1 — (argx)?), where () and oy are con-
stants and gy, is the actual hardware ANN neuron activation. To ensure g}_,,. > 0
(otherwise learning can not take place, cf. the following chapters, Lehmann [139,
140]), the neuron activations gy are scaled such that agr < 1 (to compensate for
the neuron output offset- and scale errors). For ap = a this closely resembles
the procedure that we shall apply using learning hardware. Prior to learning, the
neuron output ranges are measured to determine the optimal o or ays.

The performance of the hardware ANN was compared to that of an “ideal”
software ANN with identical architecture but without the non-idealities of the ana-
logue hardware (ie. coarse weight discretization, offset errors, non-linearities, etc.).
The normalized average relative variance (NARV) of the error on the training set
as the training progresses (see appendix B.4) can be seen in figure 28, It is noticed
that the performance of the hardware ANN is somewhat noisy and slightly worse
than that of the software ANN — as would be expected because of the limited
accuracy of the analogue hardware. The output accuracy of the hardware ANN is
approximately 4-5bit (see Lansner [132, 133]). The NARV of the error on two test
sets can be seen in figure 297 (the curves with the high NARV are for the atypical

Chapter 2.6 Implementation of the neural network Page 41
test set 1956-1979; the sunspot count in this period does not resemble the rest of
the data set very closely). The error will always be lower for the training set than
for the test set and the latter exhibits a minimum beyond which further training
leads to over-fitting. Notice that the hardware ANN test error is noisy and higher
(compared to the training error) than the software test error. This is caused by
inabilities of the limited accuracy of analogue VLSI.

Sunspot Learning Errors Sunspot Test Errors(1921-1955,1956-1979)

l T T T l T T T
0.9+ : 09 ; s
0.8+ : 0.8
0.7+ : 0.7
S o6f . S 06} §
= = 1956-1979
g o5 T E s 1
= =
= =
s 04} : s 04 :
zZ zZ
0.3
0.2
0.1+ 1921-1955 -
0 I I I 0 I I I
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Epoch Epoch

Figure 28% Sunspot learning error.
NARV as function of learning epoch
for the hardware ANN (dotted) and
an “ideal” software ANN (solid). The
error approaches asymptotically a
minimum.

Figure 29% Sunspot prediction error.
NARV as function of learning epoch
for the hardware ANN (dotted) and
an “ideal” software ANN (solid) for
two different test sets. Notice the NA-
RV minima; further training leads to
over-fitting.

The successful system evaluation indicates that implementing hardware ANNs
using the proposed architecture is indeed feasible, as claimed above — and as other
authors have also noted for different analogue hardware ANNs. The next step is
to implement learning hardware for this ANN system.

Chapter 2.7 Implementation of the neural network Page 42

2.7 Further work

Related to our hardware implementation of the artificial neural network, there are
several issues that need to be considered before a volume production would be
possible. We shall display some of these in this section.

2.7.1 Process parameter dependency canceling

As noted in section 2.2.5, we must eliminate the undocumented process parameters
when using parasitic effects of our semiconductor process — such as the MOSFET
operated in the lateral bipolar mode. In the case of the hyperbolic tangent neuron,
the “undocumented process parameter” in question is the forward emitter-collector
current gain, apc (cf. (4%)) of the LMB MOST differential pair. In figure 30% a
simple regulating circuit is seen: A single LBM MOST emulates a differential
pair that is driven to saturation (such that tanh(.) = 1). The (non-substrate)
collector current in this LBM MOST is thus the effective bias current Igeg =
Igapc. Subtracting a reference current Ig,er from this and dumping the difference
into a high impedance node gives a voltage, Vap, with which to drive the bias
transistor. Vap is distributed to all the neuron LBM MOST differential pairs
which will thus have effective bias currents of approximately Igyer. A loop gain of
A1, = —gmBarc/2gas1 & —100 is easily implemented using simple MOS transistors
as indicated in the figure. This corresponds to an effective bias current error
of (Igret — IBest)/IBret = 1/(1 — Ap) &~ 1%. As Vap is meant to be distributed
to a large number of neurons (ie. bias transistors and differential pairs (apcs)
distributed over a large area are required to match) there is no point in increasing
the gain for better accuracy. For a sufficiently high number of attached neurons,
the Cggs of the bias transistors will act as compensation capacitance (Cc).

Using a simple regulating loop to cancel unknown (global) process parame-
ters 1s a principle with general applicability. The principle is illustrated in figure
312, The references can be on-chip internal references; for instance temperature
compensated (which would cancel the temperature dependency of the “unknown”
block). An off-chip reference would be used if a signal (input or output) needs to
be within some absolute range (eg. critical inter-chip signals in multi-chip systems).

The hyperbolic tangent neuron output range transresistance (cf. figure 15%) is
an evident component on which to apply current factor dependency canceling. If
we wish to calculate the neuron derivative off-chip as 1 — g%, we must ensure that
the neuron output is in the absolute range [—1, 1]; thus the output reference would
be a “1”7. The input reference must be the LBM MOST differential pair output
current that corresponds to a neuron output of “17, ie. Igef.

Chapter 2.7.2 Implementation of the neural network Page 43

Figure 30% Non unity e-c current gain canceling. Circuit for LBM MOST
differential pair. The saturated BJT differential pair output current (ie. the
effective tail current) is compared to a reference current, amplified (via the
high impedance “Vap” node) and fed back to the tail current source. A single
BJT or a BJT pair with one transistor turned off can be used as reference

BJT “pair”.
ol
ctrl

unknown
transfer .
function °
S
in Joutf>=
ctrl

input reference

Figure 31%: General process parameter can- output reference H/

celing circuit. Principal schematic of the in Jout
method applied to cancel non-unity e-c cur- - j&‘
rent gain. The unknown transfer function

blocks must be matched. desired output

2.7.2 Temperature compensation

The excessive use of transconductances (outside feedback loops) in analogue neu-
ral networks (eg. synapse multipliers) makes temperature drift a major concern
(this was actually a problem in the experimental ANN system solving the sunspot
regression problem). The temperature dependence of the MRC, for instance, is
primarily determined by the mobility p which is proportional to T73/2 for low
substrate dopings at room temperature (Sze [235]). (u o T?/? for high substrate
dopings at room temperature.) In the temperature range [300 K, 370 K], this corre-
sponds to a synapse strength drift of 27 %. In most real-world applications such a
large temperature drift is unacceptable (unless the temperature is known to be con-
stant as in implanted devices) and temperature compensation must be employed.

We can regard the temperature as a time varying “undocumented process pa-

Chapter 2.7.3 Implementation of the neural network Page 44

rameter”. Thus temperature compensation can be implemented as above, provided
that a temperature independent reference is available (such as a bandgap reference).

Of primary interest in relation to temperature drift is the effective neuron
activation slope (or, equivalently, the effective maximum synapse weight) assuming
the output range is well defined. As noted in section 2.3.3, process variation
influences on the effective maximum synapse weight can be canceled by the learning
algorithm; assuming constant temperature, that is. However, in the important
special case of classification, the neurons are usually saturated after the learning
phase. In this case it is the relative (rather than the absolute) synapse strengths that
describes the network and if we can assume a constant system wide temperature,
such a system will function independently of the temperaturej. For regression
problems, on the other hand, where analogue outputs are required, temperature
compensation is unavoidablei.

2.7.3 Other improvements

In addition to the important process parameter/temperature variance compensa-
tion, several issues are subjects for improvement of the developed cascadable ANN
chip set. These can be found in appendix D.1.2.

2.8 Summary

In this chapter we designed a cascadable, analogue VLSI artificial neural network.
Several network models and topologies from the literature were displayed. De-
terministic, first order neurons using continuous valued currents and voltages for
signalling was chosen and a cascadable architecture placing neurons on one chip
and synapses on another selected for generality.

Essential building block components, memories, multipliers and thresholders,
were reviewed next. No good analogue memories are presently available. For adap-
tive systems simple capacitive storage seems the best choice, though weight refresh
is a problem. We have chosen to use a digital RAM weight back-up memory —
even though this puts severe restrictions on the efficiency of the learning scheme.
Another possibility would be to use digital storage in combination with an ana-
logue adjustment. Using four quadrant multipliers is not strictly necessary though

T In our system, the temperature dependency of the synapse multipliers cancels
out with those of the neuron input scale transresistances. The resulting tempera-
ture dependency on the effective neuron activation slope will be that of Vi = kT'/q
which varies 23 % in the above temperature range.

I This is not absolutely true: using linear output neurons, and assuming the
hidden neurons are saturated — a situation often found in regression networks
(see eg. Krogh et al. [125], Svarer et al. [234], Pedersen and Hansen [186]) —

temperature dependencies could be canceled.

Chapter 2.8 Implementation of the neural network Page 45

probably advantageous; we use the very compact MRC. It was noted that, in order
to be absolutely general, the dynamic range of the synapse multiplier in a scalable
system would have to be infinite; also, the output offset error was important. We
propose (though we shall not employ this) to use a highly non-linear multiplier
to improve the dynamic range and thereby the relative output offset error. As the
neuron activation function we chose a hyperbolic tangent function as not to restrict
the implementations of learning hardware (the derivative is easily computed).

The design of our ANN chip set was displayed. Further, a “sparse input
synapse chip” was proposed; this chip architecture exploits the limited input band-
width efficiently for problems with a discrete input alphabet. Measurements on a
fabricated chip set was displayed, indicating a possible ~ 3.8 GCPS/chip for a full-
scale chip set. Offset errors (primarily synapse output- and neuron input-) were
large, though tolerable: Training results from a 8-4—4 test perceptron implemented
using our test chips and trained via a PC were displayed: the hardware network
learning error was slightly worse than that of an ideal software net.

Finally, the importance of process parameter dependency canceling in real
systems was stressed (including temperature compensation). A sample circuit
for eliminating the unknown forward emitter current gain of LBM MOSTSs was
displayed.

Page 46

Chapter 3

Preliminary conceptions on
hardware learning

The basic analogue artificial neural network architecture now being defined and
tested, we shall turn our attention to the implementation of analogue learning
hardware for this ANN. At first some general conceptions on hardware learning
will be presented in this chapter: Firstly, we shall consider the tolerable amount of
hardware spent on the learning implementation. Secondly, the choices of learning
algorithms that we will implement are discussed. Finally, we give some general
considerations on the implementation of ANN learning algorithms using analogue
VLSI, in relation to the limited precision of this technology.

Chapter 3.1 Preliminary conceptions on hardware learning Page 47

3.1 Hardware consumption

In chapter 1 we argued that at least two niches for analogue hardware implemen-
tations of learning algorithms exist:

o Massively parallel, possibly adaptive, application specific systems having a
parallel real-world interface.

e Small, adaptive, low power, application specific systems with a real-world
interface.

Now, for both niches the tolerable amount of hardware put into the learning al-
gorithm is application dependent. At one extreme, when it is crucial to exploit
inherent parallelism, when speed rather than cost is important, and when the
learning scheme is used excessively, there is no upper bound on the amount learn-
ing hardware (other than it must be realistic to implement). A massively parallel
implementation of the learning algorithm is the choice. However, a vast amount
of learning hardware can severely limit the applicability of the learning scheme for
certain applications — the learning hardware lies idle when the system is used in
recall mode and it reduces the number of integrated synapses for a given silicon
area. So, at the other extreme, when cost or power consumptionj rather than
speed is important, and when the learning scheme is employed only occasionally,
the amount of learning hardware must be kept as small as possible.

In this work we shall implement learning algorithms belonging to both cat-
egories: a hardware efficient implementation of back-propagation and a parallel
(though not fully parallel) implementation of real-time recurrent learning.

T For a given learning algorithm the amount of energy used by the learning
hardware to process a single input/output pattern is independent of the parallelism
of the implementation (ideally; in reality a serial implementation will most probably
consume more energy than a parallel implementation). Thus if power consumption
is the concern and if the learning algorithm is employed only occasionally, a fully
parallel implementation with a power down circuit could be a solution.

Chapter 3.2 Preliminary conceptions on hardware learning Page 48
3.2 Choice of learning algorithms

The choice of learning algorithm is highly dependent on the application at hand.
Different learning algorithms operate on different network architectures using dif-
ferent optimization procedures for different goals. In addition, new learning algo-
rithms arise continuously and it has thus been argued that VLSI learning hard-
ware should be adaptable to changing learning algorithms (cf. eg. Ramacher [192]).
However, as for the reconfigurability of the analogue ANNs, a high degree of pro-
grammability of analogue learning hardware does not comply with the technol-
ogy: much hardware would lie idle or would be used to configure the algorithm
rather than participate in the computations. Neither for massively parallel- nor low
power implementations is this acceptable; it would compromise the advantages of
the analogue technology (algorithmic variations can be included when possible and
appropriate, though; cf. the inclusion of both entropic and quadratic cost functions
in chapter 5). It is not possible — as it is in principle for the ANN itself — to
implement a general purpose, analogue ANN learning machine. Thus, the learning
algorithm should be implemented specifically for the application at hand. Ideally.

An application specific learning algorithm does not comply with our general
purpose building block ANN chip set, though; it would sacrifice the generality of
the ANN/learning chip set (for the particular application this would not matter,
of course). If we do not have a specific application in mind, we must then choose
our learning algorithm carefully in order that it can be applied to a large range
of applications (Murray [174]). The learning algorithm must possess the same
properties as the neural network model: desirably it should be

e General purpose
e Simple
e Suitable for the technology

The simplicity is very important. Partly because a complex learning model requires
much hardware but primarily because of the limited precision of the technology:
other things being equal, the more hardware participating in the calculations the
larger the accumulated errors (the finer points of a complex learning scheme would
quickly be insignificant compared to the errors). Needless to say, the learning
algorithm must also map in a simple way on silicon (it should rely on local com-
munication and must not consume too much area/memory, etc.).

Choosing a learning algorithm means choosing an application area. Artificial
neural networks can be applied to a wide range of applications (see eg. Sanchez-
Sinencio and Lau [206]). For instance:

Classification or

Pattern recognition
Regression

Example described problems
Function approximation
Associative memories

Feature Mapping

Chapter 3.2.1 Preliminary conceptions on hardware learning Page 49

e Optimization
e Control
e Data compression

In this work we shall predominantly be interested in applications classified as clas-
sification or regression problems. These important classes of problems are often
successfully solved using artificial neural networks. For instance the prediction
of splice sites in human pre-mRNA molecules (Brunak et al. [29]), pig carcase
grading (Thodberg [239]), implantable heart defibrillators (Jabri et al. [108]), and
high energy particle-detector track-reconstruction devices (Masa et al. [157]). For
such problems supervised learning is usually employed. Choosing such a learning
algorithm for our system will make it applicable to a broad range of applications
(though not “general purpose”); we shall thus commit the following text to the
implementation of supervised learning algorithms. (The implementation of unsu-
pervised learning is also interesting; however, that is not our story.)

3.2.1 Gradient descent learning

A very simple approach to supervised learning when the ANN has differentiable
neuron activation functions is to use gradient descent (cf. appendix B.3). Defining
a cost function J which measures the cost of the network error, one adjust the free
parameters of the ANN (ie. the synapse strengths, neuron thresholds and slopes,
etc.) such that J decreases most rapidly; ie. down the gradient:

Awg;(t) = —n%,

where the learning rate n is a small positive constant. Real gradient descent re-
quires the cost function to be a function of all training patterns (Jior = Eptns Tptni
batch learning). Often, though, the weights are changed on the basis of the instan-
taneous cost function, evaluated for one pattern only (on-line learning). For small
learning rates the methods are equivalent (compare to the Gauss-Seidel method of
solving linear equations numerically (Press et al. [189])).

Gradient descent is not a very good optimization technique (cf. Hertz et al.
[95], among others). Most notably it

o Has a tendency to get stuck in local minima of the cost function
e Converges slowly

For improved conversion time, algorithms as the conjugate gradient method or
quasi-Newton can be employed (see also Press et al. [189]). These methods have
the advantage that they use the first order cost function derivatives (as gradient
descent), which can be computed quite efficiently (cf. below), for computing the
weight changes. Using the second order derivatives, the full Hessian matrix, or ap-
proximations to these can likewise improve learning time significantly (Hertz et al.
[95], Buntine and Weigend [36], Pedersen and Hansen [186]). Other methods, such

as stmulated annealing, are also quite interesting. Simulated annealing searches

Chapter 8.2.2 Preliminary conceptions on hardware learning Page 50

the weight space with occasional uphill moves, hence does not as often as gradient
based methods get stuck in a local minimum.

The expense of these algorithms compared to simple gradient descent is in-
creased computational cost.

In spite of the poor performance, gradient descent has had most vigorous
interest in the neural network society. It has been thoroughly analysed and tested
in connection with artificial neural networks and a wealth of improvements to clean
gradient descent has emerged. Further, it is very popular among application people;
quite impressive results have been obtained by the method (eg. Brunak et al. [29],
Masa et al. [157], see also Williams and Zipser [268], Wulff [271]). Gradient
descent is central in the present state of neural network art. Finally, the method
is quite simple and maps topologically very nicely on VLSI — which suggest that
an analogue hardware implementation would be possible.

This is the motivation for using gradient descent, which we shall do; we should
have a fair chance to do an implementation in our limited precision technology
(though cf. section 3.3 and the following chapters) and “users” (application people)
would know what to expect from the implementation; they would buy our solution.

It should be noted that a supervised learning system (eg. using gradient de-
scent) can be extended in a straight forward manner to implement learning with a
critic which can be used for prediction and control.

Other authors have also looked at the implementation of learning in analogue
hardware. Many of these use gradient descent based algorithms; though not every
one. Alspector et al. [9], for instance, use a simulated annealing scheme (Boltzmann
machine), Card [40] uses Hebbian learning (unsupervised learning) and Macq et al.
[154] use Kohonen feature mapping.

3.2.2 Error back-propagation

The usual network architecture applied to classification and regression problems is
the multi layer perceptron (MLP). The error back-propagation learning algorithm
(Rumelhart et al. [199], Hertz et al. [95], chapter 4) is a formulation of gradient
descent which maps on feed forward ANN architectures (eg. the multi layer per-
ceptrons). From an analogue VLSI point of view it has a number of draw backs,
though (in addition to drawbacks of gradient descent learning); for example:

e The neuron derivative needs to be computed.

e It is very sensitive to offsets on various signals (most notably the weight
changes).

o The learning rate must be rather small for convergence.

It should be noted that these problems are not particular for back-propagation;
they apply to many other algorithms as well (see also section 3.3). The problems
shall be addressed in the following chapters. From an analogue VLSI point of view
back-propagation also has a number of advantages (which also applies to many
other algorithms as well); for example:

Chapter 8.2.2 Preliminary conceptions on hardware learning Page 51

e Fully parallelizable.
o Uses local signalling.
e Relatively simple.

The implementation of back-propagation in analogue VLSI has been considered by
several authors (eg. Valle et al. [251], Wang [256], Cho et al. [46], Lehmann [142]).
Other authors have chosen to derive new algorithms, having the implementation
in analogue VLSI in mind. These alternatives to back-propagation include weight
perturbation and virtual targets:

Weight perturbation By some considered the standard algorithm for ana-
logue VLSI (as opposed to the standard algorithm, back-propagation, for simulated
networks), weight perturbation (Jabri and Flower [107]) is a difference quotient ap-
proximation to gradient descent learning. Weight perturbation is inspired by the
fact that back-propagation (i) usually requires three times the synapse hardware
of a recall mode system (though cf. chapter 4) and (ii) requires the computation of
the neuron activation function derivatives. Given an (instantaneous) cost function
J(w,t), weight perturbation prescribes the weight changes

j(...,wk]‘(t)—I—Awpert,...,t> —j(...,wk]‘(t),...,t>

Awgj(t) = =1 T
per

Y

where Awper is the weight perturbation constant (possibly weight dependent).

This very direct way of approximating the cost function derivative has the
additional advantage that any kind of non-linearity, offset error, etc. in the recall
mode network are transparent to the algorithm; their impact on the cost function
derivative will be included by the algorithm (in contrast: implementations of back-
propagation usually requires reasonably linear synapses as neuron derivatives are
used to compute the cost function derivative). Assuming that the weights are
externally accessible, very little hardware and no extra signal routing is required for
a hardware implementation of weight perturbation. The drawback of the algorithm
is that it is computationally expensive (O(N*) per training pattern or time step)
and not fully parallelizable (serial weight update). The latter problem has been
addressed by Flower and Jabri [72]; in summed weight neuron perturbation a speed
up of O(N) can be achieved at the expense of a O(N) storage requirement.

Matsumoto and Koga [160] use an algorithm very similar to weight pertur-
bation: Oscillating all the weights concurrently at different frequencies the weight
derivatives — and thus the weight changes — can be computed simultaneously.
(This procedure introduces new problems related to accurate band pass filtering,
intermodulation, and system bandwidth requirements, though.)

It should be noted that weight perturbation can be applied to any network
topology: not just MLPs.

Chapter 8.2.8 Preliminary conceptions on hardware learning Page 52

Virtual targets While not exactly a gradient descent learning algorithm, the
virtual targets MLP learning algorithm (Murray [174]) uses gradient descent for
each layer, locally. The weight change rule is the same as for back-propagation (cf.
(9%)) (assuming quadratic cost function):

Awij(t) = ng'(sk(1))ek ()25 (1) -

The neuron error 5§ (t) is computed differently from back-propagation: In virtual
targets all neurons are assigned target values for all training patterns. The targets
for the hidden neurons are initialized to random values and are developed during
training according to:

l +1 l—|—1
Ad = ntgt Z w]k 5 5

where 1 is a target learning rate. 'When a pattern is successfully learned the
algorithm must cease to react on this pattern (otherwise the hidden neuron activa-
tions would drift, causing the pattern to be unlearned); if the classification of the
pattern is forgotten during further training, reaction on the pattern is resumed.

Explicitly using target values for the hidden neurons can improve the learning
speed and the algorithm seems to possess an ability to “jump out” of local minima.
The disadvantage of the algorithm is the requirements of hidden neuron access and
target storage; furthermore, the scheme is more complicated than, for instance,
back-propagation or weight perturbation.

Being “central in the present state of neural network art”, the implementation of
the gradient descent back-propagation learning algorithm in analogue VLSI is an
important issue of integrated ANN research. A problem which we shall address in
the following chapter — with emphasize on the issues of hardware cost, derivative
computation, and weight updating schemes.

3.2.3 Real-time recurrent learning

Though very popular for pattern recognition etc., feed-forward ANN architectures
have their limitations. A more general set of architectures are recurrent networks
(recurrent artificial neural networks, RANNs). If no constraints are put on the
connections (as, for instance, symmetric connections found in many architectures)
recurrent network architectures are potentially very powerful. They have the abil-
ity, for example, to deal with

o Temporal information
o Storing of data
o Attractor dynamics

Chapter 8.2.8 Preliminary conceptions on hardware learning Page 53

Using supervised learning (read gradient descent) to train recurrent neural net-
works, these can be taught to recognize sequential structures (eg. Reber grammars,
Smith and Zipser [225]) to imitate finite automatons (eg. Turing machines, Williams
and Zipser [268]) or to simulate strange attractors (eg. Mackey-Glass series, Wulff
[271]). Recurrent neural networks can also be used instead of, say, tapped delay
line perceptrons (eg. Pedersen and Hansen [186]): If a temporal pattern recognition
task is dependent on a few, unknown, temporarily wide distributed input samples,
a recurrent network can solve the task using much fewer connections — which can
be very important; especially if only a relatively small training data set is available.
(This is actually the application driven part of our motivation for implementing
a recurrent network learning scheme: the prediction of splice sites in preemRNA
molecules mentioned in section 2.3.3 can be solved using a 10-50 neuron RTRL
network (Brunak and Hansen [31]).) The trouble with recurrent networks is that
they are usually very hard to train.

To make available, to the users of our ANN system, the potent possibilities
of recurrent neural networks we shall, in addition to the implementation of back-
propagation learning, investigate the implementation of a learning algorithm for
our ANN architecture connected in a recurrent way. Several examples of gradient
descent like algorithms for recurrent networks exist in the literature (see eg. Hertz
et al. [95]). As not to compromise the generality of our cascadable ANN architec-
ture (more than absolutely necessary) we must choose an algorithm with a most
general applicability. Real-time recurrent learning (RTRL) (Williams and Zipser
[267, 268], chapter 5) is a good choice. This algorithm has a number of advantages:

o General ANN architecture. The RTRL algorithm is formulated for a com-
pletely general ANN architecture: A fully interconnected network. The net-
work will organize itself to reflect the structure of the application during learn-
ing. If any structure of the problem to be solved is known a priori (which
should then be reflected in the network architecture) the algorithm can as well
teach a constrained architecture. For the generality of our ANN /learning chip
set, this is very important; it is possible to implement a ANN/learning chip
set applicable to any network topology.

o Application imvariant. When the network topology and size is determined,
the learning scheme is determined; independent of the application. The stor-
age requirement for other RANN learning algorithms (as back-propagation
through time or time-dependent recurrent back-propagation) is often propor-
tional to the maximum sequence length (the memory of the system) that needs
to be processed. An application independent learning hardware architecture
is important to our “general” system.

o Real-time training. Or in-the-flight training. Unlike many other algorithms,
RTRL does not use a training phase and a recall phase; RTRL functions in-
the-flight, training the system during use. This is essential to adaptive systems
but also very important to analogue implementations in general: storing the
training patterns for batch learning is hostile to an analogue implementation;
the storage must (most probably) be in digital RAM and is not in compliance
with the “real-world interface” requirement of analogue learning hardware. Of

Chapter 8.2.8 Preliminary conceptions on hardware learning Page 54

course, if training patterns are not held in store for teaching, the environment
in which the system resides must be able to generate representative learning
sequences when the system is to be taughtf.

o Hardware compatible. The algorithm is parallelizable; fully or partial, and it
turns out that the architecture maps very nicely on hardware. Furthermore,
it is computationally a fairly simple algorithm which is suitable for analogue
hardware.

e Powerful. A range of impressive problems have been solved using RTRL (the
above cited examples are solved using RTRL).

It also has a number of disadvantages:

o Computation requirements. RTRL requires an order O(N*) computation
primitives for each training example; or, as the required number of examples
scale as O(N?), at the least an order O(N®) computation primitives to train
the network. This is the major drawback of RTRL. RTRL requires parallel
computing even for relatively small systems.

e Memory requirements. RTRL requires memory of an order O(N?). Even for
(semi) parallel implementation this will limit the network size.

o Trainability. Recurrent networks are harder to train than feed forward net-
works (and should thus be used only when that type does not suffice). Some
argue (eg. Tsoi et al. [248]) that the completely general fully connected ar-
chitecture is too hard to train and one should select less general recurrent
architectures. Note, however, that one must always use a priori knowledge
of any kind in the problem at hand; thus the general architecture should be
selected when nothing is known of the solution to the problem.

In chapter 5 we shall investigate the implementation of the RTRL algorithm —
with emphasize on the issues of hardware cost, derivative computation, and weight
updating schemes as for the back-propagation implementation.

7 Though usually meant to be used off-line, back-propagation employed by ex-
ample can be used in a similar in-the-flight (on-line) manner — thus, it is not of
paramount importance to hold the training patterns in store when using (MLP)
back-propagation.

Chapter 8.3 Preliminary conceptions on hardware learning Page 55

3.3 Hardware considerations

Implementing artificial neural networks using limited precision technologies as ana-
logue VLSI is, by now, considered a fairly straight forward matter. The inherent
adaptability of the ANN systems can accommodate for non-idealities. For learn-
ing algorithms this is not so. Several authors have noted that learning algorithms
presently available to the analogue designer are typically very sensitive to certain
kinds of non-idealities displayed by, for instance, analogue VLSI. In this section we
shall have a look at the most important ones. The discussion is based on work pri-
marily concerning gradient descent like algorithms; some of the issues are specific
to these kind of algorithms (as the derivative computation) while other probably
are generally applicable (as the weight change offset).

The allowable non-ideality magnitudes are dependent on each other as well as
being application, topology and size dependent. The observations below are only
qualitative.

Weight discretization Most ANN implementations use connection strengths
with a discrete number of values; either as a consequence of a weight refreshing
scheme or because of digital, non-volatile weights used in analogue/digital hybrids.
A discrete number of weight values limits the problem space solvable using the
network, of course; or in other words: this will degrade performance (Xie and
Jabri [272], Lehmann [139, 140]).

Much more important, however, is the fact that the smallest weight change
is restricted to one LSB: weight values computed by gradient descent learning
algorithms, for instance, are constituted of many small weight changes. Therefore
much higher weight resolution is required during learning than in recall mode.
To meet this demand (assuming the ANN has weight resolutions tailored to the
recall mode), the learning hardware can have access to a high precision version
of the synapse strengths on the network (Hollis et al. [97], Asanovic and Morgan
[17], see also section 2.2.4). Another procedure is to use probabilistic rounding:
For computed weight changes |Aw| smaller than 1 LSB, a 1 LSB weight change is
carried out with a probability |Aw|/1LSB (Héhfeld and Fahlman [96]). See also
section 2.2.3.

Dynamic range When trained using a gradient descent like algorithm (for
instance; eg. on a pattern recognition problem) the synapse strength magnitudes
tend to grow with time. This can easily exhaust the limited dynamic range of
the synapses (see also section 2.2.4). Using logarithmic coded synapse strengths
(Hollis et al. [99]) can increase the effective dynamic range. Also, weight decay
can be employed or the neuron gain can be increased during learning (Hollis et al.
[97]) to postpone weight exhaustion.

Chapter 8.3 Preliminary conceptions on hardware learning Page 56

Derivative computation Gradient descent like algorithms often need the
neuron derivatives to compute the cost function gradient. This is a major concern
in many analogue implementations. Several authors have reported that learning
can take place even for very approximate neuron derivative calculations (eg. Valle
et al. [251]). (The learning trajectory will not follow the gradient in this case, of
course.) One property must the calculated neuron derivative possess, though: it
must have the right sign. This could typically be a problem for saturated sigmoid
neurons for which the actual derivative is close to zero: if the calculated derivative
is negative, a gradient descent weight updating rule would result in an up-hill cost
function climb, possibly irrecoverably bringing the neuron deeper in saturation
(Lehmann [139, 140], Krogh et al. [125], see also Woodburn et al. [270]). A small
positive offset deliberately introduced to the neuron derivative calculation circuit
can prevent this hazard (Lehmann [142], Shima et al. [220]). This would also enable
saturated neurons to be taught (still using a gradient descent like algorithm) which
is otherwise prevented by the zero derivatives.

Offset errors Possibly the most problematic issues of analogue VLSI imple-
mentations of ANN learning algorithms are the ever present offset errors. While
offset errors on some signals (for instance the neuron net inputs) are insignificant,
they can completely prevent learning when present on other signals. Most sensitive
to offset errors are:

Weight change offsets. If the weight change offset error, Aw,gs, 1s comparable, in
some sense, with a typical weight change, Aw, the weights would develop over time
as wg;(t) = wg;(0) + tAwegs rather than governed by the learning algorithm; for
sufficiently large Aw,gs and ¢ learning is impossible (Lehmann [139, 140], Montalvo
et al. [168], Withagen [269]).

Neuron error offsets. Offsets on the errors of output neurons just displaces the
target values (which can be serious enough for analogue outputs). Offsets on the
errors of hidden neurons can be more severe, though: such offsets cause learning to
take place on the hidden neurons even after the output error is zero; ie. the solution
to the training problem is not a stable state of the system (Lehmann [139, 140]; see
also Murray [174]).

Cost function offsets. For weight perturbation, where the learning is controlled by
the computation of the cost function, offset errors on this quantity will, as above,
cause the solution to the training problem to be an unstable state of the network;
which degrades learning (Montalvo et al. [168]).

Learning rate For simulated networks the learning rate is usually chosen quite
small for good learning. Smaller than typically compatible with analogue VLSI: In
the presence of weight discretization and weight updating offsets, the learning rate
must be so large that these effects are “small’ compared to typical weight changes
(Tarassenko et al. [238]). Also, if a learning scheme is used to refresh a purely
capacitive synapse storage, the typical weight change must be large compared to
the memory droop rate (see also Hansen and Salamon [91], Lehmann and Hansen

Chapter 8.3 Preliminary conceptions on hardware learning Page 57
[145]).

Noise Analogue systems are noisy. While noise is beyond doubt a nuisance in
many analogue signal processing systems, it can actually be an advantage in ANN
learning systems. The limited “resolution” (ie. signal to noise ratio) of analogue
systems is not comparable to the limited resolution (in number of signal process-
ing bits) of digital systems. The presence of noise can improve learning (make
the system “jump” out of local minima because of occasional random movements),
improve generalization ability (the network is “forced” to locate the underlying
structure of the training data in the presence of noise) and improve fault tolerance
(the information tend to spread more evenly among the synaptic connections) (Ed-
wards and Murray [67], Jim et al. [113]; see also Hertz et al. [95] and Qian and
Sejnowski [190]).

Page 58

Chapter 4

Implementation of on-chip back-
propagation

The inclusion of back-propagation learning on our ANN chip set using a small
amount of additional hardware is the objective of this chapter. The learning algo-
rithm is first described, after which it is shown how it can be mapped on our ANN
architecture — and our hardware efficient solution is presented. The design of an
experimental VLSI chip set (a synapse- and a neuron chip) and measurements on
this are presented next. We also present the design of a complete back-propagation
system including the learning hardware not present on the chips themselves. Prob-
lems in relation to derivative computation and learning in a system using digital
weight backup are discussed. The novel non-linear back-propagation learning al-
gorithm is displayed and we show that the algorithm has several nice properties
in relation to an analogue hardware implementation; hardware for a very low-cost
implementation is presented. Reflections on future work are then given: A chopper
stabilization technique for elimination of offset errors is proposed and the inclu-
sion of algorithmic variations in our system is outlined. A summary concludes the
chapter.

4.1 The back-propagation algorithm

The error back-propagation learning (BPL) algorithm is a supervised, gradient de-
scent algorithm (cf. appendix B.3). In this section we describe the basic algorithm
and display modifications typically applied to it.

Chapter 4.1.1 Implementation of on-chip back-propagation Page 59

4.1.1 Basics

The error back-propagation learning algorithm for a layered feed-forward neural
network (multi-layer perceptron, MLP, cf. appendix B.1, figure 75B) can be de-
scribed as follows (Hertz et al. [95], Rumelhart et al. [199]): Given an input vector
x(t) at time ¢, we can write the neuron k activation in layer [(32B) as

<
Foalal
N
o~
S—’

= otk = o Y w2400 '

where we assume gt (.) = g(.) and where

lt):{wj(t)7 forl=1

: yj_l(t), for1<I< L~

~

The neuron biases are implicitly given as the connection strengths from constant
inputs z{, = 1. Given a set of target values dy for the neurons in the output layer,
L, we define the neuron errors (when using a quadratic cost function (35%)) as

l di(t) — yi(t), forl =1L
eplt) = 9
«l S wht()st(t), for1<l<L

(79)
where the weight errors (or “deltas”) are defined as

85(t) = g'(s5(1))e5(t). (84

Using a discrete time on-line learning updating scheme, the connection strengths
should then be changed according to the weight updating rule:

wiej (t+ 1) = wi; (1) + Awy;(t) = wi; (1) +0di(t)z(t), (9%

where 1 is the learning rate.

4.1.2 Variations

Though still often serving as the reference for new MLP learning algorithms, the
efficiency of the basic back-propagation algorithm has been questioned by several
authors: the algorithm is slow and the network often gets stuck in local minima
(eg. Fahlman [69], Hertz et al. [95], Haykin [93]). For this reason a wealth of
back-propagation-like algorithms (or improvements of the algorithm) has emerged.
Many of these improvements do not alter the basic topology of the algorithm and
are thus easy to incorporate in the VLSI architectures that we shall describe shortly.
However, the cost of the incorporation is very dependent on the exact implementa-
tion (ie. whether digital/analogue weights are used, whether parallel/serial weight
update is used, etc.). The most common modifications of the algorithm (which

Chapter 4.1.2 Implementation of on-chip back-propagation Page 60

can also be applied to many other learning algorithms) include (Hertz et al. [95],
Haykin [93], Plaut et al. [188], Krogh and Hertz [124], Solla et al. [226], Fahlman
[69], and others):

o Weight decay. Modifying the weight updating rule (9*) as
wij(t—kl) = (wij(t)—l—Awéj(tD(l — €dec) (104)

where 0 < €qec € 1 1s the weight decay parameter, discourages large weight
magnitudes and eliminates small (ie. unnecessary) weights (as OBD). This
improves generalization ability. From an analogue VLSI point of view, dis-
couraging large weights is also advantageous as the limited dynamic weight
range is less likely to be exceeded.

o Momentum. Modifying the weight change, implicitly defined by (9*), as
Awp (1) = aman (1 = 1) +50,(1)25 (1), (1)

where 0 < apim < 1 1s the momentum parameter, averages “random” weight
changes and magnifies “consistent” ones. This reduces oscillations often found
during learning. The disadvantage of using momentum is the need for addi-
tional memory (especially severe for a VLSI implementation).

e Cost function. Using the (standard) quadratic cost function (cf. appendix
B.3, (35%)) leads to the weight errors 5} in (8"). Using a typical sigmoid-like
activation function, these weight errors will be close to 0 when the neuron
net input 3§ is numerically large; thus even for large neuron errors 5?,

weight change will take place. This problem can be eliminated by the use

of the entropic cost function (39B) or the Fahlmann perturbation. The latter

resulting in the following (heuristically derived) weight error:

5i(t) = (9'(s5() + 7w)e5(t) .

where vp > 0 is the derivative perturbation. (For the entropic cost function
5]L (t) = 5]L (t).) Theoretically, the weight errors should only be modified for
the output layer (I = L). However, in an analogue VLSI implementation using
the derivative perturbations on all weight errors can ensure g’(3§ (t)+r >0

rather than g’(3§ (t)) 2 0 which would probably otherwise be calculated by the
non-ideal hardware and which is destructive for the learning process.

In adaptive systems it is especially important that learning can take place
even though the neurons are saturated (ie. “very confident” in their decision
to fire or not) as the system functionality changes over time. In this case
the entropic cost function or the Fahlmann perturbation are superior to the
quadratic cost function.

The incorporation of these alternative cost functions in a VLSI implemen-
tation is straight forward.

no

o Dynamic learning rate. The learning rate is a most important parameter: If
it is too large, gradient descent leads to oscillations; if it is too small, gradient

Chapter 4.1.2 Implementation of on-chip back-propagation Page 61

descent converges very slowly. Adapting the learning rate to the increase in
the cost function since last set of weight changes, AJ(t) = J(t) — J(t — 1),
can reduce this problem:

n(t)+a, for AT (t),ATJ(t—-1),....,ATJt-T)<0
nt+1)=< (L =>b)n(t), for AJ(t)>0 ;
n(t), otherwise

where 0 < a,b < 1 and T are constants. Though not impossible to implement
in analogue VLSI, a dynamic learning rate scheme is somewhat complex and
requires memory (O(1)) (in addition, the cost function must be simple in order
to be computable). Also, in a hardware implementation one must ensure that
the learning rate does not decrease below a critical value 7.,iy where the weight
changes are insignificant compared to weight discretization or weight change-
offset errors, which would switch off learning.

o FEta finder. To avoid the complexity of a dynamic learning rate, one can
choose an optimal learning rate. Reyneri and Filippi [196] propose (for y; €
[—Ymaxs Ymax), Zj € [—Zmax, Zmax)):

1
2 Rax Fmax e My,
where 1t = n! is the layer [learning rate, M! = M" is the (effective) number

of inputs (fan-in) to layer [and f; is the neuron transfer function steepness.

Others prefer (Hertz et al. [95, 94]):

m’czn/\/M,i,

which can be combined with a dynamic learning rate rule. For a non-reconfi-
gurable network, the learning rates can be computed in advance for the current
network architecture. For a reconfigurable network, additional hardware at
each reconfigurable block is needed if the learning rate computation is to be
automated.

!
Nk =

o Batch learning. Doing real gradient descent the weights are updated only

after each epoch:
Tepe—1
wiii (14 n)Tepe) = wij(nTepe) + Y Awij(nTepe + 1),
=0

where Tepc is the epoch length (cf. appendix B.3). Usually on-line learning is
considered the faster methodfj; however, using batch learning it is possible to
do the weight updates in larger “chunks” which makes this scheme potentially
less sensitive to offset and weight discretization (which is very important for
an analogue VLSI implementation) (Valle et al. [251]). The disadvantage is
that additional memory is needed (O(N?)).

T Note, however, that on-line learning never converges (for constant learning
rate); the weights will stir about the optimal solution (White [264], Battiti and
Tecchiolli [19]).

Chapter 4.2 Implementation of on-chip back-propagation Page 62

4.2 Mapping the algorithm on VLSI

The MLP recall mode equation (6%) can be written y' = g(s!), s' = w'z!, as noted

in section 2.2 (see Lehmann and Bruun [143], Widrow and Lehr [265)). Likewise,
we can write the neuron error equation (74) as ¢!t = (w14, We notice two
important properties of these equations: (i) The matrix used to calculate the neuron
error is the transposed of the one used to calculate the neuron net input. (ii) The
signal flow is reversed. For an on-chip implementation of the back-propagation
algorithm, this means that we can calculate the neuron errors and let the signals
propagate from layer [to layer [— 1 using a matrix-vector multiplier topologically
identical to our recall mode synapse chip but with the positions of the inputs and
the outputs exchanged. In other words: we can use an expanded version of the
synapses. The neuron chip must in turn be able to calculate §' as given in (8%).

)
>—S

4@@%%5%

wo

dy/ds

Awyj : /\

Figure 32*: Schematic back-propaga- Figure 33*: Schematic back-propaga-
tion synapse. Two additional (cur- tion neuron. An additional neuron de-
rent output) multipliers are basically rivative computing block and multi-
needed compared to a recall-mode plier are needed compared to a recall-

N —>

synapse. mode neuron.

Block diagrams of the expanded synapse and neuron can be seen in figures 32*
and 33" respectively. On the synapse is also included the hardware for calculating
the weight change, Awij, according to (9%). The expanded synapse has voltage
inputs and current outputs just as the original synapse. Mapping the algorithm
on silicon like this gives an order O(N?) improvement in speed, compared to a
serial approach, as all (O(N?)) weights can be updated simultaneously. Several
back-propagation silicon systems with the above or similar architectures have been
reported lately (Valle et al. [251], Wang [256], Cho et al. [46]). By enabling the
neuron to route back the “y!” signal on the “§.” wire, the architecture can also
realize Hebbian learningj or a back-propagation/Hebbian hybrid algorithm (Cho
et al. [46], Shima et al. [220]).

Instead of placing the weight updating hardware at the synapse sites, it can
be placed at the neuron sites — which reduces the amount of weight updating

7 Plain Hebbian learning uses the weight changes Awij = ny,lczj (Hertz et al.
[95]).

Chapter 4.2 Implementation of on-chip back-propagation Page 63

hardware by an order O(N). In this case only weights from one neuron in layer
[—1 to the neurons in layer [can be updated simultaneously; thus this procedure will
give an order O(N) improvement in speed compared to a serial approach. It should
be noted that, according to (9*), Z; () is needed when calculating the Awl*j (t)s and
must thus be routed to the sites of the weight updating hardware; if it is the
wl*j (t + 1)s that is calculated, also the wl*j (t)s are needed. The efliciency of such
a scheme is highly dependent on the chosen weight storage method: Using simple
capacitive storage without back-up memory, the weight change would typically
be applied by a transconductance amplifier (see Card [40], Wang [256], Linares-
Barranco et al. [151], Woodburn et al. [270]) which correspond to the “n-amplifier”
of figure 32*. To avoid weight degradation/destruction by charge redistribution
on bus lines, this amplifier (or some kind of shielding circuit) would have to be
present in any implementation, thus reducing the amount of saved hardware. As
digital memory usually can be read non-destructively, there is no similar penalties
when using capacitive storage with a digital backup memory or digital storage
(the objective of the learning algorithm in these cases is to modify the digital
memory). Saving weight updating hardware is particularly important when the
weight modifications are in the digital domain as an A/D converter is needed at
each “modification site”. Placing A /D converters with more than one bit precision
at each synapse would be unrealistic; the area consumption would be too large
(Shima et al. [220]). In systems using a digital RAM backup memory, the weight
access would (most probably) be serial; thus the weight updating hardware could
— without further performance loss in orders of N — be placed off both synapse-
and neuron chips in a single (ie. O(1)), separate module. In this case the cost of
the weight update A/D converter is insignificant but the weight updating would
be serial (an order O(1) speed “improvement”).

Using an O(1) weight updating module has the advantage of low cost imple-
mentations of certain algorithmic improvements (the ones related to the weights
rather than the neurons), as no additional synapse hardware is needed for a more
complex updating scheme. Implementing momentum, for instance, basically re-
quires a memory and an adder (or a leaky integrator for continuous time) at each
synapse site when using a fully parallel (O(N?)) weight updating scheme. Using
an O(1) weight updating module, one adder would be required. The weight change
matrix could be placed in a standard digital RAM, which would cost far less than
additional synapse hardware. If digital weight backup memory (or indeed digital
weight memory) was used in the first place, no additional data converters would be
needed. The O(1) weight updating scheme implementations also have potentially
better accuracy than fully parallel ones, see below.

Chapter 4.2.1 Implementation of on-chip back-propagation Page 64

4.2.1 Hardware efficient approach

The architecture in figure 32 has two major drawbacks: (i) For a given silicon
area, the number of synapses is reduced compared to the number of synapses in
a recall mode system, as three multipliers are used instead of one. Also, in recall
mode most of the synapse hardware lies idle, which is of course undesirable. (ii)
The number of wires between the synapse- and neuron chips is doubled compared
to a recall mode system. Both disadvantages can severely restrict the applicability
of the adaptive neural network, if its physical size is of importance. Fortunately, it
is possible to overcome these disadvantages:

>— <+
oS 4.0
TV - +i‘fw -
Mfir T urs fwds T
I - N 1 o
r LT LT
UZ ng_r ”OV“ HOVH ﬁ_ 05
e (s > o—!

t1 Fuez- A

Figure 34*: MRC operated in forward Figure 35*: MRC operated in reverse

mode. This is the standard mode op- mode. Because of the circuit symme-

eration as shown in chapter 2. try no extra synapse hardware is re-
quired for alternating forward /reverse
mode operation.

Studying the synapse multiplier used in section 2, which is repeated in figure
34* for convenience, we notice that it is perfectly symmetric. Thus, if we apply a
differential voltage vs at the former output nodes and ensure virtual short-circuit
between the former input nodes, the difference current 7,5 injected to the former
input nodes would be

1

MRC

lws = lwit — lws— = BVwvs = Vs

which is illustrated in figure 35*. This implies that we can enable our original
matrix-vector multiplier (cf. section 2.3.2) to perform multiplication with the trans-
posed matrix, ie. to calculate £'=! = (w!)T§", simply by ezchanging the output
current conveyors and the input buffers. See figure 37*. When several modified
matrix-vector multipliers are cascaded it is still valid that multiplication with the
transposed matrix is performed when inputs and outputs are exchanged.

If the weight updating hardware is placed at the neuron sites, we can thus
implement the back-propagation learning algorithm without any extra hardware
at the synapse sites; ie. with a hardware cost of a mere order O(N). Routing

L(t) to the neuron module is possible using the “s/§” wires and a few (O(N))

“j

Chapter 4.2.1 Implementation of on-chip back-propagation Page 65

switches. Thus, also no significant extra signal routing is neededf. It should be
noted that thus time multiplezing the “z/e” and “s/§” wires obviously requires
a discrete time system. (If a digital weight backup memory is used, the learning
algorithm is required to run in discrete time anyway; otherwise this might restrict
the applicability of the scheme.) The neurons that corresponds to this modified
synapse chip would look quite like the one in figure 33* only, the output would
have to be sampled (cf. section 4.3.2).

The implementation of such a low hardware cost analogue neural network with
on-chip back-propagation can be found in the next section. The principal operation
of the back-propagation system is illustrated in figure 36*. During normal operation
all chips are in forward mode and the response to an input pattern is propagated
to the output after a certain delay. When a synapse weight, wgcj in a layer [is to
be updated, all chips in the previous layers operate in forward mode and produce
the z!s. All the chips in the layers following layer [operate in reverse mode and
produce the ets. The synapse chips in layer [operate in route mode and route Z;
to the inputs of the neuron chips in layer [. These in turn operate in learn mode
and calculate wéj(t + 1). It will be noticed that the newly updated weights are
used when back-propagating the errors in reverse mode. This does not exactly
comply with the learning algorithm, though for small learning rates the difference
should be indistinguishable. Actually, one would expect faster learning than when
using synchronous weight update — this is actually equivalent to the Gauss-Seidel
method of solving linear equations numerically (Press et al. [189]).

Sl+1
SC| Synapse Chip reverse —> | gC SC N 4
| J YFE‘ 7 reverse
NC| Neuron Chip W lkj (1+1) €
ANNNGN NS NC| < learn
xl-1 x A zl;
forward
SC s¢j & > 15¢
NCl> [| ;route
NCp— T

forward

Figure 36* Back-propagation system. The different operation modes of the
two back-propagation chip sets are shown for a three layer network when the
middle layer is updated.

T Ie. only an order O(1) control lines, etc. This is assuming a O(1) weight
updating module; if a O(N) weight updating module is used, this should be placed
at the synapse chip (one segment per row), rather than on the neuron chip, to avoid

inter-chip routing of the Awl*js or wl*js.

Chapter 4.3 Implementation of on-chip back-propagation Page 66

Exploiting the bidirectional properties of the MRC synapse multiplier is also
possible when placing the weight updating hardware at the synapse sites for max-
imum speed improvement. According to the weight updating rule (9%) neither st
nor 52_1 are needed when updating the wéjs. Thus the Z;S and the d!s can be dis-
tributed simultaneously on the synapse chip while ignoring the synapse multipliers
— transconductance multipliers placed at the synapse sites will then have access
to the appropriate signals for calculating the Aw! s simultaneously for one layer.

In other words: at the expense of using discrete time, it is possible to eliminate
the extra inter-chip connections and 1/2 of the synapse learning components com-
pared to a straight forward, fully parallel implementation of the back-propagation
algorithm on top of a VLSI MLP.

As we shall see in section 4.6, it is possible also to reduce the additional neuron
hardware.

An additional advantage of the bidirectional usage of the MRC is process vari-
ation insensitivity; the very same transistors are used for the synapse multiplication
in recall mode as well as in back-propagation mode. Assuming the input reference
voltage is close to the output voltages, M, in figures 34* and 35" will never conduct
any current. In forward mode, the differential output current is ipy — ip2 and in
reverse mode it 1s ip; — tp3. Thus for matching the forward and reverse currents,
it is necessary only to match My and Ms. (As My ideally does not conduct current
it could be removed; this, however, requires a very low neuron input impedance

(cf. Flower and Jabri [71]).)

4.3 Chip design

The basic idea of the ANN chip set with on-chip back-propagation developed at
our institute is the bidirectional properties of the MRC. In this section we shall
describe this chip set. A description of the chip set was published in Lehmann
[141, 142].

As noted in chapter 2, it is our intention to add learning hardware to an
acting recall mode ANN;: ie. the one described in that chapter. Thus, we shall use
capacitive storage with a digital RAM backup memory which prevents us from
using a parallel weight updating scheme. As the additional hardware cost for the
serial weight updating scheme is very small, we can replace the original ANN chip
set with one containing on-chip back-propagation; the learning algorithm can be
disregarded by the user if so wished. As in the original ANN chip set, we shall use
a hyperbolic tangent neuron activation function.

As was the case for the implementation of the original ANN, the back-prop-
agation chip set was designed to test the functionality of the hardware efficient
approach. Also, as much layout as possible from the first design was reused (or
corrected /improved and reused). Design details can be found in appendix D.2.

Chapter 4.3.1 Implementation of on-chip back-propagation Page 67

4.3.1 The synapse chip

The computing elements of the back-propagation synapse chip in forward mode
can be seen in figure 37*; this is identical to the computing elements of the second
generation synapse chip. Writing on the synapse storage capacitors is done in the
same way as on the first generation synapse chip: Pre-charged row- and column
selectors and NAND gates at the synapse sites determines on which synapse the
globally distributed weight voltage is to be written. The synapse schematic is a
little different from the original one: no explicit storage capacitors are used; the
synapse multiplier gate-channel capacitances act as memory.

Q T O ?‘ Vivy
TTT TTT
T T
T T U T T
L L I i,
— — CCIl+ z >
y
+0 T_ Viwia Q T
TTT TTT
T i
T T ot T T
1 1 [isl
s e CCII+ z >
y
> >
bl e oy o
ref

Figure 37* Second generation synapse chip. For reverse mode back-propa-
gation operation reverse the signal flow and exchange the buffers and current
conveyors.

If the current conveyors are implemented as supply current sensed op-amps
(Toumazou et al. [243]), these op-amps can be used as a voltage buffers in reverse
mode. This way the components needed for each row/column on the chip are: two
op-amps, two current mirrors and 11 switch transistors (plus row/column decoders,
synapses, etc.). Or basically an increase of one op-amp per row and column for
the back-propagation implementation. For reasonably sized switches, the voltage
drop across these, when dozens of synapses source current through them, is non-
negligible (say < 200mV). In order to ensure proper input voltage buffering and
virtual synapse output short circuits, it is necessary to put the switches inside

Chapter 4.3.2 Implementation of on-chip back-propagation Page 68

high gain loops or ensure zero- or matched switch transistor currents. In the latter
case, the transistors need to be matched alsof. The switch transistor placement
for the row and column elements can be found in appendix D.2.1 (notice that the
two elements are identical; only the control signals are permuted).

As no neuron errors are to be computed for the input layer, the input layer
synapse chips need not be able to run in reverse mode. For this reason, the
hardware efficient architecture is compatible with the sparse input synapse chip
mentioned in section 2.3.3. Only, the sparse input synapse chip functionality must
be extended to include routing of inputs to outputs.

4.3.2 The neuron chip

As stated in section 2.3.3, the output voltage of the second generation synapse
chip should be close to the reference voltage Vi to avoid DC common mode
currents in the synapses. As the neuron output is referred to this voltage, it is
necessary to separate the bipolar pair and the output range MRC with current
mirrors to ensure sufficient emitter-collector voltage of the bipolar pair. Otherwise
the principal neuron schematic is unaltered. The schematic of a second generation
hyperbolic tangent neuron is shown in figure 38*. The extra current mirrors will
inevitably cause an increased neuron output offset.

Vbp

GD I R1s =1/(BisVis)

i, J Ror = 1/(BorRVOR)

MWy

Vie ROR
Ri1s ! [
+
Vref V. R Vyk
; E ss OR T -
T \ Vref Vref

Vss Current mirror

Figure 38*: Second generation hyperbolic tangent neuron. Simplified schema-
tic. The resistors are implemented as MRCs as in the first generation neuron.

Extending the second generation neuron chip for on-chip back-propagation we
must enable the neurons to compute the weight errors §¢. Though serial (O(1))
weight updating scheme was selected, we have chosen to place some of the weight

T Unfortunately this was overlooked at design time causing the synapse weight
offsets to be larger than necessary and different in forward and reverse modes.

Chapter 4.3.2 Implementation of on-chip back-propagation Page 69

updating hardware on the neuron chip. Strictly speaking, this is unnecessary for
all but one of the neuron chips in a system. However, it is convenient to to place
the “&t - l” -multiplier near the physical location of the “6!” and “ j” signals.
Also, 1f the back-up RAM is organized in parallel access1ble banks (as the p-
RAM in figure 70%) this “semi parallelism” can be exploited. A block diagram
of the back-propagation neuron is seen in figure 39*. For a more detailed circuit
schematic refer to appendix D.2.2. It is crucial for the functionality of the learning
algorithm that the offset errors on the weight change signals are very small (cf.
section 3.3 and the following). For this reason, hardware for offset compensating
the weight change signal is indispensable. As the current system uses a serial
weight updating hardware and as the new weights ultimately have to be written
in the digital backup memory, there is no strong motivation to keep the weight
change calculating hardware analoguej. Indeed, using digital hardware in most of
the O(1) part of the system, we can reduce the problem with weight change offset;
cf. section 4.5.

forward

Sk
fOI'\fLy tanh Tl>+l forward
reverse 8(sk)

O—e o
1/0 — » O/l

reverse

5 ()
k~8 (Sk 1- yk2 < learn
% €k

n ij(t) (l_gdec) ij(t+])

Figure 39*: Back-propagation neuron. Block diagram. The positions of the
switches in forward, reverse and learn mode are indicated. The elements
below the dashed line is the weight updating hardware which is common for
all neurons.

As we use a hyperbolic tangent neuron activation, the derivative of this is
calculated as ¢/ . = 1 — g%. For this operation a two-dimensional inner product
multiplier based on MRC's is used (topologically identical to the IPM of figure 162,

T Recall that motivations for using analogue hardware for ANNs in the first place
included the size advantage of massively parallel system and the power advantage
of (especially) small systems. For O(1)-scaling hardware, neither of these are very
important. Thus, we should not maintain a purely analogue system at any cost.
Of course, data converters are needed when digital circuitry is included; if the
expense of these is too large (eg. in small, low power systems) a fully analogue
system is the solution.

Chapter 4.4 Implementation of on-chip back-propagation Page 70

p. 31, without the output transconductor). This is a very versatile component
which is the core of most computing circuitry in this thesis. It has the power to do
multiplication, addition, subtraction and division: using tree identical MRCs the
output is (independently of process parameters) given by:

_ _ (UZH— - UZ1—)(ka1+ - me—) + (U22—|— - UZ2—)(ka2+ - kaz—)
VUout = Usk — Vo4 — Vo 9

where v, 4, Vuy 4, Vzpts Vugot and vox are inputs (cf. figure 16%; ve = vey —ve_).
This is easily configured to compute the desired function (level shifters will have
to be inserted at the vy, + and vc+ inputs to ensure the transistors operate in the
triode region).

The weight errors §i are computed using a one-dimensional MRC TPM. As the
inputs to the synapse chip are buffered, the neuron chip does not have to have a very
low output impedance (neither in forward nor reverse mode). Thus, the switches
that redirect the signal flow in the various operating modes can be simple MOS
transistors (a reasonably sized transistor (cf. appendix D.2.2) in the technology
used can drive a 50 pF load to 8bit accuracy in 100ns — for larger capacitive
loads, feedback can be used to lower the switch impedance, cf. the synapse chip
row/column elements). When operating in reverse or learn mode, the neuron net
input s! is unavailable. Thus the neuron activation has to be sampled in forward
mode in order to provide data for the calculation of the weight error.

The synapse chip provides the neuron error ¢} as a current. As the “g’(st)-gl”-
multiplier needs voltage inputs, we need a transimpedance at the neuron error
input. This is implemented using a MRC (plus op-amp) as the neuron input scale
transimpedance (see figure 15%). The neuron errors (7*) are computed differently
for the output layer than for the preceding layers. We can accommodate to this
by adding a second MRC to the neuron error transimpedance (ie. transforming
this to a one-dimensional IPM) and activating this MRC at the output layer only
(see figure 97D). When acting as an IPM, the circuit can take the difference of an
applied input voltage and the on-chip neuron activation. In other words: at the
output layer one shall now provide a target value as a voltage rather than a neuron
error as a current.

4.4 Chip measurements

A 4 neuron back-propagation neuron chip and an 8 x 4 synapse back-propagation
synapse chip has been fabricated in a standard 2.4 pym CMOS process. In this
section, we shall present measurements on these chips (first published in Lehmann
and Bruun [143] and Lehmann [142]). A table of the most important chip charac-
teristics can be found in appendix D.2.

Chapter 4.4.1 Implementation of on-chip back-propagation Page 71

4.4.1 The synapse chip

The measured forward mode synapse transfer characteristics for a single synapse
can be seen in figure 40*; the reverse mode characteristics for the same synapse
can be seen in figure 41*. The non-linearity is less than 3.5% or approximately
equal to the first generation synapse non-linearity, as would be expected. The chip
output offset current (in both forward and reverse mode) can be quite large; of a
magnitude comparable to the maximal synapse output current. Responsible for this
output offset is the CCII+ row current differencer — presumably the x-z current
buffer. According to appendix C.3 we should expect a large output offset when
using current differencing by rows (rather than by synapse). As the output current
conveyor is designed to sink current from a large (50-100) number of synapses
(and as it is this that gives the output offset), the chip can be scaled (ie. synapses
added) without significant increase in output offset current. Comparing this second
generation synapse chip output offset with that of the first generation chip we notice
that it has been reduced by a factor 4 because of the simpler current differencing
circuit. Still, with the reduced synapse maximum output current (compared to
the first generation chip) it is necessary to dedicate a synapse per row for offset
canceling (which would be an extra bias synapse) in order not to exhaust the
neuron bias synapse. For operation in reverse mode, the offset errors are probably
larger than tolerable by the back-propagation algorithm, without offset canceling
being employed (cf. section 3.3, section 5.2.1).

N I R N I [T T,
%—ﬁ H 1 Ll T
< Vem 4094V " < | V-4 0047
& T e e “
o T T s == DN
1 -] 1 T
Re=) = aansss
TN R £ —094v >
o — = 0.94V =] o) -
-1V v, +1V4e 4-1V vs +1V 4

Figure 40*: Forward mode synap- Figure 41*: Reverse mode synap-
se characteristics. Measured transfer se characteristics. Measurements on
functions for single back-propagation same synapse in reverse mode. The
synapse at different synapse output offset errors have been almost
strengths. canceled.

As it was for the first synapse chip, the weight resolution is at least 10 bit
which should be sufficient for a range of applications. The effective weight offset,
however, is somewhat higher and strongly correlated with the differencers to which
the synapses are connected (cf. figure 42* and 434). The offsets are caused by
the inability of the synapse row/column elements to ensure virtual short circuit at
the synapse output (presumably caused by mismatch of the reconfiguring switch
transistors). If the systematic offset is canceled, the offset is below that of the first

Chapter 4.4.2 Implementation of on-chip back-propagation Page 72

generation synapse chip. This non-ideality of the row/column differencers causes
the synapses to have different offset in forward mode and reverse mode. Though
undesirable, the magnitude of the offset is most probably tolerable by the learning
scheme (the offset error corresponds to a 5 bit recall mode weight accuracy).

Weight offset/LSB 8

Figure 42": Forward mode weight off- Figure 43*: Reverse mode weight off-
sets. Sample chip. Notice the corre- sets. Sample chip. Notice the correla-
lation among synapses along a row, tion among synapses along a column
which is emphasized by the contour (dashed lines: contour plot).

plot (dashed lines).

4.4.2 The neuron chip

The measured forward mode neuron transfer characteristics can be seen in figures
44* and 46*; the increased output offset compared to the first generation neuron
chip is noticed. The non-linearity is less than 2% (cf. figure 47*) and the offset
errors are of little importance to the recall mode performance (as for the first gen-
eration chip set). (The increased output offset compared to the first generation
chip is caused by the additional current mirrors; cf. above.) Figure 45* shows
the electronically computed neuron derivative as calculated by the neuron chip (as
dy/ds = 1—y?, cf. figure 48"). The asymmetry is caused by the output offset of the
neuron transfer function and the input offset of the derivative computing “1 — y?”
block. Note, however, that the neuron input offset does not affect the accuracy of
the computed derivative as would have been the case if the derivative was computed
on the basis of the neuron input. The non-linearity of the derivative computing
block is less than 2% (cf. figure 49*). The total non-linearity of the computed
derivative is less than 6%. The offset errors related to the derivative computa-
tion are quite large, however; causing the computed derivative to be negative in
particularly poor specimens of the neuron, which is destructive for the learning
process. By including a derivative perturbation in the weight error calculation as
mentioned above, we hope that the offsets can be tolerated by the learning scheme.
This has yet to be experimentally proven, of course. (Note that several authors
have employed very coarse derivative approximations and still observed learning
progress (eg. Valle et al. [251]; see also Shima et al. [220], Cho et al. [46]).) The
derivative perturbation is easily inserted by substituting the “1” by a worst case

“y2 7 when calculating the derivative: dy/ds ~ y2,. — y*. This procedure is the

Chapter 4.4 Implementation of on-chip back-propagation Page 73

same as one (of several) used on the first generation chip set; the neuron output

variation is larger for the second generation chip, though, which will most likely
degrade the performance.

S B S ey S A NS O /’\
> VIR = 1 L~ 10 . T ==
I 0.125V—+ 7 7z T | le=3uA =

2.00 //E: o
m NN NN 1111"-11 NN N w — T
it AR AR RN RN #3535 R B R R ® R HHH PP A H T HH
> IS&M,MM /;/ > s | Lo f
i 7 ™ T
| 4‘//////2/ I },’ :/R Uy
I—S/JA iy +3uAh Z':éﬁzi" T TR B A

Figure 44*: Forward mode neu- Figure 45* Computed neuron deriva-
ron characteristics. Measured trans- tive. Measured derivative as compu-
fer characteristics for different input ted by the chip. The asymmetry is
scale voltages Vig. caused by the neuron output offset.

Neuron transfer function Neuron tanh non-linearity

o =
3] [3
g !
-
3

o
[}
T

Neuron output, v_y / V
o
non-linearity, D_y / %

'
[
r

=

s
N
ol

2 1 o 1 2 3 %2 a4 o 1 2 3
Neuron net input, i_s / uA Neuron net input, i_s / uA
Figure 46* Different neuron trans- Figure 47% Different neuron non-li-
fer functions. Four measured (stair nearities. Measured/fitted -tanh rela-
case) and fitted (smooth) tanh func- tive difference.
tions (almost indistinguishable).

The measurements on the chip set indicate that, with the inclusion of offset can-
celing on certain signals, the chip set should be able to function as the core of a
discrete time, analogue back-propagation neural network: the chip set functions as

Chapter 4.4 Implementation of on-chip back-propagation Page 74

Derivative calculator transfer function Parabola non-linearity
25 T 2.5 !
2t o 2
> Z
~ g
s hy
‘—|| DI
> L
g ! =
2 5
Zos g
r) s
a] s
c

S,

'0'51 -1

0 0
Neuron output, v_y / V Neuron output, v_y / V

Figure 48* Different parabola trans- Figure 49%: Different parabola non-
fer functions. Four measured (stair linearities. Measured/fitted -parabo-
case) and fitted (smooth) derivative la relative difference.

computing parabolas.

predicted. Variations on transconductances, gains, offset errors (hopefully), ete.
should be canceled during the learning process.

Figure 50*: Neuron sampler
droop rate. Measured droop
rate for two different starting T i ¥
points (£1V). Notice the al-
most linear decay caused by
(mismatched) diode reverse cur-
rents. The sign and magnitude
of the droop rate will vary from

i
i

-1V Vy VY

1414
L I I Y L O A RS

[

neuron to neuron. The synapse
strength droop rate have a sim-
ilar appearance.

}
s

=
o
(92]
—

4008

The synapse- and neuron chip propagation delays give a layer propagation
delay of ¢;pq < 2.5 ps which gives a recall mode speed of 12.8 MCPS per synapse
chip in a layer (or 4 GCPS if a full-size 100 x 100 synapse chip is used). Note that
the reconfiguring switches at the neuron output do not degrade the performance
(compared to the first generation chip) at the current capacitive load. The neuron
chip takes t;Awpa & 3.6 s to calculate a new weight giving a learning speed of
approximately 0.25 MCUPS for the back-propagation system. Given the droop
rate of the neuron activation sampler (cf. figure 504), this will limit the system
size to about 2 - 10°% connections for an 8bit accuracy of the neuron activations.
(Applications using 0.3 - 10° connections are known; cf. chapter 2 (Brunak et al.
[29]).) Should this be a problem, digital refresh of the sampled neuron activation
can be employed (the neuron sampler actually has an extra input for this very

Chapter 4.4.3 Implementation of on-chip back-propagation Page 75

purpose)y.

4.4.3 Improving the derivative computation

Apart from the synapse chip output offsets and weight change offsets — which can
be canceled by an auto offset canceling scheme — the most concerning problem
of the chip set is the calculation of the neuron derivative (this has also been the
concern of other authors; Jabri and Flower [107], Hollis et al. [99], and others; some
authors take advantage of the fact that the derivative need not be computed very
accurately for learning to proceed and use very coarse derivative approximations
Valle et al. [251], Woodburn et al. [270]). To ensure a non-negative result of
the computation, we could use a derivative perturbation as mentioned above (also
employed by Shima et al. [220]). Alternatively (or in addition to), we could clamp
the output to zero whenever this was negative: Using a two dimensional CCII+
based IPM (as the second generation synapse chip IPM) to calculate “1 — y*” the
output would be a current. Mirroring this current using a simple current mirror, we
would ensure that the output was never negative (some additional hardware would
be needed to ensure a reasonably input impedance, speed, etec.). It is also possible
(though not necessarily without a considerable amount of additional hardware) to
employ auto offset canceling techniques to cancel the offsets.

Other, more elegant, approaches to come around the offset related problems
of the derivative calculation are also possible for the back-propagation chip set:
It was stated in section 2.2.5 that “we would most probably not have access to
the neuron net inputs” when calculating the neuron derivatives for the learning
algorithm. Integrating the learning algorithm on-chip — rather than as an add-on
module — we actually do have access to the neuron net input. This implies that we
can choose our neuron transfer function more freely — as long as the derivative is
computable. Bogason [26] propose to approximate the derivative by a differential
quotient:

Oiy(vs) N iy(vs + AV) —iy(vs — AV)
ovs 2AV ’
where AV is a “small” voltage. A block diagram for such a circuit based on a
general differential voltage in, differential current out neuron is shown in figure
51*. The output current is the neuron output when the switches are open (and
AV = 0) and the derivative approximation when the switches are closed.

The neuron could for instance be a MOST differential pair. In this case
the magnitude of a possible negative output when calculating the derivative is
determined by the matching of the two tail current sources. A 1% mismatch of these
is realistic (a small derivative perturbation could be added to ensure the derivative
is calculated strictly larger than 0, of course). Using a MOST differential pair
to implement the neuron transfer function is also an advantage in terms of speed,
compared to the hyperbolic tangent neuron. The accuracy of the difference quotient

 In hardware efficient systems using parallel weigh update (O(N) or O(N?))
the neuron activation deterioration would be less problematic, of course.

Chapter 4.4.3 Implementation of on-chip back-propagation Page 76

— — diy
| 2
- yl - ZAVavS

)

-

Figure 51* Differential quotient derivative approximation. Two arbitrary
differential voltage in, differential current out transfer function blocks can be
used for approximating the derivative (switches closed) of the transfer function
(when the switches are open).

approach can be brought within 10 % using a reasonably large AV Instead of using
two neuron transfer blocks to calculate the derivative, a single block combined with
a switched capacitor (much like that we shall see in section 4.6) can be used. This
reduces the transistor count.

Another approximating circuit for calculating the derivative, which inherently
has positive output and which uses even fewer transistors, has also been reported
lately (Annema [12]).

The apparent difficulties in computing the activation function derivatives need-
ed by gradient descent have inspired some authors to do without the derivative
information; for instance by substituting a constanti for the derivative or by us-
ing completely different optimization techniques. (See eg. Battiti and Tecchiolli
[19]; also Krogh et al. [125]). We shall not elaborate on such solutions, as one
of the objectives of this work is to approximate standard algorithms with known
properties.

T Assuming a monotonous activation function. Knowledge of the sign of the
derivative should be sufficient for convergence (using a decreasing learning rate);
compare to stochastic approzimation (Gelb et al. [78]).

Chapter 4.5 Implementation of on-chip back-propagation Page 77

4.5 System design

Most of the hardware for an ANN with on-chip back-propagation is included on
the back-propagation chip set. For a complete system, though, some additional
hardware is needed. This is:

o A digital weight backup memory.

e Most of the order O(1) scaling hardware, ie. D/A and A/D converters for
accessing the backup memory, and some of the weight updating hardware.
Also including:

e A finite automaton to control the system (weight refresh, applying inputs,
controlling the learning scheme, etc.).

e An environment in which to place the ANN.

In this section, we shall describe such a complete system.

For ease of test, we embed the ANN in a digital PC interface and we use the
PC as the master finite automaton (or finite state machine, FSM). This solution
does not allow us to test the speed of the system: The PC AT (ISA) bus — and
the necessary A/D and D/A converters — is the the bottleneck of the system in
terms of speed. Neither the recall mode nnor learning mode speed performance
can be tested. However, there is no reason that the system should not run at
the speed indicated by the measurements on the individual chips. The circuit level
system performance, on the other hand, is most easily tested using a high degree of
programmability; thus we use this “artificial” PC environment. (Also: the design
time was rather important.) For a real application, the environment would be in
the electrical analogue domain and the finite automaton — which is quite simple
— would be a digital ASIC, possibly including the D/A and A/D converters.

The system designed is actually an RTRL/back-propagation learning ANN
hybrid: The RTRL system (cf. chapter 5) shall be based on the second generation
(back-propagation) ANN chip set. Thus, back-propagation can be included in this
system almost for free, eliminating the cost of the PC interface for a separate back-
propagation system. As a consequence, the back-propagation ANN architecture is
determined by the RTRL ANN architecture and not designed to a specific appli-
cation. For test this is acceptable. The complete system schematic can be found
in enclosure ITI(see also appendix D.4).

Scaled back-propagation synapse chip In back-propagation mode the sys-
tem realizes a two layer 28—-12—4 perceptron. As this architecture would require 20
8 x 4 synapse chips it was necessary to have a scaled back-propagation synapse chip
(16 x 16) fabricated. Unfortunately, on that particular MPC run the process pa-
rameters were outside the specified ranges; the n-channel process transconductance
parameter, for instance, being as low as K} = 33 uA/V? (compared to a nominal
value of K{ = 57 1A /V?). Presumably, the threshold voltages were numerically
large which would explain the reduced dynamic range of components tested in
previous MPC runs. The impacts on the chip are primarily reduced input range
and large systematic offset errors (see appendix D.2.3). Using a raised reference

Chapter 4.5.1 Implementation of on-chip back-propagation Page 78

voltage and external current offset compensation circuits it is our hope that we can
make the system work in spite of the poor quality chips.

4.5.1 ASIC interconnection

Using the scaled 16 x 16 synapse chips the synapse chip count is reduced to three,
interconnected (when the system operates in back-propagation mode) as shown in
figure 52* (the synapse chips are drawn as having the architecture of figure 1* for
convenience). Four input lines and four output lines in each matrix of synapses
are driven by DC voltages, reserving four rows and four columns in each layer for
neuron thresholds (forward mode only) and offset compensation as indicated in the
figure. (Strictly speaking, reverse mode offset compensation is unnecessary for the
input layer.) Prior to learning, the matrix-vector multiplier outputs are measured
(in both forward and reverse mode) and the offset compensation synapse strengths
are adjusted to minimize the offsets (ie. on the sts and the is).

Offset/Threshold synapses

%ﬁ—# Bias Bias Nulls

Figure 52*: Back-propagation ANN architecture. ANN chip interconnections
when the system operates in back-propagation mode. Blocks SC16 and NC
are synapse- and neuron chips respectively. Input (output) lines of the SC16
blocks are accessible at both top and bottom (left and right) in this figure.

As the synapse strength backup memory we use a 16 bit RAM. Several authors
have addressed the problem of weight discretization in ANNs (Hollis et al. [97],
Tarassenko [238], Lehmann [139, 140|, Lansner [133], Brunak and Hansen [31];
see section 3.3). A 16 bit resolution for a learning system seems to be in compli-
ance with most of the reported simulations. Subsequent to learning, the necessary
weight resolution is lower — because it is usually the relative weight magnitudes
rather than the exact weight values that determines the system behavior; during
learning, however, small weight changes need to be accumulated. When refreshing
the synapse strengths on the synapse chip from the RAM, we use a 12bit DAC.
The actual ANN weight discretization is thus reduced to 12 bit; however, we can
still accumulate weight changes as small as when using a 16 bit discretization. Ac-
tually, the ANN performance when using this scheme will be superior to that of a
system where the weight discretization is reduced from 16 bit to 12 bit after learn-
ing: We train on the actual final network rather than on a intermediate network
with “artificial” high weight resolution (see also Lansner [133]).

Chapter 4.5.2 Implementation of on-chip back-propagation Page 79

4.5.2 Weight updating hardware

Offset values and weight resolutions typically found in analogue VLSI systems
restrict the learning rate to a range somewhat higher than what is often employed
in software simulations (cf. sections 3.3 and 4.3.2, Tarassenko and Tombs [237],
Krogh et al. [125], Hansen and Salamon [91], Hertz et al. [95, 94] Weigend et al.
[261]; see also Williams and Zipser [268]). As we are using an O(1) weight updating
scheme — and as we use high precision weight backup memory — we can reduce the
influence of weight change offsets and weight change discretization, and therefore
reduce the minimum learning rate, by adding the weight change to the old weight
in the digital domain. Using a 12bit{ ADC to convert the analogue weight change
signal to digital form and adding this (padded with zeroes at the 4 MSBs) to the
16 bit weight, we scale the effective weight change offset by a factor 1/2%. This is
illustrated in figure 53*. The actual schematic is slightly more complex as bipolar
weights and weight changes needs to be handled and as overflow in the digital
adder must be prevented. Also, a multiplexor is included to allow test of the
on-chip analogue weight updating hardware (cf. enclosure III).

) Wi (t+1)
aw (1) ~(ADP==m Rl N

Je

wig (1) —(DAC) —msss 0

Wiy (1)

Figure 53": Digital weight updating hardware principle. The digital part
uses higher precision than offered by the data converters, thereby reducing the
effective learning rate.

Studying the back-propagation neuron block diagram in figure 39*, we see that
the Awy; signal is not directly accessible; applying the wy;(t) and egec signals on
the neuron chips as zeros gives the desired weight change at the output (though
inevitable with a larger offset than that of the internal Awy;). As the synapse chip
outputs, the Awy; output is offset compensated prior to learning (by applying zero
inputs in learn mode and adjusting the wy;(t) signal such that the output is also
zero).

In addition to the small hardware cost, the advantage of using a serial weight
updating scheme is this possibility to employ an advanced, accurate (ie. hardware
hungry) weight updating scheme without an extreme hardware cost{. Learning al-
gorithms that are inherently using serial weight updating (eg. weight perturbation)

T If the weight change offset is large, we should use a coarser discretization;
preferably, the weight change offset should be below 1 LSB.

7 All other things being equal, adding additional hardware in the analogue do-
main for inclusion of a more advanced updating scheme will increase weight updat-

Chapter 4.5 Implementation of on-chip back-propagation Page 80

should take advantage of this; for instance by using the weight updating scheme
above. (The above updating scheme requires a weight storage with digital weight
backup, of course; for large systems this is also a good choice when using a serial
weight updating scheme.)

The back-propagation system is, at the time of writing, under construction. Thus,
unfortunately, we can not present any system level experiments. Hopefully such
will be available in the near future.

4.6 Non-linear back-propagation

As we now have seen, one of the major concerns when implementing gradient
descent like learning algorithms in hardware is the computation of the neuron
derivatives. Many different approaches to approximate the derivative have been
proposed in the literature: difference quotient (locally or globally computed) or
other approximating approaches, perturbations for reducing offset related errors,
as well as implementations largely ignoring the derivative.

These implementation related difficulties recently motivated the development
of a new gradient descent like algorithm, non-linear back-propagation (NLBP), in
which the deriwative computation is avoided (Hertz et al. [94]). In this section we
shall display the algorithm and show how to incorporate it in an existing back-
propagation architecture.

4.6.1 Derivation of the algorithm

The derivation of non-linear back-propagation in the framework of recurrent back-
propagation can be found in Hertz et al. [94]. In the feed forward case, we recall
the weight updating rule (9*) which define the weight change

Awi;(t) = ndi(t)z5(t) = ng'(si (1) ek (£) 25 (1)
)

= an g/ (sh(0)eh (1)25(1)

ing errors. As reducing these are a primary concern in a learning scheme implemen-
tation, this advocates for using a simple weight updating scheme in the analogue
domain. Thus, it could be argued that, presently, the only realistic way to imple-
ment advanced updating schemes is to use an order O(1) updating scheme in the
digital domain.

Chapter 4.6.1 Implementation of on-chip back-propagation Page 81

where we call ay the NLBP domain parameter. Now, the basic idea in non-linear
back-propagation is to interpret the above equation as a first order Tailor expansion
of the equation

Awh;(t) & ax [g(sh(8) + Z=ek(1)) = g(sk (1) 2H(0),

aN

which is valid for small %52@) Redefining the weight error definition (8%) to

) = S ook (0 + S 1ek(0) — otk)] (12")

aN

where the d%,(¢)s are the NLBP weight errors, the NLBP weight change equation
has the same form as the original back-propagation equation:

Awgc]‘(t) = 77511\11@@)2;@) .

When the NLBP domain parameter ay is large, the Tailor approximation is good
but requires high precision to compute. When ay is small, the algorithm is nu-
merically stable but is taken far from gradient descent behaviour. We think of ay
as being in the range n < any < 1. In the numerically most stable limit — which
is most interesting for a VLSI implementation because of the limited precision of
this technology — (12*) takes the simpler formt:

Onk(t) = g(si(t) +ek(t) — glsk(1), for ax =1. (13%)

As for ordinary back-propagation, we can chose 8%, (t) = cE(¢) for the output layer
if we wish to use the entropic cost function.

15
1 L
Figure 54*: NLBP training er- 5\\
ror. Training error as function s
of learning epoch for normal 0573
back-propagation (solid line) §
and the non-linear version with 7
an = n = 0.05 (dashed line) - trainingepochs
and any = 1 (dot-dashed line). ® 5 10 15 20 25 30 35 40 45 50

T Note that the errors are propagated through the same non-linear units as the
neuron activations are in recall mode, rather than through the linearized units used
in ordinary back-propagation. Hence the name: non-linear back-propagation.

Chapter 4.6.2 Implementation of on-chip back-propagation Page 82

In figure 54" the training errors (using the NETtalk data set (Sejnowski and
Rosenberg [214])) for normal back-propagation and NLBP are compared (from
Hertz et al. [94]). The performance of NLBP is very similar to that of ordinary
back-propagation in these simulations (note that the usual algorithm variations as
weight decay, momentum, etc. are applicable to NLBP). In a hardware implemen-
tation it would be expected to be superior to ordinary back-propagation: Being
based on addition and subtraction in addition to the neuron non-linearity, rather
than being based on differentiation and multiplication, the calculation of the NLBP
weight error is much simpler and thus bound to be more accurate. Also favouring
a hardware implementation is the indication that NLBP seems to be superior to
ordinary back-propagation for large learning rates (cf. section 3.3).

4.6.2 Hardware implementation

As the only difference between ordinary back-propagation and non-linear back-
propagation is the way the weight strength errors are computed — and as these
are computed locally — NLBP maps topologically on hardware in exactly the same
way as ordinary back-propagation; only the neuron implementation differ. In this
section we shall show the core of two neuron implementations for an ANN with
on-chip NLBP learning (first reported in Hertz et al. [94]).

Continuous time NLBP neuron Taking the BJT differential pair of our
original neuron as a starting point for implementing NLBP with a hyperbolic tan-
gent neuron activation function, leads to the schematic in figure 55*. For simplicity,
the differential pairs are shown implemented with npn BJTs; in an actual CMOS
implementation, lateral bipolar mode p-channel MOSTs would be used as in the
previous designs, of course. As the actual neuron activation function is unimpor-
tant for NLBP, MOST differential pairs could be used instead (as in Bogason [26])
which would favour speed. The use of LBM MOST differential pairs, probably
favour accuracy (Vittoz [253], Salama et al. [205]). One will notice that the cir-
cuit requires application of the negated neuron error, —e¢j;. Thus the synapse chip
would have to compute this in reverse mode, rather than e (requiring a simple
modification).

It is interesting to notice that the circuit structure is identical to the one
used by Bogason [26] (cf. figure 51*) to compute the neuron activation function
derivative: Substituting —v., by a small, constant voltage —AV, the is5, output
will approximate AV - Jiy, /Ovs, . One can interpret NLBP as a way to exploit this
implicit multiplication of the difference (13*) which eliminates the “¢’(s) - e1”-
multiplier — and hence a source of errors. Further, v., is not “a small voltage”
(as opposed to AV') which makes inherent inaccuracies less significant, relatively.
Consequently, using the circuit for NLBP gives better accuracy than when using
it for ordinary back-propagation.

The accuracy of the circuit (ie. on the weight error calculation) is determined
by the matching of the two differential pairs and their tail currents. This can be in
the order of 1 % of the output current magnitude (see eg. O’Leary [182]; though see

Chapter 4.6.2 Implementation of on-chip back-propagation Page 83

\op T
E’“ ‘ | HE [”f |
J = |[t -«
VskO K L T " 2 i5k
x| - lyi ,/40 Ve
Bias |

Vss

Figure 55%: Continuous time non-linear back-propagation neuron. Using a
MOST differential pair is also possible, though the activation function will be
different. The precision is determined by the matching of the two differential
pairs.

also Salama et al. [205]) — which is better by far than the accuracy of our present
chips and will probably enhance the performance significantly. Still, though, linear
transresistances are needed at the inputs and outputs for compatibility with the
synapse chip. This will degrade performance.

The circuit as presented functions in continuous time and can substitute the
schematic back-propagation neuron of figure 33* in a system that uses fully parallel
weight updating.

Discrete time NLBP neuron As the actual shape of the neuron activation
function is irrelevant to non-linear back-propagation implementationj there is no
need to base the implementation on differential pairs. A far better approach is
to use circuits that inherently have the current inputs and voltage outputs which
are needed. Also, as the same function is used to calculate the neuron activations
and the weight errors, it would be preferable to use the same hardware for these
calculations as this eliminates the need for matched componentsi. This is possible
if the system is not required to function in continuous time, though the output
would have to be sampled (which introduces errors).

Shown in figure 56* is the simplified schematic of such a discrete time neuron
which reuses the activation function block and which has current inputs/voltage
outputs. During the ¢; clock phase, v,, is available at the output and is sampled
at the capacitor. During the ¢s clock phase, vs, is available at the output. It is the
switched capacitor that computes the difference in (13*) and which determines the

T Indeed, we could implement a “bump” function (or radial basis function)
which is popular among certain authors (see eg. Hertz et al. [95], Sdanchez-Sinencio
and Lau [206]) or any other function as long as the implementation is time invariant
and possibly also reproducible.

T Also, if a very complex activation function is used, the extra hardware com-
sumption might prohibit the implementation of two activation blocks per neuron.

Chapter 4.6.2 Implementation of on-chip back-propagation Page 84

accuracy of the circuit. Note that the output buffer needs to be linear but its offset
error is canceled by the switched capacitor. Also, the neuron transfer function
block (the six MOSTSs) can be an arbitrary current in/voltage out circuit; static
errors (as input current/output voltage offsets) in this block are irrelevant. Using
design techniques to reduce charge- injection and redistribution (Robert and Deval
[198], Gatti et al. [75], Signell and Mossberg [222], Kerth et al. [121]), the accuracy
can be brought within 0.1 % of the output voltage range.

Neuron activation block

Figure 56* Discrete time non-linear back-propagation neuron. Simplified
schematic. Time invariant inaccuracies will not affect the performance of this
circuit. The precision is determined by the switched capacitor.

This discrete time NLBP neuron can directly replace the computing elements
of our original back-propagation neuron in figure 39*. Thus, assuming that the
voltage buffer would be needed in a recall mode version of the neuron, the NLBP
hardware overhead is potentially extremely small: consisting of only a switched
capacitor at the neuron sites in addition to the very modest hardware increase of
our original “hardware efficient back-propagation synapse chip” and the order O(1)
weight updating hardware and finite automaton algorithm controller.

Operating the output transistors of the transfer function block in the triode
mode the circuit output voltage will exhibit a reasonably smooth transition from
Vinax t0 Vinin when the input current is increased, giving an S-shaped transfer func-
tion. The circuit, however, has a very poor power supply rejection ratio (PSRR).
A more realistic circuit is shown in figure 57*. The insertion of current mirrors
in the signal paths gives a much better PSRR and the possibility of a lower input
impedance. To avoid drawing current from the output range references (which
would compromise their rigidity) simple amplifiers buffer these (NLBP does not
require the neuron output range to be very well defined, thus the large input off-
set (Z 2Vr) of the amplifiers need not match very well). The neuron steepness
is controlled by the input stage bias current, Iz. Transfer function simulation for
different bias currents can be seen in figure 58*.

Chapter 4.7 Implementation of on-chip back-propagation Page 85

\Vbp

j llf |
{ \ RGB

D's

Vmax
! }74(\)/max
W FHE %LE N
S e e O

il -
Vimin S

Ds Vimin bufferi j%

| I | O

Vss

Figure 57* Neuron activation block schematic. Improved PSRR. The outputs
from a standard source follower current input stage drives the transfer function
shaping output transistors via current mirrors. The output level reference
buffers can be thought of as degenerated regulated cascodes.

ivheu3 -- | in, V out squashing neuron, improved PSRR

Date/Time run: 05/15/94 16:47:16 Temperature: 27.0
1.0v

0.5V

ov

. 4 . . -
Figure 58% Simulatedi neu- o8V
ron transfer function. Transfer

1 1.0V
funCtlon at :i:25 V pOWGl" Supp]y -3.0uA -2.0uA -1.0uA 0A 1.0uA 2.0uA 3.0uA
for several bias currents. B oo a4 TVQ lin

4.7 Further work

Obviously, system level experiments need to be carried out in order to evaluate
the applicability of our proposed chip set (especially with respect to derivative
computation and weight change offsets). This work is presently being carried out

Chapter 4.7.1 Implementation of on-chip back-propagation Page 86

at our institute. Also, the implementation of the proposed discrete time NLBP
neuron chip (which could be pin compatible with our present back-propagation
neuron chip and thus substitute this in the back-propagation system) is an evident
future design task.

As for the recall mode neural network design of chapter 2, several design
issues need consideration prior to “a volume production”. The considerations on
process parameter dependency canceling and temperature compensation mentioned
in section 2.7 also apply for the back-propagation chip set. In addition, the imple-
mentation of the high accuracy calculations (or rather low offset ones) needed by
the learning scheme requires further investigation. In this section we shall discuss
a few approaches to reduce the influence of offset on critical signals and to the
inclusion of algorithmic variations.

4.7.1 Chopper stabilizing

One of the more critical signals in an ANN learning scheme with respect to offset
is the weight change. A straightforward solution, mentioned in section 4.5, to this
problem is to measure the offset during an auto zeroing phase and subsequently
subtract this offset. This solution has two major drawbacks: it requires (i) mem-
ory and (ii) an offset free comparator (though see chapter 5.3.2). Especially for
systems with a fully parallel weight updating scheme, these drawbacks are quite
severe. Another way to eliminate the weight change offset is to apply a chopper
stabilizing technique known from operational amplifier offset cancellation (Hsieh
et al. [104], Allen and Holberg [7], Coln [52]): The polarity of the inputs and out-
puts of a differential op-amp is synchronously and periodically (at fchp) reversed
which moves the offset error (and low frequency noise) to the odd harmonics of
the chopping frequency fenp. In a similar way, we can periodically permute the
inputs/output polarities of the “§j - z;”-multiplier used to compute the weight
changes. This is illustrated in figure 59*, for the case where the weight updating
multipliers are placed at the synapse sites for parallel weight updatingf.

Assume that the weight updating multiplier (which should be a differential
inputs, differential output multiplier; eg. the Gilbert multiplier of figure 72) com-
putes:

Awgjmul = 70k + Okjots) (25 + Zkjofs) + N jofs -
Inserting four switch transistors at each input and at the output, which reverses the
polarity when the corresponding control signal ¢¢ is high, and doing four successive
weight updates using

o 0 1 0 1
o | = (0], 1|, |1],]|0][,
oy 0 0 1 1

i Pulse width modulation (by gating the ¢, and 5,, signals) of the contacts
connected to the storage capacitor could be used to adjust the learning rate; this
is not shown in the figure. A multiplier bias current could also be used to control
the learning rate.

Chapter 4.7.1 Implementation of on-chip back-propagation Page 87

PR PR
VA gpliligyl
- S
T e L
+
\\If\\\ - ¢iAWH
X =
+ 2 -
—()= — b5 O
= /Iseal D Moo T P
Skjofs _ e A\:L
VSS - \/szofs V
O
>/ —
[}

Figure 59*: Chopper stabilized weight updating. Principal schematic. For
parallel weight updating as indicated, only four extra minimum switches are
needed at the synapse sites.

gives the following resulting weight change:

Awyj = ZU((l — 265)0k + Srjofs) (1 — 202)25 + Zkjots) + (1 — 265)1k jots
¢n7¢27¢6

= 4norz;

We call this multidimensional chopper stabilization. Note that the output switches
are placed in such a way that, to a first order approximation, offset errors related
to the (switched) differencing current mirror are also canceled. Placing the switch
transistors as indicated on the figure, we see that only four minimum switch tran-
sistors (in addition to the weight updating multiplier) is necessary at each synapse
site. The other switch transistors can be common to a row or column of synapses.
This has the additional advantage that possible offsets in input buffers (as indicated
on the figure) also will be canceled. If we were to add chopper stabilizing of the
weight change signal in our present back-propagation system, only one stabilizer
(or actually one per neuron chip) would be required, of course.

For exact offset cancellation, the data frequencies should be lower than half the
smallest of the chopper frequencies. In a discrete time system, however, one would
probably apply a new data set for each of the four ¢, triples; offset cancellation
would still be expected.

Chapter 4.7.2 Implementation of on-chip back-propagation Page 88

The chopper stabilizing technique can be used at other signals as well. Most
probably at the back-propagated error signals. Chopper stabilizing this signal on
our present back-propagation synapse chip is, unfortunately, somewhat difficult
because of the current conveyor based differencing technique. Basing the synapse
differencer on a current mode operational amplifier instead, the stabilizing might
be possible using a few more switch transistors in the row/column elements.

If signals, used concurrently with the stabilized ones above, are to be chopper
stabilized (say, one would stabilize the ;s computed at the neuron chip), more
chopper frequencies need to be introduced. One must ensure that all permutations
of chopper phases ¢¢, giving a constant resulting sign of the weight change signal,
are present in a complete cycle.

4.7.2 Including algorithmic improvements

As mentioned in section 4.5, an advantage of using a serial weight updating scheme
is that advanced procedures can inexpensively be employed. Thus, improvements
of the system by including relevant algorithm variations displayed in section 4.1
(or other variations) are important to consider.

Weight change threshold In addition to offset compensation and chopper
stabilizing, the problem of offsets on the weight changes can be solved by introduc-
ing a weight change threshold Awpni, as proposed by Montalvo et al. [168]. The
influence of a weight change offset is most severe when the ideal weight change is
close to zero; in this case it is the offset rather than the desired weight change that
determines the actual applied weight change. The effect is that the weight space
state will always drift away from a cost function minimum (a solution to the prob-
lem at hand) where the ideal weight changes are zero. Taking the consequences
of this is to introduce a weight change threshold below which weight changes are
ignored; ie. substituting Awij in (9%) by:

Awij(t) _ {O,l l for |775,l€(t)zj(t)| < AWmin ‘

noy(t)z;(t), otherwise

This is quite easily incorporated in our digital weight updating scheme without
introducing errors.

Momentum One of the more popular improvements of back-propagation is
momentum. In the analogue domain (assuming parallel weight updating), mo-
mentum is included by adding a leaky integrator at the output of each “0y - z;7-
multiplier. However, using a momentum parameter amim (cf. (11%); typically in
the order of 0.9) offset errors associated with the multiplier (and the integrator)
is increased by a factor 1/(1 — amtm). When the weight changes are small this
is a severe problem which might very well prohibit the inclusion of momentum in
pure analogue systems. In the digital weight updating scheme used in our back-
propagation system (figure 534), however, the effective weight change offset was

Chapter 4.7.2 Implementation of on-chip back-propagation Page 89

reduced compared to the analogue approach. Thus, in this system we could hope
that the increased effective offset error would be acceptable; especially if a weight
change threshold is included.

Choosing the momentum parameter oy, = % enables a very easy implemen-
tation of momentum in our back-propagation system. The only hardware needed
is a simple digital adder and a digital RAM (Ba, = 12bit wide and the same
number of words as the weight backup RAM). Using a Ba, bit discretization
of the weight change signal, the memory in the resulting weight change signal is
only Ba, training samples. This is smaller than desired for most applications.
Using amim = 0.9 gives a 6.6 times longer memory; however, multiplying by 0.9
using digital hardware is very inconvenient. Another way to lengthen the weight
change memory is to apply the amim factor only every A imth sample (we call this
degenerated momentum); ie.:

Al (1) = amthwéj(t -1+ 775,lc(t)2§ (t), fort=0,Amntm,2Amtm,---
kj Awéj(t —-1)+ 775,lC (t)zj (t), otherwise

This increases the memory by a factor Aym. The resulting weight change corre-
sponding to the training data applied at time ¢ is approximately Amim /(1 — &mtm) -
775,lc(t)2§ (t). The hardware implementation of such a scheme is more complicated

than the simple choice of amim = % It requires the addition of overflow control
on the adder and the insertion of “arithmetic shift left” hardware for the selective

multiplication.

Weight decay Implementing weight decay in a system with simple capacitive
storage (and a parallel weight updating scheme) is, in principle, just a matter
of making the storage capacitor leaky; ie. placing a resistor from the capacitor
to a “zero weight” reference voltage. The weight decay, however, must be small
compared to typical weight changes in order not to prohibit learning. Krogh and
Hertz [124], for example, use a very small weight decay parameter- learning rate
ratio of €qec/n = 1-107*, which would probably be insignificant compared to
typical weight change offsets. If one could accept a weight decay that was large
compared to the weight change offsets, the influence of these could probably be
reduced (in addition to the other advantages of weight decay). Whether this is
possible, experiments would have to show.

In our back-propagation system with the order O(1) digital weight updating
hardware, the situation is different. Though using €gec/n = 1-107%* at a learning
rate 7 = 0.1 gives €gec = 2717 (which is negligible when using a weight discretiza-
tion of 16 bit) the weight backup memory precision could easily be enhanced (to
24 bit, say) to accommodate such small weight changes. (If the weight change off-
set 1s larger than one LSB of the weight change ADC, a weight change threshold
would be needed.) The inclusion of weight decay in our system requires only a

digital adder.

Chapter 4.7.3 Implementation of on-chip back-propagation Page 90

4.7.3 Other improvements

As was the case for the recall mode ANN chip set, several improvements of the
back-propagation chip set are possible. A list of the more obvious can be found in
appendix D.2.4.

4.8 Summary

In this chapter we designed a variation of our cascadable ANN chip set, includ-
ing on-chip error back-propagation learning. The basic learning algorithm was
displayed and the applicability of common algorithmic variations for the imple-
mentation in analogue VLSI was discussed. It was shown that a fully parallel
implementation would give an order O(N?) improvement in speed compared to a
serial solution. It was also shown that, exploiting the symmetry of the MRC, it
was possible to implement back-propagation with no extra hardware at the synapse
sites and no extra inter-chip connections (at the cost of an order O(N) in speed);
this is our solution. Using digital RAM weight back-up, weight access restrictions
reduce the learning speed to O(1) compared to a serial solution.

The design of our back-propagation chip set was displayed. An improved,
CCII+ based, current differencer is used on the synapse chip and the neuron
chip is approximately twice as complex as the first generation recall-mode one.
MRCs are used excessively for the extra computing circuitry on the neuron chip.
Measurements on the chip set were displayed indicating a 0.25 MCUPS learning
speed. The measurements suggest that a range of offset errors (especially on the
weight change signal) would have to be canceled. Also, the neuron derivative
computation seems to be problematic when haunted by certain offset errors. Several
improvements to this circuit were proposed.

A complete back-propagation system design based on our chip set was dis-
played. As the weights ultimately have to be placed in a digital RAM, most of the
weight change hardware not present on the neuron chips are implemented using
discrete digital hardware. We elaborated on the virtues of such a solution: eg. re-
duced minimum effective learning rate and weight change offset, and easy, reliable
implementation of weight decay and momentum. The system is presently under
construction, thus no experimental results were presented.

The novel non-linear back-propagation learning algorithm was displayed. Not
needing the neuron derivative, the neuron circuitry for this algorithm is superior to
that of the original algorithm (the exact neuron transfer function is irrelevant; we
can focus the design effort on the electrical characteristics of the neuron). Several
possible back-propagation neurons were proposed; one for continuous time non-
linear back-propagation, and one compatible with our discrete time system. Using
the latter solution virtually no extra hardware is needed for the learning algorithm,
compared to the recall-mode system.

A chopper stabilization technique for reducing offset errors were proposed. A
sample implementation for reducing offset errors in weight change signals computed

Chapter 4.8 Implementation of on-chip back-propagation Page 91

by local (synapse multiplier) circuitry was given.
Finally, the inclusion of weight change thresholds, momentum, and weight
decay in our back-propagation system was outlined.

Page 92

Chapter 5

Implementation of RTRL
hardware

The implementation of add-on real-time recurrent learning hardware for our ANN
chip set is the objective of this chapter. The learning algorithm is first briefly de-
scribed after which it is shown how it can be mapped on hardware compatible with
our ANN architecture using a realistic amount of hardware. Results from simula-
tions modeling analogue VLSI non-idealities in the architecture are displayed. The
design of an experimental VLSI chip implementing most of the learning hardware is
next presented; including an offset canceling scheme for the critical weight change
signal. Chip measurements are also presented. The design of a complete RTRL
system is done and it is shown how we can apply algorithmic variations using the
system. We derive a non-linear version of the RTRL algorithm and we argue that
this algorithm has the same virtues as non-linear back-propagation. Reflections
on future work are then given: A continuous time RTRL system is considered. A
summary concludes the chapter.

5.1 The RTRL algorithm

The real-time recurrent learning (RTRL) algorithm is a supervised, gradient de-
scent algorithm (cf. appendix B.3) for general recurrent artificial neural network
architectures. In this section we shall describe the basic algorithm and display
modifications typically applied to it.

Chapter 5.1.1 Implementation of RTRL hardware Page 93

5.1.1 Basics

The RTRL algorithm for an artificial neural network with a discrete time feedback
(discrete time recurrent artificial neural network, RANN, cf. appendix B.1, figure
74, figure 60°) can be described as follows (Williams and Zipser [267, 268]): Given

an input vector x(t) at time ¢, we can write the neuron k activation (3OB) as

ue(t) = gu(on(t)) = gk(zwm(ww) ,

JjETUU
where
. _ l‘]‘(t), fOl“j cl 5
Z](t)_{yj(t—l), for jEU (147)

I is the set of input indices and U is the set of neuron indices. The neuron biases
are implicitly given as the connection strengths from a constant input zp = 1.
Note that, because of the discrete time feedback, the z;s dependency on the time
is slightly different from the definition in chapter 4. Doing usual gradient descent
on-line learning, we use a weight updating rule of the form

aj() often Z ajk t ayk)

, 15°
0w (t) Oyk(t) Owij(t) 15

wij(t+ 1) = wij(t) —
kelU

where J(t) is the instantaneous cost function (cf. appendix B.3.1). Now, the idea
of RTRL is that the neuron activation derivatives can be shown to equal to

Ay () k
m = Pi]‘(t))

where the neuron deriwative variables pfj are computed asf

pi;(0) =0,
P (t) = gi(sk(t)ol (1), (16%)
ofi(t) = wr(t)pi;(t — 1) + Sirzi(t) . (17°)

We have assumed that teaching starts at time ¢ = 1 and we have introduced the
neuron net imput derivative variables O'ij. Using the quadratic cost function, the

resulting weight change is equal to

Au}l] =1 Z 5’6 pz] (185)
keU

T As before, 4;; denotes Kronecker’s delta.

Chapter 5.1.2 Implementation of RTRL hardware Page 94

The neuron error ci(t) is defined as

cr(t) = {dk(t) —yr(t), for k e T(t) (195)

10, otherwise

where dg(t) is the neuron k target value at time ¢ and T'(¢) is the set of neurons for
which targets exist at time ¢ (the target indices). Using the entropic cost function
and hyperbolic tangent activation functions, it can be shown that the weight change
is equal to

Awij(t) =n Y ex(t)ofi(t). (20°)

keU

A new {z,d} pair is applied at time t + 1. We call the completion of the computa-
tions for a given t a learning cycle (or time step).

5.1.2 Variations

As the back-propagation algorithm, RTRL can be varied in numerous ways. Most
of these variations does not alter the topology of the algorithm and can easily be
applied to a VLSI implementation. In addition to the use of different cost functions
as shown above, variations include (Williams and Zipser [267, 268|, Smith and

Zipser [225], Catfolis [43], Hertz et al. [95], Brunak and Hansen [31] and others):

o Teacher forcing. When the network is to be taught such that the dynamic
behaviour is altered in a qualitative manner, teacher forcing can be employed
(for instance when the network is taught to oscillate). Here the target values
(when they exist) rather than the network outputs are fed back:

zj(t), forjel
)y =4 di(t—1), forjeT(t—1)
yj(t—1), forjeU\T(t—1)

For correct derivative calculation in this case, the sum in (17°) should be taken
for | € U\ T(t —1). The incorporation of teacher forcing in a VLSI RTRL

implementation is straight forward.

e Relazation and Pipelining. The RTRL network architecture (cf. figure 74B)
implies that a delay of a number of time steps will be present from an input is
applied to the corresponding output will be seen. If, for instance, the network
is to implement an XOR function it must organize itself as a two-layer (at
the least) perceptron; ie. it can compute y(¢) = x1(t — 1) ¥ x2(t — 1). When
applying target values to the network, one is implicitly constraining the net-
work architecture by choosing the input-output delay (in terms of time steps).
The delay must be just long enough to enable a sufficiently complex network
organization without unnecessary delay insertions (which degrades learning).
At least two procedures are possible when introducing the input-output delay:
One is to relax the network for a number of time steps when an input has been

Chapter 5.2 Implementation of RTRL hardware Page 95

applied; ie. set (nTpp + 1) = 2(nTpp +2) = ---2((n 4+ 1)Tpp) and apply
the corresponding target only at time (n + 1)7pp (n € INg and Tpp € IV is
the desired propagation delay). The other is to exploit the pipelined nature
of the network architecture; ie. use a new input x(¢) at each time step and
apply the corresponding target at time ¢ + Tpp — 1. Clearly the latest method
gives the highest throughput. It might be harder to train, though, as delays
for synchronizing may have to be inserted by the learning algorithm. The
choice of relaxation/pipelining only effects the algorithm control mechanism
of a VLSI implementation. This is also true for:

o Learning by subsequence. Sometimes it is interesting to apply different, in-
dependent sequences to the network rather than regarding the inputs as a
continuous stream of data. To avoid false correlations between different se-
quences, the neuron derivative variables pfj (and the neuron states) are reset
between each sequence (eg. at t = nTy.q if all sequences have the length Ty).
Related to this is the application of a priori temporal knowledge: If the output
is known to be dependent of the latest Tiem input vectors at most, the pfjs
can be reset at t = nTiyem to enforce this limited memory. (Note that in both
cases a tapped delay line feed forward ANN can solve the task. However, in
some cases (especially when Tieq/Tmem 1s large) a recurrent net needs much
fewer processing elements.)

e Random initial state. As an alternative to setting pfj(()) =0 (or pfj(nTseq) =
0) the initial neuron derivative variables can be set to small random numbers:

pf:](o) = nf](0)7

fj (t) are uncorrelated noise sources (eg. white, Gaussian). This have

the tendency to speed up the learning of small sequences.

where n

o Momentum, weight decay, etc. The standard learning algorithm variations
mentioned in section 4.1 are also applicable to RTRL. Also, the notes on
applicability for hardware realizations do apply.

It should be noted that a continuous time formulation of the algorithm is also
possible (cf. section 5.7.1).

5.2 Mapping the algorithm on VLSI

The topological mapping of the RTRL algorithm on analogue VLSI was first pub-
lished in Lehmann [139, 140]. As mentioned in chapter 2 it is our aim to implement
learning algorithms for the analogue ANN topology described in chapter 2. By
adding a sample-and-hold circuit as feedback in a one layer system based on our
recall mode chip set we arrive at the discrete time recurrent network topology for
which RTRL was developed. This network architecture is shown in figure 60°.

Chapter 5.2 Implementation of RTRL hardware Page 96

y(t-1)

L SH
) ,

\ a >
—* Y) e

LDAC<— 141

Figure 60°: The discrete time RANN system. Block diagram. The system
is composed of a collection of synapse- and neuron chips forming a one-layer

ANN and a sample-and-hold circuit as feedback.

The calculations for a training example needed by the RTRL algorithm can
be performed fully in parallel. It is, however, unrealistic to construct a system that
grows as O(N*) when N is large. (Say we can have 100? multipliers on a chip.
For N = 100 — a network that could fit on a few synapse- and neuron chips —
we need more than 10000 multiplier chips! Also, a fully parallel weight update is
incompatible with our ANN system as we have serial access to the weight backup
RAM.) Now, studying the basic equations above we notice that

pii(t) = (L—y(t) @ y(t) @ a;(t), (21°)
o7 (t) = wp(t)pr;(t — 1) + 8ixz; (1), (22°)

where wq is the synapse weight matrix w without the columns corresponding to
the inputs, 1 = [1,1,...,1]T and “®” denotes vector multiplication by coordinates.
(In (21°) we have assumed gj(.) = tanh(.).) The weight change equations can be
written as

Awg;(t) = ne(t) - pij(t)

Awij(t) = ne(t) - af;(t)

for the quadratic and entropic cost function respectively. Implementing the above
equations in parallel divides the O(N*) operations between the space domain and
the time domain as O(N?) to O(N?). This division has several advantages:

e The area of the computing parts of the learning hardware does not grow faster
with N than does the ANN7.

e Most of the calculations (the order determining g,:]_)i*j) can be performed by a
matrix-vector multiplier (almost) identical to the synapse matrix-vector mul-
tiplier of the ANN.

o Most of the additional hardware can be implemented in cascadable “signal
slices”.

e The system is cascadable; ie. can (in principle) be expanded to arbitrary size.

1 Still, the area of the derivative variable memory grows as O(N?), of course.

Chapter 5.2 Implementation of RTRL hardware Page 97

e No signal paths need more lines than O(N).
o Weight updating is serial which gives the advantages mentioned in chapter 4.

The disadvantage of the O(N?)/O(N?) space/time division is of course that the
system will be an order O(N?) slower than a fully parallel implementation.

A block diagram of the proposed RTRL system can be seen in figure 61°.
The two matrix-vector multipliers, the synapse weight memory and the derivative
variables memory can easily be identified. The adders “®” and multipliers “®@” are
working by coordinates, the select block “SEL” chooses the outputs that have target
values, the multiplexor-demultiplexor pair computes d;,2;, and “I" is a vector inner
product multiplier. The dash-dotted signal path is to be used for the entropic cost
function. Controlled by a digital finite automaton, the system operation is as
follows: At the end of a learning cycle, y(t — 1) is sampled. Then z(t) and d(¢) are
applied and y(t), ¢'(s(t)), etc. are computed asynchronously. Now, for each {7,7}
}_)i*j(t —1)is read from the RAM after which }_)i*j (t) and w;;(t + 1) are computed
and stored in the respective RAMs.

y(t-1) ()
z SH k=

SEL

B s(t) ' / | I
1 her e

g'(s(r)

s
N

£(t)

AWU‘ (1) ‘
n)

DAC

A
1=
\d

ADC ‘
A

Wy (1)
SH Entropic / Quadra-
/

tic

[
| v
I
I
X

ADC

p.’." +«——DACj¢—
P (1)

N~
i

p(t)

ai(t)

Figure 61°: The discrete time RTRL system. Block diagram. The lines carry
analogue signal vectors of width 1, N or N + M as indicated by their thickness
or digital signals.

Comments on the topology As indicated on the figure, the derivative vari-
ables are meant to be placed in a digital RAM. Digital RAM has been selected
as it is physically small, cheap and reliable. As the storage requirement grows as
O(N?), this is the size limiting factor of the system. (For small systems it might
be feasible to use analogue storage.) Large RAMSs have serial word access. Thus
to achieve the required O(N) parallel signal for the p;;s it will be necessary to

Chapter 5.2 Implementation of RTRL hardware Page 98

multiplex the RAM access. This is the speed limiting factor of the system (more
precisely it will most probably be the ADCs connected to the multiplexors that
limit the speed; this would be a reason to use analogue memory in small systems).

To follow the learning algorithm strictly, we should update the analogue weight
storage on the matrix-vector multipliers only after a full learning cycle has been
completed. For very large systems the on-chip weight storage might be degraded
too much during the time of a learning cycle, though. To come around this problem,
two RAM banks would have to be used; one for refresh and one for the new
weights. If the weight changes are small, however, there is no reason to believe
that a periodical weight refresh (using the weights in the partially updated weight
backup memory) should prohibit learning (cf. section 4.2.1).

All elements in figure 61° except the multiplexor, the digital weight updating
hardware, the RAMs, and the matrix-vector multipliers operate by coordinates on
vectors of width N. These elements can thus be placed on a cascadable “width N
data path module”. The inner product multiplier would be distributed among each
signal slice of the module and must have current output to ensure cascadability.
Thus a system with the architecture in the figure will be comprised of the following
components:

e A number of synapse chips doing the w z multiplication.

e A number of neuron chips applying the tanh nonlinearities. The two set of
chips act as the one layer core neural network.

e An N + M way multiplexor; the width N + M data path module.

e Two digital RAMs with corresponding A/D and D/A converters. The data
converters can be off-chip or on-chip components.

o A width 1 data path module for the weight updating hardware. On this module
the digital finite automaton for controlling the learning scheme would also be
placed.

e A number of width N data path modules (with a total of N signal slices)
performing the rest of the calculations.

If we are to add the learning hardware to an existing ANN, we must control
the ANN neuron output range as we compute the neuron derivative as 1 — y? (cf.
previous chapters). Also, we are implicitly requiring the two matrix-multipliers
(and the width N signal slices) to match (inter chip matching!). It turns out,
though, that this matching is not very important (cf. below).

It should be noted that the sparse input synapse chip mentioned in section
2.3.3 can be used to process the network inputs (z) — if the z;-multiplexor is also
made capable of handling binary coded inputs.

Chapter 5.2.1 Implementation of RTRL hardware Page 99

5.2.1 System simulations

In Lehmann [139, 140] simulations were done on the influence of various non-
idealities in the system. Non-linearities, offset errors, and quantizations on selected
signals were investigated. The restrictions found are in compliance with what other
authors have found for other learning algorithms (eg. back-propagation and weight
perturbation) (Montalvo et al. [168], Hollis et al. [97], see also Tarassenko et al.
[238], Withagen [269], and others). See also section 3.3. The qualitative conclusions
of these simulations were that:

o The neuron output must not be larger than 1. Because of the way the neuron
(tanh) derivative is computed this is a very strict requirement. (If y; > 1 the
computed derivative can have the wrong sign.) Non-linearities of the transfer
function can be tolerated to some extent. (In the simulations non-linearities

in the range —20% < Dy < 0% were acceptablef (for the quadratic cost
function; for the entropic the acceptable range is generally smaller). However,
the exact tolerable range will depend on the problem, on the network size, on
the number of training cycles, on the learning rate and on other non-idealities.
Thus the qualitative conclusion is more interesting than the actual figures.)

e The synapse strength discretization must be sufficiently fine. (In the simula-
tions at least 8bit.)

e The weight change offset must be very small. (In the simulations at most
0.8-1073.)

o The neuron error offsets must be small. This applies to the non-targeted
neurons. For the output neurons a neuron error offset will merely displace the
network output by the offset. (In the simulations the error offset had to be at

most 1-1072.)
In addition to these constraints, the simulations showed that

e The neuron derwative variable discretization can be rather coarse. (In the
simulations 3 bit, though even three levels (—1,0,1) seems to be adequate in
some situations.)

e The non-linearities in general can be large. (Up to at least 40 % in the simu-
lations.)

e The offset errors in general can be large. (For instance up to about 10 % for
the derivative variables.)

These very soft requirements on the computing accuracy indicates that, for in-
stance, inter chip matching is not very important. Offset cancellation on various
signals, on the other hand, will be necessary.

T The lower bound was determined by the target values; obviously these must
be within the neuron range.

Chapter 5.3 Implementation of RTRL hardware Page 100

5.3 Chip design

The recall mode ANN for which we shall design the RTRL hardware is based on the
back-propagation chip set of chapter 4. We will disregard the back-propagation op-
eration modes for this implementation. An important design strategy for the RTRL
system, as for the other systems in the thesis, is to reuse hardware. The “wg }_)i*j”—
multiplier is of course implemented using synapse chips, but also at transistor level
for the width N data path module shall we reuse hardware. Most of the layout on
this module actually originates from the back-propagation chip set. As the other
chips, the RTRL hardware chips was designed to validate the system topology; ie.
as little hardware as possible was put on silicon.

In this section we shall present the design of the width N data path module.
Design details can be found in appendix D.3. The rest of the RTRL system will

be implemented using discrete components and will be presented in section 5.5.

5.3.1 The width N data path module signal slice

Compiling the learning components on figure 61° that operate in data paths of with
N, we arrive at the block diagram in figure 62° for a single signal slice. The width
N data path RTRL module (the RTRL chip) basically consists of a number of
these signal slices. For a more detailed circuit schematic refer to appendix D.3. As
on the other chips designed so far, the MRC is used extensively for the analogue
computing components.

To avoid oscillations (or “race-around”) when the neuron activations are sam-
pled, the yj-sample-and-hold circuit must be edge trigged. The sampler is imple-
mented using two successive simple track-and-hold samplers, the first using the
inverted clock signal of the second.

The “1 — yi”-block calculating the neuron derivative is identical to the one
on the back-propagation neuron chip. It is implemented using a two dimensional
MRC based IPM. Likewise, the “d; — y”-subtractor is implemented using a one
dimensional IPM as on the back-propagation neuron chip (for the output layer).

A two way multiplexor controlled by T () is used to select whether neuron k
has a target at time ¢. If it has not, a zero is given as the neuron error signal. This
implementation ensures a negligible error offset (originating from this circuit) on
the neurons without target values which, according to the simulations, is essential
for learning. The input offset on the succeeding inner product multiplier will,
of course, cause an offset; this is unavoidable. One must ensure that the IPM
(dimension number k) input with inherently lowest offset is used for the error
signal. Controlled by a multiplexor, the other (dimension number k) input to the
IPM can be either pfj or O'ij depending on which cost function one chooses.

The inner product multiplier that calculates the weight change is distributed
among the signal slices in exactly the same way that the IPMs on the back-
propagation synapse chip are distributed among the matrix columns: One MRC
multiplier is placed in each signal slice and the differential current outputs from

Chapter 5.3.1 Implementation of RTRL hardware Page 101

v; ; N4h _
T (1) NP 4 (~

]
- 8k (5(1)) 1 IO -
5 Ty S8 T (1) @

E & (1)

= 1-y2
. Awk(t)

! M@ =
a5 e Ear: OIE
l PE(1)
j@ WA(pX(t)],
** (1)

R i
- — SH e (;97 4@?
pXe-1) =

Figure 62°: Order N signal slice. Block diagram of signal slice in width N data
path module. The “€ = k7”-switches are parts of distributed (de)multiplexors.
Chip I/0 nodes are indicated by the “bonding pads”. The elements below the
dashed line are pfj access circuitry.

these are computed by a single CCII+ giving the chip as a whole the desired Aw
current output.

The z; demultiplexor is also distributed among the signal slices. The output
of the preceding (off-chip) multiplexor will be a voltage (which is also necessary
for distributing the z; signal to several width N data path chips). On-chip, z; is
transformed to a current which can easily be demultiplexed (as in figure 20%). The
output & from the demultiplexor is added to the (current) output & of the “wn pii7-
matrix vector multiplier; the resulting current being transferred to a voltage. The
transresistance used for this is equivalent to the input transresistance of the back-
propagation neuron chip (it is an MRC plus an op-amp); the input voltage must
likewise be close to Vit to avoid DC common mode currents in the “g,] }_)i*j 7 _matrix
vector multiplier. The transresistance value is chosen such that the maximum
effective synapse strengths are in the range 0.3 < |w;;|max < 10. The output level
is large to ensure good accuracy at small inputs (nominally 1V for z; = 1) — at
the expense of a quickly saturated output.
fj”—multiplier is a one dimensional IPM. This gives a total

of six operational amplifiers for the computing hardware in a signal slice.

Finally, the “g, - o

Also included in the width N data path chip is a demultiplexor, sample-and-

Chapter 5.3.2 Implementation of RTRL hardware Page 102

hold circuits and a multiplexor for accessing the derivative variable RAM. These
components are drawn below the dashed line in the figure. The multiplexor and
demultiplexor are distributed among the signal slices as the z; demultiplexor. The
sample-and-hold circuits (one per signal slice) are simple track-and-hold implemen-
tations. Placing the derivative variable access circuitry on the width N data path
chips as thus indicated means that one D/A converter, one A /D converter and one
derivative variable RAM bank must be present per width N data path chip. This is
convenient, but the system speed will be low if many signal slices are implemented
on a single chip (cf. Lehmann [139, 140]). The chip is supplied with two input
channels for the sampling of the pfj (t — 1)s: one channel meant for reading the
RAM and another meant for initialization of the pfj (t — 1)s (to be connected to
zero or a noise generator dependent on which variation of the algorithm one uses).

5.3.2 Auto offset compensation

Repeatedly noted in this text is the necessity of a low weight change offset; ie.
the weight change output has to be offset compensated. The weight change offset
compensation circuitry can be placed on the width 1 data path module. However, as
the offset standard deviation will be proportional to the square root of the number
of cascaded width N data path modules (assuming uncorrelated individual module
offsets), the dynamic range of such an offset compensation circuit must be very large
(in principle infinite for an arbitrary ANN size). For this reason the compensation
circuitry should be placed on the width N data path module instead (or perhaps
in addition to)f.

The principal schematic of the width N data path module offset compensation
circuit is shown in figure 63°. During an auto-offset phase the Aw-signal is discon-
nected from the output pin and lead into a current comparator instead while the
inputs to the Aw computing IPM are brought in a state resulting in an ideal zero
Aw current. Now, the offset compensation current controlled by the successive
approzimation register (SAR) is adjusted to give a zero comparator input current.

The D/A converter To avoid the problems with charge injection and weight
drift of analogue storage, we have chosen to store the measured offset in a digital
way as indicated on the figure. A D/A converter is therefore needed to subtract
the measured offset. The summed weight change currents of the width N data path
chips must be converted to a digital signal by the width 1 data path module. Now
the effective weight change offset must clearly be less than, say, %LSBAw of this
converter if no measures against offset errors are taken on the width 1 data path

7 Placing the compensation circuitry on the width N data path module is in
compliance with the observations of analogue computing accuracy of appendix C.3:
Quadrupling the number of connected Aw current outputs doubles the resulting
expected offset error. To bring the offset error below a certain value, the offset
canceling circuit precision must then be doubled which requires quadrupling the
area.

Chapter 5.3.2 Implementation of RTRL hardware Page 103

i cps

A
offsetGU\

compensation

current
comparator

set bit
SAR

Figure 63°: Current auto zeroing principle. During auto-zeroing an ideally

-ch
zero output current i 5

_ is directed to the current comparator instead of the

chip output pin. The offset is stored in the SAR and subtracted (icps) from

the output.

module. Assuming the input range of the converter corresponds to the maximum
synapse weight, the allowable offset (relative to a unit output current) is

n

Awofs < M . 1LSBAw.

If the offset is known to be less than two MRC maximal output currentsj, and
if we are using a Ba, = 12bit data converter, a maximum synapse weight of
|wijlmax = 10 and a learning rate of n = 1, we need a 10bit current offset can-
celing D/A converter. While not impossible to implement in a standard CMOS
process (Salama et al. [205]), a 10 bit DAC is quite area consuming. By sacrificing
monotonicity, fortunately, we can instead cascade two (or more) lower precision

DAC(Cs:

Figure 64°: Double resolution D/A con-
version. Deliberately introducing non-
monotonousness of weighted sums of

summed output
O R N W b,

single - -]
double - -

+

° 0o o

D/A outputs increases the over all reso-

Tution.

0O 2 4 6 8 1012 14
NL DAC input

T Apart from a slightly scaled MRC unit cell, the weight change computing
IPM is identical to a row on the back-propagation synapse chip; thus the offset
measurements on these chips give a good estimate of what to expect on the RTRL

chip. Hence this value.

Chapter 5.3.2 Implementation of RTRL hardware Page 104

Assume we have two (B, and By bit) D/A converters, a and 3, with ideal
output ranges [0, (1 — 1 LSBy)amax] and [0, (1 — 1 LSBg)fmax) and maximum (rel-
ative differential and -integral) nonlinearities D, and Dg. Taking the weighted
sum, ~, of the outputs, a and 3, in the following way

1LSB, + D,
S e} (2"

6max /amax

~ will have a resolution of
res < (1LSBy 4+ Do)(1LSBg + Dg)amax -

(For D, < 1LSB,, Ds < 1LSBjy this corresponds to B, + Bz — 2 bits.) This
is illustrated in figure 64° where a sample v is shown for B, = Bs = 4 and
D, = Dg = %LSBQ. In practice, the v resolution will be somewhat coarser,
because one can not make the accurate scaling needed in (23°); one must make
sure that is scaled with a factor at least as large as the ideal one.

One is, with relative ease, convinced that the successive approximation register
on figure 63° works with this resulting non-linear D/A converter. Such analogue
offset canceling using a deliberately non-linear DAC has also been proposed by
Kaulberg and Bogason [118].

On the width N data path chip we have used two eight bit standard cell
DACs for the current offset canceling D/A converter. The voltage outputs of these
control two (mutually scaled) MRCs connected to the input of the weight change
computing IPM. A resolution of about 14 bit could be expected.

The current comparator For high precision offset canceling, it is of para-
mount importance that the current comparator in figure 63° is offset free. This is
accomplished by using a very high input impedance voltage comparator as indi-

cated in the figure (see also Dominguez-Castro et al. [61]). During offset canceling

1p
wyj

(the offset encumbered “zero” output current, i%}ﬁu

the chip output current, iCAh
minus the current value of the offset canceling current icps), will be integrated on
the input capacitance, Cemp, of the comparator (or actually the node capacitance;
especially for small comparator input capacitances the current source output ca-
pacitances will be significant — this is actually the case for our RTRL chip). Given
enough time, the voltage on the capacitor will eventually exceed any comparator
offset error and saturate the comparator output at the desired value. Given a
comparator gain Acmp, input offset Vg, and minimum high output Viign and a

maximum comparison time Tiy, the input current resolution is

Vofs + Vhigh /Acmp ~ Vofs

lempres = Ccmp ~ Ccmp .
Tcmp Tcmp

For Cemp = 5001F, Vog = 10mV and Timp = 1pus we have tempres = 5nA. To

reduce the comparison time for a given input resolution, source followers can be

Chapter 5.3.2 Implementation of RTRL hardware Page 105

placed at the comparator inputs (though the offset error will increase, the input
capacitance can be reduced much).

During normal operation, the weight change output voltage will be close to the
reference voltage Vier (cf. above). As the weight change offset would be expected
to be dependent on the output voltage we use a comparator reference level of V¢t
(which ensures that the weight change output voltage is close to Vier during offset
canceling). Prior to each comparison the comparator input voltage is reset to Vier
to ensure fast comparison. By adding a capacitor and one or more switches, the
comparator offset error can be reduced by standard auto offset canceling techniques
(Geiger et al. [77]), thus improving the comparison time.

The SAR The successive approximation register can be implemented as bit
slices in a straight forward manner with CMOS multiplexors and dynamic delay
clements. A bit slice of such a SAR is shown in figure 65°. For the sake of clarity,
the switches are shown as single transistor switches though CMOS switches are
actually used. The circuit needs a two phase non-overlapping clock and a start
conversion signal, sc, which must be high during the ¢; phase prior to conversion
(for the generation of the clock signals and start signal, refer to appendix D.3).
The current comparator must be reset at the ¢, clock phase and active during the
¢1 phase. The SAR consists basically of a shift register that shifts a 1 from MSB
to LSB during conversion and a memory register. The bit-under-test will apply a
1 to the DAC while the current comparator output (set bit, sb) is stored in the
register. The other bit slices apply the stored bit to the DAC.

to DACo
shift register

<
[
=
N

MSB: "1"
other: "0"

SR out

sb i comperator output

Figure 65°: SAR bit slice. Single transistor switches are shown for simplicity.
Bit slices are cascaded by connecting “SR in” to “SR out” of the just more
significant slice.

Chapter 5.4 Implementation of RTRL hardware Page 106

5.4 Chip measurements

A 4 signal slices width N data path module RTRL chip was fabricated in the
2.4 pm CMOS process. Unfortunately the process parameters of this particular
batch (the same MPC run as the one the scaled back-propagation synapse chip was
a part of) were outside the specified ranges. This has a severe influence on the
chip performance; especially signal ranges and speed. It is our hope that we can
implement a working system in spite of the poor chip performance (we must raise
the reference voltage to accommodate to the reduced input voltage range of, in
particular, the current conveyor), thus we shall present some measurement results
in this section. Note that the chip functions from an architectural point of view,
indicating correct on-chip block interconnection and possibly applicability. A table
of chip characteristics can be found in appendix D.3.

Non-linearities and offset errors are comparable to the ones found on the back-
propagation chip set, when the reduced signal range is taken into consideration. A
typical multiplier characteristic (from the weight change computing IPM) can be
seen in figure 66°. If the input is large, vy 2 0.8V, the non-linearity is Dy < 2 %;

for full scale range inputs D,. < 5%. Other non-linearities, as the derivative

computing “1 — 4?”-block which characteristics are shown in figure 67° (compare

to figure 48%), are typically in the order of D < 3%; a magnitude that should not
cause any trouble for the learning process. In both figures the neuron activation
input v, has been varied for different values of the multiplexed neuron-input input
v.. A considerable offset on the last input is observed: V.| < 300mV. Whether
this is acceptable will have to be experimentally investigated; it is probably at the
upper limit for an acceptable offset. The large offset is caused by the output offset
of the current conveyor used to transform the v, input to a current. This current
conveyor is the same as the one used for the multidimensional IPMs and is thus
designed to source a much larger current than necessary for the v, transresistance;
it should be redesigned.

The other possibly problematic offset error is the output offset error of the
“1 — y2?”-block that computes the neuron derivative. This was also the case for the
back-propagation neuron chip; the offset error is of the same magnitude as for this
chip and must be dealt with in the same way (cf. section 4.4). Other non-idealities
on the chip are acceptable for the learning process.

The input and output for an edge trigged neuron activation sampler is shown in
figure 68° which illustrates its applicability to prohibit race around in the feedback
neural network: The sample time is in the order of 100 ns; the output settling time
seen in the figure is approximately 1 ps. The charge injection is acceptable.

On none of the chips tested, the weight change output auto offset compensation
scheme worked. Note that according to SPICE simulations of the circuit, as shown
in figure 69°, the auto zeroing circuit topology is valid. But whether the circuit
malfunction is caused by a layout error or by the out-of-specified-range process
parameters we have not been able to determine (no layout errors have been found,
though) because of the lack of internal test points. Measurements seem to indicate
that the current comparator does not work, though.

Chapter 5.5 Implementation of RTRL hardware Page 107
[]

™ 1
= L
< — + 1 | > F Vz— v
I I = I =
0 s S S VN0 gl S e
Eﬁ\lh 1 e el = 1 3 _—
2 o T T ~ L |
S PR PR e R R H = ==ai ET =
——— | —1 T —
gL__,_/—/ T \\\ = \74 /
\ T
N vy v 3 T
= T i = —Vy T |
A -1V Vy 1vA A-lV Vy VA

Figure 66°: Weight change IPM ele- Figure 67°: Tanh derivative comput-
ment characteristics. Measured ing block characteristics. Measured
weight change current as function of neuron derivative output as function
neuron activation input for different of neuron activation input for different
network inputs (IPM single element network inputs (parabola block char-
characteristics). Notice the reduced acteristics). Notice again the v, offset.
input range and the v, offset.

~<<__
—
E_]
|

R
AR
Al

+
+
+

;

/-

5___'— %r(;l?irl]glsectiqn kq’\é_\\m ‘
R o=

[amd

== Hus

Figure 68°: Edge trigged sampler sampling. Measured (half scale range) input
and sampled output. The effect of using two cascaded samplers is clearly seen:
Charge injection occurs both at the sample time and half way through the hold
period (at both clock edges).

5.5 System design

For the completion of the RTRL ANN system, we need some hardware in addition
to the synapse- and neuron chips and the width N data path RTRL chips. As
mentioned in section 4.5, we design a RTRL/back-propagation hybrid system to
save hardware (and design time). Thus, much of this hardware is basically already
present in our system:

Chapter 5.5 Implementation of RTRL hardware Page 108

SAR--- successive approximation register

Date/Time run: 07/03/94 20:42:16 Temperature: 27.0
1.5uA 4
1 2
I
2V [
1.0uA 1 T
1V 4
J
0.5uA /
/ /
oV - ﬁ\y/‘\,_/l_ﬂ1 Jﬁj U N_/q]
>> |(
0A - : ‘ ; ‘ ‘ ‘
0s 2us 4us 6us 8us 10us 12us 14us
g I(lin) ¢ I(Vsense) 4 V1(Cda)
Time

Figure 69°: Auto zeroing simulation. SPICE using simple DAC and opamp
models. Top: input (O) and output () currents. Bottom: current comparator
input voltage (/). Notice how the output current increasingly accurately ap-
proximates the input current (two trials). The input voltage indicates whether
the output current is too large or too small.

@]

The digital weight backup memory.

The digital, serial weight updating hardware including A /D and D/A convert-
ers for interfacing (the width 1 data path module when including:)

The finite automaton for system control.

o The ANN environment.

@]

@]

To complete the RTRL system we also need:

e The multiplexor (the width N + M data path module).

o A derivative variable RAM including A/D and D/A converter for each RTRL
chip in the system.

In this section we shall describe the complete system. For a complete system
schematic refer to enclosure III (see also appendix D.4).

Chapter 5.5.1 Implementation of RTRL hardware Page 109

5.5.1 ASIC interconnection

The application on which we want to apply the RTRL system is the prediction of
splice sites in pre-mRNA molecules (cf. section 2.3.3). Using a recurrent network
we will need at least ten neurons (of which one is an output neuron) and tree letter
inputs (corresponding to one amino acid code) taken from a 4 letter alphabet
(Brunak and Hansen [31]). Using unary coding this gives twelve inputs (plus
biases)f. Mapping this topology on our chip set requires two synapse chips and
three neuron chips for the ANN. Assigning two inputs for offset compensation (the
expected total MVM output offset is v/2- o7, . where o7, _ is the single chip output
offset standard deviation) and two inputs for the thresholds?, this gives a RTRL
system topology of 16 inputs and 12 neuronsf.

The custom chip interconnections when the system operates in RTRL mode
can be seen in figure 70° (assuming the neuron- and RTRL chips have the same
number of neurons/signal slices). The z;(¢) multiplexor (MUX) is implemented us-
ing a standard cascadable analogue multiplexor. The derivative variables RAMs
(pRAM) are implemented as 8 bit wide static RAMs accessed via 8 bit data convert-
ers. The A/D converters are fast flash converters as they are the bottle neck in
the system (in terms of speed). For clarity, the target values (d(¢)) and target in-
dicators (T'(t)) are not explicitly shown. These signals are, among various control
signals, supplied by the “environment/serial weight updating hardware” block.

T This particular application does not fit the description “massively parallel,
possibly adaptive, application specific system having a real-world interface” for
analogue VLSI learning systems of chapter 1. This is a toy network, however; the
application would benefit from an additional 40 neurons or so. If enhanced per-
formance using network ensembles is employed (cf. section 6.3.1) several hundreds
of neurons could be exploited — such a system would be massively parallel. The
input(output), on the other hand, would still consist of only 6(1)bit and can thus
easily be supplied by (say) a standard AT bus harddisc (which is how the input
data is available). A real-world interface is unnecessary.

t Connecting ¢ synapse chips together the expected total output offset is \/€-07, .
where o7, _ is the single chip output offset standard deviation; thus we must commit
¢ synapses per row to offset compensation (cf. section 5.3.2). We use two threshold
synapses per row because it is often seen that the neuron thresholds have a larger
magnitude than typical synapse strengths.

1 The system thus has four extra inputs which must be tied to zero. This
illustrates a typical problem when using “standard” building block components to
implement an application specific system: If the application does not exactly match
the topology of the building block components, hardware is wasted. A solution to
this problem is to make available a range of synapse- and neuron chips (say 8 x 8,
32 x 32, and 128 x 128 synapses and 8, 32, and 128 neurons).

Chapter 5.5.2 Implementation of RTRL hardware Page 110

z(t)

[
UX Offset/Threshold synapses

M
ﬂwiﬁﬁﬁTTﬁﬁﬁf4
g ={NC)
§ SC16 5016} y (1)
7 ,,fg;’,J,,
2 J== Bias
x(1)
ar
environ- | 78— —
ment and § y (t-1)
serial —
weight J 8
updating @
hardware
ae)y) ~
T(t)}
control

Offset synapses’ _—

Pt

Figure 70°: RTRL ANN basic architecture. ANN and RTRL chip interconnec-
tions when the system operates in RTRL mode. The blocks RTRLC are RTRL
chips. Input (output) lines of the SC16 blocks are accessible at both top and
bottom (left and right) in this figure.

5.5.2 The width 1 data path module

Apart from the weight strength backup memory and the system environment, the
components not explicitly shown in figure 70° are part of the width 1 data path
module of the RTRL system implementation. Though basically identical to the
back-propagation learning hardware, some minor modifications are necessary:

All synapses in the systems are given a unique address {1, 7,1} reflecting the
back-propagation topology wf] Also the wgpy; MVM for the RTRL algorithm
is given an address in this space. However, except for the offset compensation
synapses the weight on this chip must be the same as the ANN synapse chip with
the y(¢t — 1) inputs (cf. the figure). For this reason the weight backup RAM use
a filtered version of {1, j, l} as address bus which mirrors the relevant part of the
ANN MVM on the wnp;; MVM. Doing, for instance, a weight refresh — which
is governed by the PC — one would simply run through all the {7, 7,1}s and all

synapse sites would get the correct weight.

Chapter 5.5.3 Implementation of RTRL hardware Page 111

The high precision digital weight updating hardware used in back-propagation
mode (cf. figure 53*) is also used in RTRL mode; with the addition of a transre-
sistance at the joined RTRL chip current weight change output for compatibility.
(The comments in section 4.5 on the virtues of this architecture apply for the RTRL
mode also, of course.)

On the RTRL chip the digital ¢ signals for addressing the distributed demul-
tiplexor and the digital k&’ signals used to access the derivative variables RAM was
erroneously combined to save pins on the chip. The error has been fixed by the
addition of a digital “{i,k'} to ¢/k" converter” (see enclosure III). The error is still
unfortunate, though: the lengthy analogue calculation of the weight change signal
can not take place concurrently with the derivative variable RAM updating; this
degrades performance.

The whole system is controlled via a large number of digital handles. For
instance the “sample the neuron activation” signal ¢s,, the “initiate auto zeroing”
signal sc, or the “current synapse” signal {i, j,{} above. The synapse- and neuron
chips also needs signals as the forward, reverse and learn signals. In all, some 60
control signals are needed, including the Ty (#)s. (Many of these can be combined if
the mutual timing requirements are known; for the prototype chip set they were not
at the system design time, however. Letting the system controlling finite automaton
control the internal timing is a safe (and fast designed) choice. As noted in section
4.5, only the low frequency circuit level system performance (ie. not the speed) can
be tested with this system.) The system controlling finite automaton must supply
all these 60 control signals. These are placed in registers accessible to a host PC
which, as said, is used as this automaton.

5.5.3 The interface

The host PC is interfaced via a standard 16 bit I/O channel at the PC AT (ISA)
bus (Eggebrecht [68]). In addition to the 60 odd digital handles that controls the
RTRL/back-propagation system, the host PC also must provide various analogue
control signals that are likely to be changed by the user. For instance learning
rate- and neuron activation steepness control signals. Most of these are placed in
8 bit serial DACs; signals for offset compensation are driven by 12bit DACs.

To monitor how learning progresses, the PC has access to the weight backup
RAM and the derivative variables RAMs (which requires a substantial amount of
extra hardware). Also, all neuron outputs as well as the output layer reverse mode
synapse chip currents and the wp py; MVM current outputs are available to the PC
via 12bit ADCs. (These are used to offset compensate the synapse chips, hence the
high precision.) Having all neuron outputs available also includes the possibility
of using the PC to refresh sampled neuron activations in case the on-chip analogue
samplers should unexpectedly prove inadequate.

As well as acting as the master finite automaton, the PC provides the environ-
ment in which the ANN is placed: It supplies the input signals and target values
via 12bit DACs and reads the network outputs via 12bit ADCs. For our applica-
tion we only need binary inputs (and targets); and a 8 bit sampling of the neuron

Chapter 5.5.4 Implementation of RTRL hardware Page 112

activation would most probably be sufficient for the gradient descent algorithm.
As this is a test system, however, we will not prevent ourself from using analogue
input/output data as such data set can give additional information on the system
performance. For this reason high precision data converters are used.

5.5.4 Algorithm variations

Most of the RTRL algorithm variations listed in section 5.1.2 affect only the algo-
rithm control mechanism (ie. the finite automaton) and are thus easily incorporated
in our system:

o Teacher forcing. Ignoring the neuron activation samplers at the RTRL chips
and configuring the ANN MVM inputs as in back-propagation mode (cf. figure
524) the PC can supply the Z]TF ANN MVM inputs used for teacher forcing.
The initialization channel of the derivative variable RAM access circuit is
connected to zero in our system. Thus when reading the pfj (t — 1)s prior to a
weight calculation, the initialization channels rather than the RAM channels
should be used when sampling pfj(t — 1)s for which k € T(t — 1) to ensure
the sum in (17°) is taken over [€ U \ T(t — 1). (This is assuming target
neurons on all neuron chips. If this is not the case one can explicitly write
zeros in the derivative RAMs instead.) This approach is somewhat inelegant;
designing the system to include teacher forcing would require 2N two way
analogue multiplexors.

o Relazation and pipelining. The system is designed to use pipelining. Using the
relaxation scheme is just a matter of updating the neuron activations and neu-
ron derivative variables a couple (Tpp) of times before updating the weights.
Note that, in general, whenever the neuron activation target set is known to
be empty one should omit the weight updating step — partly because of speed
but primarily to avoid unnecessary influence of weight updating offsets.

o Learning by subsequence. Resetting the neuron activation variables between
each subsequence is trivial; one just uses the initialization channels rather than
the RAM channels when sampling the pfj (t —1)s.

o Random wnitial states. Though our system not designed for this, random ini-
tial derivative variables are obtained by letting the PC write random numbers
in the derivative RAMs (instead of using the initialization channel for initial-
ization). Including the option in the system design involves the placement
of digital pseudo random generators that can override the derivative variable

RAM outputs.

o Momentum, weight decay, etc. The observations on the implementation of
weight decay, momentum, etc. in chapter 4 also apply for the system in RTRL
mode. Note, however, that though the system is not designed for it, it is pos-
sible to read the weight changes Aw;;(¢) from the PC, which actually enables
weight decay and momentum among other things in the present system; in a

Chapter 5.5 Implementation of RTRL hardware Page 113

somewhat laborious way, though.

The real-time recurrent learning system is, at the time of writing, under construc-
tion. Thus, unfortunately, we can not present any system level experiments. Hope-
fully such will be available in the near future.

5.6 Non-linear RTRL

As for the back-propagation system (and other gradient descent learning systems)
the hardware implementation of the Jg(s)/0s neuron activation derivative com-
putation is a primary error source in the RTRL system. Inspired by non-linear
back-propagation we shall now derive and show how to implement an analogous
version of the RTRL algorithm in which the derivative computation is avoided:
non-linear real-time recurrent learning (NLRTRL). Actually this non-linear prin-
ciple for approximating a derivative is applicable to any gradient descent like learn-
ing algorithm that uses derivatives (RTRL, virtual targets, back-propagation and
variations, etc.).

5.6.1 Derivation of the algorithm

Taking the derivative variable definition (165) as our point of departure:

pii(t) = gi(sk (D)ol (t),

we interpret this as a first order Tailor expansion of the equation

i (1) = g (sk(t) + 05(1) — gr(si (1)), (247)

which defines the NLRTRL neuron deriwative variables. As for NLBP we could
scale O'ij (t) in this equation by a factor n/an for a more accurate theoretic Tailor
expansion when the NLRTRL domain parameter ay is large. However, we are
interested in numeric accuracy rather than theoretic accuracy which is why we
choose the domain parameter small, ax = 7, as we did in the NLBP case. The

NLRTRL algorithm (and variations of it) now simply arrives by substituting p{{”j
for pfj in the equations in section 5.1.1.

Simulations using the NLRTRL algorithm have not yet been performed; and
an experimental verification of the algorithm functionality must be done before
an implementation, of course. However, as both RTRL and back-propagation are

Chapter 5.6.2 Implementation of RTRL hardware Page 114

gradient descent algorithms — the RTRL pfjs and O'ijs plays a role very similar
to the 5,lcjs and 52]&: respectively of back-propagation — and as NLRTRL and
NLBP are derived in complete analogous ways, we should expect the simulated
performance of NLRTRL to be very similar to that of RTRL. The performance of
a NLRTRL hardware implementation is, of course, expected to be superior to that
of RTRL as the derivative computation is omitted and as a signal slice multiplier
is saved.

5.6.2 Hardware implementation

When mapping the NLRTRL algorithm on hardware it turns out advantageous to
use a time offset weight updating scheme

wij(t+ 1) = wij(t) + Awi(t — 1),

rather than (15°)f. Now, assuming we use the discrete time NLBP neurons of
figure 56* and 57* (possibly without the extra error input i.,), and assuming we
are using the quadratic cost function, the discrete time system of figure 61° takes
the form shown in figure 71°.

SH

A

s(t)
w o D) s) or / Ly SEL
e *
x(t)—| X g-l.j(t)+§(t) - . v
41 derivative X() or 64‘_ d(t'])
() p(t) -
— 9 v
de\rﬁatjive g(t'])
j AW, (t-1) ‘ 2
L DACe w e ADC n | o
i ”ﬁm Wij (1) i
SH
w. pXx pAC— P «ADC
=H2y =
p;(t-1)

Figure 71°: Non-linear RTRL system. Block diagram. This topology con-
siderably reduces the order N data path hardware compared to the original
RTRL system and is most probably more accurate. The system uses delayed
targets.

T This is actually the weight updating scheme originally proposed by Williams
and Zipser [267, 268].

Chapter 5.7 Implementation of RTRL hardware Page 115

The system is operated as follows: At the end of a learning cycle, y(t — 1) is
sampled. Then z(t) and d(t — 1) are applied and () is computed asynchronously.
Now, unlike the original system, the neuron chip samples y(¢). For each {7,7}
2y (t — 1) is read from the RAM after which the wq 2y multiplier and the demulti-
plexor adds o7 (t) to the ANN MVM output, forcing the neuron chip to calculate
p;;(t). This, as well as the concurrently computed w;;(t + 1) is stored in the

respective RAMs.

A few notes on the architecture: As the demultiplexor and both MVMs have
current outputs, adding o7;(¢) to s(t) is trivial. However, doing this o7;(t) is not
explicitly present in the system and we must thus refrain from using the entropic
cost function. As the neuron activations are sampled by the neurons for the pfj
computation, the neuron activation sampler on the NLRTRL chip need not be
edge trigged (ie. one op-amp can be saved; in all three op-amps (or almost 50%
of the computing hardware) are saved per NLRTRL signal slice, not counting the

derivative variable RAM access circuit).

5.7 Further work

As for the back-propagation system, we need to carry out system level experiments
in order to evaluate the applicability of our proposed chip set. These experiments
could suitably include “simulated” (ie. using the PC to perform the digital, fixed
point computations) weight change threshold, momentum, weight decay etc. to
verify the applicability of these algorithm variations (these simulations can also be
performed using the system in back-propagation mode). These experiments are
presently carried out at our institute. Other obvious future tasks include a reman-
ufacturing (and possibly redesign) of the weight change offset canceling circuit as
well as simulation on and implementation of the proposed NLRTRL algorithm.

Considerations on process parameter dependency canceling and temperature
compensation are necessary before “a volume production” (cf. section 2.7) just as
was the case for the other chips designed so far. Also, the considerations on the
implementation of high accuracy calculations mentioned in section 4.7 (as chopper
stabilizing and weight change threshold) apply to the RTRL chip.

In addition to these tasks further work on VLSI implementations of the RTRL
(or NLRTRL) algorithm could include a continuous time system version:

Chapter 5.7.1 Implementation of RTRL hardware Page 116

5.7.1 Continuous time RTRL system

One of the very nice features of analogue signal processing is the inherently asyn-
chronous functionality. In our systems so far we have ignored this and dealt with
sampled time systems. The back-propagation algorithm can fairly easily be imple-
mented in an asynchronous way because of the feed forward architecture. This is
not so easy for the RTRL architecture, though it would be very attractive to do so.
In this section we shall roughly outline how a continuous time (or asynchronous)
version of the (NL)RTRL algorithm could be implemented in analogue hardware.

Now, instead of using sample-and-hold circuits as feedback in the ANN (cf.
figure 60°; see also figure 74B) we use continuous time low pass filters having
transfer functions Hy, (s). Note that the low-pass filter can only hinder parasitic
oscillations caused by non-ideal electrical components. As the signs and magnitudes
of the connection strengths in the synapse matrix are unknown, these can cause
oscillation. It is the learning scheme that must adjust the weights to prevent
oscillation — or indeed to cause it. (This applies also to the discrete time system,
for that matter.) Using a continuous time feedback the neuron input definition
(14%) becomes

, forjel
2(t) = { ((i) vyi(t), forjeU

where hy, (t) is the impulse response of the H,, (s) filterf. For input signal fre-
quencies much lower than the filter cutoff frequency fo, (use for instance Hy, (s) =
(1 — s/27 fo,)~') the network will work as a relaxation network (though a “re-
laxed state” can be an oscillation). For input frequencies approaching the cutoff
frequency the network will function somewhat like a pipelined network (we can

ascribe the filter a delay of, say, In2/2x fy,)1.
Choosing, for example, the NLRTRL neuron derivative variable definition

PR (1) = gr(sk(s) + 035(t)) — gi(se(t).

we now propose to compute the neuron net input derivative variables as
=3 wntlt) |y (1) Pl ()] + iz (1)

where we, as for the ANN itself, have substituted low-pass filters H, (s) for the

delay elements. To ensure stability the low-pass filters are needed also in this
equation. Now, if we select

Hy (s) = Hy,(s).

it still holds that Oy (t)/0w,;(t) = pfj(t) (or Oy (t)/Ow;;(t) ~ p{{”j(t)) as for the

original algorithm.

T “*” denotes convolution: h(t)* y(t) def fot h(T)y(t —7)dr.
T This is of course vastly simplified. See eg. Gabel and Roberts [74] for details

on linear systems.

Chapter 5.7.2 Implementation of RTRL hardware Page 117

Finally, we must formulate the weight updating rule in continuous time. Quite
trivially (15°) generalizes to an integration:

1 aj
wij(t) = wi;(0) —n i 87% dr
ij
t
wl](o) + 77/0 Z 5k(7_)p{i]ij (7') dr Quadratic ,
keU

t
wij(0)+77/ Y ex(r)of;(r)dr Entropic

0 reu

where we have expanded the equation for the cases of the quadratic- and the entropic
cost functions.

Thus implementing the NLRTRL algorithm has one unsaid disadvantage: it
is necessary to do a fully parallel (ie. O(N*) area!) implementation thus lim-
iting this approach to fairly small systems. Needlessly to say, continuous time
NLRTRL is incompatible with our present ANN architecture which uses serial,
discrete time weight access. Further research is needed before a continuous time
recurrent learning system can be implemented; among other things the simpler dis-
crete time version of the algorithm should be proven operational. (For continuous
time recurrent learning systems see also Ramacher and Schildberg [194].)

5.7.2 Other improvements

Essentially composed by components also found on the back-propagation chip set,
several issues of the RTRL chip are subject for improvements. A list of these can
be found in appendix D.3.1.

5.8 Summary

In this chapter add-on hardware for applying real-time recurrent learning to our
cascadable ANN chip set was designed. The basic learning algorithm was dis-
played and the applicability of common algorithmic variations for the implementa-
tion in analogue VLSI was discussed. It was shown that doing an O(N?)/O(N?)
space/time division of the O(N*) computational primitives per time step was a
good choice with respect to scalability, hardware cost, ANN system compatibility
and implementation ease. A system level implementation in which most of the
computations (the order O(N?) part) were performed by a synapse multiplier was
presented. Results from simulations modeling analogue VLSI non-idealities in this
architecture were found in compliance with like simulations by others: The sys-
tem 1s generally tolerant to non-idealities with the exception of the weight change
offsets, hidden neuron error offsets and neuron derivative computation.

Chapter 5.8 Implementation of RTRL hardware Page 118

The design of an RTRL chip for computing the O(N) part of the computa-
tional primitives was displayed. This chip was implemented using almost exclu-
sively components from the back-propagation chip set. A weight change offset
compensation circuit based on a DAC resolution enhancement technique was in-
cluded on the chip. Unfortunately this chip was malmanufactured which resulted
in a very poor computation speed and a reduced signal range (possibly also the
malfunction of the offset canceling circuit which did only function in simulations).

A complete RTRL system design based on our various chips was displayed.
A 16 inputs, 12 neurons test system for pre-mRNA splice sites prediction was
chosen. The learning hardware not implemented on the ASICs — basically the
(O(1)) weight updating hardware — is the same as used in the back-propagation
system (the possibility of using mostly digital weight updating hardware is adding
to the virtues of the proposed silicon mapping). For ease of test, the system
is controlled by a PC. Various algorithmic variations can be simulated via this
interface. The system is presently under construction, thus no experimental results
were presented.

A non-linear version of real-time recurrent learning was proposed. A system
level implementation of this algorithm was shown and we saw that the implemen-
tation was superior to the RTRL implementation in terms of both hardware cost
and computational accuracy. We argued that the applicability of this algorithm
would be similar to that of non-linear back-propagation.

Finally, we proposed a continuous time version of the non-linear real-time
recurrent learning algorithm for analogue VLSI.

Page 119

Chapter 6

Thoughts on future analogue
VLSI neural networks

In this chapter some odds and ends on future analogue VLSI neural network design
— which did not fit into the other chapters — are collected. Firstly, some thoughts
on gradient descent learning using analogue VLSI are presented. Secondly, we
propose an ANN architecture for massively parallel systems that maps well on
hardware. Thirdly, we point out that using analogue VLSI neural network ensem-
bles must be a future trend and we propose a weight refreshing scheme based on
such ensembles. Finally, we reflect on combining read-only- and plastic- synapses
in analogue VLSI computational neural networks.

Chapter 6.1 Thoughts on future analogue VLSI neural networks Page 120

6.1 Gradient descent learning?

In this work we have investigated the possibility of implementing supervised learn-
ing with a teacher — or more precisely: gradient descent learning — in analogue
VLSI neural networks. Being wiser from our experiments carried out so far, we can
ask the question: does gradient descent learning in analogue VLSI have a future?
Perhaps. Though unsupervised learning or learning with a critic is possibly better
suited for the technology (because of the lack of a good analogue memory) the
need for massively parallel pattern recognition engines is evident (eg. Hertz et al.
[95], Sénchez-Sinencio and Lau [206], Ramacher and Riickert [193]) which strongly
encourage the development of efficient learning-with-a-teacher algorithms.

Even should our RTRL /back-propagation system prove able to solve classifi-
cation/regression tasks (which is indeed our expectation) this small scale system
does not prove the applicability of the learning schemes for massively parallel
implementations. And, though we believe it demonstrate some noteworthy points,
it is surely not the ideal solution. From an analogue VLSI point of view, present
learning-with-a-teacher schemes have some serious draw-backs. Most notably in
relation to offset errors (and for very large systems probably also in relation to
the dynamic range of the synapse strengths). Eliminating offset errors (by offset
canceling or chopper stabilizing) as proposed in this thesis is a solution probably
ensuring the applicability of gradient descent learning. However, it is not a good
solution: It requires precision circuitry and is thus not “neural” of nature. A
“neural” way to deal with weight change offsets could be use of a weight change
threshold; perhaps induced via a highly non-linear weight change multiplier. Other
(or additional) procedures to deal with weight change offsets could be to somehow
(1) increase the “learning loop gain” (corresponding to a very large learning rate)
or (ii) AC-couple the learning hardware to remove the dependency of DC offsets.

At any rate, it is our profound belief that the ultimate implementation of
hardware learning with a teacher requires research in learning algorithms as well
as research in the electronic implementations. Such research must, of course, focus
on the limitations of analogue VLSI, and the resulting learning algorithms should
resemble popular simulated algorithms in order to attract application people. The
elegant solutions, found in non-linear back-propagation or weight perturbation,
to come around the problem of computing neuron activation derivatives are good
examples of how to bend the algorithm to meet the technology requirements. The
human brain is obviously capable of doing reliable learning using an inaccurate
technologyf. Perhaps we should seek further inspiration from neuro-biology?

7 The computational part of the brain being totally embedded in sensors and
actuators can not possible use “learning with a teacher” as we know it. This does
not mean that such learning algorithms are somehow inferior; we must always use
all possible information when solving a problem (ie. we must use learning with a
teacher when we can).

Chapter 6.2 Thoughts on future analogue VLSI neural networks Page 121

6.2 Neuron clustering

Our present scalable ANN architecture which, in principle, can implement any
ANN topology is well suited for many present applications. For the implementation
of huge, masswwely parallel systems, however, the scalable principle will not hold.
The implementation of neurons with, say, millions of synaptic inputs is beyond
the capabilities of the technology. The required dynamic range of the synapses and
neuron ability to sink current put a bound, somewhere, on the neuron fan-in; to say
nothing of the impact of offset errors and of electrical parasitics degrading the speed
of such an architecture. The chip input/output bottle neck and inter-chip routing
would also be problematic. One could imagine that learning in such a system using
conventional algorithms would be difficult (Krogh et al. [125], Benedict [21], Haykin
[93], Houk [102]) — even using an “ideal” learning machine; using the limited
precision technology of analogue VLSI, learning would (almost surely) prove very
hard (increased fan-in requires increased precision, cf. section 4.1, section 3.3,
section 2.3.1).

For applications using huge networks (this could be in robotics, for instance)
an alternative network topology must be found. From an analogue VLSI point
of view some kind of neuron clustering would be advantageous: we propose an
architecture consisting of sparsely interconnected modules of densely connected
neurons, see figure 72°. The individual clusters would solve different, reasonably
complex subproblems (possibly the same problems as other clusters to ensure fault
tolerance at a module level (see also the section 6.3.1)); ie., the global problem will
be solved in a divide-and-conquer manner. See also Jacobs et al. [112], Haykin [93],
Houk [102]. Note that the input data structure of some problems (eg. that of visual
systems) do need large fan-in input layer neurons (see eg. Sdnchez-Sinencio and Lau
[206], Masa et al. [157]); so, we would still need large fan-in (cascadable) modules
dedicated for such peripheral tasks. For high level data processing, however, the
need for large fan-in is not so evident (compare to models of the human brain,
Rumelhart et al. [200], Miles and Rogers [166], Joublin et al. [116], Mountcastle
[172]); this neuron cluster ANN topology might be applicable for general, high level
computational ANNs.

The cluster size and topology will obviously have a tremendous impact on sys-
tem functionality; implicit constraints are put on the problem architecture. Thus,
for an efficient system, we need to do excessive research in the areas of cluster
size and topology and cluster interconnection architectures. Also, the problem of
teaching such a system needs to be addressed. Questions such as “do we need more
than one type (size, topology) of clusters?”, “must the cluster modules be reconfig-
urable?”, and “should the modules be cascadable?” would be asked. The learning
scheme should probably involve both supervised and unsupervised learning. Now,
it would be most convenient if a single cluster of neurons would fit on a chip.
In this case the problem with the chip input/output bottleneck would be reduced
and inter module communication could efficiently take place using robust neuron
activation signals (eg. pulse frequency modulation). On-chip communication could
also be optimized (with respect to speed, power consumption, area, etc.) when the

Chapter 6.2 Thoughts on future analogue VLSI neural networks Page 122

Figure 72°%: Neuron clustering. From a VLSI point of view this is a very attrac-
tive network architecture. The different blocks could be individual chips. Pos-
sibly some kind of restricted cascadability /reconfigurability would be needed.

local ANN topology is known a priori and no off-chip communication of “interme-
diate signals” (as synapse outputs) takes place. Using CMOS VLSI technologies of
today, the integration of about 100 neurons and 10000 synapses (including learning
hardware) would be realistic.

The high level data processing part of the human brain (the cerebral cortez)
1s organized in 4-6 vertical layers. Communication within the cerebral cortex is
mostly between such layers and is distinctively local of nature; there are only few
long-distance connections. Further, the cerebral cortex seems to be organized in
(more or less) disjoint patches (Rumelhart et al. [200], see also Miles and Rogers
[166]). This has inspired some authors to propose a modular model of the cerebral
cortex, arranging the neurons in disjoint, densely connected “columns” mutually
sparse interconnected (Mountcastle [172]; see also Joublin et al. [116]); very like
our proposed cluster architecture for analogue VLSI implementations. We believe
that this topology would be a good starting point for investigations on ANNs with
clustered neurons. Others have also proposed such neuron clustering architectures
inspired by the hardware friendly sparse connectivity (Joublin et al. [116]).

It should be noted that many reported chip architectures actually resemble the
proposed neuron clustering architecture in the sense that a densely interconnected,
fixed (or reconfigurable to some extend) architecture ANN is integrated on-chip
in a non-expandable way, using neuron activation for inter-chip communication
(eg. Graf and Henderson [84], Valle et al. [251], Castro et al. [42], Hamilton et al.
[88], Serrano et al. [216]). However, to the best of our knowledge, an exhaustive
investigation of chips architectures vs. system generality has yet to be carried out
(though cf. Johansen and Foss [114] on the problem of modeling complex systems
with ensembles of simple models).

Chapter 6.3 Thoughts on future analogue VLSI neural networks Page 123

6.3 Self refreshing system

As mentioned in section 2.2.3 one of the major concerns of analogue VLSI ANN
research is the issue of synapse strength storage — especially in connection with
on-chip learning: The only true long-term analogue memories (as floating gate de-
vices) are tedious to program, probably expensive, and not well suited for adaptive
systems. The area penalty of high resolution on-chip digital storage or some kind of
quantize-regenerate scheme compromises the advantages of analogue VLSI. Finally,
for systems where the use of external components is unacceptable or where a par-
allel weight updating is necessary, using capacitive storage with a RAM back-up,
as in our work, is inapplicable.

Now (still referring to section 2.2.3), for certain applications using an unsu-
pervised learning algorithm or learning with a critic we can, in an elegant way,
apply refresh by relearning on systems using simple capacitive storage, using pure
analogue signal processing circuitry. The question that now arises is this: Is it
possible, without storing training patterns, to apply a like refresh by relearning
scheme in application areas using learning with a teacher as pattern recognition
and related tasks? Using the self-repair properties of neural network ensembles,
this is the case for certain applications.

6.3.1 Neural network ensembles

A neural network ensemble (Hansen and Salamon [90], Hansen et al. [89]) is a
collection of neural networks (often topologically identical) trained, using different
initial states, to solve the same problem. (The training algorithm applied could
for instance be back-propagation.) Applying the ensemble to a given problem, the
solution given by this is a consensus decision, based on the individual network
outputs. This could be the majority decision for binary outputs or a weighted
sum decision (as “stacked regression”, LeBlanc and Tibshirani [136]) for analogue
outputs. Now, providing that

e the individual networks perform reasonably well and
o the errors of the different networks are to some degree independent

the consensus decision will be superior to that of the individual networks. More
specifically: for a classification task where the probability of doing a misclassifica-
tion is p for each individual network and providing the network errors are indepen-
dent, the error probability for an ensemble of Ny networks is

Ng

pE=) (J\,ZE>pk(1—p)NE_k-

k>Ng/2

For p < 1/2 we have pp — 0 for N — oo. Using ensembles of Ny = 7 networks,
for instance, Hansen et al. [89] have reported a 20%-25% improvement of the
individual network performance on a handwritten digit recognition problem.

Chapter 6.3 Thoughts on future analogue VLSI neural networks Page 124

While improving performance is always important — sometimes even at a very
high cost — the properties of neural network ensembles are particularly important
in relation to analogue VLSI ANN implementations:

o Fault tolerance. While the potential fault tolerance of neural networks is re-
peatedly emphasized in the literature, networks trained using standard ap-
proaches (as back-propagation) do not exhibit a very high degree of fault tol-
erance (Serbedzija and Kock [215), Woodburn et al. [270], Neti et al. [181]):
Though insensitive to small weight perturbations (recall that the gradient de-
scent solution is given by 0.J/0wy; = 0) the network is not insensitive to the
complete loss of a synapse as the network architecture is kept as simple as
possible to ensure good generalization abilities. Using neural network ensem-
bles provides a simple way to introduce fault tolerance. From an analogue
VLSI point of view this fault tolerance is important because analogue sig-
nal processing requires better components than digital signal processing (and
are thus more sensitive to processing errors). For a fault tolerant system the
consensus decider must also be implemented using redundant hardware.

o Enhanced performance. Implementing ANNs in the limited accuracy tech-
nology of analogue VLSI, the performance of our ANN solutions is bound to
be inferior to that of high precision simulated networks (see eg. section 2.6,
Tarassenko et al. [238], Lansner [133], Ramacher and Riickert [193]). Whether
this is acceptable or not is application dependent; if it is not, neural network
ensembles provides a simple way to enhance the analogue ANN performance.

Regularly it happens that an ANN trained using gradient descent gets
stuck in a local minimum of the cost function (ie. the network does not solve
the task at hand after learning). For recall mode systems this is not a fatal
incident; one can just repeat the training phase with other initial weights. For
an adaptive system trained on-line this is not so. There will be only one chance
to learn the task. The enhanced performance offered by ANN ensembles might
well prove crucial in such systems.

The implementation of a neural network ensemble is very simple; requiring only
the design of the consensus decider (assuming we have a collection of acting neural
networks). As mentioned in the previous chapters such simplicity is important to
analogue VLSI design. Further, duplicating a whole ANN, say, N = 7 times for
the implementation of an ensemble is, computationally, a very expensive procedure.
Thus, even for moderate size networks, parallel computations might be necessary;
for a dedicated hardware implementation, ensemble methods are hardware hungry
— thus the potentially small sizes of analogue computing elements makes analogue
VLSI an ideal technology for neural network ensembles. And vice versa.

Chapter 6.3 Thoughts on future analogue VLSI neural networks Page 125

The consensus decision of a neural network ensemble being superior in performance
to the individual networks provides a way to do self-repair in a system haunted
by degrading weights (Hansen and Salamon [91]): Using the consensus decision as
target values for all the networks, we simply apply a supervised, on-line learning al-
gorithm to make weight updates after each presentation of input patterns while the
system is running in recall mode (we call this a consensus trainer). Under certain
conditions this scheme can keep weight deterioration in check; this can be exploited
for weight refresh in analogue VLSI neural systems using simple capacitive storage
and on-chip learning with a teacher, see figure 73°.

Neural Network
Ensemble

Output

B

Inputs

N
Consensus Decider

Figure 73°% Self refreshing ANN
system. The self-repair proper-
ties of a neural network ensem-

ble is used to retain the weights
stored on the pure capacitive a-
nalogue synapse storage. Using
occasional external target val-
ues (read adaptive systems) will
prolong the time to memory ex-
haustion.

Now, assume a weight perturbation gives a proportional network error proba-
bility change (whether caused by the learning algorithm or the weight deterioration

Chapter 6.3 Thoughts on future analogue VLSI neural networks Page 126

mechanism)f and assume we can model the discrete time weight change as

Awk]‘(t): —U% + <5‘|’n(t)>TCyC)

learning scheme weight deterioration

where ¢ is a constant (worst case) weight droop rate and n(#) is a noise term; and
where T¢y is the time needed to do a full weight matrix update (learning cycle) and
JC is a cost function computed using the consensus decision as target values (the
consensus cost function). (Note that the §7T.y. product is equivalent to a weight
change offset.) In this case it turns out that when the weight restoration efficiency
A = n/(6Teyc) is larger than a critical value, Aqyi¢, the system performance will
remain largely unchanged over a period of time that depends on the noise level. For
A < Ayt there is an abrupt transition to a regime where the system performance
degrades rapidly (Hansen and Salamon [91]).

Though an ANN ensemble using a consensus trainer can sustain a weight de-
terioration which would rapidly destroy a non-retrained ensemble (to say nothing
of a single network), the life time is finite: Patterns once misclassified by the con-
sensus decider are never relearned as all the networks are trained to imitate the
misclassification (the probability of doing new misclassifications is finite; partly
because of noise, Lehmann and Hansen [145]). As for other refresh by retraining
schemes, the system would tend to forget the classification of scarcely occurring in-
put data. If it is possible occasionally to apply an external teacher, which would be
the case in adaptive systems, the life time might be profoundly improved. Actually,
in such systems the inherent forgetfulness of the systems might be an advantage;
if old memories are considered irrelevant.

Intuitively, the critical restoration efficiency would be expected to increase as
the system size increases, thus limiting the network size to which we can apply
a consensus trainer for weight refresh in an analogue system. Further, for very
large systems the extra hardware used for the ensemble might be a hindrance for
implementation; for small systems, on the other hand, the reduction in hardware
cost for a more complex refreshing scheme might easily accommodate the extra
hardware for consensus refresh — especially if the improved performance of the
ensemble is taken into consideration.

In all: We propose to use a consensus trainer to do refresh by relearning
in small, adaptive, analogue ANN systems with on-chip learning with a teacher,
that use simple capacitive weight storage and function in an ever changing, hostile
environment. The applicability of the scheme is a subject for on-going research

7 Because of the pronounced non-linearity of ANNs this is a highly inaccurate —
though conservative — approximation. Assume we use gradient descent learning
with small learning rate and a quadratic cost function, and approximate the neuron
activation functions by ¢(s) = s for |s| < 1 and g¢(s) = sign(s) otherwise: For
saturated neurons a small weight change does not alter the error probability. For
non-saturated neurons the output error change is linear in the weight change.

Chapter 6.4 Thoughts on future analogue VLSI neural networks Page 127

presently carried out at our institute (Lehmann and Hansen [145]). Of course,
memory destruction at power loss will, for most artificial neural systems, be un-
acceptable. We will need means to read the volatile synapse strengths for backup
purposes and for replication. Or, alternatively, we could use a combination of
read-only and dynamic synapse memories:

6.4 Hard/soft hybrid synapses

Even if we could, in a convenient manner, read the synapse strengths of an ANN
using simple capacitive storage, the memory restoration after a power loss or the
synapse strength down loading for volume manufacturing might well prove tedious.
In both cases retraining would be necessary and an in-system back-up memory for
in-site memory restoration is not necessarily compatible with an analogue ANN
system. If only short term adaptations are needed a solution could be the use of
“hard/soft hybrid synapses” consisting of a pre-programmed non-volatile (possibly
read-only) part and a perturbation stored in a volatile capacitive memory. The idea
is to (i) use a pre-determined template (for instance obtained via simulations as in
Masa et al. [157]) to generate the non-volatile (hard) parts of the synapse strengths
during manufacturing (implemented for instance as scaled transistors or floating
gate devices) and to (ii) use an on-chip learning algorithm for adapting the system
via the volatile (soft) part of the synapse strengths. The hard memory part would
reflect the behavioural model of the system and the soft memory part would reflect
the current working conditions.

Consider for instance a robot walking on sand/snow /earth/pavement/mud/-
pebbles. The basic locomotive behaviour could be pre-programmed (“place one
leg in front of the other”, “keep the balance”, etc.) while temporary adaptations
to the current ground cover would be determined using real-time learning. In such
applications adaptive, analogue systems would be tremendous powerful.

Page 128

Chapter 7

Conclusions

In this thesis the implementation of three analogue VLSI neural systems was pre-
sented: (i) a cascadable chip set for recall mode neural networks, (ii) a variation
of this chip set including on-chip error back-propagation learning in a hardware
efficient way, and (iii) add-on hardware for doing real-time recurrent learning on
the cascadable chip set using a realistic amount of hardware and time. The recall
mode system was tested experimentally both at a chip (electrical) level and at a
system level. The two learning system were tested at a chip level; the learning
systems are, at the time of writingj, under construction.

During our recall mode chip development we reviewed different chip- and
network- architectures as well as different basic building block components as mem-
ories, multipliers and thresholding functions. We settled on a two chip cascadable
system (a “synapse chip” and a “neuron chip” using analogue voltage/current
signalling) capable of — in principle — implementing any ANN topology using
first order deterministic neurons. Also, we chose to use simple capacitive synapse
strengths storage with a digital RAM backup, a MOS resistive circuit based
synapse multiplier, and a hyperbolic tangent neuron activation function based on
parasitic bipolar transistors. In addition to the basic synapse chip, we showed
how a special “sparse input synapse chip” could efficiently exploit the chip input
bandwidth when unary coded network inputs were used.

A 4 x 4 synapses synapse chip and a 4 neurons neuron chip were fabricated in
a standard 2.4 yum CMOS process. Our measurements on these chips showed a >
10 bit synapse resolution, non-linearities below 16% (on most quantities below 3%)
and offset errors below 10% (on most quantities below 5%); magnitudes compatible

T September 1994.

Chapter 7 Conclusions Page 129

with a large range of applications. A system using full size (100 x 100) synapse
chips was estimated to do 3.8 GCPS per synapse chip. Measurements on a 8-4-1
experimental perceptron (solving the sunspot prediction problem) based on the
chip have shown a learning error slightly worse than that of an “ideal” simulated
network.

For classification- and regression tasks multi layer perceptrons trained by er-
ror back-propagation are often employed. A fully parallel VLSI implementation
of this algorithm gives a O(N?) improvement in speed compared to a serial im-
plementationf; usually at the cost of 3 times the synapse hardware and twice the
inter module wiring compared to a recall mode system. If the physical size of the
system is important or if the learning scheme is employed only occasionally the ad-
ditional hardware can severely restrict the system applicability. We showed how to
implement back-propagation without any extra synapse hardware or inter module
wiring, using the MOS resistive synapse multiplier in a novel configuration which
exploits its bidirectional properties — at the cost of discrete time and at most a
O(N) improvement in speed compared to a serial approach.

A 8 x 4 synapses back-propagation synapse chip and a 4 neurons back-prop-
agation neuron chip were fabricated in a standard 2.4 ym CMOS process. Our
measurements on these chips showed a > 10 bit synapse resolution, non-linearities
below 6% (on most quantities below 3.5%) and offset errors below 75% (on most
quantities below 12%); magnitudes compatible with a range of applications if offset
canceling is applied to critical signals. A system using full size (100 x 100) synapse
chips was estimated to do 4 GCPS per synapse chip and 0.25 MCUPS (serial weight
update as the digital weight back-up RAM puts this restriction on the system). We
showed how to implement a back-propagation system based on the chip set. In
addition to the chip set this was basically a finite automaton controlling the system
and the weight updating hardware implemented using digital components.

The very powerful recurrent neural networks can solve a larger class of prob-
lems than perceptrons. Real-time recurrent learning can train a completely general
network architecture and have several nice properties with respect to a VLSI imple-
mentation. It does, however, require a massive order O(N*) computational primi-
tives per training example. We showed how dividing the computational primitives
between the space and the time domain as O(N?) to O(N?) was a good choice with
respect to scalability, hardware cost, speed, implementation ease and compatibil-
ity with our acting recall mode neural system. We showed how we could perform
learning in our recall mode system by adding a synapse multiplier and a scalable
“RTRL chip” consisting of an order O(N) “signal slices”; plus weight updating
hardware of order O(1) and a finite automaton controlling the system.

A 4 signal slices RTRL chip was fabricated in a standard 2.4 pm CMOS pro-
cess; unfortunately this chip was malmanufactured resulting in reduced signal range
and speed. Our measurements showed a topological functionality, non-linearities
below 5% and offset errors below 64% (on most quantities below 10%); magnitudes

T In a system with N neurons

Chapter 7 Conclusions Page 130

possibly compatible with the algorithm if offset canceling is applied to critical sig-
nals. Our implementation of a 12 neurons, 16 inputs system was displayed.

* Kk K

Using a digital RAM as back-up for the synapse strengths obviously restricts the
learning scheme efficiency: only serial weight change is possible and D/A and A/D
converters are needed. However, we showed that implementing (most of) the O(1)
weight updating hardware using digital electronics exhibits a range of virtues: The
possibility of implementing high accuracy circuits using digital components enables
the applicability of advanced weight updating schemes; eg. momentum, which is
not likely to function in a simple analogue system as weight change offsets are
amplified. Also, it turns out that the scheme can reduce the minimum effective
learning rate and the weight change offset, which are of major concern in analogue
implementations of learning algorithms. Other algorithmic variations as weight
decay and weight change threshold are also readily and accurately implemented
in the digital domain. Note, that since the RAM weight updating hardware scale
as O(1) the hardware cost is not very important. Finally, placing the synapse
strengths in digital RAM is convenient for back-up purposes which is important
for real applications.

We noted that, though applications exist that can tolerate parameter variances
induced by temperature drift, analogue neural networks must in general be temper-
ature compensated. Some implementations (as the back-propagation system above)
also need process parameter variation canceling in various subcircuits; a scheme
for this was outlined.

In relation to the limited accuracy of analogue computing systems, we noted
that two problems of teaching artificial neural networks using gradient descent
based algorithms were especially severe: Offset errors (primarily on the weight
change signal) and neuron derivative calculation.

We presented several procedures to reduce offset errors: One based on a DAC
resolution enhancement technique and another utilizing chopper stabilizing.

To ensure the correct sign of the computed neuron derivative (which is of pro-
found importance for convergence) we introduced a deliberate offset in the com-
puting hardware. We also suggested that “clipping” the computed quantity was
a possibility. However, attacking the problem from an algorithmic starting point
was more attractive by far: We proposed to use “non-linear gradient descent” for

analogue VLSI:

The novel non-linear back-propagation learning algorithm was displayed. This
algorithm has two important properties for a hardware implementation: (i) no
activation function derivatives need to be computed and (ii) the back-propagation
of errors is through the same non-linear network as the forward propagation. We
showed that this implies that an electronic implementation can model the algorithm
much more accurately than is possible for ordinary back-propagation; design efforts
can be put into the electrical properties of the system components. We proposed

Chapter 7 Conclusions Page 131

hardware implementations of both a continuous time version and a discrete time
version of the algorithm; combining the latter with our hardware efficient back-
propagation synapse chip, we saw that the implementation of non-linear back-
propagation was possible using virtually no extra hardware compared with the
recall-mode system. Simulations using the non-linear back-propagation for learning
the NETtalk problem have shown a performance very similar to ordinary back-
propagation.

We derived a non-linear version of the real-time recurrent learning algorithm
and argued that this (compared to ordinary real-time recurrent learning) would
have properties very similar to non-linear back-propagation; both at an application
level (performance) and with respect to hardware implementations. Our system
level implementation of the algorithm showed that half the hardware on the “RTRL
chip” could be saved. We also proposed a continuous time version of the non-
linear real-time recurrent learning for exploitation of the asynchronous properties

of analogue VLSI.

We saw the implementation of analogue neural network ensembles as a future
trend of the field: Using ensembles introduce the much glorified but seldom im-
plemented fault tolerance in analogue neural systems. More importantly, though,
using ensembles enhance performance: Because of the limited accuracy of the
technology, analogue VLSI neural systems are bound to be inferior in performance
compared to “ideal” simulated networks. For adaptive systems this is particular
severe as training data is not necessarily reproducible; faulty learning is intolera-
ble. Neural network ensembles are expensive in terms of hardware; thus analogue
VLSI is an ideal technology for neural network ensembles. And vice versa.

While the cascadable solution of our various chips set functions for a limited
number of cascaded devices, we argued that the generalization to a truely arbi-
trary size for huge neural networks is not in compliance with the analogue tech-
nology: such systems requires infinite dynamic range of, for instance, the synapse
strengths. Using highly non-linear synapse multipliers the cascadability can be
improved (though it will still be limited). We also proposed to use a network
topology with clusters of neurons (sparsely interconnected to other clusters) to
come around the cascadability problem — though research in cluster topology vs.
system generality must be carried out.

In addition to the problem with limited accuracy of analogue VLSI, the issue
of weight storage in such systems is a major concern: no good analogue, electronic
memory is presently available.

To eliminate the need for RAM back-up in systems using simple capacitive
storage, we proposed to use the “self repair” properties of neural network ensembles
to do auto refresh in systems with an on-chip supervised learning algorithm. This
can efficiently prolong the time-to-exhaustion of the weights. In adaptive systems
this might prove sufficient; especially if the synapse strengths are a combination of
read-only (behavioral) and plastic (adaptive) memories.

If the use of digital synapse memory is acceptable one can, in a similar man-
ner, combine this with an “analogue adjustment” enabling an analogue learning

Chapter 7 Conclusions Page 132

algorithm to train a system with coarse discretized synapse strengths.

The bottom line: Though implementations of analogue neural network learning
systems have begun to emerge in the literature — including the present thesis —
excessive research in this field is still needed before the field is mature. Research
in learning algorithms are needed both at an algorithmic and at an implementation
level. Problems that need to be addressed include insensitivity to weight change
offset, analogue memories and enhancement of system performance reliability. It is
our believe that such research will prove fruitful for the future VLSI implemenations
of supervised (and other) learning algorithms.

Page 133

Bibliography

The references of this work are logically placed in five categories:

o On-chip learning [6, 9, 10, 14, 16, 22, 37, 39, 40, 44, 46, 50, 58, 60, 63, 67, 72,
85, 96, 97, 99, 100, 107, 109, 117, 139, 140, 141, 142, 143, 144, 145, 146, 151,
154, 160, 167, 168, 170, 174, 177, 194, 196, 210, 216, 220, 223, 237, 238, 251,
256, 269, 270].

o Analogue neural networks [5, 12, 13, 23, 24, 25, 26, 32, 38, 42, 51, 53, 59, 65,
66, 71, 82, 83, 84, 88, 98, 101, 110, 111, 115, 122, 123, 126, 130, 131, 132, 133,
137, 147, 149, 150, 155, 156, 157, 158, 162, 163, 169, 171, 173, 175, 176, 180,
185, 191, 192, 193, 195, 197, 206, 207, 211, 228, 246, 254].

o Artificial neural networks [1,4, 15, 17, 18, 19, 20, 21, 29, 30, 31, 36, 43, 47, 48,
55, 56, 62, 69, 70, 79, 80, 86, 87, 89, 90, 91, 93, 94, 95, 103, 105, 108, 112, 113,
116, 124, 125, 127, 128, 134, 135, 152, 159, 166, 178, 179, 181, 183, 184, 186,
188, 190, 199, 200, 203, 209, 214, 215, 218, 224, 225, 226, 230, 234, 236, 239,
248, 258, 259, 261, 264, 265, 267, 268, 271, 272].

o Integrated circuits [3,7, 11, 28, 33, 34, 35, 41, 45, 49, 52, 54, 57, 61, 64, 73, 75,
76, 77, 92,102, 104, 106, 118, 120, 121, 129, 138, 161, 164, 165, 182, 187, 198,
201, 202, 204, 205, 208, 212, 213, 217, 219, 221, 222, 227, 229, 232, 233, 240,
241,242,243, 244, 245, 247, 252, 253, 255, 257, 263, 260, 262, 266, 274].

o Miscellaneous references [2, 8, 27, 68, 74, 78, 81, 114, 119, 136, 148, 153, 172,
189, 231, 235, 250, 249, 273].

A few of the references are not cited in the thesis but have been included for a
more thorough referring of the field. Most probably many authors have unjustly
been excluded from this list; I most sincerely apology for this. Following are the
references listed in alphabetical order:

1]

[15]

[16]

Bibliography Page 134

“The Connectionist Mailing List”, 1993-1994, restricted Internet mailing list,
Connectionists-Request@cs.cmu.edu.

“HP Direct”, Hewlett Packard, no. 1, 1994, Series 700 Workstations.

“NEAR Workshop on European Analog Research”, September: 1992, post
conference workshop at ESSCIRC*92, Copenhagen.

“On Cytological Screening using Perceptrons”, December: 1991, talk at 4th
Neural Information Processing Systems Conference, Denver.

Aanen Abusland and Tor S. Lande, “Local Generation and Storage of Refer-
ence Voltages in CMOS Technology,” in Proc. 11°th European Conference on
Circuit Theory and Design, pp. 281-286, 1993.

P. Y. Alla, G. Dreyfus, J. D. Gascuel, A. Johannet, L. Personnaz, J. Roman
and M. Weinfeld, “Silicon Integration of Learning Algorithms and Other Auto-
Adaptive Properties in Digital Feedback Neural Networks,” in VLSI Design of
Neural Networks, Ulrich Ramacher and Ulrich Ruckert, Eds., Norwell: Kluwer
Academic Publishers, 1991, pp. 170-186.

Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Fort
Worth: Holt, Rinehart and Winston Inec., 1987.

George S. Almasi and Allan Gottlieb, Highly Parallel Computing, Redwood
City: Benjamin/Cummings Publishing Company Inc., 1989.

Joshua Alspector, Anthony Jayakumar and Stephan Luna, “Experimental
Evaluation of Learning in a Neural Microsystem,” in Proc. 4’th Neural
Information Processing Systems Conference, pp. 871-878, 1992.

Preben Alstrgm, “On VLSI Implementaion of Reinforcement Learning,”
private communication, The Niels Bohr Institute, 1994.

Per Andersson, “Portable CMOS design rules for the Swedish Universities”,
Lund: Wallin & Dalholm Boktryckeri AB, 1990.

A. J. Annema, “Hardware realisation of a neuron transfer function and its
derivative,” Electronics Letters, vol. 30, no. 7, pp. 576577, 1994.

Anne-Johan Annema, “Analysis, Modelling and Implementation of Analog In-
tegrated Neural Networks,” Ph.D. thesis, University of Twente, The Nether-
lands, 1994.

A. J. Annema, K. Hoen and H. Wallinga, “Precision Requirements for Single-
layer Feed-forward Neural Networks,” in Proc. 4th International Conference
on Muicroelectronics for Neural Networks and Fuzzy Systems, Turin, pp. 145—
151, 1994.

Anne-Johan Annema, Klaas Hoen and Hans Wallinga, “Learning Behaviour

and Temporary Minima of Two-layer Neural Networks,” Neural Networks,
vol. 7, no. 7, pp. +18, 1994.

Yutaka Arima, Misuhiro Murasaki, Tsuyoshi Yamada, Atsushi Maeda and
Hirofumi Shinohara, “A Refreshable Analog VLSI Neural Network Chip with
400 Neurons and 40K Synapses,” IEEE Journal of Solid-State Circuits, vol.
SC-27, no. 12, pp. 1854-1867, 1992.

[17]

[24]

[25]

[26]
[27]
28]

[29]

[30]

31]

Bibliography Page 135

Krste Asanovic and Nelson Morgan, “Experimental Determination of Pre-
cision Requirements for Back-propagation Training of Artificial Netral Net-
works,” in Proc. 2'nd International Conference on Microelectronics for Neural

Networks, pp. 9-15, 1991.

Les E. Atlas and Yoshitake Suzuki, “Digital Systems for Artificial Neural
Networks,” IEEE Chircuits and Devices Magazine, vol. 5, no. 11, pp. 20-24,
1989.

Roberto Battiti and Giampietro Tecchiolli, “Learning with first, second, and
no derivatives: a case study in High Energy Physics,” Neurocomputing, vol.

6, pp- 181-206, 1994.
Randall D. Beer, Hillel J. Chiel and Leon S. Sterling, “A Biological Perspective

on Autonomous Agent Design,” Robotics and Autonomous Systems, vol. 6, pp.

169-186, 1990.

Kiet hA. Benedict, “Learning in the Multilayer Perceptron,
Physics A: Math. Gen., vol. 21, pp. 2643-2650, 1988.

Ronald G. Benson and Douglas A. Kerns, “UV-Activated Conductances Allow
For Multiple Time Scale Learning,” IEEE Transaction on Neural Networks,
vol. 4, no. 3, pp. 434-440, May 1993.

Steven Bibyk and Mohammed Ismail, “Issues in Analog VLSI and MOS Tech-
niques for Neural Computing.” in Analog VLSI Implementation of Neural Sys-
tems, Carver Mead and Mohammed Ismail, Eds., Norwell: Kluwer Academic

Publishers, 1989, pp. 103-133.

Steven Bibyk and Mohammed Ismail, “Neural Network Building Blocks for
Analog MOS VLSIL,” in Analogue IC design: the current-mode approach, C.
Toumazou, F. J. Lidgey and D. G. Haigh, Eds., IEE Circuits and Systems (2)
Series, London: Peter Peregrinus Ltd, 1991, pp. 597-615.

Christian Bjork and Sven Mattisson, “Multivalued memory in standard CMOS
for weight storing in Neural Networks,” in Proc. 10°th European Conference
on Circuit Theory and Design, vol. 2, pp. 461-468, 1991.

Gudmundur Bogason, “Generation of a Neuron Transfer Function and its
Derivative,” Electronics Letters, vol. 29, no. 21, pp. 1867-1869, 1993.

E. J. Borowski and J. M. Borwein, Dictionary of Mathematics, Glasgow:
Collins Reference, 1989.

T. Botha, “CMOS Analogue Current-Steering Multiplier,” Electronics Letters,
vol. 28, no. 6, pp. 525-526, 1992.

Sgren Brunak, Jacob Engelbrecht and Steen Knudsen, “Prediction of Human
mRNA Donor and Acceptor Sites from the DNA Sequence,” Journal of
Molecular Biology, vol. 220, pp. 49-65, 1991.

Sgren Brunak and Benny Lautrup, “Linjedeling med et neuralt netvaerk,”
Skrifter for anvendt og matematisk linguistik, vol. -, pp. +20, 1989.

Sgren Brunak and Hans Hansen, “On Predicting Splice Sites with RTRL,”
private communication, Technical University of Denmark, 1991-1994.

7 Journal of

[32]

[33]

[39]

[40]

[41]

[42]

Bibliography Page 136

Erik Bruun, John A. Lansner and Torsten Lehmann, “Analog VLSI Architec-
tures for Computational Neural Networks,” in Proc. 10th NORCHIP Sema-
nar, pp. 509-68, 1992.

Erik Bruun, “Bandwith Limitations in Current Mode and Voltage Mode Inte-
grated Feedback Amplifiers,” EI preprint., Technical University of Denmark,
1994.

Erik Bruun, “Analogue Signal Processing: Collected Papers 1991-93,” Elec-
tronics Institute, Technical University of Denmark, Lyngby, 1994.

Erik Bruun, Gudmundur Bogason, Thomas Kaulberg, John Lansner and Peter
Shah, “On Analogue VLSI)” private communication, Technical University of

Denmark, 1991-1994.

Wray L. Buntine and Andreas S. Weigend, “Computing Second Derivatives in
Feed-forward Networks: a Review,” IEEE Transactions on Neural Networks,

vol. NN-4, pp. +17, 1993.

Graham Cairns and Lionel Tarassenko, “Learning with Analogue VLSI
MLPs,” in Proc. 4’th International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, Turin, pp. 67-76, 1994.

Yong Cao, Sven Mattisson and Christian Bjork, “SeeHear System: A New
Implementation,” in Proc. 18’th European Solid State Chircuits Conference,

pp. 199-202, 1992.

Howard Card, “Relaxation Networks: Recent Examples of Analog Circuits
from the U. S. and Canada,” in Proc. 8'rd International Conference on
Mucroelectronics for Neural Networks, pp. 265-296, 1993.

Howard Card, “Analog Circuits for Relaxation Networks,” International

Journal of Neural Systems, vol. 4, no. 4, pp. 359-379, 1993.

L. Richard Carley, “Trimming Analog Circuits Using Floating-Gate Analog
MOS Memory,” IEEE Journal of Solid-State Circuits, vol. SC-24, no. 6, pp.
1569-1575, 1989.

Hernan A. Castro, Simon M. Tam and Mark A. Holler, “Implementation and
Performance on an Analog Nonvolatiole Neural Network,” Analog Integrated
Circuits and Signal Processing, vol. 4, pp. 97-113, 1993.

Thierry Catfolis, “A Method for Improving the Real-Time Recurrent Learning
Algorithm,” Neural Networks, vol. 6, no. 6, pp. 807-821, 1993.

Daniele D. Caviglia, Maurizio Valle and Giacomo M. Bisio, “Effects of Weight
Discretization on the Back Propagation Learning Method: Algorithm Design
and Hardware Realization,” in Proc. IEEE International Joint Conference on

Neural Networks, pp. 11-631-11-637, 1990.

Tsin-Yuan Chang, Cheng-Chi Wang and Jain-Bean Hsu, “Two Schemes for
Detecting CMOS Analog Faults,” IEEE Journal of Solid-State Curcuaits, vol.
SC-27, no. 2, pp. 229-233, 1992.

Jungwook Cho, Yoon Kyung Choi and Soo-Young Lee, “Modular Analog
Neuro-chip Set with On-chip Learning by Error Back-propagation and /or Heb-
bian Rules,” in Proc. International Conference on Artificial Neural Networks

[47]

[48]

[49]
[50]

[51]

[57]

[58]

[59]

[60]

Bibliography Page 137

"94, Sorrento, vol. 2, pp. 1343-1346, 1994.

Leon O. Chua and Lin Yang, “Cellular Neural Networks: Applications,” IEEE
Transactions on Chrcits and Systems, vol. CAS-35, no. 10, pp. 1273-1290,
1988.

Leon O. Chua and Lin Yang, “Cellular Neural Networks: Theory,” IEEFE
Transactions on Chrcits and Systems, vol. CAS-35, no. 10, pp. 1257-1272,
1988.

A. L. Coban and Pe. E. Allen, “Low-voltage, Four-quadrant, analogue CMOS
Multiplier,” Electronics Letters, vol. 30, no. 13, pp. 1044-1045, 1994.

M. H. Cohen and A. C. Andreou, “MOS Circuit for Nonlinear Hebbian
Learning,” Electronics Letters, vol. 28, no. 6, pp. 591-593, 1992.

Dean R. Collins and P. Andrew Penz, “Considerations for Neural Network
Hardware Implementations,” in Proc. IEEE International Symposium on

Circuits and Systems, pp. 834-836, 1989.

Michael C. W. Coln, “Chopper Stabilization of MOS Operational Amplifiers
Using Feed-Forward Techniques,” IEEE Journal of Solid-State Circusts, vol.
SC-16, no. 6, pp. 745-748, 1981.

D. Del Corso, F. Gregoretti and L. M. Reyneri, “An Artificial Neural Sys-
tem Using Coherent Pulse Witdh and Edge Modulation,” in Proc. 8’rd Inter-

national Conference on Microelectronics for Neural Networks, pp. 105-114,

1993.

P. J. Crawley and G. W. Roberts, “High-Swing MOS Current Mirror with
Arbitrarily High Output Resistance,” Electronics Letters, vol. 28, no. 4, pp.
361-363, 1992.

Yann Le Cun, John S. Denker and Sara A. Solla, “Optimal Brain Damage,”
in Proc. Neural Information Processing Systems Conference '89, San Mateo,

pp. 598-605, 1990.

Yann Le Cun, Ido Kanter and Sara A. Solla, “Second Order Properties of Error
Surfaces: Learning Time and Generalization,” in Proc. Neural Information
Processing Systems Conference "90, Denver, pp. 918-924, 1991.

Zdzislaw Czarnul, “Novel MOS Resistive Circuit for Synthesis of Fully Inte-
grated Continous-Time Filters,” IEEE Transactions on Circuits and Systems,

vol. CAS-33, no. 7, pp. 718-721, 1986.

M. van Daalen, J. Zhao and J. Shawe-Taylor, “Real Time Output Deriva-
tives for On Chip Learning using Digital Stochastic Bit Stream Neurons,”
Electronics Letters, vol. 30, no. 21, pp. 17751777, 1994.

Casper Dietrich, “Analog VLSI — kontruktion af matrix-vektor multiplikator
med digitalt lagrede vaegte,” M.Sc. thesis, Elektronisk Institut, Danmarks
Tekniske Hgjskole, Lyngby, 1994.

B. K. Dolenko and H. C. Card, “Neural Learning in Analogue Hardware:
Effects of Component Variation from Fabrication and from Noise,” Electronics

Letters, vol. 29, no. 8, pp. 693-694, 1993.

[61]

[62]

[64]

[65]

Bibliography Page 138

R. Dominguez-Castro, A. Rodriguez-Vazquez, F. Medeiro and J. L. Huertas,
“High Resolution CMOS Current Comparators,” in Proc. 18’th FEuropean
Solid State Chircuits Conference, pp. 242-245, 1992.

Kenji Doya and Shuji Yoshizawa, “Adaptive Neural Oscilator Using Continu-
ous-Time Back-Propagation Learning,” Neural Networks, vol. 2, pp. 375-385,
1989.

T. Duong, S. P. Eberhardt, M. Tran, T. Duad, and A. P. Thakoor, “Learn-
ing and Optimization with Cascaded VLSI Neural Network Building-block
Chips,” in Proc. IEEFE International Joint Conference on Neural Networks,
pp. [-184-1-189, June 1992.

Scott T. Dupuie and Mohammed Ismail, “High Frequency CMOS Transcon-
ductors,” in Analogue IC design: the current-mode approach, C. Toumazou,
F. J. Lidgey & D. G. Haigh, Eds., IEE Circuits and Systems (2) Series, Lon-
don: Peter Peregrinus Ltd., 1990, pp. 181-238.

Silvio Eberhardt, Tuan Duong and Anil Thakoor, “Design of Parallel Hard-
ware Neural Network Systems from Custom Analog VLSI ‘Building Block’
Chips,” in Proc. IEEFE International Joint Conference on Neural Networks,
pp. II-183-11-190, 1989.

Silvio Eberhardt, Alex Moonpenn and Anil Thakoor, “Considerations for
Hardware Implementations of Neural Networks,” in Proc. 22nd Asilomar
Conference on Signals, Systems and Computers, pp. 649-653, 1988.

Peter J. Edwards and Alan F. Murray, “Analogue Synaptic Noise — Implica-
tions and Learning Improvements,” International Journal of Neural Systems,

vol. 4, no. 4, pp. 427-433, 1993.

Lewis C. Eggebrecht, Interfacing to the IBM Personal Computer, 2nd ed.,
Indianapolis: Sams, 1990.

S. E. Fahlman, “Fast-Learning Variations on Back-propagation: An Empirical
Study,” in Proc. Connectionist Models Summer School 88, Pittsburgh, D.
Touretzky, G. Hinton and T Sejnowski, Eds., Morgan Kaufmann, pp. 38-51,
1989.

Nabil H. Farhat, “Optoelectronic Neural Networks and Learning Machines,”
IEEE Chircuits and Devices Magazine, vol. 5, no. 9, pp. 32—41, 1989.

Barry Flower and Marwan Jabri, “The Implementation of Single and Dual
Transistor VLSI Analogue Synapses,” in Proc. 8'rd International Conference
on Microelectronics for Neural Networks, pp. 1-10, 1993.

Barry Flower and Marwan Jabri, “Summed Weight Neuron Perturbation: An
O(N) Improvement over Weight Perturbation,” in Proc. Neural Information
Processing Systems Conference 5 ‘92, San Mateo, pp. +7, 1993.

Thaddeus J. Gabara, Gregory J. Cyr and Charles E. Stroud, “Metastability
of CMOS Master/Slave Flip-Flops,” IEEE Transactions on Circuits and
Systems, Pt. II, vol. CAS-39, no. 10, pp. 734-740, 1993.

Robert A. Gabel and Richard A. Roberts, Signals and Linear Systems, 3rd
ed., New York: John Wiley and Sons, Inc., 1987.

[75]

[76]

[77]

[80]

[81]

[82]

[89]

Bibliography Page 139

Umberto Gatti, Franco Maloberti and Valentino Liberali, “Full Stacked Layout
of Analogue Cells,” in Proc. IEEE International Symposium on Circuits and
Systems, pp. 1123-1126, 1989.

U. Gatti, F. Maloberti and G. Palmisano, “An Accurate CMOS Sample-and-
Hold Circuit,” IEEE Journal of Solid-State Cuircuits, vol. 27, no. 1, pp. 120—
122, 1992.

Randall L. Geiger, Phillip E. Allen and Noel R. Strader, VLSI Design Tech-
niques for Analog and Digital Circuits, Singapore: McGraw-Hill Publishing
Company, 1990.

Arthur Gelb, Joseph F. Kasper Jr., Raymond A. Nash Jr., Charles F. Price,
Arthur A. Sutherland Jr. and the Analythic Science Corporation, Applied
Optimal Estimation, Cambridge: MIT Press, 1974.

C. L. Giles, D. Chen, C. B. Miller, H. H. Chen, G. Z. Sun and Y. C. Lee,
“Grammatical Inference Using Second-Order Recurrent Neural Networks,”
in Proc. IEEE International Joint Conference on Neural Networks, pp. +8,
1991.

Shelly D. D. Goggin, Karl E. Gustafson and Kristina M. Johnson, “Connec-
tionist Nonlinear Over-Relaxation,” in Proc. [EEE International Joint Con-

ference on Neural Networks, pp. II1-179-111-184, 1990.

Malcolm S. Gordon, Animal Physiology: Principals and adaptions, 2nd ed.,
New York: Macmillan Publishing Co. Inc., 1972, pp. 369-413.

Hans P. Graf and Lawrence D. Jackel, “Analog Electronic Neural Network
Circuits,” IEEE Circuits and Devices Magazine, vol. 5, no. 7, pp. 44-49,
1989.

H. P. Graf, “Analog Electronic Neural Networks,” in Proc. 18’th FEuropean
Solid State Chircuits Conference, pp. 5760, 1992.

Hans Peter Graf and Don Henderson, “A Reconfigurable CMOS Neural
Network,” in Artificial Neural Networks, Edgar Sanchez-Sinencio and Clifford
Lau, Eds., New York: IEEE Press, 1992, pp. 260-262.

David Grant, John Taylor and Paul Houselander, “Design, Implementation
and Evaluation of a High-Speed Integrated Hamming Neural Classifier,” IEEE
Journal of Solid-State Circuits, vol. SC-29, no. 9, pp. 1154-1157, 1994.

Sten Grillner, Peter Wallén, Lennart Brodin and Anders Lansner, “Neuronal
Network Generating Locomotor Behavior in Lamprey,” Annual Reviews on
Neuroscience, vol. 14, pp. 169-199, 1991.

Heng Guo and Saul B. Gelfand, “Analysis of Gradient Decent Learning
Algorithms for Multilayer Feedforward Neural Networks,” IEEE Transactions
on Chircuits and Systems, vol. CAS-38, no. 8, pp. 883-894, 1991.

Alister Hamilton, Stephen Churcher, Peter J. Edwards, Geoffrey B. Jackson,
Alan F. Murray and H. Martin Reekie, “Pulse Stream VLSI Circuits and
Systems: The Epsilon Neural Network Chipset,” International Journal of
Neural Systems, vol. 4, no. 4, pp. 395-405, 1993.

Lars Kai Hansen, Christian Liisberg and Peter Salamon, “Ensemble Methods

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Bibliography Page 140

for Handwritten Digit Recognition,” in Proc. The 1992 IEEE Workshop on
Neural Networks for Signal Processing, pp. -, 1992.

Lars Kai Hansen and Peter Salamon, “Neural Network Ensembles,” IEEFE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-12,
no. 10, pp. 993-1001, 1990.

Lars Kai Hansen and Peter Salamon, “Self-repair in Neural Network Ensem-

bles,” AMSE Conference on Neural Networks, San Diego, 1991.

Ole Hansen, “On VLSI Devices,” private communication, Technical University

of Denmark, 1991-1994.

Simon Haykin, Neural Networks: A Comprehensive Foundation, New York:
Macmillan Collage Publishing Company, Inc., 1994.

John Hertz, Anders Krogh, Benny Lautrup and Torsten Lehmann, “Non-
linear Back-propagation: Doing Back-propagation without Derivatives of the
Activation Function,” Neuroprose preprint, Niels Bohr Institute, Copenhagen,

1994.

John Hertz, Anders Krogh and Richard G. Palmer, Introduction to the
Theory of Neural Computation, Redwood City: Addison-Wesley Publishing
Company, 1991.

Marcus Hohfeld and Scott E. Fahlman, “Probabilistic Rounding in Neural
Network Learning with Limited Precision,” in Proc. 2'nd International Con-
ference on Microelectronics for Neural Networks, pp. 1-8, 1991.

Hollis, Harper and Paulos, “The Effects of Precision Constraints in a Back-
propagation Learning Network,” Neural Computation, vol. 2, no. 3, pp. 363—
373, 1990.

Paul W. Hollis and John J. Paulos, “Artificial Neural Networks Using MOS
Analog Multipliers,” IEEE Journal of Solid-State Circusits, vol. SC-25, no. 3,
pp. 849-855, 1990.

Paul W. Hollis, John J. Paulos and Christopher J. D’Costa, “An Optimized
Learning Algorithm for VLSI Implementation,” in Proc. 2'nd International
Conference on Microelectronics for Neural Networks, pp. 121-126, 1991.
Paul W. Hollis and John J. Paulos, “A Neural Network Learning Algorithm
Tailored for VLSI Implementation,” IEEE Transactions on Neural Networks,
vol. NN-5, no. 5, pp. 784-791, 1994.

Yoshihiko Horio and Shogo Nakamura, “Analog Memories for VLSI Neuro-
computing,” in Artificral Neural Networks, Edgar Sanchez-Sinencio and Clif-
ford Lau, Eds., New York: IEEE Press, 1992, pp. 244-363.

J. C. Houk, “Learning in Modular Networks,” in Proc. 7th Yale Workshop on
Adaptive and Learning Systems, pp. 80-84, 1992.

Keun-Rong Hsieh and Wen-Tsuen Chen, “A Neural Network Model which
Combines Unsupervised and Supervised Learning,” [EEE Transactions on

Neural Networks, vol. NN-4, no. 2, pp. 357-360, 1993.
Kou-Chiang Hsieh, Paul R. Gray, Daniel Senderowicz and David G. Messer-

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Bibliography Page 141

schmitt, “A Low-Noise Chopper-Stabilized Differential Switched-Capacitor
Filtering Technique,” IEEE Journal of Solid-State Circusts, vol. SC-16, no.
6, pp. 708-715, 1981.

John F. Hurdle, Erik L. Brunvand and Luli Josephson, “Asynchronous
VLSI Design for Neural System Implementation,” in Proc. 8’rd International

Workshop on VLSI for Neural Netwoks and Artificial Intelligence, pp. -, 1992.

Mohammed Ismail and Terri Fiez, Analog VLSI Signal and Information
Processing, Electrical and Computer Engineering Series, New York: McGraw-

Hill, 1994.

Marwan Jabri and Barry Flower, “Weight Perturbation: An Optimal Archi-
tecture and Learning Technique for Analog VLSI Feedforward and Recurrent
Multilayer Networks,” IEEE Transactions on Neural Networks, vol. NN-3, no.
1, pp. 154-157, 1992.

M. Jabri, S. Pickard, P. Leong, Z. Chi, B. Flower and Y. Xie, “ANN Based
Classification for Heart Defibrillators,” in Proc. Neural Information Processing
Systems Conference 91, Denver, pp. 637-644, 1992.

Marwan A. Jabri, “Practical Performance and Credit Assignment Efficiency
of Analog Multi-layer Perceptron Perturbation Based Training Algorithms,”
System Engineering and Design Automation Laboratory, Sydney University
Electrical Engineering, SEDAL tech. rep. 1-7-94, 1994.

Lawrence D. Jackel, “Practical Issues for Electronic Neural-Net Hardware,”
tutorial notes at the 4’th Neural Information Processing Systems Conference,

1991.

Geofirey Jackson, Alister Hamilton and Alan Murray, “Pulse Stream VLSI
Neural Systems: Into Robotics,” in Proc. IEEE International Symposium on

Circuits and Systems, London, vol. 6, pp. 375-378, 1994.

Robert A. Jacobs, Michael I. Jordan and Andrew G. Barto, “Task Decomposi-
tion through Competition in a Modular Connectionist Architecture: The What
and Where Vision Tasks,” Cognitive Science, vol. 15, pp. 219-250, 1991.

Kam Jim, C. Lee Giles and Bill G. Horne, “Synaptic Noise in Dynamically-
driven Recurrent Neural Networks: Convergence and Generalization,” Insti-
tute for Advanced Computer Studies, University of Maryland, UMIACS-TR-
94-89 and CS-TR-3322, 1994.

Tor A. Johansen and Bjarne A. Foss, “Constructing NARMAX Models using
ARMAX Models,” International Journal of Control, vol. 58, no. 5, pp. 1125—
1153, 1992.

D. E. Johnson, J. S. Marsland and W. Eccleston, “Neural Network Implemen-
tation using a Single MOST per Synapse,” to appear in IEEE Transactions
on Neural Networks, 1994.

F. Joublin, M. Lemesle, S. Wacquant and R. Debrie, “Proposed Hardware
Implementation of Massively Parallel Cortical Automation Networks,” FElec-
tronics Letters, vol. 28, no. 18, pp. 1711-1712, 1992.

Yaron Kanshai and Yair Be’ery, “Back Propagation and Distrubuted Data

[118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Bibliography Page 142

Architectures,” in Proc. 3’rd International Conference on Microelectronics

for Neural Networks, pp. 143-150, 1991.

Thomas Kaulberg and Gudmundur Bogason, “An Angle Detector Based on
Magnetic Sensing,” in Proc. IEEE International Symposium on Chircuits and

Systems, London, vol. 5, pp. 329-332, 1994.

Brian W. Kernighan and Dennis M. Ritchie, The C' Programming Language,
2nd ed., Englewood Cliffs: Prentice Hall, 1988.

Douglas A. Kerns, “Experiments in Very Large-Scale Analog Computation,”
Ph.D. thesis, California Institute of Technology, Pasadena, Caifornia, 1993.

Donald A. Kerth, Navdeep S. Sooch and Eric A. Swanson, “A 12-bit 1MHz
Two-Step Flash ADC.,” IEEFE Journal of Solid-State Circuits, vol. SC-24, no.
2, pp- 250-255, 1989.

Edwin van Keulen, Sel Colak, Heini Withagen and Hans Hegt, “Neural
Networ Hardware Performance Criteria,” private communication, Eindhoven
University of Technology, 1993.

Nabil I. Khachab and Mohammed Ismail, “A Nonlinear CMOS Analog Cell
for VLSI Signal and Information Processing,” IEEE Journal of Solid-State
Circuats, vol. SC-26, no. 11, pp. 1689-1699, 1991.

Anders Krogh and John A. Hertz, “A Simple Weight Decay Can Improve
Generalization,” in Proc. Neural Information Processing Systems Conference

91, Denver, pp. 950-957, 1992.

Anders Krogh, Lars Kai Hansen and Jan Larsen, “On Neural Networks,”
private communication, Technical University of Denmark, 1991-1994.

Francis J. Kub, Keith K. Moon, Ingham A. Mack and Francis M. Long,
“Programmable Analog Vector-Matrix Multipliers,” IEEE Journal of Solid-
State Curcuits, vol. SC-25, no. 1, pp. 207-214, 1990.

Hon Keung Kwan, “Systolic Architectures for Hopfield Network, BAM and
Multi-Layer Feed-Forward Networks,” in Proc. IEEE International Sympo-
stum on Circuits and Systems, pp. 790-793, 1989.

H. K. Kwan and C. Z. Tang, “Designing Multilayer Feedforward Neural
Networks Using Simplified Sigmoid Activation Functions and One-Powers-
of-Two Weights,” Electronics Letters, vol. 28, no. 25, pp. 2342-2345, 1992.

Kadaba R. Lakshmikumar, Robert A. Hadaway and Miles A. Copeland,
“Charactiration and Modeling of Mismatch in MOS Transistors for Precision
Analog Design,” IEEE Journal of Solid-State Curcuits, vol. SC-21, no. 6, pp.
1057-1066, 1986.

John A. Lansner and Torsten Lehmann, “A Neuron- and a Synapse Chip
for Artificial Neural Networks,” in Proc. 18th FEuropean Solid State Chircuits
Conference, pp. 213-216, 1992.

John A. Lansner and Torsten Lehmann, “An Analog CMOS Chip Set for
Neural Networks with Arbitrary Topologies,” IEEE Transaction on Neural
Networks, vol. 4, no. 3, pp. 441-444, May 1993.

[132]

[133]

[134]

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142)

[143]

[144]

[145]

[146]

[147]

Bibliography Page 143

John A. Lansner, “An Experimental Hardware Neural Network using a Cas-
cadable, Analog Chip Set.” to appear in International Journal of Electronics,
Technical University of Denmark, 1994.

John A. Lansner, “Analogue VLSI Implementation of Artificial Neural Net-
works,” Ph.D. thesis, Electronics Institute, Technical University of Denmark,
Lyngby, 1994.

Alan Lapedes and Robert Farber, “How Neural Nets Work,” in Proc. Neu-

ral Information Processing Systems Conference ‘87, D. Z. Anderson, Eds.,
New York: American Institute of Physics, pp. 442-456, 1988.

Jan Larsen, “Design of Neural Network Filters,” Ph.D. thesis, Electronics
Institute, Technical University of Denmark, Lyngby, 1993.

Michael LeBlanc and Robert Tibshirani, “Combining Estimates in Regression
and Classification,” preprint, University of Toronto, 1993.

Bang W. Lee, Bing J. Sheu and Han Yang, “Analog Floating-Gate Synapses for
General-Purpose VLSI Neural Computation,” IEEE Transactions on Circuits
and Systems, vol. CAS-38, no. 6, pp. 654-658, 1991.

Hae-Seung Lee, David A. Hodges and Paul R. Gray, “A Self-Calibrating 15
Bit CMOS A /D Converter,” IEEE Journal of Solid-State Circuits, vol. SC-19,
no. 6, pp. 813-819, 1984.

Torsten Lehmann, “A Hardware Implementation of the Real-Time Recurrent
Learning Algorithm,” in Proc. 10th European Conference on Circuit Theory
and Design, vol. 2, pp. 431-440, 1991.

Torsten Lehmann, “Neurale Netveerk 1 VLSI Teknologi,” M.Sc. thesis, Elek-
tronisk Institut, Danmarks Tekniske Hgjskole, Lyngby, 1991.

Torsten Lehmann, “A Cascadable Chip Set for ANN’s with On-chip Back-
propagation,” in Proc. 8’rd International Conference on Microelectronics for

Neural Networks, pp. 149-158, 1993.

Torsten Lehmann, “A Hardware Efficient Cascadable Chip Set for ANN’s with
On-chip Back-propagation,” International Journal of Neural Systems, vol. 4,
no. 4, pp. 351-358, 1993.

Torsten Lehmann and Erik Bruun, “Analogue VLSI Implementation of Back-
propagation Learning in Artificial Neural Networks,” in Proc. 11°th European
Conference on Circuit Theory and Design, pp. 491-496, 1993.

Torsten Lehmann, “Implementation Issues for Back-propagation Learning
in Analog VLSI Neural Networks,” in preparation, Technical University of
Denmark, 1995.

Torsten Lehmann and Lars Kai Hansen, “Analogue VLSI Neural Network

Ensemble Issues.” in preparation, Technical University of Denmark, 1994.

Torsten Lehmann, Erik Bruun and Casper Dietrich, “Analogue/Digital Hy-
brid VLSI Synapses for Recall- and Learning Mode Neural Networks,” in
Proc. 12th NORCHIP semuinar, Gothenburg, Sweeden, pp. 31-38, 1994.

Torsten Lehmann, Erik Bruun and Casper Dietrich, “Mixed Analogue/Digital

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Bibliography Page 144

Matrix/Vector Multiplier for Neural Network Synapses,” in preparation,
Technical University of Denmark, 1995.

F. Thomson Leighton, Introduction to Parallel Algorithms and Architechrures:
Arrays, Trees, Hypercubes, San Mateo: Morgan Kaufmann Publishers, 1992.

Phillip H. W. Leong and Marwan A. Jabri, “Kakadu — A Low Power Ana-
logue Neural Network,” in Proc. §’rd International Conference on Mucroelec-
tronics for Neural Networks, pp. 207-216, 1993.

Phillip H. W. Leong and Marwan A. Jabri, “Kakadu — A Low Power Ana-
logue Neural Network Classifier,” International Journal of Neural Systems,

vol. 4, no. 4, pp. 381-394, 1993.

Bernabé Linares-Barranco, Edgar Sénchez-Sinencio, Angel Rodriguez-Véz-
quez and José L. Huertas, “A CMOS Analog Adaptive BAM with On-Chip
Learning and Weight Refreshing,” IEEE Transaction on Neural Networks,
vol. 4, no. 3, pp. 445-455, May 1993.

Richard P. Lippmann, “An Introduction to Computing with Neural Nets,”
IEEE ASSP Magazine, vol. -, no. 4, pp. 4-22, 1987.

Ronald J. MacGregor, Neural and Braimn Modeling, San Diego: Academic
Press Inc., 1987.

Damien Macq, Michel Verleysen, Paul Jespers and Jean-Didier Legat, “Analog
Implementation of a Kohonen Map with On-chip Laearning,” IEEFE Transac-
tion on Neural Networks, vol. 4, no. 3, pp. 456-461, May 1993.

Kurosh Madani, Ghislain de Tremiolles and Ion Berechet, “Temperature
Effects Modelling and Compensation Analysis in Analogue Implementation of
Stochastic Artificial Neural Networks,” in Proc. 4’th International Conference
on Muicroelectronics for Neural Networks and Fuzzy Systems, Turin, pp. 170—
177, 1994.

Jim Mann, Richard Lippmann, Bob Berger and Jack Raffel, “A Self-Organiz-
ing Neural Net Chip,” in Proc. IEEE Custom Integrated Chircuits Conference,
pp- 10.3.1-10.3.5, 1988.

P. Masa, K. Hoen and H. Wallinga, “20 Million Patterns Per Second Analog
CMOS Neural Network Pattern Classifier,” in Proc. 11th European Confer-
ence on Circuit Theory and Design, pp. 497-502, 1993.

L. W. Massengill, “A Dynamic CMOS Multiplier for Analog Neural Network
Cells,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 26.4.1—
26.4.4, 1990.

Ofer Matan, Christopher J. C. Burges, Yann Le Cun and John S. Denker,
“Multi-digit Recognition Using a Space Displacement Neural Network,” in
Proc. 4’th Neural Information Processing Systems Conference, pp. 488-495,
1992.

Takao Matsumoto and Masafumi Koga, “A High-Speed Learning Method for
Analog Neural Networks,” in Proc. IEEE International Joint Conference on
Neural Networks, pp. 1I-71-11-76, 1990.

M. J. McNutt, S. LeMarquis and J. L. Dunkley, “Systematic Capacitance

[162]
[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Bibliography Page 145

Matching Errors and Corrective Layout Procedures,” IEEE Journal of Solid-
State Circuits, vol. SC-29, no. 5, pp. 611-616, 1994.

Carver Mead, Analog VLSI & Neural Systems, Reading: Addison-Wesley
Publishing Company, 1989.

Carver Mead and Mohammed Ismail, Analog VLSI Implementation of Neural
Systems, Norwell: Kluwer Academic Publishers, 1989.

Christopher Michael and Mohammed Ismail, “Statistical Modeling of Device
Mismatch for Analog MOS Integrated Circuits,” IEEE Journal of Solid-State
Circuats, vol. SC-27, no. 2, pp. 154-166, 1992.

Jean-Yves Michel, “High-Performance Analog Cells in Mixed-Signal VLSI:
Problems and Practical Solutions,” Analog Integrated Circuits and Signal
Processing, vol. 1, pp. 171-182, 1991.

Coe F. Miles and C. David Rogers, “The Microcircuit Associative Memory: A
Bilogically Motivated Memory Architecture,” IFEE Transactions on Neural
Networks, vol. NN-5, no. 3, pp. 424-435, 1994.

Antonio J. Montalvo, Ronald S. Gyurcsik and John J. Paulos, “Building
Blocks for a Temperature-Compensated Analog VLSI Neural Network with
On-Chip Learning,” in Proc. IEEE International Symposium on Circuits and
Systems, London, vol. 6, pp. 329-332, 1994.

Antonio J. Montalvo, Paul W. Hollis and John J. Paulos, “On-Chip Learning
in the Analog Domain with Limited Precision Circuits,”
Symposium on Circuits and Systems, pp. 1-196-1-201, 1992.

Keith K. Moon, Francis J. Kub and Ingham A. Mack, “Random Address
32X32 Programmable Analog Vector-Matrix Multiplier for Artificial Neural
Netwoks,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 26.7.1—
26.7.4, 1990.

Takashi Morie and Yoshihito Amemiya, “An All-Analog Expandable Neural
Network LSI with On-Chip Backpropagation Learning,” IFEE Journal of
Solid-State Chircuits, vol. SC-29, no. 9, pp. 1086-1093, 1994.

Alessandro Mortara and Eric A. Vittoz, “A Communication Architecture
Tailored for Analog VLSI Artificial Neural Networks: Intrinsic Performance
and Limititions,” IFEE Transactions on Neural Networks, vol. NN-5, no. 3,
pp. 459-466, 1994.

V. B. Mountcastle, “An Organizing Principle for Cerebral Function: The Unit
Module and the Distributed System,” in The Mindful Brain, G. M. Edelman
and V. B. Mountcastle, Eds., Cambidge: MIT Press, 1978, pp. 7-50.

Paul Mueller, Jan van der Spiegel, David Blackman, Timothy Chiu, Thomas
Clare, Christopher Donham, Tzu Pu Hsieh and Marc Loinaz, “Design and
Fabrication of VLSI Components for a General Purpose Analog Neural
Computer,” in Analog VLSI Implementation of Neural Systems, Carver Mead
and Mohammed Ismail, Eds., Norwell: Kluwer Academic Publishers, 1989,
pp. 135-169.

Alan F. Murray, “Multilayer Perceptron Learning Optimized for On-Chip

in Proc. International

[175]

[176]

[177)

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

Bibliography Page 146

Implementation: A Noise-Robust System,” Neural Computation, vol. 4, no. 3,

pp. 366-381, 1992.

Alan F. Murray, Dante Del Corso and Lionel Tarassenko, “Pulse-Stream VLSI
Neural Networks Mixing Analog and Digital Techniques,” IEEE Transactions
on Neural Networks, vol. 2, no. 2, pp. 193-204, March 1991.

A. F. Murray, L. Tarassenko, H. M. Reekie, A. Hamilton, M. Brownlow,
S. Churcher and D. J. Baxter, “Pulsed Silicon Neural Networks — Following
the Biological Leader,” in VLSI Design of Neural Networks, Ulrich Ramacher
and Ulrich Riuckert, Eds., Norwell: Kluwer Academic Publishers, 1991, pp.
104-123.

Alan F. Murray and Peter J. Edwards, “Analogue Synaptic Noise — A
Hardware Nuisance, or an Aid to Learning?.” in Proc. 8'rd International
Conference on Microelectronics for Neural Networks, pp. 121-129, 1993.

Alan F. Murray and Peter J. Edwards, “Enhanced MLP Performance and
Fault Tolerance Resulting from Synaptic Weight Noise During Training,”
IEEE Transactions on Neural Networks, vol. NN-5, no. 5, pp. 792-802, 1994.

O. Nerrand, P. Roussel-Ragot, D. Urbani, L. Personnaz and G. Dryfus,
“Training Recurrent Neural Networks: Why and How? An Illustration in
Dynamical Process Modeling,” IEEE Transactions on Neural Networks, vol.

NN-5, no. 2, pp. 178-184, 1994.
Charles F. Neugebauer and Amnon Yariv, “A Parallel Analog CCD/CMOS

Signal Processor,” in Proc. Neural Information Processing Systems Comfer-

ence ‘91, pp. 748-755, 1992.

Chalapathy Neti, Michael H. Schneider and Eric D. Young, “Maximally Fault
Toerant Neural Networks,” IEFEE Transactions on Neural Networks, vol. NN-
3, no. 1, pp. 14-23, 1992.

Paul O’Leary, “Practical Aspects of Mixed Analogue and Digital Design,” in
Analogue Digital ASIC’s — Chrcuit Techniques, Design Tools and Applica-
tions, R. S. Soin, F. Maloberti and J. Franca, Eds., IEE Circuits and Systems
(3) Series, London: Peter Peregrinus Ltd., 1991, pp. 213-238.

0. Osowski, “New Approach to Selection of Initial Values of Weights in Neural
Function Approximation,” Electronics Letters, vol. 29, no. 3, pp. 313-315,
1993.

G. Palm, K. Goser, U. Ruckert and A. Ultsch, “Knowledge Processing in
Neural Architecture,” in Proc. 8’rd International Workshop on VLSI for
Neural Netwoks and Artificial Intelligence, pp. -, 1992.

Joshua C. Park, Christopher Abel and Mohamed Ismail, “Design of a Silicon
Cochlea Using MOS Switched-current Techniques,” in Proc. 11’th FEuropean
Conference on Circuit Theory and Design, pp. 269-274, 1993.

Morten With Pedersen and Lars Kai Hansen, “Recurrent Networks: Second
Order Properties and Pruning,” EI preprint, 1994.

Marcel J. M. Pelgrom, Aad C. J. Duinmaijer and Anton P. G. Welbers,
“Matching Properties of MOS Transistors,” IEEE Journal of Solid-State

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Bibliography Page 147

Circuats, vol. SC-24, no. 5, pp. 1433-1440, 1989.

D. Plaut, S. Nowlan and G Hinton, “Experiments on Learning by Back-
propagation,” Department of Computer Science, Carnegie Mellon University,

Pittsburgh, tech. Rep. CMU-CS-86-126, 1986.

William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vet-
terling, Numerical Recipes in C, Cambridge: Cambridge University Press,
1988.

Ning Qian and Terrence J. Sejnowski, “Predicting the Secondary Structure
of Globular Proteins Using Neural Network Models,” Journal of Molecular
Biology, vol. -, no. 202, pp. 865884, 1988.

Jack I. Raffel, “Electronic Implementation of Neuromorphic Systems,” in Proc.

IEEE Clustom Integrated Chircuits Conference, pp. 10.1.1-10.1.7, 1988.

Ulrich Ramacher, “Guide Lines to VLSI Design of Neural Nets,” in VLSI
Design of Neural Networks, Ulrich Ramacher and Ulrich Riickert, Eds.,
Norwell: Kluwer Academic Publishers, 1991, pp. 1-17.

Ulrich Ramacher and Ulrich Ruckert, VLSI Design of Neural Networks,
Norwell: Kluwer Academic Publishers, 1991.

Ulrich Ramacher and Peter Schildberg, “Recent Developments in Neurody-
namics and their Impact on the Design of Neuro-chips,” International Journal

of Neural Systems, vol. 4, no. 4, pp. 309-316, 1993.

A. A. Reeder, I. P. Thomas, C. Smith, J. Wittgreffe, D. Godfrey, J. Hajto,
A. Owen, A. J. Snell, A. F. Murray, M. Rose and P. G. LeComber, “Applica-
tion of Analogue Amorphous Silicon Memory Devices to Resistive Synapses
for Neural Networks,” in Proc. 2'nd International Conference on Microelec-

tronics for Neural Networks, Munich, pp. 253-260, 1991.

Leonardo M. Reyneri and Enrica Filippi, “An Analysis on the Performance of
Silicon Implementations of Backpropagation Algorithms for Artificial Neural
Networks,” IEEFE Transactions on Computers, vol. C-40, no. 12, pp. 1380—
1389, 1991.

L. M. Reyneri, M. Chiaberge and D. del Corso, “Using Coherent Pulse Width
and Edge Modulations in Artificial Neural Systems,” International Journal of
Neural Systems, vol. 4, no. 4, pp. 407-418, 1993.

Jacques Robert and Philippe Deval, “A Second-Order High-Resolotion In-
cremental A/D Converter with Offset and Charge Injection Compensation,”

IEEE Journal of Solid-State Circuits, vol. SC-23, no. 3, pp. 736-741, 1988.
D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Internal

Repressentations by Error Propagation,” in Parallel Distributed Processing:
Ezplorations win the Muicrostructure of Cognition, vol. 1, D. E. Rumelhart,
J. L. McClelland and the PDP Reserch Group, Eds., Cambridge: MIT Press,
1986, chap. 8.

D. E. Rumelhart, J. L. McClelland and the PDP Research Group, Parallel
Distributed Processing: FExplorations wn the Microstructure of Cognition,

Cambridge: MIT Press, 1986.

[201]

[202]

[203]

[204]

[205]

[206]

207]

[208]

[209]

210]

[211]

212

[213]

[214]

Bibliography Page 148

Eduard Sackinger and Linda Fornera, “On the Placement of Critical Devives
in Analog Integrated Circuits,” IEEE Journal of Solid-State Chircuits, vol.
SC-37, no. 8, pp. 1052-1057, 1990.

Eduard Sackinger and Walter Guggenbihl, “A High-Swing, High-Impedance
MOS Cascode Circuit,” IEEE Journal of Solid-State Circuits, vol. SC-25, no.
1, pp. 289298, 1990.

Shigeo Sakaue, Toshiyuki Koda, Hiroshi Yamamoto, Susumu Maruno and
Yasuharu Shimeki, “Reduction of Required Precision Bits for Back-Propaga-
tion Applied to Pattern Recognition,” IEEE Transactions on Neural Networks,
vol. NN-4, no. 2, pp. 270-275, 1993.

S. Sakurai and M. Ismail, “High Frequency Wide Range CMOS Analogue
Multiplier,” Electronics Letters, vol. 28, no. 24, pp. 2228-2229, 1992.

C. Andre T. Salama, David G. Nairn and Henry W. Singor, “Current
Mode A/D and D/A Converters,” in Analogue IC design: the current-mode
approach, C. Toumazou, F. J. Lidgey & D. G. Haigh, Eds., IEE Circuits and
Systems (2) Series, London: Peter Peregrinus Ltd., 1990, pp. 491-514.

Edgar Sanchez-Sinencio and Clifford Lau, Artificial Neural Networks, New
York: IEEE Press, 1992.

Srinagesh Satyanarayana, Yannis P. Tsividis and Hans Peter Graf, “A Recon-
figurable VLSI Neural Network,” IEEE Journal of Solid-State Circuits, vol.
SC-27, no. 1, pp. 67-81, 1992.

Navin Saxena and James J. Clark, “A Four-quadrant CMOS Analog Multiplier
for Analog Neural Networks,” IEEE Journal of Solid-State Chrcuits, vol. SC-
29, no. 6, pp. 746-749, 1994.

Jiirgen Schmidhuber, “An O(n?) Learning Algorithm for Fully Recurrent Net-
works,” Institut fur Informatik, Technische Universitat Miunchen, Munchen,

1991.

Christian Schneider and Howard Card, “Analog CMOS Synaptic Learning
Circuits Adapted from Invertebrate Biology,” IEEE Transactions on Circuits
and Systems, vol. CAS-38, no. 12, pp. 1430-1438, 1991.

Jesper S. Schultz, “Neurale Netvaerk 1 VLSI Teknologi — med sparse digitale
inputs,” M.Sc. thesis, Elektronisk Institut, Danmarks Tekniske Hgjskole,
Lyngby, 1993.

Evert Seevinck, “Analog Interface Circuits for VLSI,” in Analogue IC design:
the current-mode approach, C. Toumazou, F. J. Lidgey and D. G. Haigh, Eds.,
IEE Circuits and Systems (2) Series, London: Peter Peregrinus Ltd., 1990,
pp. 451-489.

Charles L. Seitz, “System Timing,” in Introduction to VLSI Systems, Carver
Mead and Lynn Conway, Eds., Reading: Addison-Wesley Publishing Com-
pany, 1980, pp. 218-262.

Terrance J. Sejnowski and Charles R. Rosenberg, “Parallel Networks that
Learn to Pronounce English Text,” Complez Systems, vol. 1, pp. 145-168,
1987.

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228)]

Bibliography Page 149

Nikola B. Serbedzija and Gerd Kock, “Fault-Tolerant Neuro-Computing,” in
Proc. International Conference on Artificial Neural Networks ’94, Sorrento,

vol. 2, pp. 1404-1407, 1994.

T. Serrano, B. Linares-Barranco, and J. L. Huertas, “A CMOS VLSI Analog
Current-Mode High-Speed ART1 Chip,” in Proc. IEEE International Confer-
ence on Neural Networks, Orlando, vol. 3, pp. 1912-1916, 1994.

Peter Shah, “A Short Term Analogue Memory,” in Proc. 18th European Solid
State Circuits Conference, pp. 127-130, September 1992.

Samir Shah and Francesco Palmieri, “MEKA — A Fast, Local Algorithm for
Training Feedforward Neural Networks,” in Proc. IEEE International Joint
Conference on Neural Networks, pp. 111-41-111-46, 1990.

Je-Hurn Shieh, Mahesh Patil and Bing J. Sheu, “Measurement and Analysis
of Charge Injection in MOS Analog Swithces,” IEEE Journal of Solid-State
Circuats, vol. SC-22, no. 2, pp. 277-281, 1987.

Takeshi Shima, Tomohisa Kimura, Yukio Kamatani, Tetsuro Itakura, Ya-
suhiko Fujita and Tetsuya lida, “Neuro Chips with On-chip Back-propagation
and /or Hebbian Learning,” IEFEE Journal of Solid-State Circuits, vol. SC-27,
no. 12, pp. 1868-1876, 1992.

Masakazu Shoji, “Elimination of Process-Dependent Clock Skew in CMOS
VLSL,” IEEE Journal of Solid-State Chircuits, vol. SC-21, no. 5, pp. 875-880,
1986.

Svante Signell and Kare Mossberg, “Offset-Compensation of Two-Phase
Switched-Capacitor Filters,” IEEE Journal of Solid-State Circuits, vol. SC-36,
no. 1, pp. 31-41, 1989.

Roy Ludvig Sigvartsen, Yngvar Berg and Tor Sverre Lande, “An Analog
Neural Network with On-chip Back-propagation Learning,” in Proc. 12th
NORCHIP seminar, Gothenburg, Sweeden, pp. 169-176, 1994.

Patrick K. Simpson, “Foundations of Neural Networks,” in Artificial Neural
Networks, Edgar Sanchez-Sinencio and Clifford Lau, Eds., New York: IEEE
Press, 1992, pp. 3-24.

Anthony W. Smith and David Zipser, “Learning Sequential Structure with the
Real-time Recurrent Learning Algorithm,” International Journal of Neural
Systems, vol. 1, no. 2, pp. 125-131, 1989.

S. A. Solla, E. Levin and M. Fleisher, “Accelerated Learning in Layered Neural
Networks,” Complex Systems, vol. 2, pp. 625-639, 1988.

Jens Sparsg, Christian D. Nielsen, Lars S. Nielsen and Jgrgen Staunstrup,
“Design of Self-timed Multipliers: A Comparison,” in Proc. IFIP TC10/WG-
10.5 Working Conference on Asynchronous Design Methodologies, Manch-
ester, pp. 165-179, 1993.

Jan Van der Spiegel, Paul Mueller, David Blackmann Peter Chance, Cristo-
pher Donham, Ralph Etienne-Cummungs and Peter Kinget, “An Analogue
Neural Computer with Modular Architecture for Real-Time Dynamic Com-
putations,” IEEE Journal of Solid-State Circuits, vol. SC-27, no. 1, pp. 82-92,

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

Bibliography Page 150

1992.

Balsha R. Stanisic, Nishath K. Verghese, Rob A. Rutenbar, L. Richard Carley
and David J. Allstot, “Addressing Substrate Coupling in Mixed-Mode IC’s:
Simulation and Power Distribution Synthesis,” IEEE Journal of Solid-State
Circuats, vol. SC-29, no. 3, pp. 226-238, 1994.

W. Scott Stornetta and B. A. Huberman, “An Improved Three-layer Back
Propagation Algorithm,” in Proc. IEEE International Conference on Neural
Networks, vol. 2, pp. 637-643, 1987.

Lubert Stryer, Biochemustry, 3rd ed., New York: W. H. Freeman and
Company, 1988.

Sun, Moll, Berger and Alders, “Break-down Mechanism in Short Channel
MOS Transistors,” in Proc. IEEE Technical Digest, International Electron
Device Meeting, Wasington DC, pp. 478, 1978.

Ivan E. Sutherland, “Micropipelines,” Communzications of the ACM, vol. 32,
no. 6, pp. 720-738, June 1989.

C. Svarer, L. K. Hansen and J. Larsen, “On Design and Evaluation of
Tapped-Delay Neural Network Architectures,” in Proc. IEEE International
Conference on Neural Networks, vol. 1, pp. 46-51, 1993.

S. M. Sze, Semiconductor Devices, Physics and Technology, New York: John
Wiley & Sons, 1986.

Janos Sztipanovits, “Dynamic Backpropagation Algorithm for Neural Network
Controlled Resonator-Bank Architecture,” IEEE Transactions on Circuits
and Systems II, vol. CAS-39, no. 2, pp. 99-108, 1992.

Lionel Tarassenko and Jon Tombs, “On-chip Learning with Analogue VLSI
Neural Networks,” in Proc. 8’rd International Conference on Microelectronics

for Neural Networks, pp. 163-174, 1993.

Lionel Tarassenko, Jon Tombs and Graham Cairns, “On-chip Learning with
Analogue VLSI Neural Networks,” International Journal of Neural Systems,
vol. 4, no. 4, pp. 419-426, 1993.

Hans Henrik Thodberg, “The Neural Information Processing System used
for pig carcase grading in Danish Slaughterhouses,” Danish Meat Research
Institute preprint, No. 989 E, Roskilde, 1991.

Axel Thomsen and Martin A. Brooke, “A Floating Gate CMOS Signal
Conditioning Circuit for Nonlinearity Correction,” Analog Integrated Circuits
and Signal Processing, vol. 4, pp. 21-29, 1993.

Cris Toumazou and John Lidgey, “Universal Current-Mode Analogue Ampli-
fiers,” in Analogue IC Design: The Current-Mode Approach, C. Toumazou,
F. J. Lidgey and D. G. Haigh, Eds., IEE Circuits and Systems (2) Series,
London: Peter Peregrinus Ltd., 1990, pp. 127-180.

C. Toumazou, F. J. Lidgey and D. G. Haigh, Analogue IC Design: The
Current-Mode Approach, IEE Circuits and Systems (2) Series, London: Peter
Peregrinus Ltd., 1990.

[243]

[244]

[245]

[246]

247

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

Bibliography Page 151

C. Toumazou, F. J. Lidgey and C. A. Makris, “Extending Voltage-mode Op
Amps to Current-mode Performance,” IEE Proceedings, Pt. G, vol. 137, no.
2, pp- 116-130, 1990.

C. Toumazou, A. Payne and J. Lidgey, “Current-Feedback Versus Voltage-
Feedback Amplifiers: History, Insight and Relationships,” in Proc. IEEE
International Symposium on Circuits and Systems, pp. 1046-1049, 1993.

Yannis Tsividis, Mihai Banu and John Khoury, “Continuous-Time MOSFET-
C Filters in VLSL,” IEEE Transactions on Circuits and Systems, vol. CAS-33,
no. 2, pp. 125-140, 1986.

Y. Tsividis and S. Satyanarayana, “Analogue Circuits for Variable-Synapse
Electronic Neural Networks,” FElectronics Letters, vol. 23, no. 24, pp. 1313—
1314, 1987.

Yannis P. Tsividis, “R&D in Analog Circuits: Possibilities and Needed
Support,” in Proc. 18’th European Solid State Circuits Conference, pp. 1-15,
1992.

A. C. Tsoi, C. N. W. Tan and S. Lawrence, “Financial Time Series Forcasting:
Application of Artificial Neural Network Techniques,” preprint, Department of
Electrical Engeneering and Computer Engineering, University of Queensland
St. Lucia, Australia, 1994.

Paul W. Tuinenga, SPICE: A Guide to Circuit Simulation & Analysis Using
PSpice, Englewood Cliffs: Prentice Hall, 1988.

Dogan A. Tugal and Osman Tugal, Data Transmission: Analysis, Design,
Applications, New York: McGraw-Hill, 1982.

Maurizio Valle, Daniele D. Caviglia and Giacomo M. Bisio, “An Experimental
Analog VLSI Neural Chip with On-Chip Back-Propagation Learning,” in
Proc. 18’th European Solid-State Chircuits Conference, pp. 203—206, 1992.

S. R. Vemuru, “Layout Comparison of MOSFETs with Large W/L Ratios,”
Electronics Letters, vol. 28, no. 25, pp. 2327-2329, 1992.

Eric A. Vittoz, “MOS Transistors Operated in the Lateral Bipolar Mode
and Their Application in CMOS Technology,” IEEE Journal of Solid-State
Circuats, vol. SC-18, no. 2, pp. 273-279, 1983.

E. Vittoz, H. Oguey, M. A. Maher, O. Nys, E. Dukstra and M. Chevroulet,
“Analog Storage of Adjustable Synaptic Weights,” in VLSI Design of Neural
Networks, Ulrich Ramacher and Ulrich Riickert, Eds., Norwell: Kluwer
Academic Publishers, 1991, pp. 48-63.

Fong-Jim Wang and Gabor C. Temes, “A Fast Offset-Free Sample-and-Hold
Circuit,” IEEE Journal of Solid-State Circuits, vol. SC-23, no. 5, pp. 1270-
1272, 1988.

Yiwen Wang, “A Modular Analog CMOS LSI for Feedforward Neural Net-
works with On-Chip BEP Learning,” in Proc. 1993 IEEE International Sym-
posium on Circuits and Systems, vol. 4, pp. 2744-2747, 1993.

Zhenhua Wang, “A CMOS Four-Quadrant Analog Multiplier with Single-
Ended Voltage Output and Improved Temprature Performance,” IEEE Jour-

[258]
[259]

[260]

261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

272]

[273]

Bibliography Page 152

nal of Solid-state Circuits, vol. SC-26, no. 9, pp. 1293-1301, 1991.

Timothy L. H. Watkin, Albrecht Rau and Michael Biehl, “The Statistical
Mechanics of Learning a Rule,” Moder Physics Review, vol. -, pp. 445, 1992.

R. B. Webb, “Optoelectronic Implementation of Neural Networks,” Interna-
tional Journal of Neural Systems, vol. 4, no. 4, pp. 435-444, 1993.

George Wegmann, Eric A. Vittoz and Fouad Rahali, “Charge Injection in
Analog MOS Switches,” IEEE Journal of Solid-State Circusits, vol. SC-22, no.
6, pp. 1091-1097, 1987.

S. Andreas Weigend, Bernardo A. Huberman and David E. Rumelhart,
“Predicting the Future: a Connectionist Approach,” International Journal

of Neural Systems, vol. 1, no. 3, pp. 193-209, 1990.

Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design:
A Systems Perspective, Reading: Addison-Wesley Publishing Company, 1985.

Chin-Long Wey, Benlu Jiang and Gregory M. Wierzba, “Build-In Self-Test
(BIST) Design of Large-Scale Analog Circuit Networks,” in Proc. IEEE
International Symposium on Circuits and Systems, pp. 1123-1126, 1989.

Halbert White, “Learning in Artificial Neural Networks: A Statistical Per-
spective,” Neural Computation, vol. 1, pp. 425-464, 1989.

Bernard Widrow and Michael A. Lehr, “30 Years of Adaptive Neural Net-
works: Perceptrons, Madaline, and Backpropagation,” IEEE Proceedings, vol.
78, no. 9, pp. 1415-1442, 1990.

Remco J. Wiegerink, Evert Seevinck and Wim de Jager, “Offset Cancelling
Circuit,” IEEE Journal of Solid-State Circuaits, vol. SC-24, no. 3, pp. 651-658,
1989.

Ronald J. Williams and David Zipser, “A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks,” Neural Computation, vol. 1, pp.
270-280, 1989.

Ronald J. Williams and David Zipser, “Experimental Analysis of the Real-
time Recurrent Learning Algorithm,” Connection Science, vol. 1, no. 1, pp.

87-111, 1989.

Heini Withagen, “Implementing Backpropagation with Analog Hardware?.”
in Proc. International Conference on Neural Networks, Orlando, pp. -, 1994.

Robin Woodburn, H. Martin Reekie and Alan F. Murray, “Pulse-stream
Circuits for On-chip Learning in Analogue VLSI Neural Networks,” in Proc.
IEEE International Symposium on Chircuits and Systems, London, vol. 4, pp.
103-106, 1994.

Niels Holger Wulff, “Learning Dynamics with Recurrent Networks,” M.Sc.
thesis, NORDITA, Nordisk Institut for Teoretisk Fysik, Kgbenhavn, 1992.

Yun Xie and Marwan Jabri, “Analysis of the Effects of Quantization in
Multilayer Neural Networks using a Statistical Model,” IEEE Transactions
on Neural Networks, vol. NN-3, no. 2, pp. 334-338, 1992.

Moritoshi Yasunaga, Noboru Masuda, Masayoshi Yagyu, Mitsuo Asai, Minoru

[274]

Bibliography Page 153

Yamada and Akira Masaki, “Design, Fabrication and Evaluation of a 5-
inch Wafer Scale Neural Network LSI Composed of 576 Digital Neurons,”

in Artificial Neural Networks, Edgar Sanchez-Sinencio and Clifford Lau, Eds.,
New York: IEEE Press, 1992, pp. 235-243.

Chong-Gun Yu and Randall L. Geiger, “An Automatic Offset Compensation
Scheme with Ping-pong Control for CMOS Operational Amplifiers,” IEEE
Journal of Solid-State Circuits, vol. SC-29, no. 5, pp. 601-610, 1994.

Index

Page 154

Index

A priori knowledge o4
Abbreviations xi1
Absolute temperature 175
Abstract 11
ACssignal ...l XVi
AC-couple learning hardware .. 120
Accuracy ... o 164
Acknowledgements vii
Activation function 167, 8
Activation functions 26
Adaptability 5
Adaptive system 124
Adaptive systems 53, 60
Adaptivel 169
ADC ..o 19
Algorithm variations 112
Amorphous silicon storage 17
Amount of learning hardware ... 47
Analogue adjustment 19, 23
Analogue computing accuracy . 178
Analogue neural networks 133
Analogue VLSI ANN

ensembles L. 124

Analogue VLSI ANN properties .. 8

Analogue VLSI learning ANN

properties o oL 48
ANN applications 48
ANN model map easily on

hardware 8
ANN must fit technology 8
ANN 166
Application invariant 53
Application specific 2
Applications and motivations .. 169
Architecturel 10
Artificial neural network 166
Artificial neural networks . 133, 166
ASIC interconnection 109, 78
Associative memories 169
Asynchronousness 2,5
Asynchronous 169
Attractor dynamics 52
Auto offset compensation 102
Auto zeroing simulation 108
Back-propagation ANN

architecture 78

Back-propagation chip computing
elements

Back-propagation chip set

improvements 197
Back-propagation learning 58
Back-propagation mode 77

Back-propagation neuron chip E 71
Back-propagation neuron

schematic, 193
Back-propagation neuron 69
Back-propagation synapse

chip ... E 70
Back-propagation synapse
column/row element 190
Back-propagation system

hardware 77
Back-propagation system 65
Back-propagation weight update
schematic, 194
Back-propagation 50
Basics ..o 59, 93
Batch learning 171, 61
Bibliography 133
Binary coding of inputs 35
Bipolar transistors 177
Bit absolute measure 164
Bit relative measure 164
BJT 177
Boltzman constant 175
Boltzmann machines 8
Boundary effects 181
BPL ... 58

Building block components 109, 10,
205, 8

Bulk threshold parameter 175
Capacitive storage 15
Cascadability 11
Cascadable 96
CCII4+ ..o 205
CCO ..o 26
Cerebral cortex 122
Channel length modulation

constant 175
Channel length modulation

parameter 174
Channel length 174
Channel width 174
Chip compound 38

Index

Page 155
Chip design 100, 28, 66
Chip designs, 183
Chip measurements 106, 36, 70
Chip photomicrographs E 68
Chip set improvements 187
Chip-in-the-loop training 5
Choice of learning algorithms ... 48
Chopper stabilized weight
updatingol 87
Chopper stabilizing 86
Clamped derivative output 75
Classification 169
Clock generator 202
CMOS process used 28
Collector current 177
Columns of synapses 11
Comments on the topology 97
Common centroid layout 181
Computation requirements o4
Computed neuron derivative 73
Computing accuracy 178
Conclusions 128
Conjugate gradient method 49
Connection strength 166
Connection strengths 9

Connection updates per second 165

Connections per second 165
Consensus cost function 126
Consensus decision 123
Consensus trainer 125
Contentsccoovii... viil
Continuous time NLBP neuron . 82
Continuous time non-linear back-

propagation neuron 83
Continuous time RTRL system 116
Control systems 169
Convolution 116
Cost function offsets 56
Cost function 170, 60
CPS .. 165
Critic ..o 170
CUPS ... 165
Current auto zeroing principle . 103
Current controlled oscillator 26
Current conveyor differencer 33

Current conveyor 207
Current differencer 21
Current input inherently 83
Current levels 184
Current mismatch 179
Current subtraction by row 179

Current subtraction by synapse 178

Cut-off MOST 174
DAC resolution enhancement .. 104
DAC .. 19
Dansk iv
Data compression 169
Data conversion 6
DCsignalo.o ... XVi
Definitions 164
Degenerated momentum 89
Derivation of the algorithm 113, 80

Derivative computation avoided . 80
Derivative computation 51§)
Derivative perturbation 172, 60

Design strategy 29
Deterministic neurons 9
Device orientation 181
Differencer 21
Different neuron non-linearities . 73
Different neuron transfer

functionsl 73
Different parabola non-

linearitiesccovuvuunnn. 74
Different parabola transfer

functionsl 74
Differential quotient derivative
approximation 75, 76
Digital level shifter 185
Digital PC interface 77
Digital storage 18
Digital weight updating hardware
principleo 79
Digital weight updating

hardware ...t 69
Discrete input alphabet 34
Discrete time feedback 10
Discrete time NLBP neuron 83
Discrete time non-linear back-
propagation neuron 84

Index

Page 156
Distributed neuron 26, 27
Distributed neuron-synapse 27
Distributed neuron-synapses 13
Domains of signalling 13
Double resolution D/A
CONVETSION .« vvvvvvennnnnnnnnnn 103
Drain current variance 179
Drain current 174
Driving force of VLSI 18
Droop ratet 74
DSP ..o 18
Dynamic learning rate 60
Dynamic range 21, 24, 30, 55
E-c current gain cancelling 42

Edge trigged sampler sampling 107
Edge trigged sampler 100
Effective bias current 42
Effective Connection Primitives Per

Secondo 165
Effective maximum synapse

weight o i 29
Electronic synapse 14
Electronically computed neuron
derivative 72
Elementary charge 175
Eliminate need for matched
components 83
Emitter area 177
Energy used by learning

hardware 47
English 11
Enhanced performance 124
Entropic cost function 172
Epoch length, 171
Epoch 171
Error back-propagation 50
Error measure 170
Eta finder 61
Example described problems .. 169
Exchanging inputs and outputs . 64
Expandable neural network 11
Expandable recurrent neural
network L 12
Exploit implicit multiplication .. 82
Fahlman perturbation 172

Fault tolerance 124, 3,5
Fault tolerant 169
Feedback 9
Finite automaton 77
Finite state machine 77
Fires ... 166
Firingrate 166

First generation synapse chip . E 69

Floating gate MOSFET 17
Floating gate storage 17
Focus on electrical properties ... 83
Folding synapse matrix 12
Font XVi
Forward Early voltage 177
Forward emitter-collector current
AL« et e 177
Forward mode neuron
characteristics 73
Forward mode synapse
characteristics 71
Forward mode BPL synapse column
element 191
Forward mode BPL synapse row
element 191
Forward mode neuron transfer
characteristics 72
Forward mode synapse transfer
characteristics 71
Forward mode weight offsets 72
Forward mode 65
Four quadrant multiplier 20
FSM .. 7
Fully interconnected 11
Further work 115,42, 85
Gate oxide capacitance 175
General ANN architecture 53
General, high level computational
ANNs oo 121
General neural network model . 167

General process parameter canceling

circult ... 43
General purpose analogue neural

network L 48, 8
Generalization ability 173
Gilbert multiplier 21
Global process variations 180

Index

Page 157
Gradient descent algorithms ... 170
Gradient descent learning? 120
Gradient descent learning 49
Gradient descent 170, 49
Handles 111
Hard limiter 9
Hard/soft hybrid synapses 127
Hardware compatible 54
Hardware considerations 55
Hardware consumption 47

Hardware efficient approach 64

Hardware efficient learning 47
Hardware implementation .. 114, 82
Hardware on chip 28
Hebbian learning 62
Hessianccoiiiiinnn. 49
High accuracy calculations 86
Higher order neurons 9
Hopfield networks 9
Huge, massively parallel

systems ... L 121
Human genom project 34
Hyperbolic tangent neuron .. 27, 30
Hyperbolic tangent transfer

function L 27
Implementation of on-chip back-
propagation o8
Implementation of RTRL

hardware 92
Implementation of the neural
network L 7
Implementing ANNs in analogue
hardware 2

Implementing learning algorithms in

analogue hardware 5)
Improving the derivative
computation 75
Including algorithmic

improvements 88
Indexo il 154
Inner product multiplier 32
Inner product multipliers 31
Input bandwidth 36
Input indices 93
Input vector, 59
Instant cost function 171

Integral non-linearity 165
Integrated circuit issues 174
Integrated circuit layout 180
Integrated circuits 133, 174
Internal logic level 184
In-the-flight training 53
Introduction, 1
IPM oo 31
Kronecker’s delta 17
Large learning rates 82
Lateral bipolar mode MOSFET
symbol 178

Lateral bipolar mode MOSFET 178
Lateral bipolar mode MOSFET . 28

Lateral bipolar mode 177
Layer parallel back-propagation
hardware 66
Layer synchronous weight

update i 65
Layered feed-forward neural
networkl 168
Layout of matched transistors . 182
Layout L. v
LBM MOSFET 177
Learn mode 65
Learning by epoch 171
Learning by example 171
Learning by subsequence 95
Learning cycle, 94
Learning hardware 48
Learning loop gain 120
Learning rate 171, 56, 59
Learning speed 74
Learning 170
Least significant bits 164
Letter input 34
Letters ..., 34
Linear MOST operation 174
Linear multiplier 21
List of figures XVii
Local process variations 180
Low cost algorithmic

improvements 63
Low power applications 3,6
LSBp oo 164

Index

Page 158

Majority decision 123
Mapping the algorithm on VLSI 10,
62, 95

Massively parallel learning 47
Matrix-vector multiplier 10
MDAC ... 23
Measured neuron transfer
function L 36
Measured synapse characteris-

B1CS oo 37
Measured synapse-neuron step

TESPOIISE .« vevenetan e, 38

Measured synapse-neuron transfer

characteristics 38
Memories ..o, 15
Memory requirements o4
Metastability 3
Miscellaneous references 133
Mismatch 178
MLP ... 168, 50
Modules 8
Momentum inclusion 88
Momentum parameter 60
Momentum 60, 88
MOS Gilbert multiplier 22
MOS resistive circuit multiplier . 23
MOS resistive circuit 209
MOS transistor symbols 176
MOS transistors 174
MOSFET 174
MOST ... oo 174
Motivation for using gradient
descent L 50
MRC operated in forward mode 64
MRC operated in reverse mode . 64
MRC resistive equivalent 23
MRC ... 22
Multi layer perceptron 50
Multidimensional chopper
stabilization 87
Multi-layer perceptron 168
Multiplier based on MRCs 69
Multipliers 20
Multiplying DAC synapse 24
Multiplying DAC 23

MVM ... 10
NARV ..o 173
N-channel MOS transistor

symbols 175
N-channel MOS transistor 175
Negligible neuron error offset .. 100
Net mnput, 167
NETtalk oot 32
Network input 9
Network topology 9
Neural network ensemble 123
Neural network ensembles 123
Neuron activation block

schematic 85
Neuron activation 167, 9
Neuron bias 167
Neuron chipccovviiinnn. 11
Neuron clustering 121, 122
Neuron derivative variable
discretization 99
Neuron derivative variables 93
Neuron derivatives 56
Neuron error offsets 56, 99
Neuron error 94
Neuron errors 59
Neuron sampler droop rate 74
Neuron indices 93
Neuron k inputs 9
Neuron k net input 8
Neuron net input derivative
variables oL 93
Neuron output 99
Neuron threshold 167
Neuron transfer characteristics .. 36
Neuron transfer function

steepness il 29
Neuronscooeeiinenn. .. 166

Niches for analogue VLSI ANNs . 2
Niches for analogue VLSI learning

hardware 5
NLBP domain parameter 81
NLBP hardware overhead 84
NLBP simulations 82
NLBP training error 81
NLBP weight change 81

Index

Page 159
NLBP weight errors 81
NLBP ... 80
NLRTRL neuron derivative
variables o L 113
NLRTRL ...t 113
NLSM ..o 24
No extra routing 65

No extra synapse hardware 64
Noise ...t 181, 57
Non unity e-c current gain

canceling 43
Non-linear back-propagation 80
Non-linear DAC 104
Non-linear principle 113
Non-linear real-time recurrent
learning ol 113
Non-linear RTRL system 114
Non-linear RTRL 113
Non-linear synapse multiplier ... 24
Non-linearities 99
Non-linearity 165
Non-relaxation systems 10
Non-volatile analogue memories . 17
Normalized average relative
VATIATICE © e e ee e 173
NPN bipolar transistor symbol 177
NPN bipolar transistor 177
Nucleotide sequence 35
OBD ... 12
Objective ..., 6
Offset compensation 109, 69
Offset currents 37
Offset error 165, 21
Offset errors 56, 99
Offset ...t 178
On-chip learning 133
On-line learning convergence ... 61
On-line learning 171, 61
Op-amp frequency response ... 207
Operational amplifier 205
Optimal brain damage 12
Order N signal slice 101
Oscillating weights o1
Other improvements ... 117,44, 90
Our ..o Vi

Output conductance 175
Output error 170
Output layer 59
Parallelism 2,5
Parallel 169
Pattern recognition 169
PC interface 39
Perceptron 168
Performance evaluation 172
PEM ... 14
Pipelining, 94
Powerful 54
Preface ... o v
Preliminary conceptions on

hardware learning 46

Principal BPL system operation 65

Probabilistic rounding 55
Process gradients 180
Process parameter dependency
canceling, 42
Process transconductance

parameter 175
Process variation insensitivity .. 66
Propagation delay 95
Pruningo oL 12
PSRR ... 84
Published papers E1
Pulse frequency modulation 14
Pulse frequency neuron 26
Pulse stream neural network 14
Pulse width modulation 14
PWM ... 14
Quadratic cost function 171
Quantize-regenerate 16
Quantizing the weights 16
Quasi-Newton 49
Quiescent drain current 175
Race-around 100
Radial basis function 83
RAM backup memory 16
Random initial state 95
Random synapse access 31
RANN ... 52, 93
Read synapse matrix 17

Index

Page 160

Real-time recurrent learning
chip E 73
Real-time recurrent learning 52, 53,

92

Real-time training 53
Real-world data set 40
Real-world interfacing 4
Recall mode equation 62
Recall mode speed 74
Reconfigurable network

topologies L. 12
Reconfigurable neural network .. 13
Recurrent artificial neural net

works ... 52
Recurrent networks 52
Reduce the minimum learning

rate ... 79
Refresh by relearning 123
Refreshing schemes 16
Regression 169
Regularity 4,6
Regular 169
Regulated gain cascode 206
Regulated gain cascodes 205
Relaxation 94
Relearning 16
Research in learning

algorithms 120
Resolution 165, 18
Restoration efficiency 126

Reuse activation function circuit 83

Reverse mode synapse
characteristics 71
Reverse mode BPL synapse column

element 191

Reverse mode BPL synapse row

element 191
Reverse mode synapse transfer

characteristics 71
Reverse mode weight offsets 72
Reverse mode 65
RGC current mirror 206
RGC ... 205
Rise/fall time 202

Route mode BPL synapse column

element 191

Route mode BPL synapse row

element, 191
Route mode 65
Routing ...t 11
Rows of synapses 11
RTRL ANN basic architecture . 110
RTRL chip improvements 203
RTRL chip ...t 100
RTRL signal slice schematic ... 200
RTRL system hardware 107
RTRL system topology 109

RTRL weight change schematic 201
RTRL/back-propagation hybrid 77
RTRL /back-propagation system

interface E 108
RTRL ... 53, 92
Sample applications 34
SAR bit slice 105
SAR start signal gating 199
SAR ... 102
Saturation mode BJT

Operationoouue.... 177
Saturation MOST operation ... 174
Saving weight updating

hardware 63
Scaled back-propagation synapse
chip ... 77, E 72
Scaled synapse chip
characteristics 197
Schematic back-propagation

TLEUTOLL .« v et eteieeeieneeenennn 62
Schematic back-propagation

SYIAPSE «evet et 62
Second generation hyperbolic
tangent neuron 68

Second generation synapse chip 37,

67

Self refreshing ANN system ... 125
Self refreshing system 123
Self timed 2
Self-pruning 25
Self-repair 125
Semi parallelism 69
Serial weight updating scheme .. 79
Serial weight updating 63
Short channel snap-back 176

Index

Page 161
Short term adaptations 127
Sigmoid function 172
Signal slices 96
Signalling 13
Simple ANN model 8
Simple models 48, 8
Simple non-linear synapse
multiplier 25

Simple weight error calculation . 82
Simple weight updating scheme . 80
Simulated annealing 49
Simulatedi neuron transfer
function L 85
Simulations of non-idealities 99
Single ended signalling 184
Size limiting 97
Snap-back L 176
Space/time domain compromise 96
Sparse input synapse chip

column i 35

Sparse input synapse chip .. 34, 35,
68, 98

Sparse inputs 34
Special process facility storage .. 17
Speed improvement 62, 66
Speed limiting 98
Splice sites 34
Squashing function steepness .. 172
Squashing function 167
Step response 38
Stochastic approximation 76
Stochastic neurons 8
Storing analogue signals 15
Storing of data 52
Storing the training patterns 53
Strong inversion circuits 10
Strong inversion surface

potential 175
Subthreshold MOST operation . 175
Subthreshold slope 175
Successive approximation

register 102, 105
Summary 117,44, 90
Summed weight neuron
perturbation 51

Sunspot learning error 41
Sunspot prediction error 41
Sunspot prediction 40
Sunspot time series 40
Supervised learning 170, 49
Supply current sensing 205
Surface mobility 175
Symbols o L Xiv
Symmetric synapse multiplier ... 64
Synapse chip 11
Synapse costoia.. 18
Synapse layout 186
Synapse schematic 33
Synapse strength backup

INEIMNOTY « e tvtene e et eeiiaaeeeenn 78
Synapse strength discretization . 99
Synapse transfer characteristics . 37
SYNAPSE vttt 166
System design aspects 183
System design 107, 39, 77
System designs 183
System measurements 40
System simulations 99
Table of ANN chip set
characteristics 187
Table of Back-propagation chip set
characteristics 195
Table of row/column element
control i 189
Table of RTRL chip

characteristics 203
Table of scaled BPL synapse chip
characteristics 196
Tanh derivative computing block
characteristics 107
Tapped delay line ANN 40
Target indices 94
Target set empty 112
Target value 171
Target values 59
Teacher forcing 94
Teacher 170
Teaching ANNs 170
Teaching, 170
Technology driven model 48, 8

Index

Page 162
Temperature compensation 43
Temperature gradients 181
Temporal information 52
Test PCB schematics E 74
Test perceptron system
architecture 39
Test perceptron 39
Test set ..., 172
The ANN model 167
The artificial neural network
model 8

The back-propagation algorithm 58
The back-propagation neuron

chips .. .o 191
The back-propagation synapse

chips .. .o 189
The current comparator 104
The current conveyor 207
The D/A converter 102

The discrete time RANN system 96
The discrete time RTRL system 97

The transconductor 208
The interface 111
The MOS resistive circuit 22
The network 9
The neuron chip 29, 36, 68, 72
The neuronscovv.n. 8

The on-chip back-propagation chip

SEh 189
The op-amp and the CCII+ ... 205
The operational amplifier 206
The RTRL algorithm 92
The RTRL chip 198
The RTRL/back-propagation

system ... 204
The SAR 105
The scalable ANN chip set 184
The scaled back-propagation
synapse chips 196
The second generation synapse

chip ..o 32
The synapse chip 31,67, 71
The synapse chips 185, 37
The transconductor 208
The width 1 data path module . 110

The width N data path module

signal slice 100
Thermal voltage 175, 177
Thesis ... v
Thoughts on future analogue VLSI
neural networks 119
Threshold voltage 174
Time multiplexing 65
Time series analysis 169
Time step ...oovviiiiiii... 94
Total cost function 171
Trainability 54
Training data 171
Training set 172
Transconductance parameter ... 174
Transconductance 175
Transconductor 208
Transfer function 167, 9
Transistor parameter 179
Transmission gate symbol 199
Transport saturation current

density ... il 177
Triode MOST operation 174
TTL level ...t 184
Two layer test perceptron 39
Two phase non-overlapping

clock ... 199
Typical electronic synapse 14
Typical MRC layout 209
Unary coding of inputs 34
Unit size devices 180
Unsupervised learning 170
Variations 59, 94
Very large scale integration 174
Virtual targets 52
VLSI neural networks 10
VLST . 174
Voltage levels 184
Voltage reference level 184
Wafer scale integration 3
Weight change IPM element
characteristics 107
Weight change offset 99
Weight change offsets 56
Weight change signal memory .. 89
Weight change threshold 88

Index

Page 163
Weight change 60
Weight decay inclusion 89
Weight decay 60, 89
Weight discretization 55
Weight errors 59
Weight matrix resolution 37
Weight perturbation o1
Weight updating hardware
placement 62
Weight updating hardware .. 62, 79
Weight updating rule 59
Weighted sum decision 123
Weight ...l 167

Weight-output characteristic of

NLSM .. 25
We oo Vi
Width 1 data path module 98
Width N data path modules 98

Width N + M data path module 98
Word hyphenation 34
Zero bias threshold voltage 175

ELECTRONICS <A
]
INSTITUTE g

Hardware Learning in
Analogue VLSI

Neural Networks

A thesis by

Torsten Lehmann

Appendices
and

Enclosures

September 1994

Page 164

Appendix A

Definitions

In this appendix, definitions are given of concepts that are not otherwise well-

defined.

Accuracy

The accuracy of a quantity £ is defined as its maximal deviation from ideality:

DA&’ déf maXy |€(£) - 5ideal(£)| ‘ (25A)

gmax - gmin

The normalization can also be with respect to the ideal range ideal,max — &ideal, min -

Bit relative measure

The bit relative measure of a quantity A¢ is defined as the number of least signifi-
cant bits LSBp of A€ given an B bit discretization of the quantity £ to which A¢

1s related:
A)/ A B A
_— 1LSBg = ———— x 27 26
(gmax - gmin B gmax - gmin ()

e 278) Sometimes we use the LSB g measure, somewhat imprecisely,

(Or1LSBp =
in a non unit-less way; in this case 1LSBp ~ 278 (&nax — &min). We call this the
b1t absolute measure.

Appendiz A Definitions Page 165

Connections per second

The standard speed measure for neural networks is the Connections Per Second
measure, CPS, which counts the number of synaptic connections (multiply-adds,
that is) the network does per second. (Thus the work involved in computing the
activation function is ignored.) This measure has been questioned by several indi-
viduals, and other measures have been proposed. The Effective Connection Prim-
itives Per Second (Keulen et al. [122]), for instance, seems a good candidate for
the future standard.

Connection updates per second

The standard speed measure for teaching neural networks is the Connection Up-
dates Per Second measure, CUPS, which counts the number of updates on the
synaptic connection strengths the learning algorithm does per second.

Non-linearity

The non-linearity (or integral non-linearity) of a quantity ¢ is defined as its max-
imal deviation from ideality when the offset error has been canceled:

déf maXy |€(£) - gofs - gideal (£)| ‘ (27A)

gmax - gmin

D¢

The normalization can also be with respect to the ideal range ideal,max — &ideal, min -

Offset error

The offset error of a quantity ¢ is defined as its deviation from ideality at ideal
zero value:

gofs déf g(i(gideal - 0)) . (28A)

It is presumed that non-linearities and offset errors that are related to x has been
canceled to make this definition well-defined. (If this is not possible, the offset
error must be defined for a specific z; preferably a non-biased one like = 0.)

Resolution

The resolution of a quantity £ is defined as the smallest change of this quantity
that can be distinguished at some appropriate output f(&):

def

= min AE (29A)
[f(E+AL)—f(E)|>e

gres

where ¢ is smallest distinguishable output change.

Page 166

Appendix B

Artificial neural networks

This appendix briefly describes the concepts of neural networks. We present the
most popular models and display typical application areas and motivations for
using artificial neural networks. We briefly touch the concepts of learning, with
emphasis on gradient descent. A performance evaluation measure is also given.

An artificial neural network or ANN is a type of computer, with a topology
inspired by the human brain: it consists of a large number of simple calculating
units, or neurons, which are interconnected in massive parallelism. In a typical bio-
logical neuron, each connection, or synapse, has an associated connection strength,
and the neuron integrates the thus weighted outputs from other neurons over time.
If this integral reach a certain threshold, the output of the neuron is pulsed high:
the neuron fires. The neuron firing rate will be in the range zero to the inverse
of the pulse time. Very simplified, the result is this: the firing rate of a neuron
is a non-linear function of a weighted sum of its inputs firing rates (Gordon [81],

Rumelhart et al. [200], MacGregor [153]).

Appendiz B.1 Artificial neural networks Page 167

B.1 The ANN model

In the standard model of an artificial neural network, it is this firing rate, or neuron
activation, relation that is modeled (Hertz et al. [95], Rumelhart et al. [200], Haykin
[93]): A neuron k calculates as its output y; an (often nonlinear) function g of
the weighted sum of its inputs z;:

Yr = gr(sk), where s = Zwka:j — 0. (3OB)
J

Here, sy, is called the net input, Oy is called the neuron threshold value (also, —Oy
is called the neuron bias), gi(.) is called the transfer function, squashing function
or activation function, and wy; is the connection strength, or weight.7 Oy is often
neglected as it can be modeled as the connection strength from an input with the
constant value of —1.

Feedback
Heg ()

ool

Ve W ¥

NN NN NN N

Heg i(S) * Yy

Figure 74P: General neural network model. The feedback can be either a
continuous time or a discrete time one. The arrows represent synaptic con-
nections.

Interconnecting these artificial neurons gives the artificial neural network. A
general model of such a fully interconnected network can be seen in figure 745
A neuron input can be either an output from another neuron or an input x,, to
the network. Letting the M inputs have indices m¢ € I and the N neurons have
indices k¢ € U, we have:

Tmyq Yk, Zj
Lo Yko 2o

L = y Y= y R = s
Tmar Yky ZiM4N

T This notation is based on a paper by Williams and Zipser [268], though some-
what modified to be consistent with notation used in Hertz et al. [95].

Appendiz B.1 Artificial neural networks Page 168

where

- Jay, forjel B
Z]_{yj, for jeU (317)

S K= <=
) e
<N

N
73§\§ng'
XY~

Figure 752 Layered feed-forward neural network. Also called a perceptron.
This is a special, very popular, version of the general neural network suitable
for a large range of classification/regression/etc. tasks.

Often, a network is constructed as a layered feed-forward network, or a percep-
tron (also multi-layer perceptron, MLP); see figure 758, In this case, the synapses
and neurons usually bear a layer index [in addition to the ones above. Thus:

vk = ok(sk)s sE=) wigz (32°)
j

where

. Ty, forl =1

_ B
Zj_{y;_l, forl<I<L "~ (337)

and L is the number of layers.
In this thesis we shall be concerned with both types of networks.

Appendiz B.2 Artificial neural networks Page 169
B.2 Applications and motivations

Inspired by the human brain, artificial neural networks would be expected to be
good at solving problems that the human brain solves efficiently. Indeed, this is so:

o Ezample described problems (as opposed to problems with an algorithmic so-
lution) is where ANNs have the advantage over traditional methods. Problems
that typically fall in this category are:

o Associative memories, that are the “Bohr atoms” of neural networks; closely
related to

o Classification and

o Regression.

All applications where one typically has large set of data describing the problem
but no (obvious) algorithm for the solution. Recognition of handwritten characters
(eg. Matan et al. [159]) is a good example. Perhaps less obvious, the example
described problems are also found in areas as:

o Time series analysis,
o Control systems and
e Data compression.

Today, ANNs are applied to a wide range of applications; often performing an
order of magnitude better than previous solutions. One can mention the prediction
of splice sites in human pre-mRNA (Brunak et al. [29]), pig carcase grading in
Danish slaughterhouses (Thodberg [239]) and cytological screening (NIPS [4]).

In addition to the superior performance in certain application areas, neural
networks offer several nice properties that further motivate their use:

o Fault tolerant. The distributed data processing of ANNs makes it very easy
to include the necessary redundancy to implement a fault (error, noise, etc.)
tolerant system.

e Parallel. The ANN equations can be totally parallelized (which is also true for
many associated learning algorithms) implying that ANNs can be very fast.

o Regular. Most ANNs are composed of few different elements that are inter-
connected in a regular way. This regularity makes a hardware (eg. VLSI)
implementation cheap.

o Adaptive. Programmed by way of examples, ANNs are easily adapted to new
working conditions. This is a very powerful property, hardly challenged by
any conventional method.

o Asynchronous. Most neural networks can (or do) function in an asynchronous
way (including the human brain). This is advantageous when implementing
electrical circuits, because problems with spikes on supply currents and worst
case timing design are eliminated.

Notice that most of the above properties are in favour of hardware implementations
of ANNs.

After the reviving of artificial neural network research in the early 1980es,
ANNSs got the reputation of being a “magic” tool that would give impressive results

Appendiz B.3 Artificial neural networks Page 170

when applied to anything. This is obviously not true, and ANNs were labeled
frivolous in certain circles. Today, this label is unjustified: neural network theory
is advancing every day and is well founded; ANN limitations are known (see Hertz
et al. [95], Sanchez-Sinencio and Lau [206], Haykin [93]).

To cite John Denker: “neural networks are the second best way of doing just
about anything.” The best way always being that of applying an algorithm — if
such can be found. As the literature shows, this is often not possible; especially if
an adaptive solution is sought.

B.3 Teaching ANNs

The process of determining the free parameters of an ANN such that it solves a
given task is called learning; or teaching of the ANN. Learning algorithms are
usually classified as one of the following (Hertz et al. [95]):

o Supervised learning using a teacher, eg. back-propagation or real-time recur-
rent learning. These algorithms are used when target values can be defined
for the ANN outputs.

o Supervised learning using critic, typically derived from an algorithm using a
teacher. These algorithms are used when it is possible only to tell if the ANN
output is good or not. The algorithms are less efficient than the ones using a
teacher.

o Unsupervised learning, eg. a Hebb rule. These algorithms are used when
nothing is known about the desired ANN output; the network is supposed to
find structures in the input data. All the learning algorithms rely on the ability
to find structure in the input data, thus the unsupervised learning algorithms
can also be used to aid one of the other types of algorithms.

Many applications are using supervised learning algorithms with a teacher; such
learning algorithms are of primary interest in this text.

B.3.1 Gradient descent algorithms

Supervised learning algorithms are very often based on gradient descent: Some
kind of error measure is defined for the network, and the object of the algorithm is
to minimize a cost function defined on this error measure. This is done by succes-
sively finding the gradient of the cost function with respect to the free parameters
of the system and changing the parameters a fraction in the opposite direction (cor-
responding to the steepest downhill climb in the cost function landscape (Borowski
and Borwein [27])). More precisely (see Lehmann [139], Williams and Zipser [268]
and Hertz et al. [95]):

For each network output yi(¢) at time ¢, we define the output error:

di(t) — k1), for k € T(t B
6k(t):{(),()) forkEU(\)T(t) ’ (347)

Appendiz B.3.1 Artificial neural networks Page 171

where T'(t) is the set of outputs that has a desired value, or target value, dg(t)
at time t. (Combined with the corresponding inputs, these are the training data;
defined on t; < t < t3 which is called an epoch (also, Tepe = to — ty is the epoch
length). The time is often completely arbitrary but it is convenient to use.) The
total cost function is the instant cost function accumulated over time:

TJoe= Y T2 S S a.

t) <t<io ty <t<is k€U

or using continuous time:
to
t745045 — / j(t) dt .
t:tl

For the instant cost function, a popular choice is the quadratic cost function:

Jo) 13 2t =1 3 (delt) —me(t)* . (357)

keU kET(t)

Letting wy, denote the free parameters of the network, we must change these
according to Aw,, = —nVyuJiot, where 1 is a small positive number called the
learning rate. Expressed in coordinates this is:

. auytot
nawij '

Aw;j = (36")

After this change, the total cost function is calculated once again etc., until equi-
librium is reached. This is hopefully the minimum of the cost function (actually,
what is reached is most likely a local minimum and this is one of the major objects
of the ongoing neural network theory research).

Rather than changing the weights after each epoch (learning by epoch or batch
learning), the weights are often changed continuously (learning by example or on-
line learning) according to Aw..(t) = —nV,J(t) or

07 ()
M owi (1)

Aw;j(t) = (377)

If 7 is small, this will, apart from a constant factor, sum up to (36B) approximately.
This resembles the Gauss-Seidel method of solving linear equations numerically
(Press et al. [189], Goggin et al. [80]) in the sense that iterative changes in the
unknown vector w, are applied as quickly as possible.

When using a gradient descent algorithm, the neuron squashing function must
be differentiable as

OTJr _ O0Jx Oyr _ O0Jx Oyx Osy

_ . _ : : _ 388
Ow;; Oyr Ow;; Oyr Osp Ow; (387)

Appendiz B.3 Artificial neural networks Page 172

Often used is a function as the hyperbolic tangent: gi(sy) = tanh(fysg), or the

sigmoid function: gi(sy) = 1/(1+e~2P0) where 3, °lem 1 is the neuron squashing
function steepness at s = 0.

Using the quadratic cost function above imposes a problem: When an output
yr is close to £1, dyi/0sy and thus 0J /Ow;; will be close to zero, regardless of
the value of dj,.

To come around this problem, one can use a cost function that diverges when
dr and yy approaches different extreme values; for instance the entropic cost func-
tion which measures the relative entropy of dj and y; (Hertz et al. [95]):

1 — di(t)

T olt) oe (D) (397)

def 1 nl-l-dk(t) 14 N
LUEDY)) A -)

Alternatively, one can use a Fahlman perturbation which substitutes
Oyi/0sy + v for Oyi/0si in (38B), where ~p is a small positive number which
we also call the derivative perturbation.

Gradient descent type learning algorithms exist for both recurrent and feed-forward
networks and many perturbations to the true gradient descent have been proposed
to improve the algorithms (in terms of learning speed, generalization ability, etc.).
Many other types of learning algorithms also exist but we are primarily interested
in the gradient descent types in this work. See also chapter 3.

B.4 Performance evaluation

When applying an artificial neural network (using teacher supervised learning) to
a problem, this is usually defined as set of input/output examples. To evaluate the
performance of the network, the data set is split in a training set and a test set.
Using the time-notation above for instance:

trainig set {x,(¢),dp(t)}, t1 <t <ty
test set {xn,(t),dp(t)}, to <t <tz

To avoid fitting the noise in the input data, it is of paramount importance that the
system is over determined (compare to curve fitting (Press et al. [189])), ie. that
there are more input/output examples than degrees of freedom in the system —
as a rule of thumb (Hertz et al. [95], Krogh et al. [125]) 2-5 times more.

Appendiz B.J Artificial neural networks Page 173

A good error measure based on the average relative variance (Weigend et al.
[261]) can be found in Svarer et al. [234], the normalized average relative variance,
NARYV (for the continuous time version, replace the summations by integrations):

def 1
~ Var {di(t)}(ts — ta)

Exarv[ta,ts]

Z (di(t) —yu(t)® (407)

1, <t<tg

where the variance of di(t) is taken over the complete data set. For the data set
above, this is equivalent to (when using dimension-less time):

1 2
di(t) — t
L 3 -y
ENaRv(ta,ts] = = 5 .
1
DY (d’“(t) Tt {d’“(T)}>
3 L <t<ts LSS0

A normalized average relative variance of 1 corresponds to the output being iden-
tical to the mean of the target values.

Monitoring the average relative variance as the learning progresses, one will
typically see the training error asymptotically decreasing and the test error (always
larger than the training error) reaching a minimum where the network starts to fit
the noise in the input data (see section 2.6, Qian and Sejnowski [190], Watkin
et al. [258]). If the test error is close to the training error we say that the network
has a good generalization ability (more precisely: the generalization ability is the
probability that the network gives the correct answer to an arbitrary input (Hertz

et al. [95])).

Page 174

Appendix C

Integrated circuit issues

In this appendix, various issues of integrated circuits (also, somewhat inaccurately,
termed VLSI (very large scale integration) circuits) are displayed. Most will prob-
ably be known to the reader but will serve to define various symbols used in the
thesis. We display the standard models for MOS- and bipolar transistors and the
issue of accuracy in analogue computing hardware is touched — in relation to both
component sizing and layout.

C.1 MOS transistors

In this thesis we use the Shichman-Hodges model for the MOSFETs (Metal Ox-
ide Semiconductor Field Effect Transistors; also MOST) in strong inversion (see
Geiger et al. [77]). The model is suited only for hand calculations — for more
accurate models refer to the literature (especially for the subthreshold-saturation

region). The model:
The drain current ip (cf. figure 760) for a N-channel MOST is given by:

0, cut-off, vgs — V1 <0
ip = %ﬁ(UGS — Vr)%(1 + A\ops) , saturation, 0 < vgs — Vr < vpg
ﬁ(UGS -V — %UDS)UDS(l + /\UDs), triode, vpg < vgs — Vo
(41)
where [is the transconductance parameter, Vr is the threshold voltage, A is the

channel length modulation parameter, W is the channel width, and L is the channel
length (cf. figure 770). In reality the transistor is never completely cut-off; near the

Appendiz C.1

|

. |

ID¢ Dran + |

|

Gate Bulk !
el ey

|

VGs - | Source = !

Figure 76: N-channel MOS transis-
tor symbols. Mostly the bulk terminal
is connected to the supply voltage and
we omit it in the schematic as shown
to the right. The P-channel MOST

symbol has the arrows pointing in the

Integrated circuit issues

Page 175

bulk

Figure 77 N-channel MOS transis-
tor. Schematic drawing of physical
substrate MOST. The primary design
parameters, width W and length L,
are shown. Notice the component
simplicity.

opposite directions.

threshold voltage the device enters the subthreshold region where the drain current
is approximately given by

elvas=Vr)/nVi — gubthreshold, vas — Vi < nl;

ip = Y Ipos (429)
where Vi = kT/q is the thermal voltaget, n is the subthreshold slope, and Ipg s
is a process related parameter which is dependent on vpg among other quantities.

The parameters in the two strong inversion equations (saturation and triode) are:

w w
_ w
6 =K 7 Cox 7
Vo = Vo + v(1/2|6r| — vBs — V/2]éF]) (439)
Ex
A —
L

where K’ is the process transconductance parameter, Cox is the gate omide capaci-
tance per unit area, p is the surface mobility, Vg is the zero bias threshold voltage,
~ is the bulk threshold parameter, 2|¢w| is the strong inversion surface potential,
and we call ky the channel length modulation constant.

The transconductance, g, and the output conductance, gqs, in saturation is
often conveniently expressed by the quiescent drain current, Ip:

o1
Im = P D ~ \/QIDﬁ
UGS
Oip
s = ~ AT
gd Dobs D

T Where k is the Boltzman constant, T is the absolute temperature and ¢ is the
elementary charge.

Appendiz C.1 Integrated circuit 1ssues Page 176

The P-channel MOST equations are defined in a similar way.

In some MOS processes a phenomenon called snap-back occurs in short chan-
nel devices (Sun et al. [232], Hansen [92]): For high drain-source voltages the strong
electrical field near the drain junction will cause a device break-down and inject
a current into the bulk of the device. This current turns on the drain-bulk-source
parasitic bipolar transistor (cf. next section) and causes the drain-source current
to increase enormously, see figure 78°. The phenomenon wears the device but is
not destructive (as latchup is typically). The critical drain-source voltage at which
snap-back occurs increase with increased channel length.

i D
Snap back
Figure 78“: Short channel snap-back. Snap- 1
back occurs if the parasitic drain-bulk-source Normal operation 1
bipolar (NPN for an N-channel MOST) tran-
sistor is accidently turned on. Vbs

Three different MOS transistor symbols are shown in figure 76°. In this work
we usually use the simple middle one with the identifiable source terminal; We
assume bulk is connected to the supply voltage. For transistors with no obvious
source terminal (as switches) and for digitally operated transistors we use the
right symbol. The left symbol is used mainly in circuits where the bulk terminal
connection is of particular importance.

Appendiz C.2

|C¢ Collector
5 +
ase
Vce
+
VBE _ | Emitter ~

Figure 79%: NPN bipolar tran-
sistor symbol. The PNP BJT symbol
has the arrow pointing in the opposite
direction.

Integrated circuit issues

Figure 80°: NPN bipolar transistor.
Schematic drawing of simple, vertical,
physical NPN BJT. The primary de-

sign parameter, the emitter area Agp,

Page 177

is shown. Even for this simple BJT,
the minimum layout area is larger

than that of a MOST.

C.2 Bipolar transistors

In this thesis we use the (simplified) Ebers-Moll model for the BJTs (Bipolar
Junction Transistors) (see Geiger et al. [77]):

The collector current ic (cf. figure 790) for a NPN BJT in forward saturation
mode is given by:

¢ = —QFlE = OéFz‘lEJS(evBE/Vt — (1 + vce/Var), (440)

where ay is the forward ematter-collector current gain, Ag is the emaitter area, Js
is the transport saturation current density, Vy = kT'/q is the thermal voltage, and
Var is the forward Early voltage. The PNP BJT equations are defined in a similar
way.

Usually, bipolar transistors are not meant to be available in MOS processes.
However, parasitic devices are always present and in a typical well CMOS process
one type of the transistors can be operated in the lateral bipolar mode (LBM
MOSFET) which gives access to a bipolar device (Vittoz [253]). This is illustrated
in figure 82° for an N-well process. The base-emitter (or “bulk-source”) diode is
biased in the forward direction, which turns on the bipolar device. The BJT
has two collectors: one connected to the substrate (conducting a waste current,
is = apsip) and one connected to the “drain” of the MOS device (conducting
the desired collector current, ic = apcig). To get a reasonably high efficiency of
this device, it is important that (i) the area under the emitter diffusion is as small
as possible compared to the side-wall emitter diffusion area towards the collector
diffusion and (ii) the emitter-collector base width is as small as possible compared
to the emitter-substrate base width. Thus proper layout of the LBM MOSFET
i1s a minimum size emitter junction encircled by a minimum length MOS gate; cf.
figure 85°. For good bipolar operation, the MOSFET gate area must be biased
in strong accumulation to turn off the MOST operation. A LBM MOST device
symbol is shown in figure 81°.

Appendiz C.3

!
Emitter |
Gate L |
Base |
Substrate
!
Collector |
!
!
Figure 81°: Lateral bipolar mode

MOSFET symbol. Connecting the
gate to Vpp we can replace the LBM
MOST by a BJT with apc ~ 1/2

(right).

Integrated circuit issues

Page 178

substrate

Figure 82°: Lateral bipolar mode
MOSFET. Schematic drawing of
physical N-well (P-channel) LBM
MOSFET. The effective emitter area

is the emitter junction side-wall area

towards the collector junction.

As a current is deliberately injected into the substrate, care should be taken
to efficiently guard the LBM MOST device to reduce the risk of latch-up (cf. figure
859).

C.3 Analogue computing accuracy

The computing accuracy (especially in relation to offset) of analogue signal pro-
cessing elements are often limited by mismatch of the analogue components. To
enlighten the influence of mismatch, we shall do a case study of subtraction using
simple MOS current mirrors.

The outputs from analogue synapses are often in the form of differential cur-
rents. The subtractions of these can be performed per synapse (figure 830) or per
row of connected synapses (figure 840), the latter giving poorer accuracy unless a
transistor area equal to that of the former is applied:

W e

010 O:0On0O ™

Figure 83%: Current subtraction by synapse. For simplicity, all M pairs of
current sources lead the same current. All drain voltages are imagined large

and identical for optimal matching.

Appendiz C.3 Integrated circuit 1ssues Page 179

i
010 Q:QOMO ™

Figure 84%: Current subtraction by row. Using a single current mirror, this
have to be M times as wide to be able to sink the increased current. This

\Vbb

—

very wide current mirror would be implemented as many small in parallel.

Now, given a transistor parameter P, the variance of this (with respect to
some “identical” reference device) can be modeled as (cf. Pelgrom et al. [187],
Lakshmikumar et al. [129], Michael and Ismail [164], see also Ismail and Fiez
[106]):

0% ~ ALGp + SED%

where Ap and Sp are process dependent constants, Gp is a function of the device
geometry and Dp is a function of the device layout. For many MOS transistor
parameters Gp = 1/WL{. Dp would be a (probably highly non-linear) function
of device distance, D, device orientation, device context, wafer center distance
and other layout specific quantities. Usually we set Dp = D for simplicity; this
assumes that careful, symmetric layout is used (see below). Assuming a simple
quadratic law for a saturated MOSFET, the relative drain current variance is (first
order approximation):

2 2 2 2 2
%ip W i U_L_I_ K 14 TV
—2 ™ =2 —2 —2 I \2 ?
o WL K (vas — Vr)?

where ip, Vi, K’ W and L are the average drain current, threshold voltage, process
transconductance parameter, channel width and channel length respectively, and
the Ugs are parameter variances. Qualitatively this equates (assuming Gp = 1/WL

and Dp = D):
o} &1 > (£2
Do (14 +D2> , 45¢
D ((vas —Vr)?) \WL (457)

where the {;s are constants.

Returning to our example, assume a current mismatch \/2-o;, when mirroring
a current ip using a current mirror with transistor dimensions Wy and Ly and
current standard deviation o;,. The sum of M such currents (figure 830) yields a
mismatch in the accumulated current, iy, of ox;, = V2M - 0,,, for independent
error sources.

T This holds quite accurately for K’ and V. For the transistor width and length,
however, it would be reasonable to assume Gy = 1 and G, = 1/W.

Appendiz C.J Integrated circuit 1ssues Page 180

Were we to use a single current mirror (figure 84%), the W/L ratio would
have to be scaled to accommodate for the increased current: Wy /Ly = MW,/ Lo
(for an unchanged set of terminal voltages which is assumed chosen optimally
for matching). Ignoring the device distance for the moment, (45°) reduces to

o7, Bz/WL. Thus for an unchanged accuracy, o;, = V2M - 7;,, we would
need WyLy = MWyLo — or an unchanged total transistor area (and Wy =
MWy, Ly = Lg). Ignoring the device distance is not a good approximation.
However, for reasonably large devices, efficient layout techniques (inter-digited
common centroid, etc.) can be employed in which case the result holds.

Because of the tremendous inter-wafer process variations, the accuracy of a
single MOS transistor is not usually interesting. Rather the matching of two or
more devices are important (as above). In this connection, the physical device
placement — the layout — is very important; global process variations and pro-
cess gradients must be taken into consideration. Especially if the devices to be
matched occupy a very large area as these would be exposed to larger absolute
variations than devices concentrated on a small area. In our example, this means
that differencing by synapse possibly gives better accuracy (for a given area) than
differencing by row as the first solution require only matching locally while the
other require matching of all the transistors in the large current mirror — though
process gradients having a linear influence on the drain current can be canceled
out.

C.4 Integrated circuit layout

The physical layout of integrated circuit components strongly influence the match-
ing properties. Problems that need to be considered during the layout include (see
Sze [235], O’Leary [182], Michael and Ismail [164], Sackinger and Fornera [201],
MeNutt et al. [161]):

o Local process variations. Small random variations on all parameters are in-
evitable. One can only reduce their influence by device scaling as demonstrated
in the previous section.

o Global process variations. Most importantly causing a constant device size
offset Alyss; eg. caused by over /under etching, or over /under exposure of pho-
toresist. Usually this problem is dealt with by using only “unit size devices”
which are replicated to implement, say, wider transistors (cf. previous section).
Only rational device ratios are possible in this case. This procedure also has
the advantage that all unit devices can be placed in identical surrounding, re-
ducing errors due to boundary effects. Also, channel width modulation would
be the same for parallel coupled unit MOS transistors.

o Process gradients. In addition to random process variations, parameters are
subjects to low spatial frequency, systematic variations which can be quite
large. Eg. oxide thickness can vary uniformly over the wafer, or device features
can be scaled differently at the wafer center and wafer edge. To minimize

Appendiz C.4 Integrated circuit 1ssues Page 181

such variations on matched devices, one must obviously place such as close
together as possible. Also, large devices should be interweaved to ensure the
same average parameters on all devices. Process gradients that causes the
drain current (or capacitance for capacitors, etc.) to vary linearly with the
device position can be canceled by employment of common centroid layout,
where the devices are placed in such a way that the centers of “mass” (the
centroid) of the distributed devices are common (cf. figure 85°).

o Deuvice orientation. As process gradients will be different in different direc-
tions, it is important that matched devices are placed symmetrical with re-
spect to the gradients to ensure alike influence on the devices (in practice the
gradient orientation is unknown and the devices are placed symmetrical with
respect to the vertical and horizontal axis; this is also symmetrical with re-
spect to process gradients that varies linear in space). As the temperature has
a strong influence on most electronic device parameters, temperature gradi-
ents are as important as process gradients. Matched devices must be placed
symmetrical with respect to known heat sources (eg. output drivers).

o Boundary effects. A most prominent influence on device mismatch is due to
inaccuracies on the boundary of the devices. Therefore it is important to
minimize these inaccuracies by ensuring identical boundary conditions for all
devices.

o Nowse. Especially in mixed analogue-digital circuits, the noise coupling can
severely degrade performance. In addition to standard practice of separating
power supplies and analogue/digital circuit blocks, and of using ground wire
shielding when signals have to be mixed, guard bars must be placed around
critical devices to reduce noise coupled via the substrate (which is usually
common for all devices).

An example of matched transistor layout is given in figure 85°.

Appendiz C.4 Integrated circuit 1ssues Page 182

Im;llllllllllqlllllllll

TITTTTI T
I

B m =
I EEEEEEEEEEEENEEEEEEEEETSR
EEEEEEEEEEEEEEEEEEEEEEEEESR

E+Ill‘llql

HEEEN EEENR
B2 E

Figure 85°: Layout of matched transistors. These transistors are operated in
the lateral bipolar mode which explains their large distance (necessary well-
well spacing), and the heavy guarding that prevents latch-up. The common
centroid layout, symmetrical device orientation and almost identical boundary
conditions are noticed.

H EEEEEEEEEEEEEEEEEEEEEEEEEEERN
B g EEEEEEEEESNEESEEEEEEEEEENENER

Page 183

Appendix D

System design aspects

In this appendix various aspects of the chip/system designs, too detailed to put in
the main body of the thesis, are displayed. In section D.1, some general design
considerations are given. Also, the synapse chip design is discussed and a table of
measurements on the first generation chip set is given as well as proposed chip set
improvements. Discussions in this chapter apply to most of the fabricated chips. In
section D.2, a complete schematic and descriptions of the most important parts of
the back-propagation neuron- and synapse chip are given. A table of measurements
on the chip set as well as proposed chip set improvements likewise. In section D.3, a
schematic, descriptions, a table of measurements and proposed chip improvements

of the RTRL chip are given.

Appendiz D.1 System design aspects Page 184
D.1 The scalable ANN chip set

A few general system aspect considerations are needed for the design of the scalable
ANN chip set. These also apply to the other chips:

o Voltage levels. We shall use n-channel MOS resistive circuits rigorously. As
these must be biased in the triode region, this determines the voltage levels
we can use. For good dynamic range, both inputs to the MRC must be chosen
as large as possible. Choosing the gate voltages (their difference: v, in figure
8?) in the range

vMreG € [1V,3V],

and the source/drain voltages (their difference: output voltage or v, in the
figure) in the range

UMRCS, UMReD € [—3V,—1V],

gives a reasonably safe margin in our process (Vp < 1.8V for vgg = —4V).
Further, both gate and source voltages are kept well within the power supplies,
ensuring that both can be driven easily by a non rail-to-rail op-amp.

o Current levels. We are not primarily interested in low-power circuits. Thus,
as for the voltage range, we select as high a current level as we can justify,
to assure high dynamic range. Further, an increased current range allows us
to reduce node impedance levels which improves the speed. The maximum
current is determined by the current sinking capabilities of the synapse row
differencer (cf. later). For 50-100 synapses connected to this, the full scale
differential output current of the MRC (given the voltages above) must be
limited to about

iMRC € [=3 1A, 3 uAl.

(For the first synapse chip, this was set approximately one order of magnitude
higher.)

o Single ended signalling. Though the components we use are mostly working on
differential signal, we have chosen single ended signalling between the chips.
The reason for this is to reduce the pin count which is > 200 for a 100 x 100
synapse chip with single ended signalling. The cost is a 1bit reduction in
resolution and increased noise sensitivity. We choose a voltage reference level
at Viet = —2V to be compatible with the chosen MRC voltage ranges. For
signals applied to the gates of the MRC we chose the reference level to Viyer =
2V.

For easy digital chip control all digital inputs are TTL compatible. We use
the TTL level (low < 0.8V, high > 2.0V) to internal logic level (low —5V, high
+5V) converter in figure 86": the inset displays the level-shifter symbol. The
level-shifter reference Vpef & —2V — —3 V must be capable of sinking current. It
can be generated off-chip by a zener diode. In addition to level-shifting the circuit
act as a driver for internal capacitive loads.

Appendiz D.1.1 System design aspects Page 185

\bp |
1%
%E aﬂ E—E a‘n‘iernal -
TTL input logic
Vhref
Vss

Figure 86°: Digital level shifter. TTL level to internal logic level converter.
The resistor-diode gate protection circuit found on all high impedance chip
inputs is also shown. The inset displays a level-shifter symbol.

D.1.1 The synapse chips

The first generation synapse dimensions were determined to be compatible with
the op-amp dimensions (the chip layout of the op-amp and the synapse matrix was
done simultaneously by different individuals). As measurements have shown, the
weight storage capacitance can easily be reduced. Also, the errors associated with
the synapse chips were predominantly determined by the current differencers. Thus
the synapse size can easily be reduced compared to the manufactured synapses.
The layout of a reduced size synapse is shown in figure 87°. One will notice that
non-minimum lengths transistors are used for the NAND gate. The reason is that
otherwise snap-back would occur in the CMOS process used. To avoid snap-back
(and to reduce power consumption) the logical high voltage level is usually reduced
with respect to Vpp. Unfortunately, this is impossible in the present circuit as the
p-channel switches must have a vgs — Vr 2 0.5V to reduce subthreshold leakage
currents sufficiently; or (worst case) vg 2 Vimax, Where Viymax is the maximum
allowable gate voltage at the computing transistors. The guard bar around the
computing transistors is supposed to reduce noise coupled from the digital circuitry
nearby (the highly interweaved placement of analogue and digital circuits can not
be avoided, unfortunately). Likewise, several shielding power lines, that protect
the analogue signals from the row- and column select signal, can be seen on the
figure. Even using this shielding, noise is coupled to the analogue outputs; current
spikes in the order of hundreds of nA can be detected.

In enclosure II a photomicrograph of the synapse chip can be seen. It is no-
ticed that the row- and column decoders for writing on the synapse weight matrix
are placed to the left and top of the synapse matrix. Digital circuitry is placed to
the left and top of these again, to reduce interference with the sensitive analogue
components. Analogue components are kept to the right and bottom of the matrix.
The row- and column decoders are precharged AND gates; each having a line driv-
ing inverter at the output capable of driving 100 synapses. The column decoder
is considerably faster than the row decoder, ensuring that the selected sampling
switches will close (sample) at the falling edge of the column signal. The analogue
weight refresh signal (that is sampled) is then distributed along each synapse row

Appendiz D.1 System design aspects Page 186

I§ ssd [Col ddd
I:]|
M I
‘i r i |
i i
u L]
- -
||
s N
=l = m
| -] H
| | H
| |]
N N ”H“
= g H .
R R S

Figure 87P: Synapse layout. Reduced are. To the left, inside the guard bar,
are the four computing synapse transistors. The two minimum size sampling
transistors are placed in the middle and the NAND gate to the right.

to reduce coupling from the sampling column signal.

Some of the most important characteristics of the first generation neuron- and
synapse chips are shown in figure 88P. The characteristics were measured us-
ing standard methods and equipment (oscilloscopes, signal generators, etc.) and
custom PCBs for applying various bias/test signals. The synapse chip test PCB
includes connection strength back-up RAM and a parallel port PC interface for
accessing this. The full schematic of this PCB can be found in enclosure III.

Appendiz D.1.2 System design aspects Page 187

Property Value Bits Notes
Neuron size Apen = 379309 pym?
Neuron non-linearity D, < 2% 6 LSBg
Neuron derivative non-linearity — Dg, < 10% 26 LSBg
Neuron input offset | Istots| < 10 A 26 LSBg
Neuron output offset [Viots| < 5mV 13LSBy
Neuron propagation delayf typd S 1.8 us %LSBg CL, ~ 16 pF
topd < 0.8 s 1188, re Y P
LPNP e/c current gain apc ~ 0.55
Synapse size Agyn = 33280 pim? Reducible
Matrix offset |Viwots| < 16mV 2LSBy
Matrix resolution Vires < 2mV i LSBsg
Synapse non-linearity D,. < 16% 21 LSBg
(Dy: < 3%) (4LSBg) Estimated
Synapse output offset | Iso0fs| < 14 A 14 LSBy
Synapse input offset |Viofs| < 6mV 1LSBg Ry, ~ 10kQ2
Synapse propagation delayf topd S 2.0pus % LSBsg {CL = 16pF
topd < 0.4 s 11.8B, A 8CYRCNP
Matrix write timex twwr < 150 ns é LSBs
Matrix (weight) drift 10w < 0.5mV/s 0.07LSBg/s Cye = 1pF
Weight range |wjlmax € [0.4,40] for yi = tanh(sg)
Layer propagation delayf o tipd < 2.6 s %LSBg Cr, ~ 16pF
tlpd S 1.1/,LS %LSBl CL ~ 16 pF

T Time from input change to output has settled within %LSB.
I Necessary length of write pulse that ensures the output will settle within

L LSBy.

Figure 88P: Table of ANN chip set characteristics. The column “Bits” is
the equivalent in least significant bits of the property value given an 8bit (or
otherwise indicated) resolution. Note that the estimated synapse non-linearity
is in compliance with the measurements on the back-propagation chip set.

D.1.2 Chip set improvements

In addition to the important process parameter/temperature variance compensa-
tion, the following issues are subjects for improvement of the developed cascadable

ANN chip set:

e Reducing the synapse area. The synapse area can be reduced to about
100 pm x 100 pm (cf. above). Though such a reduction will increase the synapse
output offset current, the synapse size must be small to allow massively par-
allel computations. If another CMOS process is used, the synapse size can be
further reduced.

e Reducing the power supply voltage. Redesigning the circuit for compatibility
with a 5V (or even 3.3V) process is not a trivial matter. The voltage range
on the MRC, for instance, must be reduced to about 1V in a 5V process.

Appendiz D.1.2 System design aspects Page 188

e Neuron output level shifting. Referring the inter-chip voltages (as the neuron
output) to —2V was the cause of numerous interface problems. Level shifters
should be introduced to allow a 0V reference.

e Improving the op-amps: reducing area, reducing offset, increasing gain and
increasing the output voltage range. Objectives of any op-amp, probably.
However the regulated gain cascodes in the op-amp did not have the expected
performance and the output voltage range must be (almost) rail-to-rail for a
future implementation in a digital CMOS process. Further, the layout can be
improved.

e Improving the current conveyor: as the op-amp and also improving the accu-
racy of the x-z current mirroring.

o Implementing on-chip bias circuits. Most bias circuits need not be very ac-
curate and can be generated on-chip. A few external references (such as the
neuron output range) are necessary, though.

e Implementing on-chip TTL level-shifter reference; and reducing the power
consumption of this circuit.

o Introducing a current op-amp based synapse differencer for automatic process
parameter /temperature dependency canceling.

e Placing synapse column drivers on the synapse chip instead of on the neuron
chip. This improves the cascadability of the chip set.

e Reducing the neuron size. The neuron size is predominantly determined by
the op-amp. Reducing the size of this will reduce the neuron size.

e Exploring other neuron topologies. If we do not need to calculate the neuron
derivative as a function of the neuron output (the derivative calculation cir-
cuit could be placed on the neuron chip) other neuron circuit topologies are
possible. This is discussed in section 4.6.

o Introducing offset canceling. For very large synapse chips, canceling of the
output current offset may be inevitable. Different offset canceling techniques
must be considered. This is discussed in chapter 4ff.

o Implementing a full-size chip set. Though the layer propagation time is not
very dependent on the synapse chip size, it should be verified that a 3.8 GCPS
per chip system is indeed feasible using the our 2.4 ym technology. Also, new
problems might arise when scaling the system; these should be explored.

Appendiz D.2 System design aspects Page 189
D.2 The on-chip back-propagation chip set

The on-chip back-propagation chip set is designed reusing as much layout of the
scalable recall mode chip set as possible.

The back-propagation synapse chip layout closely resembles that of the second
generation recall mode synapse chip. The synapse layout is identical and the
row /column decoders for weight access have also been reused. The op-amp and the
current conveyor for synapse output differencing are also largely unchanged; though
switch transistors have been added for correct row/column element operation.

The back-propagation neuron chip, on the other hand, is drawn almost from
scratch; only the op-amp layout is reused.

D.2.1 The back-propagation synapse chips

The column /row element of the back-propagation synapse chip, which is used to
take the accumulated synapse output difference and to drive vectors of synapses,
is shown in figure 90P. The “route signal” is distributed to all rows and columns
and is used to route the previous layer neuron activation when the chip operates
in route mode. The six control signals (A through F) are operated differently for
the row and the column elements as shown in figure 89°.

Ctrl Driving signal
signal Row elements Column elements
A reverse reverse
B reverse reverse
C forward reverse
D forward reverse
E route route
F row = k column = j

Figure 89P: Table of row/column element control. The three control signals
forward, reverse and route corresponds to the equivalent operational modes.

The row and column select signals needed for the route mode of the chip is
taken directly from the corresponding synapse matrix access (or write) signals.
This means that the connection strength at location {k,j} is lost when input j is
routed to output k. After the learning hardware has computed new weight for a
layer [the connection strengths in that layer will be lost and must be rewritten
before the computation of new weights in the preceding layer is resumed.

The principal schematic of the row- and column elements in the different op-
erational modes are shown in figures 912 through 96°.

In enclosure II a photomicrograph of the chip can be seen. The synapse
matrix and the groups of row- (4) and column- (8) elements are easily identifiable.
A layout error — a Vpp Vsg short circuit in some non-essential test pad cells —
necessitated micro-surgery on the chip to isolate the faulty pad cells. Fortunately

Appendiz D.2.1 System design aspects Page 190

H{C oo

route signal
oA
] -
1 1 2
‘ \
] 1
3 4
= I
I+
I+
| oo
=
Ty on
le% 1t o
I
S/
._i;\t synapses
TEREIAE
] - 1[3
1= \ ~
—

Figure 90°: Back-propagation synapse column /row element. The output
push-pull source follower of the left op-amp is explicitly drawn to show the
dual functionality of this op-amp: voltage follower or current conveyor. The

connection of a single synapse is also shown. Transistor W/ L ratios are given
for the synapse and a sample switch.

Appendiz D.2.2 System design aspects Page 191

i S L VZ - X L
s |

CCll+2 ,CCt*?
—L V. l
Is+ ~ Vref

Figure 91°: Forward mode BPL syn- Figure 92P: Forward mode BPL syn-
apse row element. The CCII+ act as apse column element. The CCII+ act

current differencer. as voltage buffer.
g
S
X 9 — X
CCll+z}+ 3 CClI+z
y s — Hy lﬁ
5
~ Vhet I
Vief 3
o
Lrow = beol

Figure 93P. Route mode BPL synap- Figure 94P: Route mode BPL syn-
se row element. The route signal is apse column element. Column col

applied to row row. drives the route signal.
Vs- X L leg X L
CCll+z CCll+2
Vs .+ y — y
" Vhet e+

Figure 95°: Reverse mode BPL syn- Figure 96°: Reverse mode BPL syn-
apse row element. The CCII+ act as apse column element. The CCII+ act
voltage buffer. as current differencer.

this was possible without damaging other parts of the chips for a reasonably large
number of devices.

D.2.2 The back-propagation neuron chips

The schematic of a back-propagation neuron can be seen in figure 97°. Note the
excessive use of the MRC (see also the following schematics); several of these are
preceded by level shifters on the gate inputs (for a sample layout cf. appendix E.3).
Various intermediate signal names are indicated in the figure. The different blocks
of the neuron are identified as follows:

e TransRFwd is the neuron forward mode transresistance (Rrs) which is con-
trolled by the external voltage Vog (also Vir) for adjusting the neuron slope.

e Tanh is the hyperbolic tangent neuron. The external voltage Ver (also Vor)
controls the neuron output range.

e Sampler2I is the neuron activation sampler which is controlled by the holdsq
signal. The differential mode sampling scheme reduces the effect of charge in-

Appendiz D.2 System design aspects Page 192

jection and leakage currents. The sampler has an additional (global, external)
input neuact which can be used to refresh the sampled neuron activation.
This input i1s gated by the refresh signal and a “neuron k select” signal
neusely; the latter being generated by a precharged column selector like the
one used on the synapse chip.

e TransRRew is the reverse mode transresistance/neuron error computer. The
module is active when the chip is not in forward mode. If lastlayer = 1
it computes dy — y,. Otherwise the input current is converted to a voltage;
controlled by Vogr. The transistor dimensions are chosen such that setting
Ve = Vegr 1s equivalent to a neuron input scaling of “1” at room tempera-
ture.

e SqrSqr computes the neuron derivative. For an unscaled result set the external
control voltage Vg — Vigret = 1 V. The maximal neuron output voltage Vymax
must also be applied externally.

e MulilD computes the weight strength error. For an unscaled value the external
control voltage Vios — Vigrer = 1 V.

e actbus and deltabus are used to distribute the neuron activation and the
weight strength error respectively to the weight updating hardware.

The schematic of the back-propagation neuron chip weight updating hardware is
seen in figure 98°. It consist of two modules:

e MuliD scales the neuron activation with the learning rate; controlled by the
external signals V;, and V¢,,.

e Mul3D multiply the scaled neuron activation and the weight strength error. To
this value the old weight (externally supplied by Vl‘j}i; Vinit must be set to
“unity”, ie. 1 V) and an offset compensation term (externally supplied via the
Viofs and Vyots signals). This sum is divided by the external voltage Vi/(1—caee)
giving an optional weight decay (V41— ..y = 1V gives no decay).

e 0T1, 0T2 and OT3 determines the output type. This can be a “raw” one, a
“level shifted” one or a “level shifted and buffered” one. The output is gated
by the learn control signal and the chip select signal cs.

In enclosure II a photomicrograph of the chip can be seen. The neurons are
the four long, low horizontal strips.

Some of the most important characteristics of the back-propagation neuron- and
synapse chips are shown in figure 99" Again, the characteristics was measured
using standard methods and equipment and custom PCBs for applying various
bias/test signals. The test PCBs are similar to the ones used for the recall mode
ANN chips — though the bidirectional operation requires a somewhat more flexible

Page 193

System design aspects

Appendiz D.2

me>>o o,mo>
SSA
atInn
>
9 LT/T L —
f E;>>ﬂ
z B ! HH
I =Y
% A A
=]
g v Tiog~ |
£ ! snqe3Tsp
S o
v z/0% —

L
A
L

4.8/182.8

snqjoe
W&/ mM) mM) mM) Tt T
— — — — 1bsabs fﬁ
] T

C R
-/

x uxesT
a2hkeTaseT

3
%ﬂa

O
EERCV P

v

x pIemiolm ,HL 7H h v_»m.>
: | S ONO) O (
4 L 9°1¥/2 L 4 -
ady ady SSp ady ada T 9
o)
wonoq
wserzeet | rorauet T gy L prusuess m Eo
- pREnO; A | §S
I /_V -1 N S5
voz/ov TN BN Hh_mts> rorm.
PA PA
f | f |
\ Hﬁ_ Ly I
- ax 9°1%/0T 9°6T/0T g
ped indino m mm m m g
apoLU pLemio- z 28 lvz/vz| 8| |8 &
©8 L g2olg LA 0N b8

Figure 97°: Back-propagation neuron schematic. Notice the excessive use of
MRCs. W/L ratios are indicated for a representative sample of transistors.

Appendiz D.2 System design aspects Page 194

Weigh change
reference pad

Weight change
output pad

o
apl
1
40/2.4

OoT1

I \
52 | \[z
5 I \ K
\ | =

oT3

learn
cs *
+
>—|
Mul3D

\Vbp

Vss
L
\AdtI
VW ref

SO 1 ¢ = S

<
7 gglg\ -

) | 2N ,

/\g H‘T_{_I_L 2

| + = %3

¢

s EANE I

g > "/ =/, | 3 E .

:fil] _‘Tl 3

O

S i T &

= [T =
;9\

e H:i

H_L
il
>S1T\UJU |

T

\

4 810
4 810

=
a| | %
>) | >
:fk)jfl actbus félj&eltabus

Figure 98P: Back-propagation weight update schematic. One instance per
neuron chip. Three output types are possible (for test purposes), “raw”,

“level shifted” and “buffered level shifted”. The reference output is needed if
a level shifted output is used.

Appendiz D.2 System design aspects Page 195

test bed, of course. The full schematic of the back-propagation synapse- and neuron
chip test PCBs can be found in enclosure III.

Property Value Bits Notes

non-linearity D,. <35% 9LSBjg
o transconduc. variationf AGsyn S 6% 15 LSBs
& chip input offset |Viots| < 12mV 2LSBy
%chip output offset | Is00fs| < 3 A 192 LSBgi

weight offset |Viwots| < 55mV 7LSBg

weight resolution Vires < 2mV 1/4LSBg

(tanh) non-linearity D, <2% 5LSBg

input transres. variationf ARis <2% 5LSBjg

output transres. variationf ARor < 2% 5LSBjg

input offset | Istofs| < 0.8 uA 51 LSBg
= output offset . . |Vyoofs| < 41mV 5LSBg
= parabola non-linearity Di_yp2 <$2% 5 LSBg
§ parabola gain variation AApg <2% 5LSBjg

parabola input offset |Viylots| < 27mV 3LSBy

parabola output offset |Viofs| < 244mV 31 LSBg

derivative non-linearity Dy <6% 15LSBg

derivative input offset |Vyrtofs| < 68mV 9LSBy

derivative output offset |Vyroofs| < 244mV 31 LSBg 1 C, = 16pF
Syn. chip propagation delayy tospd S 0.9 pus 1/2LSBs Ry, ~ 3kQ
Syn. chip propagation delayy tospd S 15 ps 1/2LSBs Ry ~ 100k
Neu. squashing prop. delayf tsypd S 1.6 s 1/2LSBsy (1, » 16 pF
Neu. chip weight calc. timeff t.Awpd S 3.6 ps 1/2LSBsy (1, » 16 pF
Synapse weight drift |0w| < 0.2mV /s 0.03LSBg/s Cy ~ 2 x 1.6pF
Neuron activation drift 10,1 < 0.5mV /s 0.06 LSBg/s Cy ~ 2 x 2pF

7 The variations are for a single chip.
I Equivalent LSB of a single synapse.
1 The delays are for the signals to settle within the given precision.

Figure 99P: Table of Back-propagation chip set characteristics. Apart from
the reduced synaptic output current level and the increased neuron output
offset, the chip performances are similar to the recall mode chip set.

Appendiz D.2.3 System design aspects Page 196

D.2.3 The scaled back-propagation synapse chips

The scaled back-propagation synapse chip was implemented simply by adding rows
and columns to the back-propagation synapse chip. In enclosure II a photomicro-
graph of the chip can be seen. It is seen that now, for this matrix size (16 x 16),
the major part of area is clearly taken up by synapses. The control signals for
the scaled back-propagation synapse chip being identical to the ones of the first
back-propagation synapse chip, the test PCB was constructed as a “piggyback”
PCB that would fit into the synapse chip socket of the original back-propagation
synapse chip test PCB. The piggyback PCB splits the address space of the original
chip in two: one part is mapped on a relocatable part of the scaled chip address
space while the other is replicated in the remaining address space. In this way it
is possible for any synapse strength to be set independently of the other synapse
strengths, using the limited address space of the original back-propagation synapse
chip test PCB. The full schematic of the scaled back-propagation synapse chip test
piggyback PCB can be found in enclosure III.

The scaled synapse chip being malmanufactured, measured chip properties
(for instance propagation delays, offset errors and non-linearities) will not charac-
terize the chip well. Measurements done on the original back-propagation synapse
chip will probably, for most parts, give a better performance estimate of properly
manufactured chips. As we shall try to use the chip in our RTRL /back-propagation
system in spite of the poor performance, a few measurement results are given in fig-
ure 100P. Notice the very large systematic offset errors. The reference voltage was
raised to Vier = —1.5V to accommodate to the reduced input range of the current
conveyors. A typical synapse transfer characteristic is shown in figure 101P.

Property Value Bits: stoch. syst.
Matrix offset |Vwots +23mV]| < 16 mV 2LSBy 3LSBy
Synapse non-linearity D.,. < 3% 8 LSBg

Chip output offset |Iso0fs — 9-3 A < 2.5uA 213LSBg 794 LSBg
Synapse input offset |Viots — 30mV| < 6mV 1LSBg 4LSBg
Synapse input range vy 4+ Vier € [-2.5V,0.0V]

Synapse output range liws] S T.8pA o], |V <1V

Figure 100P: Table of scaled BPL synapse chip characteristics. Malfabricated
chip; notice the large systematic offsets. See also the characteristics of the
non-scaled chip.

Appendiz D.2.4 System design aspects Page 197

Figure 101°: Scaled synapse
chip characteristics. Measure-

| !
ments on a single synapse (the j\\ o 1 L~
output offset has been can- & >~ § V=094V -
celed). Notice the restricted in- m'*\\% I ::;ﬁ_«——“
put range (and the fairly low B RARRRRARSE S~ S AR
transconductance); presumably gwmf’// T N7
4 \ L
caused by a low process trans-] <V, + 094V ™~
conductance parameter and = . + 1

<
N
<

raised threshold voltages. A-1v

D.2.4 Back-propagation chip set improvements

Being composed primarily of components found on the recall mode ANN chip
set, most of the improvements mentioned in section D.1.2 apply also to the back-
propagation chip set (eg. reducing the power supply, improving the op-amps and
current conveyors and implementing on-chip bias circuits and temperature com-
pensation). A few additional issues are subjects for improvement of the developed
cascadable back-propagation learning ANN chip set:

e Redirection switch matching. The weight offsets are primarily determined by
mismatch in the synapse chip redirection switches. These should be matched.

o Auto offset compensation. Many offset errors being destructive to learning
processes, auto offset compensation circuits should be included on the chips.
This could be chopper stabilizing circuits or circuits like the one mentioned in
section 5.3.2. Several signals are subjects for offset compensation:

o The synapse chip forward mode output current.

o The synapse chip reverse mode output current.

o The neuron chip weight change output voltage.

o The neuron chip neuron activation output voltage range.

o The neuron chip weight change error voltage.
Except for the weight change output, the wire count of these signals grows
as O(N); thus a fairly simple (cheap) offset compensation scheme must be
employed.

e Improved neuron derivative computation. Several choices for improvement is
possible; perhaps the simplest would be to clipping negative outputs from this
circuit.

o Scaled synapse chip remanufacturing.

e Non-linear back-propagation extensions. The synapse chip is compatible with
non-linear back-propagation. The neuron chip can in a simple way be ex-
panded to include non-linear back-propagation.

Appendiz D.8 System design aspects Page 198

D.3 The RTRL chip

The width N data path RTRL chip consists almost entirely of layout taken from
the back-propagation chip set. The chip development has thus consisted mainly of
a rearrangement (and rerouting) of building blocks; plus the layout of a few digital
components.

The schematic of a width N data path RTRL signal slice can be seen in figure
102P. Various intermediate signal names are indicated in the figure. The different
blocks of the neuron are identified as follows:

e ETSampler is the edge trigged neuron activation sampler. The input signal
vy, (t) is sampled at the falling edge of the ¢g, clock signal.

e Diff computes the neuron error signal v., (t) = vq, (f) — vy, (t), where vq, (t) is
the externally applied target value. The output is gated via the target select
input Ty ().

e Sqr3qr computes the neuron derivative vy (t) (assuming a hyperbolic tan-
gent activation function). The maximal neuron output voltage Vymax must be
supplied externally.

e TransR computes the net input derivative variable vk, (t). It is composed of
a transresistor (transresistance controlled by the externally applied voltage
Vre) and the signal slice k& part of the distributed i-; demultiplexor (the tree
transistors to the left controlled by bits i and ¢; (plus chip select icg for
cascading) of the ¢ variable). The external current input ¢y, (t) is added to
the demultiplexed i.; signal.

e MullD computes the neuron derivative variable Uk, (t). This output is routed
to the (chip) global Upk! (t) chip output when selected by the k' (bits k|,
and chip select k(y) neuron derivative variable access input. This input also
controls the:

e Sampler is the signal slice k Uk, (t — 1) sampler. The input is taken from
the (chip) global Up! (t — 1) input and is sample at the falling edge of the

osp clock input when selected by k' (using a precharged address decoder as
shown). Actually, two Upk! (t — 1) input channels are provided; one is meant

for initializing the pfjs and the other is meant for normal operation.

e VMulElm is the signal slice k& part of the distributed inner product multiplier
computing the weight changes. The outputs are connected to the shared cur-
rent conveyor. The inputs are the vy (t) and either Upk () or Vo, () (for using

the quadratic and entropic cost function respectively) controlled by the Q/E
and Q/E inputs.

The schematic of the order N signal path RTRL chip weight updating hard-
ware is seen in figure 103P. It consists basically of the CCII+ current conveyor that
takes the difference of the distributed MRC inner product weight change multiplier
(the CCII4+X and CCII4+YZ lines); connected to the input of the CCII+ are four
MRCs used for offset compensation. The first is used for external compensation;
a (differential mode) current proportional to the Vg input is added to the weight

Appendiz D.8 System design aspects Page 199

change current. The three other MRCs are used for the automatic offset compen-
sation circuit. One is used to ensure a positive output current offset, and the other
two are connected to the two 8bit offset compensating voltage output DACs (ven-
dor standard cell components). The Vaznwm and Vazar, inputs are used to control
the transconductance of the MRCs connected to the most significant and least
significant DAC respectively (the MRCs are scaled such that Vazym & 10Vazmr
should be chosen).

When the azero auto-zeroing signal is high, the CCII+ output is directed to
the current comparator rather than the chip weight change current output iCAh;i ;-
Also shown on the figure is the v.; transconductor. The transconductance is con-
trolled by the Vi, input. In enclosure II a photomicrograph of the chip can be
seen. Note that the D/A converters (lower left) and the SAR (lower right) take up
a considerably amount of area. The signal slices are the four long, low rows (top).

A “start conversion”, sc, signal is needed for the successive approximation
register for initiating an auto offset cancellation phase. This is generated by the
circuit in figure 104: when azero signal goes high, the sc signal will be high in
the following ¢; clock phase. (The CMOS transmission gate symbol is defined in
figure 105°. It must be driven by a complementary signal on the gates; in the sc
generating circuit only non-inverting input signals are shown for simplicity.)

azero sC
O m
E i [E i [[sC

Figure 104”: SAR start signal gating. Generation of one-clock-period start
signal for successive approximation register. The two successive inverters can

be removed; they are present for design ease.

Figure 105" Transmission gate

symbol. Commonly used symbol for CMOS trans- s
mission gate controlled by complementary signals

(top and bottom). Sometimes one one of the control % N ‘G’
gates are explicitly shown driven. —

Standard CMOS digital logic usually requires (as our circuit) a two phase non-
overlapping clock; usually (as in our case) available in both true and complimentary
forms. A circuit that generates the four clock-phases ¢, &1, ¢o, and ¢, from a
single input clock signal ¢ is shown in figure 106P. It is based on a cross coupled
NOR gate pair for generating the two non-overlapping clock phases (see eg. Geiger
et al. [77]) and on two n/n 4 1 inverter chain pairs for the generation of skew free
inverted clock signals (Shoji [221]). Additional capacitive loads can be placed at
the outputs of the NOR gates (when IncICD = 1) to increase the inter-clock delay
(the time period when both ¢1 = 0 and ¢2 = 0).

System design aspects Page 200

Appendiz D.8

E B
DT E
w Q
SOy Ty 0

— oA AN =
/0 008/0 = T 000 S = v
SSA SA S E SSA SSA ped ndino & 3

army SAIALIBP UOINS

7 L_M_I i wonoq IleALiep N ;M m
_ o IS

SSA SSA I) L5 3
ZA+1100 WTATORA —_ —_ pewma T — —_
- T m Lz _u", & E
_ — PA PA et —+ pedindul . g
x#ioo | |2 Te/e = epinduteN 3
I ™~ N

S

S

=

refl and

slice is composed mostly of components also found on the back-propagation

chip set.

SSA
-
—_ —_ —_ Xew B) 3
- oh s, T S
i _W ¢_W P\/ _M f, T m Tw_ m 3
[0 PA . = Q
LiEr Binir o SRy
ped ndui f (1B 9 16/8"7 TR O
wbreL % C FWL O) O) | Lm_ﬁ , Wrr agy agy —o .5 rm
—— —— —— “Iv/TL W_\/ —
ag, S T sy m .
Mm._”mEmmB”Wc ozﬁ ED:HOQ | mo Lﬂbw
doy $ H
L300 =N A | pedndino L g
Eﬁ TeANJe UCINBN = B0
PA m = s
pewmMA =
HIEEE= LT = I S
9" 1¥/T L an aay Cv§> DnA =
ped indur
& xewisp B & uoleAnde uoIneN T
g
=
oD
&

For skew free clock inversion, one must ensure that the sum of rise times (tg

convenience.

Page 201

SO|

=y
3
=
[
e
S~
&)
Q,
A ped ndul o
z+| _on sindul yiompN m
S
BIA ST m
Sgc_o,qn_ .
Ne hm‘_\/ Q\ﬁ.t\/ m
. sas ocm:&mh ndino uiw Dva ZA &

2 QvaagsT) VA agsSI | o O

) /T 90UsB 8. INdiNo Xew Dva , :lr 97

ww - SSA SSA SSA SSA SSA | SSA B g

= 4 A A A _ ndino Dva i - ZA+1100 Lm

o]

g 5l Y Hew _oo = g
= © ﬁ P BA B = =
L 5 u vh\ vh\ T u W_ T W_ X+1100 S

m W et ﬂ 9 LT/T L A@> %o
= i A i Wt 2

[v T0g~
Quud ped ndul % % f :IF % % At mw mw o

@mo.‘_wNO“——._ M o6e/v ¢ 9°16/9" m 9°16/8° % 9°16/9°6 c -

feubt v ady ady ady | adp IS =
1S slo

e dip w © = g E

ped 1ndino ® .m. me.am. qmn.m. S .m. DLu

abueto 1BBM o M 53 LR

QE <= =< 52 o

Do.o.

o

—

)

—

=

oD

&

Appendiz D.8

The

Most of the auto zeroing circuit is shown only as a block schematic.

network input signal transconductor is also shown in the figure.

Appendiz D.8 System design aspects Page 202

IncICD

o .
o @2
do o M2
V I .
— o M1
o @1

——

Figure 106": Clock generator. Two-phase non-overlapping skew-free clock
generating circuit with large capacitive load driving capability. The inter-
clock delay can be increased by adding capacitance at NOR gate outputs. ¢,
is a delayed version of the input ¢.

or tpqrH) in the inverting (3 inverters) and the non-inverting (4 inverters) inverter
chains are equal for both falling and raising input signals. Likewise for the sum
of fall times (tp or tpqnr,). Assume valid the simple CMOS inverter rise/fall time
relations (see eg. Weste and Eshraghian [262]):

aCy, . ACy,
(VbD-—‘és)KELVP/LP7 FrV(VbD-—‘@S)K&LVN/LN7

tR o (46D)

where (7, is the inverter load capacitance, and assume

Cre = Cox(Wneg1Lngs1 + Wpegp1Lpesq),

where the indices (§ and ¢ + 1) refer to inverter number counted from the left.
In this case using the relative transistor widths indicated in figure 106" (equal
lengths) gives skew free inversion at the output of the third inverter in the upper
chain compared to the second inverter in the lower chain. If the final load is
unknown, this is the best we can do; the output inverters are designed to drive a
large capacitive load with equal rise and fall times for typical process parameters.

The RTRL chip test PCB schematic is shown in enclosure III. Chip measure-
ments was done in the standard way; a table of chip characteristics is found in
figure 107°. The chip — as the scaled back-propagation synapse chip — being
malmanufactured, chip properties (as propagation delays, offset errors and signal
ranges) will not be characteristic for a properly manufactured chip. As we shall
try to utilize the chip anyway, we have included a selection of characteristics. The
reference voltage was changed to Vier = —1.5V to accommodate to the reduced
input voltage range of the current conveyor (as it was for the scaled synapse chip).

Appendiz D.5.1 System design aspects Page 203

Property Value Bits Notes

Error input range vg — vy € [—0.5,0.6] Vi

Sampler input rangel ve + Viet € [—4.0,3.2]V

Neuron input input range v, + Vier € [-2.8,—-0.3] V

Neuron input offset |Vots| < 300mV 30LSBs |wij|max = 1

Weight change offset [TAwofs| < 2 A 165 LSBsf

Error input offset |Veots| < 50mV Targeted

Net input derivative offset | Twpots| < 54nA 4 LSBsf

Sampler output offset |Veots| < 10mV 1LSBg at vy, =0V
|Veerr| <20mV 3LSBs |vin| <1V

Derivative output offset Vo(t)ots] < 3mV 0.4 LSBg

Parabola input offset |Vyrtofs| < 33mV 4LSBg

Parabola output offset |Vyroots| < 200mV 26 LSBg

IPM element non-linearity D,. <5% 13 LSBsy

Multiplier non-linearity Doa <3% 8 LSBy

Parabola non-linearity Di_yp2 $3% 8 LSBg

Propagation delaysf tepd ~ 10 us

Sampler decay rate |0¢] < 0.6mV/s 0.08LSBg/s

T Forvg € [-1,1]V at Vier = —1.5V. vg—v, € [—1,1] V is possible, though
the difference will be non-linear.

1 Both the edge trigged (v,) and the transparent (v,) sampler.

1 Relative to single multiplier element.

t Typically; in the order of.

Figure 107P: Table of RTRL chip characteristics. Malfabricated chip; primar-
ily resulting in a reduced dynamic range. The large V.o 1s caused by a design
flaw. See also the back-propagation chip set characteristics.

D.3.1 RTRL chip improvements

Being composed primarily of components found on the back-propagation chip set,
most of the improvements mentioned in the previous sections apply also to the
RTRL chip. A few additional issues are subjects for improvement of the developed
real-time recurrent learning chip:

o Making auto offset compensation work. Because the weight change offset
is of paramount importance, one of the primary tasks of future research is to
implement acting auto offset compensation hardware. A chip remanufacturing
might solve the problem but one must make certain that this is probable before
doing so.

e Reduce v, input offset. This can be done in a straight-forward manner: just
redesigning the output current mirrors of the current conveyor to the correct
current range.

e Improve neuron derivative computation. Just as was the case for the back-
propagation neuron chip (see above); though recall that only the neuron acti-
vation (and not the neuron net input) will be available for the calculation in

Appendiz D.4 System design aspects Page 204

this case.

e Chip remanufacturing.

e Non-linear RTRL extensions. Equivalently to the back-propagation neuron
chip, the with N data path RTRL module can in a simple way be expanded
to include non-linear real-time recurrent learning.

D.4 The RTRL/back-propagation system

A complete schematic (without decoupling capacitors) of the RTRL /back-propa-
gation system can be found in enclosure III. It is currently under construction thus
we can not present any measurements based on it. Note that the external synapse
chip output offset compensation have yet to be included on the board. The board
basically consists of a large number of D/A and A /D converters and digital latches,
interfaced to a standard PC AT (ISA) bus, for controlling the custom ASICs in
our learning system. Various control signals used on the board — the low-level
programmers interface — are described in enclosure IV.

Page 205

Appendix E

Building block components

In this appendix various building block components used on the chips are briefly de-
scribed: The regulated gain cascode based operational amplifier, current conveyor
and transconductor designed by Thomas Kaulberg. Also the layout of typical MOS
resistive circuits is shown.

E.1 The op-amp and the CCII+

The operational amplifier and the current conveyor used on the chips was designed
by Thomas Kaulberg. The op-amp schematic is shown in figure 108%. It is a
two stage cascode amplifier; the gain originating from the input stage differential
current being dumped into the very high impedance node where the compensation
capacitor is connected. The bulks of the p-channel transistors of the output push-
pull source follower are connected to the source terminals to lower the minimal
output voltage. The the p-channel transistor placed in series with the p-channel
current mirror is present for avoiding snap-back.

For high gain, regulated gain cascodes (RGC) (Sickinger and Guggenbiihl
[202]) have been used for the current mirrors. A p-type RGC is shown in figure
109": The drain of main transistor (the transistor connected to the “gate” terminal)
is kept at a constant potential using a cascode transistor and a simple inverting
amplifier (the two left most transistors). An n-type RGC current mirror is seen in
figure 110%.

Doing supply current semsing on the output transistors of the op-amp; and
connecting the op-amp as a voltage follower, we have a CCII+ type current con-

Appendiz E.1 Building block components Page 206

\Vbb

Q= @
I i AT
‘ ® = HdE

P

Vss

Figure 108%: The operational amplifier. Regulated gain cascode opamp with
push-pull source follower output stage. Only a single very high impedance
node contributes to the gain.

“‘source’ Vbp \bp
Vin
07

(33 gme’ L j /\/

Figure 109%: Regulated gain cascode. Béaé{lg_

P-type RGC. The local feedback pro- wout

vides a very high output impedance at “drain’’
the “drain” terminal. Vss
\bp
Bias

iiny — [¥ ou

N
iin| | ¥ out

Lllll

l
[

J—Jrr

L

Vss

Figure 110¥: RGC current mirror. Accurate, high output impedance, N-type
mirror composed of two regulated gain cascodes. One must ensure (by tran-
sistor sizing) that the transistors are saturated in the relevant input current
range.

Appendiz E.1 Building block components Page 207

veyor (Toumazou et al. [241, 242, 244]). This is shown in figure 111%(the CCII+
symbol is given in figure 18%). The CCIIE voltage/current relations are:

2% 0O 0 0 vy
UX e]_ 0 0 iX
17 0 4+£1 0 vy,
\Vbb \Vbp

o | {Bd D
I i S

- U T R
P 1P
Vss Vss

Figure 111%: The current conveyor. CCII+ implemented by current supply
sensing the output transistors of the unity gain coupled opamp. Removing the
teedback, we have a very versatile four terminal operational component.

If we omit the feedback, the resulting four terminal device is a very versatile
component; this is used on the back-propagation synapse chip. Using 2 A RGC
bias currents and 60 pA differential pair tail currents, the typical open loop gain is
as shown in figure 1127, Other typical characteristics are (at a 10kQ|16 pF load):

e Input voltage offset Vyors < 5mV.
o Output current offset Iy < 3 pA.
e Voltage follower slew rate SR > 5V /us.
o Current output range iz |max = 300 pA.
100 T ; .
| "ccgain.asc"
2 80
~
S 60 1
-
©
D40 1
o i
Figure 112" Op-amp frequency H 20
response. Measured open loop O 0
gain vs. frequency for sample 220 1 1 1
CCII+/op-amp (positive input 1 10 100 1000 10000

to voltage output). frequency/kHz

Appendiz E.2 Building block components Page 208
E.2 The transconductor

The transconductor used on the first generation synapse chip was designed by
Thomas Kaulberg. The principal schematic is shown in figure 113, The resistor
is implemented as an n-well resistor.

O Q= Qe
M e e

Figure 113%: The transconductor. G

Basically a CCII+ with a (N-well) 4”%

resistor connected to the x-termi- v
ref

nal. The CCII+ is based on (sin-
gle ended) supply current sensing {ﬁ ﬁ{B
of a two-stage unity-gain coupled

opamp. Vss Vss

Appendiz E.3 Building block components Page 209
E.3 MOS resistive circuit

The MOS resistive circuit is used excessively in this work; often with level shifters
at the gate inputs. A typical MRC layout is shown in figure 114 (taken from the
back-propagation neuron chip). Also shown is a pair (or rater 1% pair) of gate input
level shifters; p-channel source followers (with bulk connected to source for precise
buffering) driven by RGC current sources. All MRC gate input level shifters occur
in pairs to ensure matching of the voltage by which the level shifters raise the input
voltages.

lll”l"llhi"#ltmll“l\
o il a :llllll
|| : Cliy * Cl 5 m mmmm
: afl | il = : :
L : .“E 5 : : :
. LI LEEA TN . ! m =i
: : :] n w L : :
: : u : : 1 LI :_ [] []
- - m: : 5 L] q#lhlll] : :
. - w [] 5] - 1| '. w‘.":' :i
: HE B 5 B By bt | AR
: A5 G GeE HERTDEL S TEH | g
I s R
L E o | | =
" I P w0 H| EEeEEEm
. llllﬁhlll,j::. : " EEEm
: : : I \E. I__J.: - Ilul
1 Bl - <" i WM E
| | |
wf | Ja] | i 'I; I' I e
! .[.‘ ‘* : H EEEEEN
E—— = ([Ww i :
s Tl L LG i:“
- (-

Figure 114" Typical MRC layout. The layout of three MRCs connected
to an op-amp (right). Two MRCs are preceded by level shifters (left): The
P-channel MOSTs source followers and the corresponding regulated cascode
current sources can be identified. The layout is taken from a back-propagation
neuron.

