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Preface

This thesis has been prepared at the Institute of Mathematical Statistics and
Operations Research (IMSOR), Technical University of Denmark, in partial

fulfillment of the requirements for the degree of Ph.D. in engineering.

The general framework of the thesis is statistics and digital image analysis.

It is implied that the reader has a basic knowledge of these areas.
The treatment of the subjects is by no means exhaustive, but is intended
to improve the knowledge on texture description and texture simulation by

going through selected theory and examples. Hopefully this can lead to an

improved texture understanding.

Lyngby, April 1992

Jens Michael Carstensen
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Summary

The problem of texture analysis is considered within the framework of digi-
tal image analysis. An extensive set of texture statistics is reviewed and
explained, and their performance in measuring enzymatic treatment effect
on textile and in classification of a more general set of textures is studied.
We found that both problems were solved satisfactorily with the set of

texture statistics used.

Markov random fields are reviewed and investigated as models of texture.
Results from the field of statistical physics are reformulated in a statis-
tical setting. Standard Markov random fields do not have the ability to
model morphological properties of textures, and this leads us to formulate
an extension in the terms of mathematical morphology. The properties of
morphological Markov random fields are illustrated. We go through the
problem of Markov random field parameter estimation and suggest an ex-
tension of the asymptotic maximum likelihood estimator (Pickard, 1987) to

the anisotropic first-order model.

ix

Markov random field simulation is described and a new, fast, parallel al-
gorithm for simulation conditional on the first-order statistics is presented.
This algorithm and the morphological Markov random fields are then used

for the simulation of the geometrical structure of oil reservoirs.

Markov random fields in a Bayesian setting are used successfully to analyze

hybridization filters automatically for the human genome project.



Resumé

Teksturanalyse betragtes inden for rammerne af digital billedanalyse. Et

omfattende antal statistiske stikprgvefunktioner til teksturbeskrivelse er

gennemgaet og forklaret, og deres evne til at male effekt af enzymbehand-

ling pa tekstiler og til at klassificere et mere generelt st af teksturer er

underspgt. Begge problemer viste sig at kunne lgses tilfredsstillende med

de anvendte stikprgvefunktioner.

Der gives en oversigt over Markovfelter, og deres anvendelighed som tekstur-

modeller udforskes.

Resultater om disse modeller fra statistisk fysik re-

formuleres i statistisk terminologi. Seedvanlige Markovfelter kan ikke model-

lere teksturers morfologiske egenskaber, og dette forer os frem til at for-

mulere en udvidelse ved brug af matematisk morfologi. Morfologiske Markov-

felters egenskaber bliver endvidere illustreret.

Der redeggres for proble-

merne i forbindelse med estimation af parametre, og der foreslas en udvidelse

af den asymptotiske maximum likelihood estimator (Pickard, 1987) til det

anisotrope tilfaelde.

xi

Teorien for simulation af Markovfelter er gennemgaet, og der praesenteres
en ny, hurtig, parallel algoritme til simulation af Markovfelter givet den
marginale fordeling af pixelvaerdier. Denne algoritme og de morfologiske
Markovfelter bliver derefter anvendt til simulation af den rumlige struktur

1 oliereservoirer.

Markovfelter bliver i en Bayesiansk sammenhseng anvendt til automatise-

ring af analysen af hybridiseringsfiltre indenfor human genome projektet.

xii
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Chapter 1

Introduction

1.1 Texture

The term visual texture in the title of this thesis emphasizes, that the defi-

nition of texture used here is closely related to perception.

A texture is a region in 2D or 3D that can be perceived as being

spatially homogeneous in some sense.

This definition is very broad. It includes as texture the totally uniform
region, which in the daily language is said to have no texture. Indeed the
interesting thing about textures is the study of the spatial variations over

the textured region, and these variations often become synonymous with

2 Chapter 1. Introduction

texture. We emphasize that textures only differing in luminance are con-
sidered different textures according to our definition. Brodatz (1966) is a
photographic album with 112 textures. This album has become a stan-
dard reference in texture analysis and subsequently these textures shall be

referred to as the Brodatz textures .

Figure 1.1 shows a strictly random texture. The pixels are uncorrelated.
Figure 1.2 shows a strictly deterministic texture (a checkerboard). It is a
strictly ordered pattern, that is fully determined from the knowledge of a
small subpattern. Observable textures are somewhere between these two
extremes. Figures 1.3 and 1.4 show examples of a random texture (hand-
made paper) and a deterministic texture (a brick wall). The word texture
comes from the Latin word textura, that means textile fabric, and textile
fabric is another example of a deterministic texture. Rao (1990) classifies
all of the Brodatz textures in three classes: disordered (random), weakly

ordered, and strongly ordered (deterministic).

The question of scale or resolution is fundamental to texture perception. If
we zoom in on the brick wall of figure 1.4 we see the texture of the individual
bricks. If we zoom out we may see a texture of wall shading or a texture of
wall and windows. Thus there may be several levels of completely different
textures in the same image but at different scales. A texture with more than
one texture level is called a hierarchical texture . To distinguish between
different texture levels we can use the terms microtexture and macrotexture.

Subsequently the terms scale and resolution will be used interchangeably.

Researchers in texture perception have investigated preattentive (effortless
or instantaneous) texture discrimination in the human visual system. The

famous iso-second-order conjecture (Julesz, 1975) stated that textures with
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Figure 1.1. A strictly random texture
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Figure 1.2. A strictly deterministic texture

Figure 1.4. Brick wall (D95 from Brodatz)




1.2 Texture analysis )

the same second-order statistics (gray level statistics of pairs of pixels) can
not be distinguished even if they have different third- or higher-order statis-
tics. This conjecture has later been disproved (Julesz, 1981) and replaced
by a texton theory (Julesz & Bergen, 1983). Textons are small conspicuous

features like

¢ Elongated shapes, such as ellipses, rectangles or line segments.
e Ends of line segments.

e Crossings of line segments.

The texton conjecture argues that preattentive texture discrimination is

based on differences in the density of textons.

1.2 Texture analysis

The main goal of texture analysis is to extract useful textural information
from an image. Historically there has been two major approaches, a struc-
tural and a statistical. The structural approach describes a texture by a
subpattern or primitive and the spatial distribution of primitives, the place-
ment rule. The primitives are also called texture elements. If we consider
the brick wall the primitive is a brick and the placement rule specifies the
arrangement of bricks in the wall. The statistical approach is more generally
applicable, because it does not presume that the texture can be described
in terms of primitives and placement rules. It draws on the general set of

statistical tools. This thesis is primarily based on the statistical approach.

6 Chapter 1. Introduction

The extraction of texture features is essential to applications such as tez-
ture measurement, texture summarization, texture classification and texture
segmentation (Texture description denotes all of these areas). The goal of
texture measurement is to characterize a texture with one feature, e.g. a
feature for textile wear assessment. In texture summarization we give sum-
maries reflecting the visual properties of textures. Texture classification
usually serves one of two goals. We may want to assign a class to an entire
texture, e.g. accept or reject in industrial quality control. We may also
want to assign a texture class to every pixel in an image and thus obtain a
partitioning of this image. Texture segmentation corresponds to pixelwise
texture classification with no a priori knowledge of the number of texture

components or the properties of each texture component.

For general reviews on texture analysis the reader is referred to Haralick
(1979), van Gool, Dewaele, & Oosterlinck (1985), Tomita & Tsuji (1990),
Rao (1990).

1.3 Outline of the thesis

Chapter 2 gives an overview of texture statistics used in texture analysis.
This overview is followed by two case studies that evaluates the performance
of these statistics in accurately measuring textural properties. First we
want to measure the textural changes that cotton textiles undergo during
cellulase enzymatic treatment. Then we use second-order statistics for the

classification of Brodatz textures.
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Chapter 3 deals with parametric description of texture based on a class
of models called Markov random fields. The theory of Markov Random
fields is reviewed together with the theory of the associated Gibbs random
fields. The theory of Gibbs random fields were founded in statistical physics
(Ising, 1925) and some relevant results from this area is presented in a new
statistical setting. A variety of Markov random fields is reviewed with an
emphasis on discrete models. Further we introduce a set of morphological
Markov random fields, that extends the standard set of models by using the

operators of mathematical morphology (Serra, 1982).

For most practical applications of Markov random fields it is essential that
we have accurate and feasible algorithms for parameter estimation. In
chapter 4 a selection of estimation methods is reviewed, and some of these
methods are applied in chapter 5. An extension of the asymptotic maximum
likelihood estimator (Pickard, 1987) to the anisotropic case is proposed in

section 4.4.2.

In chapter 5 we review a set of iterative simulation schemes for Markov
random field simulation. We then present a fast new parallel algorithm for
simulating Markov random fields conditional on given first-order statistics.
We investigate the use of this algorithm and a morphological Potts model

in the simulation of geological structures.

The Bayesian paradigm is a framework for incorporating stochastic models
of visual phenomena into a very general set of tasks from image processing
and image analysis. In chapter 6 we give a short review of Bayesian image
analysis and present an application that makes successful use of Markov ran-
dom fields, the Metropolis algorithm and simulated annealing in a Bayesian

framework.

Chapter 1.

Introduction




Chapter 2

Texture statistics

Texture statistics is frequently classified into first-order, second-order and
higher-order statistics. First-order statistics refer to the marginal gray level
distribution. Second-order statistics refer to the joint gray level distribution
of pairs of pixels and higher-order statistics refer to the joint gray level

distribution of three or more pixels.

This chapter gives an overview of texture statistics used in texture analysis.
This overview is followed by two case studies that evaluate the performance
of these statistics in accurately measuring textural properties. First we
want to measure the textural changes that cotton textiles undergo during
cellulase enzymatic treatment. Then we use second-order statistics for the

classification of Brodatz textures.

10 Chapter 2. Texture statistics

2.1 First-order gray level statistics

The first-order gray level statistics can be derived from the gray level his-
togram {h;}. h; is the number of pixels in an image with gray level i. If
N is the total number of pixels and G is the number of gray levels then
MMQH\% h; = N. The normalized histogram {H;} with H; = h;/N is the
empirical probability density function for single pixels. Statistics computed

from H; include:

1. The mean gray level
G-1
i=0
1 measures the average intensity in the image.

2. The gray level variance
G-1

o> = (i—p)’H;

i=0
where o is the standard deviation. The variance and the standard

deviation measures the global contrast in the image.
3. The coefficient of variation

CU = —

I
The coefficient of variation is invariant under a change of scale, 1’ = A1,
thus if the intensity scale has a natural zero, then the cv will be a scale

invariant measure of global contrast,

4. The gray level skewness
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Skewness measures the extent to which outliers favor one side of the
distribution. Skewness is invariant under a linear gray scale transfor- Normalized variance

mation ¢’ = Ai + B.

5. The gray level kurtosis

;| G-1
Y2 == MQISﬁSIm

g-
=0

Kurtosis measures the peakedness or tail prominence of the distribu-

tion. It is 0.0 for the Gaussian distribution. Kurtosis is invariant

under a linear gray scale transformation i’ = Ai + B.

6. The gray level energy Figure 2.1. Normalized variance versus scale for five Brodatz textures.

)
Il

T Q

UL
)

where G~! < e < 1. Energy measures the nonuniformity of the his-
togram. 2.1.1 Multi-resolution first-order statistics

7. The gray level entropy

First-order statistics computed at several different scales (resolutions) will

G-1

= - H;log H; . I . . . .

5 M 108 Hi provide us with information about second- and higher-order statistics. As
1=

an example we have taken five Brodatz textures, and successively lowpass

where 0 < s < logG. Entropy measures the uniformity of the his- filtered and subsampled them five times. We have computed the variance
togram. This quantity is widely used in image compression. If the of each image and then divided by the variance of the full resolution image.
logarithm is of base 2, it is the lower bound on the average length of In figure 2.1 we see that the result is five curves, that can be distinguished.
the binary code words used in error-free compression of independent Thus multi-resolution first-order statistics contain important textural infor-

data samples. mation.
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2.1.2 Histogram matching

The first-order statistics are highly dependent on the lighting conditions. It
is therefore common practice to try to eliminate the influence of first-order
statistics in texture analysis by making the gray level histogram match a
specific distribution. A match to a uniform distribution is called histogram
equalization, and this is by far the most used match. A match to a Gaussian
distribution is another possibility, and in section 2.7 we see that this is a

more gentle match especially for stochastic textures.

2.2 Second-order gray level statistics

The autocorrelation (or the closely related variogram) is probably the best
known second-order gray level statistic. We will, however, consider the
second-order gray level statistics in a more general setting: gray level cooc-
currence matrices (GLCM). The autocorrelation can be computed from

these cooccurrence matrices.

2.2.1 Gray level cooccurrence matrices

The gray level cooccurrence matrices are a full representation of the second-
order gray level statistics. A GLCM, c, is defined with respect to a given
(row,column) displacement h, and element (i,j), denoted ¢;;, is the number
of times a point having gray level j occurs in position h relative to a point
having gray level i. Let Ny be the total number of pairs, then C;; = ¢;j/Nn
denotes the elements of the normalized GLCM, C.

14 Chapter 2. Texture statistics

The meaning of the above definition gets more apparent if we as an example

compute c from the 4-color image

S O W W N
S N W ==
= = O =
S O = N W
S = N NW

If h=(0,1), i.e. one step in the horizontal direction, then ¢ will be

0o 1 2 3
0|12 2 2 0
113 2 1 1
210 2 1 O
30 2 0 2
and Ny will be equal to 20.
It is easily seen that
C(~h) =C"(h)

where CT is C transposed.
A symmetric GLCM, c,(h), can be obtained by pooling the frequencies of
c(h) and c(—h). Hence

cs(h) = c(h) + c’(h)

and
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Assuming isotropy (no directionality) we can pool the frequencies of cooc-
currence matrices with displacements h of different angles and approxi-
mately the same length h. This provides us with the isotropic GLCM,
c;(h), where

OsAHv = OmAO“ Hv + Omﬁ.“Ov + Omﬁ.“ Hv + OmA|H“ Hv

and
Cil1) = 7[Ca(0,1) + Cu(1,0) + Cu(1,1) + C,(~1,1)]

One of the main problems associated with the use of cooccurrence matrices is
that they have to be computed for many different values of h, thus providing
us with an immense amount of data. Data reduction can be accomplished
by pooling the matrices as shown above, by reducing the number of gray
levels or by computing texture features from each matrix. These features

can then be used for description and classification of textures.

Let
G

-1
Ci=>Y Ci

j=0

T

cr =% Cy

i=

[e]

and let iz, py, 0, and oy be the means and standard deviations of C and
Qw over i and j. Then a number of features can be computed from the
GLCM including:

1. Energy or Angular Second Moment

G—-1G-1

=y >

i=0 j=0

16
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where G2 < £ < 1. & takes the value G~2 for a uniform distribution

over C, and the value 1 iff only one cell is nonzero.

. Entropy

G-1G-1

S=- M M Q&QONQ&

i=0 j=0
where 0 < S < log G%. S takes the value log G? for a uniform distri-

bution over C, and the value 0 iff only one cell is nonzero.

. Maximum Probability

.>\N = max Q@.
where G72 < M < 1. M takes the value G—2 for a uniform distribu-
tion over C, and the value 1 iff only one cell is nonzero.
Correlation (or Autocorrelation)
1

i=0

040y

QML (i = 1) G — 1) Cyj
j=0

where —1 < p < 1. p takes the value 1 iff only values on the main
diagonal of C are nonzero and the value O iff the gray values are

uncorrelated.

. Diagonal Moment

D= i = 310+ 5 = pe — 1y)Cij

.
Il
(<]

<.
Il
(o]

The diagonal moment basically measures the difference in correlation
for high gray levels and for low gray levels. It is mentioned in Laws
(1980), but has otherwise been left out in most studies of GLCM.
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6. Informational Coefficient of Correlation at one pixel with an initial gray level distribution and then makes
/\‘ successive jumps back and forth, then the gray level distribution will

— _ p—2r

n=vi-eme approach the invariant gray level distribution. The memory of the

gray level distribution retained in each jump back and forth is deter-

where
G-16-l mined by the second-largest eigenvalue, Ao, of Q. If the pixels on each
ro=-3 3 Ccreviog(crcy) - s Hned by drargest elg 20 Q P
= = v v side of a jump are independent, we have Ay = 0.

is the Logarithmic Index of Correlation (Linfoot, 1957). Since 19 > 0

we have 0 <71 < 1. ) . ] ]
Energy, entropy and maximum probability are uniformity measures. They

7. Maximal Correlation Coefficient. This feature is the square root of all have one extremum for the uniform distribution and another extremum
the second largest eigenvalue of Q where when one probability equals unity. The difference between these measures
B CirCix is demonstrated for two distributions with 4 possible outcomes.
@i 2oy
Let R and S be equal to C with respectively row sums and column » Po Ps ps | Energy | Entropy
sums normalized to unity, i.e. 0.50 0.50 0.00 0.00 | 0.50 (1) | 0.69 (2)
Cij 0.76 0.08 0.08 0.08 | 0.60(2) | 0.81 (1)
R = rec3
i
Sij = w The uniformity rankings are shown in parentheses. The energy measure
! assumes the first distribution to be the most uniform of the two, while the
then Q= RS” entropy measure chooses the second. We see that, when measuring unifor-
mity, energy penalizes single high probabilities, while entropy penalizes zero
R, ST and Q are stochastic matrices, i.e. their largest eigenvalue is 1. probabilities. If we increase the zero probabilities of the first distribution a
If they are considered as transition matrices for a Markov chain and little then entropy will reverse the ranking, and make this the most uniform
if they are irreducible then the histogram vector p will be the unique distribution according to both measures.

invariant distribution for the Markov chain. The rate of convergence
to the invariant distribution is determined by the second-largest eigen-
value, A2, where 0 < Xy < 1 (Seneta, 1981). Q is the transition matrix j2) D2 D3 ps | Energy | Entropy
for one jump with displacement vector h and back again. If we start 048 048 0.02 0.02 | 046 (1) | 0.86 (1)
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Maximum probability measures uniformity solely on the basis of the highest
probability and the ranking by this measure will often agree with that based

on energy.

The cooccurrence matrix itself can also be used as a feature (Vickers &
Modestino, 1982; Parkkinen & Oja, 1986).

The use of GLCM in texture analysis is sometimes referred to as the spatial
gray level dependence method (SGLDM).

2.2.2 Gray level difference histogram

The gray level difference histogram (GLDH) is a histogram of the absolute
differences of gray levels from pairs of pixels. It is computed from the GLCM
by summing the two-dimensional density C;; over constant value of |i — j|.
The GLDH can be regarded as a histogram of the ”distance” to the main
diagonal in the GLCM.

G-1G-1

Dp=Y_> Cijk=0,.,G-1

i=0 j=0
N—_——
li—jl=k

The features computed from the GLDH include:

1. Difference Energy
G-1
DE =Y D}
k=0

where G~ < DE < 1.
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2. Difference Entropy

G-1
DS =— Y Dylog Dy
k=0
where 0 < DS < logG.
3. Inertia, Contrast or Variogram
G—1
I=> kDy=20"(1-p) (2.1)
k=0

where o is the gray level variance and p is the correlation.

4. Inverse Difference Moment or Local Homogeneity

G-1 D
PM =S 2
M Ww 1+ k2

5. Difference Variance

G—1
DY =I— (> kDy)
k=0

GLDH features are a subset of GLCM features, and this relation will sub-
sequently be implicit. The only useful way of comparing the two sets of
features is to determine the loss of information when going from GLCM to
GLDH. Feature computation from the GLDH is often called the gray level
difference method (GLDM). The advantage of GLDM is the lower storage

requirements and lower computational complexity.

2.2.3 Gray level sum histogram

The gray level sum histogram (GLSH) is a histogram of the sum of pairs of

pixels. It is computed from the GLCM by summing the two-dimensional
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density C;; over constant value of (i + j), i.e.

G-1G-1

Se=>_ > Cijk=0,.,2G -2

i=0 j=0
———r
i+j=k
We will use the Sum Average below

2G—2

SA= D" kSk = pa + 1y

k=0

The features computed from the GLSH include:

1. Sum Energy

2G—2
SE=Y S
k=0
where (2G —1)7! < SE < 1.
2. Sum Entropy
2G—2
SS=— Y SilogSk
k=0
where 0 < 8§ < log(2G —1).
3. Sum Variance
2G—2
SV = (k—SA)’S; =20°(1+p)
k=0

where o is the gray level variance and p is the correlation.

4. Cluster Shade
2G—2

A=) (k- SA)?Sy

k=0
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5. Cluster Prominence

2G -2
B= Y (k—SA)"S

k=0

GLSH-features has not been used as widely as features based on GLDH.
Conners, Trivedi, & Harlow (1984) found that cluster shade and cluster
prominence was a useful supplement to the GLCM and GLDH features
mentioned above. Like the GLDH, the GLSH has lower storage require-
ments and lower computational complexity, but no authors have to our
knowledge tried the GLSH features by themselves.

It is obvious that the GLDH and GLSH contains a lot of the information
from the cooccurrence matrices. Due to the lower computational complexity
it is, as mentioned for the GLDH, relevant to investigate if any significant
information is lost when going from the GLCM to the GLDH and GLSH.
The structure of the GLCM is diagonal and often at least approximately
symmetric. Unser (1986b) approximated the energy and entropy features of
the GLCM from the GLDH and the GLSH. This approximation gave only a
slight decrease in classification accuracy. Unser (1986b) noted that the sum
and difference of pairs of pixels are decorrelated, but this is not generally
true for the sum and the absolute difference. The diagonal moment measures

this correlation and it varies from texture to texture (See section 2.7).

Unser (1986b) also used the GLDH and GLSH themselves as features.
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2.2.4 Haralick features

Most of the features mentioned in this section were introduced in texture
analysis in a paper by Haralick, Shanmugam, & Dinstein (1973), where 14
different features (f1-f14) were presented. They are all natural descriptors
of two-dimensional distributions, although they seem to have been selected
in a rather ad hoc manner. Even though it is recognized that these features
do not describe all aspects of the cooccurrence matrices they have been used
very rigorously in many papers. Three of the features were not included in
the list of GLCM features.

e Variance (f4). The gray level variance belongs to the first-order statis-

tics.

e Sum Average (f6)

2G—2

fo=S8A= ) kSt =pa+py
k=0

This feature also belongs to the first-order statistics.

e Information Measures of Correlation (f12 and f13).

HXY - HXY1

2 = max(HX, HY)

fiz =1 —exp(—2(HXY2 — HXY))

where HXY = S and
G-1G-1

HXY1=-3Y Y Cylog(CFcy)

i=0 j=0

G-1G-1
HXY2=-) Y CiC!log(CiCY)

i=0 j=0
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As mentioned in Linfoot (1957) HXY1 = HXY2. f12 and f13 are
thus closely related, and only 13, the informational coefficient of cor-

relation, is considered.

2.2.5 GLCM as a contingency table

Zucker & Terzopoulos (1980) interpreted the cooccurrence matrix C as a
normalized contingency table (See e.g. Bishop, Fienberg, & Holland (1975))

and used the x? statistic to select matrices suitable for classification.

G-1G—-1 sIQaQ@v Q 1G—-1
i=0 j= i=0 j=

The x? values and the selected displacements h can be used as features for

classification.

The x? statistic measures the association between variables in contingency
tables, but does not discriminate among the types of association. Figueiras-
Vidal, Paez-Borrallo, & Garcia-Gomez (1987) pointed out that periodicity
is indicated in a cooccurrence matrix by a concentration of high counts
around the main diagonal. They suggested the inertia measure (2.1) t

detect periodicities.

The k measure of agreement (Cohen, 1960)

Y0 Cu = i esey
1- Y torey

R =

was suggested by Parkkinen, Selkdinaho, & Oja (1990) to detect periodic-

ities. It directly measures the concentration on the main diagonal and the
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computational complexity is O(G) instead of O(G?) for the x? statistic.
The « statistic works best with a limited number of gray levels, e.g. from
4 to 32, and, as we will see in section 2.4, it corresponds to the correlation

measure for binary textures.

Many other features can be used to select the displacement(s) that give the

best classification.

2.2.6 Multi-resolution GLCM

Weszka, Dyer, & Rosenfeld (1976) concluded that large-distance cooccur-
rence features gave better performance if a spatial averaging was done first.
This suggests that cooccurrence matrices at several different scales should

be considered.

2.2.7 GLCM performance

GLCM features have an extensive history as a reference for texture feature

performance. We shall give a brief summary.

Haralick et al. (1973) used GLCM features to classify photomicrographs
of sandstone, panchromatic aerial photographs and multispectral satellite
imagery. They found that textural features is a valuable supplement to

spectral features.

Weszka et al. (1976) compared the classification performance on aerial pho-
tographs and LANDSAT imagery of GLCM features, GLDH features, ring
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and wedge features in the spatial frequency domain and gray level run length
features. GLCM and GLDH features were found to be the most useful and

of almost equal performance.

Conners & Harlow (1980) made a theoretical comparison of the same groups
of features, and the results agree very well with those of Weszka et al. (1976).
Many authors have since then introduced new textural features and claimed
these to be superior to the GLCM features.

Laws (1980) claimed that his texture energy features performed significantly
better than GLCM features in segmentation of a composite of eight Brodatz

textures.

Kashyap, Chellappa, & Khotanzad (1982) use the maximum likelihood es-
timate of the parameters in a Simultaneous Autoregressive Model (SAR)
as features for classification. The result is comparable to that of GLCM

features.

Vickers & Modestino (1982) used an isotropic cooccurrence matrix to clas-
sify subimages of 9 Brodatz textures. For distances of 1,3 and 5 they
obtained between 95% and 98% correctly classified. Parkkinen & Oja (1986)

used cooccurrence matrices with a horizontal displacement.

Siew, Hodgson, & Wood (1988) used GLCM, GLDH, gray level run length
and neighboring gray level dependence features to measure carpet wear.
Their distinction between GLCM and GLDH features is noninformative
since 2 features are common to both groups, and they use a standard GLCM
and an isotropic GLDH. The result shows that features from all four groups

can characterize the appearance of carpets. Their research indicates that
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these statistical measures are superior to a trained panel in reliably ranking

carpets according to wear.

du Buf, Kardan, & Spann (1990) compared 7 sets of features and found
that GLCM, Laws (Laws, 1980) and Unser (Unser, 1986a) features were
generally best.

Berry & Goutsias (1991) made a comparison between features based on the
neighboring gray level dependence matrix (NGLDM) of Sun & Wee (1983)
and GLCM features. On synthetic textures NGLDM features performed

better. On natural textures they performed equally well.

2.3 Higher-order gray level statistics

Higher-order gray level statistics were declared unimportant for texture per-
ception by the now disproved iso-second-order conjecture (Julesz, 1975), but
they seem to have regained their popularity in the literature. We will review

a few approaches.

2.3.1 Gray level run length matrix

A gray level run is a set of consecutive, collinear pixels with the same gray
level. The number of pixels in a run is the run length. Galloway (1975)
used a gray level run length matriz (GLRLM) to compute texture features.
Element (i,j) of the GLRLM, r, is denoted r;;, and this is the number of

runs of gray level i having length j. The total number of runs is IV, The
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GLRLM can be computed in any direction, but usually only directions 0°,
45°, 90° and 135° are used. From the image

S O W W N
S N W =
== O =
S O~ N W
S = N NW

we can compute r for the horizontal direction (0°).

=W ke W=
N = N NN
o O O OoOfw
S O O O
O O O O ot

where N, = 18.

The following features, computed from the GLRLM, were suggested:

1. Short Runs Emphasis
G-1 L

RF1-3 Y 22

=0 j=1

where G72 < £ < 1. & takes the value G2 for a uniform distribution

of the counts and the value 1 iff only one cell is nonzero.
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2. Long Runs Emphasis

G-1 L
RF2=Y"Y j°R;
i=0 j=1
3. Gray Level Nonuniformity
G-1 L
RF3=Y_[> Ryl
=0 j=1

where 1/G < RF3 < 1. RF3 takes the value 1/G for a uniform

distribution of the counts and the value 1 iff only one cell is nonzero.

4. Run Length Nonuniformity
L G-1

RF4 =YY Ry’

j=1 i=0
where 1/L < RF4 < 1. RF4 takes the value 1/L for a uniform
distribution of the counts and the value 1 iff only one cell is nonzero.
5. Run Percentage
RF5= N,/N
where 1/N < RF5 < 1.

The GLRLM features are very sensitive to noise, and this is probably the
reason for the reported bad performance (e.g. Weszka et al. (1976)). The

performance for discrete (e.g. binary) textures is likely to be better.

2.3.2 Neighboring gray level dependence matrix

The neighboring gray level dependence matriz (NGLDM) was introduced by
Sun & Wee (1983). In this approach all neighbors of a pixel are considered
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at the same time. A neighbor is a pixel within a certain distance d of the
central pixel and S is the number of neighbors. d is usually chosen to be
V2 and then S = 8. A pixel and its neighbor are said to have similar gray
levels if the absolute gray level difference is less than or equal to a chosen
positive number a. Element (k,s) of a NGLDM, q, is denoted g5, and this
is the number of pixels with gray level k having s neighbors with similar
gray levels. Let N4 be the total number of counts in q, then Q = q/Ny
is the normalized NGLDM. The notation presented here differs from the
notation of Sun and Wee. This is to keep the definitions along the lines of
the GLCM definition. From the image

S O W W N
S N W =
_= o= = O =
S O = N oW
S = N NW

we can compute q for ¢ = 0 and d = v/2 as

NGLDM |0 1 2 3 4 5 6 7 8
0 101 0 0 0 0O 0 O
1 0 0o 04 0 0 0 00
2 101 0 0 0 0 0 O
3 0 0 1. 0 0 0 0 0 O

where Ny = 9.

The features, that Sun and Wee suggest computed from the NGLDM, are

listed below with the modification that the feature computation here is
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based on the normalized NGLDM. This means that the features are inde-
pendent of Ng.

1. Small Number Emphasis

where G™2 < £ < 1. & takes the value G2 for a uniform distribution

of the counts and the value 1 iff only one cell is nonzero.

2. Large Number Emphasis

G-1 S
m-F 3 .
k=0 s=0
3. Number Nonuniformity
S G-1
N3=2 [} Qul’
s=0 k=0

4. Second Moment
G-1 S
N4=Y">"Q3,
k=0 s=0

5. Entropy

G-1 S

N5 = — MM@amMOWQam

k=0 s=0
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2.4 Statistics for binary images

For binary images the number of gray levels, G, equals 2 and the first-order

statistics are determined by the fraction of 1-pixels, py = ny /N. We have:

A GLCM has the form:

GLCM | 0 1 | sum
0 Noo Mol | To.
1 ny M1 | N
sum ng N1 Nn

The normalized version is:

GLCM | 0 1 | sum
0 Poo  Por | Po.
1 Pio Pn1 D1.

sum | po pa | 1

For stationary images we have p o = py. & po, p.1 = p1. =~ p; and
Po1 = P1o = pP1 — P11

Poo R po —P1 + P11

We see, that, given p;, all second-order statistics can be expressed as a
function of e.g. p11, i.e. there is only 1 degree of freedom in a GLCM given

the first-order statistic p; .
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It is more instructive to see the normalized GLCM expressed in terms of

the first-order statistics and the correlation p = %.

GLCM 0 1 sum
0 | popo(1+2:p)  popr(L—p) | po
1 ppo(1—p) pip(1+2p) | p
sum Do D1 1

Thus all second-order statistics can be expressed in terms of the first-order
statistics and the correlation p. We shall show this for the x? measure and

the xk measure.

The x? measure is for binary textures

_ 2 _ 2 _ 2
@8 %%ov +m€8 %%L + @: ﬁ::v@

x* = Nu|
PoPo Pop1 p1ip1

= Nulpip® + 2pop1p” + P1p°] = Nulp*(po + p1)?] = Nup?
and the xk measure is

_ Poo t P11 — Popo — pip1 _ 2pop1p _

K
1 —popo — p1p1 2pop1

p

Higher-order statistics are elegantly expressed in terms of mathematical

morphology as in Serra (1982).
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2.5 Fourier features

The discrete Fourier transform (DFT), F, and its inverse, F !, are defined

for the image, {f(m,n),m=0,..M —1,n=0,..,N — 1}, as

| MoiN-1 .
F(f) = Flu,v) = 355 F(m,n)e 2 (52+%)
m=0 n=0
and
M—-1N—1 .
.wua\HANﬂv = .\.AS“SV = WAQV§VQQN3A$+$V
u=0 v=0
The Fourier power spectrum is
|F|> = FF* (2.2)

where F* denotes the complex conjugate of F. The power spectrum usu-
ally varies over several orders of magnitude, which makes it interesting to

consider the log-power spectrum
log (1+ | F |?) (2.3)

Standard library FFT routines usually have the restriction that the height
and the width of the image has to be a power of 2.

The power spectrum is the Fourier transform of the autocorrelation, i.e. it
only contains information about the second-order statistics. It is recognized
that the phase spectrum contains much relevant information, but it is very

hard to make it useful.

From the Fourier transform of the image, the power spectrum and the log-
power spectrum we can compute a number of features. Averages of the

power spectrum over ring-shaped and wedge-shaped regions are common
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features (see e.g. Weszka et al. (1976)). Liu & Jernigan (1990) extracts 28

features from the power and phase spectrum.
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2.6 Measurement of enzymatic treatment ef-

fect on textile

The effect of cellulase enzymatic treatment on textiles has been investigated
using standard texture algorithms. An extensive study in both the Fourier
domain and the spatial domain has revealed the nature of the changes and
resulted in one single feature that measures these changes in a fast and

robust way.

2.6.1 Background

This project started when the R&D group in the detergent enzyme division
of Novo Nordisk (a world-leading manufacturer of detergent enzymes) ex-
pressed the wish to quantify the effects of enzymatic treatment of textiles
using digital image analysis. Until now this quantification has been done
qualitatively using microscopic inspection and quantitatively using panel
tests and light measurements (Hunter coordinates). There was a need for a

new objective, robust, fast and relatively inexpensive method.

2.6.2 Image acquisition

The image acquisition is carried out as follows. The textile is placed in
homogeneous and plentiful lighting. A camera is positioned such that it’s

optical axis is perpendicular to the textile plane and the rectangular visual
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area covers as much of the textile as possible without including non-textile

areas. The size of the textiles in this study is 15x10cm.

We used an RGB high-resolution slow-scan camera. The camera output is
digitized by a framegrabber that generates frames of 978 by 768 pixels in the
red, green and blue band. These frames are cut to 969 by 711 to eliminate
acquisition artifacts. Subsequently we will only show results derived from
the green band since the textiles used in this experiment are black and gray

and thus contains very little or no color information.

This study regards the enzymatic treatment effect for a single type of cel-
lulase. We want to assess the effect at different pH values and for different
doses. To assess the day-to-day variation the textiles were washed on dif-
ferent days for each pH-level. Thus we have three factors that we want to

investigate.

e pH: 3 levels, 123
e dose: 8 levels, 0 10 25 40 50 75 100 200

e day(pH): 3 levels, 1 2 3 (for pH values 7.0,8.0 and 9.0)

We have two repetitions for each combination, thus we end up with 144
images. In figure 2.2 we see 8 textiles representing the 8 doses for pH 1, day

1 and repetition 1.
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Figure 2.2. 8 textiles representing the 8 doses for pH 1, day 1.
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2.6.3 Description of visual properties

The object of the digital image analysis is to compute one feature that quan-
tifies a given visual property from the image array. In this case the visual
property is the human perception of wear. The feature has to correlate well
with panel tests. For cellulase enzymatic treatment with known effects this

means that the feature has to show improvement as a function of dose and

show best results for pH values close to the pH with highest enzyme activity mean
(between 7.0 and 8.0 in our case). 112 T T T T

P day 1 ©
Obviously many different features can be computed from the image. A sim- 1108 MM% w m 7]
ple feature is the average intensity, lightness. This has a strong resemblance 108 ’ -
to what is measured by the Hunter coordinates. Probably this lightness +
feature also has a strong influence on a panel test. Figure 2.3 shows the 106 = W 7]
average intensity as a function of dose for pH level 1. We see that lightness 104 oD © O - —_—
only has discriminative capability for small doses. In the context of image o H o @ o
analysis lightness is a non-robust feature in the sense that it depends heavily 102 - m m In ® ADv n
on lighting conditions and camera sensitivity. 100 © n $ $ . %

0 50 100 150 200
Another aspect of enzymatic effect on the textiles estimated by the panel dose
test is the distinctness of the regular textile pattern. This distinctness
should increase as a result of the cellulase enzymatic treatment. The regular Figure 2.3. Average intensity as a function of dose for pH level 1.

pattern in the investigated textiles resembles a rectangular grid structure.
The well defined period of this grid makes it appropriate to look at the

textiles in the Fourier domain. This is done in the next section.
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2.6.4 Analysis in the Fourier domain

Frequency based methods.

The classical way of obtaining an estimate of the power spectrum is by

equation 2.2. The log-power spectrum is given in equation 2.3.

The periodogram is a non-consistent estimate of the power spectrum. Welch’s
method is one way to deal with this. The image is split up in a number of
non-overlapping subimages. The periodogram is calculated in each subim-

age, followed by an averaging over the subspectra.

Figure 2.4 shows the full resolution power spectra of the textiles in figure
2.2. The concentric circles are isolines for the spatial frequency. Several
high-intensity spots in the power spectrum is showing the periodicity of the
weaves. The spots of lower intensity in the high-frequency areas are higher
harmonics. We see that the intensity in the low-frequency areas (near the
center of the power spectrum) is fading for higher doses of enzyme. To
illustrate this effect we computed the average of the power spectrum in the
rings between the concentric circles and plotted it versus the radius of the
rings. These averages are computed for each of the power spectra in figure
2.4, and the average corresponding to dose 0 subtracted from the averages
of each of the other doses. The plot is shown in figure 2.5, and it is obvious Figure 2.4. Power spectra of the textiles in figure 2.2.
that the averages in the low-frequency areas are decreasing for higher doses.
We also note that all the curves has approximately the same intersection
at a frequency corresponding to the frequency of the weaves. Thus having
established that the power spectrum actually contains relevant information

about the textile wear, we will try to quantify this in a single Fourier feature.
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Spectral texture features.

Texture features derived in the spatial frequency domain have been investi-
gated e.g. in Weszka et al. (1976) and Liu & Jernigan (1990). The features

tested in the present context are listed below.

2e-07
1. Rings
2. Wedges
3. Inertia
dose=10 ©—
dose=25 =+ —
dose=40 &— 4. Entropy
dose=50 >— ]
dose=75 “A—
dose=100 +— | 5. Anisotropy
dose=200 -—
_ _ _ _ All features has been computed on both the full resolution power spectrum
6 8 10 12 14 and the power spectrum estimated using Welch’s method. The Welch spec-
Ring number tral estimate performed significantly better than the full resolution power

) ) ) spectrum.
Figure 2.5. Average of power spectra rings relative to dose 0 for the spectra

in figure 2.4.
The features were computed on both the power spectrum and the log-

power spectrum. It turned out that the features calculated on the log-power
spectrum performed significantly better than the power spectral features.
Furthermore we found that inertia and entropy features performed better
than the other features. The inertia feature performed generally a little
better than the entropy feature, and it seems to be a more natural way

summarize the phenomena observed in figure 2.5.
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The inertia feature I and log-power inertia LI is computed as

I= Mgw +0?) | F(u,v) |?
(u,v)

LI = MAQM +0?) log(1+ | F(u,v) |*)
(u,v)
where we are summing over all frequencies. The normalized inertia is the
inertia divided by the inertia of the corresponding textile with dose = 0.
In figure 2.6 we show the normalized log-power inertia vs. log(dose) for all
three values of pH. Thus the measure is averaged over days and repetitions.
It can be seen that there is a clear distinction between the performance
of the enzymes at the three pH values. In addition there seems to be an

approximately linear relation between the inertia and log(dose).

Discussion of results

The spectral approach has provided us with a useful feature and a lot of
insight regarding the nature of this problem. The use of the FFT algorithm
however introduces some, somewhat technical, limitations regarding the size
of the image and computational speed. It is also less flexible in removing

textile irregularities from the analysis.

2.6.5 Spatial domain features

The distinctness property and other textural properties can also be mea-
sured by textural features in the spatial domain. Siew et al. (1988) used

features based on different texture matrices for carpet wear assessment. The
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normalized inertia
1.35 T T T T T T

1.3 .

1.25 -

1.15

1.05 | | | | | |
2 2.5 3 3.5 4 4.5 ) 5.9
log(dose)

Figure 2.6. Normalized log-power inertia versus log(dose). We see that the
measure reflects the expected ranking.



2.6 Measurement of enzymatic treatment effect on textile 47

conclusion of the paper was, that features based on texture matrices (e.g.
GLCM) can be used to characterize the appearance of carpets and changes,
they undergo during wear. The problem of carpet wear assessment is simi-
lar to measuring effects of enzymatic treatment, and therefore we included
GLCM features in our study.

Spatial features

The spatial domain features included in this study were all the first-order
statistics of section 2.1 and the following 15 GLCM features.

1. Energy

2. Entropy

3. Maximum probability
4. Correlation

5. Diagonal correlation
6. Kappa

7. Difference energy

8. Difference entropy

9. Inertia

10. Local homogeneity

11. Sum energy
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12. Sum entropy
13. Sum variance
14. Cluster shade

15. Cluster prominence

The features were computed for several numbers of gray levels and at several
resolutions. Attempts to make the features robust have included correction

for inhomogeneous lighting and automatic removal of textile irregularities.

The operational feature

Many of the tested features performed well on subsets of the images, but

only a few features gave an overall good and robust measurement.

It was possible to find a relatively simple feature with an overall good and
robust performance. This feature is computed as follows. The image is
transformed to a resolution where the regular textile pattern has just dis-
appeared (in our case the images were lowpass-filtered and subsampled to
1/16 size). Then the variance of this image is computed. The variances
are normalized (divided) by the variance of the corresponding textile with
dose=0. The average over days and repetitions of this feature is shown in
figure 2.7 in a log-log plot. It ranks the textiles just as expected and it
seems that a linear fit is appropriate for each pH level. This feature shall be
called the coarse-scale normalized variance (csnv) feature. The csnv feature
can be compared to the the Fourier inertia feature in the Fourier domain.

The lowpass filter we used correspond approximately to a multiplication
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with a Gaussian weighting function centered at (0,0) in the Fourier domain.
For the Fourier inertia feature the weighting function is (u? + v?). Thus
the csnv feature measures the energy in the low frequencies and the inertia
feature measures the energy in the high frequencies. Since the measures are
normalized they will actually measure similar properties, but as the textile
wear seems to be best described in the low frequencies, the inertia feature

is not as robust as the csnv feature.

-0.2 T T T T T T

04 b i Fitting a general linear model with the SAS GLM-procedure:

-0.6 - 7] proc glm;
class ph day;

log (@usv- ] model logvar = logdose ph day(ph) ph*logdose logdosexday(ph) ;
lsmeans ph;
-1 ] random day(ph);
-1.2 .
gives the results:
1.4 _ _ _ _ _ _
2 2.5 3 3.5 4 4.5 5 5.5
log(dose)

Figure 2.7. Plot of (log) coarse-scale normalized variance versus log(dose).
We see that the measure reflects the expected ranking.



2.6 Measurement of enzymatic treatment effect on textile

Dependent Variable: LOGVAR

Source DF Sum of Squares Mean Square F Value
Model 17 10.32849194 0.60755835 138.29
Error 108 0.47448146 0.00439335
Corr. Total 125 10.80297340
R-Square Pr > F Root MSE LOGVAR Mean C.V.
0.956079 0.0001 0.066282 -.92821182 -7.140862
Source DF TypelSS  Mean Square F Value Pr>F
LD 1 8.54219513  8.54219513  1944.35 0.0001
PH 2 1.60099025 0.80049512 182.21  0.0001
D(PH) 6 0.12027099  0.02004517 4.56 0.0004
LD*PH 2 0.01070209  0.00535104 1.22 0.2999
LD*D(PH) 6 0.05433348  0.00905558 2.06 0.0637
Source DF Type III SS Mean Square F Value Pr >F
LD 1 8.54219513  8.54219513  1944.35 0.0001
PH 2 0.10533370  0.05266685 11.99 0.0001
D(PH) 6 0.05593527  0.00932254 2.12 0.0565
LD*PH 2 0.01070209  0.00535104 1.22 0.2999
LD*D(PH) 6 0.05433348  0.00905558 2.06 0.0637

where LD=LOGDOSE and D(PH)=DAY (PH).
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Least Squares Means

PH LSMEAN
1 -1.04568416
2 -0.96280088
3 -0.77615044

It follows that the amount of variability explained by pH and dose are orders
of magnitude greater than the remaining effects, inclusive the day-to-day
variability. Thus the conclusive model will only include the pH and dose
effects. The least square means for the three pH levels show the expected

ranking.

2.6.6 Conclusion

We have obtained a single feature from digital image analysis to describe the
effect of cellulase enzymatic treatment of textiles. This feature is also fast
to compute and seems to be robust. Other features measuring the variation
in the textile that is coarser than the regular textile pattern can possibly
describe the same textile properties, but the coarse-scale normalized vari-
ance seems to be the feature that has the overall best performance of the
features considered. The feature may also be useful in e.g. carpet wear

assessment.
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2.7 GLCM feature performance

The performance of 15 GLCM features is tested in CART classification of 15
Brodatz textures. We thereby investigate how much textural information is
contained in the simultaneous distribution of (horizontal) neighbor pixels.
The cooccurrence matrices are computed on the raw textures, on the tex-
tures after a histogram equalization, and on the textures after a Gaussian

histogram match.

2.7.1 Image material

15 Brodatz textures were selected on the basis that they should have a
fine-grained and homogeneous texture. A part of each of these textures are
shown raw in figure 2.8, after a histogram equalization in figure 2.9, and
after a Gaussian histogram match in figure 2.10. The names of the selected
textures are shown in figure 2.11. The textures D16, D21, D53, D77 and
D84 will subsequently be called deterministic due to their relatively strict
ordering. The rest will be called stochastic. This grouping will be helpful

in the interpretation of the classification results.

The textures were scanned from the paper with an 8-bit, 300 dpi scanner.
The output from the scanner is a 2400x1800 image, which is then reduced by
two steps in a Gaussian pyramid (Burt, 1981). The approximately Gaussian

operator is a separable, symmetric filter with values
0.05,0.25,0.40,0.25,0.05

The result is a 600x450 floating point image, where almost no pixels have

identical values. Three byte versions of each image is now generated.

o4
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Figure 2.8. 15 Brodatz textures (no histogram match).
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2.7

GLCM feature performance

a7

Pressed cork Grass lawn Woolen cloth
(D4) (D9) (D19)
Herringbone French canvas Calf leather

weave (D16) (D21) (D24)
Beach sand Pressed cork Wood grain
(D29) (D32) (D68)
Oriental straw | Handmade paper Pigskin
cloth (D53) (D57) (D92)
Cotton canvas Raffia Calf fur
(D77) (D&4) (D93)

Figure 2.11. Names of the 15 Brodatz textures in figure 2.10.
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e The floating point image scaled linearly.
e A histogram equalized version.

e A Gaussian matched version (mean=127.5, sdev=40.0).

The histogram equalization and Gaussian match are performed by sort-
ing all pixels, while the image is in floating point format, and then assign
byte values according to the desired histogram. Thus we obtain a perfect
histogram match. Histogram equalization has been used frequently (e.g.
Haralick et al. (1973) and Laws (1980)) by researchers studying the perfor-
mance of texture features. The equalization has in these cases been made

using a less accurate byte to byte match.

For the selected, fine-grained textures we corrected for background varia-
tions by subtracting a 25x25 median filtered version of each texture from
itself.

2.7.2 GLCM

We computed the right-neighbor GLCM (h=(0,1)) for the three versions of
all 15 textures. In figures 2.12, 2.13 and 2.14 are shown plots of the cooc-
currence matrices for respectively the raw versions, the histogram equalized

versions and the Gaussian matched versions.

Each image was partitioned in 108 disjoint 50x50 subimages. From the
right-neighbor GLCM of these subimages we computed the following GLCM

features:
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Figure 2.12. Cooccurrence matrices of raw textures. Figure 2.13. Cooccurrence matrices of histogram equalized textures.
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Figure 2.14. Cooccurrence matrices of Gaussian matched textures.
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10.

11.

12.

13.

14.

15.

. Diagonal moment

. Difference entropy

. Energy (Enrg)
. Entropy (Entr)

. Maximum probability (Maxp)

Correlation (Corr)

(Diag)

- Kappa (Kapp)

Difference energy (Derg)

(Dent)

. Inertia (Iner)

Inverse difference moment (IDM)
Sum energy (Serg)

Sum entropy (Sent)

Sum variance (Svar)

Cluster shade (Shad)

Cluster prominence (Prom)

2.7.3 CART classification

Classification and regression trees is a nonparametric alternative to classical

discriminant analysis. A binary decision tree is constructed and a classifica-

tion is made by running down the tree and choose the class corresponding to
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the terminal node. The CART program from California Statistical Software,
Inc. was used. The reader is referred to Breiman, Friedman, Olshen, &
Stone (1984) and the CART documentation for detailed information about
CART.

Only splits based on single features were allowed. 10-fold cross-validation

was used for estimating the probability of correct classification.

We made a CART classification on seven subsets of the 15 textures in all

three versions. The seven subsets are:

1. The five textures in the left column.

2. The five textures in the middle column.

3. The five textures in the right column.

4. The five deterministic textures: D16, D21, D53, D77 and D&4.
5. The five stochastic textures: D4, D9, D29, D32 and D57.

6. The ten textures in the left and middle columns.

7. All 15 textures.

Linearly scaled versions

In figure 2.15 we see the classification tree suggested by CART for set 2. A
texture is classified by starting at the top node and then run down the tree
until a terminal node is reached. Every terminal node is associated with

a texture class, and this class is assigned to the texture that we wish to
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Enrg
Iner D32
Diag Shad
D57 D84 D21 D9

Figure 2.15. Classification tree for set 2 with no histogram match.

classify. At every nonterminal node a decision is made based on the value
of one feature. If the value of the feature is lower than the split value for
that node we go left in the tree, otherwise we go right. This classification
is a partitioning of feature space into boxes. The cross-validation estimate
was one misclassified texture out of 540. CART also showed that many
alternative trees would have a similar performance. Figure 2.16 shows a
scatter plot of the inertia versus the diagonal moment for the textures in

set 2. We see that the texture classes are easily discriminated.

When no histogram match is performed the first-order statistics will influ-
ence the cooccurrence features. As the first-order statistics of the Brodatz
textures differ significantly, the set of 15 GLCM features will be able to dis-
criminate between any subset of the 15 textures (actually even any subset
of all the 112 Brodatz textures) with close to 0% error rate. Hence we shall

concentrate on the histogram matched versions.
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Diag

-400
L

-600
L

Inertia

Figure 2.16. Scatter plot of the diagonal moment versus the inertia for the
textures in set 2. 1=D9, 2=D21, 3=D32, 4=D57, 5=D8&4.
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Histogram equalized versions

A summary of the classification results for the histogram equalized textures

is listed in the following table.

Set no. | Classes | Terminal | % correctly | Most important

nodes classified feature

1 5 10 95.9 Iner

2 5 10 96.5 Derg

3 5 6 80.9 Svar

4 5 6 98.5 Corr

5 5 13 81.3 Corr

6 10 27 89.3 Corr

7 15 54 74.3 Derg

The results show that the sets with several deterministic textures has higher
percentage of correctly classified textures. i.e. the deterministic textures
in this study are relatively easy to discriminate. The correlation feature
and uniformity features based on energy and entropy are important for the

classification.

We shall now study the classification results of set 2 in more detail. The
classification tree is shown in figure 2.17. The first split is based on the
correlation feature, and it discriminates the textures D57 and D84 from the
other three. This is a good split (high discriminatory power) and so are
the two splits on the second level. However on the right branch of the split
based on the diagonal moment we see a relatively complex subtree trying
to discriminate between the textures D9 and D32. The features used for

this purpose are difference energy, energy and entropy. Figure 2.18 shows a
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Figure 2.18. Scatter plot of the diagonal moment versus the correlation for
D32 Derg the textures in set 2 after histogram equalization. 1=D9, 2=D21, 3=D32
Q ) ) )
4=D57, 5=D&4.
Entr D32

scatter plot of the diagonal moment versus the correlation. We see that the
major discriminatory deficiency in these two features is the mixture of the

D9 Enrg classes D9 and D32. Figure 2.19 shows a scatter plot of the energy versus

> the difference energy. It is obvious that there is no easy way out of the
D9 D32

discriminatory problem.
Figure 2.17. Classification tree for set 2 after histogram equalization.

Gaussian matched versions

A summary of the classification results for the Gaussian matched textures

is listed in the following table.
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Figure 2.19. Scatter plot of the energy versus the difference energy for
the textures in set 2 after histogram equalization. 1=D9, 2=D21, 3=D32,
4=D57, 5=D8&4.

70 Chapter 2. Texture statistics

Set no. | Classes | Terminal | % correctly | Most important
nodes classified feature
1 5 7 93.5 Corr
2 5 6 97.6 Diag
3 5 8 85.9 Diag
4 5 5 97.2 Corr
5 5 6 84.3 Corr
6 10 18 89.7 Corr
7 15 40 80.9 Corr

Again we see that the deterministic textures are relatively easy to discrimi-
nate. All sets except the sets with a majority of deterministic textures (set
1 and set 4) were classified more correctly with these features than with the
features based on histogram equalization. Generally the diagonal moment
was an important feature, and for two sets even the most important. It
can also be seen that in general the trees has fewer terminal nodes than
trees based on the histogram equalization, thus we get simpler trees. The
energy and the entropy features were found to be highly correlated for all

15 textures as were the difference entropy and the inertia.

The classification tree for set 2 is shown in figure 2.20. The tree is sim-
pler than the tree based on the histogram equalization. Only the three
features correlation, diagonal moment and inverse difference moment are
used. Figure 2.21 shows a scatter plot of the diagonal moment versus the

correlation. There is hardly any confusion between the classes D9 and D32.
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Corr

>

Diag IDM

Diag D9 D57

D21 IDM
D21 D32

Figure 2.20. Classification tree for set 2 after Gaussian histogram match.

2.7.4 Classification summary

The results of the classifications are summarized as follows:

e It is easy to discriminate the Brodatz textures if no histogram match

is performed.

e Features based on a Gaussian match performed better than features

based on histogram equalization for the stochastic textures.

e Features based on histogram equalization performed a little better

than features based on a Gaussian match for the deterministic tex-

tures.

72

Chapter 2. Texture statistics

Diag

Figure 2.21. Scatter plot of the diagonal moment versus the correlation
for the textures in set 2 after Gaussian histogram match. 1=D9, 2=D21,

3=D32, 4=D57, 5=D8&4.
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e The deterministic textures were easier to discriminate than the stochas-

tic textures.

e Features based on histogram equalization generally produce trees with

more nodes than features based on a Gaussian match.
e Generally correlation was the most important feature.

e The diagonal moment was a very important feature. Many splits were

based on the diagonal moment.

e The uniformity features energy, entropy, difference energy, difference
entropy, sum energy and sum entropy seems to be more important for

histogram equalized textures.
e The maximum probability feature was generally unimportant.

e The energy and the entropy features were highly correlated as were

the difference entropy and the inertia.

2.7.5 Conclusion

The performance of 15 right-neighbor GLCM features in CART classifica-

tion of 15 Brodatz textures has been investigated.

This study has shown that histogram matching of textures has a significant
effect on the discriminatory performance of GLCM features computed from
the textures. Especially it seems that histogram equalization is too crude
for stochastic textures. For such textures a Gaussian match will give better
performance and a simpler and more interpretable classifier. The Brodatz

textures are easily discriminated if no histogram match is made.
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The diagonal moment is an important feature. As this feature can not be
computed from the gray level difference histogram (GLDH) and the gray
level sum histogram (GLSH), there is a loss of relevant information when

replacing the GLCM with these two histograms.

Generalization of the conclusions of this study should be done with great
caution. The selection of 15 textures that we used represent an insignificant
fraction of real-world textures, and only the horizontal neighbor relation

has been investigated.
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Markov random fields

This chapter deals with parametric description of texture based on a class
of models called Markov random fields. The theory of Markov Random
fields is reviewed together with the theory of the associated Gibbs random
fields. The theory of Gibbs random fields were founded in statistical physics
(Ising, 1925) and some relevant results from this area is presented in a new
statistical setting. A variety of Markov random fields is reviewed with an
emphasis on discrete models. Further we introduce a set of morphological
Markov random fields, that extends the standard set of models by using the

operators of mathematical morphology (Serra, 1982).
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Figure 3.1. Regular 2D tessellations. Rectangular, triangular and hezago-
nal.

3.1 Random fields

One of the main tasks in statistical image processing is to construct stochas-
tic models for observed images and especially for textures. The pixel values
{z;,i = 0,1,..,n — 1} are represented as realizations of random variables
{X;,i =0,1,..,n — 1}, and the probability measure representing the joint
distribution of all pixel values on an image grid is called a random field.
P(x) is the probability of a particular image or configuration x € 2, where

Q) is the set of all possible configurations on the given grid.

3.1.1 2D grids

There exists three ways of partitioning the two-dimensional plane in dis-
junct, regular polygons of equal size. Such a partitioning is called a regular
tessellation. The three regular tessellations are the regular square tessella-
tion, the regular triangular tessellation and the regular hexagonal tessella-

tion as shown in figure 3.1.
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Figure 3.2. 2D pizel grids. Rectangular, honeycomb and hexagonal.

Let the polygons of a tessellation correspond to pixels, then the graph cor-
responding to the pixel grid will be dual to the graph of polygon borders,

1.€.

e A square tessellation correspond to a square pixel grid
e A triangular tessellation correspond to a honeycomb pixel grid

e A hexagonal tessellation correspond to a triangular (hexagonal) pixel

grid

The honeycomb grid is used in statistical mechanics but very rarely (if at
all) used in image analysis. Since the neighborhood of a pixel in a triangular
grid is hexagonal, and the pixels are hexagonal, this grid is often called the
hexagonal grid, even though this term fits just as well for the honeycomb
grid. Here we will follow the common practice in image analysis, i.e. subse-
quently a hexagonal grid has hexagonal pixels. The hexagonal grid is quite
popular in mathematical morphology (Serra, 1982) due to the attractive
neighborhood structure. The square grid is used in the vast majority of
situations, and where nothing else is mentioned this will be synonymous to
grid. The grids corresponding to the tessellations of figure 3.1 are shown in

figure 3.2. Pixels are located at the line intersections.
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3.2 Gibbs random fields

3.2.1 Historical perspective

In 1877 Boltzmann investigated the distribution of energy states in molecules
of an ideal gas. According to the Boltzmann distribution the probability of

a molecule being in a state with energy ¢ is:

1 1
w — —_e kTE
€=l

where z is a normalization constant, that makes the probabilities sum to one.
T is the absolute temperature, and k, Boltzmann’s constant, is a constant of
nature, that relates temperature to energy. In all subsequent formulas the
temperature will be assumed measured in energy units, hence kT will be

replaced by T.

Gibbs used a similar distribution in 1901 to express the probability of a
whole system with many degrees of freedom being in a state with a certain
energy. Let x denote a state in state space Q and U :  — R be the energy
function. Then

PX=x)=—e 7VX (3.1)

where

7 = Mm\wq?v.

xeQ
Z is called the partition function. T controls the degree of peaking in the

probability density function. As T — oo the distribution will tend to a
uniform distribution among all possible states. As T" — 0 the distribution
will tend to a uniform distribution among the minimum energy states. The
distribution 3.1 is called the Gibbs distribution or canonical distribution.

Subsequently the former term will be used exclusively.
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Ising (1925) used the Gibbs distribution to describe the behavior of ferro-
magnetic materials. Any site or pixel in such a material is thought of as a
small dipole, which can be in state ”spin up” or ”spin down” corresponding

to values 1 and -1.

The Ising model on a square grid is defined through the energy function
Ux) = IkMHZ&. I\SEM&&
inj i

where 7 ~ j means that pixel i and pixel j are either horizontal or vertical
nearest neighbors. J is a property of the material that determines the
interaction between neighboring spins. If J > 0 neighboring spins tend
to be equal. If J < 0 neighboring spins tend to be opposite. J = 0
means no interaction. The constant m > 0 is a property of the material
that determines the sensitivity of the spins to an external magnetic field
of intensity H. H > 0 will favor a spin up, whereas H < 0 will favor a
spin down. The Ising model has been successful in explaining ferromagnetic
phenomena, but has also founded an interest in the more general Gibbs

random fields.

Brush (1967) reviews the history of the Ising model.

3.2.2 General properties

Gibbs random fields are random fields defined through equation 3.1. This
means that for every energy function on ) there exists a corresponding
Gibbs random field. Not all of these Gibbs random fields are useful for
our purposes and in the next section we shall limit our attention to a very

interesting subclass.
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The Gibbs measure has an interesting property with respect to entropy.
The entropy S is frequently used as a uniformity measure of a random field
P, and is defined as

S(P) ==Y P(x)log P(x).
xEQ
Of all probability measures defined through an energy function the Gibbs
measure ( 3.1) is the measure which maximizes entropy among all measures

with the same expected energy (Jaynes, 1957).

3.3 Markov random fields

Hassner & Sklansky (1980) introduced Markov random fields to image anal-
ysis and through the last decade Markov random fields have been used
extensively as representations of visual phenomena. In this thesis there is
put a strong emphasis on Markov random fields with discrete pixel values
i.e. discrete Markov random fields, but most of the results are easily ex-
tended to continuous Markov random fields. For more thorough expositions
on Markov random fields the reader is referred to Geman (1990),Dubes &
Jain (1989), and Ripley (1988).

In the rest of this section we shall restate some definitions regarding Markov
random fields and a theorem that shows an equivalence between Markov
random fields and Gibbs random fields.

Definition 1 . Let S = {so, s1, ..., Sn—1} be a set of sites. A neighbor-
hood system N = {Ny,s € S} is a collection of subsets of S for which
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1. s € Ny

2. re Ny & s€eN,

Ny are the neighbors of s.

When sites i and j are neighbors we write ¢ ~ j. The set of all possible

configurations on S is called (2.

Definition 2 . A clique C is a subset of S for which every pair of sites

are neighbors.

Single pixels are also considered cliques. The set of all cliques on a grid is
called C.

Definition 3 . A random field X is a Markov random field (MRF)
with respect to the neighborhood system N = {N;,s € S} iff

1. P(X=x)>0 for all x €

2. P(Xs = 5| Xy = @p,r #5) = P(X5 = 24| X, = 2,7 € N)
foralls € S and x € )

The structure of the neighborhood system determines the order of the MRF.
For a first order MRF the neighborhood of a pixel consists of its four nearest
neighbors. In a second order MRF the neighborhood consists of the eight

nearest neighbors. The clique structures are illustrated in figure 3.3 and
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o O0—=00

Figure 3.3. Cliques for a first-order neighborhood.
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Figure 3.4. Additional cliques for a second-order neighborhood.
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Figure 3.5. Order coding of neighborhood structure. The n-order neighbor-
hood of the center pixel (.) contains the pixels with numbers less than or
equal to n.
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figure 3.4 for a first-order MRF and a second-order MRF. The order coding
of the neighborhood up to order five is shown in figure 3.5.

Definition 4 . X is a Gibbs random field (GRF) with respect to the
neighborhood system N = {N;,s € S} iff

1
P(X =) = - exp(~U(x)/T)
where Z is a normalizing constant called the partition function, T is a

control parameter called temperature and U is the energy function of
the form

= M‘\me

ceC

where Vi is called o potential and is a function depending only on xs,s €

c,

Theorem 1 . (Hammersley-Clifford). A random field X is a Gibbs random
field with respect to the meighborhood system N iff X is a Markov random
field with respect to N

A simple proof may be found in Geman (1990). Using this equivalence
we have both a local and a global description of the distribution. In the
present context we use the term Markov random field to emphasize the

Markov property.
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3.4 Binary Markov random fields

3.4.1 Ising model revisited

The best known and most investigated Markov random field is the Ising
model. This model has been studied in statistical physics since its intro-
duction in Ising (1925), whereas statisticians joined the efforts in the 1960’s.
We shall give a thorough description of the Ising model using statistical ter-
minology. Thus with the notation introduced in the previous section we
will talk about the first-order binary Markov random field. The reader is

referred to Kinderman & Snell (1980) for background material on this issue.

In our notation every site can take the values 0 or 1. The neighborhood
of a pixel is the four nearest neighbors. The corresponding three cliques
are single pixels, horizontal neighbors and vertical neighbors. Single pixels
with value one have the potential —«. Horizontal neighbor cliques have the
potential —g; if both pixels are one. The corresponding vertical neighbor

clique potential is —(5. If any pixel in a clique is 0 the clique potential is 0.

This gives us the energy function

Ux) = IQMa@ e M& ) Ma&& (3.2)

i i34

and the joint distribution

PX=x)=———— 7@, QTQM exp(a Mﬁ.*.QHMHS&Q.TQN&MQ&HQ 3.3)

where i <» j means that i and j are horizontal neighbors, and ¢ § j means

that i and j are vertical neighbors. If 8; = 2 the configurations will show
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no directionality and we call this an isotropic model. The more general
formulation in (3.3) represents the anisotropic model. The joint distribution

for the isotropic model is
1
PX=x)= ——exp(a z;+ 0 TiZ;
where ¢ ~ j means that i and j are neighbors.

The expected mean and variance can be expressed as

MAM Xi) = M@U_M 7| P(x) = W@WN %@ log Z
V(%) = S P - g5
i Q )

This result is valid for both the isotropic and anisotropic models.

In the horizontal direction we get

d d
EMN&N M_Mafﬁ X) = wﬂupmnﬂ?smm

] [2sd)
1.0 .,
V(> XiX;) M_M& z;]*P(x) — NA%B
] ]
1 02 1,9 d?
=——7——(7 log Z.
zoE? = 7 on " = am e

For the vertical direction and for the isotropic case the results are analogous.

As it can be seen from the equations above the partition function is a

main key in understanding and describing the behaviour of this model.
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Many attempts have been made to make evaluation of the partition function
possible. The only exact result was found by Onsager (1944) for the zero-
field Ising model in the large grid limit. Zero-field means that the marginal
probability of O-pixels and 1-pixels are equal, i.e. & = —f; + 2. Let N be
the number of pixels in the grid. Onsager found that in the limit N — oo

o
we can write + log Z as

B+ B
2
,\o %o log(cosh Z F oOm: — sinh m% cosw; — sinh m|m 08 Wy ) dwi dws.

log2 —
mﬁ.m

Using this expression we can find the correlation between horizontal neigh-

bors in the limit N — oo as

Li(B1,82) = M XiX;—1)
ill
2 sinh mL cosh m|m — 2cosh & cosw,
2 &EH &Ew
wﬂm o cosh& P oOmr 22— mET m|H cosw] — sinh m% COS Wo

(3.4)
An analogous expression is obtained for the vertical neighbor correlation,
[5(B1, B2). In the isotropic case we get the nearest neighbor correlation in

the limit N — oo as

L) = Blx Y XX, - 1)

. \ \a 2 sinh m oOmrm — cosh mﬁoom w1 + cosws) dordws.  (3.5)
s

cosh? m — sinh mﬁoom w1 + cosws)

The integrals can be computed by numerical integration, e.g. using Gaus-
sian quadratures (Press, Flannery, Teukolsky, & Vetterling, 1988). Fig-
ures 3.6 and 3.7 show plots of 'y (81, 82) and T'(5).
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Figure 3.6. Nearest horizontal neighbor correlation versus 8; and (3, for the
anisotropic model in the large grid limit. The lines in the (41,52) plane are
isolines for the correlation.
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Figure 3.7. Nearest neighbor correlation versus § for the isotropic model in
the large grid limit (Pickard,1987).
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The local properties of the model is determined by the conditional proba-
bilities

o _ mNUAHLQ + \QHAHE + H.mv + \QNAH: + Hmﬁv
P(X; = 2§|Tw, Te, Tn, T5) = T+ exp(@ + By (@u T 20) T Boltn + 7))

where x,,,zs,2, and . are the north, south west and east neighbors of z;.

The parameters are easily interpreted in that a controls the number of 1-
pixels, 81 controls the number of horizontal 1-1-neighbors and (3, controls

the number of vertical 1-1-neighbors.

Phase transitions

A phase transition (Kinderman & Snell, 1980; Pickard, 1987) occurs in a
MRF when the locally specified interactions are high enough to develop into

long-range correlations.

Onsager (1944) showed that the Ising model has a phase transition for
B B2

mw:w > mw:w > HH

Figure 3.8 shows the critical parameters in parameter space. For the isotropic
model the critical value is 3. = sinh™'1 = 1.7627. We talk about su-
percritical parameters if sinh m% sinh m|m > 1 and subcritical parameters if
sinh mm|H sinh N.% < 1. From the figure we see that 1D Ising models do not
have a phase transition. If we go to the supercritical limit in each of the four
quadrants we get the deterministic patterns shown in figure 3.9. There are
two such deterministic patterns in each quadrant, one being the pixelwise
negation of the other. For the first quadrant we have a black configuration

and a white configuration. In the third quadrant we have checkerboard
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Figure 3.8. Phase transition borders for an anisotropic zero-field Ising
model.

Figure 3.9. Deterministic patterns for each of the four quadrants in the
supercritical limit.
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Figure 3.10. Nondeterministic pattern represented in each of the four quad-
rants. The four patterns can be generated from each other in a very simple
way.

and negated checkerboard. We can use this knowledge of the deterministic
patterns to understand the relation between nondeterministic patterns in
different quadrants. The value of every pixel in a nondeterministic pattern
will correspond to the value of the same pixel in one of the two determinis-
tic patterns, i.e. we can partition the image based on deterministic pattern
membership. If we then replace pixels belonging to each deterministic pat-
tern with the values of the corresponding deterministic patterns in another
quadrant, the result is a transformation of the nondeterministic pattern to
the other quadrant. Figure 3.10 shows a nondeterministic pattern repre-
sented in all of the four quadrants. The visual symmetry thus obtained

elegantly matches the algebraic symmetry of parameter space.

92 Chapter 3. Markov random fields

0.8 - 4

0.6 4

Figure 3.11. The expected fraction of 1-pixels as a function of 3 for an
isotropic zero-field Ising model. The bifurcation point occurs for g =
2sinh ™ (1) = 1.7627.

An exact expression for the expected fraction of 1-pixels, p, has been ob-

tained for the zero-field isotropic Ising model in the large grid limit.

w + wﬁ - %vw if 8 > ., white configurations
u(B) = w — wﬁ — 3% if 8 > B., black configurations
mn 3
3 if 8 < B,

This result originated in the work of Onsager (1944) and Yang (1952). In
figure 3.11 we see p plotted versus 8. The bifurcation occurring at 3. means
zero-field configurations does not have 50% 1-pixels, but 50% of the config-
urations have almost 100% 1-pixels and the other 50% have almost 100%
0-pixels. The area between the to branches for supercritical g represents

configurations with very low probability for all values of a. In figure 3.12 is
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Figure 3.12. Simulations of isotropic first-order Ising models for g-values
0.00, 0.50, 1.00, 1.50, 1.70, 1.76, 1.80, 2.00 and 3.00.

94 Chapter 3. Markov random fields

shown simulations of isotropic first-order Ising models for increasing 3. The
simulations are conditional on 50% of each phase. They are performed using
10000 iterations of the Metropolis spin-flip algorithm described in section

5.3. We see that long-range correlations occur around the critical j.

3.4.2 Morphological extension

In section 3.4.1 only cliques with one or two pixels were concerned. Markov
random fields with this restriction are called pairwise interaction models or
auto-models (Besag, 1974). The parameters of a pairwise interaction model
will be able to control two very important sets of descriptive features: first-
order statistics and second-order statistics. However, these features do not
describe all the relevant aspects of a texture. For binary pairwise interaction
models we know that we will always have the same structure for the black
phase and the white phase, and this does not seem like a natural assumption
for many practical purposes. Differences between the two phases can only
be controlled using cliques with an odd number of pixels. Ripley (1988)
summarized binary images through morphological operations. The study
showed that a series of openings and closings made it possible to discriminate
between images, where the autocorrelation had little discriminatory power.
General surveys on morphological operations can be found in Serra (1982,
1988), Haralick, Sternberg, & Zhuang (1987). We adopt the notation of

Haralick et al. (1987) in subsequent morphological expressions.

If we consider the anisotropic first-order model with energy function (3.2),
and if we let C(x) be the circumference of one of the phases measured by

the total number of 0-1-transitions in the image, then we can express the
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energy function as
1
U(x) = —(a +20)A(x) + 58C1 (%),

where A(x) = MuwnloH x;. Thus the energy is proportional to the circumfer-
ence. This shows that a reformulation of a model can provide new insight.
The energy function (3.2) can also be expressed using the morphological

operator erosion (6), as
U(x) = —aA(x) — B1A(x © By) — B2 A(x © By)

where

and x © B means erosion of the 1-phase of x with structuring element B.

We will now reformulate the binary Markov random fields on the basis of
mathematical morphology. In general the energy function will have the

form:
/
U(x) = —aA(x) — M BiA(x © B;) (3.6)

where the structuring elements {B;,i = 1,.., f} can be chosen arbitrarily.

We shall then turn to the formulation of the conditional probabilities. Let
Xk = (To, %1, .., Ti—1, K, Tit1, .., Tn—1) then
P(X;=1|rest) P(x;1)
= = = —U(x; Ulx;
P(X;=0]|rest) P(xio) exp(—U(xi1) + U(xi0))

k

=exp(a+ Y B[A(xi1 © B)j) — A(xi0 © B))))
j=1
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Figure 3.13. Isotropic and anisotropic structuring elements.

k
= exp(a+ Y _ Bmni1(B;)).
j=1
Thus when computing the conditional probabilities we consider the pixels
overlapped by B; placed at pixel i. n;1(B;) is defined as the number of these
pixels that are members of x;; © B;. The computation of the conditional
probabilities is local, and this is a very important property for the model

to be computationally feasible.

Two interesting structuring elements are shown in figure 3.13. The isotropic
element can be used to model isotropic differences between the two phases,
and the anisotropic can be used to model anisotropic differences between the
two phases. If we let C2(x) be the circumference of the 1-phase measured
by the total number of 1-pixels with a neighboring 0-pixel, then the MRF
defined through this measure is equivalent to a model with the isotropic

structuring element.

The figures 3.14 to 3.27 show some examples of simulated samples from
MRFs with the structuring elements of figure 3.13. The simulations were
run on a 128 x 128 toroidal grid. All samples have approximately 50%
black and 50% white pixels. The parameters $; and (B2 correspond to the

structuring elements of figure 3.13. All the parameter sets, except the one
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Figure 3.14. Morphological MRF. 3, = 2.0, 8, = 0.0.

used in figure 3.27, are supercritical. The supercritical samples shown are
thus intermediate steps towards some relatively uninteresting steady-state
pattern. 50 iterations (full sweeps) of the algorithm were used to create
these figures. In all the examples we see a structural difference between
the two phases. We have white dots in the black phase but no black dots
in the white phase. The structural difference is also reflected in the larger
structures. In some of the images there is visually no doubt that it is white
objects enclosed in a black phase. Such a difference between the two phases

is simply not possible with binary pairwise interaction models.

98
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Figure 3.16. Morphological MRF. 8; = 0.0, 8> = 2.0.
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Figure 3.17. Morphological MRF. 3, = 2.0, 8, = 2.0. Figure 3.19. Morphological MRF. 3, = 2.0, 8, = 0.5.

Figure 3.18. Morphological MRF. 8; = 0.5, 82 = 2.0. Figure 3.20. Morphological MRF. 8; = 2.0, 8> = 4.0.
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Figure 3.21. Morphological MRF. 3, = 4.0, 8, = 2.0.

Figure 3.22. Morphological MRF. 8; = 4.0, 8> = 4.0. Figure 3.24. Morphological MRF. 8; = 0.3, 82 = 3.0.
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Figure 3.25. Morphological MRF. 3; = 4.0, 5, = —1.0.

h—

.

Figure 3.26. Morphological MRF. 8; = 0.5, 82 = 6.0.
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Figure 3.27. Morphological MRF. 3, = 0.5, 35 = 0.5.

Why formulate morphological MRFs 7

The energy function (3.6) is only a reformulation of the energy function de-
fined through cliques. To every structuring element there is a corresponding
clique with the same shape. We propose this reformulation because it brings
coherence between the statistical models and descriptive image analysis. It
makes it more obvious when to use multi-spin cliques and which it should
be. It provides us with the ever increasing toolbox of morphological im-
age analysis as modelling tools. Other energy functions than (3.6) with a
more intricate relation between structuring elements and and cliques may

be formulated in simple morphological terms.
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3.5 Potts models

The Potts model is a generalization of the Ising model to more than two
unordered states (phases). It has been studied in statistical physics since
it was introduced in Potts (1952). A tutorial review of the results of this
research can be found in Wu (1982). A review of the Potts models in a
statistical setting can be found in Besag (1986). We shall now review three

examples of Potts models. They are of increasing complexity.

Let g be the number of states and {1,2, .., ¢} the corresponding pixel values.
Further let
1 ifaxy =20 =...=ap
%AHH“HN“.JH»V = .
0 otherwise
then the standard nearest-neighbor Potts model is characterized by the joint

distribution .
P(x) = exp(8 Y b(zi,;) (37)
i~j

where

Z = M exp(f M o(zixj)).
Q i~j

This corresponds to nearest-neighbor cliques having the potential —g if the
two pixels belong to the same state and zero otherwise. For the conditional

probabilities we get

. exp(Buq(k))
PX;=k|z;,jEN;) = =————
(i = 23,7 €A = S e BuaD)
where u;(k) is the number of neighbors of pixel ¢ with value k. If this Potts
model has two states it is equivalent to an isotropic zero-field Ising model,

when 3 from the Potts model is multiplied by two.
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The Potts model above can be extended by allowing each state to have a
specific structure and frequency of occurrence. This is easily done by in-
troducing state-dependent parameters for neighbor-pairs , {8,k = 1, .., q},
and for single pixels {ay,k = 1,..,q}, thus obtaining the conditional prob-
abilities

exp(ay + Brui(k))

P(X; =k _ Tj,] € .>\.~v = MU§ exp(a,n, ;JQSQ;ASVV

(3.8)

Some ordering between the states can be obtained by letting the parameters

be specific for the colors of both neighbors, giving

exp(ay — MUEE6 Briui(l))
Yo explan, — MUEWS Brrui(l))

P(Xi=k|zj,jeN;) = (3.9

3.5.1 Phase transitions

For the g-state Potts model we have phase transitions as those described
for the Ising model (Potts, 1952). The critical value of 3, 3., for the model
(3.7) is

\Qm = _OWAH + /\mv

and for the 2-state Potts model this gives

Be =log(1+V2) &

sinh 3. = 1.

Thus 8. = 0.8814.
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3.5.2 Morphological extension

It is possible to include multi-spin cliques to incorporate morphological
properties in the models. We generalize the notation from the last sec-
tion by first defining a series of binary images, {x(k),k = 1, ..,¢}, from the
g-state image, x, i.e.

1 ife; =k

x(k) = L

0 otherwise

We can now introduce a morphological Potts model as

q

f
Ux) = [~arA(x(k)) — MU Bir A(x(k) © B)]. (3.10)

k=1

Examples of this model and its application will be shown in section 5.4.

3.5.3 Other extensions

The literature of statistical physics (Wu, 1982) provides us with some other

extensions of the Potts model.

o Site-diluted Potts model
This model includes vacancies on the grid. These vacancies can be
chosen at random or in a deterministic way. Examples of a site-diluted

Potts model model and its application will be shown in section 5.4.

e Bond-diluted Potts model
In this model we allow neighbors with no interaction (or bond). The

missing bonds can be chosen at random or in a deterministic way.
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¢ Random-bond Potts model
In this model the potential of each bond is chosen independently from

some probability distribution.

o ”Spin-glass” Potts model
An extension of the binary spin-glass model. The potentials of the

bonds is another random field (usually Gaussian).

3.6 Gaussian Markov random fields

The Gaussian Markov random field model is frequently used to describe

continuous phenomena. The conditional density is given by the expression

. L fei—p— Y 65, — ). (311)

exp{—

—— —
2mo 20 JEN;

This model is also called a conditional autoregressive (CAR) model. More

detailed descriptions of this model can be found in Besag (1974), Ripley
(1981) and Chellappa (1985).

To specify the joint distribution of the CAR model let B be a n x n matrix
with unit diagonal entries and off-diagonal elements {—6;;,7 # j}, where
0;; = 0 unless ¢ and j are neighbors. When 7 and j are neighbors, 6;; equals
the 6 that corresponds to the relative positions of these two pixels. Thus if
the model is defined on a toroidal grid, then B will be block circulant with
circulant blocks; see e.g. Chellappa (1985) or Dubes & Jain (1989). Ob-
viously B is symmetric. The joint distribution is then multivariate normal
with mean vector y, dispersion matrix 02B~! and density

$0) = = /B lexp(—g 5= i BG— ). (312
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For this model to be valid we have to require that B is positive definite.

The CAR models are related to the simultaneous autoregressive (SAR) mod-
els (Besag, 1974; Ripley, 1981; Kashyap & Chellappa, 1983). SAR models
are extensions of the autoregressive models of time series analysis to two

dimensions.

3.6.1 Alternative gray level distributions

The joint density in equation 3.12 corresponds to the energy function

U(x) = |MU§|§ — e~ ), (3.13)
i

o2

Besag (1989) presents an alternative class of joint distributions, where the

energy function involves pairwise differences only. They are defined by
UR) =) ol — ;) (3.14)
invj

where ¢ is a function that satisfies
#(z) = ¢(—2), ¢(z) increasing with |z|.

Joint distributions defined by equation 3.14 are improper in that they can
not be normalized (Besag, 1989). They do however have a perfectly proper
conditional density
plala;, j # 1) cexpf{— Y ¢z —z;)}.
JEN:
It is possible to formulate morphological alternatives to the energy func-
tion (3.13) using the operators of gray level morphology (Sternberg, 1986;

Haralick et al., 1987). Such models may turn out to be feasible and useful.

110
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Chapter 4

Markov random field

parameter estimation

For most practical applications of Markov random fields it is essential that
we have accurate and feasible algorithms for parameter estimation. This
chapter reviews a selection of estimation methods. Some of these methods
are applied in chapter 5. An extension of the asymptotic maximum likeli-
hood estimator (Pickard, 1987) to the anisotropic case is proposed in section
4.4.2.
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4.1 Introduction

Maximum likelihood estimation of the MRF parameters is in general com-
putationally intractable due to the likewise intractable partition function in
the joint probability density. There are however, as we shall see, exceptions

to this rule. But first we will describe some alternatives to ML-estimation.

4.2 Coding estimation

Besag (1974) introduced coding estirnation as an alternative to ML-estimation.
The grid is partitioned into a number of disjoint set of pixels, called coding
patterns. The codings are chosen such that the distribution of the pixel val-
ues within one coding pattern, conditional on the pixel values of the other
coding patterns, are independent. This simply means that a pixel and its
neighbor cannot be members of the same coding pattern. The number of
coding patterns is kept as low as possible to obtain the most efficient es-
timator. Thus we get two coding patterns for a first-order MRF and four
coding patterns for a second-order MRF. These coding patterns are shown
in figure 4.1 and figure 4.2 respectively. Since the variables associated with
pixels from one coding pattern are conditionally independent, given the ob-
served values of all other pixels, we can express the conditional likelihood
as
Ly = z P(x; | zj,j € N;)
i€Cly
where C}, is the set of pixels belonging to coding pattern k. We get one

set of estimates for each coding pattern by maximizing the corresponding
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Figure 4.1. Coding patterns for a first-order MRF. Pixels with the same
number belong to the same coding pattern.
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Figure 4.2. Coding patterns for a second-order MRF. Pixels with the same
number belong to the same coding pattern.
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likelihood function. These sets may then be combined appropriately, e.g.

by computing the arithmetic or harmonic mean.

4.3 Pseudolikelihood estimation

Besag (1975) suggested using the product of conditional probabilities for all
pixels as a pseudolikelihood function, i.e. parameter estimates were found

by maximizing

PL =[] Pla: | 2,5 € N).
1

This is obviously not a real likelihood function because the conditional prob-
abilities are not independent. Geman & Graffigne (1987) showed however
that this method produced consistent estimates in the large graph limit
under mild conditions. The reason for using maximum pseudolikelihood es-
timation instead of coding estimation is to increase the efficiency. Maximum
pseudolikelihood estimates compare favorably to coding estimates in Besag
(1977), where Gaussian MRFs are considered. Besag (1977) also noted that
for the first-order Gaussian Markov random field on a square grid the max-
imum pseudolikelihood estimator is equivalent to the harmonic mean of the
two alternative coding estimator. In the subsequent technical description
of estimators for specific models the coding method will give results similar
to the pseudolikelihood method.
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4.4 Binary MRF

4.4.1 Maximum pseudolikelihood

In this section we present the results for the binomial MRF because these

are immediate extensions of the results for the binary MRF.

Let 8 be the vector of MRF parameters and s; be the vector of the corre-

sponding neighbor sums for pixel i, i.e. for a anisotropic first-order MRF

we have
a 1
=1 A , si= | zw +E
B2 TN+ s
Further let
T; = Qnﬁms
and
_exp(Ty)
Pi= ———
1+ exp(T3)

Then we can express the conditional distributions of a binomial MRF as

For a binary MRF n will be equal to one.

For the binomial MRF the conditional probability of an observed pixel value

given the rest of the observed image is

P(x; | xj,j €N;) = Pyt (1 —py)" T
z;
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The resulting pseudolikelihood is

n ) e
PL=]] P (1= pi)"

Ti
Thus we maximize

n
log PL = Mzom + z;T; — nlog(1 + exp(T3))]-
i Li
The binomial coefficient does not depend on  thus the maximum pseudo-

likelihood estimate of 8 is found by maximizing

f(B) = MTSH@ —nlog(1 + exp(Ty))] (4.1)
i
with respect to §. For this function we can find the gradient vector V f(3)

and Hessian matrix as V2 f(3)

= M_ﬁ — npils;

2 __ exp(75) T
Vef(B zm 0T exp(T)))? S;iSi .

The Hessian matrix is negative moEw-amm::mv and the maximization problem

is now easily solved by standard optimization procedures.

Dubes & Jain (1989) expresses the concern that when maximizing the func-
tion f in (4.1) we may run into a local maximum. This requires that the
optimization is repeated for several initial guesses. However, we have expe-
rienced that we obtain the same solution from several initial guesses, and
that for simulated textures this solution correspond to the parameters used
in the simulation. The function f seems to be well-behaved even for real
textures. In figure 4.3 we show f(«, ) for an isotropic first-order MRF

estimated on a binary grass lawn texture (Brodatz texture D9).
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—————

=

Figure 4.3. Pseudolikelihood surface for binary grass. Maximum is reached
for « = —1.27 and 8 = 0.64. The lines in the («,3) plane are isolines for f.

118 Chapter 4. Markov random field parameter estimation

4.4.2 Asymptotic maximum likelihood

In the case of a zero-field first-order binary MRF we can use the results
of Onsager (1944) for the large-grid limit to estimate 3. The method was
introduced by Pickard (1987) for the isotropic case. He used equation 3.5

and applied it to a finite grid. Thus in our notation he got the equation

S 2
Corr(z;,xjli ~ j) = N mnyﬁ - 1=T(p).
The equation can be solved numerically using e.g. Brent’s method (See
e.g. Press et al. (1988)). For grids larger than 100 x 100 Pickard showed
that the finite-grid gamma-functions are nearly identical. The results can
be extended to the anisotropic case, using equation 3.4 and the vertical

analogue. We get the equations

S 4
Corr(z;,z;li <> j) = N Mam& —1=T4(B1,B2)

i ]

Corr(zi, ;i1 j) = WM&%Q —1=T4(B3,62)
ilj
Solving these two equations will provide us with estimates of 3; and ;.
The solution can be found using a Newton-Raphson method (See e.g. Press
et al. (1988)).

4.4.3 Other estimation methods

Derin & Elliot (1987) introduced an alternative estimation method that
involves the solution of an overdetermined system of linear equations. This
and other ad hoc methods are reviewed in Dubes & Jain (1989).
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4.5 Potts model

In this section we consider the g-state Potts model with conditional proba-
bility defined in (3.8).

4.5.1 Maximum pseudolikelihood

The conditional probabilities are given by

exp(ag + Brui(k))
> €XP(@m + Brmui(m))

pi(k) =

where, as before, u;(k) is the number of neighbors of pixel i with value k.

Let 8 be the vector of Markov parameters and s;(k) be the vector of the

corresponding neighbor functions for pixel ¢ and color k, i.e.

ay

The pseudolikelihood function
PL = Eﬁ& A&sv
i
is then maximized by maximizing

f(B) = MFE + Brui(wi) —1og Y exp(am + Bmui(m))]-
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The gradient vector is easily obtained as

Yillei=1 — pi(1)]si(1)

Alz;=2 — pi(2)]s:(2
o = | Dlinms

> illei=¢ — Pi(@)]si(@)

However, if a constant is added to every a;, we get exactly the same model.
Thus one ay, can be chosen arbitrarily and we then remove the corresponding

equation above.

4.6 Gaussian MRF

This section describes to ways of estimating parameters of the Gaussian

Markov random field model defined in section 3.6.

4.6.1 Maximum pseudolikelihood

From the conditional distribution given by equation (3.11) we find that the
the pseudolikelihood function is given by

PL = E %mﬁil“@. —p— M 6;1;)%}.
&<mﬁqw Qms gg

JEN:
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Let 6 be the vector of parameters and s; be the vector of the corresponding

neighbor sums for pixel ¢, i.e.

u 1

%H Tw + Tg
0= %N , S; = TN +Ts

6, Ty + Ty

By setting the partial derivatives of the log-likelihood equal to zero we

obtain

and

i
1 , .
SEY) DL Ty
(4.4) (4.9)
Thus the solution of the estimation problem is given in closed form.

4.6.2 Maximum likelihood

The joint distribution given by equation (3.12) provides us with the likeli-
hood function
1 T
L= %/\_w |expi—g 5(x—n) Blx—p)} (4.2)
Let us assume (Besag, 1974) that 4 = 0 and that we have an estimate of
B, B. Then the ML-estimate of 62 will be

62 = =xTBx
n
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and by substituting this into equation 4.2 and taking the logarithm leads

us to finding the ML-estimate by maximizing
log |B| — nlogx’Bx.

We are now left with the numerical problem of evaluating this function and
especially the determinant |B|. This has been tried in e.g. Besag & Moran
(1975) and Kashyap & Chellappa (1983).



Chapter 5

Markov random field

simulation

In this chapter we review a set of iterative simulation schemes for Markov
random field simulation. We then present a fast new parallel algorithm for
simulating Markov random fields conditional on given first-order statistics.
Finally we investigate the use of this algorithm and a morphological Potts

model in the simulation of geological structures.
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5.1 Introduction

The problem of generating samples from a MRF distribution is important
for a number of reasons. Obviously in image analysis we are concerned with
the visual properties of the samples. In statistical physics it is more inter-
esting to use the samples for computing expected values of thermodynamic

quantities.

If we disregard the spatial nature of image data and consider the pixel values
as identically and independently distributed then the pixel value histogram
will be a sufficient statistic for our random field. Simulating an image from
the first-order statistics would only require sampling from a univariate dis-
tribution which is relatively easy but rather uninteresting. Simulating a
more general random field corresponds to sampling a multivariate distribu-
tion of very high dimension, and a selection of iterative simulation schemes
has been developed (See e.g. Dubes & Jain (1989)).

5.2 Iterative simulation

The iterative process of MRF simulation has fruitfully been thought of as
a discrete, finite-state Markov chain. The state-space of this Markov chain
is the set of all possible configurations 2 and the limiting distribution we
want is the MRF distribution.

From the theory of discrete, finite-state Markov chains we get the following

definitions and results. Let P = {p;;,i,j € Q} be the matrix of transition
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probabilities, where p;;(t) denotes the probability of a transition from state

i to state j in t steps.

Definition 5 . A Markov chain is irreducible or non-decomposable
if

Vi,j € Q 3t “%&.Qv >0
Definition 6 A Markov chain is aperiodic iff

oVt > toVi,j € Q:pii(t) >0

Lemma 1 . An irreducible Markov chain is aperiodic if

di € Q tpii >0
Proof. See Aarts & Korst (1989).

Definition 7 . A probability distribution 7 is invariant or stationary for
a Markov chain with transition probabilities {p;;} iff the global balance

equations are satisfied, that is

<.w S D“ﬁ.& HMQ.SEQ
i

Theorem 2 . For an irreducible and aperiodic Markov chain there exists

a unique invariant distribution.

Proof. See e.g. Feller (1968).
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Definition 8 . A Markov chain is reversible or self-adjoint iff the de-

tailed balance equations are satisfied, that is

Vi, j € Q:mipi; = TPy

Lemma 2 . For an irreducible and aperiodic Markov chain w is the unique

invariant distribution if it satisfies the detailed balance equations.

Proof. See e.g. Aarts & Korst (1989).

5.2.1 The Metropolis algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953) described an
algorithm for computer simulation of Gibbs distributed systems. This algo-

rithm is now known as the Metropolis algorithm.

Algorithm 1 . Metropolis algorithm. Let Q be a symmetric irreducible

transition matriz with state space €.

1. Start with configuration x € )

2. Choose a new configuration 'y from the distribution in the row corre-

sponding to x in Q
3. Replace x by y with probability

p=min(l,P(X=y)/P(X = x))

4. if not stop then goto 2
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Notice that while the Metropolis algorithm will always make a change to a
new configuration with higher probability it will also with some probability

make a change to a new configuration with lower probability.

It is trivial to show that the Metropolis algorithm defines an irreducible and

aperiodic Markov chain. The detailed balance equations give for i # j
. bj . bi
gijpi min(1, =) = ¢j;p; min(1, =)
bi bj

which for both p; > p; and p; < p; leads to
qij = qji

This explains the symmetry condition on Q.

5.2.2 Spin-flip algorithms

In spin-flip algorithms single pixels are visited successively and their values
are changed according to some criteria. Kirkland (1989) considered flipping
2x2 and 3x3 blocks of pixels but the results were not encouraging. The two

most popular flipping criteria provides the following algorithms.

Algorithm 2 . Metropolis spin-flip algorithm. Let Q be a symmetric
irreducible transition matriz with state space {0,..,G — 1}, where G is the

number of gray levels.

1. Start with configuration x

2. Choose a pizel s and a pizel value g from the distribution in the row

corresponding to xs in Q.
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3. Set configuration y equal to x with pizel s set to g
4. Replace x by y with probability

p=min(l,P(X=y)/P(X = x))

5. if not stop then goto 2

Algorithm 3 . Gibbs sampler or heat bath algorithm.

1. Start with configuration x
2. Choose a pizel s

3. Replace x5 by a value sampled from the conditional distribution of X,

given the values of the neighbors of s.

4. if not stop then goto 2

In both algorithms we have to choose (visit) a pixel for each iteration. One
way could be to choose a random pixel every time, but making a systematic
sweep over the image is more efficient both in terms of rate of convergence
and in terms of time per sweep. If we make sure that we continue to visit
every pixel then the order in which we sweep through the image does not
matter. Using a simple raster sweep does ensure convergence but imposes
an artificial anisotropy on the intermediate results as seen (unintentionally
?) in the isotropic simulations of figure 4 in Derin & Elliot (1987). To avoid
the artificial anisotropy and to enable simultaneous updating of many pixels
we divide the image in coding patterns as described in section 4.2. Pixels
from each coding pattern do not interact with other pixels from the same

coding pattern. We then sweep through the coding patterns, one at a time.
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5.2.3 The Metropolis spin-exchange algorithm

The spin-exchange algorithm was introduced in image analysis by Cross &
Jain (1983).

Algorithm 4 . Metropolis spin-exchange algorithm.

1. Start with configuration x

2. Choose two pizels v and s at random

3. If v, = x4 then goto 2

4. Set'y equal to x with pizels r and s switched

5. Replace x by y with probability

p=min(l, P(X =y)/P(X =x))

6. if not stop then goto 2

In stead of flipping single pixels this algorithm exchanges the values of two
randomly chosen pixels. The step will maintain the pixel value histogram
and thus the first-order statistics. As a stop-criteria Cross and Jain checked
if the number of successful switchings dropped below 1% or the estimated
parameters matched the input parameters within 5%. This resulted in a

variety of interesting textures.

To elaborate on this algorithm for the isotropic Ising model we consider the

case z, = 1 and =, = 0, and thus y,, = 0 and ys; = 1. The configurations x
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and y are identical except at pixels r and s. The ratio R is then computed

as

P(Y =y) NAM:E exp(ad; yi + B2 i YiY;)
P(X =x) NTMQE exp(a Mus x; + QMUS.ZQ. &&Hmv

= exp(8 Y _[yiy; — wiw;]) = exp(BWs (y) = Wr(x)))
i~
where Wy (z) is the number of 1-neighbors of k in configuration z. Ripley
(1987) discusses a problem in the exposition of Cross and Jain for the case
where r and s are neighbors. This problem does not occur using the present

exposition.
The fact that ), x; = ), y; means that « is a redundant parameter. This
seems quite natural since « is the parameter that controls the relative num-

ber of 1-pixels, and this number is kept constant by the spin-exchange

algorithm.

5.2.4 Swendsen-Wang algorithm

A relatively new type of simulation algorithm involves flipping clusters. A
cluster is a connected set of pixels with identical values. Swendsen & Wang
(1987) described a cluster algorithm for the basic Potts model 3.7.

Algorithm 5 . Swendsen-Wang algorithm.

1. Start with pizel configuration x
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2. Create a bond configuration by introducing a bond between neighboring

pizels with the same color with probability
p=1—exp(-p)

3. Find the clusters joined by bonds
4. Independently assign a random color to each cluster

5. if not stop then goto 2

Cluster algorithms is an active research area and extended and new versions
have occurred (e.g. (Wolft, 1989)).

Figure 5.1 shows 24 iterations of the Swendsen-Wang algorithm on a 5-state
Potts model with g = 2.0. Convergence seems to be very fast. Figure 5.2
is a plot of the maximum pseudolikelihood estimate 8 as a function of the

iteration number.
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Figure 5.1. 24 iterations of the Swendsen-Wang algorithm on a 5-state Potts
model with g = 2.0.
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Figure 5.2. Maximum pseudolikelihood estimate 3 as a function of the
iteration number. 8 = 2.0 for the simulation.
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5.3 The a -controlled spin-flip algorithm

The Metropolis spin-exchange algorithm is the most widely used algorithm
for simulating Markov random fields conditional on the first-order statistics.
In this section we propose two spin-flip alternatives based on the Gibbs sam-
pler and the Metropolis algorithm and includes as a new feature a feedback
loop to achieve the conditioning. The rate of convergence for large attrac-
tion parameters [ is compared to the rate of convergence of the Metropolis
spin-exchange algorithm. The spin-flip algorithms turn out to be faster not
only in time per sweep but also in rate of convergence. Further the spin-flip
algorithms are easy to 0, and this is done using a SIMD massively parallel

computer.

5.3.1 Introduction

Simulating Markov random fields conditional on their first-order statistics
has been very popular, since this can provide interesting textures for large
B seemingly avoiding the phase transition. The spin-exchange algorithm
is however very slow for large § and this is partly due to the fact that
the intermediate configurations have fixed first-order statistics and thus the

number of possible paths between two configurations are very limited.

In the spin-flip alternatives presented here we do not strictly maintain the
first-order statistics, but stabilizes these around a preset value through a

feedback loop.
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5.3.2 The feedback loop

The idea is to construct a spin-flip algorithm with almost constant first-order
statistics. For an Ising model the first-order statistics is fully described
by the mean p. Suppose we want p to have the value pg. This may be
accomplished by a feedback loop such that « is adjusted after each iteration
to keep p(t) near po. In control theory (e.g. Astrém & Wittenmark (1984))

the standard textbook PID-controller can be written as

L)+ K1 — g el

a(t) = Kye(t) + K; -

1

where e(t) = po—p(t) is the error function and ¢~ is the backshift-operator,

ie. ¢ le(t) = e(t —1). If we multiply with (1 — ¢ 1) on both sides we get
(1—qg Hat) = Ky(1 —q Yet) + Kie(t) + Ka(1 — g *)?e(t) (5.1)

and this is the form actually used here. The name, PID-controller, comes

from the three controlling actions in expression 5.1.

e P - proportional action. The basic idea is to have a control action

proportional to the error.

e | - integral action. This action is used to eliminate a stationary error

in the mean value.

e D - derivative action. This action is used to increase the speed of the

control system.

The P-, I- and D- actions are adjusted through K,, K; and Ky respectively.
The joint PID-action and the dynamic of the spin-flip system determines if

the control system is stable.

136 Chapter 5. Markov random field simulation

Ho EQV
K,(1-q') = Spin-flip Mean

Figure 5.3. P-controller. Multiplication is performed is the bozes labelled
K,(1—q7') and —1.

A simple P-controller, with K; = Ky = 0, is shown in figure 5.3, and
this controller was investigated in the present work. Here « is directly
proportional to the error function, e(t). Extension to a PID-controller with
integral and derivative actions is possible. This can be done without much
computational effort but one has to be more careful in choosing the right
constants. To include knowledge about x(¢ — 1) in computing a(t) would

be computationally harder and, as we shall see, completely unnecessary.

The time step used in the control loop is selected as a trade-off between
computational cost and performance. The time step used here corresponds

to a full sweep of the spin-flip algorithm.

This control loop approach is generally applicable to iterative simulation
schemes and is not confined to control of the mean value. Other properties
of the configuration x, e.g. second-order statistics, can be measured and

used to control the simulation parameters.
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5.3.3 Relation to importance sampling

Green (1986) suggested that global properties (e.g. first-order statistics)
could be integrated in a Markov random field P(x) by considering the mod-
ified field

P*(x) x e 7P™) p(x)

where D(x) is a non-negative random variable measuring the deviation from
the ideal property, and ¢ is a positive parameter. This modified field focuses
P(x) on realizations with the desired property. The parameter determines

the strength of the focusing. For the Ising model we might choose

D(x) = (n(x) - na)”

where n(x) is the actual number of 1-pixels in x, and ng4 is the desired
number of 1-pixels. The conditional distribution of pixel i in the modified
field is then given by replacing o with a — 20(n(xy,—0) — ng + 3). This
result corresponds to a local P-controller with K, = 20. We shall adopt the

term importance sampling from Ripley (1992) for the sampling from P*(x).

There are three advantages in using the PID-controller in stead of impor-
tance sampling. The a-adjustment is done once per sweep in stead of once
per pixel. Importance sampling can not be parallelized because the condi-
tional distribution is based on global properties. Finally we have to know
the value of @ when doing importance sampling, whereas the PID-controller

will (hopefully) converge to the correct value from any starting guess.
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5.3.4 Parallel implementation

Parallel implementations of MRF simulation schemes has been suggested
and implemented several times in the past. Geman & Geman (1984) dis-
cussed a parallel implementation of the Gibbs sampler and suggested an
asynchronous updating scheme based on an MIMD (multiple instruction
multiple data) computer. Murray, Kashko, & Buxton (1986) implemented
a parallel version of the Metropolis spin-flip algorithm using synchronous
updating for every coding on an SIMD (single instruction multiple data)

computer.

An approximation of the Metropolis spin-exchange algorithm was imple-
mented on a SIMD computer by Margalit (1989) through a slave-master
handshaking between the two chosen pixels. This procedure was run both
with and without using a coding scheme. Besides the handshaking overhead

only a 40% degree of parallelism is accomplished.

The a-controlled spin-flip algorithm described here was implemented on a
Connection Machine CM-200 from Thinking Machines using the parallel
C-compiler, C*. The basic shape of the parallel variables correspond to a
grid of coding elements. A coding element is a group of neighboring pixels,
one from each coding. The coding element for a first-order MRF could be a
pixel from coding 1 and it’s neighbor to the right. For a second-order MRF
the coding element could be a 2x2 square with a pixel from coding 1 in it’s
upper left corner. We associate a virtual processor with each coding element
and this processor performs the spin-flip operation successively on all the
pixels in that coding element. If the number of coding elements is equal to
a multiple of the number of physical processors this scheme provides 100%

use of the parallel computer.
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5.3.5 Results

The simulations were performed on a toroidal 128 by 128 grid. One iteration

corresponds to a full sweep through the image.

Mean-convergence

In order to make the mean value converge to the desired py we have to choose
an appropriate constant K,. We started simulations with all black pixels
and pg set to 0.5. Different values of K, were chosen for both Metropolis
algorithm and the Gibbs sampler and the results are shown in figure 5.4
and figure 5.5. 8 was 3.0 for all the curves. We can see that K, = 6.0 seems
like an appropriate choice for both algorithms. We also notice that ringing
effects are more apparent for the Metropolis algorithm. This is due to the

more frequent flipping.

[-convergence

The rate of convergence of the pseudo-likelihood B-estimate is shown in
figure 5.6. The value of § is 3.0 and we can see that the spin-exchange
algorithm converges slower than it’s spin-flip alternatives. To illustrate the
visual convergence of the three algorithms we show typical configurations
after 50, 100, 200, 400, 800, 2000, 4000 and 8000 iterations for g = 3.0.
In figure 5.7 we see that the Metropolis spin-flip has converged to a stable
pattern already after 200 iterations. The convergence of the Gibbs sampler

is shown in figure 5.8 and a stable pattern is reached after 2000 iterations.
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Figure 5.4. Mean-convergence for Metropolis spin-flip. Percentage of 1-
pizels versus the number of iterations for § = 3.0.
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Figure 5.5. Mean-convergence for Gibbs sampler. Percentage of 1-pixels
versus the number of iterations for 3 = 3.0.
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Figure 5.6. Convergence in pseudo-likelihood (3 estimates for the Gibbs sam-
pler, Metropolis spin-flip and Metropolis spin-exchange algorithms.

For the spin-exchange, shown in figure 5.9, we have to wait 30000 iterations

before the pattern stabilizes.

During these simulations we noticed that there were three different types of
steady-state patterns. These are shown in figure 5.10. The first corresponds
to the semi-steady state reported in Ripley & Kirkland (1990) for the uncon-
ditional simulation. The second pattern consists of one phase encapsulated
in the other phase. The third pattern shows diagonal striping and this relies
on the toroidal structure of the grid. Simulating 300 samples using 20000
iterations of the Metropolis spin-flip resulted in 56% of the first pattern,
41% of the second pattern and 6% of the third pattern. We then tried to
simulate the same model with free boundary conditions, i.e. the pixels on

the boundaries simply have less neighbors than nonboundary pixels. This
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Figure 5.7. Convergence of Metropolis spin-flip algorithm. Configurations
after 50, 100, 200, 400, 800, 2000, 4000 and 8000 iterations for 3 = 3.0.

Figure 5.8. Convergence of Gibbs sampler. Configurations after 50, 100,
200, 400, 800, 2000, 4000 and 8000 iterations for B = 3.0.
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Figure 5.9. Convergence of Metropolis spin-exchange algorithm. Configu-
rations after 50, 100, 200, 400, 800, 2000, 4000 and 8000 iterations for
8 =3.0.

resulted in the two types of steady-state patterns shown in figure 5.11. At
up to 100000 iterations the distribution was maintained at 80% of the left
pattern and 20% of the right pattern.

These results also show that Cross & Jain (1983) never simulated to steady-

state for supercritical 4, and that the stop-criteria were more important in

Figure 5.10. Nature of steady-state patterns simulated on a toroidal grid.
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Figure 5.11. Nature of steady-state patterns simulated with free boundary
conditions.

determining the visual properties of the simulated textures than the model

parameters..

Timing

The parallel implementation of this algorithm on the CM-200 is in average
40 times faster than a sequential implementation on an HP Apollo 9000/750,
which is marketed as the fastest workstation in the world at the moment.
The time on the CM-200 was on an 8k processor system with exclusive

aCcCess.

5.3.6 Conclusion

The iterative simulation of Markov random fields conditional on the first-
order statistics has been studied. Until now such simulations has been done
using the Metropolis spin-exchange algorithm, which was made popular by

Cross & Jain (1983). Presented here are two spin-flip alternatives that have
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several advantages. They are faster per sweep. The rate of convergence is
higher, several orders of magnitude for supercritical 3, and they are easy to
parallelize. The essential part for the conditioning is a simple feedback loop.
It is straightforward to extend the use of such a feedback loop in iterative

simulation schemes to conditioning on other image features.

Using implementations of these algorithms on an SIMD massively parallel
computer we have shown that Cross and Jain did not simulate to steady-
state for large B and that their realizations for large 3 depends heavily on the
stop-criteria used. Statistics has been made for the nature of steady-state
configurations for both simulations on a toroidal grid and for simulations

with free boundary conditions.
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5.4 Simulation of geological structures

We use the morphological Potts models defined in equation (3.10) and apply
the a-controlled spin-flip algorithm from section 5.3 for the simulation of

geological structures in an oil field.

5.4.1 Introduction

In the business of petroleum exploration and production it is of great impor-
tance to assess the properties of an oil field. Computer simulation studies
is a powerful tool in this assessment. They are performed by simulating
flow in simulated stochastic reservoirs. Thus the word simulation is used in
two senses in the field of petroleum technology. It is used for the stochastic
simulation of the spatial distribution of sedimentary facies and petrophys-
ical properties as well as for the numerical simulation of flow in a media.
This case study is concerned with simulations in the first sense. When flow

simulations is meant, this shall be stated explicitly.

The simulation is based on a reservoir model. In this model we have to
incorporate geological knowledge from similar structures as well as the ge-
ological knowledge obtained from well data. The information used in the
design of a reservoir model is often referred to as soft data. When simu-
lating the reservoir model the well data shall be fixed at the corresponding
location thus honoring what is called hard data. A source of information

that seems somewhat harder to incorporate is data from seismic studies.
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When modelling the distribution of rock types we use a discrete coding of
the lithology, whereas models for petrophysical properties like porosity and

permeability may be more naturally based on continuous variables.

For literature on the subject of this case study the reader is referred to
Ripley (1992), Dubrule (1989) and Haldorsen, Brand, & Macdonald (1988).

5.4.2 Model types

The two main groups of stochastic models used in reservoir simulation are
object models (or Boolean models) and wvozel models (or block models). We

are primarily concerned with voxel models.

Voxel models

These models are based on a regular grid and the distribution of voxel values
is chosen to satisfy e.g. a certain variogram (correlogram) or a conditional
probability distribution. The variogram and the conditional probability

distribution may be inferred from hard data.

Three recent publications with different approaches are:

e Adler, Jacquin, & Quiblier (1990) simulated porous media based the

measured porosity and variogram.

e Farmer (1989) generated gray level numerical rocks by first comput-

ing the histogram, cooccurrence matrices and autocorrelation of a rock
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sample. Then a pattern with the same histogram is generated, and
this pattern is used as a starting configuration for a spin-exchange
simulated annealing procedure. Deviation from the sample cooccur-
rence matrices and autocorrelation is used as penalty in the energy

function.

e Ripley (1992) simulates the distribution of rock types using a 3D Potts

model conditional on the hard data points.

The approach in this study is similar to the approach in Ripley (1992). We
include morphological properties in the model by using the morphological
Potts models defined in equation (3.10), and we apply the a-controlled spin-

flip algorithm from section 5.3 for the simulation.

Object models

An object model describes the distribution of rock bodies of random shape
at random locations. The theory of point processes and random set models
can be a very useful tool for specifying and simulating object models. From
the viewpoint of texture analysis object models corresponds to the structural

approach with primitives and placement rules.

5.4.3 A Markov random field reservoir model

We shall try to apply the morphological Potts model 3.10 for reservoir simu-
lation on the gigascopic scale (Haldorsen et al., 1988). The model is intended

for the description of the distribution of both rock types and discretized
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petrophysical properties. The goal is that the reservoir simulation scheme

shall incorporate:

Fixed first-order statistics.

Anisotropy in the different facies.

Spatial trends (instationarity).

Hard data.

Planar discontinuities (faults) as hard data.

The simulation is performed using the feedback loop described in section 5.3
to keep the first-order statistics fixed. The constants for the control actions
has to be selected for each state. A PI-controller was used in the simulations

below.

Anisotropy in the different facies is implemented through the use of the

morphological Potts models.

Instationarity can be implemented by letting the model parameters vary

across the field.

Hard data points are honored by simply not visiting them during the sim-

ulation, i.e. they will never change their value.

Discontinuities (faults) are introduced as hard data. This is simply done
by considering discontinuities as a new phase, the discontinuity phase (The
discontinuity phase can also be considered as vacancies in a site-diluted

Potts model). The discontinuity phase is not considered in the flipping



5.4 Simulation of geological structures 151

process. To be 100% effective the discontinuity phase has to be as wide
as the longest distance between two neighbors in the MRF. To avoid the
wrap-around that is due to the toroidal grid we can apply the discontinuity
phase to the sides of the grid. Horizontal wrap-around may be desirable in
many cases, whereas this is rarely true for vertical wrap-around. We would
in this case apply the discontinuity phase to the top and/or bottom lines of
the grid. An alternative to the discontinuity phase is to use a bond-diluted
Potts model. In such a model we have no bonds (no interactions) across the

discontinuity zone.

5.4.4 Simulation results

A reservoir simulation program, rocksample, has been implemented (See
appendix A). We shall now show a few examples of simulations in 2D based
on these models. The simulations were made on a 128x128 grid, where the
pixels are rectangles with height 1 and length 4. The model used is a four-
state morphological Potts model with the two structuring elements shown
in figure 3.13. In figures 5.12 to 5.15 we show four simulation examples.
50 iterations of the Metropolis spin-flip algorithm were used. Simulations
like these confirmed that first-order statistics and anisotropy of the different

facies can be controlled.

Figures 5.16 and 5.17 illustrates the conditioning on hard data and faults as
hard data. The simulations are conditional on hard data in vertical columns
on both sides of the fault. Figure 5.16 shows two independent simulations,
one with a fault and one without. In figure 5.17 the fault is introduced in
the result of the simulation without the fault and then simulation is done

again. In this case the simulations look more similar.
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Figure 5.12. Simulation result of four-state morphological Potts model.

Figure 5.13. Simulation result of four-state morphological Potts model.

Figure 5.14. Simulation result of four-state morphological Potts model.
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Figure 5.15. Simulation result of four-state morphological Potts model.

Instationarity has not been implemented in the simulation program.

All the parameters used in the simulations were supercritical, i.e. the
steady-state result would have only one color if we did not condition on
the first-order statistics. Thus for these simulations to be useful in prac-
tice we have to find a suitable stop-criterion. The stop-criterion could be a

global structural statistic, e.g. average cluster size or length.

5.4.5 Conclusion

The usefulness of Markov random fields in reservoir simulation is dependent
on an efficient implementation of the simulation scheme. This is particularly
true when simulating 3D structures. The a-controlled spin-flip algorithm
implemented on a massively parallel computer has proved very efficient and
would be an appropriate choice. The examples presented in this section has
been simulated on a serial workstation in 2D, but they are easily extended
to 3D.
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Figure 5.16. Result of two simulations with identical parameters. The lower
image has a fault as hard data. The simulations are conditional on hard
data in vertical columns on both sides of the fault.
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Figure 5.17. Result of two simulations with identical parameters. The lower
image is made by introducing a fault in the upper image and then simulating
again. The simulations are conditional on hard data in vertical columns on
both sides of the fault.
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Simulations based on the morphological Potts model suggest that it is pos-

sible to satisfy a set of criteria that are relevant to reservoir geologists.

The number of simulations that we have computed so far is very limited,
and much more research is needed to evaluate the potential of morhological
Markov random fields (and Markov random fields in general) in reservoir

simulation.
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Bayesian paradigm

The Bayesian paradigm is a framework for incorporating stochastic models
of visual phenomena into a very general set of tasks from image processing
and image analysis. Since the seminal paper of Geman & Geman (1984)
there has been an increasing interest in this subject (Besag, 1986; Marro-
quin, Miter, & Poggio, 1987; Geman & McClure, 1987; Ripley, 1988; Besag,
1989; Geman, Geman, Graffigne, & Dong, 1990). We give a short review
of Bayesian image analysis and present an application that makes success-
ful use of Markov random fields, the Metropolis algorithm and simulated

annealing in a Bayesian framework.
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6.1 Introduction

The Bayesian paradigm in image analysis can be described as follows:

1. We construct a prior probability distribution P(x) for the visual phe-

nomena X, that we want to make inferences about.

2. We then formulate an observation model P(y | x). This is the distri-
bution of observed images Y given any particular realization x of the

prior distribution.

3. The prior distribution and the observation model are combined to the

posterior distribution P(x | y) by Bayes theorem
P(x|y) o« P(y | x)P(x).

P(x | y) is the distribution of the visual phenomena X given the image

y that we have observed.

4. Finally we make inferences about the visual phenomena based on the

posterior distribution P(x |y).

6.2 Prior distribution

The generality of Bayesian image analysis lies in the variety of visual phe-

nomena, that we can model.

In image restoration we want to make inferences about the true undegraded

image represented by X from a noisy observed image y. A Gaussian MRF
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could the be an appropriate prior distribution for X. Priors that model the

joint gray level distribution are called pizel priors.

The goal of image classification is to assign a class or label to each pixel
in an image y. E.g. in remote sensing we can assign land-use classes like
forest, lake, road etc. to pixels in satellite images. The joint assignment
of labels to all pixels is a labelling x. Priors P(x) for the labelling could
be discrete Markov random fields such as binary MRFs and Potts models.

Priors that model a labelling are called label priors.

If we want to make inferences about geometrical shapes, represented by X,
in an image y, we are in the area of template matching. Template priors are
models of geometrical relations in objects or between objects in an image.
The application of a MRF template prior is illustrated in the case study of

section 6.6.

For the Bayesian approach to be successful it is important that the prior
density reflects our knowledge of the visual phenomena behind the observed

images.

6.3 Observation model

The observation model P(y | x) is the distribution of observed images
Y given any particular realization x of the prior distribution, i.e. it tells
us how the visual phenomena, that we want to make inferences about, is
actually observed. In image restoration x is typically considered observed

after convolution with a blurring function h and addition of a noise image
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Y=h*xx+e.

In image classification the observation model could be a texture and/or noise
model for each class, e.g. a forest texture on forest labels, a lake texture on
lake labels etc.

After having specified the prior model and the observation model we are

ready to extract information from the posterior distribution.

6.4 Maximum a posteriori (MAP) estimates

The MAP estimate “x of x given an observed image y is defined by
x = argmax P(x | y).

Thus MAP estimation involves maximization of a high dimensional joint dis-
tribution, and this is usually connected with a considerable computational

cost.

6.4.1 Simulated annealing

A simulated annealing scheme is a successive sampling from the density
Pr(x|y) o [P(y | x)P(x)]* (6.1)

where the temperature starts at an initial value 7y > 0 and then falls to-

wards 0. If the temperature is lowered slow enough, then (6.1) will assign
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unit probability to the MAP image in the limit (Geman & Geman, 1984).
The sampling algorithm for simulated annealing can be e.g. the Gibbs sam-
pler or the Metropolis spin-flip algorithm. A simulated annealing scheme
will be used in section 6.6. The reader is referred to Aarts & Korst (1989)

for details on the simulated annealing algorithm.

6.4.2 Iterated conditional modes (ICM)

The ICM algorithm consists of a number of sweeps over the image, where

each pixel is visited and set to the mode of the conditional probability, i.e.
Z; = mumawxwﬁﬁ. | yi) P(X; =t ]z, #1).

The ICM algorithm usually converges in the order of 10 sweeps, which
is generally much less than would be required for a simulated annealing
scheme. An ICM scheme is on the other hand more likely to get trapped in

a local maximum of the posterior density.

6.5 Marginal posterior modes (MPM)

Marroquin et al. (1987) generated a series of samples from the (discrete)
posterior distribution and, for each pixel, chose the mode of the marginal

posterior distribution, i.e.
z; = argmax P(z; | y)

The sampling algorithm for MPM can be e.g. the Gibbs sampler or the
Metropolis spin-flip algorithm. A MPM scheme used with a label prior will
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minimize the expected misclassification error under the posterior distribu-

tion.
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6.6 Hybridization filter analysis

An algorithm for automatic localization and classification of spots on a
hybridization filter has been developed and implemented. The algorithm
represents a successful application of a Markov template prior, the Metropo-

lis algorithm and a simulated annealing scheme.

6.6.1 Background

The genome analysis lab at Imperial Cancer Research Fund (ICRF) in
London is working on the human genome project. This project involves
a massive amount of hybridization experiments. The intention of the work
presented here is to analyze hybridization filters automatically for the map-

ping of the human genome.

The filter is a square sheet of nylon with a sidelength of 23.2 cm. A robot
places a 96x96 grid of spots on this filter, where each spot is a specific cosmid
clone. A cosmid clone is a stretch of DNA, about 40000 bases long. When
a radioactive DNA probe is applied to the filter the probe will only bind
(hybridize) to those cosmid clones that contain the same DNA sequence as
the probe itself. The unbound probes are washed off, and spots containing
clones hybridized to the probe appear darker than the other spots, when an
autoradiograph is taken of the filter. When a phosphor image is taken the
spots containing hybridized clones will appear lighter than the other spots.
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6.6.2 Robot dynamics

The cosmid clones are placed on the filter by a robot. They are kept on
microtiter dishes with an 8x12 grid of wells, thus the robot arm consists
of an array of 8x12 pins. When the robot arm is dipped into a microtiter
dish a small quantity of each cosmid clone adheres to its corresponding pin.
The arm is then moved to the filter where it applies the cosmid clones as
an array of spots. After this the robot sterilizes the pins and moves on to
the next dish. This is done 96 times for each filter producing the 96x96
grid of spots. This grid is made up of 6 almost independent 32x48 subgrids
as shown in figure 6.1. Each subgrid contains 4x4 interleaved 8x12 grids
corresponding to the microtiter dish grid. The spacing between the wells of

the microtiter dishes is 8 mm, thus the spacing between the spots is 2 mm.

6.6.3 Image analysis problem

The problem to be solved through the use of image analysis is to automati-
cally detect which cosmid clones hybridizes to the probe. This involves the
correct assignment of each spot on the filter to a corresponding region in the
image and classification of each spot as to the degree to which hybridiza-
tion has occurred. Several circumstances complicate the solution of these

problems. For the spot localization problem we have that

e The robot movements are imprecise.
e The membrane may physically warp.

e Some pins of the robot arm may be bent.
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Arrangement of the 6 subgrids. The full grid is a 96x96 spot
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e Some spots are missing.

e Some spots may have merged.

For the spot classification problem we have that

e The background radiation level varies across the filter.
e Some spots may have merged.

e Some spots may have been misplaced.

We attempt to provide an effective set of image analysis tools that are robust
under these circumstances. The spot localization problem is considered to

be the most difficult and will be our main concern.

6.6.4 Digitization

The autoradiograph is digitized by a camera and a framegrabber. For the
setup used now the result is an 8 bit 512x512 image. The gray-scale of these

images is inverted to get white spots.

The phosphor imager scans with 88 pm per pixel. It is capable of scanning
an area of up to 35 x 43cm with 16-bit gray-scale resolution. The filter
and its immediate surroundings are scanned and the resulting image is sub-
sampled to an 8-bit 1024x1024 image. This image is the starting point of
the processing. The spacing between the spots is about 8.5 pixels and this
seems reasonable for our purpose. The examples shown in this thesis are

phosphor images. In figure 6.2 we show an example of a raw image.
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Figure 6.2. Raw image. This is a good quality phosphor image showing the
full 96x96 spot array.

168 Chapter 6. Bayesian paradigm

6.6.5 Preprocessing

The preprocessing serves four purposes.

1. Correction for rotation.
2. Finding the rectangular outline of the spot array.
3. Correction for background variations.

4. Spot equalization.

The success of the subsequent spot localization and spot classification de-

pends highly on a successful implementation of these preprocessing steps.

To illustrate the preprocessing, the spot localization, and the spot classifi-
cation we will show the effect of each step on the image in figure 6.3. This

is a phosphor image of a 32x48 subgrid.

Correction for rotation

The spot array is normally very well aligned with the pixel array in phosphor
images, but autoradiographs will in general be rotated slightly. The rotation
angle can be found by using the Hough transform (See e.g. Duda & Hart
(1972)) and search for the angle between e.g. -5 and +5 degrees with the
highest variance over the profile in Hough space. The image can then be
rotated back into alignment. In figure 6.4 we see the image from figure 6.3

after alignment.
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Figure 6.3. Phosphor image of a 32x48 subgrid.

Figure 6.4. Aligned version of the image in figure 6.3. The rectangular
outline is shown.
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In particularly hard cases the four corners of the spot array can be pointed
out manually. In this way we can align the image and obtain the rectangular

outline of the spot array.

Finding the rectangular outline of the spot array

We can now assume strictly horizontal and vertical borders on the spot
array. These borders are found by first computing the sum of each row
(column), {s;,i = 0,..,1023}. Then we compute the difference of lag 8
obtaining {d;,7 = 8,..,1023}, where d; = s; — s;—s. Lag 8 is chosen be-
cause it is close to the distance between spot rows (columns). Finally we
find the starting row (column) and ending row (column) as argmax; d; — 4
and argmin; d; + 4, where argmax; d; is the row (column) number with
the maximum difference, and argmin; d; is the row (column) number with
the minimum difference. Figure 6.4 shows the rectangular outline, where
three of the sides were found by this method. The ending row had to be

repositioned.

Correction for background variations

The background varies over the images and this will cause problems in the
localization and classification process. The standard way of correcting for
varying background is to subtract a lowpass filtered image from the original.
As a lowpass filter we will choose a gray-scale opening. Using a flat 9 x 9
gray-scale opening will remove all the spots and leave the background, which

is then subtracted from the image. This operation can be written as

R=1-0()
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where I is the input image, O(I) is the opening of the input image, and R

is the resulting image.

Spot equalization

To make the localization process easier we equalize the intensity of the
spots, thus weighting the spots equally. This is done using a morphological

equalization,

where I is the input image, D is the dilated input image, E is the eroded
input image, and R is the resulting image. Again a flat 9 x 9 structuring
element is used. Basically the morphological equalization makes the local
gray level range constant over the image. Figure 6.5 shows the effect of

background correction and spot equalization of the image in figure 6.4.

6.6.6 Spot localization

The spot localization involves matching a 96 x 96 grid on the spots in
the image. This grid should adapt globally to provide the absolute spot
coordinates and locally to take into account all the small distortions in the

grid.
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Figure 6.5. Background
in figure 6.4.

corrected and spot equalized version of the image
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Initial assignment

If we can obtain a good initial guess on the spot locations then the sub-
sequent processing will be faster. As the initial guess we cover the outline

rectangle with a regular 96 x 96 grid.

Simulated annealing scheme

As a basis for improving the spot locations we use a Markov random field
as a template prior for the regular grid structure of the spot array. The
variables in this model does not represent a pixel value but the (x,y) image
position of a spot. This variable is not defined on the pixel grid but on the
spot grid. The prior is defined as
P(g) o< exp(—fo Y d3(i,5) — 1 Y _(di(i,5) — D)?)
i~j

i~vj
where i and j represents spots and g = {(x;,y:),4 = 1,..,ns} contains the
locations (z,y) of all the spots. ny is the number of spots in the spot array.
The neighborhood is the four nearest neighbors. dy(i,j) is the deviation in
alignment of the spots i and j, and d; (i, ) — D is the deviation from the fixed
grid distance, D, between neighbors. Figure 6.6 illustrates the meaning of

&o and &H .

Given the spot locations g we then specify an observation model for the

observed image y as

P(ylg) o exp(a M IZQ))

where the summation is over all spots i, and (i) is the sum of the gray

levels in a 5x5 neighborhood around spot i.
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Figure 6.6. Definition of the distance measures dy and d; for a horizontal
neighbor-pair. D is the distance between neighbors on a perfect grid.

We can regard this setup as a structural texture model. The prior model
represents the placement rules and the observation model represents the

primitives.
The posterior distribution

P(gly) «< P(y|lg)P(g)

is obviously a new Markov random field, and reflects a trade-off between the
regularity of the grid and the trust in the image data. The energy function

of the posterior distribution is given as

U =0 M&Aiv + 6 Ma;i.v —-D)? - ths.

~j "~

In this energy function we can control the properties of the fitted grid. The
faith in the data is controlled by «, since this parameter is the weight of the
intensity of the spots. The regularity of the grid is controlled by 3y and f;.
Bo determines the degree of linearity of the grid and (; controls deviations

from the fixed grid distance between neighboring spots.
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This model has a problem for spots on the edges. If nothing is done the
three or four outer rows and columns will be dragged towards the center
of the spot array because of the lack of spots pulling the other way. To
eliminate this effect we define artificial spots around the edges of the spot
array. The artificial spots are initially positioned just outside the outline
of the spot array, and the only restriction in their movements is that they

cannot cross this outline.

We can now apply a simulated annealing scheme and the Metropolis algo-
rithm using this Markov random field. Every spot is visited and an attempt

is made to change its position to a randomly selected nearest neighbor.

In figure 6.7 the location of every spot in figure 6.5 is marked by a dot.
Figure 6.8 show the spot locations in a close-up of the lower right corner of
figure 6.7.

Robot grid control

The same 8 x 12 grid of robot pins is used 96 times on each filter. This
grid can be regarded as fixed and we can use that information to detect
and correct misplaced spots. We first compute the mean of the relative
positions of neighbors in the 8 x 12 grid. Then for each spot we compute
the deviations from this mean for all four neighbors. The trimmed mean
(min and max trimmed off) of these four deviations will give a grid deviation
number for each spot. If the grid deviation number exceeds a specific value
the spot will be considered as misplaced. The misplaced spots can then be
relocated using the relative position to the neighbor in the 8 x 12 grid with

the lowest grid deviation.
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Figure 6.7. Spot locations. The located spots of the image in figure 6.5 are
marked with a dot.

Figure 6.8. Spot locations in a close-up of the lower right corner of the
image in figure 6.7.
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There are no misplaced spots in figure 6.7, but an example of the robot grid

control procedure will be shown in section 6.6.8.

6.6.7 Spot classification

The spot classification is based on the mean gray level in the neighborhood
of the spot location from the background corrected image. Thresholds are
selected to classify each spot in one of three classes: positive (+), negative
(-) or missing (x). Spot classifications of the located spots in figure 6.8 are

shown in figure 6.9.

If there is any doubt whether a spot has been correctly located it will be

classified as missing.

6.6.8 Results

Figures 6.10 and 6.11 show close-ups of the localization result of the image
in figure 6.2. They illustrate the robustness of the algorithm. In figure 6.10
there is a vertical gap down the middle of the image. This gap does not cause
any problems in the localizations. In the center of figure 6.11 we see that
two rows of spots merge and split up again. This is also interpreted correctly
by the algorithm. In both figures we see that missing spots are located in a

satisfactory way. To obtain these results we used the parameters:

e Prior model: 5y = 51 = 5.0

e Observation model: a = 0.2

180 Chapter 6. Bayesian paradigm

Figure 6.9. Spot classifications of the located spots in figure 6.8. The classes
are: positive (+), negative (-) or missing (x).
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Figure 6.10. Close-ups of the localization result of the image in figure 6.2.
There is a vertical gap down the middle of the image.

e Starting temperature: 7y = 4.0

log(n+2)

e Temperature scheme: T, = n—1Tog(n13)

e Number of iterations: 100

Until now we have only shown good quality phosphor images. In figure 6.12
we see a noisy phosphor image, where the regular spot pattern is hardly
noticeable in large areas of the spot array. In the simulated annealing scheme
we used the same parameters as before except that we set a = 0.1 to put less
trust in the data and more trust in the grid structure. The locations found
on the full grid are marked with dots and shown in figure 6.13. A close-up
of this figure is shown in figure 6.14. We can see from the figures, that the

182 Chapter 6. Bayesian paradigm

Figure 6.11. Close-ups of the localization result of the image in figure 6.2.
In the center we see that two rows of spots merge and split up again.
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Figure 6.13. Spot locations from the image in figure 6.12 marked with dots.

clearly visible spots are located correctly. Even for areas where spots are

hardly noticeable we see that algorithm makes a reasonable choice.
Figure 6.12. Noisy phosphor image. The regular spot pattern is hardly

ticeable in 1 f th t :
fioticeable h farge arcas of The Spot array Figures 6.15 and 6.16 show the effect of the robot grid control. A group of

4x3 spots has been shifted to the left in figure 6.15. In this case the shift
was due to a fast cooling. In figure 6.16 we see the misplaced spots pointed
out by the robot grid control algorithm. We can now relocate the misplaced

spots and run the localization algorithm again.
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Figure 6.14. Close-up of the spot locations shown in figure 6.13.

Figure 6.15. FErrors in the localization. A group of 4x3 spots has been
shifted to the left.
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Figure 6.16. Misplaced spots pointed out by the robot grid control algo-
rithm.
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6.6.9 Conclusion

We have presented an algorithm for automatic localization and classifica-
tion of spots on a hybridization filter. The algorithm is based on a Markov
template prior for the spot array, and the localization is obtained as a trade-
off between this model and the observed data. The computation is based
on a simulated annealing scheme. A set of operations was used to prepro-
cess the images. These preprocessing steps helped significantly in making
the simulated annealing scheme successful and computationally feasible. A
postprocessing step that implements a check on the localization has been

implemented.

The algorithm has been successfully applied to many hybridization filter
images. It seems to be both effective and robust compared to previously
tested automatic methods (unpublished). It seems to be able to classify
spots much faster and in many cases more accurately than a manual oper-

ator.
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Conclusion

Texture is an important characteristic of visual phenomena, and many at-
tempts have been made to capture the relevant textural properties in a set
of texture features or as a texture model. We have contributed to these

attempts by going through selected theory and practical applications.

7.1 Summary

For texture description we have based our studies on the first- and second-
order statistics. We have shown that first-order statistics can provide valu-
able textural information if they are computed at several scales (resolutions).
We found that a coarse-scale first-order statistic robustly measured enzy-

matic treatment effects on textile. This shows that it may be fruitful to
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consider the simplest features first, when solving a texture description prob-

lem.

We have surveyed features based on gray level cooccurrence matrices. The
effect of matching the gray level histogram to a specific distribution before
computing the cooccurrence features has been studied. Classification re-
sults suggest that the frequently used histogram equalization reduces the
discriminatory power of the features significantly for stochastic textures. A
relatively neglected feature, the diagonal moment, turned out to be very im-
portant for discriminating textures after a Gaussian histogram match. This
suggests that in general we loose important information when replacing
the cooccurrence matrix with the gray level difference and gray level sum
histograms. The combination of Gaussian matched textures and CART
classification resulted in simple, easily interpretable and relatively accurate

classifiers.

Markov random fields have been surveyed as texture models. Many impor-
tant results about these models from the field of statistical physics are still
fairly unknown in the field of image analysis. We have restated some of the
results in a statistical setting. These results leads us to an extension to the

asymptotic maximum likelihood estimator of Pickard (1987).

Standard Markov random fields are based on pairwise interaction between
pixels thus failing to incorporate morphological properties. We suggest a
reformulation of the discrete models, in which the operators of mathematical
morphology replace the concept of cliques. The advantages of morphologi-
cal Markov random fields are, that morphological properties become more

apparent and that we obtain a coherence between texture description and
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texture models. Ilustrative simulations of morphological Markov random

fields show that interesting visual phenomena can be created.

We have given a review of Markov random field parameter estimation and
Markov random field simulation. A new, fast, parallel algorithm for si-
mulation conditional on the first-order statistics has been developed and
implemented on a massively parallel computer. The conditioning is main-
tained by a standard PID-controller. Long runs of this algorithm has given
us information about steady-state patterns for the conditional models. The
algorithm has also been used for simulations of the geometrical structure of

oil reservoirs based on a morphological Markov random field model.

Markov random fields have been used successfully in a Bayesian setting to
analyze hybridization filters automatically for the human genome project. A
first-order Markov random field is used to model the geometrical structure
of a spot array, and this model is then used as prior knowledge for the
accurate localization of the single spots. The localization is done using a

simulated annealing scheme.

An extensive collection of software has been developed during the course of

this work. The main software developments are listed in appendix A.

7.2 A comment

Texture analysis has been studied extensively by many researchers over the
last two decades. The standard reference for most of these studies has been

the Brodatz textures. Although these textures can continue to provide
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insight about texture features, there are two points of criticism to such an
approach. The Brodatz textures only represent an infinitesimal fraction
of real world textures, and the Brodatz textures are very different. Even
though the literature on texture analysis, based on Brodatz textures, is
full of successes, there are still plenty of challenges for texture researchers
in fields like industrial inspection, biological and medical imaging, remote

sensing, geology etc.
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Developed software

An extensive selection of software has been developed during the course of
this work. The serial (nonparallel) programs were developed in C on HP
workstations running HP-UX. The parallel programs were developed in C*
on a Connection Machine CM-200 with a Sun-4 front end. Serial programs

have the suffix .c and parallel programs have the suffix .cs.

Standard numerical algorithms were taken from Press et al. (1988). On
the Connection Machine we used the supplied CMSSL library. For random
number generation under HP-UX we used the well-known linear congruen-
tial algorithm with 48-bit integer arithmetic (drand48). On the Connection
Machine we used a lagged-Fibonacci algorithm (Knuth, 1973) implemented
in the CMSSL library.
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Both serial and parallel programs have been made to work as modules of

the pipe-oriented HIPS and HIPS-2 image processing software.

The following list contains the main software developments.

e Texture statistics

1. histinfo

Histinfo computes first-order statistics from the input image.

2. glem
Glem computes the gray level cooccurrence matrix and 15 fea-

tures from this matrix.

3. fhist
Fhist takes a floating point input image, sorts all the pixels, and
outputs byte image with a specified histogram. The histogram

can be uniform (equalization), Gaussian, or a beta-function.
e Markov random field estimation

1. binest
Binest computes coding estimates and maximum pseudolikeli-
hood estimates from a binary input image. Models up to order
five can be estimated. Isotropy/anisotropy can be controlled
for each neighbor-distance. The x? test statistic and the log-

likelihood is computed for each coding.

2. binomest
Binomest estimates the maximum pseudolikelihood estimates of

a binomial Markov random field from the input image.
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3. asympest parameters for each phase can be specified. Rocksamp is the
Asympest computes the asymptotic maximum likelihood esti- program used in section 5.4.
mate of a first-order binary Markov random field from the input ierf
Hnage. Icrf is the package of hybridization analysis software used in sec-

4. pottsest tion 6.6.

Pottsest computes the maximum pseudolikelihood estimate of a . bingen
Potts model from the input image. Bingen is program in C* for Connection Machines. It simulates
gaussest binary Markov random fields in 2D and 3D. The a-controlled
Gaussest computes the maximum pseudolikelihood estimate of a algorithm is implemented. The results can be monitored ”real
Gaussian Markov random field from the input image. time” in an X-window.

e Markov random field simulation e Other

1. binsamp 1. xshow
Binsamp simulates binary Markov random fields using the Gibbs Xshow is a program that displays HIPS images under X-windows
sampler or the Metropolis algorithm. and lets the user interact using HIPS programs.

2. pottssamp 2. frarithmetic
Pottssamp simulates Potts models using the Gibbs sampler or Frarithmetic is a program that can be executed with many names
the Metropolis algorithm (all starting with ”fr”). It does many kinds of arithmetic opera-

tions on a set of images.

3. morphsamp . . . .
Morphsamp simulates morphological binary Markov random fields 3. A mﬂu.m implementation of the basic gray level morphological
using the Metropolis algorithm. operations:

— Erosi

4. swendsen rosion
Swendsen simulates Potts models using the Swendsen-Wang al- — Dilation
gorithm. — Opening

— Closing

5. rocksamp

Rocksamp simulates geological samples using a morphological Morphological gradient

Potts model and the a-controlled spin-flip algorithm. Model White tophat
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— Black tophat

— Morphological equalization



Appendix B

GLCM for all Brodatz

textures

This appendix contains the right-neighbor GLCM for all the Brodatz tex-
tures (no histogram match). By observing the kind of structures these
matrices can have we may get a better idea of which features give the best

summary.
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Figure B.1. Right-neighbor GLCM for Brodatz textures D1 to D10
(by row).
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Figure B.2.
(by row).

Right-neighbor GLCM for Brodatz textures D11 to D20
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Figure B.3. Right-neighbor GLCM for Brodatz textures D21 to D30
(by row).
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Figure B.4.
(by row).
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Right-neighbor GLCM for Brodatz textures D31 to D40
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Figure B.5. Right-neighbor GLCM for Brodatz textures D41 to D50

(by row).
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Figure B.6.
(by row).
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Right-neighbor GLCM for Brodatz textures D51 to D60
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Figure B.7. Right-neighbor GLCM for Brodatz textures D61 to D70
(by row).
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Figure B.8. Right-neighbor GLCM for Brodatz textures D71 to D80 Figure B.9. Right-neighbor GLCM for Brodatz textures D81 to D90
(by row). (by row).
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Figure B.10. Right-neighbor GLCM for Brodatz textures D91 to D100 Figure B.11. Right-neighbor GLCM for Brodatz textures D101 to D110
(by row). (by row).
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Figure B.12. Right-neighbor GLCM for Brodatz textures D111 and D112
(by row).
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