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Abstract

The present thesis deals with different aspects of population pharmacokinetic/
pharmacodynamic (PK/PD) modelling of the male hypothalamic-pituitary-go-
nadal (HPG) axis. The thesis consists of a summary report and five scientific
research papers.

An overview of the main topics covered in the thesis is provided in the sum-
mary report including PK/PD modelling in drug development, the pathological,
physiological, and pharmacological aspects of the male HPG axis, and a detailed
description of the methodology behind non-linear mixed-effects modelling based
on stochastic differential equations (SDEs).

The main objective of the work underlying this thesis was to develop mechanism-
based population PK/PD models of the HPG axis. The HPG axis is a multi-
variate closed-loop control system consisting of regulatory hormonal feedback
mechanisms. The number and complexity of the physiological mechanisms
involved in such models makes them difficult to develop and are often too
complex to be conveniently described by empirical models. Hence, the use
of SDEs in population PK/PD modelling was used as a tool to systematically
develop a mechanism-based model of the HPG axis following treatment with
gonadotropin-releasing hormone (GnRH) agonist triptorelin and GnRH antag-
onist degarelix in a combined model.

The use of SDEs in non-linear mixed-effects modelling was investigated by im-
plementing the Extended Kalman Filter in the NONMEM software. Non-linear
mixed-effects models based on SDEs extend the first-stage model of the hierar-
chical structure by decomposing the intra-individual variability into two types
of noise, i.e. a system noise term representing unknown or incorrectly speci-
fied dynamics and a measurement noise term accounting for uncorrelated errors
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such as assay error. This setup makes identification of structural model mis-
specification feasible by quantifying the model uncertainty, which subsequently
provides the basis for systematic population PK/PD model development.

To support the model building process, the SDE approach was applied to clin-
ical PK/PD data and used as a tool for tracking unexplained variations in pa-
rameters, identifying complicated non-linear dynamic dependencies, and decon-
volving the functional feedback relationships of the HPG axis. The developed
mechanism-based model of the HPG axis consisted of four compartments where
the secretion of readily releasable LH from a pool compartment was stimulated
and inhibited by the plasma triptorelin and degarelix concentrations, respec-
tively. Circulating LH stimulated the testosterone secretion while the delayed
testosterone feedback on the non-basal LH synthesis and release was modelled
through a receptor compartment where testosterone stimulates the production
of receptors. The derived mechanism-based model of the HPG axis was able
to account for the observed LH and testosterone concentration-time profiles
following treatment with both GnRH agonist triptorelin and GnRH antago-
nist degarelix thereby indicating that the model is sufficient at mimicking the
underlying physiology of the endocrine system.

KEY WORDS: Population PK/PD modelling; non-linear mixed-effects mod-
elling; NONMEM; stochastic differential equations; Extended Kalman Filter;
systematic population PK/PD model building; HPG axis; GnRH agonist trip-
torelin; GnRH antagonist degarelix.



Resumé

Denne afhandling omhandler forskellige aspekter af population farmakokine-
tisk/ farmakodynamisk (PK/PD) modellering af den mandlinge hypothalamus-
hypofyse-gonade (HPG) akse. Afhandlingen best̊ar af en sammenfatning samt
fem videnskabelige publikationer.

En oversigt over denne afhandlings hovedemner er givet i sammentfatning inde-
holdende emner s̊asom populations PK/PD modellering i lægemiddeludvikling,
patologiske, fysiologiske, og farmakologiske aspekter ved den mandlige HPG
akse samt en detaljeret beskrivelse af metoden bag ikke-lineær mixed-effekters
modellering baseret p̊a stokastiske differentialligninger (SDE’er).

Hovedformålet med denne afhandling var at udvikle en mekanistisk-baseret po-
pulation PK/PD model af HPG aksen. HPG aksen er et multivariat lukket-sløjfe
kontrolsystem, som best̊ar af regulatoriske hormonale feedback mekanismer. An-
tallet og kompleksiteten af de fysiologiske mekanismer, som indg̊ar i s̊adanne
modeller, gør dem svære at udvikle og er ofte for komplekse til at blive beskre-
vet af empiriske modeller. Brugen af SDE’er i populations PK/PD modelling
blev derfor brugt som et redskab til systematisk at udvikle en mekanistisk-
baseret model af HPG aksen efter behandling med gonadotropin-releasing hor-
mon (GnRH) agonist triptorelin og GnRH antagonist degarelix i en kombineret
model.

Anvendelsen af SDE’er i ikke-lineær mixed-effekts modellering blev undersøgt
ved implementering af det udvidede Kalman Filter i software programmet NON-
MEM. Ikke-lineære mixed-effekts modeller baseret p̊a SDE’er udvider residual-
fejlsmodellen i den hierakiske struktur ved at dekomponere den intra-individuelle
variabilitet til et system støj led, som repræsenterer ukendt eller inkorrekt spe-
cificeret dynamik og et m̊alestøjsled, som tager højde for ukorreleret støj s̊asom
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m̊alestøj. Dette setup muliggør identifikation af strukturelle modelmisspecifika-
tioner ved at kvantificere modellens usikkerhed som efterfølgende giver en basis
for systematisk population PK/PD model udvikling.

SDE metoden blev anvendt p̊a kliniske PK/PD data til at supportere modelbyg-
ningsprocessen og brugt som et redskab til sporing af uforklarede variationer i
parametre, identifikation af komplicerede ikke-lineære dynamiske afhængigheder
og afkodning af funktionelle feedback forbindelser i HPG aksen. Den udviklede
mekanistisk-baseret model af HPG aksen bestod af fire kompartments, hvor
sekretionen af hurtig tilgængelig LH fra et pool kompartment stimuleredes og
inhiberedes af hhv. plasma triptorelin og degarelix koncentrationer. Cirkule-
rende LH stimulerer testosteron sekretionen, mens det forsinkede testosteron
feedback p̊a den ikke-basale LH syntese og frigivelse blev modelleret gennem
et receptor kompartment, hvor testosteron stimulerer receptor produktionen.
Den opstillede mekanistisk-baseret model af HPG aksen kunne gøre rede for de
observede LH og testosteron koncentration-tids profiler efter behandling med
GnRH agonist triptorelin og GnRH antagonist degarelix, hvilket indikerer at
modellen er tilstrækkelig til at efterligne den underliggende fysiologi for det
endokrine system.

STIKORD: Population PK/PD modellering; ikke-lineær mixed-effekts mo-
dellering; NONMEM; stokastiske differentialligninger; systematisk population
PK/PD modelbygning; HPG aksen; GnRH antagonist degarelix; GnRH ago-
nist triptorelin.
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Abbreviations

ACTH Adrenocorticotropic hormone
ADME Absorption, distribution, metabolism, and excretion
AR Autoregressive
AUC Area under the curve
CRH Corticotropin-releasing hormone
CTS Clinical trial simulations
CV Coefficient of variation
EKF Extended Kalman filter
EVID Event identifier
FDA Food and drug administration
FO First-order
FOCE First-order conditional estimation
FSH Follicle-stimulating hormone
GAM General additive modelling
GH Growth hormone
GHRH Growth hormone-releasing hormone
GLP Good laboratory practice
GnRH Gonadotropin-releasing hormone
GOF Goodness-of-fit
HPG Hypothalamic-pituitary-gonadal
HS Healthy subjects
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IIV Inter-individual variability
IM Intramuscular
IOV Inter-occasion variability
IPP Individual PK parameters
IV Intravenous
LC Liquid chromatography
LH Luteinizing hormone
LLOQ Lower limit of quantification
LRT Likelihood ratio test
MEIA Microparticle enzyme immunoassay
ML Maximum likelihood
MS Mass spectrometry
M&S Modelling and simulation
NCA Non-compartmental analysis
NDA New drug application
ODE Ordinary differential equation
OFV Objective function value
PC Prostate cancer
PCP Prostate cancer patients
PD Pharmacodynamics
PDE Partial differential equation
PK Pharmacokinetics
PK/PD Pharmacokinetics/pharmacodynamics
PNLS Penalized non-linear least squares
PoC Proof of concept
Q-Q Quantile-quantile
RSD Relative standard deviation
RSE Relative standard error
SC Subcutaneous
SCM Stepwise covariate modelling
SDE Stochastic differential equation
STS Standard two-stage
Te Testosterone
TRH Thyrotropin-releasing hormone
TSH Thyroid-stimulating hormone
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Symbols

∆ Hessian
ε Residual error
η Inter-individual random-effects
∇ Gradient
Ω Inter-individual covariance
φ Individual parameter
Σ Measurement error covariance
σw Diffusion term
θ Population mean parameter

Ce Effect-compartment concentration
Cmax Maximal drug concentration
Cp Plasma concentration
d Input
e Measurement error
Emax Maximal effect
EC50 Concentration producing half the maximal effect (potency)
F Absolute bioavailability
Fr Fraction
k First-order rate constant
K Kalman gain
Kin Zero-order constant for production of response
ke0 Rate constant from effect-compartment to out
kout First-order constant for loss of response
l Individual log-likelihood function
L Population likelihood function
P State covariance
R Output prediction covariance
t Time
t1/2 Half-life
tmax Time to maximal drug concentration
w Standard Wiener process
x State variable
y Measurement
Z Covariates
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Chapter 1

Introduction

1.1 Background

Prostate cancer (PC) is a leading cause of illness and death among men, and
is responsible for almost 3% of deaths in men older than 55 years [12, 53]. The
management of PC has mainly focused on the gonadotropin-releasing hormone
(GnRH) receptor where Decapeptyl (triptorelin) was developed as the first gen-
eration of GnRH agonists by Ferring Pharmaceuticals A/S. Ferring is currently
developing a new generation of GnRH analogues where the first in this new
class of drugs is the GnRH antagonist degarelix.

Population pharmacokinetic/pharmacodynamic (PK/PD) modelling is becom-
ing an important decision support tool for faster and more efficient drug devel-
opment. In order to apply population PK/PD modelling to the development
of degarelix, it is necessary to understand the physiology of the hypothalamic-
pituitary-gonadal (HPG) axis on which GnRH analogues act. The number and
complexity of the physiological mechanisms involved in modelling physiologi-
cal systems such as the HPG axis are often too complex to be conveniently
described by empirical PK/PD models. Thus, there is an increasing need to
develop new sophisticated computational methods and models to ensure the
optimal utilization of the PK/PD data from projects such as the degarelix de-
velopment project.
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Stochastic differential equations (SDEs) provide an attractive modelling ap-
proach for systematic population PK/PD model development by allowing in-
formation about unmodelled dynamics of the system to be extracted from data.
The key advantage of using SDEs compared to ordinary differential equations
(ODEs) is that they allow for decomposition of the residual error into a sys-
tem noise term representing unknown or incorrectly specified dynamics and a
measurement noise term accounting for uncorrelated errors such as assay error.
SDEs have been proven beneficial in other scientific areas to optimize the model
building process for non-population data by pinpointing model deficiencies and
iteratively improve the model using a systematic model building framework
[44, 45].

1.2 Aims of the thesis

The overall aims of the work presented in this thesis were to develop population
PK/PD models for drugs acting on the HPG axis and to investigate the use of
advanced computational methods in non-linear mixed-effects modelling.

The specific aims of the thesis were:

• To build population PK models for the absorption of GnRH antagonist
degarelix and GnRH agonist triptorelin from subcutaneous (SC) and in-
tramuscular (IM) depots.

• To implement SDEs in non-linear mixed-effects modelling software and
explore possible applications of SDEs in population PK/PD modelling.

• To develop a mechanism-based population PK/PD model of the HPG
axis, which would be able to describe and predict the PK/PD response
following treatment with GnRH agonist triptorelin and GnRH antagonist
degarelix.

1.3 Outline

The remainder of this thesis is organized in the following way.

In Chapter 2, the phases of clinical drug development are explained along with
basic PK/PD concepts and different PK/PD modelling approaches.
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The background pathological, physiological, and pharmacological aspects of the
HPG axis are introduced in Chapter 3.

The methodology developed in this thesis are described in Chapter 4. A brief
introduction to SDEs is provided in Section 4.2.1 while a detailed description
of the theory behind the use of SDEs in non-linear mixed-effects modelling is
included in Sections 4.2–4.3. A systematic population PK/PD model building
framework based on SDEs is presented in Section 4.4.

Chapter 5 includes a description of the materials and methods used through-
out the Ph.D. project. Information about the two compounds GnRH agonist
triptorelin and GnRH antagonist degarelix, the analytical methods, and the
studies used in the population PK/PD modelling of the HPG axis are specified
in Sections 5.1–5.3. A description of the applied data analysis is provided in
Section 5.4.

An overview of the most important results obtained in the Ph.D. project is given
in Chapter 6. The results from Papers I–V are linked together and discussed
(with a broader perspective than in the papers) in Sections 6.1–6.3.

The overall conclusions according to the thesis objectives are presented in
Chapter 7 along with future perspectives.
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Chapter 2

PK/PD modelling in drug
development

PK/PD modelling is a multi-disciplinary field requiring expertise from many
scientific areas. In the following chapter, a brief introduction to the phases of
clinical drug development is provided along with different aspects of PK/PD
modelling.

2.1 Clinical drug development

The objective of clinical drug development is to provide relevant information on
safety and efficacy of the drug to enable physicians to treat patients optimally
[2]. Drug development is a costly and time consuming process. Current costs
of bringing a new drug to market is estimated to be as high as 0.8 to 1.7 billion
US dollars [80]. On average, it takes 6–12 years to bring a new drug through all
the regulatory hurdles before being marketed [22]. Each new drug application
(NDA) submission to the regulatory authorities consists of an average 68 clinical
trials with a total of 4,300 subjects [8].

Clinical drug development is an information-gathering process, which can be
thought of as two successive learning versus confirming cycles. The first cy-
cle (i.e. Phase I and Phase IIa) addresses the question of whether benefit over
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existing therapies can be expected. It involves learning (Phase I) what is the
largest short-term dose that can be administered to healthy male subjects with-
out causing harm, and then confirming (Phase IIa) whether that dose induces
some measurable short-term benefit in patients for whom the drug is intended
for, i.e. proof of concept (PoC). An affirmative answer at this first stage pro-
vides the justification for a more elaborate second cycle. This next cycle (i.e.
Phase IIb and Phase III) attempts to learn (Phase IIb) what is an optimal dose
regimen to achieve an acceptable benefit/risk and ends with the formal clinical
(Phase III) trials of that regimen versus a comparator. If the trial(s) reject the
null hypothesis of no incremental benefit of the new drug over the comparator
(or occasionally no less benefit), the drug is approvable. For some drugs, the
regulatory authorities require additional post-marketing studies (Phase IV) to
evaluate long-term effects or to obtain new indications [69].

Occasionally, the outcome of a clinical trial is unsatisfactory and the develop-
ment might have to be terminated or the trial has to be repeated with potential
huge extra costs in the late development phases. It is therefore of great impor-
tance to use all available information to increase the probability that a given
trial gives the required information to make a decision as early as possible
whether to terminate or progress the development program. The regulatory
agencies have recently stressed the need to improve the critical path of drug
development and initiatives have been taken to have end-of-phase 2A (EOP2A)
meetings with industry focusing on PK/PD modelling and simulation (M&S)
[80].

2.2 PK/PD modelling

The present introduction to PK/PD modelling does not cover all the different
aspects of PK/PD modelling with equal emphasis. The classical PK/PD mod-
elling is only briefly mentioned whereas more space is devoted to mechanism-
based and population PK/PD modelling, which currently is the main area of
focus in the research community.

Pharmacokinetics (PK) is the study of the time course of and factors affecting
the drug movement in the body and includes the processes of drug absorption,
distribution, and elimination, i.e.

• Absorption is the process by which unchanged drug proceeds from site
of administration to the systemic circulation (site of measurement within
the body).

• Distribution is the process of reversible transfer of a drug to and from
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the site of measurement, eg. blood and muscle.

• Elimination is an irreversible process. The elimination pathway is in gen-
eral determined by the drug’s physio-chemical properties where lipophilic
compounds are subject to metabolism (in liver and/or blood) while hy-
drophilic compounds are subject to excretion (in kidneys and/or bile).

Pharmacodynamics (PD) is the description of the time course and factors con-
trolling the drug effect on the body, i.e. the study of drug-target (receptor)
interactions and signal transduction processes.

The aim of PK/PD modelling is to link the PK and PD to establish and evaluate
the dose-exposure-effect relationship (where effect refers to both efficacy and
toxicity) following drug administration [66].

The three main objectives for modelling PK/PD data are to describe, under-
stand, and predict [22], i.e.

• PK/PD modelling is a concise way to describe and summarize data from
clinical studies. Current understanding of the modelled system can be
conceptualized and competing hypotheses of mechanisms of drug action
can be rejected/accepted.

• Understanding the PK/PD of a drug can be used to explain the observed
variability by identifying and quantifying factors influencing the PK/PD.

• Linking the dose-concentration-effect relationships in a PK/PD model fa-
cilitates the prediction of the concentration-time profiles resulting from
new dosing regimens, pharmacological variability within the system (dis-
ease, drug-drug interactions) and between systems (in vitro-in vivo cor-
relations, allometric scaling, inter-individual variability).

The integration of PK/PD principles into clinical drug development contribute
to a more rational and efficient drug development process by supporting lead
candidate differentiation, interpretation of efficacy and safety, and identification
of clinical target concentrations/doses [22, 69]. Clinical trial simulations (CTS)
is an emerging technique to guide the design of future clinical studies through
assessment of optimal power, sample size, and dose selection.

2.2.1 PK/PD models

Pharmacometrics is the science of developing and applying statistical meth-
ods and mathematical models in a biological context for characterizing, under-
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standing, and predicting the PK/PD of a drug [3]. It is a multi-disciplinary
field requiring expertise from pharmacology, physiology, pathology, mathemat-
ics, statistics, and computer science to build PK/PD models, which are able
to describe the absorption, distribution, metabolism, and excretion (ADME)
of a drug, mechanism of drug action, underlying physiology, as well as disease
progression.

The basic components of PK/PD models are explained below and visualized in
Figure 2.1.

Effectp eke0

outk

K

Disposition
kinetics

Biophase
distribution

Biosensor
process

Biosignal
flux

Signal
transduction

Response

Dose

in

Pharmacokinetics Pharmacodynamics

BiosignalCC

Figure 2.1: Basic components of PK/PD models [51].

PK models are typically straightforward to develop and can be derived from
basic principles such as conservation of mass, Fick’s laws of diffusion, and
Michaelis-Menten kinetics. The time course of plasma drug concentration is
often assumed in equilibrium with the biophase concentration from where the
drug exerts it’s action [68].

PD models are much more complicated compared to PK models due to the
vast number of pharmacological and physiological mechanisms controlling the
drug response. The biosensor process involves drug-receptor interactions, which
lead a cascade of intracellular events. These events are typically very diffi-
cult to model since they require detailed information about drug affinity (i.e.
drug-receptor complex formation and dissociation) as well as receptor density,
conformation, occupancy, and activation (i.e. intrinsic efficacy) [16, 51].

Many drugs act via indirect mechanisms and the biosensor process may either
stimulate or inhibit the production or loss of an endogenous mediator (biosig-
nal flux) [34]. These mediators do not necessarily represent the final observed
response, which may be further downstream from the receptor activation. The
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signal transduction processes, which are all the physiological processes between
activation of the target and the generation of response, account for post-receptor
time delays due to functional adaptations, desensitization, and tolerance devel-
opment following acute or long-term drug exposure, disease progression, and
drug-drug interactions [51].

PK/PD models should ideally rely upon the current state of knowledge about
the pharmacology of the drug and the physiology of the system. When the
rate-limiting step on the path to system response is due to pre-receptor non-
equilibrium (e.g. biophase distribution), a simple effect-compartment model [68]
is commonly used to account for the observed delay between the plasma drug
concentration and the effect whereas rate-limiting steps further downstream
result in indirect response models [35, 81]. Rarely, the time constants of the
PK/PD model are such that neither step is strictly rate-limiting due to e.g. time-
varying systems, which then requires the PK/PD model to be able to describe
both mechanisms. However, it is often necessary to simplify the models due to
parameter identifiability issues and the limited information available in sparsely
sampled clinical PK/PD data.

PK/PD models can generally be classified as being empirical, mechanistic, or
physiological [11, 88], i.e.

Empirical models are based purely on a mathematical description of e.g.
plasma concentration-time data of a drug. The mathematical functions
or differential equations are employed without regard to any mechanistic
aspects of the modelled system. This method is quick but can rarely be
used to extrapolate to other dosing regimens.

Mechanism-based models aim at mimicking the data generation mechanism
of the underlying physiological system thereby enabling the description
and prediction of multiple drugs acting on the same system. The estima-
tion of all model parameters is generally only possible by using data and
information from several studies.

Physiological models imply certain mechanisms or entities that have phys-
iological, biochemical, or physical significance. Contrary to mechanism-
based models, physiological models use flow rates (fluxes) through partic-
ular organs or tissues along with experimentally determined ratios, e.g.
the ratio between the blood and tissue concentration. The advantage of
the physiological approach is that biosimulations of events such as fever
or heart failure can be performed. The disadvantage is that the math-
ematics become very complex and it is impossible to estimate all model
parameters.
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A combination of empirical, mechanism-based, and physiological models is com-
monly used in PK/PD modelling where certain parts of the system may be
modelled empirically, while other parts are modelled based on a priori physi-
ological knowledge about the system. This approach is often preferred due to
issues associated with identification and estimation of model parameters.

Mechanism-based models aim at separating drug-related parameters from system-
related parameters. The drug-related parameters relate to the physical and
chemical drug properties (e.g. affinity and efficacy), while the system-specific
part of the model describes the underlying physiology and is consistent across
drugs [16, 51]. The benefits of formulating a mechanism-based PK/PD model,
compared to an empirical formulation, are

• The development of the model may lead to a greater understanding of the
system,

• The model neatly summarizes the current state of knowledge about the
system,

• The system-specific part of the model can be used for all drugs acting on
that system,

• The drug-specific part of the model can be used to test hypothesis on
mechanism of drug action,

• The model can be used to identify gaps in the current knowledge that
may be addressed in future studies, and

• If the model is correctly specified, it should have better simulation and
prediction properties than corresponding empirical models, which lack the
ability to characterize systems and dosing regimens other than those they
have been developed for.

2.2.2 Population PK/PD modelling

The definition of population PK/PD is the study of the sources of variability
among individuals (both healthy volunteers and patients) receiving clinical rele-
vant doses of drug [1]. The magnitude of unexplained (random) variability is of
great importance in clinical drug development for the design of dosing regimens
since the efficacy and safety of a drug might decrease as unexplained variability
increases [71, 79]. The population approach was first applied in clinical drug
development because only sparse PK data could easily be obtained in the tar-
get patient population. PK/PD modelling was therefore the only option to an
adequate and efficient interpretation of such data [3].
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One of the main objectives of population PK/PD modelling is to characterize
and explain the different sources of variability [22, 79]. The population model
framework consists of the following three sub-models (see Figure 2.2).

1. The structural sub-model describes the overall trend in the data using
fixed-effects parameters, e.g. clearance and volume.

2. In the statistical sub-model, the variability is accounted for using different
levels of random-effects, i.e.

(a) Inter-individual variability (IIV) in response, which describes biolog-
ical population variability that cannot be explained solely in terms
of the measurable independent variables.

(b) Intra-individual (residual) variability, which arise due to assay error
and structural model approximations.

(c) Inter-occasion variability (IOV) accounting for variation between study
occasions.

3. The covariate sub-model expresses the relationship between covariates and
model parameters using fixed-effects parameters.

model

Structural

Statistical Covariate

model

model

Figure 2.2: Schematic illustration of the population PK/PD model [30].

Population PK/PD modelling is commonly performed by one of the following
two methods, i.e.

Standard two-stage (STS) method analyzes the individual data separately
and the sample mean and variances are calculated using the individual es-
timated parameters. The STS method is often used to analyze PK data
from studies involving intensive sampling performed on a limited number
of individuals. The method is simple and intuitive but the IIV is generally
overestimated [71].
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Non-linear mixed-effects modelling uses a hierarchical model structure,
which allows for simultaneous estimation of the inter- and intra-individual
variability (random effects) as well as the influence of measured concomi-
tant effects or covariates on the fixed-effects parameters. This method
enables the analysis of PK/PD data from both sparse-sampled and un-
balanced study designs.

The non-linear mixed-effects modelling approach is typically the preferred method
in population PK/PD modelling because it provides reliable predictions of the
variability and because it is the only practical method for analyzing data from
multiple studies in a single data analysis. The estimation of parameters in
non-linear mixed-effects models is the topic of Section 4.2.



Chapter 3

Hypothalamic-pituitary-
gonadal

axis

The HPG axis is the hormone system that controls the release of sex hormones.
In order to be able to model the HPG axis after treatment with GnRH analogues
one needs to understand the connection between the disease, physiological sys-
tem, and the mechanism of drug action (see Figure 3.1). A brief description of
the pathological, physiological, and pharmacological aspects of the male HPG
axis is therefore presented in the following.

3.1 Pathological aspects

Prostate cancer (PC) is a leading cause of cancer mortality and morbidity among
men in the industrialized world second only to lung cancer and is responsible for
almost 3% of deaths in men older than 55 years [12, 53]. A widely recognized
feature of PC is its high sensitivity to androgen deprivation. Androgen depriva-
tion may be achieved by bilateral orchiectomy, by administration of oestrogens,
or by administration of GnRH analogues. The aim of the different treatments is
to suppress and maintain serum testosterone to castrate levels, i.e. testosterone
levels below 0.5 ng/mL.
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(Pharmacology)

Disease
(Pathology)

System Drug
(Physiology)

Figure 3.1: The connection between disease (pathology), system (physiology),
and mechanism of drug action (pharmacology).

3.2 Physiological aspects

3.2.1 Hypothalamus

The hypothalamus is a small region located within the brain and is part of
the central nervous system. Hypothalamic hormones play a pivotal role in the
regulation of body functions such as eating, sexual functions and behaviors,
blood pressure and heart rate, maintenance of body temperature, and emo-
tional states just to name a few. The hypothalamus hormones are produced
in nerve cells (i.e. neurons) and the release is modulated by other neurons.
The hypothalamus thereby serves as the major link between the nervous and
endocrine systems [25].

The hypothalamic hormones are released into blood vessels that connect the
hypothalamus and the pituitary gland (i.e. the hypothalamic-hypophyseal por-
tal system). The hypothalamic hormones are commonly referred to as releasing
or inhibiting hormones because they promote or inhibit the release of pituitary
hormones. The major hypothalamic hormones are [25, 85]

• Corticotropin-releasing hormone (CRH) is part of the hormone system
regulating carbohydrate, protein, and fat metabolism as well as sodium
and water balance in the body.

• Gonadotropin-releasing hormone (GnRH) controls sexual and reproduc-
tive functions.

• Thyrotropin-releasing hormone (TRH) is part of the hormone system con-
trolling the metabolic processes of all cells.
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• Growth hormone-releasing hormone (GHRH) is an essential component
of the system promoting the organism’s growth.

• Somatostatin affects bone and muscle growth with the opposite effect of
GHRH.

3.2.2 Pituitary

The pituitary gland is located in the brain directly below the hypothalamus
consisting of two parts, i.e. the anterior and posterior pituitary.

The anterior pituitary produces several hormones that either stimulate target
glands to produce hormones or directly affect organs. The anterior pituitary
hormones include [25, 85]

• Adrenocorticotropic hormone (ACTH) stimulates the release of hormones
from the adrenal cortex.

• Luteinizing hormone (LH) stimulates testosterone production in the testes.

• Follicle-stimulating hormone (FSH) stimulates sperm production.

• Thyroid-stimulating hormone (TSH) stimulates the release of thyroid hor-
mones.

• Growth hormone (GH) promotes the body’s growth and development.

The posterior pituitary does not itself produce hormones. Instead, it stores
the hormones vasopressin and oxytocin, which are produced by neurons in the
hypothalamus. Both hormones are collected at the ends of the neurons, which
are located in the hypothalamus and extend to the posterior pituitary [25].

3.2.3 Gonads

The gonads (i.e. the testes) serve two major functions: Spermatozoa and steroid
sex hormone (androgen) synthesis, which are necessary for the development and
function of the male reproductive organs and secondary sex characteristics. The
principal androgenic steroid is testosterone, which primarily is secreted from the
testes but also from the adrenal glands. Its main function is to stimulate the
development and growth of the male genital tract [25].
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3.3 Endocrine system

Endocrinology is the study of endocrine glands and hormones of the body and
their related disorders. Endocrine glands are organs or clusters of cells produc-
ing hormones, which are secreted directly into the bloodstream without passing
through tubes or ducts and carried via the blood to their target cells. The
endocrine system is a complex control system of glands producing hormones,
which help to control bodily metabolic activity and obtain homeostasis by hor-
monal feedback loops including the pituitary, thyroid, parathyroid, and adrenal
gland as well as the pancreas, ovaries, and testes [85].

The feedback mechanisms of the endocrine control system with respect to the
male HPG axis is illustrated in Figure 3.2. The HPG hormone system is acti-
vated by GnRH, which is secreted regularly in short bursts from neurons in the
hypothalamus. GnRH acts as an endogenous agonist that selectively stimulates
the gonadotrophic cells in the anterior pituitary gland to synthesize and release
the gonadotropins LH and FSH [25]. The responsiveness of the gonadotrophs
to GnRH varies under different conditions, but seems to be correlated with the
number of GnRH receptors, and is only activated by pulsatile GnRH stimulation
[40, 43].

Figure 3.2: Schematic illustration of the feedback mechanisms that control
the endocrine system of the male HPG axis [25].
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LH interacts with receptors on the plasma membrane of testicular Leydig cells,
which induces de novo synthesis of androgens, primarily testosterone [23, 56].
FSH and testosterone are key regulators of the testicular Sertoli cells, which
support and nourish the sperm cells during their maturation. The Sertoli cells
secrete inhibin which prevents pituitary FSH release. Activin, which is produced
in the Leydig cells, stimulate FSH secretion and thus has the opposite effect of
inhibin [25].

Rising levels of circulating testosterone appear to have a negative short- and
long-loop feedback action on the pituitary and hypothalamus, respectively,
thereby reducing the LH release from the pituitary as well as the hypothalamic
GnRH secretion. The feedback mechanisms are still not fully understood, but
testosterone seems to be able to suppress the release of gonadotropins by de-
creasing pituitary sensitivity to GnRH. Other findings indicate that testosterone
feedback takes place at the hypothalamic level by testosterone modulating the
frequency of the hypothalamic pulse generator [9].

3.4 Pharmacological aspects

The potency of GnRH and its analogous as stimulators or inhibitors of pituitary
gonadotropin secretion have made them highly useful in the therapy of sex
hormone-dependent tumors. The mechanism of action of GnRH agonist and
GnRH antagonist1 are explained in the following.

3.4.1 GnRH agonists

Prostate cancer patients have for many years been treated with GnRH agonists
[72]. GnRH agonists are similar in structure and function to natural GnRH, but
are about 60 times more potent than the natural hormone [12]. GnRH agonists
act by competitive binding to and stimulation of pituitary GnRH receptors re-
sulting in initial stimulation of gonadotropin and testosterone secretion. Contin-
uous stimulation of the pituitary by chronic administration of long-acting GnRH
agonists will result in down-regulation of pituitary GnRH receptors followed
by receptor desensitization with subsequent inhibition of LH production [40].
This, in turn causes a suppression of gonadal steroids (primarily testosterone),
on which continued growth of hormone-sensitive PC cells depends [23, 56, 73].

1The definition of an agonist is a ligand that binds to a receptor and alters the receptor
state resulting in a biological response, while an antagonist is a ligand that reduces the action
of another ligand.
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3.4.2 GnRH antagonists

In contrast to treatment with GnRH agonists, GnRH antagonists block the pitu-
itary GnRH receptors causing immediate suppression of gonadotropin secretion
which result in medical castration, i.e. testosterone levels below 0.5 ng/mL. The
initial flare-up effect (LH and testosterone surge) of GnRH agonists is thereby
avoided with GnRH antagonists [26, 70, 86]. This is particularly important
in clinical situations where a fast and profound suppression of testosterone is
desired, such as symptomatic PC (e.g. pain or spinal cord compression) [61].

Previously, the short duration of action of GnRH antagonists formulations com-
pared to the agonists formulations (where one-month, three-month, and even
longer depot formulations are available [21, 48]) has limited the use of the GnRH
antagonists in the treatment of PC along with histamine-mediated side-effects
[70]. In order to prolong the duration of action of GnRH antagonists, several
studies have been performed with sustained release formulations (microcapsules
or microgranules) [42, 60, 62, 63]. Recently, the first GnRH antagonist with pro-
longed effect, abarelix, was approved by the U.S. Food and Drug Administration
(FDA) for treatment of a subpopulation of PC patients with a one-month depot
formulation [78].



Chapter 4

Methodology

The terminology and notation used in this chapter is initially presented followed
by a detailed description of the developed methodology for implementing SDEs
in non-linear mixed-effects modelling.

4.1 Terminology and notation

To ease the notation, bold symbols refer to vector or matrix representation.
Capital Greek letters symbolizes population PK/PD parameters.

The symbol p(X) denotes the density of X, while p(X|Y ) symbolizes the con-
ditional density of X given Y . Conditioning on not explicitly stated variables
is represented by “·”, i.e. p(X|·).

Subscript notation i(j|j − 1) refers to the jth prediction based on all j − 1
previous measurements for individual i. Yij represents all observations of the
ith individual up to time tij .

The notation li

∣∣∣
η̂i

refers to the individual log-likelihood function li evaluated

at the empirical Bayes estimates η̂i.
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4.2 Non-linear mixed-effects modelling

Population PK/PD data analysis is typically performed using non-linear mixed-
effects modelling. Non-linear mixed-effects models can be thought of as a hie-
rarchical model structure where the variability in response is split into inter-
and intra-individual variability as illustrated in Figure 4.1.

+−+−

iCL

WTi Weight

ηCL
i Conc

Timet ij

0εij

σ

0

ω

Figure 4.1: Schematic illustration of the hierarchical model structure in non-
linear mixed-effects models. Inter-individual variability (Left)
and intra-individual (residual) variability (Right). Population
(◦) and individual (•) parameter/prediction and observed concen-
tration (2) [67].

4.2.1 Stochastic differential equations

Stochastic state-space or grey-box models consist of SDEs describing the dy-
namics of the system in continuous time system equations (4.1) and a set of
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discrete time measurement equations (4.2) [45, 46, 76, 77], i.e.

dxt = g(xt,dt,φ) dt + σw dwt , wt −ws ∈ N(0, |t− s|I) (4.1)
yj = f(xj ,φ) + ej , ej ∈ N(0,Σ) (4.2)

where x is the state vector, d is the input vector, φ is the parameter vector, t
is the time variable, σw dw is the system noise, and I is the identity matrix.
The measurement vector is denoted by y while e is the measurement error with
mean zero and covariance Σ. The non-linear functions g(·) and f(·) describe
the relationship between the dynamics of the states and the states and the
observations, respectively.

The structural model function g(·) is commonly referred to as the drift term
while the matrix σw is a scaling diffusion term [28]. The standard Wiener
process w (also referred to as Brownian motion) is a non-stationary stochastic
process with mutually independent (orthogonal) increments (wt − ws) which
are Gaussian distributed with mean zero and covariance |t−s|I. If the diffusion
term σw is zero, the system of SDEs in Eq. (4.1) reduces to a set of ODEs. The
usual physiological interpretation of the parameters is thereby preserved in the
SDE model formulation.

The difference between a state-space model based on SDEs and ODEs is illus-
trated by simulation of an exponential decay in Figure 4.2. The measurements
of the two models look very similar while the time evolution of the underlying
state is noticeably different. This is because the system noise influences the
time evolution of the underlying state making it a stochastic variable in the
SDE model. In the ODE model, the residual noise does not affect the time
evolution of the deterministic state.

4.2.2 Non-linear mixed-effects modelling based on SDEs

Non-linear mixed-effects models based on SDEs extend the first-stage model
of the hierarchical structure by decomposing the intra-individual variability
into system noise representing unknown or incorrectly specified dynamics and a
measurement noise term accounting for uncorrelated errors such as assay error
[55].

The first-stage model describes the intra-individual (residual) variability. It
consists of a structural model described by a system of SDEs in Eq. (4.3) and
a set of measurement equations in Eq. (4.4), which describes the difference
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Figure 4.2: Simulation of a state-space model based on SDEs (black) and
ODEs (red). States (–) and measurements (•).

between the structural model predictions and the observations, i.e.

dxit = g(xit,dit,φi) dt + σw dwit , wit −wis ∈ N(0, |t− s|I) (4.3)
yij = f(xij ,φi) + eij , eij ∈ N(0,Σ) (4.4)

where the subscript notation ij refers to individual i at time tij . The first-
stage model in Eqs. (4.3)–(4.4) is identical to Eqs. (4.1)–(4.2) except for the
dependency on the individual (i.e. denoted by subscript i).

The first-stage density is specified by [55]

p1(Yini
|φi,Σ,σw,di) =

 ni∏
j=2

p(yij |Yi(j−1), ·)

 p(yi1|·) (4.5)
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where Yij = [yi1, . . . ,yij ] represents all observations of the ith individual up
to time tij , ni are the total number of observations for individual i, while the
conditioning on φi, Σ, σw, and di is represented by “·”.

Assuming that the conditional densities on the right hand side in Eq. (4.5) are
well approximated by Gaussian densities, the first-stage distribution density is
completely characterized by a sequence of means and covariances as specified by
the right hand side of (4.5). The conditional densities describe the distribution
of the following measurement conditioned on all the previous measurements,
so that the mean and covariance of the conditional distribution is identical to
the prediction and covariance of the following measurement, i.e. the one-step
prediction ŷi(j|j−1) and its associated covariance Ri(j|j−1) [55]. Assuming a
Gaussian density, it is completely described by

ŷi(j|j−1) = E[yij |Yi(j−1), ·] (4.6)
Ri(j|j−1) = V [yij |Yi(j−1), ·] (4.7)

where ŷi(j|j−1) and Ri(j|j−1) are the conditional mean and covariance, respec-
tively, of yij conditioned on all previous measurements up to time ti(j−1) for
individual i denoted by Yi(j−1) = [yi1, . . . ,yi(j−1)].

The one-step prediction errors are calculated by

εij = yij − ŷi(j|j−1) , εij ∈ N(0,Ri(j|j−1)) (4.8)

The one-step predictions ŷi(j|j−1) and the associated covariance Ri(j|j−1) can
be calculated recursively using the Extended Kalman Filter (EKF) (see Section
4.3 for further details).

The second-stage model describing the inter-individual variability (IIV) is in-
cluded in the same way as for ODEs. The individual parameters φi are modelled
as

φi = h(θ,Zi) exp(ηi) , ηi ∈ N(0,Ω) , φi > 0 (4.9)

where h(·) denotes the structural type parameter model, which is a function
of the fixed-effects parameters θ, covariates Zi, and random-effects parameters
ηi influencing φi. This parameterization is chosen to constrain the individual
parameters to be non-negative, which is appropriate for the models considered
in this thesis. The random-effects ηi are realistically assumed independent and
multivariate Gaussian distributed with zero mean and IIV covariance matrix
Ω. The three levels of random-effects wit, eij , and ηi are assumed mutually
independent for all i, t, and j.
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The marginal density of Yini
is obtained from the conditional density of Yini

given the random effects ηi and the marginal distribution of ηi, i.e.

p(Yini
|θ,Σ,σw,Ω) =

∫
p1(Yini

|ηi,θ,Σ,σw,di) p2(ηi|Ω) dηi (4.10)

where the conditional density of Yini given the random-effects ηi is denoted by
p1(Yini |·) while p2(ηi|Ω) is the marginal distribution of ηi.

The population likelihood function based on the marginal density in Eq. (4.10)
can be written as the following product of integrals

L(θ,Σ,σw,Ω) ∝
N∏

i=1

∫
p1(Yini |ηi,θ,Σ,σw,di)p2(ηi|Ω)dηi

=
N∏

i=1

∫
exp(li) dηi

(4.11)

where N is the number of individual and li is the a posteriori individual log-
likelihood function (log of right hand side of Eq. (4.5)).

The integral in Eq. (4.11) does in general not have a closed-form expression
when the first-stage model is non-linear in η and can therefore not be evaluated
analytically [58]. Approximations therefore have to be made in order to be able
to estimate the model parameters.

4.2.3 Approximations of the population likelihood func-
tion

The three main likelihood approximations available in NONMEM [7] are the
Laplacian approximation, the first-order conditional estimation (FOCE) method,
and the first-order (FO) method listed in order of decreasing accuracy.

The Laplacian method of evaluating the exact marginal likelihood consists of
using a second-order Taylor expansion of li around the value of ηi which mini-
mizes li, i.e. the mode of the posterior distribution for ηi given θ, Σ, σw, and
Ω denoted by η̂i [7, 13, 82, 90].

Consider a second-order Taylor expansion of li around η̂i, i.e.

li ≈ li
∣∣
η̂i

+
∂li
∂ηi

∣∣∣T
η̂i

(ηi − η̂i) +
1
2

(ηi − η̂i)
T ∂2li

∂ηi∂ηT
i

∣∣∣
η̂i

(ηi − η̂i) (4.12)

where η̂i commonly is referred to as the empirical Bayes estimates. The integral
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in Eq. (4.11) can be approximated using Eq. (4.12) by∫
exp(li) dηi ≈

∫
exp

[
li +∇lTi (ηi − η̂i) +

1
2

(ηi − η̂i)
T ∆li (ηi − η̂i)

]
dηi

=
∫

exp
[
li +∇lTi ηi +

1
2
ηT

i ∆liηi

]
dηi

=
∫

exp
[
li +

1
2
ηi∆l−1

i ηi −
1
2
∇lTi ∆l−1

i ∇li

]
dηi

= (2π)k/2
∣∣∆li

∣∣−1/2 exp
[
li −

1
2
∇lTi ∆l−1

i ∇li

]
(4.13)

where ηi is a k-dimensional random-effects vector, ∇li = ∂li

∂ηi

∣∣∣
η̂i

is the gradient

vector, and ∆li = ∂2li

∂ηi∂ηT
i

is the Hessian matrix.

The gradient vector∇li of the a posteriori individual log-likelihood with respect
to the random effects will vanish when the expansion is made around the true
maximum since

∂li
∂ηi

∣∣∣
η̂i

= 0 (4.14)

The Laplacian approximation of the population likelihood function in Eq. (4.11)
thereby becomes

L(θ,Σ,σw,Ω) ∝
N∏

i=1

∫
exp(li) dηi ∝

N∏
i=1

|∆li|−1/2 exp(li)
∣∣∣
η̂i

(4.15)

Assuming a Gaussian conditional density for the first-stage distribution density,
the individual a posteriori log-likelihood function li and its Hessian ∆li are
calculated by

li = −1
2

ni∑
j=1

(
εT

ijR
−1
i(j|j−1)εij + log |2πRi(j|j−1)|

)
− 1

2
ηT

i Ω−1ηi−
1
2

log |2πΩ|

(4.16)

and

∆li =
ni∑

j=1

[
∂2εij

∂η∂ηT

∣∣
η̂i

εijR
−1
i(j|j−1) −

∂εij

∂η

∣∣T
η̂i

R−1
i(j|j−1)

∂εij

∂η

∣∣
η̂i

]
−Ω−1 (4.17)
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The key element in the evaluation of the population likelihood function in Eq.
(4.15) is thus the Hessian matrix ∆li. The numerical evaluation of second-
order partial derivatives to form the Hessian is usually quite sensitive leading
to uncertainty in the objective function and to optimization problems.

The contribution of the second-order partial derivatives in the Hessian matrix
is usually negligible compared to that of the square of the first-order partial
derivatives since the second-order Taylor expansion in Eq. (4.12) is made around
the value of ηi which minimizes li. The terms involving second-order partial
derivatives in Eq. (4.17) are therefore disregarded in the FOCE method [7] and
the Hessian is approximated by

∆li ≈ −
ni∑

j=1

∇εT
ijR

−1
i(j|j−1)∇εij −Ω−1 (4.18)

where ∇εij = ∂εij

∂η

∣∣
η̂i

is the gradient vector of the one-step prediction error εij

with respect to the random effects η, respectively.

The objective function of the FOCE method thereby becomes

−2 log L(θ,Σ,σw,Ω) ∝
N∑

i=1

[
log

∣∣∆li
∣∣− 2li

]
(4.19)

The simplest (and least accurate) approximation of the population likelihood
function is the FO method where the first-order Taylor expansion of the likeli-
hood function is made around the population parameter values, i.e. η̂ = 0.

The iterative FOCE method is repeated until convergence of the numerical
minimization routine using the following algorithm.

• The maximum likelihood (ML) estimates of the population parameters
are those values of θ, Σ, σw, and Ω that minimizes the objective function
in Eq. (4.19) (i.e. maximizes the likelihood in Eq. (4.15)) denoted by θ̂,
Σ̂, σ̂w, and Ω̂, i.e.

(
θ̂, Σ̂, σ̂w, Ω̂

)
= arg min

θ,Σ,σw,Ω

{
− 2 log L (θ,Σ,σw,Ω)

}
(4.20)

• For each value of θ̂, Σ̂, and Ω̂ produced by the minimization routine,
the inter-individual random-effects parameters η are estimated by their
posterior modes by maximizing Eq. (4.16).
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A measure of the uncertainty of the final parameter estimates can be calculated
using Fisher’s information matrix using the inverse Hessian matrix for the log-
likelihood function.

Further information about the FOCE method as implemented in NONMEM
can be found in NONMEM Users Guide - part VII [7].

4.3 Extended Kalman Filter

The EKF [36, 37] provides an efficient recursive algorithm to calculate the
conditional mean and covariance for the assumed Gaussian conditional densities
needed to evaluate the FOCE objective function in Eq. (4.19) [28, 52].

The EKF equations can be grouped into two parts, i.e. prediction and update
equations. The prediction equations predict the state and output variables one-
step ahead (i.e. until the next measurement) while the update equations update
the state predictions with the newly obtained measurement.

The one-step state prediction equations of the EKF, which are the optimal
(minimum variance) prediction of the mean and covariance, can be calculated
by solving the state and state covariance prediction equations from measurement
time tj−1 until tj , i.e.

dx̂i(t|j−1)

dt
= g(x̂i(t|j−1),di,φi) , t ∈ [tj−1, tj ] (4.21)

dPi(t|j−1)

dt
= AitPi(t|j−1) + Pi(t|j−1)A

T
it + σwσT

w , t ∈ [tj−1, tj ] (4.22)

with initial conditions as specified by the EKF update equations (see Eqs.
(4.29)–(4.30)). Initially, the starting conditions are

x̂i(1|0) = xi0 (4.23)

Pi(1|0) = Pi0 =
∫ t2

t1

eAit sσwσT
w(eAit s)T ds (4.24)

where t1 and t2 are the sampling times of the two first measurements while xi0

are the initial states, which can be pre-specified or estimated along with the
other model parameters. The integral in Eq. (4.24) specifying the initial state
covariance Pi0 is taken as the integral of the Wiener process and the dynamics
of the system over the time difference between the first two measurements. This
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initialization scheme has proven to be successful in other software implementa-
tions [46].

The EKF is an exact solution to the state filtering problem for linear systems,
while it is a first-order approximative filter for non-linear systems. Hence, the
Ait matrix is calculated for non-linear systems by linearizing the state equations
in Eq. (4.21) using a local first-order Taylor expansion of g(·) about the current
state at each time instant t, i.e.

Ait =
∂g

∂x

∣∣∣
x=x̂i(t|j−1)

(4.25)

Next, the EKF one-step output prediction equations are calculated by

ŷi(j|j−1) = f(φi, x̂i(j|j−1)) (4.26)

Ri(j|j−1) = CijPi(j|j−1)C
T
ij + Σ (4.27)

where Cij is obtained using a local first-order Taylor expansion of the measure-
ment equation in Eq. (4.4), i.e.

Cij =
∂f

∂x

∣∣∣
x=x̂i(j|j−1)

(4.28)

The one-step output prediction covariance Ri(j|j−1) is thus the sum of the
state covariance associated with the observed states (CijPi(j|j−1)C

T
ij) and the

covariance of the actual measurement (Σ). In case of no system noise (σw = 0),
the one-step output prediction ŷi(j|j−1) and covariance Ri(j|j−1) will reduce
to the ODE predictions ŷij and residual covariance Σ typically used in the
NONMEM likelihood function.

Finally, the one-step state and state covariance prediction estimates are updated
by conditioning on the jth measurement using the EKF state update equations,
i.e.

x̂i(j|j) = x̂i(j|j−1) + Kij

(
yij − ŷi(j|j−1)

)
(4.29)

Pi(j|j) = Pi(j|j−1) −KijRi(j|j−1)K
T
ij (4.30)

where x̂i(j|j) is the updated state estimate, Pi(j|j) is the updated state covari-
ance, and the Kalman gain Kij is calculated by

Kij = Pi(j|j−1)C
T
ijR

−1
i(j|j−1) (4.31)
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The optimal state estimate at time j denoted by x̂i(j|j) is equal to the best
state prediction x̂i(j|j−1) before the measurement is taken plus a correction
term consisting of an optimal weighting value times the difference between the
measurement yij and the one-step prediction of its value. For measurements
with a large variance Σ, the Kalman gain becomes small and the measurement
is weighted lightly due to the little confidence in the noisy measurement. In
the limit as Σ → ∞, the Kalman gain becomes zero and the infinitely noisy
measurement is completely ignored in the update. When the system noise is
dominant implying uncertainty in the output of the system model, the measure-
ment is heavily weighted. In the limit when σw →∞ and P →∞, the Kalman
gain will approach 1 and the updated state will be equal to the measurement
[52].

The EKF algorithm specified above and illustrated in Figure 4.3 is recursive by
repeating the calculations of the one-step state and output prediction equations
in Eqs. (4.21)–(4.28) as well as the state update equations in Eqs. (4.29)–(4.31)
for each individual measurement.

Prediction Updating

1. State prediction equations 1. Kalman gain

2. Output prediction equations 2. State update equations
+ σwσT

w

Pi(t|0) = Pi0

x̂i(t|0) = xi0

dx̂i(t|j−1)
dt

= g(x̂i(t|j−1), di, φi)

dPi(t|j−1)
dt

= AitPi(t|j−1) + Pi(t|j−1)AT
it

ŷi(j|j−1) = f(φi, x̂i(j|j−1))

Ri(j|j−1) = CijPi(j|j−1)CT
ij + Σ

Kij = Pi(j|j−1)CT
ijR

−1
i(j|j−1)

x̂i(j|j) = x̂i(j|j−1) + Kij
(
yij − ŷi(j|j−1)

)
Pi(j|j) = Pi(j|j−1) − KijRi(j|j−1)KT

ij

Figure 4.3: Schematic illustration of the EKF algorithm [87].

The EKF, being a linear filter, is sensitive to non-linear effects, which may result
in the approximation being too crude [28]. One might consider to use subsam-
pling1 where the EKF equations are linearized at each subsampling instant to
obtain a better approximation [47].

Several other more sophisticated statistical techniques (e.g. higher-order filters,
1The time interval between two measurements is divided into several subsampling instants.
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particle filters, estimation functions, etc.) exist for evaluating the conditional
densities in the likelihood function [54]. However, these methods increase the
computational burden considerably compared to the EKF and therefore not
considered in this thesis for the implementation in non-linear mixed-effects mod-
elling.

4.4 Systematic population PK/PD model build-
ing framework

Non-linear mixed-effects modelling based on SDEs provides an appealing tool
for systematic population PK/PD model development.

The main idea behind the systematic population PK/PD model building frame-
work is to iteratively improve the model by systematically pinpointing model
deficiencies. This is done by formulating a simple model structure and system-
atically expand it with models of increasing complexity in a manner, which is
consistent with prior physiological knowledge and supported by the available
data. The iterative process is continued until the model is accepted for a given
purpose. The time spend on developing population PK/PD models can thereby
be reduced dramatically [44, 45].

In this thesis, the proposed method is used for tracking time-varying parameters
(see Paper IV), to identify dynamic dependencies, and to deconvolve functional
feedback interactions of complicated physiological systems (see Paper V).

The iterative framework for systematic model development is visualized in Fig-
ure 4.4 and summarized in the algorithm below [44, 45].

Step 1 Formulate an initial ODE model derived using a priori knowledge about
the modelled system.

Step 2 Transform the ODE model into an SDE model with a diagonal diffusion
term to be able to pinpoint model deficiencies.

Step 3 Estimate the model parameters using the FOCE method together with
the EKF algorithm described in Sections 4.2–4.3.

Step 4 Identify possible model misspecifications by examining the significance of
the estimated diffusion terms as well as the one-step prediction error. The
iterative model development is terminated if the model is accepted for the
intended purpose. If the model is rejected, continue with Steps 5 to 9.
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Step 5 Extend the model with state equations for the pinpointed model deficien-
cies.

Step 6 Estimate extended model parameters and obtain updated EKF state es-
timates.

Step 7 Evaluate model and repeat Steps 5 and 6 using e.g. different parameteri-
zations until satisfactory results are obtained.

Step 8 Track unexplained variations using the updated EKF state estimates from
the extended model.

Step 9 Apply non-parametric modelling methods such as general additive mod-
elling (GAM) [24] to deconvolve functional relationship. Use the obtained
information to reformulate the model and return to Step 2.

1
model

Initial Transform to

Estimate

ModelFinal

model

Extend Estimate

Model
parameters

SDE model

evaluation model parameters

evaluation

2

3

4 5 6

7

89

Tracking
variations

Non
parametric
modelling

Figure 4.4: Systematic PK/PD model building framework [45].

The above mentioned approach based on SDEs is similar to the method de-
scribed by Fattinger et al. in [19] using flexible non-parametric functions (i.e.
natural cubic splines). The main difference between the two is that the SDE
framework can be used to deconvolve dynamic dependencies of unknown states,
inputs, and/or parameters whereas the spline method cannot. The natural cubic
spline approach is, however, relative straightforward to use if the dependencies
are known and only the form of the functional interactions is to be deconvolved.
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Chapter 5

Materials & Methods

5.1 Compounds

5.1.1 Triptorelin

Triptorelin (pGlu-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-Gly-NH2) is a synthetic
GnRH agonist with a longer half-life and a higher potency compared to the
naturally occurring GnRH. Compared to natural GnRH, triptorelin has the
amino acid L-Glycin in position 6 replaced by D-tryptophan, which increases
the affinity to the GnRH receptors in the pituitary [5].

Triptorelin is the active ingredient of GnRH agonist Decapeptylr. Decapeptylr

is available as a sustained release formulation called Decapeptyl Depotr [41].
Decapeptyl Depotr consists of two components, i.e. microparticles including
the active ingredient, triptorelin-acetate embedded in a biologically degradable
polymer matrix with a residual amount of microparticles hardener, Miglyol,
and the suspension medium, which is an isotonic, phosphate-buffered aqueous
solution containing Polysorbate 80 and an agent for increasing viscosity.
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5.1.2 Degarelix

Degarelix (Ac-D-2Nal-D-4Cpa-D-3Pal-Ser-4Aph (L-hydroorotyl)-D-4Aph (carba-
moyl)-Leu-ILys-Pro-D-Ala-NH2) is a new long-acting GnRH antagonist cur-
rently being developed for prostate cancer treatment with high affinity and se-
lectivity for GnRH receptors showing high water solubility and low histamine-
releasing properties in vitro [10, 15, 29]. After SC administration, degarelix
spontaneously forms a gel-like depot at high dose concentrations (in the mg/mL
range) when it comes into contact with body fluids (see Figure 6.1 on page 42).
The self-forming depot results in a sustained release of degarelix.

5.2 Analytical methods

Triptorelin and degarelix plasma concentrations were measured according to
Good Laboratory Practice (GLP) by liquid chromatography with tandem mass
spectrometric detection (LC-MS/MS) validated according to current guidelines
for bioanalytical samples [65]. The lower limit of quantification (LLOQ) for the
triptorelin and degarelix assays were 0.01 ng/mL and 0.5 ng/mL, respectively.
The LH assay was based on the Microparticle Enzyme Immunoassay (MEIA)
technology (Abbot Laboratories, IL). The LLOQ of the LH assay was 0.1 IU/L.
Total serum testosterone concentrations were measured according to GLP by
LC-MS/MS after solid-phase extraction. The LLOQ of the assay was 0.05
ng/mL.

5.3 Overview of studies

An overview of the studies used in the PK/PD data analysis described in Papers
I and III–V is provided in the following and summarized in Table 5.2 on page
36.

5.3.1 Triptorelin study

The CS001 study was designed as a phase I, randomized, parallel group, single
dose study. The objectives were to investigate the PK and PD of triptorelin after
a single SC or IM injection of a new Decapeptyl Depotr one-month formulation
in healthy male subjects. The triptorelin PK/PD data of CS001 was used for
the mechanism-based modelling of the HPG axis in Paper V.
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5.3.2 Degarelix studies

The CS01 study was the first in man degarelix study. The objective was to
investigate the PK of degarelix in healthy male subjects in a phase I with-in
group, randomized, placebo controlled, double blind dose-escalation study. The
following dose levels were included in the study: placebo, 0.5, 2.0, 5.0, 10, 30
and 40 mg/subject at concentrations ranging from 5 to 30 mg/mL in the dosing
solution. The degarelix PK data of CS01 was used in Paper I to model the
dose-volume and dose-concentration dependent degarelix absorption from a SC
depot.

The CS02 study was the first degarelix study in PC patients. It was designed as
a six month, multi-center, open-labeled, 1:1:1 randomized, parallel group phase
II study investigating the efficacy and safety of three dose regimens of degarelix
in PC patients. The main objectives were to select a dosing regimen that would
result in a) testosterone < 0.5 ng/mL in at least 70% of patients at 1 week from
initial dosing and b) testosterone < 0.5 ng/ml in at least 90% of patients at
2, 4, 8, 12, 16, 20, and 24 weeks from initial dosing. Three different initiation
regimens and two different maintenance treatments were tested (see Table 5.1).
The initiation dose was administered either as a dose on day 0 and day 3, or as
a single dose on day 0, while the maintenance dose was administered every four
weeks. The degarelix PK data of CS02 was used to illustrate the application of
SDEs for systematic population PK/PD model building presented in Paper IV.

Table 5.1: Dosing regimens in degarelix CS02 study.

Group Day 0 Day 3 Maintenance
40/40/40 40 mg 40 mg 40 mg every four weeks
80/ – /20 80 mg 0 mg 20 mg every four weeks
80/80/40 80 mg 80 mg 40 mg every four weeks

The main objectives of the CS05 study was to assess safety, tolerability, and PK
of degarelix in healthy male subjects. The study was designed as an open-label,
dose-escalating single dose phase I study of degarelix given as an IV infusion.
The following dose levels were included in the study: IV infusions of 1.5, 6, 15
and 30 µg/kg using a dosing solution concentration of 5 µg/mL. The infusion
lasted 15 minutes in the two lowest dosing groups and 45 minutes in the two
highest dosing groups. The CS05 study was used for the degarelix PK/PD
modelling described in Papers I and III.

The objective of CS07 was to investigate the pharmacological effects of ascend-
ing single doses of degarelix administered subcutaneously to PC patients in
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terms of testosterone suppression. The study design was an open-label, multi-
center, parallel and sequential, ascending single dose phase II study investigat-
ing the PK, PD, and safety of degarelix in PC patients (PCP). The degarelix
PK/PD CS07 data was used together with the triptorelin PK/PD CS001 data
for the mechanism-based modelling of the HPG axis in Paper V.

Table 5.2: Summary of studies used in the PK/PD data analysis. The num-
bers in brackets are the number of samples below LLOQ.

Study Design Subjects PK samples LH samples Te samples

Triptorelin study

CS001 Single SC/IM doses 58 HS 1152 (35) 1330 (0) 1300 (0)

Degarelix studies

CS01 Single SC dose 80 HS 1484 (416) 955 (0) 1151 (9)
CS02 Repeated SC doses 129 PCP 2919 (137) 3110 (307) 3110 (336)
CS05 Single IV infusion 24 HS 516 (144) 386 (49) 386 (3)
CS07 Repeated SC doses 170 PCP 4404 (22) 4826 (207) 4827 (223)

PK, pharmacokinetic; LH, luteinizing hormone; Te, testosterone; HS, healthy subjects;
PCP, prostate cancer patients.

5.4 Data analysis

5.4.1 Hardware and software

A Linux cluster consisting of 2 HP ProLiant DL360 G3 Intel Xeon with 2 x 3.06
GHz processors and 1 GB of RAM running Red Hat Linux v. 8, openMosix,
and GNU Fortran compiler g77 was the main platform used for the population
PK/PD analysis.

The population PK/PD modelling was primarily performed using NONMEM
version V and VI beta [7] whereas NLME [59] was used for more exploratory
purposes.

5.4.2 Population PK/PD analysis

All population PK/PD analysis were performed sequentially according to the
individual PK parameters (IPP) method in [93]. The PK parameters were first
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estimated using only the PK data. The PD parameter estimates were then
obtained using the PD data and conditioning on the empirical Bayes estimates
of the individual PK parameters. The reason for using a sequential instead of a
simultaneous approach was mainly due to long estimation times. Furthermore,
the PD were not expected to influence the PK in any of the developed PK/PD
models.

Two different methods were used to handle PK and PD samples below LLOQ in
the estimation of model parameters because of the different concentration-time
profiles. The first time a PK measurement was below LLOQ it stayed below
for the remainder of the study whereas the LH and testosterone measurements
fluctuated around LLOQ throughout the study. Thus, triptorelin and degarelix
plasma concentration measurements below LLOQ were omitted in the estima-
tion (method M1 in [6]), while LH and testosterone concentration measurements
below LLOQ were set to LLOQ/2 (method M5 in [6]).

The population PK/PD analysis was typically carried out in three interwoven
steps with an initial exploratory data analysis followed by an iterative model
development process and finally model validation [71].

5.4.2.1 Exploratory data analysis

Exploratory data analysis was used to investigate patterns and relationships
in the PK/PD data by graphical and statistical analysis. Initial assumptions
and hypotheses could thereby be confirmed/rejected before the complicated and
time consuming PK/PD model development.

5.4.2.2 Model development

The model development was driven by the aim of building a PK/PD model
that provides a satisfactory description of the PK/PD data while at the same
time is feasible to work with. Thus, a minimal-model approach starting from
the simplest model and expanding it until no more terms could be justified was
applied to be able to estimate all model parameters, while at the same time
reducing the computer run-times.

The three population PK/PD sub-models (i.e. structural, statistical, and co-
variate sub-models illustrated in Figure 2.2 on page 11) were developed in the
following order.

1. Identify the simplest structural sub-model.
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2. Identify the statistical sub-models that incorporates the random-effects.

(a) Choose between an additive, proportional, or a combined additive
and proportional residual error model based on graphical analysis of
residual plots.

(b) Apply an exponential parameter model using a diagonal IIV ma-
trix. Test the statistical relevance of including each inter-individual
random-effects and off-diagonal parameters.

3. Incorporate statistical significant and clinical relevant covariate-parameter
relationships.

The three sub-models overlap as indicated in Figure 2.2 on page 11 symbolizing
that a change in one of the sub-models could lead to changes in the other sub-
models as investigated by Wade et al. in [83]. Generally, several loops of the
above model building algorithm were therefore required before arriving at the
final model.

The FO method was used for parameter estimation in the initial population
PK/PD model building, while the FOCE method was applied during the final
stages of the development process. When feasible, the structural sub-model was
developed using the systematic PK/PD model building framework presented in
Section 4.4 together with prior pharmacological and physiological knowledge.
The covariate model building was performed with the stepwise covariate mod-
elling (SCM) module in Perl-Speaks-NONMEM (PsN) [50] using the method
described by Jonsson et al. in [31].

5.4.2.3 Model discrimination

Model selection was based on an understanding of the physiological system
and graphical analysis using basic goodness-of-fit (GOF) plots of e.g. individual
and population predictions vs. time, observed concentrations, and weighted
residuals. The difference in the objective function value (OFV) produced by
NONMEM was furthermore used to discriminate between hierarchical (nested)
models using the likelihood ratio test (LRT). For a one parameter difference,
the ∆OFV value is approximately χ2-distributed with ∆OFV > 3.84 being
significant on a 5% significance level [84].

5.4.2.4 Model validation

Model validation was performed to examine the ability of the final model to
describe and predict the data with which it was developed as well as data from
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other studies. Depending on the objectives of the analysis, different approaches
were applied including validation methods such as diagnostic checks by graphical
analysis [32], bootstrapping [18], and posterior predictive check [92].
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Chapter 6

Results & Discussion

This chapter provides an overview and a discussion of the most important results
documented in Papers I–V. The results are presented according to the specific
aims of the thesis (see Section 1.2) and divided into the following topics.

• Population PK modelling of SC and IM depots (Section 6.1)

• Implementation and application of SDEs in non-linear mixed-effects mod-
elling (Section 6.2)

• Mechanism-based PK/PD modelling of the HPG axis (Section 6.3)

6.1 Population PK modelling of SC and IM de-
pots

6.1.1 Degarelix PK model (Papers I, IV, and V)

Degarelix is administered as a suspension, which forms a sustained release depot
after SC injections. The depot formation is the result of immediate gelling of
degarelix once in contact with the SC interstitial environment (see Figure 6.1).
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Figure 6.1: In vitro micro-depot of degarelix.

Degarelix is released from the depot in two distinct phases; a fast release phase
right after dosing accounting for the high initial plasma concentration levels,
and a slow release phase, which determines the plasma concentration levels in
the maintenance phase (see Figure 6.2).

Several different factors affect the formation and the viscosity of the gel, and
hence the SC release profile of degarelix. In the degarelix CS01 study, a decrease
in the bioavailability was observed when the concentration in the dosing solution
was increased from 5 to 30 mg/mL. Furthermore, the volume of the injected
solution seemed to influence the release of degarelix from the depot; where a
faster release was observed for smaller injection volumes.

A population PK model for SC administered degarelix was developed in Paper
I to better understand and quantify the factors controlling the release from the
SC depot. The influence of the concentration and volume of the dosing solution
was investigated by assuming that the SC release could be modelled as diffusion
out of a spherical SC depot. The model was derived from Fick’s second law of
diffusion [20] and described by a partial differential equation (PDE) (see Eq. (4)
in Paper I). In order to estimate the parameters in NONMEM, it was necessary
to implement an approximation of the spherical SC depot model reducing the
PDE to a system of ODEs. This was done by spatial discretization of the sphere
into concentric spherical shells with spatially constant flow.
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Figure 6.2: Deconvolved SC release profile for three different dose groups in
the degarelix CS01 study using a flexible zero-order input model
[49].

The analytical solution to the PDE was derived using theory for Sturm-Liouville
problems [4] to be able to assess the error made by approximating the sphere
with two concentric spherical shells. The SC depot concentration as a function
of the radial distance from the core of the depot and the time since drug ad-
ministration is shown in Figure 6.3 for the lowest dose group receiving a dose
of 0.5 mg using a dose-volume of 0.1 mL and a dose-concentration of 5 mg/mL.
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Figure 6.3: SC depot concentration as a function of radial distance from the
core of the sphere (r=0 cm) to the surface (r=0.28 cm) and time
since drug administration viewed from two different angles.
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The spatial discretization using two spherical shells was found acceptable com-
pared to the analytical solution when examining the SC depot concentration and
exchange rate (Figures 4 and 5 in Paper I). Attempts to increase the number of
shells in the SC depot model were made but it did not improve the predictions
of the degarelix plasma concentrations since no concentration measurements
within the SC depot were available for the estimation of model parameters.

Since bootstrapping [18] was too time consuming, the model was validated by
applying the method proposed by Jonsson and Sheiner [33]. A total of 100 trials
with the same design as the CS01 study were simulated. The simulated plasma
degarelix concentration values at each time point were divided up into the lower
25% quantile, the middle 25%-75% quantile, and the upper 75% quantile. At
each time point, the median of those three groups were calculated. This pro-
cedure was repeated for each of the 100 simulated trials and for the observed
plasma degarelix concentrations. The results are shown in Figure 6.4 where the
black lines are the 100 median simulated plasma degarelix concentrations while
the superimposed red lines are the median observed plasma degarelix concen-
trations. The model seems to capture the behaviour of the observed data very
well and was therefore accepted as the final model.
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Figure 6.4: Median degarelix plasma concentrations for the lower 25%, middle
25%-75%, and upper 75% quantiles of the 100 simulated (black
lines) and observed (red lines) data.

The bioavailability was estimated to decrease with increasing dose-concentration
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(see Figure 7 in Paper I). The bioavailability was strangely enough estimated to
be above 100% (i.e. 163%) for the group in the degarelix CS01 study receiving
the lowest dose-concentration of 5 mg/mL, while the bioavailability for highest
dose-concentration group of 30 mg/mL was estimated to be 36%. These esti-
mates of the bioavailability were however in agreement with non-compartmental
analysis (NCA) [75]. The explanation for estimating a bioavailability above
100% is believed to be due to uncertainty about the exact dose received, differ-
ent analytic methods used in the degarelix CS01 and CS05 studies, and because
of the high subject variation due to the very different study designs of the par-
allel SC (CS01) and IV (CS05) studies.

The dose-volume effect on the SC release was modelled by a B-spline basis
[14] using a piecewise linear function to relate the unmeasured effective depot-
volume to the SC injected dose-volume. The results indicated diminishing dose-
volume effects at injection volumes of 1 mL and above with a maximum effective
dose-volume estimate of 168% relative to the lowest dose-volume of 0.1 mL. The
reason for observing diminishing dose-volume effects at larger injection volumes
might be due to the formation of the SC depot, which undergoes a maturation
stage where the density of the gel increases and the release rate decreases. At
large dose-volumes, the maturation stage takes longer time, which results in
faster diffusion out of the depot until the formation of a rigid gel. It should
be noted that the degarelix CS01 study was not intended for determining a
dose-volume effect on the SC release, and the design was therefore not balanced
at the low dose-volumes.

The SC depot model was simplified in Paper IV since the clinical relevant SC
degarelix doses would require dose-volumes larger than 1 mL. The dose-volume
effect on the SC release was therefore assumed to level off at injection volumes
above 1 mL, and hence only to a minor degree influence the PK of degarelix if
the dose-volume would be increased beyond these levels. The new PK model
was investigated using the systematic PK/PD model building framework pre-
sented in Section 4.4 by tracking variations in the absorption half-life parameter
t1/2,abs (see Figure 1 in Paper IV). The tracked absorption half-life remained
constant around 245 hr until approximately 3 days after drug adminstration
where it increased to a new level for the remainder of the study. As a reason-
able approximation, the SC depot was modelled with two first-order absorption
components, i.e. an initial fast absorption followed by a prolonged slow release
from the depot (see Figure 2 in Paper IV).

The degarelix PK model in Paper IV was further developed in Paper V using
data from the degarelix CS05 and CS07 studies. A two-compartment disposition
model with two first-order absorption components was used to describe the
concentration-time profiles of SC administered degarelix (see Figure 1 in Paper
V). Three of the PK parameters were identified from initial covariate analysis to
vary with the concentration in the dosing solution. The bioavailability (F ), the



46 Results & Discussion

slow absorption half-life (t1/2,slow), and the fraction of the dose being absorbed
via the fast absorption route (Fr) were therefore allowed to vary with the
concentration of the injected dosing solution. The final degarelix PK model
described the observed PK data well with good agreement between individual
predicted and observed plasma degarelix concentrations.

6.1.2 Triptorelin PK model (Paper V)

A population PK model was also developed to describe the absorption of a
sustained release formulation of GnRH agonist triptorelin called Decapeptyl
Depotr to be used for the mechanism-based population PK/PD modelling of
the HPG axis in Paper V.

Unlike degarelix, Decapeptyl Depotr is formulated to have certain desirable
release characteristics. A bolus of triptorelin is released rapidly from the depot
within the first 24 hr after SC and IM administration. After the initial burst,
different absorption profiles are observed after SC and IM adminstration of
triptorelin. SC administration of triptorelin is believed to be absorbed into
the lymph before it enters the systemic circulation, while IM adminstration of
triptorelin is absorbed directly into the systemic circulation from the site of
injection.

The depot model for SC and IM administered triptorelin was similar in princi-
ples to the developed degarelix PK model. The initial burst was modeled as an
apparent zero-order infusion where the fraction of the dose and the duration of
infusion were estimated. The subsequent constant depot release was modeled
by two SC compartments and one IM compartment, i.e. a SC site of injec-
tion compartment from where the drug is transferred to a transit compartment
before being absorbed into the central compartment and an IM compartment
with first-order absorption directly into the central compartment (see Figure 1
in Paper V).
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6.2 SDEs in population PK/PD modelling

The second research project was to investigate the use of SDEs in population
PK/PD modelling. It was essential to try and implement SDEs in an already
available software package for parameter estimation in PK/PD models. The
choice was therefore between extending the program CTSM [47] for parameter
estimation in SDE models to be able to handle non-linear mixed-effects models
or try and implement an algorithm for parameter estimation in SDE models in
a non-linear mixed-effects software. The choice fell on the later option because
it was believed that it would have a bigger impact to introduce SDEs to the
PK/PD modelling community when using a software package already familiar
to pharmacometricians.

The choice of programs was therefore between the NLME package [59] developed
by Pinheiro and Bates and the de facto standard software for population PK/PD
data analysis NONMEM [7] developed by Beal and Sheiner. There were pros
and cons for both programs, i.e.

• The NLME package is not currently able to estimate parameters in models
described by differential equations thereby limiting its use in population
PK/PD modelling. It would therefore be necessary to first implement an
ODE solver to be able to manage non-linear models without a closed-form
solution.

• Initial results quickly revealed that it would not be possible to implement
SDEs in the current version of NONMEM (i.e. version V) since it was not
possible to get access to the required internal variables.

The initial choice therefore fell on the NLME package for the implementation
of SDEs in non-linear mixed-effects modelling software. The attempts to im-
plement SDEs in population PK/PD modelling is described in the following.

6.2.1 Development of the nlmeODE package (Paper II)

In order to be able to implement the EKF algorithm in NLME, it was first
necessary to implement an ODE solver to be able to handle non-linear PK/PD
models without closed-form solutions. For that purpose, the nlmeODE package
[74] was developed by combining NLME with the odesolve package [64] in R
(www.r-project.org) [27]. The odesolve package provides an interface to the
Fortran ODE solver lsoda (Livermore solver for ordinary differential equations,
with automatic algorithm selection) [57], which can be used to solve initial value
problems for systems of first-order ODEs.
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The numerical stability and the rate of convergence of the optimization algo-
rithm in NLME were attempted increased by simultaneous solution of the sen-
sitivity equations associated with the system of differential equations. These
sensitivity equations were automatically derived by nlmeODE and passed to
the gradient attribute of the NLME object. Unfortunately, this feature only
increased the estimation time and made the estimation extremely unstable for
larger systems of ODEs.

The nlmeODE package was written primarily for population PK/PD modelling
using a similar syntax as NONMEM’s NMTRAN for easy specification of com-
plicated dosing regimens. The nlmeODE package allows for sequential and
simultaneous PK/PD data analysis, and can handle the most common types of
PK/PD models, multiple doses/infusions as well as estimation of bioavailability
and rate/duration of infusions. The PK data of the anti-asthmatic drug theo-
phylline was used to illustrate the syntax of nlmeODE and available tools for
data analysis in R in Paper II.

Plans of porting the nlmeODE package to S-PLUS were skipped since S-PLUS
does not have an ODE solver implemented. Attempts were however made to
try and port the odesolve package to S-PLUS but without success due to the
different lexical scoping rules of R and S-PLUS. The results from the comparison
of NONMEM and NLME in Paper III were awaited before making the decision
to develop nlmeODE further (see Section 6.2.2).

6.2.2 Comparison of the non-linear mixed-effects programs
NONMEM and NLME (Paper III)

The purpose of Paper III was mainly to compare the non-linear mixed-effects
programs NONMEM and NLME/nlmeODE using PK/PD degarelix data from
CS05 and illustrate the level of model complexity NLME and nlmeODE could
handle.

NONMEM and NLME are both parametric non-Bayesian likelihood approaches
proposing different approximations of the population likelihood function. The
FOCE method in NONMEM is compared with the ML method in the alter-
nating algorithm proposed by Lindstrom and Bates as implemented in NLME
since these seemed to be the most similar. The FOCE method is generally con-
sidered more accurate than Lindstrom and Bates alternating algorithm since
the FOCE method uses an expansion around the estimated random effects only
and not like the LME approximation in NLME, which makes it around both
the estimated fixed and random effects. The alternating algorithm is though
supposed to be less computer intensive than the FOCE method because the
penalized non-linear least squares (PNLS) step can be solved for all individuals
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simultaneously and since the objective function can be profiled on the fixed
effects.

A PK/PD model describing the degarelix CS05 PK/PD data was developed for
the NONMEM and NLME comparison. The PK of degarelix following a single
IV infusion was best described by a three-compartment disposition model while
a turnover model with a pool compartment adequately represented the PD
response of testosterone thus bringing the total number of ODEs to five with
18 parameters to be estimated.

The obtained parameter and relative standard error (RSE) estimates were con-
sistent between NONMEM and NLME with a few exceptions, while the model
predictions were almost identical. Both methods required approximately the
same number of function evaluations but the computation times were signifi-
cantly longer using NLME together with nlmeODE compared to NONMEM.
This was mainly due to the implementation of nlmeODE in R, which is an inter-
preted language while NONMEM is written in the compiled language Fortran.
The results indicated that the two likelihood approximations in NONMEM and
NLME yield similar parameter estimates when analyzing complicated PK/PD
models without closed-form solutions.

NONMEM and NLME were further compared using a parametric bootstrap
procedure using 100 bootstrap replicates to evaluate the bias and precision
of the obtained parameter estimates (see Figures 6 and 7 in Paper III). A
comparison of the empirical means of the ratios between the NONMEM and
NLME parameter estimates revealed that 16 out of the 18 parameters were
significantly different from each other on a 5% significance level (see Figure
6.5).

The overall conclusions from the parametric bootstrapping study were

• The sample relative standard deviation (RSD) estimates from the para-
metric bootstrap procedure were noticeably more alike between the two
programs than the asymptotic RSE estimates.

• The discrepancy between the RSD and RSE estimates was noticeably
higher in NLME compared to NONMEM.

• The mean asymptotic RSE estimates generally underpredicted the boot-
strap sample RSD estimates.

• Out of a total of 18 parameters, 3 NONMEM parameter estimates and 10
NLME parameter estimates were significantly different from their simu-
lated parameter values on a 5% significance level.

• 16 out of the 18 parameter estimates from NONMEM and NLME were
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Figure 6.5: Comparison of the empirical means of the ratios between NON-
MEM and NLME parameter estimates from the 100 bootstrap
replicates. The NONMEM and NLME parameter estimates are
significantly different on a 5% significance level when the confi-
dence interval does not include the line of unity.

considered significantly different from each other on a 5% significance
level.

In general, NONMEM seemed to be superior in accuracy, stability, flexibility,
and speed compared to NLME/nlmeODE but when performing graphical and
statistical data analysis, NLME is preferred over NONMEM.

NONMEM VI beta was made available through Uppsala University in October
2003. Unlike NONMEM V, it was possible to get access to the state predictions
in NONMEM VI beta, which should be used for the EKF implementation. The
development of an nlmeSDE package was therefore put on hold because of the
observed better performance of NONMEM V compared to NLME in Paper
III. The implementation of SDEs in a non-linear mixed-effects software was
therefore attempted in NONMEM VI beta.
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6.2.3 Implementation of SDEs in NONMEM (Paper IV)

A set of Matlab (www.mathworks.com) and R functions were initially written
to evaluate the FOCE population likelihood function based on SDEs. This was
done to make absolutely certain that what was happening under the “hood” of
NONMEM was correct thereby qualifying the implementation of the EKF in
NONMEM.

The Matlab and R functions were written to handle the simplest possible case
of a one-compartment PK model with an IV bolus dose. A simulation study
was performed by Overgaard et al. in [55] to investigate the type I and type
II errors associated with the introduction of system noise in non-linear mixed-
effects models, i.e.

• Will significant system noise be predicted by the algorithm when none is
used in the simulations (Type I error), and

• Will the algorithm fail to detect significant system noise when it is truly
present in the data (Type II error).

The results showed that higher levels of system noise did not produce either
additional measurement noise nor IIV, illustrating that system noise is in fact
satisfactorily separable from the remaining noise parameters. Furthermore, the
study demonstrated that the relationship between bias in the system noise and
the level of the remaining noise parameters was small and only few type I
errors occurred. A significant level of system noise could be detected when it
truly was present in the simulated data (no type II errors). Finally, successful
estimation was possible with sparsely sampled data having only three samples
per individual [55].

Based on the results from the simulation study, it seemed feasible to extend the
usual non-linear mixed-effects model with SDEs and attempts were therefore
made to tweak NONMEM into using SDEs.

The recursive EKF algorithm as described in Section 4.3 was implemented in
NONMEM by modifying the standard NONMEM data file and control stream.

The integral in Eq. (4.24) specifying the initial state covariance Pi0 could not be
entered directly into the NONMEM control stream. This problem was handled
by adding an extra line for each individual rewinding the time variable with the
time difference between the first two measurements.

Predicting and updating the states and associated covariances was slightly tricky
in NONMEM because it first involved making the one-step predictions, calculat-
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ing the EKF update equations, resetting all compartments, and finally update
the states with the EKF updates. This was done by duplicating each observation
event identifier record (EVID=0) in the data file thereby getting an EVID=0,
EVID=2, and EVID=3 record where

• The one-step predictions are performed in the EVID=0 as usual.

• The EVID=2 record stores the one-step predictions from the EVID=0
record.

• The states are reset to zero and updated with the EKF updates in the
subsequent EVID=3 record.

The NONMEM control stream was modified to correctly calculate the EKF
equations by extensive “book-keeping” of temporary variables. The one-step
predictions of the EKF are made in $DES, the EKF update equations are cal-
culated in $PK, while the EKF output predictions are performed in $ERROR
(see Appendix A in Paper IV for an example of a NONMEM SDE control
stream). Further details about the implementation of SDEs in NONMEM can
be found in Paper IV.

The PK data from the simulation study in [55] was used to validate the EKF
implementation in NONMEM. The results were considered satisfactory since
the objective function values (OFVs) from the Matlab and R functions were
similar to those obtained from NONMEM. An S-PLUS script was written to
automate the necessary control stream and data file modifications thereby mak-
ing it relative straightforward to transform a standard NONMEM model based
on ODEs into one with SDEs. However, due to the unsupported implementa-
tion in NONMEM VI beta, this is not yet something for pharmacometricians
without background SDE knowledge. It is still not known when NONMEM
version VI will be released and it is therefore only beta-testers who can use
NONMEM with SDEs at the moment.

6.2.4 Application of SDEs in population PK/PD mod-
elling (Paper IV and V)

Another goal of the thesis was to explore possible applications of SDEs in pop-
ulation PK/PD modelling. The most important investigations and findings of
potential benefits of extending non-linear mixed-effects models with SDEs are
summarized in the following.

One of the main features of using SDE models compared to ODE models is that
the residual error is decomposed into system and measurement noise thereby
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providing a more realistic description of the observed variations. Erroneous
dosing, sampling history, as well as structural model misspecifications may in-
troduce time-dependent or serial correlated residual errors. When correlated
residual errors are observed due to structural model misspecifications or true
physiological variations, it may be unsatisfactory that they are not included in
the model. SDEs can be used to model correlated residuals and includes the
statistical functionality of the commonly used continuous first-order autoregres-
sive (AR(1)) model [38]. The SDE model structure extends the flexibility of the
AR(1) model by allowing the system noise to be attributed to different model
components. The system noise can be put directly on the state equation for
e.g. the absorption process, which restricts the auto-correlation pattern only to
be effective as long as there is absorption. This would not be possible using the
continuous AR(1) model since it only acts on the measurement equation and
not the dynamics of the system and will therefore act on the entire time scale.

Another source of variability is unaccounted variations in model parameters
between individuals. Part of this variability can sometimes be linked to surro-
gate variables (e.g. demographic covariates) but most of the variability is often
not predictable due to the governing processes are not fully understood or too
complex to model deterministically. One way of dealing with such apparent
intra-individual variability is to divide it into variation within and between
study occasions using the method described in [39]. The ability to identify
inter-occasion variability (IOV) though depends on the study design. The de-
sign must have information about the parameter of interest on each occasion
and more than one sample per occasion must be taken on at least one occasion.
Otherwise, the IOV is lumped with the inter- and intra-individual variabil-
ity and it is not possible to separate out the variability in model parameters
[39]. The application of SDEs for describing IOV implies time correlations and
should be the choice of method when correlations are observed within occasions.
However, if the IOV is unlikely to be correlated with time, the standard IOV
approach described in [39] is preferred over the SDE approach.

SDEs can also be used as a diagnostic tool for model appropriateness. The
significance of including system noise to a PK/PD model can be tested using
the LRT since an SDE model reduces to an ODE model by fixing the diffusion
term σw to zero. Significant system noise signals a potential model misspeci-
fication since errors in the structural model typically will result in significant
system noise. It might however also be an indication that true physiological
variations are present in the data and care should therefore be taken before
drawing definitive conclusions from the system noise parameter estimates.

Clinical PK degarelix data from CS02 was used in Paper IV to illustrate the
use of SDEs for tracking fluctuations in model parameters. This was done by
expanding the model with a state equation for the absorption half-life that
fluctuate randomly like a Wiener process. The tracking of variations in model



54 Results & Discussion

parameters is made possible by the way the EKF works. The one-step pre-
dictions are updated with the individual measurements at each sampling time
thereby correcting for structural model deficiencies unlike an ODE approach,
where the system is progressed without including additional information from
the observed data (see Figure 3 in Paper IV). By plotting the updated EKF
estimates of t1/2,abs as a function of time, it was possible to propose a reason-
able approximation of the observed pattern in the absorption half-life using a
two components absorption model (see Figure 1 in Paper IV). Physiological
constraints on the absorption process can be imposed by using proportional
system noise to prevent negative concentrations or by introducing off-diagonal
elements in the diffusion term for conservation of mass balance. Several different
parameterizations are often necessary to get a satisfactory result.

The introduction of SDEs to non-linear mixed-effects models might improve the
parameter estimates. In particular, the inter- and intra-individual variability
estimates seemed to be deflated whereas the structural parameters were less
affected compared to parameter estimates from a corresponding ODE model. In
Paper IV, the SDE and ODE model population parameter estimates were nearly
identical since the system noise was relatively small in the final PK model. For
other systems where the degree of model misspecification is more dominant (e.g.
non-linear PD models of complicated physiological systems), the discrepancy
between the SDE and ODE parameter estimates are expected to be greater as
demonstrated for a non-linear dynamical model of a fed-batch bioreactor in [44]
using a non-population approach. Preliminary results also indicated that SDEs
improve the parameter standard error estimates but further simulation studies
are needed to say anything definitively about it.

It is evident that an SDE model has improved simulation properties compared
to an ODE model when looking at the one-step predictions (see Figure 3 in
Paper IV). Whether or not SDEs can improve the predictive performance of
clinical trial simulations is a bit more difficult to answer. It is not expected
that PK/PD models will have better simulation properties by including SDEs
when the system noise is due to model misspecifications whereas significant sys-
tem noise due to true random physiological fluctuations might. The predictive
performance of three summary PK variables (i.e. Cmax, tmax, and AUC) was
investigated for the final SDE and ODE model in Paper IV using the posterior
predictive check described by Yano et al. in [91] (see Figure 6.6). No distinct
differences between the SDE and ODE model predictions could be observed due
to the relative small system noise on the slow absorption compartment.

Besides the above mentioned potential benefits of using SDEs, the main appli-
cation of SDEs seems to be during the population PK/PD model development.
Structural model deficiencies can be pinpointed by quantifying the model un-
certainty in the system noise as illustrated in Paper IV. Furthermore, SDEs
enable identification of non-linear dynamic dependencies of unknown states, in-
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Figure 6.6: Posterior predictive check of Cmax, tmax, and AUC for group 1
(Top), group 2 (Center), and group 3 (Bottom) in the degarelix
CS02 study. SDE/ODE predicted (bars) and observed (–) median
Cmax (Left), tmax (Middle), and AUC (Right). The x-axis rep-
resents counts out of 200 replicates.

puts and/or parameters as well as deconvolution of e.g. absorption profiles and
functional relationships between PK and PD.

Clinical PK/PD degarelix and triptorelin data was used in Paper V to illustrate
the applications of SDEs for systematic population PK/PD model building
motivated by the systematic model development scheme in [45] and presented
in Section 4.4.

The feedback interactions in the mechanism-based model of the HPG axis were
deconvolved using SDEs. For illustrative purposes, the one-step SDE predic-
tions and updates of the testosterone concentration using a basic turnover model
with an extra state equation for the non-basal testosterone secretion are shown
in Figure 6.7 for a representative subject from the triptorelin CS001 study. The
one-step SDE predictions (horizontal lines) are considerably off the observed
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testosterone concentrations but are brought back on track by updating the pre-
dictions (vertical lines) with the individual measurements at each sampling time
before progressing the system. The SDE framework thereby corrects for any
structural model deficiencies and the updated EKF estimates can be used to
identify the dynamic dependencies of the non-basal testosterone secretion and
deconvolve an appropriate parametric function (see Figure 2 in Paper V).
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Figure 6.7: One-step predictions (–) and observed testosterone concentrations
(◦) for a representative subject from the triptorelin CS001 study.

6.3 Mechanism-based PK/PD modelling of the
HPG axis

The main objective of the Ph.D. thesis was to combine the results from the
development of SC/IM depot PK models and the implementation of SDEs in
population PK/PD modelling to build a mechanism-based model of the HPG
axis.
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Mechanism-based models are very time consuming to develop and computa-
tional challenging to estimate parameters in. It is necessary to correctly specify
a multitude of physiological entities, their rate of formation and degradation to-
gether with potential regulatory feedback mechanisms. The number and com-
plexity of the physiological mechanisms involved in such models makes them
difficult to develop and are often too complex to be conveniently described by
deterministic models. SDEs are expected to be of potential benefit for compli-
cated PK/PD models by accounting for some of these mechanisms, while only
the most important mechanisms are treated by deterministic functions. At-
tempts were made to formulate the final mechanism-based model of the HPG
axis with SDEs but the added computational burden was of such a magnitude
that the model was useless for any practical purposes. The systematic popu-
lation PK/PD model building framework described in Section 4.4 was however
very useful for elucidating the most important dynamic dependencies and de-
convolve the functional relationships of the HPG axis.

The use of advanced computational techniques and hardware was required to
optimize the model building process of the mechanism-based model the HPG
axis. A Linux cluster was successfully setup for distributed execution of up to
four simultaneous NONMEM runs thereby reducing the time used for model
building considerably. Unfortunately, current non-linear mixed-effects software
implementations do not support parallel computation and the cluster implemen-
tation can therefore not reduce the estimation time of a single run. Initiatives
are however being taken to develop open-source software, which is able to dis-
tribute the time-consuming calculations on symmetric multiprocessor (SMP)
computers [89].

The main problem associated with modelling a multivariate closed-loop system
such as the HPG axis is that any model misspecifications in one part of the
model will distort all the other parts of the model since the submodels are
interdependent. Initial attempts were however made to model the two PD
variables LH and testosterone separately conditioned on the observed response
of the other hormone, thereby avoiding the complicated closed-loop feedbacks.
This approach was not successful since the separately developed submodels were
difficult to merge when abandoning the conditioning on the observed responses.
It was furthermore not appropriate to switch from the FOCE method to the less
accurate FO estimation method in NONMEM during the model building due
to the high degree of non-linearity in the system. As a consequence, extremely
long run-times (approximately 1-2 weeks per model) were experienced during
the model building process. The simulation program Berkeley Madonna [17]
was used as a tool for simulating the model response by specifying parameter
values obtained from literature and initial NONMEM runs. This setup served
as an excellent tool for developing the mechanism-based model of the HPG
axis and for testing different hypothesis before attempting to estimate model
parameters in NONMEM.
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6.3.1 Population PK/PD model of LH and testosterone
response following treatment with GnRH agonist
triptorelin and GnRH antagonist degarelix (Paper
V)

The main idea of building a mechanism-based model of the HPG axis, which
could account for both GnRH agonist and antagonist treatment was to validate
the model by having two drugs with different mechanisms of action acting on
the same underlying physiological system.

The mechanism-based model of the HPG axis was developed using PK/PD
data from the degarelix CS07 and triptorelin CS001 studies with more than
12,000 LH and testosterone concentration-time measurements from 228 sub-
jects. The final PD model that best described the observed PD response of LH
and testosterone concentrations following treatment with GnRH agonist trip-
torelin and GnRH antagonist degarelix consisted of a receptor compartment,
two LH compartments (i.e. an intracellular pool compartment and a circulating
LH compartment), and a compartment for circulating testosterone (see Figure 1
in Paper V). In the derived model, the secretion of readily releasable LH from
the pool compartment was stimulated and inhibited by the plasma triptore-
lin and degarelix concentrations, respectively. Circulating LH stimulated the
testosterone secretion while the delayed testosterone feedback on the non-basal
LH synthesis and release was modelled through a receptor compartment where
testosterone stimulates the production of receptors.

A total of 30 model parameters were successfully estimated in the final mechanism-
based model of the HPG axis (see Table 3 in Paper V). Five of the parameters
(ke,LH , ke,R, LHbase, and Tebase) were identified as study-specific parameters
even though they in theory are considered to be system-specific. The distri-
bution of the empirical Bayes estimates of the system-specific parameters with
IIV (krel,LH , Lmax, and L50) were examined graphically by Quantile-Quantile
(Q-Q) plots (see Figure 6.8).

The parameters were further investigated to verify that they were evenly dis-
tributed between the triptorelin and degarelix studies. The cumulative prob-
ability distribution of the empirical Bayes estimates from the two types of
treatment were comparable and the assumption about the parameters being
system-specific was accepted (see Figure 6.9).

The final model had one distinct inconsistency with respect to the mechanistic
understanding of the HPG axis, i.e. the study-specific receptor stimulation of
the non-basal LH synthesis and release. The physiological explanation might
be found in the activation of different metabolic pathways, which results in
completely different dynamic responses. Since neither endogenous hypothalamic
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GnRH concentrations nor changes in pituitary GnRH receptor density were
measured, it was not possible to separate these two effects. Instead, an empirical
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receptor compartment was used to represent the study-specific net effect of
the hypothalamic GnRH and pituitary GnRH receptor response following drug
treatment thereby accounting for the observed systemic down-regulation.

The different PK/PD profiles following treatment with triptorelin and degare-
lix was adequately captured by the mechanism-based model as illustrated in
Figures 3–5 from Paper V thereby indicating that the model was sufficient at
mimicking the underlying physiology of the endocrine system.

The mechanism-based model building of the HPG axis is still work in progress
and the model is updated regularly with the latest available PK/PD data from
the degarelix development project. Clinical trial simulations have been per-
formed to optimize the dosing regimens for future phase III studies where a
total of 1000 trials were simulated for each dosing regimen by bootstrapping
the individual vector of parameter estimates with replacement thereby calcu-
lating the probabilities of obtaining 95% success rate (not shown).



Chapter 7

Conclusions

Population pharmacokinetic/pharmacodynamic (PK/PD) modelling is a pow-
erful tool for faster and more efficient clinical drug development. The goal
of modelling and simulation (M&S) is to describe, understand, and predict
the clinical outcome of past and future studies. PK/PD models have evolved
from being empirical descriptions of observed data to mechanism-based mod-
els, which are based on pharmacological and physiological knowledge about the
modelled system. Mechanism-based PK/PD models aim at mimicking the data
generation mechanism of the underlying physiological system thereby enabling
the description and prediction of multiple drugs acting on the same system.
Thus, new sophisticated computational methods for non-linear mixed-effects
modelling are needed to be able to develop such complex models and estimate
the parameters.

Different aspects of population PK/PD modelling of the hypothalamic-pituitary-
gonadal (HPG) axis have been investigated in the present Ph.D. thesis and sev-
eral achievements within PK modelling of subcutaneous (SC) and intramuscular
(IM) depots, implementation and application of stochastic differential equations
(SDEs) in non-linear mixed-effects modelling, and systematic development of a
mechanism-based PK/PD model for the HPG axis have been presented.

• Population PK models were developed to describe the absorption of GnRH
antagonist degarelix and GnRH agonist triptorelin from SC/IM depots.
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• The initial depot model for degarelix relied on diffusion out of a spherical
SC depot and was developed to quantify the influence of the concentration
and volume of the dosing solution on the SC absorption profile. The depot
model was later simplified using two first-order absorption components
accounting for the initial fast release followed by a prolonged slow release
from the depot due to diminishing dose-volume effects at clinical relevant
doses of degarelix.

• The absorption of SC and IM administered triptorelin was modelled by
an apparent zero-order infusion accounting for the initial burst of trip-
torelin and two SC compartments and one IM compartment describing
the subsequent slow SC and IM release, respectively.

• Several attempts were made to implement SDEs in non-linear mixed-
effects modelling software. The recursive Extended Kalman Filter (EKF)
algorithm was successfully implemented in NONMEM for parameter es-
timation in SDE models by modifying the standard NONMEM data file
and control stream.

• SDEs provide an attractive modelling approach for systematic population
PK/PD model development by allowing information about unmodelled
dynamics of the system to be extracted from data. This is done by de-
composition of the noise affecting the system into a system noise term
representing unknown or incorrectly specified dynamics and a measure-
ment noise term accounting for uncorrelated errors such as assay error.

• The application of SDEs in systematic population PK/PD model devel-
opment was investigated using clinical PK/PD data and illustrated by
tracking unexplained variations in model parameters, pinpointing model
deficiencies, identification of non-linear dynamic dependencies, and de-
convolution of functional PK/PD relationships.

• A mechanism-based model of the HPG axis was developed, which could ac-
count for the PD response of LH and testosterone following treatment with
either GnRH agonist or antagonist in a combined model. The mechanism-
based model of the HPG axis was thereby validated by being able to de-
scribe the PD response for two drugs with different mechanism of action
acting on the same underlying physiological system.

The primary focus of this work was on the implementation and application of
SDEs during the development of population PK/PD models for the HPG axis.
The application of SDEs in population PK/PD modelling was investigated using
clinical PK/PD data but further simulation studies are needed to disclose all
possible benefits of using SDEs. Recommendations for future work include
further investigations whether the mechanism-based model of the HPG axis
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can be linked to a disease progression model where testosterone stimulates the
prostate cancer cell growth.

The next-generation non-linear mixed-effects modelling software are expected
to be able to utilize the power of multi-processor computers simultaneously for
parallel computation. This will further optimize the PK/PD modelling process
and the gained speed in computation will hopefully allow for investigation of
more sophisticated statistical techniques for implementing SDEs in population
PK/PD modelling.
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